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Abstract

In this paper, high-electron-mobility transistors (HEMTs) with doping profile
modification are discussed for device linearity improvement. The modification was
based on the third-order intermodulation distortion.(IM3) and the third-order intercept
point (IP3) analysis through simple.equivalent citcuit of the devices. The correlation
of the extrinsic transconductance (Gm)-with-IM3 /‘and IP3 indicates that flatter Gm
distribution vs gate bias voltage causes-lowerdM3 level and that high Gm with flatter
Gm distribution result in higher IP3 of the devices. Therefore, doping modification
that improves the flatness of the Gm distribution will improve the device linearity.

The study is divided into four parts: First, a metamorphic high-electron-mobility
transistor (MHEMT) with IngssGagasAs/Inge7Gag33As/IngssGagasAs composite
channel layers was developed for low noise and high-linearity applications. The use
of a composite channel results in high electron mobility and good confinement of
electrons in the channel region which are the desired characteristics of a low-noise
and high-linearity device. The device shows great potential for high-linearity and
low-noise applications at high frequencies.

Second, the uniformly-doped and the & doped Ings,AlyagAs/IngsGagsAs

MHEMT were fabricated and the DC characteristics and the third-order intercept



point (IP3) of these devices were measured and compared. Due to more uniform
electron distribution in the quantum well region, the uniformly-doped MHEMT
exhibits flatter Gm (transconductance) vs Ips ( drain to source current ) curve and
much better linearity with higher IP3 and higher IP3 to Ppcratio as compared to the 6
doped MHEMT, even though the 0§ doped device exhibits higher peak
transconductance. As a result, the uniformly doped MHEMT is more suitable for
communication systems that require high linearity operation.

Third, a low noise InGaP/InGaAs pseudomorphic high-electron-mobility
transistors (PHEMTs) with high IP3 was developed. The device utilizes InGaP as
Schottky layer to achieve a low noise figure and uses AlGaAs as the spacer to
improve the electron mobility and the device also uses dual delta doped layers for
uniform electron distribution in the'channel to improve the device linearity.

Finally, doping modification in the Schottky layer (Schottky layer doped) and in
the channel layer (channel doped)iof the conventional ¢ doped InGaP/InGaAs
PHEMT were experimented to see. the extra doping effect on the HEMT device
linearity. DC and RF performances of these devices were measured and compared. It
is found that extra doping either in the channel region or in the Schottky layer can
improve the flatness of the Gm distribution under different gate bias conditions and
thus achieve lower IM3 and higher IP3 of these devices with small scarification in the
peak Gm value as compared to the conventional delta doped devices. The power
performances of these devices were tested with different drain to source voltage (Vps)
bias points. When the Vpg bias was increased, the Gm values of the channel doped
device and the Schottky layer doped device increased and decreased respectively with
the increasing Vpg bias. The adjacent-channel power ratio (ACPR) measurements of
these devices were performed at different DC bias power levels. Overall, it was found

that channel doped device demonstrated best linearity performance among these three
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different types of devices studied with highest IP3 level, lowest IM3 and best ACPR
under CDMA modulation even though it has the lowest electron mobility among these
devices. Overall, different structures and doping profiles of InGaP/InGaAs PHEMT
and InAlGs/InGaAs MHEMT devices were experimented for device linearity
improved. It’s found with paper design of the device structure and doping profile, the
linearity of the HEMT device can be greatly improved and the experimental results

match well with the theoretical analysis in this thesis.
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