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Abstract

In this thesis, a block turbo code of 802.16e is proposed. Unlike the conventional
decoding algorithm requiring empirically derived parameters, the proposed
geometric-like algorithm uses hamming distance to compensate the information. Not
only improving the error performance, the proposed algorithm also facilitates
hardware implementation. Moreover, a design methodology for parallel architecture is
presented to meet various throughputs. The memory accessing hazard in parallel
architecture can be overcome by the proposed multi-bank-array algorithm. The
proposed algorithm is a partition and scheduling technique without extra memory. By
the proposed algorithm and parallel design methodology, the block turbo code

encoder and decoder defined in WiMAX(802.16¢) is implemented. Note that, a design

ii



flow from algorithm level (in C language) to hardware level (in Verilog ) is presented.
A systemC model is also built to provide a more efficient verification strategy and

allows electronic system level design.
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Chapter 1

Introduction

Communication is required in the world, and it is the most important to receive
the exact message that is transmitted. Therefore, the protecting message in noise
channel is the major topic. A general digital communication system is illustrated in
Figure 1.1. The “binary source” is message, where I; (i= 0, 1,.., n) represents different
message symbol. “Binary encoder” adds redundant parities to protect message. e; (i=1,
2,...,n) are codewords after encoding. Codeword is modulated into analog signal X(t)
that is transmitted via channel, and the received analog signal Y(t) including noise.
Demodulation deals with the recovery of Y(t) waveform and estimates the channel
value to next stage, “Binary Decode”. “Binary Decode” is a process of error
correction for r; (i=1, 2, ..., n) symbol. Finally, the message I’; (i= 0, 1,.., n) can be get
in the binary sink of receiver. Of course we expect I’; is the same as Ij, so the good
method of error correction is one of the key factors when I’; is not the same as I;.

Channel coding deals with the problems of detecting and correcting the
transmission errors that are introduced by the noise of channel. A good channel coding
design is to construct encoders and decoders in such a way as to effect:

<1> Fast encoding of messages;

<2> Easy transmission of encoded codeword;



<3> Maximum transfer of information per unit time:

<4> Maximal detection or correction capability.

Transmitted sequence
: . . X={y, X, =, X}
Binary Source p Binary Encode » Modulation l
JIJIEJI.-_JI s | i
k E— LE.,_____._.E_,\_.,EH_] AWGN G-Ig
Channel ‘
Binary Sink 1« Binary Decode i« Demodulation |« -
Received sequence
- ~ - \Ir.:{I,‘I:' Y2 o :fl‘}
IiJ2 [y R={1 £ o}

Figure 1.1: Communication system block diagram

There are two kinds of the error correlation code, which are block code [14] and
convolutional code [15]. Block code is a code that a block of message is encoded at
same time. There is no time dependency between each message. Convolutional code
differs from block code in that the encoder contains memory and the encoder outputs
at any given time unit depend not only on the inputs at that time unit but also on some

number of previous inputs. All of these codes are unique-decoding. Conventional
. . d-1 . . .
unique-decoding can correct up to t:T errors, where d is hamming distance. In

this thesis, block turbo code is our focus. Block turbo code is a block code, and block
turbo code has been widely applied in many applications, such as VDSL2, IEEE
802.16, and so on.

Block turbo code can overcome bust error [12] and is used in applications

requiring either high code rates or low complexity. Block turbo code is also an



application of list decoding, but it is not only an application of unique-decoding. List
decoding was proposed by Elias and Wozencraft [16]. The list decoding algorithm

outputs a candidate list of codewords as answers. We can use the list to find out one of

the candidates that is the solution of decision codeword and the bound (7 :%) of

correcting ability is enlarged.

1.1 Motivation

There are two parameters (o, ), which are experimental values in conventional
block turbo code iterative decoding algorithm. These two parameters can be tuned by
try-and-error method with experience to a correct combination, but a systematic
approach is required to eliminate these two disturbing parameters. A parallel
architecture of hardware issue is our problem in implementation. The gate count has
to be saved and the requirement of speed is also met so that we want to find out a
parallel architecture. Our proposed algorithm and hardware are implemented
according to WIMAX specification for example. The algorithm can be also employed

in other systems.

1.2 Organization

The organization of this thesis is overviewed as following: Chapter 2 presents the
conventional methodology of block turbo code. The innovated iterative decoding
algorithm is proposed in Chapter 3. The hardware implementation with our new
algorithm is demonstrated in Chapter 4. Chapter 5 illustrates our algorithm level

performance and hardware level performance. Chapter 6 concludes with a summary



of the contribution and the future works.
Finally, The Figure 1.2 shows the flow chart of this research. In the Figure 1.2, the

step FPGA emulation and the step Back End are our future work.

Topic —  Auchitecture & H.W Algorthim

1 —

., | g -
Paper Sunvey J Verilog —ﬂ@@h{ SystemC

. L

| |
Casa Study -- : -
) l g ‘ Design Rule & Refine ‘ H.W Simulation
Find Out Alganthm ] 3 T | ﬁ '
I : | HWsyrthess Fhadibis
Function Simulation I |—l'—‘ ‘ — Pattern\

l

Back End

Figure 1.2: The flow chart of the research



Chapter 2

Block Turbo Code

Block turbo code (BTC) is a concatenated code and the performance can be
achieved close to the Shannon’s theoretical limit. Concatenated block coding was first
introduced by P. Elias in 1954 [1]. In 1993, a hyper-dimension turbo code was
presented [2] and the code is based on the extended Hamming code with iterative
MAP decoding. As for BTC, it was first proposed by Pyndiah in 1994[3]. In this
chapter, a BTC study is presented. The concepts of BTC will be described in section
2.1. All related decoding algorithms are shown in section 2.2. Based on this algorithm,

(WiIMAX) application [4] is introduced in section 2.3.

2.1 Encoding of BTC

BTC is composed of two or more block codes with respect to different dimensions
of BTC. For example, two linear block codes as BTC component code, C; and C, are
assumed as BTC component codes. Their parameters are (n;, k;, d;) and (n, ks, d),
where n; 1s codeword length, k; is the message length, and d; is the minimum
Hamming distance, =1, 2. C, = C; ® C; is defined as the BTC encoding result. The

encoding steps are illustrated in Figure 2.1. The row space is encoded, and the column



space is encoded sequentially. The rows of matrix C, are the codewords of C;, and the

columns of matrix Cy, are that of C,.

K, a
: Encoddag o
Loy
‘| message symbols “  message symbols
(1 (2)
n, n,
K, K,
% message symbols Sl E:m .| Message symbols i
(3) (4)
n,
- K, =
™ bol o
n, message symbois OF FOWS
Cluscks
Checks on columns dm‘
{5}

Figure 2.1: The flow diagram of BTC encoding



The parameters of BTC Cy, are just the products of component code C; and C,.
The C, parameters are defined as (n, ky, dp) which are n, = n; x np, ky, = k; X ks, and
d» = d; x d, respectively. For this reason, BTC is also called turbo product code (TPC).
The capability of error is improved by these properties. The message symbols of row
space are protected by the parities of row (checks on rows); likewise, the message
symbols of column space are protected by the parities of column (checks on columns).
Finally, the checks on checks is encoded out to protect the parities of the row and
column space. The processes are encoding and interleaving the message array in the
encoding procedure. This property of encoding can overcome the burst noise

interference and improve the performance.

2.2 Decoding of BTC

List decoding of error correcting codes is the method of enlarged traditional error
correction. If the radius can be enlarged, more codewords can be included in
candidate list so there are more opportunities to find out which candidate is the closest
to channel value of the receiver with hamming distance or soft distance. However,
these methods don’t require more and more redundant parities for message protection.

In this section, we are going to introduce two list decodable codes algorithms:
chase algorithm and sliding encoding window algorithm. These two algorithms are
methods of creating the candidates list. This section also introduces the iterative
decoding algorithm for soft in soft out (SISO) computation. All other list decodable

algorithms not related to BTC are not discussed here.



2.2.1 Chase Algorithm

~ ~Error Location
I_,.{éic‘fBEHj h

G“ﬁé 5 .n: ------

Figure 2.2: The test pattern permutation of Chase algorithm

The numbers of codewords increase exponentially with the number of encoding
bits. Generalized minimum distance (GMD) [5] computation is also exponent of
encoding bits. Chase proposed an algorithm with a low computation complexity and
small performance degradation in 1972[6]. The Chase algorithm provides an approach
for codeword permutation beyond the radius of hamming ball which is illustrated in
Fig2.2

In the Fig2.2, Y, is the received codeword. The test pattern T, is created to
permute Y; to A. After the algebraic decoding method is used to decode A, an error

location Z’ is generated. The Z; can be derived as the following equations:

A =Y, ®T,
C, = A®Z
Z =Y®C,=T @404 ®Z=T,0Z, @2.1)

Y, is decoded to Cy by Z. In the same way, we make more test patterns to generate



candidates into candidate list.
There are three different methods in Chase algorithm for making T, :

Chase 1: The test error pattern set T is given through all error sequences of binary

. d_.
weight less than or equal to [?J , and the amount of test patterns can be
n

indicated as |T|= [&J )
2

Chase 2: The test error pattern set T is calculated by using all binary vector

combinations corresponding to the t= [%J that are low reliable positions,

d

T| =2[TJ

Le.,

Chase 3: The (d_ . -1) low reliable positions are extracted from the codeword. The

min

vectors in T have “1” in the i low reliable positions and “0” else where 1=0,

2...dmin— 1 and i= 0, 1, 3,...dmin — | for odd and even dn, respectively, i.e.,

|T|=[EJ+1.
2

2.2.2 Sliding Encoding Window (SEW) Algorithm

Another candidate searching approach is SEW algorithm. The algorithm uses the
characters of cyclic code and block code encoding method to implement decoding. It
was proposed in 2005 [7] [8].

A g-ary cyclic code is still a valid codeword after a valid codeword is shifted for S
symbols so shifting S symbols produce more candidates which are in the
neighborhood of the received sequences and valid codewords. The SEW algorithm

consists of two steps to generate the candidates list:



(A) Sliding phase (SP) :

A systematic code (n, k) is given. One symbol is defined as w bits. The
received codeword is cyclically shifted for S of A g-ary symbols and store all
results in buffer for the next phase.

(B) Encoding phase (EP) :

The first k symbols of each SP result are extracted in order which is called
a window. The window is like a new message part, and then t, low reliable bits
in the window are combed out and do bit-flipping for all combination, where
bit-flipping means that the bit is inversed. Finally, the different combinational
windows are encoded and the new code words is yielded.

The new codes in our candidates list are generated by these two steps, and the

dmin
amount of test patterns|T | :%x 2{ = J The algorithm sketch is illustrated in Figure

2.3. C1 is the received sequence. C2 and C3 are the execution result of the SP. The

window and the low reliable bits in Figure 2.3 are used to explain the EP.

c1 . T
©7 BT .
[ [.owmﬁa&&|
"""" Window 1
R w3 .
0 0 1.
[ e e e e e s e ah ]
T 1 i

Figure 2.3: The execution phase of SEW
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2.2.3 Iterative Extrinsic Information Algorithm

Channel values

t "“-,\

\ N\

\ R N

E}:trinsiﬁ’\jqormatinn 1‘*5“’],;{ Iterative Extrinsi \infurmatiun
‘\‘*-.. 1
e + VR
Channel values

f b
% Cecode Information J

Figure 2.4: The flow diagram of iterative decoding algorithm

BTC is a soft-decision code. Hence, soft in soft out (SISO) iterative algorithm is
used to compute the extrinsic information with intrinsic information. Every dimension
of BTC decodes in rotation. An example of the two dimensional BTC is shown in
Figure 2.4 diagram.

In the first run, the SISO1 decodes all rows of BTC when all channel values are
received from de-modulation. Then, the SISO2 decodes all columns of BTC in the
next run. When the second run has been done, it is called that one iteration is finished
at this time. In other words, one iteration takes 2 runs. A hard-decision decoder
decodes the final information of the codeword after several iterations. Then, the
decoding information is yielded.

Let C (n, k, d) be a binary linear block code in which n, k, and d represent length,
message length, and minimum distance, respectively. Binary phase shift keying

(BPSK) is used to modulate a codeword which is transmitted over an additive white

11



Gaussian noise (AWGN). E= (e}, €, ......... en) and R= ( 1y, 12, ......... r,) are
assumed as the transmitted codeword and receiver vector respectively, where e; € {+1,
-1}, =1, 2, ..., n. R is the combination of E and G, and G=( g;, g, ...... gn) are AWGN
samples of normal distribution N(0,5°). C' is defined as the i-th codeword of list. The
creation of the list has been introduced in section 2.2.1 and 2.2.2. In this study, the
chase 2 algorithm and SEW algorithm are discussed. Now, the candidates of the list
are computed for the decision codeword D, which is closest received channel value.

D, can be obtained as following equation:

If
[R-C'[ <|R-C[ ,1#iand C',C" list 2.2)
then D, = C'
’ 2
where R-C'|=>(r,-C)) (2.3)

The log likelihood ration (LLR) is used to measure the reliabilities of the Soft

de-mapping. The LLR of each element y; is given by the relation:

o [Prie =117 , : :
A( yj)—ln for BPSK in the AWGN channel with variance
Pr{ej:—1|rj}

Var(y,)=2c . The LLR can be derived as the following equation:

A~ 4

(o2

The reliability of the decision codeword is also major so the LLR of each element d;

of decision Dc is given by the relation:

[PI‘{€+1R}\] Ci;ﬁ[PT{E:Ci|R}
A(d;)=In / == (2.5)
Pr{e, =-1| R}

> Pr{E=C'|R}

T
C'e list;

12



20

and  P{R|E=C) :(%] exp[—|R_2Cl|} 2.6)
TOo

In (2.5), thelist;' isaset forall ¢;=+1,and the list;' isasetforall ¢} =-1I.

Recall Bayes’ rule:

I. , relE=c)
Pr{E:C|R}=Pr{R|E=C}W (2.7)
(2.6) and (2.7) can be substituted to (2.5). The LLR can be expressed as
R-C' -|r-C
D exp L
1 2 2 CiEII'Sl‘;-'l 20
Md) === (R-c7[ =|R - J#in 2 :
20 -1 i
z exp R-C/| —|IR-C
C"elist]'-l 262
> 4
1 2 = 1 e list!
- (|R-c;'f = |R=c;'f Jtn % 2.8)

€l listj'-l

In (2.8), the z A = z B., 0 =0 for high SNR will make the term of nature

C'e list;fl C'e listlTl
log which can be ignored. We obtain an approximation of the LLR with respect to the

decision djequal to

A'(dj):

By utilizing equation (2.3) the relation can be expressed as

(r-c'f -[r-c;'

2;2 2) 2.9)

2 " 0, Cl=C
Ad )= r + re'p |, p =4 for ' T 2.10
( ,) 62(1 112,1‘11 ] 1(,)1’1] D {l,f C;(—]j) iCl_(]j) ( )

o’ =2

is used to normalize intrinsic information (2.4) to get A( yj):rj , and

r.
J

w,= Y neilp, and r'; isdefinedas A'(d,)

I=1,1#j

So the relation of equation (2.10) may be expressed as:

13



G'=rtw, 2.11)

The term w; is a corrected term like extrinsic information, and the term 1; is a
soft-input data like intrinsic information. The D, is defined as the decision codeword
of candidate list, and C,(j)is the competing code word with respect to the D.. The
definition means that the j-th position of C,(j) is the inverse j-th position of D.. (2.9)

is also normalized by o’ =2 and can be expressed as

2

[R-C,(j) -|R-D
r'= g Z — |d, (2.12)

where dj is the hard-decision of D, mapping to -1 or +1. The extrinsic information can

be obtained by
W, =1'=7; (2.13)
Because BTC is a hyper-dimension array, (2.13) can be rewritten as
[7]=[R]-[R] (2.13)
If we can’t find a competing code word C, with respect to decision code word D,

there must be a tradeoff approach to compute r,' that is:

r'=Bxd, with >0 (2.14)

13 bh)

Now, a new parameter “m” is defined as a run number, and m is increased as
m=m+1 after decoding one dimension of BTC array. In (2.14), the experimental value

of B is gradually increasing to 1.0 in every runs. 3 is shown as flows [9]:
B(m)=[0.2, 04, 06, 0.8, 1.0, 1.0, 1.0, 1.0] (2.15)

Finally, iterative decoding algorithm of the BTC is shown as the following run

equations :

[R(m)] =[R] +a(m)x[W(m)] (2.16)
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[ (m+1)]=[R'(m)]~[ R(m)] @17)
[R] is intrinsic information. [ 7 (m)] is extrinsic information in m-th run and is zero
in first run, and [ R'(m)]is output soft value in m-th run. [R(m)] is decoded by
SISO, and where «(m) is a scaling factor for that, and the standard deviation of

values is different between array [R] and array [W(m)] o(m) is also used to
reduce the effect of the extrinsic information in the first run when the BER if
relatively high [9]. The evolution of a with the decoding m-th run is

a(m)=[0.0, 02, 03, 05, 0.7, 0.9, 1.0, 1.0] (2.18)
The a is also a parameter of the experimental result. The completed BTC iterative
decoding block diagram is illustrated in Figure 2.5. One iteration means that all

dimension computation has been finished, for example, 2 dimension (row and column

space) BTC. m is increased 2 after one iteration.

@ (m) B (m)

!

|7 (m)] m[R(m)] Decoding of rows |[w(mt1)]
—> » or columns runof [ >
BTC arrary
R] R R
(L [ L Delay buffer L’

Figure 2.5: Structure of BTC
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2.3 802.16e (WiMAX) BTC

Worldwide interoperability for microwave access (WiMAX) is a standards-based
communication system (i.e. IEEE 802.16 [4][10]) and is intended for wireless
“metropolitan area networks”. WiMAX is expected to implement multimedia
applications with wireless connections and can provide broadband wireless access up
to 30 miles (50Km) for a fixed station, and 3- 10 miles (5-15km) for a mobile station..

In this section, WIMAX specification is going to be introduced. Because it’s
forward error correction (FEC) application includes BTC. This application as an
example is implemented for our BTC study.

Some modifications are described for a linear code in this segment. A linear code,
C (n-1, k) can be extended for increasing one parity bit, and C’ (n, k) is produced. The
extended bit is derived by the XOR of the k information bits and the (n-k-1) parity
bits of the code C. This procedure is called extended code.

The “shortened” cyclic code 1s going to introduce. For example, A
two-dimensional BTC, Cy(ny, ky) is composed of component codes, C;(n;, n;) and
Cy(ny, ky), as shown on Figure 2.1. The S; rows and S, columns’ bits of message
symbols of the BTC are initialed zero, and the transmitted data is inserted in the
remaining of the message symbols. Then, the message array is encoded. Finally, An
BTC C, is transmitted except those S; rows and S, columns. The chart is illustrated in

Figure 2.6.
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Checks

message symbols  onrows

Checks

Checks on columns On
checks

Figure 2.6: The sketch of shorten code

Now, we are going to introduce WiMAX BTC specification. The hamming code

generator polynomials are listed in Table.2.1.

N K Generator polynomial
7 4 X3+X1+1

15 11 X4+X1+1

31 26 X5+X2+1

63 57 X6+X+1

Table 2.1: The generator polynomial of BTC
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The BTC component codes are listed in Table.2.2.

Component codes (n, k) Code type

(64, 57), (32, 26), (16, 11), (8, 4) | Extended hamming code

(64, 63), (32, 31), (16, 15), (8, 7) | Parity check code

Table 2.2: BTC component code of WiMAX

To match an arbitrary requires transmission packet size. BTC may be shortened by
removing symbols from the BTC array until the appropriate size is reached. The
following two steps are involved in the specification for shortening BTC:

Stepl: I; rows and I, columns are removed from the two-dimensional BTC array.
This is equivalent to shortening the BTC codes.
Step 2: B individual bits are removed from the first row of the BTC array starting

with the LSB.
The derived block length of the shortened code is (k —1,)(k,—1I,)-B as
illustrated in Figure 2.7. The corresponding information length is given as

(m —1,)(n,—1,)— B . Consequently, the code rate is given by the following equation :

L)
1)

Our study is focused on extended hamming code (64, 57) to be our BTC

R= —h)-8 (2.19)
- I)(n,—1,)-B '

component code, and we want the throughput about 30Mbps on clock rate 200MHz.
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Figure 2.7: The BTC shorten code for WIMAX
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Chapter 3

Proposed Geometry-like Algorithm

In this chapter, the proposed geometry-like algorithm is introduced. The algorithm
is for the hardware implementation without experimental parameters. The algorithm

level program is implemented by C language.

Some foundations of geometry are described with some detailed formulation
before our induction. A BPSK is defined to map (-p, +p). The p is defined as p=1 in
our study. The one dimension coordinate diagram is illustrated in Figure 3.1, and r is a
received channel value at receiver. The variable e is defined as the value of

transmission. The a posteriori probability is inducted as follows:

-1 0 1

H—’_.r_H

Figure 3.1: Analysis of the Probability for BPSK

Prie==+1]r} = P{r|et- o= pojey k.

7 1]
where P{r|e==x1} =| — | exp|- 5

Jar
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Pr{e:+1|rj} o)
Aly:)=In| ——— = |=| — |r; 3.1
(yf) ! Prie=—-1]r;} ( 2er G.1)

In Figure 3.2, the v is perpendicular to the hemline of the triangular AABC.

Pythagoras' Theorem is used to drive the equation (3.2):

2 2
s%_g%-p2

2 2 2 2 2 o 2 .2
S,” =S, =83 +V ) ~(S,” +¥V7)=8;," -5, (3.2)

Figure 3.2: Geometric equation analysis of the equation (3.2)

The two axis coordinate diagram is illustrated in Figure 3.3. A triangular AABC is

sketched on the diagram. The apex C is projected to r’ of x-axis. |B - A| is defined as

the distance of AB.aand b are symmetrical. Thus, 1’ can be found the relation as the

equation (3.3):

o
F A
c

>
vy

Figure 3.3: Geometric equation analysis of the equation (3.3)
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2 1 ) 2 1 N 12
@=L J(B-A) +r' T = b7 (B-) - 1) ]
Let ¢ = ;(|B -A|) rewrite above equation

a® - b = [t+7' ]2 - [t-7r' ]2 =4x tx r'
a® - b? = 2(|p-d)) '
1 2 2
r'= _—(a“ - b") (3.3)
2(|B- 4))

A new algorithm is going to be inducted now. A two dimensional BTC is supposed,

and there are two entries in every space (column and row) of the received data. For

02 1.0

in each space.
0.5 -0.6

example, 2 coordinates are introduced to R = {

In row space:

R = (02, 1.0)

rowl

R . = (05, —0.6)

row2
In column space:

R, = (02, 0.5)

colunml

= (1.0, -0.6)

colunm2

The row space R = (0.2, 1.0) 1is sketched to explain the algorithm on

rowl
constellation diagram as an example. The diagram is illustrated in Figure 3.4. The
constellation diagram expresses the channel values of every space. There are 4
coordinates (1, 1), (-1, 1), (1, -1), (-1, -1). These coordinates mean the former values

at transmitter. The R; on the diagram is the result of the transmitted value adding

noise and R1 is projected to R2.
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e 5T (1,1)

Decision
codeword

4 Competing s
codeword )

L 1) (1) %,

Figure 3.4: Equivalent analysis on constellation

Base on Figure 3.4, The equation (2.12) is recalled, we know:

2

o IR -C, () ~|& - D, N

r]_] 4 1j

and use the concept of equation (3.2) , r'; is rewritten as the following equation:

[I» —Cp(j)|2—|R] -DJ[ .,
h,;= 4 1j

2

R,~C, (j)| ~|R,~D.
_ - d, =r", (3.4)

The equation proves that R; and R, are equivalent, and we use the concept of equation

(3.3) to getr,';:
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) 3.5)

So the reliability of R; can be substituted by R,. ‘C -D ‘ is the value of the

distance. The Hamming distance can be used to solve the value. The hard decision of

competing codeword and decision codeword is defined as following

HC,, =| HCp  HCpy HCpy |
HD, :[HDCI HD, HDcn]

Where HCp1 ,HDC1 €0,1

n
Hamming distance is defined as d(HC ,HD,) = | 1(HC  ® HD,, ) based on

BPSK(-1, +1). Then,
2

‘Cp(j)_Dc‘2 :ké(cp (/) =D, k) = é (ZX(HCkar)HDck))

SO We can express ‘Cp (j)- Dc‘z\/22><d(HCp ,HD.) and re-write (3.5) as:

JE S || Y S

r .=
27 4x [d(HC),,HD,)

Now, the equation (2.13) is recalled and multiplied by 2, and then we can get the

(3.6)

following equation:

2w . =2r".-2r,. = 2r.'. - 2r,.
] 1y =1 2] 7

vAv, is defined as the extrinsic information of our algorithm and the definition is

shown as the following equation:
(3.7)

w; =2w, —r,

There are two special situations in our algorithm. The situations are discussed as

24



follows:

<1> The no competing codeword situation has to be considered, and our

approximation of the soft output isr' j =dj € -1, +1. It means that the soft

value of this bit is reliable. There are no noise so the value can be mapped to
(+1, -1). Because we also want to gradually move the information to (+1, -1),
the compensation of information is only half for the next run. Therefore, the

following equations can be obtained:

=~ 1
W=—(d. -R ) .
S(d; -R )

<2> Another consideration is the parallel condition situation. This is a special
case. If the competing codeword and the decision codeword are connected to
a line parallel with the axis of constellation, the extrinsic information W
keeps old value. If the extrinsic information is changed on this condition,

another value of axis would be wrong with respect to decoding axis.

~ - . + y
(-1,1) (11)
.. iy
= e
R I
Wi
.-'-.‘-- ‘\ &Y
(-1 -1) (1.1)

Figure 3.5: Parallel condition chart
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A trick of making more candidates is used. An example is explained as follows:

R, ={a, a,, a5, a,, a;)=(-1.2, 0.7, 05, 0.8, -0.3)is assumed. Then, R,

soft value is decoded toR,, = (—1.2, 0.7, 0.5, 0.8, —0.4> . This assumption treats

a special problem for low reliable priority. We can see the as entry whose reliability of

R . is still the lowest after decoding. The choice of low reliable bits is the same as that

in the next decoding run. The other possible entry can not be tested so R .is adapted

as following equation:

Rb,zl(—l.z, 0.7, 0.5, 0.8, -0.4x2)=(-0.6, 035 025 04, -04)
2

Other bit priority is decreased except for entry as, and the new candidates can’t be

combed out for next decoding run. The trick is used in our algorithm.

Finally, our new algorithm is summarized as following pseudo code:

step 1:
[R(m)] = % ([R]+[W(m)])

step 2:
1f(NO competing codeword)

(W] == d; - [R (m)])
else
if(parallel condition is not tenable )
[W(m+1)] =2[R((m)] - [R (m) ]
else
[W(m+1)] = W(m)
1

"V . 2_ _ 2
where R _4><\/d(HCp,HDc) UR —Cp(f)| IR —D| ] xd,
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Chapter 4

Hardware Architecture Design

In this chapter, the hardware design and implementation are shown. Section 4.1
describes BTC encoder. The BTC decoder design is described in section 4.2. The

parallelism issue of the circuit architecture is discussed in section 4.3.

4.1 Encoder Design

The functional block diagram is illustrated in Figure 4.1. Because the hardware
design is considered as the trade between memory gate count and throughput, we use
a 64*64 bit memory, one BCH encoder, and parity buffer is used to store parity after
encoding. There are 64 component codewords in a BTC array to use one BCH
encoder so a scheduler is designed to control total cycles within the limit. In our
design, the throughput is about 0.326 bit/cycle.

The BCH encoder of our design is a linear feedback shift register (LFSR)[12].
After the BCH codeword is encoded, all the codeword bits of BCH are xor-ed

together. The result of xor is the extension bit.
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- BTC array memo e i
v o BCH extension encoder ity Buffsy

Figure 4.1: The block diagram of encoder

4.2 Decoder Design

“-1” Soft Value
SR MUX —I— —_— R(m)
A
Channel \ 4
Channel Value value R
(nput Buffer) Shorten Soft In Soft Out (SISO)
BCH Chase Decoder
-
Buffer Address 1
SR
< <
W(m+1)
MUX ¥
-
Controller Unit Output Buffer
Transpose) <« 0
First Iteration
Buffer Address Decoded Information

Figure 4.2: The block diagram of decoder
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The blocks of our decoder design are shown in Figure 4.2. the channel value
sequence of our decoder is got from the de-modulation, and is saved in input buffer R.
R plus extrinsic information wm is stored in Rm. The Rm is used to compute the next
extrinsic Wyt by the SISO. The decoded result of hard decision is outputted to output
the buffer. The buffer can be read by the next stage of system circuit. There are four
memories about the gate count for the most part. They are channel value R, Rm, Wm,
and the output buffer respectively. These memories are hard to reduce. The SISO
block is our BTC decoder core. The main algorithm is used in this block. There are
parallel circuit and gate count issue of the consideration in our design so SISO circuit
size is our focus. A special transposing array controller circuit is also designed in

controller unit except for the finite state machine controller.

4.2.1 Algebraic Decoding

Let a codeword be v(x) =, +vx' +v,x* +........... +v, ,x"". The AWGN channel

is defined as Noise(x). The received codeword is shown as the following equations:
R(x) =V (x)+ Noise(x)

R(x) can be rewritten as:
R(x) = g (x)od; (x) + by (x)
Where, ¢;(x) is the minimal polynomial.
and then let
S;=R(a')=b.(a’) @.1)

Our design specification is BCH(63, 57), and the code is a perfect code (t=1). One

error of the received codeword can be corrected, and the codeword only need the
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syndrome, S, =b(a) to be the error location [12]. The result of the perfect code
decoding must be a valid codeword so there are no out of location situation and
checking valid codeword, but it may not be our transmitted codeword at transmitter.
In Summary, because the error location is S; we can design a simply algebraic
decoder circuit without complexity algorithm, e.g. BM algorithm [13]. The error

location can be decoded by LFSR [12].

4.2.2 The SISO Architecture

R(m)

A * A

Hard Decision Decision Competing

BCH Decoder
Low Reliability Position A

Candidate Generator

‘ List (Register File)

Reliability update
Unit > W(m+1)

' ~ FSM

Figure 4.3: The block diagram of SISO

The SISO consists of Algebraic decoder (BCH decoder), a candidate generator, a
list memory, a decision and competing circuit, and a algorithm reliability update unit.
It is illustrated in Figure 4.3. The computation time of our design spends about 550
cycles for finishing one decoding run. Our design in every block is interpreted as the

follows:
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A. Hard decision, BCH decoder, insertion sorting for low reliability position
After Rm is ready, the hard decision is determined. The hard decision

result is used to compute syndrome for error location by LFSR. The
insertion sorting approach is proposed to sort low reliable bits of the
received codeword. The truth table of sorting is listed on Table.4.1. The
insertion sorting circuit is designed according to Table.4.1. The flags (X, Xa,

X3) are produced by the three comparer (Cmp). The multiplexers (MUX) are
controlled by flags to select data to store the value in register (R1~R4). The

insertion sorting circuit is shown in Figure 4.4.

Flag X1 X2 x3
R4<R1<R2<R3 1 1 1
RI1<R4<R2<R3 0 1 1
R1<R2<R4<R3 0 0 1
R1<R2<R3<R4 0 0 0

Table 4.1: The truth table of insertion sorting flag

Charmel wal e Dt & et
[==1 (=1 (== ‘1\ .-;"—_ bl
—3 1 l E | E MUX ena
M ML A LB e S LD A~ l imitial
,I- I~ - .
(R1) R2) R3) -:5]:1_':
cmp Ccmp Cmp
B<A B<A B<A
J':<1 l}{2 le
R4 (R ® @ R & ® ® ® &)
ol o ol Rl 58 ol
NS SOTMme T S Mo T 3
| E—

Figure 4.4: The circuit of insertion sorting
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B. Candidate generator
When the syndrome and low reliable position have been computed from
the last stage, the counter controls the multiplexers to generate all
permutation test patterns. The syndrome xor all the combinational results of
multiplexes to produce new syndrome. The location table is looked up the
table by new syndrome and map which bit is corrected. Finally, after all of

the output of location table is xor-ed , then candidates are generated.

LRP1 Mask Value LEPZ Mask Value LRP2 Mask Value

I R

‘ WX _‘ VRS B MUX 4‘ Pattam
Colnter

4 4
Syndrome | ’ |
EE— Bitn.-'.risel XOR
‘ Locatio table R
Hard decision ’
. Bitwise XOR T Location table

Figure 4.5: The circuit of candidate-generator

C. List (register file)

Because there are only 8 candidates in the list of our design, the list
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memory is implemented by using a register file and is not memories. The
register file is multi-port register file that provide parallel data outputting for

the next stage.

D. Decision & competing unit

initiall
[—N
l l enable‘ £, Distance #
!R—Clz | MU "?\Reg | %
N — F
Accumulator MUX
Distance #1  #2 #3 #t4 #5 #6 #7 #8
| . | |
CMP .__CMP ‘ CMP ‘ ‘ CMP
— |
CMP CMP
Sorter 1 l
CMP \

Figure 4.6: The circuit of decision&competing unit

There are 8 candidates that would be compared out the least minimal
distance. The design of the accumulators is illustrated in Figure 4.6. The 8
accumulators are used to compute all distance between the 8 candidates and
the channel value, and then the soft distance of the candidates are sorted by 7

comparers. After sorting, the minimal distance of the decision codeword and

33



E.

the competing codeword can be outputted to next stage.

Reliability update unit

The reliability update unit of the circuit is shown in Figure 4.7. We think
over the computation speed of the circuit so the 6 levels adder (Figure 4.8)
are implemented to compute hamming distance. The look up table is used to
find out the value of complexity square roots computation in our design. The
rest of reliability update unit is also based on our decoding algorithm and is

shown in Fig4.7.

R—of |r-cf
S 1 l

Substractor

multiplie

RALLX e
competing

+
MLIX Decision

{ W+ 1
<

Rim) —<— Substractor

Figure 4.7: The circuit of the reliability update unit
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---------------------------------------------------------------

6 bit Adder

Figure 4.8: Six-level adder circuit

4.3 Parallel Architecture

4.3.1 Parallel Architecture Planning

Because of the requirement of WiMAX specification, the throughput is an
important issue. Therefore, the throughput is excepted to arrive at least 30Mbit/sec.
For this reason, the parallel architecture of the decoder circuit is projected for arriving
throughput constraint. The BTC (64, 57) includes 64 sub-code words (component
code) in every dimension so the all sub-code words can be independently processed
by the different SISOs. The quantity of usability of SISO is from 1 to 64. If more
SISOs are used in decoder, the BTC decoder would be faster, but the gate count is
also increased. Therefore, we consequently consider the trade off. The memory is
divided into parts when the number of SISO is decided by our analysis. Every

memory partition is defined as a memory bank, and we generally called these
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partitions multi bank array (MBA). Each MBA has 4096 entries for 64x64 soft data.
Our analysis formulation is based on Figure 4.2. and illustrated as the following

equation (4.2):

Total cycle = 8runx (S><6—]:]1 + 4?\?6) +input latency (4.2)

Where “S” (cycles) is the numbers of cycles for SISO computation, “N” (SISOs) is
parallel numbers, “input latency” means the total cycle time of the input buffer to be
fully written, and “8run” means every SISO excute 8 times for iteration decoding

algorithm.

Now, the BTC(64, 57) is estimated as the circuit clock rate at about 200MHz so we

calculate the following equation:

-+ clk rate x (M) = throughput
total cycles

total bits

. =0.15bit / cycle
total cycles

2

The BTC total information bits has been known, and that is 57 = 3249 bits .

The above substitute to (4.2):

23299 g ssox St 409, 409
0.15 N N N
|y (8x(39296)+4096)x0.15 L

3249

N =16=2" is chosen for the parallel number estimation of formulation because
power of “2” number is easily implemented in hardware. Now, the circuit parallel
number is N=16 so the MBA has 16 banks, and every bank has 256 entries. The
MBAs will be co-operating with proposed parallel architecture in the planning. The

chart is shown as Figure 4.9.
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Rm Wm
Bank #1 > SISO #1 ™ Bank #1
Bank #2 > SISO #2 | Bank#2

' [ ]
] ] '
' ' '
' ' :
: = :
Bank #N-1 > SISO #N-1 ™ Bank #N-1
Bank #N > SISO #N |  Bank#N

Figure 4.9: The block diagram of parallel architecture

4.3.2 Parallel Multi-Bank-Array Structure

There is a bottleneck of the MBA accessing in parallel architecture. The two ports
MBAs are controlled together to move data with each other so the parallel
architecture would have read/write hazard in the architecture of the MBAs. A buffer
can be added to solve the hazard, but the memory gate count is also increased.

Therefore, an algorithm of MBA accessing is proposed to overcome the hazard.

FRawws direction

calumns
direckion

B4 * G4 entices

Figure 4.10: The overview of a MBA
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The row and column space of the BTC decoding use the common SISOs in
different runs. Our memory usability is only 3 (64*64 entries) MBAs, i.e. R-MBA,
Wm-MBA, and Rm-MBA. A simple MBA chart is illustrated in Figure 4.10. and the
memories accessing scheduling of the iterative decoding algorithm is listed as
Table.4.2. “Transpose” means reading or writing the MBA and the addressing of the
MBAs i1s not in order. “Normal” means reading or writing the MBA and the
addressing of the MBAs is in order for each bank.

An assumption of simple example is illustrated in Figure 4.11. MBAs
(Wm-MBA and Rm-MBA) are partition to 4 banks. Suppose that Wm is normal, and
Rm-MBA is transpose. In first run, the bank#1 of the Wm is read out to Rm, but the
four write ports of Rm-MBA have to wait bank#1 read port in order. other read ports
of Wm-MBA are idle except the bank#1 of Wm-MBA. However, the resource of
memory is wasted. Thus, we want all port working at the same time, and there is no

accessing hazard without an additional buffer for the gate count issue.

Run number R W R+ 1=R+Wp,
0 (for row) Normal 0 normal

1 (for colunm) Normal Normal Transpose

2 (for row) Normal Transpose Normal

3 (for colunm) Normal Normal Transpose

4 (for row) Normal Transpose Normal

5 (for colunm) Normal Normal Transpose

6 (for row) Normal Transpose Normal

7  (for colunm) Normal Normal Transpose

Table 4.2: Algorithm flow table




Bank #1

Wim)

e [ —
- =

Bank #4

—

Qutput port

Input port

ke

1

!

Figure 4.11: The MBA transposing

R(m)

B i v i i

A bottleneck is very clearly shown in above example. If we want to transpose a

memory, and there is no one idle in all ports of all MBAs, then some data will be

delayed or over written. Due to this reason, a MBA algorithm is proposed to

overcome read/write problem.

Our proposed algorithm is a special memory bank scheduling. MBA is partitioned

into several slices. Every first address of MBA is started by different slices. It is

shown in Figure 4.12. The number in each slot of Figure 4.12 stands for the

corresponding time index. All ports can be worked at the same time and there are no

data buffers. The feature of algorithm is that we reapportion the timing and the

address of read/write for scheduling accessing. Based on the idea, our pseudo code of

the algorithm is going to be introduced.
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Input port _ AR
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QOutput port

Figure 4.12: MBA scheduling

The Figure 4.13 is used to define variables for our pseudo code of proposed
algorithm. The slice #s and bank #b are space variables for transposing blocks. The
index i and index j are time variables for transposing elements. i and j indicate which
address is read or written at every cycle for slice transposing. s and b control the
addresses of the ports to avoid overlapping each other.

Our proposed MBA accessing algorithm can be used on the consideration of

accessing hazard and resource issue, and the pseudo code is shown as follows:
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for(s=0:15) //slice
for(b=0:15) //bank number
for(i= 0 : 3) // partition index
for(j= 0: 3 )// partition index
if((run number mod 2)==0)// 1 iteration=2 runs (row-+colunm)
R(m)b[i ,J +4x((s+b) mod 16) ]
= Rb[i ,J +4x((s+b) mod 16) ]+W(m)(s+b)mod16[j’ i+4b ]
else
R(m)b[i ,J +4x((s+b) mod 16) ]

= R sspymodi6l/> 1+40 1+ W 0m) (s modil/s 1440

Where “S” is slice number, “b” is bank number, i and j are indexes in the partition for

every slices.

Slice #0  Slice #1 Slice #1545 4j>

Bank #0

Bank #15 —

Figure 4.13: The chart of MBA algorithm
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Chapter 5

Simulation Platform and

Implementation Result

5.1 Algorithm Level Simulation

We take WiIMAX specification to be our design example, BTC (64, 57) and Chase
2 algorithm is chosen as our candidate-choosing method. The proposed algorithm is
implemented on C language (algorithm level). The different iteration performance is
shown in Figure 5.1, i.e. 1 iteration= 2 runs. Compared to the previous studies [9, 10],
our performance in this report is more effective. Any experimental parameters are not
required to be used in our proposed algorithm.

SEW algorithm is also used to create candidate list in our algorithm. The SEW
performance and the shortened BTC performance in Figure 5.2 indicates that our

proposed algorithm suits for different candidate-choosing method.
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The number of low reliability bit for generating the test pattern of the Chase 2
method is also analyzed because the different numbers of the test bits spend different
run time, and there is different performance. There are 2, 3, 4, and 5 test bits in the
simulation of performance Shown on Figure 5.3. The result exhibits performance
convergence on 3 test bits. We decide to use 3 bits in our design and all of the bits is

not too more plenty of bits

BTC (57 B4) performance comparison (C language)

223 —8&— algrithm level unc

_______________ j j BTC dec 2runs

——————————————————————

—&— BTC dec 4runs

10
223 —4—EBTC dec Bruns

""i""""""""i"" - . ' 0 —&— BTC dec 8runs

_________________________

ETC dec 10runs
10 b=

-] —P—BTC dec 12runs
—#— ETC dec 14runs

—&— BTC dec 16runs

10°

E, /N, (dE)

Figure 5.1: The performance of different runs simulation

43



BTC (87 B4) performance comparisan (C language)

||||||||||||||||||||

' ']
i Tl Kt Tl
' '

=6 |

08 &
=0.8
=08 46 |
05

rate
rate
rate

- —&—Chase?

| ——SEW

—+— SEW+BM rate

||||||||||||||||||||

45

34

25

1.5

E, /N, (4B)

Figure 5.2: The performance of different list decoding algorithm
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BTC (57 B4) performance compare (G language)

—&— algrithm level unc

—+—ETC decthZ Srun [
—&—EBTC decth3 8run [
——EBTC dec thd 8run |---

BTC decth 8run |-

Figure 5.3: The performance of different test bits usage
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5.2 SystemC Platform

SystemC is developed from the C++ programming language. SystemC extends the
capabilities of C++ by enabling modeling of hardware descriptions and provides very
important C++ library, such as concurrency, timed events and data types for hardware
behavior model. These libraries are all legal C++ instruction. SystemC doesn’t have
new syntax instruction to the C++ programming language, and it provides a
simulation kernel. SystemC model can be used to simulate the executable
specification of the design or system that you write in SystemC. We can effectively
describe a cycle-accurate model of our design. SystemC also provides a methodology
for describing: system level design, software algorithms, and hardware architecture.
More importantly, SystemC is an open source. This means that it is freely available to
use under an open source license agreement.

Circuit design is getting bigger and bigger in gate count and faster in speed and
more complex. There are some considerations: faster simulation, hardware/software
co-simulation, and architectural exploration. Therefore, we expect a platform which
has these features. Because SystemC is just for: System level design, describing
hardware architectures, describing the software algorithms, verification, and IP
exchange. For this reason, SystemC platform is used for our design, and the design

can also provide electrical system level design(ESL) to be used in the future.
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5.3 Hardware Level Simulation and Report

SystemC model is implemented and it can be co-simulated with every sub-module
of RTL code. Their function is identical in cycle accumulation. A co-simulated
verification platform is constructed and the platform is illustrated in Figure 5.4. The
performances of the different precisions are shown in Figure 5.5, where P.X.Y means
X bits for integer and Y bit for decimal. In the simulation result, the P3.5 precision is
used in our final circuit and synthesized.

The synthesizer EDA tool which is design compiler of Synopsys Company’s tool
is used to synthesize our design and its result is shown in Table.5.1. The timing

constrain is met at 200MHz and our circuit is implemented in 0.13um CMOS process.

SystemC
model

Pattern

Are they
match ?

RTL (verilog)
model

Figure 5.4: The verification flow diagram
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BTC (57 64) performance comparison

o —&— algrithm level unc |

—e— H\W p3 .3 dec
—E—H pd .3 dec
I HW pd 4 dec
o —— H\W p3 4 dec

—6— HW p3.5 dec

HW p11.10 dec

Figure 5.5: The performance of different precision analysis

Figure 4.13

The sub module of decoder Gate count (0.13um)
Controller 1000
SISO 23916
MBA 9095
Output Buffer 15406

Top module (parallel architecture) Gate count
Encoder 28,193
decoder 590,163

Table 5.1: Gate count report
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Chapter 6

Conclusions

6.1 Summary

In this thesis, a BTC codec for WiMAX (IEEE 802.16e) standard is implemented.
Our proposed geometric-like decoding provides the similar or better the previous
error performance and there are not experimental parameters. We also consider
parallelism for the throughput requirement of WiMAX (IEEE 802.16¢) specification.
Therefore, we not only design basis circuit, but also develop a multi-bank-array
algorithm to deal the memory accessing hazard of matrix transposition. Moreover, the
SystemC environment is built to simulate and verify our design, leading to reduction
in hardware level simulation time. The environment also provide SystemC model for

ESL in our study. The model can be use on ESL flow in the future.
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6.2 Future Works

The WIMAX (IEEE 802.16¢) system has many different specification of the BTC
specification. The BTC (64, 57) is implemented in this thesis. Other specification may
be also implemented by using our proposed algorithm and design flow. Beside, our
proposed iterative decoding algorithm can be used in different candidate list algorithm,
this is another study. The front-end design of our design has done, so we could finish
back-end to tap out a IC, and IP-lize our BTC. Additionally, BCJR can be used in
BTC that is also an important topic. The performance of conventional BTC and the
BCJR algorithm BTC can be compared and analyzed. Maybe a new algorithm could

be innovated.
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