

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

區塊渦輪編解碼器設計與實現

Design and Implementation of
Block Turbo Code Codec

研 究 生：廖俊閔 Jimmy J.M. Liao

指導教授：張錫嘉 博士 Dr. Hsie-Chia Chang

中 華 民 國 九 十 六 年 十二 月

區塊渦輪編解碼器設計與實現

Design and Implementation of
Block Turbo Code Codec

研 究 生：廖俊閔 Student ： Jimmy J. M. Liao

指導教授：張錫嘉 博士 Advisor ： Dr. Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electronic Engineering

June 2007

中 華 民 國 九 十 六 年 十二 月

i

區塊渦輪編解碼器設計與實現

學生：廖俊閔 指導教授: 張錫嘉 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

本論文為區塊渦輪碼(Block Turbo Code)編解碼器電路設計之研究, 原區塊

渦輪編碼演算法裡, 每一個迴圈計算時皆需要實驗性參數來修正計算量, 針對此

本論文提出了一個類幾何演算法取代實驗性參數修正計算量的方式, 所提出來

的新演算法亦適合硬體電路實現。我們設計的範例是以WiMAX為本論文電路應

用, 並考量及提出電路平行化處理方法在有限的硬體資源限制下達到我們要的

效能。 本篇論文電路設計流程平台不單只以 C語言來實現我們演算法階層的創

意, 及用硬體描述語言Verilog來實現新的硬體架構, 我們也同時使用了 SystemC

的驗証平台來減少我們電路架構驗証所需時間, 且 SystemC 所建的模組亦提供

未來電子系統層級電路設計使用。

ii

Design and Implementation of

Block Turbo Code Codec

Student：Jimmy J.M. Liao Advisor : Dr. Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao-Tung University

Abstract

In this thesis, a block turbo code of 802.16e is proposed. Unlike the conventional

decoding algorithm requiring empirically derived parameters, the proposed

geometric-like algorithm uses hamming distance to compensate the information. Not

only improving the error performance, the proposed algorithm also facilitates

hardware implementation. Moreover, a design methodology for parallel architecture is

presented to meet various throughputs. The memory accessing hazard in parallel

architecture can be overcome by the proposed multi-bank-array algorithm. The

proposed algorithm is a partition and scheduling technique without extra memory. By

the proposed algorithm and parallel design methodology, the block turbo code

encoder and decoder defined in WiMAX(802.16e) is implemented. Note that, a design

iii

flow from algorithm level (in C language) to hardware level (in Verilog) is presented.

A systemC model is also built to provide a more efficient verification strategy and

allows electronic system level design.

iv

誌謝

本論文得以完成, 首先非常感謝 OCEAN 團隊的每位伙伴及感謝我的家人;

因為有OCEAN研究團隊的研究環境, 才能讓我在碩士生涯得到真正地成長紮實

且受益良多, 也因為家人的支持, 才能讓我專心於研究並取得碩士學位。並感謝

口試委員們給學生很多寶貴的建議及想法, 讓學生能更廣泛思考。

感謝溫瓌岸教授(溫媽)及 TWT 實驗室曾給予我的栽培, 給我充份的資源環

境去思考研究方向與問題, 感謝 TWT 博士班學長文安長期以來的照顧; 謝謝

TWT碩士班的學弟： 書旗、家岱、漢健、柏麟等學弟在我碩士生活中一起成長

及分享; TWT碩士班同學：振威、志德、彥宏、彥凱、懷仁、俊憲，曾一起生活

過，特別感謝最夠義氣的振威一直支持我幫助我走下去，也誠心感謝 TWT己畢

業博士班學長莊源欣曾給我許多指教及建議。

在求學旅程中許許多多的恩師，因為有你們不斷地帶給我支持與希望，我才

有機會從一個很普通的學生再到交大來深造；感謝專科導師陳文淵教授在專科時

期的指導;感謝高工導師蔡孟烈老師，雖然只在老師班上短短不到一年，但因為

有孟烈老師給了我求學慾及不放棄的新力量還有老師不求回報的付出，我才能脫

胎換骨；謝謝高工老師簡文魁老師，文魁老師亦師亦友不斷地精神支持及鼓勵，

讓我感受到老師如同朋友，而這個力量讓我多了一份自信；感謝高三導師陳天賜

老師協助我學業上很多問題並提供我讀書方法及高二導師江進文老師的栽培，而

其他高工老師傅慈貞、黃麗娜、張麗娜、張珠兒．．．．等等老師們，也謝謝你

們教導過我。再來要感謝國中導師羅淑凰老師未曾放棄任何一個在普通班頑皮的

學生，讓我的未來不是夢不放棄求學的可能性，在叛逆的青春期中協助不夠成熟

的小朋友把持住善良的本性;另外國中老師林淑靜老師、薛雲芳老師、童軍團的

盧嬌老師及其他曾帶給我希望的國中老師，也謝謝他們帶給我學習的興趣與希

望。

接著要感謝朋友團，我的十幾年的高工同學朋友們，志文、崇裕、俊臣、宏

v

文，因為十多年來有你們不管經濟上或是精神上的協助與打氣，我才能堅持到

底；也感謝專科同學朋友們，清宏、銘益、傳盛、吉興、彥佑、佳仁、振麒、益

祥，總是在我一些新知及技術上需要幫助時給我強大的後盾。還有感謝學弟義凱

在我最後二年碩士生活共同成長互相學習照顧，讓我這後面二年仍能充滿戰鬥

力；感謝交大博士邵雲龍學長、張彥中(nelson)學長及劉子明(明哥)學長在我碩士

生涯中最無力時打氣，感謝圖書館蔡淑琴大姐協助我圖書諮詢及學習；還有所有

曾協助過我的研究助理小姐們也謝謝你們。

特別要感謝 OCEAN團隊博士班建青學長、彥欽學姐及其他博士群，因為你

們對我的信任與支持讓我到 OCEAN團隊成長，更教給我很多很多很多的知識與

方法，我真的很感謝學長姐無私的分享與教導，才能成就我這段研究；還有要感

謝張錫嘉教授，在我需要討論研究方向與問題時給了很多建議及協助；感謝胡樹

一教授長期以來對我的信任及幫忙，我才能達成我的理念;感謝黃俊達教授給我

精神上的支持還有學業上的啟發。

最後再次謝謝我母親及我的家人，及上述所有老師朋友同學們，僅以此論文

回饋與分享給你們，謝謝你們，因為有你們才有我今天的成果。

廖俊閔

2007年 12月

vi

Contents

摘要 ………………………………………………i

Abstract ……………………………………………………ii

誌謝 ……………………………………………………iv

Contents ……………………………………………………vi

List of Figures..viii

List of Tables ...ix

Chapter 1 Introduction...1

1.1 Motivation...3
1.2 Organization..3

Chapter 2 Block Turbo Code..5

2.1 Encoding of BTC ..5
2.2 Decoding of BTC ..7

2.2.1 Chase Algorithm ..8
2.2.2 Sliding Encoding Window (SEW) Algorithm9
2.2.3 Iterative Extrinsic Information Algorithm...11

2.3 802.16e (WiMAX) BTC..16

Chapter 3 Proposed Geometry-like Algorithm20

Chapter 4 Hardware Architecture Design.........................27

4.1 Encoder Design ...27
4.2 Decoder Design...28

4.2.1 Algebraic Decoding..29
4.2.2 The SISO Architecture ...30

4.3 Parallel Architecture ..35

vii

4.3.1 Parallel Architecture Planning ..35
4.3.2 Parallel Multi-Bank-Array Structure...37

Chapter 5 Implementation Result and Simulation42

5.1 Algorithm Level Simulation ..42
5.2 SystemC Platform ...46
5.3 Hardware Level Simulation and Report.....................................47

Chapter 6 Conclusions..49

6.1 Summary...49
6.2 Future Works ...50

Bibliography...51

Vita ……...……………………………………………53

viii

List of Figures
Figure 1.1: Communication system block diagram .. 2
Figure 1.2: The flow chart of the research ... 4
Figure 2.1: The flow diagram of BTC encoding .. 6
Figure 2.2: The test pattern permutation of Chase algorithm.. 8
Figure 2.3: The execution phase of SEW... 10
Figure 2.4: The flow diagram of iterative decoding algorithm.. 11
Figure 2.5: Structure of BTC .. 15
Figure 2.6: The sketch of shorten code.. 17
Figure 2.7: The BTC shorten code for WiMAX... 19
Figure 3.1: Analysis of the Probability for BPSK .. 20
Figure 3.2: Geometric equation analysis of the equation (3.2).. 21
Figure 3.3: Geometric equation analysis of the equation (3.3).. 21
Figure 3.4: Equivalent analysis on constellation .. 23
Figure 3.5: Parallel condition chart ... 25
Figure 4.1: The block diagram of encoder ... 28
Figure 4.2: The block diagram of decoder ... 28
Figure 4.3: The block diagram of SISO... 30
Figure 4.4: The circuit of insertion sorting .. 31
Figure 4.5: The circuit of candidate-generator ... 32
Figure 4.6: The circuit of decision&competing unit... 33
Figure 4.7: The circuit of the reliability update unit ... 34
Figure 4.8: Six-level adder circuit ... 35
Figure 4.9: The block diagram of parallel architecture... 37
Figure 4.10: The overview of a MBA.. 37
Figure 4.11: The MBA transposing ... 39
Figure 4.12: MBA scheduling... 40
Figure 4.13: The chart of MBA algorithm ... 41
Figure 5.1: The performance of different runs simulation .. 43
Figure 5.2: The performance of different list decoding algorithm... 44
Figure 5.3: The performance of different test bits usage... 45
Figure 5.4: The verification flow diagram ... 47
Figure 5.5: The performance of different precision analysis... 48

ix

List of Tables
Table 2.1: The generator polynomial of BTC... 17
Table 2.2: BTC component code of WiMAX... 18
Table 4.1: The truth table of insertion sorting flag ... 31
Table 4.2: Algorithm flow table .. 38
Table 5.1: Gate count report.. 48

1

Chapter 1 Introduction

Introduction

Communication is required in the world, and it is the most important to receive

the exact message that is transmitted. Therefore, the protecting message in noise

channel is the major topic. A general digital communication system is illustrated in

Figure 1.1. The “binary source” is message, where Ii (i= 0, 1,.., n) represents different

message symbol. “Binary encoder” adds redundant parities to protect message. ei (i=1,

2,…,n) are codewords after encoding. Codeword is modulated into analog signal X(t)

that is transmitted via channel, and the received analog signal Y(t) including noise.

Demodulation deals with the recovery of Y(t) waveform and estimates the channel

value to next stage, “Binary Decode”. “Binary Decode” is a process of error

correction for ri (i=1, 2, …, n) symbol. Finally, the message I’i (i= 0, 1,.., n) can be get

in the binary sink of receiver. Of course we expect I’i is the same as Ii, so the good

method of error correction is one of the key factors when I’i is not the same as Ii.

Channel coding deals with the problems of detecting and correcting the

transmission errors that are introduced by the noise of channel. A good channel coding

design is to construct encoders and decoders in such a way as to effect:

<1> Fast encoding of messages;

<2> Easy transmission of encoded codeword;

2

<3> Maximum transfer of information per unit time:

<4> Maximal detection or correction capability.

Figure 1.1: Communication system block diagram

There are two kinds of the error correlation code, which are block code [14] and

convolutional code [15]. Block code is a code that a block of message is encoded at

same time. There is no time dependency between each message. Convolutional code

differs from block code in that the encoder contains memory and the encoder outputs

at any given time unit depend not only on the inputs at that time unit but also on some

number of previous inputs. All of these codes are unique-decoding. Conventional

unique-decoding can correct up to
1

2
dt −

= errors, where d is hamming distance. In

this thesis, block turbo code is our focus. Block turbo code is a block code, and block

turbo code has been widely applied in many applications, such as VDSL2, IEEE

802.16, and so on.

Block turbo code can overcome bust error [12] and is used in applications

requiring either high code rates or low complexity. Block turbo code is also an

3

application of list decoding, but it is not only an application of unique-decoding. List

decoding was proposed by Elias and Wozencraft [16]. The list decoding algorithm

outputs a candidate list of codewords as answers. We can use the list to find out one of

the candidates that is the solution of decision codeword and the bound (1
2

dt −
=) of

correcting ability is enlarged.

1.1 Motivation

There are two parameters (α, β), which are experimental values in conventional

block turbo code iterative decoding algorithm. These two parameters can be tuned by

try-and-error method with experience to a correct combination, but a systematic

approach is required to eliminate these two disturbing parameters. A parallel

architecture of hardware issue is our problem in implementation. The gate count has

to be saved and the requirement of speed is also met so that we want to find out a

parallel architecture. Our proposed algorithm and hardware are implemented

according to WiMAX specification for example. The algorithm can be also employed

in other systems.

1.2 Organization

The organization of this thesis is overviewed as following: Chapter 2 presents the

conventional methodology of block turbo code. The innovated iterative decoding

algorithm is proposed in Chapter 3. The hardware implementation with our new

algorithm is demonstrated in Chapter 4. Chapter 5 illustrates our algorithm level

performance and hardware level performance. Chapter 6 concludes with a summary

4

of the contribution and the future works.

Finally, The Figure 1.2 shows the flow chart of this research. In the Figure 1.2, the

step FPGA emulation and the step Back End are our future work.

Figure 1.2: The flow chart of the research

5

Chapter 2 Block Turbo Code

Block Turbo Code

Block turbo code (BTC) is a concatenated code and the performance can be

achieved close to the Shannon’s theoretical limit. Concatenated block coding was first

introduced by P. Elias in 1954 [1]. In 1993, a hyper-dimension turbo code was

presented [2] and the code is based on the extended Hamming code with iterative

MAP decoding. As for BTC, it was first proposed by Pyndiah in 1994[3]. In this

chapter, a BTC study is presented. The concepts of BTC will be described in section

2.1. All related decoding algorithms are shown in section 2.2. Based on this algorithm,

(WiMAX) application [4] is introduced in section 2.3.

2.1 Encoding of BTC

BTC is composed of two or more block codes with respect to different dimensions

of BTC. For example, two linear block codes as BTC component code, C1 and C2 are

assumed as BTC component codes. Their parameters are (n1, k1, d1) and (n2, k2, d2),

where ni is codeword length, ki is the message length, and di is the minimum

Hamming distance, i=1, 2. Cb = C1 ⊗ C2 is defined as the BTC encoding result. The

encoding steps are illustrated in Figure 2.1. The row space is encoded, and the column

6

space is encoded sequentially. The rows of matrix Cb are the codewords of C1, and the

columns of matrix Cb are that of C2.

Figure 2.1: The flow diagram of BTC encoding

7

The parameters of BTC Cb are just the products of component code C1 and C2.

The Cb parameters are defined as (nb, kb, db) which are nb = n1 × n2, kb = k1 × k2, and

db = d1 × d2 respectively. For this reason, BTC is also called turbo product code (TPC).

The capability of error is improved by these properties. The message symbols of row

space are protected by the parities of row (checks on rows); likewise, the message

symbols of column space are protected by the parities of column (checks on columns).

Finally, the checks on checks is encoded out to protect the parities of the row and

column space. The processes are encoding and interleaving the message array in the

encoding procedure. This property of encoding can overcome the burst noise

interference and improve the performance.

2.2 Decoding of BTC

List decoding of error correcting codes is the method of enlarged traditional error

correction. If the radius can be enlarged, more codewords can be included in

candidate list so there are more opportunities to find out which candidate is the closest

to channel value of the receiver with hamming distance or soft distance. However,

these methods don’t require more and more redundant parities for message protection.

In this section, we are going to introduce two list decodable codes algorithms:

chase algorithm and sliding encoding window algorithm. These two algorithms are

methods of creating the candidates list. This section also introduces the iterative

decoding algorithm for soft in soft out (SISO) computation. All other list decodable

algorithms not related to BTC are not discussed here.

8

2.2.1 Chase Algorithm

Figure 2.2: The test pattern permutation of Chase algorithm

The numbers of codewords increase exponentially with the number of encoding

bits. Generalized minimum distance (GMD) [5] computation is also exponent of

encoding bits. Chase proposed an algorithm with a low computation complexity and

small performance degradation in 1972[6]. The Chase algorithm provides an approach

for codeword permutation beyond the radius of hamming ball which is illustrated in

Fig2.2

In the Fig2.2, Y1 is the received codeword. The test pattern Ta is created to

permute Y1 to A. After the algebraic decoding method is used to decode A , an error

location Z’ is generated. The Zt can be derived as the following equations:

1

 (2.1)

a

b

t b a a b

A Y T
C A Z
Z Y C T A A Z T Z

= ⊕
= ⊕
= ⊕ = ⊕ ⊕ ⊕ = ⊕

Y1 is decoded to Cb by Zt. In the same way, we make more test patterns to generate

9

candidates into candidate list.

There are three different methods in Chase algorithm for making Ta :

Chase 1: The test error pattern set T is given through all error sequences of binary

weight less than or equal to mind
2

 
  

, and the amount of test patterns can be

indicated as minT = d
2

n 
 

      

.

Chase 2: The test error pattern set T is calculated by using all binary vector

combinations corresponding to the mindt=
2

 
  

 that are low reliable positions,

i.e.,
mind
2T =2

 
   .

Chase 3: The min(d - 1) low reliable positions are extracted from the codeword. The

vectors in T have “1” in the i low reliable positions and “0” else where i=0,

2... dmin – 1 and i= 0, 1, 3,…dmin – 1 for odd and even dmin respectively, i.e.,

mindT = +1.
2

 
  

2.2.2 Sliding Encoding Window (SEW) Algorithm

Another candidate searching approach is SEW algorithm. The algorithm uses the

characters of cyclic code and block code encoding method to implement decoding. It

was proposed in 2005 [7] [8].

A q-ary cyclic code is still a valid codeword after a valid codeword is shifted for S

symbols so shifting S symbols produce more candidates which are in the

neighborhood of the received sequences and valid codewords. The SEW algorithm

consists of two steps to generate the candidates list:

10

(A) Sliding phase (SP) :

A systematic code (n, k) is given. One symbol is defined as w bits. The

received codeword is cyclically shifted for S of Δ q-ary symbols and store all

results in buffer for the next phase.

(B) Encoding phase (EP) :

The first k symbols of each SP result are extracted in order which is called

a window. The window is like a new message part, and then tn low reliable bits

in the window are combed out and do bit-flipping for all combination, where

bit-flipping means that the bit is inversed. Finally, the different combinational

windows are encoded and the new code words is yielded.

The new codes in our candidates list are generated by these two steps, and the

amount of test patterns
min
22

dNT
 
  = ×

∆
. The algorithm sketch is illustrated in Figure

2.3. C1 is the received sequence. C2 and C3 are the execution result of the SP. The

window and the low reliable bits in Figure 2.3 are used to explain the EP.

Figure 2.3: The execution phase of SEW

11

2.2.3 Iterative Extrinsic Information Algorithm

Figure 2.4: The flow diagram of iterative decoding algorithm

BTC is a soft-decision code. Hence, soft in soft out (SISO) iterative algorithm is

used to compute the extrinsic information with intrinsic information. Every dimension

of BTC decodes in rotation. An example of the two dimensional BTC is shown in

Figure 2.4 diagram.

In the first run, the SISO1 decodes all rows of BTC when all channel values are

received from de-modulation. Then, the SISO2 decodes all columns of BTC in the

next run. When the second run has been done, it is called that one iteration is finished

at this time. In other words, one iteration takes 2 runs. A hard-decision decoder

decodes the final information of the codeword after several iterations. Then, the

decoding information is yielded.

Let C (n, k, d) be a binary linear block code in which n, k, and d represent length,

message length, and minimum distance, respectively. Binary phase shift keying

(BPSK) is used to modulate a codeword which is transmitted over an additive white

12

Gaussian noise (AWGN). E= (e1, e2, ………en) and R= (r1, r2, ………rn) are

assumed as the transmitted codeword and receiver vector respectively, where ej ∈{+1,

-1}, j=1, 2, …, n. R is the combination of E and G, and G=(g1, g2, ……gn) are AWGN

samples of normal distribution N(0,δ2). Ci is defined as the i-th codeword of list. The

creation of the list has been introduced in section 2.2.1 and 2.2.2. In this study, the

chase 2 algorithm and SEW algorithm are discussed. Now, the candidates of the list

are computed for the decision codeword Dc which is closest received channel value.

Dc can be obtained as following equation:

If

2 2

 , and , list (2.2)l i i lR C R C l i C C− ≤ − ≠ ∈

then l
cD C=

where ()
2

1
 (2.3)

n
l l

j j
j

R C r C
=

− = −∑

The log likelihood ration (LLR) is used to measure the reliabilities of the Soft

de-mapping. The LLR of each element yj is given by the relation:

() { }
{ }

Pr 1|
ln

Pr 1|
j j

j
j j

e r
y

e r

 = +
 Λ =
 = − 

for BPSK in the AWGN channel with variance

2
iVar(y)=2σ . The LLR can be derived as the following equation:

() j2

2 r (2.4)jy
σ

 Λ =  
 

The reliability of the decision codeword is also major so the LLR of each element dj

of decision Dc is given by the relation:

() { }
{ }

{ }

{ }
1

1

Pr |
Pr 1|

ln =
Pr 1| Pr |

i
j

i
j

i

C listj
j i

j
C list

E C R
e R

d
e R E C R

+

−

∈

∈

=
 = +
 Λ =
 = − = 

∑

∑
 (2.5)

13

and { } 2

1| exp (2.6)
22

n i
i

R C
P R E C

σπσ

 −   = = −      

In (2.5), the 1
jlist+ is a set for all 1i

jc = + , and the 1
jlist− is a set for all 1i

jc = − .

Recall Bayes’ rule:

{ } { } { }
{ }

Pr
Pr | Pr | (2.7)

Pr

i
i i

E C
E C R R E C

R
=

= = =

(2.6) and (2.7) can be substituted to (2.5). The LLR can be expressed as

() ()

()

1

1

1

1

2 21

2
 2 21 1

2 2 21

2

2 2 1 1
2

exp
21 +ln

2
exp

2

1 +ln
2

i
j

i
j

i
j

i
j

i
j

C list

j j j
i

j

C list

i
C list

j j
i

C list

R C R C

d R C R C
R C R C

A
R C R C

B

σ

σ

σ

σ

+

−

+

−

+

∈
− +

−

∈

∈− +

∈

  − − −  
  
  Λ = − − −  

 − − −       
 
 

= − − −  
 
 

∑

∑

∑

∑
 (2.8)

In (2.8), the
1 1 i i

j j

i i
C list C list

A B
+ −∈ ∈

≈∑ ∑ , 0 for high SNRσ → will make the term of nature

log which can be ignored. We obtain an approximation of the LLR with respect to the

decision dj equal to

() ()2 21 1
2

1' (2.9)
2j j jd R C R C
σ

− +Λ = − − −

By utilizing equation (2.3) the relation can be expressed as

()
1 1

() ()1
() 1 12

1, () ()

0,2' , (2.10)
1,

n
l j l j

j j l l j l l
l l j l j l j

C C
d r rc p p for

C Cσ

+ −
+

+ −
= ≠

=  
Λ = + =   ≠ 

∑

2 2
'jr

σ =
 is used to normalize intrinsic information (2.4) to get () jrjyΛ = , and

1
()

1,

n

j l l j l
l l j

w rc p+

= ≠

= ∑ and ' jr is defined as ()' jdΛ

So the relation of equation (2.10) may be expressed as:

14

jr ' (2.11)j jr w= +

The term wj is a corrected term like extrinsic information, and the term rj is a

soft-input data like intrinsic information. The Dc is defined as the decision codeword

of candidate list, and Cp(j)is the competing code word with respect to the Dc. The

definition means that the j-th position of Cp(j) is the inverse j-th position of Dc. (2.9)

is also normalized by 2 2σ = and can be expressed as

() 2 2

jr ' (2.12)
4

p c
j

R C j R D
d

 − − −
 =
 
 

where dj is the hard-decision of Dc mapping to -1 or +1. The extrinsic information can

be obtained by

jr ' (2.13)j jw r= −

Because BTC is a hyper-dimension array, (2.13) can be rewritten as

[] [] []' (2.13)W R R= −

If we can’t find a competing code word Cp with respect to decision code word Dc ,

there must be a tradeoff approach to compute 'jr that is:

' 0 (2.14)j jr d withβ β= × ≥

Now, a new parameter “m” is defined as a run number, and m is increased as

m=m+1 after decoding one dimension of BTC array. In (2.14), the experimental value

of β is gradually increasing to 1.0 in every runs. β is shown as flows [9]:

() []0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0, 1.0 (2.15)mβ =

Finally, iterative decoding algorithm of the BTC is shown as the following run

equations :

() [] () () = + m m (2.16)R m R Wα ×      

15

() () ()m+1 ' m m (2.17)W R R= −          

[]R is intrinsic information. ()mW   is extrinsic information in m-th run and is zero

in first run, and ()' mR   is output soft value in m-th run. ()mR   is decoded by

SISO, and where ()mα is a scaling factor for that, and the standard deviation of

values is different between array []R and array ()mW   . ()mα is also used to

reduce the effect of the extrinsic information in the first run when the BER if

relatively high [9]. The evolution of α with the decoding m-th run is

() []0.0, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0, 1.0 (2.18)mα =

The α is also a parameter of the experimental result. The completed BTC iterative

decoding block diagram is illustrated in Figure 2.5. One iteration means that all

dimension computation has been finished, for example, 2 dimension (row and column

space) BTC. m is increased 2 after one iteration.

Figure 2.5: Structure of BTC

Decoding of rows
or columns run of
BTC arrary

Delay buffer

()mR   ()m+1W  

[]R

()mα ()mβ

[]R []R

()mW  

16

2.3 802.16e (WiMAX) BTC

Worldwide interoperability for microwave access (WiMAX) is a standards-based

communication system (i.e. IEEE 802.16 [4][10]) and is intended for wireless

“metropolitan area networks”. WiMAX is expected to implement multimedia

applications with wireless connections and can provide broadband wireless access up

to 30 miles (50Km) for a fixed station, and 3- 10 miles (5-15km) for a mobile station..

In this section, WiMAX specification is going to be introduced. Because it’s

forward error correction (FEC) application includes BTC. This application as an

example is implemented for our BTC study.

Some modifications are described for a linear code in this segment. A linear code,

C (n-1, k) can be extended for increasing one parity bit, and C’ (n, k) is produced. The

extended bit is derived by the XOR of the k information bits and the (n-k-1) parity

bits of the code C. This procedure is called extended code.

The “shortened” cyclic code is going to introduce. For example, A

two-dimensional BTC, Cb(nb, kb) is composed of component codes, C1(n1, n1) and

C2(n2, k2), as shown on Figure 2.1. The S1 rows and S2 columns’ bits of message

symbols of the BTC are initialed zero, and the transmitted data is inserted in the

remaining of the message symbols. Then, the message array is encoded. Finally, An

BTC Cb is transmitted except those S1 rows and S2 columns. The chart is illustrated in

Figure 2.6.

17

Figure 2.6: The sketch of shorten code

Now, we are going to introduce WiMAX BTC specification. The hamming code

generator polynomials are listed in Table.2.1.

N K Generator polynomial

7 4 X3+X1+1

15 11 X4+X1+1

31 26 X5+X2+1

63 57 X6+X+1

Table 2.1: The generator polynomial of BTC

18

The BTC component codes are listed in Table.2.2.

Component codes (n, k) Code type

(64, 57), (32, 26), (16, 11), (8, 4) Extended hamming code

(64, 63), (32, 31), (16, 15), (8, 7) Parity check code

Table 2.2: BTC component code of WiMAX

To match an arbitrary requires transmission packet size. BTC may be shortened by

removing symbols from the BTC array until the appropriate size is reached. The

following two steps are involved in the specification for shortening BTC:

Step1: I1 rows and I2 columns are removed from the two-dimensional BTC array.

This is equivalent to shortening the BTC codes.

Step 2: B individual bits are removed from the first row of the BTC array starting

with the LSB.

The derived block length of the shortened code is ()()1 1 2 2k I k I B− − − as

illustrated in Figure 2.7. The corresponding information length is given as

()()1 1 2 2n I n I B− − − . Consequently, the code rate is given by the following equation :

()()
()()

1 1 2 2

1 1 2 2

 (2.19)
k I k I B

R
n I n I B

− − −
=

− − −

Our study is focused on extended hamming code (64, 57) to be our BTC

component code, and we want the throughput about 30Mbps on clock rate 200MHz.

19

Figure 2.7: The BTC shorten code for WiMAX

20

Chapter 3 Proposed Geometry-like
Algorithm
Proposed Geometry-like Algorithm

In this chapter, the proposed geometry-like algorithm is introduced. The algorithm

is for the hardware implementation without experimental parameters. The algorithm

level program is implemented by C language.

Some foundations of geometry are described with some detailed formulation

before our induction. A BPSK is defined to map (-p, +p). The p is defined as p=1 in

our study. The one dimension coordinate diagram is illustrated in Figure 3.1, and r is a

received channel value at receiver. The variable e is defined as the value of

transmission. The a posteriori probability is inducted as follows:

Figure 3.1: Analysis of the Probability for BPSK

Pr{ 1}
Pr{ 1| } { | } { | }

Pr{ }
21 | 1 |

where { | 1} exp - 22 2

e
e r P r e P r e krr

n r
P r e

π σ

= ±
= ± = ⋅ = ⋅

±
= ± =

  
     

0 1-1

r

21

()
Pr{ 1| } 2

ln (3.1)2Pr{ 1| }

e rjy rj je rj σ

= +
Λ = =

= −

      
   

In Figure 3.2, the v is perpendicular to the hemline of the triangular ABC∆ .

Pythagoras' Theorem is used to drive the equation (3.2):

2 4

2 2 2S S1 3
2 2 2S S
2 2 2 2 2 22 2S S (S) (S) S S (3.2)1 2 3 4 3 4

V

V

V V

=

=

−

−

− = + − + = −

Figure 3.2: Geometric equation analysis of the equation (3.2)

The two axis coordinate diagram is illustrated in Figure 3.3. A triangular ABC∆ is

sketched on the diagram. The apex C is projected to r’ of x-axis. B A− is defined as

the distance of AB . a and b are symmetrical. Thus, r’ can be found the relation as the

equation (3.3):

Figure 3.3: Geometric equation analysis of the equation (3.3)

S 1 S 2

S 4S 3

V

A

B C

22

1 12 2 2 2[(-) '] [(-) - ')]
2 2

1 Let (-) rewrite above equation
2

2 2 2 2 - ['] - [- '] 4 '
2 2 - 2(-) '

1 2 2 ' (-)
2(-)

a B A r b B A r

t B A

a b t r t r t r

a b b a r

r a b
B A

− + = −

=

= + = × ×

=

= (3.3)

A new algorithm is going to be inducted now. A two dimensional BTC is supposed,

and there are two entries in every space (column and row) of the received data. For

example, 2 coordinates are introduced to
0.2 1.0
0.5 0.6

R  
=  − 

 in each space.

In row space:

1 (0.2, 1.0)rowR =

2 (0.5, 0.6)rowR = −

In column space:

1 (0.2, 0.5)colunmR =

2 (1.0, -0.6)colunmR =

The row space 1 (0.2, 1.0)rowR = is sketched to explain the algorithm on

constellation diagram as an example. The diagram is illustrated in Figure 3.4. The

constellation diagram expresses the channel values of every space. There are 4

coordinates (1, 1), (-1, 1), (1, -1), (-1, -1). These coordinates mean the former values

at transmitter. The R1 on the diagram is the result of the transmitted value adding

noise and R1 is projected to R2.

23

Figure 3.4: Equivalent analysis on constellation

Base on Figure 3.4, The equation (2.12) is recalled, we know:

() 2 2
1 1

1 j 1 r '
4

p c
j

R C j R D
d

 − − −
 =
 
 

and use the concept of equation (3.2) , 1 jr ' is rewritten as the following equation:

()

()

2 2
1 1

1 1

2 2
2 2

2 2

'
4

 ' (3.4)
4

p c
j j

p c
j j

R C j R D
r d

R C j R D
d r

 − − −
 =
 
 
 − − − = =
 
 

The equation proves that R1 and R2 are equivalent, and we use the concept of equation

(3.3) to get 2 ' jr :

24

()
()()

()
()()

2 2
2 2 2

2 2
1 1

1'
2

1 (3.5)
2

j p c
p c

p c
p c

r R C j R D
C j D

R C j R D
C j D

= − − −
−

= − − −
−

So the reliability of R1 can be substituted by R2. ()C Dp cj − is the value of the

distance. The Hamming distance can be used to solve the value. The hard decision of

competing codeword and decision codeword is defined as following:

1 2

1 2

HC HC HCp p pn

HD HD HDc c cn

HC p

HDc

 =  

 =  

L

L

Where , H 0,11 1HC Dp c ∈

Hamming distance is defined as ()(,)
1

n
d HC HD HC HDp c pi cii

= ⊕∑
=

 based on

BPSK(-1, +1). Then,

() ()() ()()

2 22
 = 2

1 1K HC HDp ckc k k
n n

C D C Dp c pk k
j j ⊕− = − ×∑ ∑

= =

so we can express () 2= 2 (,) jC D d HC HDp cp c− × and re-write (3.5) as:

 ()
2 21

' (3.6)1 12 4 (,)
jr R C R Dp cj d HC HDp c

= − − −
×

 
 
 

Now, the equation (2.13) is recalled and multiplied by 2, and then we can get the

following equation:

2w = 2r ' - 2r = 2r ' - 2r1 2j j 1j j 2j

µ
jw is defined as the extrinsic information of our algorithm and the definition is

shown as the following equation:

 µ 2 (3.7)j j mw w r= −

There are two special situations in our algorithm. The situations are discussed as

25

follows:

<1> The no competing codeword situation has to be considered, and our

approximation of the soft output is ' =d -1, +1jr j ∈ . It means that the soft

value of this bit is reliable. There are no noise so the value can be mapped to

(+1, -1). Because we also want to gradually move the information to (+1, -1),

the compensation of information is only half for the next run. Therefore, the

following equations can be obtained:

µ 1W= (d - R) j2
.

<2> Another consideration is the parallel condition situation. This is a special

case. If the competing codeword and the decision codeword are connected to

a line parallel with the axis of constellation, the extrinsic information µW

keeps old value. If the extrinsic information is changed on this condition,

another value of axis would be wrong with respect to decoding axis.

Figure 3.5: Parallel condition chart

26

A trick of making more candidates is used. An example is explained as follows:

1 2 3 4 5, , , , 1.2, 0.7, 0.5, 0.8, 0.3aR a a a a a= = − − is assumed. Then, Ra

soft value is decoded to ' 1.2, 0.7, 0.5, 0.8, 0.4aR = − − . This assumption treats

a special problem for low reliable priority. We can see the a5 entry whose reliability of

'aR is still the lowest after decoding. The choice of low reliable bits is the same as that

in the next decoding run. The other possible entry can not be tested so 'aR is adapted

as following equation:

'
1 1.2, 0.7, 0.5, 0.8, 0.4 2 0.6, 0.35, 0.25, 0.4, 0.4
2bR = − − × = − −

Other bit priority is decreased except for entry a5, and the new candidates can’t be

combed out for next decoding run. The trick is used in our algorithm.

Finally, our new algorithm is summarized as following pseudo code:

µ

µ

step 1:
1 [R(m)] = ([R] + [W(m)])
2

step 2:
 if(NO competing codeword)

1 [W(m+1)] = (d - [R (m)]) j2
 else
 if(parallel condition is n

µ

µ µ

()

ot tenable)

 [W(m+1)] =2[R'(m)] - [R (m)]
 else

 [W(m+1)] = W(m)

2 21where '
4 (,) jjR R C R D dp cd HC HDp c

 
= − − − × ×  

27

Chapter 4 Hardware Architecture
Design

Hardware Architecture Design

In this chapter, the hardware design and implementation are shown. Section 4.1

describes BTC encoder. The BTC decoder design is described in section 4.2. The

parallelism issue of the circuit architecture is discussed in section 4.3.

4.1 Encoder Design

The functional block diagram is illustrated in Figure 4.1. Because the hardware

design is considered as the trade between memory gate count and throughput, we use

a 64*64 bit memory, one BCH encoder, and parity buffer is used to store parity after

encoding. There are 64 component codewords in a BTC array to use one BCH

encoder so a scheduler is designed to control total cycles within the limit. In our

design, the throughput is about 0.326 bit/cycle.

The BCH encoder of our design is a linear feedback shift register (LFSR)[12].

After the BCH codeword is encoded, all the codeword bits of BCH are xor-ed

together. The result of xor is the extension bit.

28

Figure 4.1: The block diagram of encoder

4.2 Decoder Design

Figure 4.2: The block diagram of decoder

29

The blocks of our decoder design are shown in Figure 4.2. the channel value

sequence of our decoder is got from the de-modulation, and is saved in input buffer R.

R plus extrinsic information wm is stored in Rm. The Rm is used to compute the next

extrinsic Wm+1 by the SISO. The decoded result of hard decision is outputted to output

the buffer. The buffer can be read by the next stage of system circuit. There are four

memories about the gate count for the most part. They are channel value R, Rm, Wm,

and the output buffer respectively. These memories are hard to reduce. The SISO

block is our BTC decoder core. The main algorithm is used in this block. There are

parallel circuit and gate count issue of the consideration in our design so SISO circuit

size is our focus. A special transposing array controller circuit is also designed in

controller unit except for the finite state machine controller.

4.2.1 Algebraic Decoding

Let a codeword be 1 2 1
0 1 2 1() n

nv x v v x v x v x −
−= + + + + . The AWGN channel

is defined as ()Noise x . The received codeword is shown as the following equations:

() () ()R x V x Noise x= +

()R x can be rewritten as:

() () () ()R x q x x b xi i iφ= +i

Where, ()xiφ is the minimal polynomial.

and then let

() () (4.1)i iS R bi iα α= =

Our design specification is BCH(63, 57), and the code is a perfect code (t=1). One

error of the received codeword can be corrected, and the codeword only need the

30

syndrome, 1 ()S b α= to be the error location [12]. The result of the perfect code

decoding must be a valid codeword so there are no out of location situation and

checking valid codeword, but it may not be our transmitted codeword at transmitter.

In Summary, because the error location is S1, we can design a simply algebraic

decoder circuit without complexity algorithm, e.g. BM algorithm [13]. The error

location can be decoded by LFSR [12].

4.2.2 The SISO Architecture

Figure 4.3: The block diagram of SISO

The SISO consists of Algebraic decoder (BCH decoder), a candidate generator, a

list memory, a decision and competing circuit, and a algorithm reliability update unit.

It is illustrated in Figure 4.3. The computation time of our design spends about 550

cycles for finishing one decoding run. Our design in every block is interpreted as the

follows:

31

A. Hard decision, BCH decoder, insertion sorting for low reliability position

After Rm is ready, the hard decision is determined. The hard decision

result is used to compute syndrome for error location by LFSR. The

insertion sorting approach is proposed to sort low reliable bits of the

received codeword. The truth table of sorting is listed on Table.4.1. The

insertion sorting circuit is designed according to Table.4.1. The flags (X1, X2,

X3) are produced by the three comparer (Cmp). The multiplexers (MUX) are

controlled by flags to select data to store the value in register (R1~R4). The

insertion sorting circuit is shown in Figure 4.4.

Flag X1 X2 x3
R4<R1<R2<R3 1 1 1
R1<R4<R2<R3 0 1 1
R1<R2<R4<R3 0 0 1
R1<R2<R3<R4 0 0 0

Table 4.1: The truth table of insertion sorting flag

Figure 4.4: The circuit of insertion sorting

32

B. Candidate generator

When the syndrome and low reliable position have been computed from

the last stage, the counter controls the multiplexers to generate all

permutation test patterns. The syndrome xor all the combinational results of

multiplexes to produce new syndrome. The location table is looked up the

table by new syndrome and map which bit is corrected. Finally, after all of

the output of location table is xor-ed , then candidates are generated.

Figure 4.5: The circuit of candidate-generator

C. List (register file)

Because there are only 8 candidates in the list of our design, the list

33

memory is implemented by using a register file and is not memories. The

register file is multi-port register file that provide parallel data outputting for

the next stage.

D. Decision & competing unit

Figure 4.6: The circuit of decision&competing unit

There are 8 candidates that would be compared out the least minimal

distance. The design of the accumulators is illustrated in Figure 4.6. The 8

accumulators are used to compute all distance between the 8 candidates and

the channel value, and then the soft distance of the candidates are sorted by 7

comparers. After sorting, the minimal distance of the decision codeword and

34

the competing codeword can be outputted to next stage.

E. Reliability update unit

The reliability update unit of the circuit is shown in Figure 4.7. We think

over the computation speed of the circuit so the 6 levels adder (Figure 4.8)

are implemented to compute hamming distance. The look up table is used to

find out the value of complexity square roots computation in our design. The

rest of reliability update unit is also based on our decoding algorithm and is

shown in Fig4.7.

Figure 4.7: The circuit of the reliability update unit

35

Figure 4.8: Six-level adder circuit

4.3 Parallel Architecture

4.3.1 Parallel Architecture Planning

Because of the requirement of WiMAX specification, the throughput is an

important issue. Therefore, the throughput is excepted to arrive at least 30Mbit/sec.

For this reason, the parallel architecture of the decoder circuit is projected for arriving

throughput constraint. The BTC (64, 57) includes 64 sub-code words (component

code) in every dimension so the all sub-code words can be independently processed

by the different SISOs. The quantity of usability of SISO is from 1 to 64. If more

SISOs are used in decoder, the BTC decoder would be faster, but the gate count is

also increased. Therefore, we consequently consider the trade off. The memory is

divided into parts when the number of SISO is decided by our analysis. Every

memory partition is defined as a memory bank, and we generally called these

1

2 bit

3 bit

4 bit Adder

5 bit Adder

6 bit Adder

36

partitions multi bank array (MBA). Each MBA has 4096 entries for 64 64× soft data.

Our analysis formulation is based on Figure 4.2. and illustrated as the following

equation (4.2):

64 4096 8 () (4.2)Total cycle run S input latency
N N

= × × + +

Where “S” (cycles) is the numbers of cycles for SISO computation, “N” (SISOs) is

parallel numbers, “input latency” means the total cycle time of the input buffer to be

fully written, and “8run” means every SISO excute 8 times for iteration decoding

algorithm.

Now, the BTC(64, 57) is estimated as the circuit clock rate at about 200MHz so we

calculate the following equation:

total bits clk rate () throughput
total cycles

× =∵

total bits 0.15 /
total cycles

bit cycle∴ =

The BTC total information bits has been known, and that is 257 3249 bits= .

The above substitute to (4.2):

3249 64 4096 40968 (550)
0.15 N N N

∴ = × × + +

(8 (39296) 4096) 0.15 14.7 16
3249

N × + ×
∴ = = ≅

416 2N = = is chosen for the parallel number estimation of formulation because

power of “2” number is easily implemented in hardware. Now, the circuit parallel

number is N=16 so the MBA has 16 banks, and every bank has 256 entries. The

MBAs will be co-operating with proposed parallel architecture in the planning. The

chart is shown as Figure 4.9.

37

Figure 4.9: The block diagram of parallel architecture

4.3.2 Parallel Multi-Bank-Array Structure

There is a bottleneck of the MBA accessing in parallel architecture. The two ports

MBAs are controlled together to move data with each other so the parallel

architecture would have read/write hazard in the architecture of the MBAs. A buffer

can be added to solve the hazard, but the memory gate count is also increased.

Therefore, an algorithm of MBA accessing is proposed to overcome the hazard.

Figure 4.10: The overview of a MBA

Bank #1

Bank #2

Bank #N-1

Bank #N

SISO #1

SISO #2

SISO #N-1

SISO #N

Bank #1

Bank #2

Bank #N-1

Bank #N

Rm Wm

38

The row and column space of the BTC decoding use the common SISOs in

different runs. Our memory usability is only 3 (64*64 entries) MBAs, i.e. R-MBA,

Wm-MBA, and Rm-MBA. A simple MBA chart is illustrated in Figure 4.10. and the

memories accessing scheduling of the iterative decoding algorithm is listed as

Table.4.2. “Transpose” means reading or writing the MBA and the addressing of the

MBAs is not in order. “Normal” means reading or writing the MBA and the

addressing of the MBAs is in order for each bank.

 An assumption of simple example is illustrated in Figure 4.11. MBAs

(Wm-MBA and Rm-MBA) are partition to 4 banks. Suppose that Wm is normal, and

Rm-MBA is transpose. In first run, the bank#1 of the Wm is read out to Rm, but the

four write ports of Rm-MBA have to wait bank#1 read port in order. other read ports

of Wm-MBA are idle except the bank#1 of Wm-MBA. However, the resource of

memory is wasted. Thus, we want all port working at the same time, and there is no

accessing hazard without an additional buffer for the gate count issue.

Run number R Wm Rm+1=R+Wm
0 (for row) Normal 0 normal
1 (for colunm) Normal Normal Transpose
2 (for row) Normal Transpose Normal
3 (for colunm) Normal Normal Transpose
4 (for row) Normal Transpose Normal
5 (for colunm) Normal Normal Transpose
6 (for row) Normal Transpose Normal
7 (for colunm) Normal Normal Transpose

Table 4.2: Algorithm flow table

39

Figure 4.11: The MBA transposing

A bottleneck is very clearly shown in above example. If we want to transpose a

memory, and there is no one idle in all ports of all MBAs, then some data will be

delayed or over written. Due to this reason, a MBA algorithm is proposed to

overcome read/write problem.

Our proposed algorithm is a special memory bank scheduling. MBA is partitioned

into several slices. Every first address of MBA is started by different slices. It is

shown in Figure 4.12. The number in each slot of Figure 4.12 stands for the

corresponding time index. All ports can be worked at the same time and there are no

data buffers. The feature of algorithm is that we reapportion the timing and the

address of read/write for scheduling accessing. Based on the idea, our pseudo code of

the algorithm is going to be introduced.

40

Figure 4.12: MBA scheduling

The Figure 4.13 is used to define variables for our pseudo code of proposed

algorithm. The slice #s and bank #b are space variables for transposing blocks. The

index i and index j are time variables for transposing elements. i and j indicate which

address is read or written at every cycle for slice transposing. s and b control the

addresses of the ports to avoid overlapping each other.

Our proposed MBA accessing algorithm can be used on the consideration of

accessing hazard and resource issue, and the pseudo code is shown as follows:

41

for (s = 0 : 15) //slice
 for(b = 0 : 15) //bank number
 for(i = 0 : 3) // partition index
 for(j= 0: 3)// partition index
 if((run number mod 2) ==0)// 1 iteration=2 runs (row+colunm)
 R(m) [, 4 (() mod 16)]b
 R [, 4 (() mod 16)] () [, 4]b ()mod16
 else
 R(m) [, 4 (() mb

i j s b

i j s b W m j i bs b

i j s b

+ × +

= + × + + ++

+ × + od 16)]

 R [, 4] () [, 4]()mod16 ()mod16

j i b W m j i bs b s b= + + ++ +

Where “S” is slice number, “b” is bank number, i and j are indexes in the partition for

every slices.

Figure 4.13: The chart of MBA algorithm

42

Chapter 5 Implementation Result and
Simulation
Simulation Platform and
Implementation Result

5.1 Algorithm Level Simulation

We take WiMAX specification to be our design example, BTC (64, 57) and Chase

2 algorithm is chosen as our candidate-choosing method. The proposed algorithm is

implemented on C language (algorithm level). The different iteration performance is

shown in Figure 5.1, i.e. 1 iteration= 2 runs. Compared to the previous studies [9, 10],

our performance in this report is more effective. Any experimental parameters are not

required to be used in our proposed algorithm.

SEW algorithm is also used to create candidate list in our algorithm. The SEW

performance and the shortened BTC performance in Figure 5.2 indicates that our

proposed algorithm suits for different candidate-choosing method.

43

The number of low reliability bit for generating the test pattern of the Chase 2

method is also analyzed because the different numbers of the test bits spend different

run time, and there is different performance. There are 2, 3, 4, and 5 test bits in the

simulation of performance Shown on Figure 5.3. The result exhibits performance

convergence on 3 test bits. We decide to use 3 bits in our design and all of the bits is

not too more plenty of bits

Figure 5.1: The performance of different runs simulation

44

Figure 5.2: The performance of different list decoding algorithm

45

Figure 5.3: The performance of different test bits usage

46

5.2 SystemC Platform

SystemC is developed from the C++ programming language. SystemC extends the

capabilities of C++ by enabling modeling of hardware descriptions and provides very

important C++ library, such as concurrency, timed events and data types for hardware

behavior model. These libraries are all legal C++ instruction. SystemC doesn’t have

new syntax instruction to the C++ programming language, and it provides a

simulation kernel. SystemC model can be used to simulate the executable

specification of the design or system that you write in SystemC. We can effectively

describe a cycle-accurate model of our design. SystemC also provides a methodology

for describing: system level design, software algorithms, and hardware architecture.

More importantly, SystemC is an open source. This means that it is freely available to

use under an open source license agreement.

Circuit design is getting bigger and bigger in gate count and faster in speed and

more complex. There are some considerations: faster simulation, hardware/software

co-simulation, and architectural exploration. Therefore, we expect a platform which

has these features. Because SystemC is just for: System level design, describing

hardware architectures, describing the software algorithms, verification, and IP

exchange. For this reason, SystemC platform is used for our design, and the design

can also provide electrical system level design(ESL) to be used in the future.

47

5.3 Hardware Level Simulation and Report

SystemC model is implemented and it can be co-simulated with every sub-module

of RTL code. Their function is identical in cycle accumulation. A co-simulated

verification platform is constructed and the platform is illustrated in Figure 5.4. The

performances of the different precisions are shown in Figure 5.5, where P.X.Y means

X bits for integer and Y bit for decimal. In the simulation result, the P3.5 precision is

used in our final circuit and synthesized.

The synthesizer EDA tool which is design compiler of Synopsys Company’s tool

is used to synthesize our design and its result is shown in Table.5.1. The timing

constrain is met at 200MHz and our circuit is implemented in 0.13um CMOS process.

Figure 5.4: The verification flow diagram

48

Figure 5.5: The performance of different precision analysis

Figure 4.13

The sub module of decoder Gate count (0.13um)

Controller 1000
SISO 23916
MBA 9095
Output Buffer 15406

Top module (parallel architecture) Gate count
Encoder 28,193
decoder 590,163

Table 5.1: Gate count report

49

Chapter 6 Conclusions

Conclusions

6.1 Summary

In this thesis, a BTC codec for WiMAX (IEEE 802.16e) standard is implemented.

Our proposed geometric-like decoding provides the similar or better the previous

error performance and there are not experimental parameters. We also consider

parallelism for the throughput requirement of WiMAX (IEEE 802.16e) specification.

Therefore, we not only design basis circuit, but also develop a multi-bank-array

algorithm to deal the memory accessing hazard of matrix transposition. Moreover, the

SystemC environment is built to simulate and verify our design, leading to reduction

in hardware level simulation time. The environment also provide SystemC model for

ESL in our study. The model can be use on ESL flow in the future.

50

6.2 Future Works

The WiMAX (IEEE 802.16e) system has many different specification of the BTC

specification. The BTC (64, 57) is implemented in this thesis. Other specification may

be also implemented by using our proposed algorithm and design flow. Beside, our

proposed iterative decoding algorithm can be used in different candidate list algorithm,

this is another study. The front-end design of our design has done, so we could finish

back-end to tap out a IC, and IP-lize our BTC. Additionally, BCJR can be used in

BTC that is also an important topic. The performance of conventional BTC and the

BCJR algorithm BTC can be compared and analyzed. Maybe a new algorithm could

be innovated.

51

Bibliography

[1] P. Elias, "Error-Free Decoding," IEEE Trans. Inform. Theory, vol.4, no.4, pp. 29

- 37, sep. 1954.
[2] J. Lodge, P. Hoeher, and J. Hagenauer, "Separable MAP "filters" for the

Decoding of Product and Concatenated Codes," in IEEE Int. Conf. Proc., vol. 3,
pp. 1740-1745, May. 1993

[3] R. Pyndiah, A. Glavieux, A. Picart, S. Jacq., "Near optimum decoding of
product codes," in proc. IEEE GLOBGECOM’94, vol.113 pp.339 - 343, Dec.
1994.

[4] WiMAX Forum, http://www.wimaxforum.ort/technology/.
[5] G. D. Forney, Jr., “Generalized Minimum Distance Decoding,” IEEE Trans.

Inform. Theory, vol.11, no. 2, pp.125-31, April. 1966.
[6] D. Chase, "Class of algorithms for decoding block codes with channel

measurement information," IEEE Trans. Inform. Theory, vol.18, pp. 170-182,
Jan. 1972.

[7] M. Lalam, K. Amis, D. Leroux, "On the use of Reed-Solomon codes in
Space-Time Coding,". IEEE International Symposium, PIMRC’05, vol.1,
pp.31 - 35, Sept. 2005..

[8] M. Lalam, K. Amis, D. Leroux, D. Feng, J. Yuan, "an improved iterative
decoding algorithm for block turbo codes," IEEE International Symposium,
PIMRC’06, pp. 2403 – 2407, July. 2006

[9] R.M. Pyndiah, "Near-optimum decoding of product codes: block turbo codes,"
IEEE Tran., Communications, vol. 46, pp. 1003-1010, Aug. 1998.

[10] C. Argon, S.W McLaughlin, "A parallel decoder for low latency decoding of
turbo product codes," IEEE Commun. Lett., Vol. 6, no. 2, pp. 70 - 72, Feb.
2002.

[11] F. Dongning, Y. Jinhong, K. Amis,“Rate-Compatible Shortened Turbo Product
Codes,” IEEE VTC’06., vol. 5, pp. 2489 - 2493, spr. 2006

[12] S. Lin, Daniel J. Costello, Error control codings, second. Ed., 1942.
[13] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[14] R.W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J.,

vol. 29, pp. 147-160, Apr. 1950.
[15] P. Elias, “Coding for noisy channels,” IRE Cov. Rec, vol. pt.4, pp. 37-47, 1955.

http://www.wimaxforum.ort/technology/

52

[16] P. Elias, “List decoding for noisy channels," Institute of Radio Engineers,
pp.94-104, 1957.

53

Vita

姓名 : 廖俊閔

性別 : 男

出生地 : 台中縣

生日 : 民國六十六年七月六日

地址 : 台中市北屯區和平里和祥街 205巷 68號

學歷 : 國立交通大學電子工程研究所碩士班 2004/09~2007/12

 國立勤益工商專校 1995/09~1998/06

 台中私立新民高級中學 1993/09~1995/06

經歷 : 義務役財務士官 1998/10~2002/07

博達科技生產部組長 2000/07~2002/05

論文題目 : Block Turbo Code Codec Design and Implementation

 區塊渦輪編解碼器設計與實現

