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MPEG-2/4 低複雜度先進音訊編碼最佳化及

雙核心處理器實現 

研究生: 黃嘉雄 指導教授: 吳炳飛

國立交通大學  

電機與控制工程學系 碩士班 

摘要 

 

本篇論文主要針對 AAC 編碼，提出一套最佳化演算法，使得運算複雜度與記憶體

需求皆能夠降低以適於在行動裝置上的實現。在 AAC 編碼最佳化中，我們移除了運算

複雜度高的長短窗切換判斷，採取了簡化的聲響心理模型。 此外，在 MDCT 的轉換上，

套用了以 FFT 為運算核心的時頻轉換，並精簡了 FFT 運算過程中所需的記憶體；於 TNS

與立體聲編碼上，亦以較為精簡的判斷來降低運算量。最後，為了減少記憶體使用，基

於統計結果，我們化簡了做 Huffman 編碼時所需要的編碼表。 

基於 16 位元的定點數 DSP，我們於能量計算上採用動態格式的調整，以避免定點

數運算超出所能表示的數值。我們將所提出的 AAC 編碼器實現於一個雙核心的處理器

上，並於雙核心處理器上實現兩種不同的軟體架構以達到錄音的功能。實現的 DSP-based 

AAC 編碼器需要 86MIPS 及 107KB 的記憶體而實現的 ARM-based 錄音器可達到 1X 速

的壓縮。 
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Student : Jia-Hsiung Huang Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering 

National Chiao Tung University 
 

ABSTRACT 

In this thesis, several optimized techniques in the AAC encoding process are presented in 

order to lower down the computational complexity and required memory. The decision of 

block switching is removed, and adopts a simplified psychoacoustic model. For the MDCT 

transformation, the fast MDCT with FFT as kernel computation is applied. Moreover, the 

memory requirement while performing FFT processing is reduced. Other modules, such as 

TNS, Mid/Side Stereo coding are also simplified. In order to minimize the memory usage, the 

Huffman tables are reduced base on statistics. 

So as to make sure the avoidance of the overflow computation and preserve the data 

precision, a simple dynamic scaling unit before energy calculations is applied. The proposed 

AAC encoder is implemented on a dual-core processor. Based-on the different software 

architecture, two solutions for recording system implementation are provided. The realized 

AAC encoder consumes 86MIPS and 107KB memory, and the recording system implemented 

by ARM can achieve at least 1X encoding. 
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CHAPTER 1. INTRODUCTION 

1.1 MPEG/Audio Compression 

 Multimedia technologies have intensively developed in recent years; tremendous 

applications covering digital audio/video have created a revolutionary change. Especially, 

under the popularity of internet, it even stimulates and promotes the demand for multimedia 

streaming. Many portable devices, such as voice recorder, MP3 player, Portable Multimedia 

Player (PMP), and mobile phones all require the technology of audio compression due to the 

limited storage. The need for interoperability, high-quality audio at lower data rates, and for a 

common file format led to the institution of audio standards. The state of the art audio coding 

algorithms, such as MPEG Audio, WMA, OGG, and Dolby AC-3 are standardized in response 

to these demands.  

 The MPEG, stands for “Moving Pictures Experts Groups” is a group that defines various 

standards for coding the audio-visual information. Also, the MPEG/audio is the most popular 

international standard for digital audio compression nowadays.  

 With the increasing demand of human beings on the sense of hearing, the MPEG/Audio 
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has already proposed many audio coding standards up to the present, such as MPEG-1 

Audio(MP1,MP2,MP3), MPEG-2 BC(backward compatible), MPEG-2/4 Advanced Audio 

Coding (AAC, non-compatible) , and its extension, High Efficient Advanced Audio Coding 

(HEAAC). All MPEG/audio algorithms adhere to the basic concept that transform the source 

samples into frequency domain with de-correlation signals, and then quantize the transform 

coefficient according to the information provide by psychoacoustic model. Regarding to 

MPEG-1 and MPEG-2 Audio Compression algorithms, they provide different layers’ 

implementation with different computational complexity. MPEG-2/4 AAC and HEAAC 

provide a high quality multi-channel standard than achievable while requiring MPEG-1 

backwards compatibility. In order to define the AAC system, the audio committee selected a 

modular approach in which the full system is broken down into a series of self-contained 

modules or tools. We will introduce these coding modules in Chapter.2. 

1.2 Motivation 

A variety of audio formats has been proposed these days, the MPEG-2/4 audio play an 

important role in audio compression field. AAC provides higher coding efficiency, 

multi-channel support, and high-quality audio at low bit rates. Because of the AAC’s superior 

performance, it constitutes the kernel of MPEG-4 Audio.  

 In addition to the audio quality, the power-consumption would be the major concern in 

considering the implementation on portable device. The encoder algorithm will take too much 

computational resources than decoder. That is why so many audio-related portable devices do 

not support the encoder, and is “decoder-only”. Hence, to reduce the complexity of audio 

algorithm is our main goal.  

 The OMAP5912 is a dual-core processor including one RISC (ARM926EJ-S) and one 
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DSP (TMS320C55x). Under such hardware architecture, the operating system can be included. 

And this will not only increase the flexibility of applications but also share the loading of 

computational power.  

 In this thesis, a low-complexity 16-bit fixed-point arithmetic implementation on a 

dual-core processor with 16-bit fixed-point DSP is proposed. And a prototype design of 

recording system is implemented by OMAP5912.  

1.3 Scope of the thesis 

This thesis contains six chapters: 

 Chapter 1: the MPEG/Audio compression, the motivation, and the 

overview of the thesis are briefly introduced. 

 Chapter 2: the algorithms of MPEG-2/4 low-complexity AAC encoder is 

introduced including the basic concept of psychoacoustic model. 

 Chapter 3: several optimization methods are proposed in order to 

minimize the computational complexity and memory requirement.  

 Chapter 4: the hardware and software development environment are 

introduced. The fixed-point optimizations based on 16-bit arithmetic are 

proposed; and several assembly optimization techniques are presented. 

At the end of this chapter, the recorder system design on a dual-core 

processor is realized. 

 Chapter 5: the experimental results and some comparison are presented 

 Chapter 6: the conclusion and possible future work are brought about. 
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CHAPTER 2. MPEG-2 ADVANCED AUDIO CODING 

2.1 Overview of MPEG-2 Advanced Audio Coding 

Started in 1994, MPEG Advanced Audio Coding, also known as MPEG-2 NBC 

(Non-Backward Compatible) represented the actual state of the art in natural audio coding. It 

provides very high audio quality at a rate of 64Kbps. Testing results carried out in 1996, 

showed that the MPEG-2 AAC requires 320 kbps per five full-bandwidth channels to satisfy 

the ITU-R quality requirements. And later it was finalized in 1997. The AAC made use of all 

the advanced audio coding techniques available at the time of its development to provide high 

quality multi-channel audio. Therefore, it also constitutes the kernel algorithm of MPEG-4 

Audio standards. 

In considering the tradeoff among memory cost, processing power, and audio quality, the 

AAC system supports three profile configurations:  

 Main Profile (Main):  

  The main profile is intended for use when processing power and 

especially memory, are not a premium. With this configuration, the highest 
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quality for applications is provided. Except for the gain control module being 

applied, all the subparts of the tools are used. 

 Low Complexity (LC) Profile: 

  The LC profile is configured without the prediction tool being employed 

and limited TNS order which is 7th-orders for short window and 12th-orders for 

long windows. The memory and processing power requirements are significantly 

reduced.  

 Scalable Sampling Rate Profile (SSR):  

  The SSR profile provides the lowest complexity of the all three profiles. 

The gain control module is applied, including the polyphase quadrature filer, 

gain detectors and gain modifier. With this the gain control tool, frequency 

scalable signal is achievable in this configuration.  

 Figure.1 shows the block diagram of the MPEG-2 AAC encoder. The 2048 consecutive 

PCM samples are grouped together to form a “frame”. The gain control is the preprocessing 

tool including polyphase quadrature filter, gain detector, and gain modifier. And it will 

separate the time-domain signals into four sub-band signals. At this state, the signal is still in 

time-domain but with frequency separation property.  

 During the stage of time to frequency transformation, Modified Discrete Cosine 

Transform (MDCT) is applied in the AAC system. The audio samples are transformed into 

2048 spectral lines in order to decrease the correlation of signals. Due to the property of 

human hearing, several scalefactor bands are defined according to the sampling rate and 

bitrate configured at initialization. This will divide the spectral lines into several processing 

groups. 
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 Before performing time to frequency transformation, the audio samples simultaneously 

feed into the psychoacoustic model (PAM) [1]. The PAM will determine the masking 

thresholds for each scalefactor bands and provide the block-switch flags based on calculated 

“perceptual entropy (PE)” frame by frame.  

Quantizer

Scale Factors

Noiseless 
Coding

Rate / Distortion 
Control Process

Iteration Loops

Gain
Control

Filter Bank

TNS

Mid/Side 
Stereo

Intensity
Coupling

Prediction

Input time signal

Perceptual
Model

Bitstream 
Multiplex

quantized 
spectrum of 

previous frame

13818-3 
Coded 
Audio 

Stream

Legend
  Data      :
  Control :

 

Figure. 1  MPEG-2 AAC encoder block diagram 

 With the block-switch information provided by PAM, time to frequency transformation 

has the diversity of short and long windows to obtain better time or frequency resolution. 

With the masking thresholds provided, the rate-distortion process will control the quantization 

parameters and compute the bits-cost through Huffman coding to determine suitable 

scalefactor for each scalefactor bands and achieve the best balance between bit usage and 
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audio quality. 

 The other blocks shown in Figure. 1, such as TNS, Intensity Coupling, Prediction, and 

Mid/Side Stereo Coding tools are also used in MPEG-2 AAC to obtain a better coding 

efficiency. We will describe the functionality of each block in the following sections. 

2.2 Psychoacoustic Model (PAM) 

 The PAM is used for modeling the human auditory perception. In the design of audio 

codec, the hearing threshold represents frequency-dependent levels below which the 

quantization noise levels will be inaudible. By exploiting the fact that these inaudible signals 

are irrelevant information, the frequency components are quantized and coded with a 

relatively small number of bits without introducing the audible distortion. There are certain 

factors that need to be taken into consideration while referring to the psychoacoustic model. 

2.2.1 Threshold in quiet 

 The threshold in quiet, also called absolute threshold of hearing, stands for the lowest 

sound pressure level (SPL) at any given frequency that can be detected by human ear. This 

threshold is frequency dependent and typically relatively high at low frequencies and increase 

quite rapidly above 16 kHz. Figure. 2 shows the typical curve for this threshold. During the 

range from 2 kHz to 5 kHz, the listener would be most sensitive. The threshold curve is 

extremely important for audio coding, since any sound with SPL under this curve is viewed as 

inaudible or non-perceivable.  

The threshold in quiet can be approximated [2] by the following frequency dependent 

function defined as  

 
20.6( 3.3)0.8 3 41000( ) 3.64( ) 6.5 10 ( )1000 1000

f

q
f fT f e− −− −= − +            (1) 
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Figure. 2  Threshold in quiet 

2.2.2 Masking phenomena 

In addition to the threshold in quiet, the masking phenomenon refers to a soft sound 

becomes inaudible due to the presence of a louder sound. We can sort the masking effect into 

frequency domain and temporal domain for discussions. 

 Frequency masking: It also called simultaneous masking happens when 

two adjacent frequency tones with different sound pressure level 

producing in the meantime. The masker (louder sound) will overwhelm 

the maskee (weaker sound) as shown in Figure.3 
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Figure. 3  Frequency masking with threshold in quiet 
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 Temporal masking: This masking effect takes place when the maker and 

maskee are not presented simultaneously. As shown in Figure. 4, the 

masking effect can be extended in time domain outside the period at the 

moment masker presented. The pre-masking and post-masking effects 

are both the temporal masking phenomena and the post-masking is 

usually last longer than pre-masking.  

Simultaneous Masking

Time (ms)

160120804000-40 20 180

Post-MaskingPre-Masking

90

50

Sound Pressure 
Level (dB)

 

Figure. 4  Temporal Masking phenomenon  

 
 

2.2.3 Critical Band 

In psychoacoustic, when referring to the sound, the unit to represent the frequency of a 

signal is “bark”. This unit comes from the “critical band” phenomenon of human ears. They 

have different sensitivities to audio signals in different frequency bands. The frequency 

dependent limited to its frequency resolution is expressed in terms of “critical band”. 

Therefore, the human ears can be modeled as several overlapping bandpass filters ranging 

from 2Hz to 22 kHz with different bandwidths and central frequencies. 
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2.2.4 Psychoacoustic model used in AAC 

The PAM used in MPEG-2 AAC provides the analysis of input PCM samples frame by 

frame and calculate the maximum allowable distortion in order to decide and remove the 

inaudible signal. Also, it analysis the transient properties of input frames through perceptual 

entropy.  

The procedures are described in the following steps: 

1. Performing the 256-point and 2048-point FFT on input PCM samples. The polar 

representation of the transform is calculated. Magnitude and phase components are 

obtained. 

2. Using the spreading function and spectral components of input samples to calculate 

masking thresholds for each scalefactor band and the threshold in quiet is taken into 

consideration. 

3. Calculate the signal-to-mask ratio (SMR) for each scalefactor band, and the SMR 

information will be sent to the quantize. 

4. In order to decide which block type for MDCT to use, the perceptual entropy is calculated 

and checking whether the short window will be applied or not. 

The outputs of the PAM are: 

1. A set of Signal-to-Mask Ratios (SMR) and thresholds 

2. The delayed time domain data (PCM samples), which are used by MDCT.             

3. The block type(short or long) for the MDCT   

4. An estimation of the coding bits 

Figure. 5 shows the procedure for PAM. For more detail information, could refer to [3]. 
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Figure. 5  Block diagram of psychoacoustic model [3] 
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2.3 Gain Control 

The gain control tool is added into the input stage of the encoder only for the SSR profile. 

It consists of a PQF filter bank, gain detectors, and gain modifier, as shown in Figure. 6. 

Through the gain control, the 2048 input PCM samples will be split into four frequency bands 

with equal bandwidth. The signals from the output of the lowest band will be processed by 

MDCT without gain detector and gain modifier. The advantage of the scalability is that the 

signals from upper filter bank can be dropped in the decoder in order to reduce the 

complexity. 

window_sequence

PQF Gain 
Detector

Gain
 Modifier

Gain 
Detector

Gain 
Detector

Gain
 Modifier

Gain
 Modifier

MDCT(256-pts)

MDCT(256-pts)

MDCT(256-pts)

MDCT(256-pts)

gain_control_data

gain 
    controlled
   time signal

Input PCM 
samples

 
Figure. 6  Block diagram of Gain Control tool in encoder  
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2.4 Time to Frequency Transformation 

In the block of time to frequency transform of the AAC system, filter bank is employed 

for time-frequency conversion. The conversion is done by a time-variant MDCT with 2048 or 

256 block length. In the sub-sections, we will brief describe the MDCT and the block 

switching scheme in the AAC. 

2.4.1 MDCT 

The MDCT is actually a type-IV discrete cosine transform but overlapping by 50% with 

preceding block and following block as shown in Figure. 7. The overlapping of input signals 

will not only lead to the result of better energy-compaction, but also avoid the artifacts due to 

the block boundaries. The time-domain input samples are modulated by the appropriate 

window function first and then perform MDCT. The expression is as (1): 

    
1

, , 0
0

2 12 ( ) cos ( )( )
2

N

i k i n
n

X w n x n n k
N
π−

=

⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑ , 0,1..., 1

2
Nk = −                   (1) 

  where 
n = sample index, 

 N = window length of the one transform window based on the window         
sequence, 2048 for long window and 256 for short window, 

 i = block index, 
 k = spectral coefficient index, 

    n0 =  1 1
2 2

N⎛ ⎞+⎜ ⎟
⎝ ⎠

, 

   ( )w n  = window function (Kaiser-Bessel Derived or Sine function). 

0 ……………… M-1 M …………… 2M-1

0 ……………… M-1 M …………… 2M-1

0 ……………… M-1 M …………… 2M-1

Shift by M

Shift by M

Shift by M

M = 1024 or 128
 

Figure. 7  Overlap region of the different blocks 
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2.4.2 Window Shape and Block Switching 

 As shown in equation (1), the window function ( )w n  also has a significant influence on 

frequency response of the input sample block. Two window parameters are directly linked to 

these properties, selected window length and shape. The selection of the window length and 

the shape will determine the degree of spectral separation of the filter bank. In the AAC 

system, the sine window and Kaiser-Bessel-derived (KBD) window are provided as window 

shape selection and 1024-point or 128-point processing is provided as the window length 

adaptation. The short window would be used for transient signal and result in better time 

resolution but the long window would be used for steady state signal and result in better 

frequency resolution. The coefficients of sine and KBD window is as (2) and (3) 

( ) 1sin
2SINEW n n

N
π⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

           0for n N≤ <                    (2) 

2

0

0

/ 21.0
/ 2

[ ]
[ ]KDB

n NI
N

W n
I

πα

πα

⎡ ⎤−⎛ ⎞⎢ ⎥− ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦=   0for n N≤ <                       (3) 

where, 0 ( )I x is the 0th modified Bessel function defined as ( )
2

0
0

/ 2
( )

!

k

k

x
I x

k

∞

=

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑   

and α  is the kernel window alpha factors ,  

4, 2048
6, 256

for N
for N

α
=⎧

= ⎨ =⎩
 

Figure. 8 shows the adaptation of window shape function.  
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Overlap-Add Sequence with a Transition to a Sine Function Window

Kaiser-Bessel Derived Windows for Overlap-Add Sequence
Gain

Time (samples)
0 512 1024 1536 2048 2560 3072 3584 40960 512 1024 1536 2048 2560 3072 3584 4096

1

1

0

0

A B C

D E F

0 512 1024 1536 2048 2560 3072 3584 4096

  

Figure. 8  Window shape adaptation process.[3] 

 

As mentioned above, the window length selection would be the trade-off between time 

resolution and frequency resolution. So as to solve the problem of block alignment, the start 

and stop windows that are the so-called adaptive windows are used for adaptation from 

normal window to short window and from short window to normal window respectively. The 

block switching of long and short is shown in Figure.9. 

0 512 1024 1536 2048 2560 3072 3584 4096

1

1

0

0

1 

CBA

Windows during transient conditions

Windows during steady state conditionsGain

Time (samples)

512 1024 1536 2048 2560 3072 3584 4096

Long start Long stop

 

Normal window

short window
2 3 4 5 6 7 8

 

Figure. 9   Block switching during steady-state and transient signal conditions [3] 
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2.5 Temporal Noise Shaping 

Improper encoding the transient or pitch signal will lead to pre-echo phenomenon after 

decoding. This phenomenon happens when the signal magnitude abruptly rises as observed in 

Figure.10 (a)(b). In various audio coding algorithms, dynamic window switching as 

subsection 2.3.2 mentioned is a good approach to conquer this problem. A novel concept in 

relieving the pre-echo is represented by the temporal noise shaping (TNS). 

 

         Figure. 10 (a) Source signal [4]    Figure. 10 (b) Transform Coded signal [4] 

 

TNS technique permits the encoder to exercise control over the temporal fine structure of 

the quantization error. The concept of TNS uses the duality between time domain and 

frequency domain. Signal with an “un-flat” spectrum can be coded efficiently either by 

directly coding spectral lines or by applying predictive coding methods to the time signal. 

Here, in the TNS tool, the predictive coding is applied in frequency domain so that the 

quantization error will appear adapted to the temporal shape of the input signal. Figure. 11 

illustrate the concept of TNS, and (4) is a simple deviation of TNS. The shaping of 

quantization error would depend on the linear predictor, ( )H z . 
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processing

+

Linear 
Predictor 

H(z)

+

-
+

+

+

[ ]d n
Λ

[ ]d n

Linear 
Predictor 

H(z)

 . . . . . . . . .
[ ]x n [ ]y n

(a) Encode (b) Decode  
Figure. 11  Block diagram of temporal noise shaping [5] 

 
( ) ( ) ( )

2

( ) ( ) ( )
1 ( ) 1 ( )
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Q
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Λ

−
= − = =

− −

==> =
−

                     (4) 

where, ( )Eerr z  represents the reconstruction error, and ( )Q z  represents the quantization 

error producing by the encoder part. 

2.6 Joint Stereo Coding 

To provide a better coding efficiency, two stereo coding techniques are provided in the 

AAC system—Mid/Side stereo coding (M/S) and Intensity stereo coding. 

For the M/S stereo coding technique, it utilizes the correlation between channel pairs. The 

higher the correlation left/right channels is, the required bits for the sum and difference of two 

channels would be less. Therefore, there will be a threshold for deciding M/S stereo applied or 

not. The expression of M/S stereo coding is as (5). 

   
1 1
1 1

M L
S R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                     (5) 

 For the intensity stereo coding technique, it utilizes the properties of human ears that are 

sensitive to the amplitude and phase for low frequency signal but sensitive to amplitude 
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component only for high frequency. The intensity coupling tool is used to exploit irrelevance 

in the between both channels of a channel pair in the high frequency regions. Hence, the 

corresponding “intensity position value” will be computed scalefactor band by scalefactor 

band and scaling the “intensity signal spectral coefficients” are calculated to replace the left 

channel signal with right channel signal setting to zero. Equation (6) is the calculation of 

intensity position value and (7) is calculation of the intensity signal spectral coefficients. 

  2
[ ]_ [ ] 2 log
[ ]

l

r

E sfbis position sfb NINT
E sfb

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                         (6) 

  [ ][ ] ( [ ] [ ])
[ ]

l
i l r

s

E sfbspec i spec i spec i
E sfb

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
                               (7) 

where lE , rE , sE  represent the energy of left, right, and sum channel. 

2.7 Prediction  

To further improve the redundancy reduction, the AAC system applies the prediction tool 

in the configuration of Main profile. Figure. 12 shows the block diagram of prediction tool. 

The structure of the predictor adopts second-order backward-adaptive predictor, using lattice 

structure’s implementation, as shown in Figure. 13. The prediction tool will estimate the 

possible spectral coefficients in the following block by coefficients in the previous ones. 

Therefore, only the prediction error needs to be transmitted. It is because the required bits are 

based on encoding the prediction error which is the output of prediction tool. The higher the 

correlation between two consecutive frames is, or to say that, the more stationary the signal is, 

the bit-cost needed to encode prediction error would be less.  



 

 19

REC

PREDICTOR CONTROL
(P_ON/P_OFF)

   IF(P_ON)   
 

   IF(P_OFF)

( )
,

( )

( ) ( )
j j

j j est

y n e n

x n x n

=

= −

( ) ( )j jy n x n=

Qi

Qk

( )iy n

( )ky n

Pi

Pk

( ),i estx n

( ), 1i recx n −

( )ix n

.
.

.

.
.

.

( )kx n

( ),k estx n

Predictor 

Side Info

( ),i qy n

( ),k qy n

 

Figure. 12  Block diagram of the Prediction unit for one scalefactor band [3] 
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Figure. 13  The second-order backward-adaptive predictors [6] 

 

The prediction tool is not always on the go working. In order to guarantee that the 

prediction is only used while the results will bring about increasing in coding gain, the 

appropriate predictor control is necessary and a small amount of predictor control information 

has to be transmitted to the decoder. For the detail control scheme and deviation of prediction 

coefficient can be found in [7]. 
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2.8 Iteration Loops 

In order to achieve a high compression ratio, iteration loops is applied to the spectral 

coefficient in the AAC system. 

The quantization and Huffman coding play the important roles during the iteration loop. 

The thresholds called allowed distortion computed by PAM in the previous stage is used as 

distortion criteria in the iteration process. The primary goal of the iteration loop is to quantize 

the spectral coefficient passing from M/S stereo coding, then calculates the require bits and 

correlative information. 

 There is no standardized strategy for optimum quantization or fine-tune approach during 

the iterative process; the only requirement is that the output bit stream of the encoder must be 

AAC-compliant. Here, in the international standard ISO/IEC 13818-7, the two nested-loops 

are proposed which include the outer loop and inner loop. 

 The outer loop, also called distortion control loop, performs the work of shaping 

quantization error resulting from non-uniform quantization during the inner iteration loop. To 

control the distortion comes from non-uniform quantization, the scalefactors of each 

scalefactor bands with actual distortion exceeding the allowed distortion will be amplified. It 

is worth noted that the amplified scalefactor band will lead to the increasing in number of 

encoding bits, so that quantization stepsize might be changed once more in the inner iteration 

loop to decrease the bit-costs. It might be involved in the infinite loops without considering 

termination conditions. Therefore, several termination conditions are applied, listed as follows 

 All scalefactor bands are already amplified 

 The difference between two consecutive scalefactors is greater than 64 

Figure. 14 shows the block diagram of the outer iteration loop 



 

 21

B e g in

E n d

In n e r  i te r a t io n  lo o p

c a lc u la te  d is to r t io n  in  
a l l  s f b s

B e s t  r e s u l t  s o  f a r ?

A m p li fy  s fb s  w i th  m o re  
th a n  th e  a l lo w e d  d is to r t io n

A ll  s fb s  a m p li f ie d ?

A t  le a s t  o n e  b a n d  
w i th  m o re  th a n  th e  
a l lo w e d  d is to r t io n ?

S to r e  b e s t  r e s u l t

r e s to r e  b e s t  r e s u l t

y e s

y e s

n o

n o

 

Figure. 14  Block diagram of outer iteration loop 

 The inner loop, also called rate control loop, performs the non-uniform quantization. 

After the quantization, the set of 1024 quantized spectral coefficients will be clipped and 

merged sections to achieve lowest bit counts. Then, Huffman coding is performed according 

to the 12 pre-defined Huffman tables, and the number of used bits is counted. It will be 

examined that whether the number of used bits are less than the number of available bits per 

frame. If the Huffman coded bits are more than the available bits, the quantization stepsize 

will be increased and perform the iterative search of proper quantization parameters (stepsize). 

The inner loop would be terminated until the Huffman coded spectral data can be encoded 

with the number of available bits. Figure.15 shows the flow chart of inner loop, and the 

non-uniform quantization used in AAC is describes as follows: 
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0.75

_4

| ( ) |( ) ( ( )) 0.0946
2

quantizer stepsize
xr iix i sign xr i NINT

⎛ ⎞⎛ ⎞
= ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

          (8) 

where ( )NINT x  represent the nearest integer of x.  

Begin

Non-uniform
Quantization

Noiseless coding
(count #used bits)

# used bits less than 
#available bits?

End

Increase quantizer
stepsize

no

yes

 

Figure. 15  Block diagram of inner iteration loop 

2.9 Bitstream Multiplexing 

The block, bitstream multiplexing, is the final stage of the encoder. All the information 

producing from the previous encoding tools, such as the short/long block information in filter 

bank, TNS filtering orders and other information, the ms_used flags of M/S tools, and 

quantized data are packed together as AAC-compliant format. 

 There are two different formats support by the AAC system. One is the Audio Data 

Interchange Format (ADIF); the other is the Audio Data Transport Stream Format (ADTS). 

The structure of these two bit streams are shown in Figure. 16 and Figure. 17 
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ADIF block block block block block block
 

Figure. 16  Structure of ADIF format 

 

ADTS block ADTS block block ADTS block
 

Figure. 17  Structure of ADTS format 

More detail information about bitstream formatting can be found in [3]. 
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CHAPTER 3. MPEG-2/4 AAC ENCODER OPTIMIZATION 

 As mentioned in the section 2.1, the AAC system supports three profiles, the Main 

profile, the SSR profile, and the LC profile. Considering the memory requirement and the 

computational complexity, the LC profile is the most suitable profile for implementation on 

portable device. Here, the source code provided by FAAC [8] is adopted by us. The original 

source code of FAAC is a floating-point version. The complexity of each coding tools in the 

AAC system are first analyzed by us using Visual Studio 6.0. Then, several modules based on 

16-bit fixed-point arithmetic are optimized in order to further porting on 16-bit fixed-point 

DSP processor. The optimizations cover the simplified PAM, Fast MDCT, simplified TNS 

tool, and simplified M/S stereo coding. In considering the memory issues in the encoder, 

some memory reduction based on statistical analysis is adopted in Huffman Tables and 

Huffman coding. 

  

3.1 Complexity Analysis of Source Code 

For the complexity analysis, the built-in clock() function are used by us in Visual Studio 

6.0 to gather statistics for each coding tools in the AAC encoder. Figure.18 shows the 
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complexity analysis of the LC AAC encoder. According to the analysis, the quantization and 

PAM are the two most time-critical modules. The PAM normally requires transcendental 

function, such as the power, square root functions which are computationally demanding. 

Another computational demanding block is the Quantization. Inside the Quantization, the 

thresholds, so-called allowed-distortions are calculated, and the scalefactors of each 

scalefactor bands and Huffman coded data are produced.  

FilterBank

10%

TNS

3%
Quantization

45%

Others

11% PAM

21%

Mid/Side stereo

10%

 
Figure. 18  The complexity analysis of LC AAC Encoder 

 

3.2 Simplified Psychoacoustic model 

The purpose to apply PAM is to analyze the transient characteristics of input PCM 

samples and calculate the thresholds of maximum allowed-distortion. The determination of 

transient signal will result in applying long or short window (2048-point or 256-point MDCT) 

in the filter bank in order to solve the phenomenon of pre-echo. In addition to the block 

switching scheme in MDCT, the AAC also adopted TNS to relieve the phenomenon of 

pre-echo. Based-on the consideration of existed TNS tool which is able to compensate 
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negative effect of pre-echo and related research [9] shows that encoding without block 

switching didn’t cause significant effect in quality loss; we first remove the block-switching 

scheme in PAM. Figure.19 shows the simple implementation block diagram of the encoder.  
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Figure. 19  FAAC Implementation flow of the AAC Encoder 

 

Subjective tests also revealed people prefer the sound with a limited bandwidth to the 

sound with full bandwidth but with unmasked distortion[9][10]. In order to further recover the 
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audio quality, a low-pass filter is applied in the bandwidth control. In this way, more bits can 

be allocated for the low-frequency band. Figure. 20 shows the relationship between cut-off 

frequency and bit rate. 

 

 

 Figure. 20  Cut-off frequency V.S bit rate relationship from bandwidth control  

 

The mathematical form of the bandwidth control is as follow 

  
( ), 1024

( ( ))
0 , 1024

c
f

s
f

c

s

x i if i N IN T
L x i

if i N IN T

⎧ ⎛ ⎞Ω
≤ ×⎪ ⎜ ⎟Ω⎪ ⎝ ⎠= ⎨

⎛ ⎞Ω⎪ > ×⎜ ⎟⎪ Ω⎝ ⎠⎩

                        (9) 

 where cΩ represents the cut-off frequency and sΩ  represents sampling rate 

 

3.3 Fast MDCT 

 In the filter bank of the AAC System, MDCT with 50% overlap is used. The MDCT can 

be calculated using FFT. Because of the odd transform property, there are faster approaches 
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[11][12] that can be applied.  

 The coefficient with length N of MDCT and O2DFT is shown in equation (10)(11) 
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⎠
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  where 0 1
2
Nm< ≤ −  

 By using the 2O DFT  coefficient to represent for coefficient of MDCT , MDCT can be 

rewritten as real part of odd-time odd-frequency discrete Fourier transforms (O2DFT), as 

shown in equation (12). 

  2( ) ( ) Re{ { ( 4)}}NMDCT m F m O DFT x k N= = −                        (12)  

 After applying the methods proposed in [11][12], the fast MDCT can be implemented by 

the flow shown in Figure.21 .Thus, the MDCT can be calculated using only one N/4-point 

FFT and some pre- and post-rotation of the sample points. 
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T im e-dom ain s igna l
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Figure. 21  Implementation flow of FFT-based MDCT 
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Due to the implementation of MDCT is based-on FFT, the FFT computation turns out to 

be the most computational demanding task in the filter bank. The analysis of filter bank shows 

that FFT computations occupy about 70% workload of total filter bank. Therefore, we further 

consider speeding up the FFT computations and reduce the memory requirement while 

performing FFT.  

 The implementation of FFT contains three sub parts. One is the Check_Table() task 

which will calculate the twiddle factors needed for performing the butterfly, as shown in 

equation (13), another is the Reorder() task which performs the in-place decimation of input 

samples, and the other is the FFT_PROCESS() which performs the butterfly construction. 

2costbl[i] = cos( ); 0 ~ 255 , 512
2 0 ~ 63 , 64negsintbl[i]= -sin( );

i
i for NN

i i for N
N

π

π

⋅⎧
⎪ = =⎪
⎨ ⋅ = =⎪
⎪⎩

          (13) 

 Table.1 lists the general implementation loading and memory requirement of each 

sub-part in filter bank.  

Table. 1 The sub parts loading of FFT processing 

Task Loading (%) Memory requirement (N/4-pt) 

Check_Table() 

(twiddle factors) 

30% long window : 256 (cosine) + 256 (negative sine) entries 

short window : 32 (cosine) + 32 (negative sine) entries  

Reorder() 25% long window : 512 entries   

short window: 64 entries 

FFT_PROCESS() 45%  
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 It is noted that the memory requirement of Reorder() task is owing to the pre-calculation 

and storage for bit-reverse index. 

 To reduce the computational complexity of FFT, the look-up table method is applied to 

replace the computation of Check_Table(), therefore, 30% of loading in FFT can be 

eliminated. On the purpose of reducing memory requirement of twiddle factors, the 

symmetric and anti-symmetric relationship of cosine and sine are applied. However, a little 

memory addressing overhead will be increased in FFT_PROCESS(). Figure. 22 shows the 

symmetric and anti-symmetric properties of cosine and negative sine. By the way we took, the 

memory reduction will be reduced from (2 256+2 32) 4 =2304 (bytes)⋅ ⋅ ⋅  

to (129+17) x4 =584 (bytes) . About four times memory reduction can be achieved. 
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Figure. 22  The symmetric and anti-symmetric properties of cosine and sine tables 

 As previous mentioned, the purpose of Reorder() task is to perform the in-place 

decimation of input samples, but it will take memory to pre-store the bit-reverse index. For 

the bit-reversal optimization, fast bit-reversal permutation algorithm proposed in [13] is 

applied. The approach for computing the bit reversal is based on representations in 

(2 )bGF (Galois Field) [13]. By applying this bit-reverse algorithm, the program loop can be 

reduced from ( 2 )qN q N⋅ = to N , and no more need for the storage of bit-reverse index. 
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3.4 Simplified TNS tool 

 The purpose of TNS tool is to perform the open-loop linear prediction on the frequency 

domain so as to shape the quantization noise and relieve effect caused by the pre-echo 

phenomenon. This is done by applying a filtering process to some parts of spectral coefficient. 

However, not all the spectral coefficient will apply filtering process. The filtering process will 

be activated only when the prediction gain of spectral data is greater than a pre-defined 

threshold (DEF_TNS_THRESH), as shown in Figure.23. 

 At first, the active percentage of the TNS filter is analyzed.Table.2 shows our statistics of 

the inactive percentage under the condition of applying only long window in the overall 

encoding process. It shows that the activation of TNS filtering has the tendency of turned-off. 

Therefore, the focus of complexity reduction lies on decision task.  

It is known that the complexity of Levinson-Durbin Recursion is 2( )NΟ  [14]. For this 

reason, we try to split the recursion order N  into two blocks. In the simplified TNS flow 

chart, 6th-order auto-correlation and Levinson-Durbin are performed at first to provide an 

early-decision approach. If the decision does not make properly, the following recursion order 

from 7th to 12th will be performed.Figure.24 shows the flow chart of simplified TNS.  
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Figure. 23  The original TNS implementation flow 

Table. 2 The inactive percentage of TNS filtering 

Test samples 
TNS Filtering inactive 

Percentage 
for Long Window 

AlwaysOnYourSide[15] 94.25% 

Lifetimes[15] 94.55% 

sandee3[15] 89.82% 

sopr44_1[16] 93.3% 

quar48_1[16] 80.1% 
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Figure. 24  The flow chart of simplified TNS  

 

For such an early-decision approach, four cases can be taken into consideration in 

comparing with the original 12th-order decision approach, listed in (1)~(4). 
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(1) 12th-order LPC predicted TNS filtering as “turned-off”, and 6th-order LPC predicted 

TNS as “turn-off”.  

(2) 12th-order LPC predicted TNS filtering as “turned-off”, but 6th-order LPC predicted 

as “turn-on”.    

(3) 12th-order LPC predicted TNS filtering as “turned-on”, and 6th-order LPC predicted 

TNS as “turn-on”.   

(4) 12th-order LPC predicted TNS filtering as “turned-on”, but 6th-order LPC predicted 

TNS as “turn-off”.   

 

Table. 3 Analysis between simplified and original LPC approach 

Test samples case (1) case (2) case (3) case (4) 

AlwaysOnYourSide 91.69% 2.52% 3.11% 2.68% 

Lifetimes 91.36% 3.17% 5.19% 0.28%% 

sandee3 85.59% 4.22% 7.59% 2.30% 

sopr44_1 90.65% 4.15% 5.15% 0.05% 

quar48_1 74.16% 7.52% 15.26% 3.06% 

 

From case (1) in Table.3, it can be said that 86.69% of LPC predicted TNS filtering can 

be decided through a 6th-order LPC. From case (4) in Table. 3, only about 1.7% is 

mis-prediction using 6th-order LPC. Therefore, from Table.2 and Table.3, we can conclude 

that there has about 90.4% 86.69%=78.37%⋅  in complexity reduction. 
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3.5 Mid/Side stereo coding optimization 

 Whether to apply M/S stereo coding or not is based-on channel correlations. It is known 

that the higher the channel correlation, the required bits would be less for sum/difference of 

two channels. In the original implementation method, the decision of applying M/S stereo 

coding is performed scalefactor band by scalefactor band. It is considered to be tedious for 

deciding M/S stereo scalefactor band by scalefactor band; hence, we proposed that the 

decision should be made frame by frame based on the frame energy of channel pair. In 

addition to the channel correlation, the average energy of the channel pairs is taken into 

consideration since the lower the average energy of two channels has, the lower benefit of 

M/S stereo coding will have. 

 Based on the concepts of channel correlation and level of average energy of two 

channels, two thresholds are defined in order to decide the switching of M/S stereo. One is 

THRESHOLD_AVG used for comparison of the average energy of channel pair, the other is 

the THRESHOLD_RATIO used for comparison of energy ratio of channel pair. Figure. 25 

shows the flow chart of simplified Mid/Stereo coding 

AVG(energy_l,energy_r) > 
THRESHOLD_AVG?

yes

Energy_Ratio > 
THRESHOLD_RATIO?

no

Apply Mid/Sid 
Stereo

Apply Left/Right 
Stereo

yes

no

AVG(a,b) : stands for compute 
the average of a and b

_ , _ _
_
_ , _ _
_

energy l if energy l energy r
energy r
energy r if energy r energy l
energy l

⎧ ≥⎪⎪
⎨
⎪ >
⎪⎩

Energy_Ratio:  defined as

 

Figure. 25  Simplified flow chart of M/S stereo coding 
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3.6 Memory Reduction 

 Except for the computational complexity reduction, the memory requirement is another 

concern. The reference C code is not optimized for the usage of RAM and ROM. Hence, we 

use some techniques to reduce the usage of RAM and ROM in the overall encoding process. 

Three methods are adopted in memory reduction, list as follows: 

 Buffer re-usage by considering the life span of data memory. 

 Huffman Tables reduction based on statistics. 

 Use different size of data types to store the length and codeword 

information of Huffman Tables, and separate the processing of length and 

codeword. 

 To reduce the usage of buffer, the declared memory blocks are first analyzed and 

examined when they will be used. In general, the time duration when data is under processing 

is called the “life cycle (life span)” of data. It can help us applying the buffer re-usage if 

understanding the life cycle of processing data. Figure.26 illustrate the concept of buffer 

re-usage for different data with different life span. For the AAC encoder, the input buffer and 

output buffer is the largest declared memory blocks. Therefore, other temporary data, such as 

temporary real/imaginary-parts data of FFT process, quantized spectral lines, and coded 

data…etc; all of them can utilize the same block of memory space at the different time 

periods. 

 Huffman tables are the other important part for memory reduction. There are 12 Huffman 

tables used for the AAC encoder. It occupies a large block of memory space. It usually coded 

the quantized spectrum with 2 or 4 coefficients as a coding unit in AAC encoder. Generally 

speaking, two or three tables will be provided to the encoder as choices of quantized spectral 

coefficients and compute required bits respectively. The table with less required bits will be 
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chosen finally. This method can indeed save the bits and apply the saving bits to the distortion 

signal. However, we perform some experimental tests using different Huffman tables to 

encoded spectral data. Based on statistics result, it is found that there is no need to provide so 

many tables as choices; with max absolute value of coefficients ranges from 8~12 only need 

to use the codebook.10, and the codebook.9 can be removed without listening distortion.  
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 Figure. 26  Simple illustration of buffer re-usage 

 Another way to reduce memory usage is to modify the declaration of data type width for 

storing each Huffman table entries. We split two elements (length and codeword) in Huffman 

coding into separated arrays for split processing. Due to the dynamic range of length elements 

are generally 0 ~ 255 , only the register with 8-bit wide is need.   

 After removing the codebook.9 and separate processing of length and codeword in 

Huffman table, the size of Huffman table can be reduced from 5932 Bytes to 4327 Bytes. 

About 1.6 KB memories are saved. 
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CHAPTER 4. DUAL-CORE PROCESSOR IMPLEMENTATION  

 In this chapter, the hardware and software development environment are briefly 

introduced. The target board is a dual-core processor architecture with ARM Core and DSP 

Core built-in. With the support of dual-core architecture, our implementation of MPEG-2/4 

LC AAC will not only focus on ARM core, but the DSP core also. Therefore, the fixed-point 

optimization based on 16-bit arithmetic will be introduced. In considering of increasing the 

flexibility of the applications, the operating system environment is built up. Based on the 

software architecture, two solutions of AAC recorder system are implemented on the target 

board. The recording system is firstly implemented by ARM core and then using the 

inter-processor communication scheme to implement the recorder system between ARM core 

and DSP core.  

4.1 Hardware Environment 

4.1.1 OMAP 5912 OSK 

 The OMAP5912 is a development platform highly integrating with hardware and 
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software environment. It is designed for high-efficiency signal processing and high-level 

portable device application. With the dual-core hardware architecture, it provides better 

real-time applications. In order to improve the overall system performance, different workload 

can be allotted to the different computational unit. 

 The chip of OMAP5912 adopts the OMAP gigacell revision 3.2 which integrate the 

RISC ARM926EJ-S with DSP TMS320C55x Processors. The functional block diagram of the 

OMAP5912 is shown in Figure.27. The OMAP5912 dual-core architecture utilizes a 

Low-Power, and High-performance CMOS Technology. Some essential features of the 

OMAP5912 are listed as follows: 

 ARM926EJS Core with 192MHz maximum frequency , supporting 

multiple operating system 

 TMS320C55xTM (C55xTM)Core with 192MHz maximum frequency 

 TLV320AIC23 codec  

 32 MBytes DDR RAM  

 32 MBytes on board Flash ROM  

 4 Expansion connectors (bottom side) 

 RS-232 serial port 

 10 MBPS Ethernet port 

 USB port 

 On board IEEE 1149.1 JTAG connector for optional emulation  
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  Figure. 27  The functional block diagram of the OMAP5912 [17] 

 

4.1.2 DSP subsystem 

 With regarding to the dual-core processor OMAP5912, the RISC ARM926EJ-S provides 

the operating frequency up to 192MHz. It is used for host control processor that handles the 

operating system and the most peripheral interface access. The DSP subsystem in OMAP5912 

adopts the Texas Instruments’ TMS320C55x DSP chip. The C55x CPU consists of four 

processing units, an instruction buffer unit (IU), a program flow unit (PU), an address-flow 

unit (AU), and a data computation unit (DU). These units are connected to 12 different 

address and data buses as shown in Figure.28. 
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Figure. 28  The TMS320C55x DSP core architecture [18] 

 

Some essential features of the C55x device are listed below [18]: 

 A unified program/data memory map. In program space, the map 

contains 16M bytes that are accessible at 24-bit addresses. In data space, 

the map contains 8M words that are accessible at 23-bit addresses. 

  An input/output (I/O) space of 64K words for communication with 

peripherals. 

 Software stacks that support 16-bit and 32-bit push and pop operations. 

You can use these stack for data storage and retrieval. The CPU uses these 
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stacks for automatic context saving (in response to a call or interrupt).and 

restoring (when returning to the calling or interrupted code sequence). 

 A large number of data and address buses, to provide a high level of 

parallelism. One 32-bit data bus and one 24-bit address bus support 

instruction fetching. Three 16-bit data buses and three 24-bit address 

buses are used to transport data to the CPU. Two 16-bit data buses and 

two 24-bit address buses are used to transport data from the CPU. 

  An instruction buffer and a separate fetch mechanism, so that instruction 

fetching is decoupled from other CPU activities. 

  The following computation blocks: one 40-bit arithmetic logic unit (ALU), 

one 16-bit ALU, one 40-bit shifter, and two multiply-and-accumulate 

units (MACs). In a single cycle, each MAC can perform a 17-bit by 17-bit 

multiplication (fractional or integer) and a 40-bit addition or subtraction 

with optional 32-/40-bit saturation. 

 An instruction pipeline that is protected. The pipeline protection 

mechanism inserts delay cycles as necessary to prevent read operations 

and write operations from happening out of the intended order. 

 Data address generation units that support linear, circular, and bit-reverse 

addressing. 

 Interrupt-control logic that can block (or mask) certain interrupts known 

as the maskable interrupts. 
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4.2 Software Environment 

 The implementation of the recording system includes the user-applications handling the 

peripheral, memory access through ARM core, and kernel encoder program execution by DSP 

core. Besides, the communication and synchronous scheme between ARM and DSP are 

needed. 

4.2.1 TI Software Development Tools--Code Composer Studio  

 The Code Composer Studio (CCS) is a software integrated development environment 

(IDE) for building and debugging programs. CCS extends DSP code development tools by 

integrating editor, debugger, simulator, and emulation analysis into one entity. We can use 

CCS to develop and debug the projects. Some features of its functionality are listed below. 

The details can be found in [19]. 

 Real time analysis and Debugging 

 Provide debug options such as step over, step in, step out, run free. 

 Compile codes and generate Common Object File Format (COFF) output 

file. 

 Support optimized DSP functions such as FFT, filtering, convolution and 

some mathematical operations 

 Count the instruction cycles between successive profile-points 

 Arrange code/data sections into different memory space by linker 

command file. 

 We use CCS tool to simulate the encoder on desktop and emulate the result on target 

platform. By using the profiler provided by CCS, the accurate execution clock cycle count can 

be evaluated. Figure. 29 shows the software development flow of using CCS. 



 

 44

Archiver

Macro
Library

Macro
Source files

Archiver

Library of 
object files

C/C++
source files

C/C++ compiler

Assembler

COFF object 
files

Linker

Executable 
COFF file

Hex-converter

EPROM
programmer

Absolute lister
Cross-reference 

lister
C55x Target 

Board

Assembler 
source

Run-time 
support library

Library build 
utility

Debugger

 
Figure. 29  The C55x CCS Development Flow [19] 

 

4.2.2 Operating System 

 It will increase the functionality and portability of system by integrating the operating 

system with hardware platform. With the help of operating system, we could easily add any 

specific function without considering the low-level memory or devices driver issues, because 

all of the bottom layer issues are properly handled by operating system and device driver.  

 Due to the MPU of the OMAP5912 is ARM core, the “Linux operating system” and the 

Cross-compiler “arm-linux-gcc [20]” are adopted. However, the CCS tool is installed on 
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Windows. To avoid using two desktops, the software, VMWARE [21] which is a virtual 

machine simulating another desktop is adopted. By setting up the SAMBA [22] which 

represented for “network neighbor” under Linux environment, the access of files or programs 

can be easily transferred between Windows and Linux. The OMAP5912 development 

environment with operating system is shown in Figure. 30. 

During the development stage, the setup of operating system makes the target board able 

to mount the network file system which Motavista 2.4 built-in under Linux. To make the 

mounting NFS works, the following suites are necessary: 

 Montavista 2.4 – provide the Linux 2.4 kernel source and network file 

system used for OMAP. 

 Boot loader -- the boot code of OMAP 5912 , the original version of boot 

loader is 1.1.1,「osk5912-uboot-1.1.1.out」. 

 DSP Gateway Patch file -- patch-2.4.20_mvl31-dspgw2.0.1.bz2  

 TFTP server -- a.tftp-0.32-4.i386.rpm  b.tftp-server-0.32-4.i386.rpm 

The TFTP Server can be used to transfer the boot loader image or kernel image to 

OMAP5912. The details for operating system setup procedure can refer to [23].  

 

Figure. 30  The OMAP5912 development environment with operating system 
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4.2.3 DSP Gateway 

 The OMAP5912 is a dual-core processor with ARM926EJ-S and TMS320C55x inside. 

In order to make the inter-processor communication possible, the tool “DSP gateway” is 

applied. DSP Gateway is a program which makes us able to utilize DSP power on OMAP 

platform from standard Linux kernel. It consists of Linux device driver, DSP side library and 

utility tools on Linux. 

 The DSP Gateway can be classified into three portion for discussion, one is the 「DSP 

Driver and Linux API」, another is the 「DSP Gateway BIOS (tokiliBIOS) and DSP APIs」, 

and the other is the 「Mailbox transmission command scheme」.The 「DSP Driver and Linux 

API」defines the operating methodology and interface for intercommunication. The「DSP 

Gateway BIOS (tokiliBIOS) and DSP APIs」defines the DSP intra-communication and DSP 

subsystem management. And the 「Mailbox transmission command scheme」are used for 

transmission of “DSP Task ID” ,“interpreting mailbox command”, and “Task Type”. The 

details can be found in [24]. Figure. 31 shows the software architecture of DSP gateway.  
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Figure. 31  Software architecture of DSP Gateway Linux APIs [24] 
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Through the Linux APIs, all the peripheral devices can be viewed as general files, we can 

use the calls of open() , close() , read () ,and write () to utilize the DSP core or DSP memory 

space. Through the mailbox transmission scheme, the control command or user-define 

protocol can be achieved. In the OMAP5912, four sets of shared mailbox registers are 

available for communication between the DSP and MPU including:  

 Two reads/writes accessible by the MPU, read-only by the DSP. 

 Two reads/writes accessible by the DSP, read-only by the MPU. 

Each mailbox is implemented with 2x16-bit registers. When a processor writes into a 

register, it will generate an interrupt to the other processor. The DSP Gateway architecture 

uses one mailbox register for each direction---One is for ARM to DSP, the other is for DSP to 

ARM, as shown in Figure. 32. When ARM core writes the data into mailbox register, the 

ARM core will generate an interrupt (INT5) to DSP. 

ARM DSP
ARM2DSP1 mailbox
(command/data/flag)

DSP2ARM1 mailbox
(command/data/flag)

not used

DSP2ARM2 mailbox
(command/data/flag)

IRQ10

IRQ11

INT5

ARM2DSP2 mailbox
(command/data/flag)

 

Figure. 32  The mailbox scheme of DSP Gateway [24] 

 By patching the DSP gateway into Montavista 2.4, there are five device interfaces 

regarding the DSP gateway can be seen under the path /dev/ 

 DSP Task Device 
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 DSP Task Watch Device 

 DSP Control Device 

 DSP Error Detection Device 

 DSP Memory Device 

 Here, the DSP Task Device and DSP Memory Device are the two important device 

interfaces. Any application-specific code that we design will be treated as a task device under 

the interface of DSP Task Device (/dev/dsptask/taskname). The DSP Memory Device 

(/dev/dspmem/) is another important device interface. For the transmission of few data or 

commands, only one mailbox queue is quit enough. Nevertheless, it is impossible to use one 

mailbox register for transferring large amount of data between two processors. Considering 

large memory movement and data transmission, the DSP memory device will be responsible 

for it. The DSP memory device provides the access to the DSP memory space for the DSP 

program loader in Linux side. When executing a DSP program, the first step is to load DSP 

binary code to the pre-defined internal or external memory sections (i.e. DARAM, SARAM, 

EXMEM). These operations are accomplished through this device. For loading binary code to 

external SDARM, the memory mapping must be done once by using ioctl to DSP memory 

Device. Figure. 33 Shows the concept of DSP internal memory space and external memory 

mapping. 
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Figure. 33  The DSP memory space [24] 
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4.3 Fixed-point consideration and DSP Optimization 

 Due to the DSP processor built in OMAP5912 is a 16-bit fixed-point processor; it only 

supports the integer mathematical operations. Using the integer operations to emulate the 

floating point operations is time-consuming and high-cost in ROM size. Therefore, converting 

the floating-point programs to fixed-point one is necessary in order to make MPEG-2/4 LC 

AAC execute normally and efficiently. In this section, some fixed-point implementation based 

on 16-bit arithmetic consideration is discussed and the DSP assembly optimization techniques 

are presented in order to speed up the encoder. 

4.3.1 Fixed-point implementation based on 16-bit arithmetic 

 Table. 4 shows the data type and the corresponding width of TMS320C55x for 

supporting C code. It is noted that the data type size of char and int are both 16-bit width. 

These might result in precision loss during the block of audio processing or data shuffle if the 

data type is not properly used. 

 

Table. 4 C data type of TMS320C55x [25] 

data type Char short int long long long float Double

width 16bits 16bits 16bits 32bits 40bits 32bits 64bits 

 

 Basically, the TMS320C55x performs 16-bit arithmetic operation. However, the 

double-precision, i.e: 32-bit arithmetic operations provide more accuracy for processing data 

but increase the computational complexity. In order to perform the 32-bit arithmetic 

computations such as 16-bit x 32-bit multiplication or 32-bit x 32-bit multiplication, it must 
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use the 16-bit x 16-bit multiplication as the basic operation, as shown in Figure. 34 and Figure. 

35. The complexity of double-precision multiplication will take much more times of the 

complexity using single precision multiplication.  

X h X l

Y l

X l            Y l×

3 2  b i t s     

u n s ig n e d     s ig n e d×

X h             Y l×
s ig n e d     s ig n e d×

3 2  b i t s     1 6  b i t s     

             R s                            R h                                                R l

 

Figure. 34  Double precision multiplication, R (32-bit) = X (32-bit) x Y (16-bit) 
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Figure. 35  Double-precision multiplication, X (32-bit) x Y (32-bit) 

To determine the data precision of the AAC encoder, it is divided into five stages. The 

PCM sample is a 16-bit data, therefore, the input PCM samples are viewed as (16.0f)16 
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( format ( . )sM N  stands for that using M bits to represent the integer part, and N  bits to 

represent the fraction part, and the suffix S  is the total width of data type ).  At the first 

stage of AAC encoder, the PCM samples are windowed by cosine table which is viewed as 

(1.15f)16 owing to the data range of cosine table is 1 cos( ) 1x− ≤ ≤ . The format of windowed 

data would be (16+1 . 0+15)32 = (17.15)32 .The format decision of input and output signals at 

each stage is based on the calculation and statistics of their dynamic range of values.Figure.36 

shows the data precision of the proposed AAC at each stage. 
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Figure. 36  The data precision of the proposed AAC encoder 

 

For the target processor, TMS320C55, the signed data representation is ranged 

from 312− to 312 1− . Due to the limited data range, the mathematical processing must be 

cautious, especially while performing the multiplication and accumulation. 
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In the overall AAC encoding process, in considering of data precision, the fixed-point 

format of the spectral coefficient ( )xr f  are defined as (26.6f)32 as shown in Figure.36. With 

the format of spectral coefficient ( )xr f  defined as (26.6f)32  using 32-bit data type, the use 

of 32-bit data type will be not wide enough for calculating the autocorrelation, energy of total 

frame or energy of each scalefactor band. To solve the problems arose from fixed-point 

optimization; a simple scaling unit is applied on spectral coefficient before performing the 

computations. There are three parts that we applied the scaling unit as shown in Figure.36. 

 The first one is the frame energy calculation  ( )2

.

( )
all freq lines

xf i∑  . It will calculate the 

total energy of each channel, and such information will be used for decision of switching M/S 

stereo coding and for computing allowed-distortion. The second is the autocorrelation 

computation ( ) ( )
order i

xf i xf i order⋅ +∑∑ used for Levinson-Durbin recursion. The third is the 

energy calculation of each scalefactor band computed as ( )2( )
sfb

xf sfb∑ .  

The scaling unit is implemented by detecting the dynamic range of the processing group 

of data at run-time. It will determine the maximum value , m axix f of the processing group of 

data, ( )xf i  at first. And the processing group of data will right shift by a run-time 

determined value SHIFTVAL  according to the detected exponent value K  to avoid the 

overflow during multiplication and accumulation. Figure. 37 shows the determination of 

value K . 

xfi,max 

32-bit
16-bit

K

8-bit

maximum value
 

Figure. 37  Representation of exponent detector 
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 Figure. 38  The scaling unit applied in AAC encoder 

 For the TMS320C55x hardware architecture, it supports computing the leading zeros of 

the data in a single cycle. 

        Syntax:   ,x xEXP AC T              (15) 

 The mnemonic instruction EXP  can compute the exponent of the source accumulator 

ACx in the D-unit shifter, and the result of the operation will store in the temporary register, 

xT . The applying of scaling unit before the processing data will dynamically scale the data or 
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to say, changing the fixed-point format dynamically. In this way, the overflow of the 

multiplication and accumulation can be avoided, and the unsigned range of data could be 

limited to 322 1− . 

4.3.2 Assembly and compiler optimization techniques 

 The CCS tool offers high language support by transforming C code into more efficient 

assembly code. The compiler options provide the choices to reduce code size or execution 

time. Four optimization levels are provided in CCS compiler: register (-o0), local (-o1), 

function (-o2), file level (-o3). File level (-o3) is the highest one of the available optimization. 

With file level optimization, various loop optimizations are performed, such as software 

pipelining, loop unrolling, and various file-level characteristics are also used to improve 

performance. 

 In the implementation of our AAC encoder, several blocks are optimized by writing 

assembly code, such as bit-reverse, FFT kernel processing, M/S stereo Coding, and Frame 

Energy Calculation...etc.  

 Regarding the assembly optimization, for the bit-reverse optimization, a special address 

mode called bit-reversing addressing mode is applied, as shown in Table. 5   

Table. 5 Description of bit-reversing addressing mode [25] 

Operand 

syntax 

Function Description 

*(ARx-T0B) address = ARx  
ARx = (ARx-T0B) 

After access, T0 is subtracted from ARx with 

reverse carry(rc) propagation 

*(ARx+T0B) address = ARx  
ARx = (ARx+T0B) 

After access, T0 is added from ARx with 

reverse carry(rc) propagation 
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 The off-place and in-place bit-reverse are both written in assembly code. (The off-place 

represents that the input and the output buffer are the same and in-place stands for the same 

memory block of input and output buffer.). Table.6 shows the implementation result written 

by C code and assembly code. The speedup is about 4.5 times comparing off-place bit-reverse 

with pure-C code. 

 

Table. 6 Bit-reverse Implementation result using C and ASM 

Method pure-C code In-place ASM Off-place ASM 

cycle counts 114123 5901 2583 

 

 In order to utilize the features of DSP hardware architecture, the features of parallelism 

and zero-overhead looping are adopted in the written assembly code. Considering the 

parallelism optimization, several types of parallelism are provided by C55x. 

 Using the build-in parallelism within a single instruction (Because of 

Dual-MACs architecture). 

  
* 0, * , 0

:: * 1, * , 1
MPY AR CDP AC

MPY AR CDP AC
                                  (16) 

 The two lines shown in (16) are viewed as a single instruction; the data 

referenced by AR0 is multiplied by coefficient referenced by CDP. At the 

mean time, the data referenced by AR1 is also multiplied by the same 

coefficient CDP. 

 Using user-defined parallelism between two instructions. (Because of 

different functional unit and proper data bus connection ) 

 
* 1 , * , 1

|| 2, 1
MPYM AR CDP AC

XOR AR T
−

                                (17) 
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 In the assembly optimization, C55x ASM provides the notation “||” to 

instruct the compiler that the instruction behind can execute in parallel. In 

the (17), the first instruction performs a multiplication in the D-unit and 

the second instruction performs a logical operation in the A-unit ALU.  

Another assembly optimization technique lies on zero-overhead looping, the C55x 

provides repeat block of instructions such as RPT or RPTBLOCAL . The instruction will repeat 

a block of instructions number of times specified some specific registers. 

In addition to the assembly coding techniques, the implementation of DSP code includes 

the design of memory allocation. It is known that the accessing data located at external 

memory will take much more clock cycles than accessing them located in internal memory. In 

order to reduce the external memory access, the linker command file are modified to place 

most of the codes in the internal memory space. With the compiler directives such as 

“PROGRAME_SECTION”,”DATA_SECTION”, the memory allocation can be easily done in 

C code. 

Although there still have other optimization techniques, only the optimization techniques 

that applied in the written assembly code are introduced in this section. For more details 

information can be found in [25][26]. 

 

 

4.4 Recording System implementation 

 AAC recording system is implemented and verified on OMAP5912 by two solutions. 

One is to implement the recorder by ARM core, and the other one is to implement the 

recorder between ARM and DSP. With the help of Linux operating system and the DSP 
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gateway for bridging the inter-communication between two processors, the host terminal can 

load the application-specific codes into DSP memory space at run-time and to instruct DSP 

for initialization, start, stop, or IDLE. The development of the system includes the 

user-application on ARM side (Linux) and the specific-application on DSP side. The 

development flow is shown in Figure.39. In the following section, the software architectures 

for recording system are described. 

Start

Observe the Execution 
Flow from terminal 

(Both messages from ARM 
and DSP are shown)

Load the DSP program through dsp 
(.out)

Compile DSP Application Code
generate taskdsp.out

under windows

Compile ARM Application Code
(generate execution file)

under Linux

ARM application is used as 
control application ,

 hand-shaking with DSP

DSP application is viewed as 
functional library ,pending 
commands from ARM side

Success?

Check Bugs from 
DSP and ARM, fix it

End

Compile using arm-linux-gcc

Compile using CCS

Using dsp control utility (dspctl)

Using mailbox queue or 
dbg() API for observing 
execution flow on DSP

Communication between OMAP 
and Terminal through RS-232

no

yes

 

  Figure. 39  The development flow of OMAP 5912 with DSP gateway 
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4.4.1 Recorder implementation by ARM 

The difference between file-based encoder and recorder is the input source. The source 

of file-based encoder is from the PCM audio samples already exit on memory device. Hence, 

the input PCM data is buffered. However, the source of the recorder is to read PCM samples 

from line-in and then encodes these data into AAC file. Owing to the access of /dev/sound/dsp 

device is non-buffering, two thread programming is necessary. One thread is designed for 

reading the PCM samples from line-in, the other thread encode the PCM data into AAC file. 

For the sake of bridging data hand-over between two thread, a buffer queue is applied. Figure. 

40 show the program flow of the recording system. 

m ain

R ecording

Thread C reate

Initial audio 
device

Initial queue

Init C odec 

A udio In A A C  
Encoding

fifo  tail fifo  head

fifo 

Save to  F ile

R ead the PC M  data 
from  audio codec

Perform  the encoding  
flow  fram e by fram e

 

Figure. 40  The multi-thread program flow for recording by ARM. 
  
 

4.4.2 Recording system between two processors 

 Another solution for recording system implementation is to allocate the encoder 

workload on DSP core. Under such software architecture, Linux side is responsible for 
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accessing the memory device, audio codec, and other peripherals. Figure. 41 is the block 

diagram of the total recorder system. 

 For the user program executing by ARM core, one thread is created for pending the 

message or information from DSP through Inter-processor buffer (IPBUF) defined by DSP 

gateway and mailbox buffer in user-program, as shown in Figure. 41 and Figure. 42. 
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Figure. 41  The firmware block diagram  
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Figure. 42  The mailbox IRQ Handler 
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It is the mailbox queue and arranged I/O buffer that take care of the transmission of DSP 

control command and large amount of data bit streams, respectively.  

 For receiving commands from the DSP task or sending commands to the DSP task, both 

the passive way protocol in the mailbox of DSP gateway are taken. For this reason, the DSP 

task sends BKSND commands only in response to the BKREQ command from ARM. ARM 

can send BKSND command at any time it wants to send data. Figure. 43 show the mechanism 

we adopted in mailbox. The detail definitions of mailbox commands are listed in Appendix . 

ARM side DSP side

BKREQ

BKSND

call read()

read() returns

ARM side DSP side

call write()

write() returns
blocking

...
BKSND

Passive Sending Task Passive Receiving Task  

Figure. 43  The passive way of sending/receiving for mailbox [24] 

There are four self-defined commands at the mailbox of DSP side, TASK_INIT, 

TASK_START, TASK_STOP, and IDLE. The previous three commands are 

application-specific ones that we can modify according to the application codes.  

The TASK_INIT is the command used for initialization, including initializing the 

internal configuration such as sampling rate, bit rate, and channels that post from ARM. And 

it also performs a simple hand-shaking with user-application at ARM side to return the status 

information on DSP. The TASK_START command instructs the DSP performing the frame by 

frame audio encoding. Once the frame encoding is done, the DSP will post a frame finish 

message to inform the user-application at ARM side. The TASK_STOP instruct the DSP to 

stop encoding loop and will release the resource usage of DSP.  

 The IDLE command is used for power-saving consideration. It will notify the DSP to 
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execute a sleep_dsp() routine so that the processor will enter the sleeping mode with less 

power-consumption. 
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CHAPTER 5. EXPERIMENTAL RESULTS

 Applying the proposed algorithms and techniques to AAC encoder, it is implemented on 

a 16-bit fixed-point processor. The evaluation of the performance includes two parts. One is 

the pure encoder performance that the profiler is used to get the accurate clock cycles and the 

other is the system performance.  

 The test audio samples are downloaded from EBU website [16], or converted from CD 

tracks [15]. All samples are stereophonic and sampled with 44.1 KHz, listed in Table. 7.  

Table. 7 Test audio samples  

Audio Samples Time Signal characteristics Abbreviation

sopr44_1 0:23 Soprano. vocal SO 

quar48_1 0:28 Quartet vocal QT 

bass47_1 0:24 Bass. Vocal BS 

AlwaysOnYourSide 4:15 Pop music with piano background ALW 

Lifetimes 4:12 pop music andantino Life 

sandee3 3:42 Soft rock with female voice SAN 
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5.1 Performance Evaluation 

 Performance for DSP: 

In order to get a specific complexity of the encoder, the profiler provided by CCS tool is 

used to get accurate clock cycle counts. (i.e.: C55x cycle accurate simulator). So as to get 

better compiler optimization, the file-level optimization (-o3) is adopted. The cycle counts 

and corresponding MIPS are shown in Table. 8.  

 
Table. 8 performance evaluation on TMS320C55x processor 

Samples SO QT BS ALW Life SAN 

Cycle counts 4,026,640 4,072,911 4,063,272 4,004,696 4,016,694 3,748,210

MIPS 86.71 87.70 87.50 86.23 86.50 80.71 

 

The cycle counts are the average clock cycles per frame and the MIPS calculation is 

based on the following computation. 

610
cycle counts per frame SamplingRate

samples per frame
⎛ ⎞

⋅⎜ ⎟
⎝ ⎠

         (18) 

 

In addition to the evaluation of encoding speed, the memory requirement is the other 

important evaluation. 

From section allocation map file generated by CCS compiler, the .text (Code) section of 

our occupies 32.8KB, the .bss (Global & static variables) section occupies 59.4KB, and 

the .cinit(Auto-initialization tables)section occupies 8.1KB,list in Table 9. 

 

Table. 9 The summary of memory section size for proposed encoder 

Memory Section .text .bss .cinit 

Size 32.8KB 59.4KB 8.1KB 
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 Performance for ARM: 

Table. 10 list the encoding speed of each test audio samples, all the samples are running 

at the configuration of bit rate 96Kbps, and Table. 11 shows the code size of the encoder and 

the recorder using the cross-compiler arm-linux-gcc with different optimization flags. 

 
  Table. 10 Encoding speed evaluation 

audio samples Length(sec) Speed 

     SO    0:23 1.21X 

     QT    0:28 1.21X 

     BS    0:24 1.20X 

     ALW    4:15 1.17X 

     Life    4:12 1.18X 

     SAN    3:42 1.12X 

Table. 11 Code Size of encoder and recorder 

 -o1 -o2 -o3 

File-Based Encoder 65,341 60,425 72,699 

Recorder 71,049 66,117 78,391 

Note: use cross-compiler arm-linux-gcc, unit: bytes 
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5.2 Quality Evaluation 

 To evaluate the audio quality of the proposed AAC encoder, ITU-R Recommendation BS. 

1378 [28] is adopted as the objective audio quality (ODG) measurement. We use the software 

objective measurement tool for audio quality tool called EAQUAL [29], which stands for 

Evaluation of Audio Quality. There are several scales for defining the ODG, Table. 12 list the 

ranges and meanings. 

 

Table. 12 The Scale of ODG 

     ODG scale          Quality 

0.0 Imperceptible 

-0.1 ~ -1.0 Perceptible but not annoying 

-1.1 ~ -2.0 Slightly annoying 

-2.0 ~ -3.0 Annoying 

-3.0 ~ -4.0 Very annoying 

  

The reference codec is the traditional AAC encoder and decoder implemented by FAAC[8] 

and FAAD[8] in floating point, respectively. The test audio samples will be encoded by 

reference encoder and the proposed encoder, and then both the encoded file will be decoded 

by the reference decoder. Two reconstructed PCM audio samples will be compared with the 

source samples to get the ODG grades using EAQUAL. 

 Table. 13 list the ODG testing result under the bit rate of 128Kbps, 96Kbps, and 64Kbps, 

and Figure. 44, Figure. 45, Figure. 46 illustrate the results.  
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Table. 13 Summary of ODG test 

Test Audio Samples BitRate 

SO QT BS ALW Life SAN 

Original -2.86 -1.17 -2.66 -1.0 -0.80 -0.91 128Kbps 

proposed -2.23 -2.01 -2.52 -1.26 -1.20 -1.22 

Original -3.46 -2.22 -3.28 -1.96 -0.84 -0.95 96Kbps 

proposed -3.48 -2.30 -3.37 -2.05 -1.95 -1.38 

Original -3.52 -2.31 -3.38 -2.01 -1.05 -1.13 64Kbps 

proposed -3.69 -2.65 -3.44 -2.37 -2.60 -2.41 
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Quality test at 128Kbps
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Figure. 44  The ODG result at 128Kpbs 
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Figure. 45  The ODG result at 96Kpbs 

Quality test at 64Kbps
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Figure. 46  The ODG result at 64Kpbs 

 

 

 For the quality evaluation, it shows that the proposed encoder would not have much 

quality loss at the bitrate of 128Kbps. However, for the case of 96Kbps and 64Kbps, some 

audio test samples, i.e.: “Life” and “SAN” might have worse ODG grade. It is because that 

the data dynamic ranges of such two samples are larger. Using data precision of 16-bit width 

might not be enough for covering most of the audio samples.  
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, we give: 

 Briefly introduce the algorithm of MPEG-2 Advanced audio coding.  

 Several algorithms optimization are proposed including, simplified psychoacoustic 

mode, fast MDCT, simplified TNS tool, simplified Mid/Side coding, and memory 

reduction techniques in Huffman Tables. 

 The fixed-point optimizations based on 16-bit arithmetic are proposed. In order to 

solve the problem of data precision in encoding process during fixed-point 

conversion, a scaling unit is applied to adjust the level of spectral signal energy. 

 Based on the target DSP processor, a 16-bit fixed-point processor, TMS320C55x, 

we optimize and ported the AAC encoder using CCS development tools. 

 Based on a dual-core hardware architecture, OMAP5912 OSK, the operating system 

on target platform is build up and provide two solutions to accomplish the recording 
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system. One is to use multi-thread programming to implement recording by ARM 

core, the other is to use the inter-processor communication with ARM as the host 

control processor and DSP as slave processing unit to fulfill the recording. 

 Base on 16-bit fixed-point implementation with the proposed optimized algorithm, 

our encoder require about 86MIPS and 107KB memory. And the recording system 

by ARM core can achieve at 1X encoding.  

 

6.2 Future works 

Our optimization work concentrate on MPEG-2/4 Low-complexity AAC encoder, and 

implement as a recorder on a dual-core platform, OMAP5192 OSK. The state of the art 

algorithm, such as Dolby AC-3, HEAAC v1 (aacplusv1), HEAAC v2 (aacplusv2), Microsoft® 

WMA [30], might apply the same coding techniques as MPEG-2/4 AAC. Besides, the 

MPEG-2 LC AAC also constitutes the kernel algorithm of MPEG-4 Audio standards. 

Therefore, the concept of the proposed algorithm in this thesis can be applied to other audio 

compression algorithm to decrease the computational complexity in order to realize on 

fixed-point processor. 

 Regarding to the codec, it mixes up with the C code and assembly code in our encoder 

implementation. Hence, there still have several coding modules that are not fully assembly 

optimized. The CCS compiler has its limit for C code to assembly code conversion. Using the 

assembly language provides us a fully control of the program flow. This is an essential work 

in the future. In addition to the encoder itself, the software architecture of a recording system 

is the other issue that reduces the system performance. Our recording system use ARM to 

access the audio codec and move block of data to DSP as input source. The other way to let 
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the input source samples feed into DSP directly and move the encoded data with DMA. This 

will save the time of moving block data and highly increase the performance of recording 

system. 
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APPENDIX 

The Table below defines the mailbox command used for inter-processor communication. 

 Command   CMD_H  CMD_L   Data register  Description 

WDSND 0x10 TID Word data to send Word send 

WDREQ 0x11 TID -- Word request 

BKSND 0x20 TID BID Block send 

BKREQ 0x21 TID requesting count Block request 

BKYLD 0x23 -- BID Block yield 

BKSNDP 0x24 TID -- Block Send Private 

BKREQP 0x25 TID -- Block Request Private

TCTL 0x30 TID ctlcmd / data Task Control 

WDT 0xd0 -- notification value Watchdog Timer 
Notification 

TCFG 0xe0 TID configuration data Task Configuration 

TADD 0xe2 TID BID Task Add 

TDEL 0xe3 TID -- Task Delete 

TSTOP 0xe5 - -- Task Stop 

DSPCFG 0xf0 CFGTYP configuration data System configuration 

REGRW 0xf2 TYPE address / data Register Read/Write 

GETVAR 0xf4 VARID data Get Variable 

SETVAR 0xf5 VARID data Get Variable 

ERR 0xf8 EID Command caused the 
error 

Error Information 

 


