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Abstract 

 

In this paper, high-electron-mobility transistors (HEMTs) with doping profile 

modification are discussed for device linearity improvement. The modification was 

based on the third-order intermodulation distortion (IM3) and the third-order intercept 

point (IP3) analysis through simple equivalent circuit of the devices. The correlation 

of the extrinsic transconductance (Gm) with IM3 and IP3 indicates that flatter Gm 

distribution vs gate bias voltage causes lower IM3 level and that high Gm with flatter 

Gm distribution result in higher IP3 of the devices. Therefore, doping modification 

that improves the flatness of the Gm distribution will improve the device linearity. 

The study is divided into four parts: First, a metamorphic high-electron-mobility 

transistor (MHEMT) with In0.55Ga0.45As/In0.67Ga0.33As/In0.55Ga0.45As composite 

channel layers was developed for low noise and high-linearity applications. The use 

of a composite channel results in high electron mobility and good confinement of 

electrons in the channel region which are the desired characteristics of a low-noise 

and high-linearity device. The device shows great potential for high-linearity and 

low-noise applications at high frequencies. 

Second, the uniformly-doped and the δ doped In0.52Al0.48As/In0.6Ga0.4As 

MHEMT were fabricated and the DC characteristics and the third-order intercept 
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point (IP3) of these devices were measured and compared. Due to more uniform 

electron distribution in the quantum well region, the uniformly-doped MHEMT 

exhibits flatter Gm (transconductance) vs IDS ( drain to source current ) curve and 

much better linearity with higher IP3 and higher IP3 to PDC ratio as compared to the δ 

doped MHEMT, even though the δ doped device exhibits higher peak 

transconductance. As a result, the uniformly doped MHEMT is more suitable for 

communication systems that require high linearity operation. 

Third, a low noise InGaP/InGaAs pseudomorphic high-electron-mobility 

transistors (PHEMTs) with high IP3 was developed. The device utilizes InGaP as 

Schottky layer to achieve a low noise figure and uses AlGaAs as the spacer to 

improve the electron mobility and the device also uses dual delta doped layers for 

uniform electron distribution in the channel to improve the device linearity. 

Finally, doping modification in the Schottky layer (Schottky layer doped) and in 

the channel layer (channel doped) of the conventional � doped InGaP/InGaAs 

PHEMT were experimented to see the extra doping effect on the HEMT device 

linearity. DC and RF performances of these devices were measured and compared. It 

is found that extra doping either in the channel region or in the Schottky layer can 

improve the flatness of the Gm distribution under different gate bias conditions and 

thus achieve lower IM3 and higher IP3 of these devices with small scarification in the 

peak Gm value as compared to the conventional delta doped devices. The power 

performances of these devices were tested with different drain to source voltage (VDS) 

bias points. When the VDS bias was increased, the Gm values of the channel doped 

device and the Schottky layer doped device increased and decreased respectively with 

the increasing VDS bias. The adjacent-channel power ratio (ACPR) measurements of 

these devices were performed at different DC bias power levels. Overall, it was found 

that channel doped device demonstrated best linearity performance among these three 
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different types of devices studied with highest IP3 level, lowest IM3 and best ACPR 

under CDMA modulation even though it has the lowest electron mobility among these 

devices. Overall, different structures and doping profiles of InGaP/InGaAs PHEMT 

and InAlGs/InGaAs MHEMT devices were experimented for device linearity 

improved. It’s found with paper design of the device structure and doping profile, the 

linearity of the HEMT device can be greatly improved and the experimental results 

match well with the theoretical analysis in this thesis. 
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