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區塊渦輪編解碼器設計與實現 

 

 

學生：廖俊閔                 指導教授: 張錫嘉  博士 

 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

 

摘要 

本論文為區塊渦輪碼(Block Turbo Code)編解碼器電路設計之研究, 原區塊

渦輪編碼演算法裡, 每一個迴圈計算時皆需要實驗性參數來修正計算量, 針對此

本論文提出了一個類幾何演算法取代實驗性參數修正計算量的方式, 所提出來

的新演算法亦適合硬體電路實現。我們設計的範例是以WiMAX為本論文電路應

用, 並考量及提出電路平行化處理方法在有限的硬體資源限制下達到我們要的

效能。 本篇論文電路設計流程平台不單只以 C語言來實現我們演算法階層的創

意, 及用硬體描述語言Verilog來實現新的硬體架構, 我們也同時使用了 SystemC

的驗証平台來減少我們電路架構驗証所需時間, 且 SystemC 所建的模組亦提供

未來電子系統層級電路設計使用。 
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Abstract 

In this thesis, a block turbo code of 802.16e is proposed. Unlike the conventional 

decoding algorithm requiring empirically derived parameters, the proposed 

geometric-like algorithm uses hamming distance to compensate the information. Not 

only improving the error performance, the proposed algorithm also facilitates 

hardware implementation. Moreover, a design methodology for parallel architecture is 

presented to meet various throughputs. The memory accessing hazard in parallel 

architecture can be overcome by the proposed multi-bank-array algorithm. The 

proposed algorithm is a partition and scheduling technique without extra memory. By 

the proposed algorithm and parallel design methodology, the block turbo code 

encoder and decoder defined in WiMAX(802.16e) is implemented. Note that, a design 
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flow from algorithm level (in C language) to hardware level (in Verilog ) is presented. 

A systemC model is also built to provide a more efficient verification strategy and 

allows electronic system level design. 
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Chapter 1  Introduction 
 

Introduction 
 

Communication is required in the world, and it is the most important to receive 

the exact message that is transmitted. Therefore, the protecting message in noise 

channel is the major topic. A general digital communication system is illustrated in 

Figure 1.1. The “binary source” is message, where Ii (i= 0, 1,.., n) represents different 

message symbol. “Binary encoder” adds redundant parities to protect message. ei (i=1, 

2,…,n) are codewords after encoding. Codeword is modulated into analog signal X(t) 

that is transmitted via channel, and the received analog signal Y(t) including noise. 

Demodulation deals with the recovery of Y(t) waveform and estimates the channel 

value to next stage, “Binary Decode”. “Binary Decode” is a process of error 

correction for ri (i=1, 2, …, n) symbol. Finally, the message I’i (i= 0, 1,.., n) can be get 

in the binary sink of receiver. Of course we expect I’i is the same as Ii, so the good 

method of error correction is one of the key factors when I’i is not the same as Ii. 

Channel coding deals with the problems of detecting and correcting the 

transmission errors that are introduced by the noise of channel. A good channel coding 

design is to construct encoders and decoders in such a way as to effect: 

<1> Fast encoding of messages; 

<2> Easy transmission of encoded codeword; 
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<3> Maximum transfer of information per unit time: 

<4> Maximal detection or correction capability. 

 

 

Figure 1.1: Communication system block diagram 

There are two kinds of the error correlation code, which are block code [14] and 

convolutional code [15]. Block code is a code that a block of message is encoded at 

same time. There is no time dependency between each message. Convolutional code 

differs from block code in that the encoder contains memory and the encoder outputs 

at any given time unit depend not only on the inputs at that time unit but also on some 

number of previous inputs. All of these codes are unique-decoding. Conventional 

unique-decoding can correct up to 
1

2
dt −

=  errors, where d is hamming distance. In 

this thesis, block turbo code is our focus. Block turbo code is a block code, and block 

turbo code has been widely applied in many applications, such as VDSL2, IEEE 

802.16, and so on.  

Block turbo code can overcome bust error [12] and is used in applications 

requiring either high code rates or low complexity. Block turbo code is also an 
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application of list decoding, but it is not only an application of unique-decoding. List 

decoding was proposed by Elias and Wozencraft [16]. The list decoding algorithm 

outputs a candidate list of codewords as answers. We can use the list to find out one of 

the candidates that is the solution of decision codeword and the bound ( 1
2

dt −
= ) of 

correcting ability is enlarged.    

 

1.1 Motivation 
 

There are two parameters (α, β), which are experimental values in conventional 

block turbo code iterative decoding algorithm. These two parameters can be tuned by 

try-and-error method with experience to a correct combination, but a systematic 

approach is required to eliminate these two disturbing parameters. A parallel 

architecture of hardware issue is our problem in implementation. The gate count has 

to be saved and the requirement of speed is also met so that we want to find out a 

parallel architecture. Our proposed algorithm and hardware are implemented 

according to WiMAX specification for example. The algorithm can be also employed 

in other systems. 

 

1.2 Organization 
 

The organization of this thesis is overviewed as following: Chapter 2 presents the 

conventional methodology of block turbo code. The innovated iterative decoding 

algorithm is proposed in Chapter 3. The hardware implementation with our new 

algorithm is demonstrated in Chapter 4. Chapter 5 illustrates our algorithm level 

performance and hardware level performance. Chapter 6 concludes with a summary 
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of the contribution and the future works.  

Finally, The Figure 1.2 shows the flow chart of this research. In the Figure 1.2, the 

step FPGA emulation and the step Back End are our future work. 

 

Figure 1.2: The flow chart of the research 
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Chapter 2  Block Turbo Code 
 

Block Turbo Code 
 

Block turbo code (BTC) is a concatenated code and the performance can be 

achieved close to the Shannon’s theoretical limit. Concatenated block coding was first 

introduced by P. Elias in 1954 [1]. In 1993, a hyper-dimension turbo code was 

presented [2] and the code is based on the extended Hamming code with iterative 

MAP decoding. As for BTC, it was first proposed by Pyndiah in 1994[3]. In this 

chapter, a BTC study is presented. The concepts of BTC will be described in section 

2.1. All related decoding algorithms are shown in section 2.2. Based on this algorithm, 

(WiMAX) application [4] is introduced in section 2.3. 

  

2.1 Encoding of BTC 
 

BTC is composed of two or more block codes with respect to different dimensions 

of BTC. For example, two linear block codes as BTC component code, C1 and C2  are 

assumed as BTC component codes. Their parameters are (n1, k1, d1) and (n2, k2, d2), 

where ni is codeword length, ki is the message length, and di is the minimum 

Hamming distance, i=1, 2. Cb = C1 ⊗ C2 is defined as the BTC encoding result. The 

encoding steps are illustrated in Figure 2.1. The row space is encoded, and the column 
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space is encoded sequentially. The rows of matrix Cb are the codewords of C1, and the 

columns of matrix Cb are that of C2.  

 

Figure 2.1: The flow diagram of BTC encoding 
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The parameters of BTC Cb are just the products of component code C1 and C2. 

The Cb parameters are defined as (nb, kb, db) which are nb = n1 × n2, kb = k1 × k2, and 

db = d1 × d2 respectively. For this reason, BTC is also called turbo product code (TPC). 

The capability of error is improved by these properties. The message symbols of row 

space are protected by the parities of row (checks on rows); likewise, the message 

symbols of column space are protected by the parities of column (checks on columns). 

Finally, the checks on checks is encoded out to protect the parities of the row and 

column space. The processes are encoding and interleaving the message array in the 

encoding procedure. This property of encoding can overcome the burst noise 

interference and improve the performance. 

 

2.2 Decoding of BTC  
 

List decoding of error correcting codes is the method of enlarged traditional error 

correction. If the radius can be enlarged, more codewords can be included in 

candidate list so there are more opportunities to find out which candidate is the closest 

to channel value of the receiver with hamming distance or soft distance. However, 

these methods don’t require more and more redundant parities for message protection. 

In this section, we are going to introduce two list decodable codes algorithms: 

chase algorithm and sliding encoding window algorithm. These two algorithms are 

methods of creating the candidates list. This section also introduces the iterative 

decoding algorithm for soft in soft out (SISO) computation. All other list decodable 

algorithms not related to BTC are not discussed here. 
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2.2.1 Chase Algorithm 
 

Figure 2.2: The test pattern permutation of Chase algorithm 

The numbers of codewords increase exponentially with the number of encoding 

bits. Generalized minimum distance (GMD) [5] computation is also exponent of 

encoding bits. Chase proposed an algorithm with a low computation complexity and 

small performance degradation in 1972[6]. The Chase algorithm provides an approach 

for codeword permutation beyond the radius of hamming ball which is illustrated in 

Fig2.2 

In the Fig2.2, Y1 is the received codeword. The test pattern Ta is created to 

permute Y1 to A. After the algebraic decoding method is used to decode A , an error 

location Z’ is generated. The Zt can be derived as the following equations:  

 

1    
  
                                      (2.1)

a

b

t b a a b

A Y T
C A Z
Z Y C T A A Z T Z

= ⊕
= ⊕
= ⊕ = ⊕ ⊕ ⊕ = ⊕

 

 

Y1 is decoded to Cb by Zt. In the same way, we make more test patterns to generate 
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candidates into candidate list.  

There are three different methods in Chase algorithm for making Ta : 

Chase 1: The test error pattern set T is given through all error sequences of binary 

weight less than or equal to mind  
2

 
  

, and the amount of test patterns can be 

indicated as minT = d
2

n 
 

      

. 

Chase 2: The test error pattern set T is calculated by using all binary vector 

combinations corresponding to the mindt=
2

 
  

 that are low reliable positions, 

i.e.,
mind
2T =2

 
   . 

Chase 3: The min( d  - 1 )  low reliable positions are extracted from the codeword. The 

vectors in T have “1” in the i low reliable positions and “0” else where i=0, 

2... dmin – 1 and i= 0, 1, 3,…dmin – 1 for odd and even dmin respectively, i.e., 

mindT = +1.
2

 
  

  

 

 

2.2.2 Sliding Encoding Window (SEW) Algorithm 
 

Another candidate searching approach is SEW algorithm. The algorithm uses the 

characters of cyclic code and block code encoding method to implement decoding. It 

was proposed in 2005 [7] [8]. 

A q-ary cyclic code is still a valid codeword after a valid codeword is shifted for S 

symbols so shifting S symbols produce more candidates which are in the 

neighborhood of the received sequences and valid codewords. The SEW algorithm 

consists of two steps to generate the candidates list:  
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(A) Sliding phase (SP) : 

A systematic code (n, k) is given. One symbol is defined as w bits. The 

received codeword is cyclically shifted for S of Δ q-ary symbols and store all 

results in buffer for the next phase. 

(B)  Encoding phase (EP) : 

The first k symbols of each SP result are extracted in order which is called 

a window. The window is like a new message part, and then tn low reliable bits 

in the window are combed out and do bit-flipping for all combination, where 

bit-flipping means that the bit is inversed. Finally, the different combinational 

windows are encoded and the new code words is yielded.  

The new codes in our candidates list are generated by these two steps, and the 

amount of test patterns
min
22

dNT
 
  = ×

∆
. The algorithm sketch is illustrated in Figure 

2.3. C1 is the received sequence. C2 and C3 are the execution result of the SP. The 

window and the low reliable bits in Figure 2.3 are used to explain the EP. 

 

Figure 2.3: The execution phase of SEW 
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2.2.3 Iterative Extrinsic Information Algorithm 
 

Figure 2.4: The flow diagram of iterative decoding algorithm 

BTC is a soft-decision code. Hence, soft in soft out (SISO) iterative algorithm is 

used to compute the extrinsic information with intrinsic information. Every dimension 

of BTC decodes in rotation. An example of the two dimensional BTC is shown in 

Figure 2.4 diagram. 

In the first run, the SISO1 decodes all rows of BTC when all channel values are 

received from de-modulation. Then, the SISO2 decodes all columns of BTC in the 

next run. When the second run has been done, it is called that one iteration is finished 

at this time. In other words, one iteration takes 2 runs. A hard-decision decoder 

decodes the final information of the codeword after several iterations. Then, the 

decoding information is yielded.   

Let C (n, k, d) be a binary linear block code in which n, k, and d represent length, 

message length, and minimum distance, respectively. Binary phase shift keying 

(BPSK) is used to modulate a codeword which is transmitted over an additive white 
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Gaussian noise (AWGN). E= ( e1, e2, ………en) and R= ( r1, r2, ………rn) are 

assumed as the transmitted codeword and receiver vector respectively, where ej ∈{+1, 

-1}, j=1, 2, …, n. R is the combination of E and G, and G=( g1, g2, ……gn) are AWGN 

samples of normal distribution N(0,δ2). Ci is defined as the i-th codeword of list. The 

creation of the list has been introduced in section 2.2.1 and 2.2.2. In this study, the 

chase 2 algorithm and SEW algorithm are discussed. Now, the candidates of the list 

are computed for the decision codeword Dc which is closest received channel value. 

Dc can be obtained as following equation: 

If 

   
2 2

  ,  and , list                                                 (2.2)l i i lR C R C l i C C− ≤ − ≠ ∈  

then  l
cD C=  

 

where              ( )
2

1
                                            (2.3)

n
l l

j j
j

R C r C
=

− = −∑  

The log likelihood ration (LLR) is used to measure the reliabilities of the Soft 

de-mapping. The LLR of each element yj is given by the relation: 

( ) { }
{ }

Pr 1|
ln  

Pr 1|
j j

j
j j

e r
y

e r

 = +
 Λ =
 = − 

for BPSK in the AWGN channel with variance 

2
iVar(y )=2σ . The LLR can be derived as the following equation: 

( ) j2

2  r                                                                                           (2.4)jy
σ

 Λ =  
 

 

The reliability of the decision codeword is also major so the LLR of each element dj 

of decision Dc is given by the relation: 

( ) { }
{ }

{ }

{ }
1

1

 

 

Pr |
Pr 1|

ln  =  
Pr 1| Pr |

i
j

i
j

i

C listj
j i

j
C list

E C R
e R

d
e R E C R

+

−

∈

∈

=
 = +
 Λ =
 = − = 

∑

∑
                (2.5) 
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and  { } 2

1| exp                                       (2.6)
22

n i
i

R C
P R E C

σπσ

 −   = = −      
 

In (2.5), the 1
jlist+  is a set for all 1i

jc = + , and the 1
jlist−  is a set for all 1i

jc = − .  

Recall Bayes’ rule: 

{ } { } { }
{ }

Pr
Pr | Pr |                                                 (2.7)

Pr

i
i i

E C
E C R R E C

R
=

= = =  

(2.6) and (2.7) can be substituted to (2.5). The LLR can be expressed as 

( ) ( )

( )

1

1

1

1

2 21

2
 2 21 1

2 2 21

2
 

2 2  1 1
2

 

exp
21 +ln  

2
exp

2

1         +ln        
2

i
j

i
j

i
j

i
j

i
j

C list

j j j
i

j

C list

i
C list

j j
i

C list

R C R C

d R C R C
R C R C

A
R C R C

B

σ

σ

σ

σ

+

−

+

−

+

∈
− +

−

∈

∈− +

∈

  − − −  
  
  Λ = − − −  

 − − −       
 
 

= − − −  
 
 

∑

∑

∑

∑
                             (2.8)

 

In (2.8), the
1 1  i i

j j

i i
C list C list

A B
+ −∈ ∈

≈∑ ∑ , 0    for high SNRσ →  will make the term of nature 

log which can be ignored. We obtain an approximation of the LLR with respect to the 

decision dj equal to  

( ) ( )2 21 1
2

1'                                                            (2.9)
2j j jd R C R C
σ

− +Λ = − − −  

By utilizing equation (2.3) the relation can be expressed as  

( )
1 1

( ) ( )1
( ) 1 12

1, ( ) ( )

0,2' ,                                (2.10)
1,

n
l j l j

j j l l j l l
l l j l j l j

C C
d r rc p p for

C Cσ

+ −
+

+ −
= ≠

=  
Λ = + =   ≠ 

∑  

2 2
'jr

σ =
 is used to normalize intrinsic information (2.4) to get ( ) jrjyΛ =  , and  

1
( )

1,

n

j l l j l
l l j

w rc p+

= ≠

= ∑  and ' jr  is defined as ( )' jdΛ  

So the relation of equation (2.10) may be expressed as: 
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jr '                                                                                                       (2.11)j jr w= +  

The term wj is a corrected term like extrinsic information, and the term rj is a 

soft-input data like intrinsic information. The Dc is defined as the decision codeword 

of candidate list, and Cp(j)is the competing code word with respect to the Dc. The 

definition means that the j-th position of Cp(j) is the inverse j-th position of Dc. (2.9) 

is also normalized by 2 2σ =  and can be expressed as 

( ) 2 2

jr '                                                                        (2.12)
4

p c
j

R C j R D
d

 − − −
 =
 
 

 

where dj is the hard-decision of Dc mapping to -1 or +1. The extrinsic information can 

be obtained by 

jr '                                                                                                       (2.13)j jw r= −  

Because BTC is a hyper-dimension array, (2.13) can be rewritten as 

[ ] [ ] [ ]'                                                                                             (2.13)W R R= −  

If we can’t find a competing code word Cp with respect to decision code word Dc ,  

there must be a tradeoff approach to compute 'jr  that is: 

'    0                                                                                   (2.14)j jr d withβ β= × ≥  

Now, a new parameter “m” is defined as a run number, and m is increased as 

m=m+1 after decoding one dimension of BTC array. In (2.14), the experimental value 

of β is gradually increasing to 1.0 in every runs. β is shown as flows [9]: 

( ) [ ]0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0                                  (2.15)mβ =  

Finally, iterative decoding algorithm of the BTC is shown as the following run 

equations :  

( ) [ ] ( ) ( ) =  + m m                                                                   (2.16)R m R Wα ×        
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( ) ( ) ( )m+1 ' m m                                                                    (2.17)W R R= −            

[ ]R  is intrinsic information. ( )mW    is extrinsic information in m-th run and is zero 

in first run, and ( )' mR   is output soft value in m-th run. ( )mR    is decoded by 

SISO, and where ( )mα  is a scaling factor for that, and the standard deviation of 

values is different between array [ ]R  and array ( )mW   . ( )mα  is also used to 

reduce the effect of the extrinsic information in the first run when the BER if 

relatively high [9]. The evolution of α with the decoding m-th run is  

( ) [ ]0.0, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.0                               (2.18)mα =  

The α is also a parameter of the experimental result. The completed BTC iterative 

decoding block diagram is illustrated in Figure 2.5. One iteration means that all 

dimension computation has been finished, for example, 2 dimension (row and column 

space) BTC. m is increased 2 after one iteration. 

 

 

Figure 2.5: Structure of BTC 

Decoding of rows 
or columns run of 
BTC arrary

Delay  buffer

( )mR   ( )m+1W  

[ ]R

( )mα ( )mβ

[ ]R [ ]R

( )mW  
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2.3 802.16e (WiMAX) BTC 
 

Worldwide interoperability for microwave access (WiMAX) is a standards-based 

communication system (i.e. IEEE 802.16 [4][10]) and is intended for wireless 

“metropolitan area networks”. WiMAX is expected to implement multimedia 

applications with wireless connections and can provide broadband wireless access up 

to 30 miles (50Km) for a fixed station, and 3- 10 miles (5-15km) for a mobile station.. 

In this section, WiMAX specification is going to be introduced. Because it’s 

forward error correction (FEC) application includes BTC. This application as an 

example is implemented for our BTC study. 

Some modifications are described for a linear code in this segment. A linear code, 

C (n-1, k) can be extended for increasing one parity bit, and C’ (n, k) is produced. The 

extended bit is derived by the XOR of the k information bits and the (n-k-1) parity 

bits of the code C. This procedure is called extended code. 

The “shortened” cyclic code is going to introduce. For example, A 

two-dimensional BTC, Cb(nb, kb) is composed of component codes, C1(n1, n1) and 

C2(n2, k2), as shown on Figure 2.1. The S1 rows and S2 columns’ bits of message 

symbols of the BTC are initialed zero, and the transmitted data is inserted in the 

remaining of the message symbols. Then, the message array is encoded. Finally, An 

BTC Cb is transmitted except those S1 rows and S2 columns. The chart is illustrated in 

Figure 2.6. 
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Figure 2.6: The sketch of shorten code 

Now, we are going to introduce WiMAX BTC specification. The hamming code 

generator polynomials are listed in Table.2.1. 

 

N K Generator polynomial 

7 4 X3+X1+1 

15 11 X4+X1+1 

31 26 X5+X2+1 

63 57 X6+X+1 

Table 2.1: The generator polynomial of BTC  
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The BTC component codes are listed in Table.2.2. 

 

Component codes (n, k) Code type 

(64, 57), (32, 26), (16, 11), (8, 4) Extended hamming code 

(64, 63), (32, 31), (16, 15), (8, 7) Parity check code 

Table 2.2: BTC component code of WiMAX 

To match an arbitrary requires transmission packet size. BTC may be shortened by 

removing symbols from the BTC array until the appropriate size is reached. The 

following two steps are involved in the specification for shortening BTC: 

Step1: I1 rows and I2 columns are removed from the two-dimensional BTC array. 

This is equivalent to shortening the BTC codes. 

Step 2: B individual bits are removed from the first row of the BTC array starting 

with the LSB.  

The derived block length of the shortened code is ( )( )1 1 2 2k I k I B− − − as 

illustrated in Figure 2.7. The corresponding information length is given as 

( )( )1 1 2 2n I n I B− − − . Consequently, the code rate is given by the following equation : 

( )( )
( )( )

1 1 2 2

1 1 2 2

                                                                             (2.19)
k I k I B

R
n I n I B

− − −
=

− − −
 

Our study is focused on extended hamming code (64, 57) to be our BTC 

component code, and we want the throughput about 30Mbps on clock rate 200MHz. 
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Figure 2.7: The BTC shorten code for WiMAX 
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Chapter 3  Proposed Geometry-like 
Algorithm 
Proposed Geometry-like Algorithm 
 

In this chapter, the proposed geometry-like algorithm is introduced. The algorithm 

is for the hardware implementation without experimental parameters. The algorithm 

level program is implemented by C language.  

 

Some foundations of geometry are described with some detailed formulation 

before our induction. A BPSK is defined to map (-p, +p). The p is defined as p=1 in 

our study. The one dimension coordinate diagram is illustrated in Figure 3.1, and r is a 

received channel value at receiver. The variable e is defined as the value of 

transmission. The a posteriori probability is inducted as follows: 

Figure 3.1: Analysis of the Probability for BPSK 

Pr{ 1}
Pr{ 1| } { | } { | }

Pr{ }
21 | 1 |

where  { | 1} exp - 22 2

e
e r P r e P r e krr

n r
P r e

π σ

= ±
= ± = ⋅ = ⋅

±
= ± =

  
     

                         

0 1-1

r
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( )
Pr{ 1| } 2

ln                                                        (3.1)2Pr{ 1| }

e rjy rj je rj σ

= +
Λ = =

= −

      
   

 

In Figure 3.2, the v is perpendicular to the hemline of the triangular ABC∆ . 

Pythagoras' Theorem is used to drive the equation (3.2): 

2 4

2 2 2S S1 3
2 2 2S S
2 2 2 2 2 22 2S S (S ) (S ) S S                                    (3.2)1 2 3 4 3 4

V

V

V V

=

=

−

−

− = + − + = −

 

Figure 3.2: Geometric equation analysis of the equation (3.2) 

The two axis coordinate diagram is illustrated in Figure 3.3. A triangular ABC∆ is 

sketched on the diagram. The apex C is projected to r’ of x-axis. B A−  is defined as 

the distance of AB . a and b are symmetrical. Thus, r’ can be found the relation as the 

equation (3.3):  

 

Figure 3.3: Geometric equation analysis of the equation (3.3) 

S 1 S 2

S 4S 3

V

A

B C
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1 12 2 2 2[ ( - )  '    ]   [ ( - ) -  ')  ]
2 2

1 Let     ( - )   rewrite above equation
2

2 2 2 2  -      [ '  ]  -  [ - '  ]   4   '
2 2  -   2( - ) '  

1 2 2 '  (  -   )                        
2( - )

a B A r b B A r

t B A

a b t r t r t r

a b b a r

r a b
B A

− + = −

=

= + = × ×

=

=                                                          (3.3)

 

A new algorithm is going to be inducted now. A two dimensional BTC is supposed, 

and there are two entries in every space (column and row) of the received data. For 

example, 2 coordinates are introduced to
0.2 1.0
0.5 0.6

R  
=  − 

 in each space. 

In row space: 

1     (0.2,  1.0)rowR =  

2     (0.5,  0.6)rowR = −  

In column space: 

1  (0.2,  0.5)colunmR =  

2  (1.0,  -0.6)colunmR =  

The row space 1     (0.2,  1.0)rowR =  is sketched to explain the algorithm on 

constellation diagram as an example. The diagram is illustrated in Figure 3.4. The 

constellation diagram expresses the channel values of every space. There are 4 

coordinates (1, 1), (-1, 1), (1, -1), (-1, -1). These coordinates mean the former values 

at transmitter. The R1 on the diagram is the result of the transmitted value adding 

noise and R1 is projected to R2.  
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Figure 3.4: Equivalent analysis on constellation  

Base on Figure 3.4, The equation (2.12) is recalled, we know: 

( ) 2 2
1 1

1 j 1 r '  
4

p c
j

R C j R D
d

 − − −
 =
 
 

 

and use the concept of equation (3.2) , 1 jr '  is rewritten as the following equation: 

( )

( )

2 2
1 1

1 1 

2 2
2 2

2 2

'  
4

     '                                            (3.4)
4

p c
j j

p c
j j

R C j R D
r d

R C j R D
d r

 − − −
 =
 
 
 − − − = =
 
 

 

The equation proves that R1 and R2 are equivalent, and we use the concept of equation 

(3.3) to get 2 ' jr : 
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( )
( )( )

( )
( )( )

2 2
2 2 2

2 2
1 1

1'
2

1                                                  (3.5)
2

j p c
p c

p c
p c

r R C j R D
C j D

R C j R D
C j D

= − − −
−

= − − −
−

 

So the reliability of R1 can be substituted by R2. ( )C Dp cj −  is the value of the 

distance. The Hamming distance can be used to solve the value. The hard decision of 

competing codeword and decision codeword is defined as following: 

1 2

1 2

HC HC HCp p pn

HD HD HDc c cn

HC p

HDc

 =  

 =  

L

L
 

Where  , H   0,11 1HC Dp c ∈  

Hamming distance is defined as ( )( , )
1

n
d HC HD HC HDp c pi cii

= ⊕∑
=

 based on 

BPSK(-1, +1). Then, 

( ) ( )( ) ( )( ) 

2 22
   =  2   

1 1K HC HDp ckc k k
n n

C D C Dp c pk k
j j ⊕− = − ×∑ ∑

= =
 

so we can express ( ) 2= 2 ( , )  jC D d HC HDp cp c− ×  and re-write (3.5) as: 

  ( )
2 21

'                                (3.6)1 12 4 ( , )
jr R C R Dp cj d HC HDp c

= − − −
×

 
 
 

 

Now, the equation (2.13) is recalled and multiplied by 2, and then we can get the 

following equation: 

2w = 2r ' - 2r = 2r ' - 2r1 2j j 1j j 2j  

µ
jw  is defined as the extrinsic information of our algorithm and the definition is 

shown as the following equation: 

  µ 2                                                                                                (3.7)j j mw w r= −  

There are two special situations in our algorithm. The situations are discussed as 



 

25 

 

follows: 

<1> The no competing codeword situation has to be considered, and our 

approximation of the soft output is ' =d    -1, +1jr j ∈ . It means that the soft 

value of this bit is reliable. There are no noise so the value can be mapped to 

(+1, -1). Because we also want to gradually move the information to (+1, -1), 

the compensation of information is only half for the next run. Therefore, the 

following equations can be obtained: 

µ 1W= (  d   - R  )  j2
. 

 

<2> Another consideration is the parallel condition situation. This is a special 

case. If the competing codeword and the decision codeword are connected to 

a line parallel with the axis of constellation, the extrinsic information µW  

keeps old value. If the extrinsic information is changed on this condition, 

another value of axis would be wrong with respect to decoding axis. 

 

Figure 3.5: Parallel condition chart 
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A trick of making more candidates is used. An example is explained as follows:  

1 2 3 4 5, , , , 1.2, 0.7, 0.5, 0.8, 0.3aR a a a a a= = − − is assumed. Then, Ra 

soft value is decoded to ' 1.2, 0.7, 0.5, 0.8, 0.4aR = − − . This assumption treats 

a special problem for low reliable priority. We can see the a5 entry whose reliability of 

'aR is still the lowest after decoding. The choice of low reliable bits is the same as that 

in the next decoding run. The other possible entry can not be tested so 'aR is adapted 

as following equation: 

'
1 1.2, 0.7, 0.5, 0.8, 0.4 2 0.6, 0.35, 0.25, 0.4, 0.4
2bR = − − × = − −  

Other bit priority is decreased except for entry a5, and the new candidates can’t be 

combed out for next decoding run. The trick is used in our algorithm. 

 

Finally, our new algorithm is summarized as following pseudo code: 

µ

µ

step 1: 
1             [R(m)] =  ( [R] + [W(m)] )
2

step 2:
            if(NO competing codeword)

1               [W(m+1)] = (  d   - [R (m)]  )  j2
            else  
                if(parallel condition is n

µ

µ µ

( )

ot tenable )

                     [W(m+1)] =2[R'(m)] - [R (m) ]                     
                else     

                     [W(m+1)] = W(m)

2 21where  '       
4 ( , ) jjR R C R D dp cd HC HDp c

 
= − − − × ×    
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Chapter 4  Hardware Architecture 
Design  
 
Hardware Architecture Design 
 

In this chapter, the hardware design and implementation are shown. Section 4.1 

describes BTC encoder. The BTC decoder design is described in section 4.2. The 

parallelism issue of the circuit architecture is discussed in section 4.3. 

  

4.1 Encoder Design 
 

The functional block diagram is illustrated in Figure 4.1. Because the hardware 

design is considered as the trade between memory gate count and throughput, we use 

a 64*64 bit memory, one BCH encoder, and parity buffer is used to store parity after 

encoding. There are 64 component codewords in a BTC array to use one BCH 

encoder so a scheduler is designed to control total cycles within the limit. In our 

design, the throughput is about 0.326 bit/cycle. 

The BCH encoder of our design is a linear feedback shift register (LFSR)[12]. 

After the BCH codeword is encoded, all the codeword bits of BCH are xor-ed 

together. The result of xor is the extension bit. 
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Figure 4.1: The block diagram of encoder 

4.2 Decoder Design 
 

Figure 4.2: The block diagram of decoder 
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The blocks of our decoder design are shown in Figure 4.2. the channel value 

sequence of our decoder is got from the de-modulation, and is saved in input buffer R. 

R plus extrinsic information wm is stored in Rm. The Rm is used to compute the next 

extrinsic Wm+1 by the SISO. The decoded result of hard decision is outputted to output 

the buffer. The buffer can be read by the next stage of system circuit. There are four 

memories about the gate count for the most part. They are channel value R, Rm, Wm, 

and the output buffer respectively. These memories are hard to reduce. The SISO 

block is our BTC decoder core. The main algorithm is used in this block. There are 

parallel circuit and gate count issue of the consideration in our design so SISO circuit 

size is our focus. A special transposing array controller circuit is also designed in 

controller unit except for the finite state machine controller. 

 

4.2.1 Algebraic Decoding 
 

Let a codeword be 1 2 1
0 1 2 1( ) ........... n

nv x v v x v x v x −
−= + + + + . The AWGN channel 

is defined as ( )Noise x . The received codeword is shown as the following equations: 

( ) ( ) ( )R x V x Noise x= +  

( )R x  can be rewritten as: 

( ) ( ) ( ) ( )R x q x x b xi i iφ= +i  

Where, ( )xiφ  is the minimal polynomial. 

and then let 

( ) ( )                                                                                 (4.1)i iS R bi iα α= =  

Our design specification is BCH(63, 57), and the code is a perfect code (t=1). One 

error of the received codeword can be corrected, and the codeword only need the 
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syndrome, 1 ( )S b α=  to be the error location [12]. The result of the perfect code 

decoding must be a valid codeword so there are no out of location situation and 

checking valid codeword, but it may not be our transmitted codeword at transmitter. 

In Summary, because the error location is S1, we can design a simply algebraic 

decoder circuit without complexity algorithm, e.g. BM algorithm [13]. The error 

location can be decoded by LFSR [12]. 

 

4.2.2 The SISO Architecture 
 

Figure 4.3: The block diagram of SISO 

The SISO consists of Algebraic decoder (BCH decoder), a candidate generator, a 

list memory, a decision and competing circuit, and a algorithm reliability update unit. 

It is illustrated in Figure 4.3. The computation time of our design spends about 550 

cycles for finishing one decoding run. Our design in every block is interpreted as the 

follows: 
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A. Hard decision, BCH decoder, insertion sorting for low reliability position 

After Rm is ready, the hard decision is determined. The hard decision 

result is used to compute syndrome for error location by LFSR. The 

insertion sorting approach is proposed to sort low reliable bits of the 

received codeword. The truth table of sorting is listed on Table.4.1. The 

insertion sorting circuit is designed according to Table.4.1. The flags (X1, X2, 

X3) are produced by the three comparer (Cmp). The multiplexers (MUX) are 

controlled by flags to select data to store the value in register (R1~R4). The 

insertion sorting circuit is shown in Figure 4.4. 

 

Flag X1 X2 x3 
R4<R1<R2<R3 1 1 1 
R1<R4<R2<R3 0 1 1 
R1<R2<R4<R3 0 0 1 
R1<R2<R3<R4 0 0 0 

Table 4.1: The truth table of insertion sorting flag 

 

Figure 4.4: The circuit of insertion sorting 
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B.  Candidate generator 

When the syndrome and low reliable position have been computed from 

the last stage, the counter controls the multiplexers to generate all 

permutation test patterns. The syndrome xor all the combinational results of 

multiplexes to produce new syndrome. The location table is looked up the 

table by new syndrome and map which bit is corrected. Finally, after all of 

the output of location table is xor-ed , then candidates are generated.  

Figure 4.5: The circuit of candidate-generator 

 

C. List (register file) 

 

Because there are only 8 candidates in the list of our design, the list 
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memory is implemented by using a register file and is not memories. The 

register file is multi-port register file that provide parallel data outputting for 

the next stage. 

 

D. Decision & competing unit 

 

Figure 4.6: The circuit of decision&competing unit 

There are 8 candidates that would be compared out the least minimal 

distance. The design of the accumulators is illustrated in Figure 4.6. The 8 

accumulators are used to compute all distance between the 8 candidates and 

the channel value, and then the soft distance of the candidates are sorted by 7 

comparers. After sorting, the minimal distance of the decision codeword and 
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the competing codeword can be outputted to next stage.    

E. Reliability update unit 

 

The reliability update unit of the circuit is shown in Figure 4.7. We think 

over the computation speed of the circuit so the 6 levels adder (Figure 4.8) 

are implemented to compute hamming distance. The look up table is used to 

find out the value of complexity square roots computation in our design. The 

rest of reliability update unit is also based on our decoding algorithm and is 

shown in Fig4.7. 

 

 

Figure 4.7: The circuit of the reliability update unit 
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Figure 4.8: Six-level adder circuit  

 

4.3 Parallel Architecture 
 

4.3.1 Parallel Architecture Planning 
 

Because of the requirement of WiMAX specification, the throughput is an 

important issue. Therefore, the throughput is excepted to arrive at least 30Mbit/sec. 

For this reason, the parallel architecture of the decoder circuit is projected for arriving 

throughput constraint. The BTC (64, 57) includes 64 sub-code words (component 

code) in every dimension so the all sub-code words can be independently processed 

by the different SISOs. The quantity of usability of SISO is from 1 to 64. If more 

SISOs are used in decoder, the BTC decoder would be faster, but the gate count is 

also increased. Therefore, we consequently consider the trade off. The memory is 

divided into parts when the number of SISO is decided by our analysis. Every 

memory partition is defined as a memory bank, and we generally called these 

1

2 bit

3 bit

4 bit Adder

5 bit Adder

6 bit Adder
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partitions multi bank array (MBA). Each MBA has 4096 entries for 64 64×  soft data. 

Our analysis formulation is based on Figure 4.2. and illustrated as the following 

equation (4.2): 

64 4096   8 (   )                           (4.2)Total cycle run S input latency
N N

= × × + +  

Where “S” (cycles) is the numbers of cycles for SISO computation, “N” (SISOs) is 

parallel numbers, “input latency” means the total cycle time of the input buffer to be 

fully written, and “8run” means every SISO excute 8 times for iteration decoding 

algorithm.  

 

Now, the BTC(64, 57) is estimated as the circuit clock rate at about 200MHz so we 

calculate the following equation: 

total bits clk rate ( ) throughput  
total cycles

× =∵  

total bits 0.15 /
total cycles

bit cycle∴ =  

The BTC total information bits has been known, and that is 257 3249 bits= . 

The above substitute to (4.2): 

3249 64 4096 40968 (550   )
0.15 N N N

∴ = × × + +  

(8 (39296) 4096) 0.15   14.7 16
3249

N × + ×
∴ = = ≅  

416 2N = =  is chosen for the parallel number estimation of formulation because 

power of “2” number is easily implemented in hardware. Now, the circuit parallel 

number is N=16 so the MBA has 16 banks, and every bank has 256 entries. The 

MBAs will be co-operating with proposed parallel architecture in the planning. The 

chart is shown as Figure 4.9. 
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Figure 4.9: The block diagram of parallel architecture 

4.3.2 Parallel Multi-Bank-Array Structure 
 

There is a bottleneck of the MBA accessing in parallel architecture. The two ports 

MBAs are controlled together to move data with each other so the parallel 

architecture would have read/write hazard in the architecture of the MBAs. A buffer 

can be added to solve the hazard, but the memory gate count is also increased. 

Therefore, an algorithm of MBA accessing is proposed to overcome the hazard. 

Figure 4.10: The overview of a MBA 

Bank #1

Bank #2

Bank #N-1

Bank #N    

SISO #1

SISO #2

SISO #N-1

SISO #N

Bank #1

Bank #2

Bank #N-1

Bank #N    

Rm Wm
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The row and column space of the BTC decoding use the common SISOs in 

different runs. Our memory usability is only 3 (64*64 entries) MBAs, i.e. R-MBA, 

Wm-MBA, and Rm-MBA. A simple MBA chart is illustrated in Figure 4.10. and the 

memories accessing scheduling of the iterative decoding algorithm is listed as 

Table.4.2. “Transpose” means reading or writing the MBA and the addressing of the 

MBAs is not in order. “Normal” means reading or writing the MBA and the 

addressing of the MBAs is in order for each bank.  

 An assumption of simple example is illustrated in Figure 4.11. MBAs 

(Wm-MBA and Rm-MBA) are partition to 4 banks. Suppose that Wm is normal, and 

Rm-MBA is transpose. In first run, the bank#1 of the Wm is read out to Rm, but the 

four write ports of Rm-MBA have to wait bank#1 read port in order. other read ports 

of Wm-MBA are idle except the bank#1 of Wm-MBA. However, the resource of 

memory is wasted. Thus, we want all port working at the same time, and there is no 

accessing hazard without an additional buffer for the gate count issue.   

 

Run number R Wm Rm+1=R+Wm 
0  (for row) Normal 0 normal 
1  (for colunm) Normal Normal Transpose 
2  (for row) Normal Transpose Normal 
3  (for colunm) Normal Normal Transpose 
4  (for row) Normal Transpose Normal 
5  (for colunm) Normal Normal Transpose 
6  (for row) Normal Transpose Normal 
7  (for colunm) Normal Normal Transpose 

Table 4.2: Algorithm flow table 
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Figure 4.11: The MBA transposing 

A bottleneck is very clearly shown in above example. If we want to transpose a 

memory, and there is no one idle in all ports of all MBAs, then some data will be 

delayed or over written. Due to this reason, a MBA algorithm is proposed to 

overcome read/write problem.  

Our proposed algorithm is a special memory bank scheduling. MBA is partitioned 

into several slices. Every first address of MBA is started by different slices. It is 

shown in Figure 4.12. The number in each slot of Figure 4.12 stands for the 

corresponding time index. All ports can be worked at the same time and there are no 

data buffers. The feature of algorithm is that we reapportion the timing and the 

address of read/write for scheduling accessing. Based on the idea, our pseudo code of 

the algorithm is going to be introduced. 
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Figure 4.12: MBA scheduling 

 

The Figure 4.13 is used to define variables for our pseudo code of proposed 

algorithm. The slice #s and bank #b are space variables for transposing blocks. The 

index i and index j are time variables for transposing elements. i and j indicate which 

address is read or written at every cycle for slice transposing. s and b control the 

addresses of the ports to avoid overlapping each other.      

Our proposed MBA accessing algorithm can be used on the consideration of 

accessing hazard and resource issue, and the pseudo code is shown as follows: 
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for ( s = 0 : 15 )  //slice
   for(b = 0 : 15)  //bank number
      for(i = 0 : 3) // partition index 
        for(j= 0: 3 )// partition index 
           if((run number  mod  2) ==0)//  1 iteration=2 runs (row+colunm)
                      R(m) [  , 4 (( ) mod  16) ]b
                       R [  , 4 (( ) mod  16) ] ( ) [ ,  4  ]b ( )mod16
           else
                     R(m) [  , 4 (( ) mb

i j s b

i j s b W m j i bs b

i j s b

+ × +

= + × + + ++

+ × + od  16) ]

                     R [ ,  4  ] ( ) [ ,  4  ]( )mod16 ( )mod16
 

j i b W m j i bs b s b= + + ++ +

 

Where “S” is slice number, “b” is bank number, i and j are indexes in the partition for 

every slices.  

Figure 4.13: The chart of MBA algorithm 
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Chapter 5  Implementation Result and 
Simulation 
Simulation Platform and 
Implementation Result 
 

5.1 Algorithm Level Simulation 
 

We take WiMAX specification to be our design example, BTC (64, 57) and Chase 

2 algorithm is chosen as our candidate-choosing method. The proposed algorithm is 

implemented on C language (algorithm level). The different iteration performance is 

shown in Figure 5.1, i.e. 1 iteration= 2 runs. Compared to the previous studies [9, 10], 

our performance in this report is more effective. Any experimental parameters are not 

required to be used in our proposed algorithm. 

SEW algorithm is also used to create candidate list in our algorithm. The SEW 

performance and the shortened BTC performance in Figure 5.2 indicates that our 

proposed algorithm suits for different candidate-choosing method.  
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The number of low reliability bit for generating the test pattern of the Chase 2 

method is also analyzed because the different numbers of the test bits spend different 

run time, and there is different performance. There are 2, 3, 4, and 5 test bits in the 

simulation of performance Shown on Figure 5.3. The result exhibits performance 

convergence on 3 test bits. We decide to use 3 bits in our design and all of the bits is 

not too more plenty of bits 

 

Figure 5.1: The performance of different runs simulation 
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Figure 5.2: The performance of different list decoding algorithm 
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Figure 5.3: The performance of different test bits usage 
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5.2 SystemC Platform 
 

SystemC is developed from the C++ programming language. SystemC extends the 

capabilities of C++ by enabling modeling of hardware descriptions and provides very 

important C++ library, such as concurrency, timed events and data types for hardware 

behavior model. These libraries are all legal C++ instruction. SystemC doesn’t have 

new syntax instruction to the C++ programming language, and it provides a 

simulation kernel. SystemC model can be used to simulate the executable 

specification of the design or system that you write in SystemC. We can effectively 

describe a cycle-accurate model of our design. SystemC also provides a methodology 

for describing: system level design, software algorithms, and hardware architecture. 

More importantly, SystemC is an open source. This means that it is freely available to 

use under an open source license agreement.  

Circuit design is getting bigger and bigger in gate count and faster in speed and 

more complex. There are some considerations: faster simulation, hardware/software 

co-simulation, and architectural exploration. Therefore, we expect a platform which 

has these features. Because SystemC is just for: System level design, describing 

hardware architectures, describing the software algorithms, verification, and IP 

exchange. For this reason, SystemC platform is used for our design, and the design 

can also provide electrical system level design(ESL) to be used in the future.  
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5.3 Hardware Level Simulation and Report 
 

 

SystemC model is implemented and it can be co-simulated with every sub-module 

of RTL code. Their function is identical in cycle accumulation. A co-simulated 

verification platform is constructed and the platform is illustrated in Figure 5.4. The 

performances of the different precisions are shown in Figure 5.5, where P.X.Y means 

X bits for integer and Y bit for decimal. In the simulation result, the P3.5 precision is 

used in our final circuit and synthesized.  

The synthesizer EDA tool which is design compiler of Synopsys Company’s tool 

is used to synthesize our design and its result is shown in Table.5.1. The timing 

constrain is met at 200MHz and our circuit is implemented in 0.13um CMOS process. 

Figure 5.4: The verification flow diagram 
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Figure 5.5: The performance of different precision analysis 

Figure 4.13 

The sub module of decoder Gate count (0.13um) 

Controller 1000 
SISO  23916 
MBA  9095 
Output Buffer 15406 

 

Top module (parallel architecture) Gate count 
Encoder  28,193 
decoder  590,163 

Table 5.1: Gate count report
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Chapter 6  Conclusions 
 

Conclusions 
 
6.1 Summary 
 

In this thesis, a BTC codec for WiMAX (IEEE 802.16e) standard is implemented. 

Our proposed geometric-like decoding provides the similar or better the previous 

error performance and there are not experimental parameters. We also consider 

parallelism for the throughput requirement of WiMAX (IEEE 802.16e) specification. 

Therefore, we not only design basis circuit, but also develop a multi-bank-array 

algorithm to deal the memory accessing hazard of matrix transposition. Moreover, the 

SystemC environment is built to simulate and verify our design, leading to reduction 

in hardware level simulation time. The environment also provide SystemC model for 

ESL in our study. The model can be use on ESL flow in the future. 
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6.2 Future Works 
 

The WiMAX (IEEE 802.16e) system has many different specification of the BTC 

specification. The BTC (64, 57) is implemented in this thesis. Other specification may 

be also implemented by using our proposed algorithm and design flow. Beside, our 

proposed iterative decoding algorithm can be used in different candidate list algorithm, 

this is another study. The front-end design of our design has done, so we could finish 

back-end to tap out a IC, and IP-lize our BTC. Additionally, BCJR can be used in 

BTC that is also an important topic. The performance of conventional BTC and the 

BCJR algorithm BTC can be compared and analyzed. Maybe a new algorithm could 

be innovated.  
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