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摘要 

    隨著人類基因定序及許多基因定序計畫陸續完成，序列的資料量將大幅成

長，有效地分析這些序列更顯得重要了。基於物運作的原則（Central Dogma），

蛋白質的功能與結構遂成為相當重要的研究議題，而目前在蛋白質相關問題的解

決上，科學家都是利用X光繞射以及核磁共振 (NMR) 來取得實驗結果。這些方

法雖然正確率高，但是相對地所要花費的時間及成本是相當高的。因此，研究人

員便利用電腦科學來協助解決這些問題，相信是能夠有效降低實驗成本的。由於

要了解完整蛋白質的功能必需從三級結構著手，但直接從蛋白質序列去預測它的

三級結構是非常困難的議題，因此一個間接且有助益的方式，便是預測其二級結

構。過去的研究中，學者們通常將蛋白質二級結構分成三種類別，分別是螺旋體

（helix）、摺疊（sheet）、其他部份歸類為迴圈（loop）。因此我們可以將蛋白質

二級結構預測視為一個普遍的分類問題 

    本篇論文中，我們提出利用二層快速徑向基底函數網路分類器（Quick Radial 

Basis Function）來預測蛋白質二級結構。快速徑向基底函數網路分類器能夠迅速

地建構分類器的模型，其預測準確性更是不亞於目前廣受歡迎的機器學習演算法

支持向量機（Support Vector Machine）。最後，將各層分類之結果合併，而有效

的提高預測之準確度。在本研究中，我們使用著名的 RS126 資料集，以及 PSI- 

BLAST 所產生的 PSSM，所達到的最佳準確率為76.7%。 
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ABSTRACT 

   The majority of human coding regions have been sequenced and several 

genome sequencing projects have been completed. With the growth of large-scale 

sequencing data, an efficient approach to analyze protein is more important since 

protein function and structures are crucial issues in bioinformatics. Nowadays, 

scientists use X-ray diffraction or nuclear magnetic resonance (NMR) to solve the 

protein structure problems. Even though chemical experiments can achieve high 

accuracy, they in the mean time incur high cost and long time to solve the protein 

problems. Hence, computational tools are then applied thereto and considered as 

promising ways which not only reduce the time and the cost but also maintain reliable 

predictive results. The protein secondary prediction (PSS) is an intermediate but 

useful step for the three-dimensional (tertiary) structure prediction. In the previous 

work, researchers always focused on classifying three states of protein secondary 

structure: helix, strand and coil classes. It is a common classification problem for the 

prediction of protein secondary structure.  

   In this thesis, a high-performance method was developed for protein secondary 

structure prediction based on the dual-layer QuickRBF technology that has been 



 

successfully applied in solving problems in the field of bioinformatics. The 

QuickRBF is capable of delivering the same level of performance as the state of art 

approach, SVM, while having execution efficiency during the phase to construct the 

classifier. The performance was further improved by combining PSSM profiles with 

the QuickRBF analysis where the PSSMs were generated from PSI-BLAST profiles, 

which contain important evolution information. The final prediction results were 

generated from the first fusion method. We report a maximum prediction accuracy of 

76.7% on the famous RS126 dataset based on the PSI-BLAST profiles.  
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Chapter 1. Introduction  

 

1.1  Motivation and the Background of This Research 

     

    The number of known proteins and its structure has been increased in recent 

years. Since protein applications are more widely used, there will be a lot of problems 

to be solved. Nowadays, scientists use X-ray diffraction or nuclear magnetic 

resonance (NMR) to solve the protein structure problems, because protein structures 

are closed related to their functions. Even though chemical experiments can achieve 

high accuracy, they in the mean time incur high costs and long time to solve the 

protein problems. Hence, computational tools are then applied thereto and considered 

as promising ways which not only reduce the time and the costs but also maintain 

reliable predictive results. This motivation is triggered by the basic hypothesis that the 

three-dimensional (tertiary) structure of a protein is uniquely determined by its 

sequence of amino acids. Therefore, predicting protein structure from amino acid 

sequences becomes one of the most important issues in molecular biology.  

 The protein secondary prediction (PSS) is an intermediate and useful step for the 

three-dimensional (tertiary) structure prediction. To better predict secondary structure, 

many computational techniques have been proposed in the literature to solve the PSS 

prediction problem, for example: PHD, a novel prediction method proposed by Rost 

and Sander which uses evolutionary information and has obtained significant 

improvements [1]–[3]; SVM, a new method introduced by Hua and Sun which is 

based on statistical learning theory (SLT) [4]; and QuickRBF, a fast and innovative 

method proposed by Ou et al. [5] which is capable of delivering the same level of 

prediction accuracy as the LIBSVM proposed by Lin et al. [6], while having 
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execution efficiency during the phase to construct the classifier.  

Despite the existence of many approaches, this issue still remains to be further 

studied. We propose that the single-stage approaches are unable to find complex 

relations (correlations) among different elements in the sequence. The result of 

incorporating second stage could be improved by incorporating the interactions or 

contextual information among the output elements of the secondary structures 

prediction, which are considerably reduced in their complexity. We believe it is 

feasible to enhance present single-stage approaches by cascading and fusing with 

another prediction scheme at their outputs and propose to use RBFN as the 

second-stage.  

This thesis investigates the use of Radial Basis Function Networks for PSS 

prediction. We establish the QuickRBF technique based on multi-classifier to PSS 

prediction. Moreover, we cascade two multi-class QuickRBFs for the prediction 

scheme to improve the prediction accuracy from the output of the first stage. Finally, 

different fusion methods are applied and a high level of accuracy was achieved. We 

report a prediction accuracy of 76.7% on RS126 dataset based on PSI-BLAST 

profiles. 

 

1.2  Introduction to the Protein Secondary Structure 

 

Protein secondary structure prediction is to predict protein secondary structure 

based only on its sequence, where each amino acid is assigned a structure state, helix 

(H), strand (E) or coil (C). The secondary structure we used is assigned from the 

experimentally determined tertiary structure by the benchmark secondary structure 

definition, DSSP. According to DSSP, 8 types of protein secondary structure elements 
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were classified and denoted by letters: H (α-helix), E (extended β-strand), G 

( 103 -helix), I (π-helix), B (isolated β-strand), T (turn), S (bend) and “_＂(rest). The 

8 classes are usually reduced to three states of helix (H), sheet (E) and coil (C) by 

using one of the following methods: 

1. H,G and I to H; E to E; all other states to C 

2. H,G to H; E,B to E; all other states to C 

3. H,G to H; E to E; all other states to C 

4. H to H; E,B to E; all other states to C 

5. H to H; E to E; all other states to C 

The 8- to 3-state reduction method can alter the apparent prediction accuracy [6]. 

Although we can expect an accuracy increase by using method 5, we used the first 

method which is adopted by HYPROSP [8], [9]. 

The traditional three classes: α-helix, β-sheet and loop (coil) representing all the 

rest. The α-helix (Fig. 1.1) is the classic element of protein structure which is 

predicted to be stable and energetically favorable in proteins. Alpha helices in proteins 

are found when a stretch of consecutive residues all have the phi, psi angle pair 

approximately -85° and -50°, corresponding to the allowed region in the bottom left 

quadrant of the Ramachandran plot (Fig. 1.2). 
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Fig. 1.1.  The α-helix structure. 

 

             

 

 

 

Fig. 1.2.  The Ramachandran plot. 
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Only in the α-helix are the backbone atoms properly packed to provide a stable 

structure. In globular proteins, the average length for α-helices is around ten residues, 

corresponding to three turns. The rise per residue of an α-helix is 1.5 Å along the 

helical axis, which corresponds to about 15 Å from one end to the other of an average 

α-helix.  

     The second major structural element found in globular proteins is the β-sheet. 

This structure is built up from a combination of several regions of the polypeptide 

chain, in contrast to the α-helix, which is built up from one continuous region. These 

regions, β-strands, are usually from five to ten residues long and are in an almost fully 

extended conformation with phi, psi angles within the broad structurally allowed 

region in the upper left quadrant of the Ramachandran plot (Fig. 1.2). The β-strands 

can interact in two ways to form a pleated sheet – parallel and anti-parallel. Each of 

the two forms has a distinctive pattern of hydrogen-bonding. The anti-parallel β-sheet 

(Fig. 1.3) has narrowly spaced hydrogen bond pairs that alternate with widely spaced 

pairs. Parallel β-sheets (Fig. 1.4) have evenly spaced hydrogen bonds that bridge the 

β-strands at an angle. 

 

 

Fig. 1.3.  The Anti-parallel β-sheet. 
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                   Fig. 1.4.  The Parallel β-sheet. 

 

     Most protein structures are built up from combinations of secondary structure 

elements, α-helices and β-strands, which are connected by loop regions of various 

lengths and irregular shape. The loop regions are always at the surface of protein 

molecules. Loop regions exposed to solvent are rich in charge and polar hydrophilic 

residues. Loop regions that connect two adjacent anti-parallel β-strands are called the 

hairpin loops. Short hairpin loops are usually called reverse turns or simply turns.  

 

 

          

Fig. 1.5.  Two hairpin loops between three anti-parallel β-strands.    
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1.3  Introduction to Neural Networks and Approximation Schemes 

 

The problem of learning a mapping between an input and an output space is 

essentially equivalent to the problem of synthesizing an associative memory that 

retrieves the appropriate output when presented with the input and generalizes when 

presented with new inputs. It is also equivalent to the problem of estimating the 

system that transforms inputs into outputs given a set of examples of input-output 

pairs. A classical framework for this problem is Approximation Theory. Almost all 

approximation schemes can be mapped into some kind of network that can be dubbed 

as a “neural network.” Networks, after all, can be regarded as a graphic notation for a 

large class of algorithms. In the context of this thesis, a network is a function 

represented by the composition of many basic functions.  

 To measure the quality of the approximation, one introduces a distance function 

ρto determine the distance ρ[f(X) , F(W ,  X)] of an approximation F(W, X)  

from f(X) . The distance is usually induced by a norm, for instance the standard 2L  

norm. The approximation problem can be then stated formally as: 

Approximation problem: If f (X)  is a continuous function defined on set X, and 

F(W, X)  is an approximating function that depends continuously on PW∈  and X, 

the approximation problem is to determine the parameters W* such that  

ρ [F(W*, X) ,  f(X)]  <ρ [F(W, X) ,  f(X)]      (1.1) 

for all W in the set P. 

With these definitions we can consider a few examples of F(W, X) , shown in 

the Fig. 1.6 where (a) indicates a linear approximating function, (b) indicates 

polynomial estimators and other linear combinations of nonlinear features on the 

input, and (c) indicates a back-propagation network. 

1) The classical linear case is 
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F(W, X)  = WX                        (1.2) 

where W is an m ×  n matrix and X is an n-dimensional vector. It 

corresponds to a network without hidden units; 

2) The classical approximation scheme is linear in a suitable basis of functions 

 )(XiΦ of the original inputs X, that is 

F(W, X)  = W  )(XiΦ                 (1.3) 

and corresponds to a network with one layer of hidden units. Spline 

interpolation and many approximation schemes, such as expansions in 

series of orthogonal polynomials, are included in this representation. When 

the iΦ  are products and powers of the input components iX , F is a 

polynomial. 

3) The nested sigmoids scheme (usually called back-propagation, BP in short) 

can be written as  

 )...)))((...((  )(
n

n∑ ∑ ∑=
i j

jjiF XuνwXW, ρρρρ     (1.4) 

and corresponds to a multilayer network of units that sum their inputs with 

“weights” w, v, u,… and then perform a sigmoidal transformation of this 

sum. This scheme (of nested nonlinear functions) is unusual in the classical 

theory of the approximation of continuous functions. 

In general, each approximation scheme has some specific algorithm for finding 

the optimal set of parameters W. An approach that works in general, though it may 

not be the most efficient in any specific case, is some relaxation method, such as 

gradient descent or conjugate gradient or simulated annealing, in parameter space, 

attempting to minimize the error ρ  over the set of examples. In any case, our 

discussion suggests that networks of the type used recently for simple learning tasks 

can be considered as specific methods of function approximation. In this thesis, the 
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applied networks of the type is an efficient construction of Radial Basis Function 

Networks used for fast modeling tasks and can be considered as specific methods of 

function approximation. 

 

 

 

 

Fig. 1.6.  Approximation functions with different estimators. 



 10

1.4  Thesis Outline 

      

The organization of this thesis is structured as follows. Chapter 1 introduces the 

role of neural networks and the motivation and the background of this thesis. In 

Chapter 2, the quick radial basis function networks will be described. Moreover, we 

will present the fuzzy ARTMAP which was applied to a cascade of fuzzy ARTMAP 

and QuickRBF architecture detailed in the next chapter. We then will introduce the 

benchmark SVM approaches, and our paralleling QuickRBF architectures using 

different fusion methods in Chapter 3. In Chapter 4, the experiment of computer 

simulation and the results are conducted and compared to other prevailing methods, 

such as single stage SVM approach, dual-SVM approach and the famous PHD. 

Finally, the conclusion and future work of this thesis are presented in Chapter 5.  
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Chapter 2. Quick Radial Basis Functions  

 

2.1 Radial Basis Functions and QuickRBF 

  

Networks based on radial basis functions have been developed to address some 

of the problems encountered with training multilayer perceptrons: radial basis 

functions are usually able to converge and the training is much more rapid. Both are 

feed-forward networks with similar-looking diagrams and their applications are 

similar; however, the principles of action of radial basis function networks and the 

way they are trained are quite different from multilayer perceptrons.  

An RBFN (radial basis function network) consists of three layers, namely the 

input layer, the hidden layer and the output layer. The input layer broadcasts the 

coordinates of the input vector to each of the nodes in the hidden layer. Each node in 

the hidden layer then produces an activation based on the associated radial basis 

function. Finally, each node in the output layer computes a linear combination of the 

activations of the hidden nodes.  

For radial basis function networks, each hidden unit represents the center of a 

cluster in the data space. Input to a hidden unit in a radial basis function is not the 

weighted sum of its inputs but a distance measure: a measure of how far the input 

vector is from the center of the basis function for that hidden unit. Various distance 

measures are used, but perhaps the most common is the well-known Eculidean 

distance measure. 

If x and µ are vectors, the Eculidean distance between them is given by 

∑ −=−=
i

iixD 2)(   µµx                  (2.1) 

where x is an input vector and µ is the location vector of the basis function for hidden 
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node j. The hidden node then computes its outputs as a function of the distance 

between the input vector and its center. For the Gaussian radial basis function the 

hidden unit output is  

22
2 2/

 )(
σj

jj
D

 Dh e−=                       (2.2) 

where jD  is the Euclidean distance between an input vector and the location vector 

for hidden unit j; jh  is the output of hidden j and σ  is a measure of the size of the 

cluster j (in statistical terms it is called the variance or the square of the standard 

deviation).  

How an RBFN reacts to a given input stimulus is completely determined by the 

activation functions associated with the hidden nodes and the weights associated with 

the links between the hidden layer and the output layer. The general mathematical 

form of the output nodes in an RBFN is as follows:  

   ( )∑
=

−=
k

i
iiijij xwc

1
;  )( σµφx                   (2.3) 

where )(xjc  is the function corresponding to the j-th output unit (class j) and is a 

linear combination of k radial basis function )  ( ⋅φ  with center iµ  and bandwidth iσ . 

Also, jw  is the weight vector of class j and jiw  is the weight corresponding to the 

j-th class and i-th center. The general architecture of RBFN is shown as follows. 

j 

j 
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Fig. 2.1.  General Architecture of Radial Basis Function Networks. 

 

We can see that constructing an RBFN involves determining the values of three 

sets of parameters: the centers ( iµ ), the bandwidths ( iσ ) and the weights ( jiw ), in 

order to minimize a suitable cost function. 

In QuickRBF package, the centers are randomly selected and bandwidth are 

fixed and set as 5 for each kernel function for conducting the simplest method. The 

transformation between the inputs and the corresponding outputs of the hidden units is 

now fixed. The network can thus be viewed as an equivalent single-layer network 

with linear output units. Then, the LMSE method is used to determine the weights 

associated with the links between the hidden layer and the output layer. 

Assume h is the output of the hidden layer. 

    [ ]     )(  , , )(  , )(  T
21 xxxh kφφφ K=               (2.4) 

where k is the number of centers, ) (1 xφ  is the output value of first kernel function 
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with input x. Then, the discriminant function ( )xjc  of class j can be expressed by the 

following: 

   mjc jj  ,,2 ,1    , )( T K== hwx                  (2.5) 

where m is the number of class, and jw  is the weight vector of class j. We can show 

jw  as:  

      [ ]     )(  , , )(  , )(  T
21 xxxw jkjjj www K=          (2.6) 

After calculating the discriminant function value of each class, we choose the class 

with the biggest discriminant function value as the classification result. We will 

discuss how to get the weight vectors by using least mean square error method in the 

following. 

For a classification problem with m classes, let iV  designate the i-th column 

vector of an m × m identity matrix and W be an k × m  matrix of weights: 

     [ ]     ,  ,  ,  21 mw wwW K=                   (2.7) 

Then the objective function to be minimized  

      { }   )(
1

2

∑
=

−=
m

j
j

T
jj EPJ VhWW               (2.8) 

where jP  and }  { ⋅jE  are the a priori probability and the expected value of class j, 

respectively. 

To find the optimal W that minimizes J, the gradient of )(WJ  is set to be zero:  

   { } { } ][ 2  2)( T
j

11

T 0VhWhhw =−=∇ ∑∑
==

m

j
jj

m

j
jjw EPEPJ       (2.9) 

where [0] is a k × m  null matrix. Let iK  denote the class-conditional matrix of the 

second-order moments of h, i.e. 
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{ }T hhii EK =                              (2.10) 

If K denotes the matrix of the second-order moments under the mixture distribution, 

we have 

          ∑
=

=
m

j
jjP

1
KK                               (2.11) 

Then Eq. (2.9) becomes 

        MKW =                                (2.12) 

where 

      { }    
1

T∑
=

=
m

j
jjj EP VhM                      (2.13) 

If K is nonsingular, the optimal W can be calculated by 

        MKW* 1-=                             (2.14) 

However, there is a critical drawback of this method. That is, K may be singular 

and this will crash the whole procedure. By observing the matrix Thh , we are aware 

of that the matrix Thh is symmetric positive semi-definite (PSD) matrix with rank 

equal to 1. Since K is the summation of Thh  for each training instance, K is also a 

PSD matrix with rank smaller than n. However, PSD matrix may be a singular matrix, 

so we should add the regularization term to make sure the matrix will be invertible. In 

the regularization theory, it consists in replacing the objective function as follows: 

    { } jj

m

j

m

j
jjj  EPJ wwVhWW T

11

2T    )( ∑∑
==

+−= λ         (2.15) 

where λ  is the regularization parameter.  

Then the Eq. (2.12) becomes 

           ( ) MWIK =+  λ                          (2.16) 

If we set 0>λ , ( )IK λ+  will be a positive definite (PD) matrix and therefore 

is nonsingular. The optimal *W  can be calculated by 
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     ( ) MIKW  -1* λ+=                        (2.17) 

However, the PD matrix has many good properties, and one of them is a special 

and efficient triangular decomposition, Cholesky decomposition. By using Cholesky 

decomposition, we can decompose the ( )IK λ+  matrix as follows: 

        ( ) TLLIK =+ λ                           (2.18) 

where L is a lower triangular matrix. Then, the Eq. (2.16) becomes 

    ( ) MWLL =  T                            (2.19) 

Actually, the linear system can be solved efficiently by using back-substitution 

twice. Finally, we can get the optimal *
jW  for class j from *W , and then the optimal 

discriminant function )(xjc  for class j is derived. By using the regularization theory, 

the optimal weights can be obtained analytically and efficiently. 

 

2.2  Fuzzy ART and Fuzzy ARTMAP 

  

 The aim of classification, or cluster analysis, is to organize observations into 

similar groups. Cluster analysis is a commonly used, appealing and conceptually 

intuitive statistical method. Some of its uses include pattern recognition, where pixels 

of obtained images are grouped into clusters with similar attributes for targeted 

objects; gene expression analysis, where genes with similar expression patterns are 

grouped together and so on. A cluster analysis results in a simplification of a data set 

for two reasons: first, because each cluster, which is now relatively homogeneous, can 

be analyzed separately, and second, because the data set can be summarized by a 

description of each cluster. Thus, it can be used to effectively reduce the size of 

massive amounts of data. In this thesis, a famous tool of cluster discovery, fuzzy 

ARTMAP, is adopted to retrieve certain features existing in the dataset, and detailed 
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as follows. 

 

2.2.1 Fuzzy ART 

 

 The Fuzzy ART architecture is capable of performing unsupervised learning 

against either binary or analog input vectors. Basically, Fuzzy ART consists of three 

neural layers: preprocessing 0F , matching 1F  and competitive 2F . 

Every input vector component, ia , must be normalized between 0 and 1. Layer 

0F  is formed by 2M neurons, with M being the dimension of the input vectors, and 

provides the complement code of the input vectors according to the following 

expression: 

=iI     
MiM

Mi

Mi

i

21     1
1               

≤≤+−
≤≤

−a
a

                   (2.20) 

Layer 1F  is also formed by 2M neurons and its function is to verify the match 

between input patterns and prototypes learned by the network. Finally, layer 2F  is a 

competitive layer. It works as a content addressable memory (Carpenter et al., 1998) 

where each neuron stores a prototype of a class of input vectors. 2F  is formed by a 

total number of N neurons which are recruited dynamically as they are needed to 

encode new classes of incoming vectors. Each layer is connected to the next through a 

set of adaptive weighted paths. These weights, ijW , form the long term memory 

(LTM) element of the neural network and evolve during the training phase. Every 

weight is initialized to 1 at the beginning of the training and monotonically decreases 

as the training proceeds and patterns are learned. This monotonical decrease of 

weights guarantees the eventual stability of the network.  

Unsupervised learning in Fuzzy ART is performed in the following way. Each 

input pattern, a , is put into its complement code, I, according to Eq. (2.20), and then 
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it is transmitted through 1F  to layer 2F . Each neuron j in 2F  receives an activation, 

)(IjT , that is a function of the input pattern and the LTM weights:  

NjT
j

j
j ,1,       

 

 
   K=

+

∧
=

W

WI

α
               (2.21) 

where [ ]Mjjjj WWW 221  , , , K=W  are the weights associated with neuron j;   ⋅  is 

the 1L  norm, ∑
=

=
M

i
ix

1

  x ; } ,min{ yxyx =∧  is the fuzzy AND operator, for 

vectors, }min{ with    ,yxv vyx ==∧  and [ ]∞∈ ,0α  is a choice parameter 

(typically +≈ 0α ). 

At this point, the neurons in 2F  hold a WTA competition to select which 

neuron, J; is going to learn the pattern: 

{ }j
j

TJ  maxarg=                        (2.22) 

After the competition, only the output of the winning neuron remains set to 1 and 

descends through the top-down weighted paths so that the prototype of neuron J is 

presented in layer 1F . In 1F  the matching between the input pattern, I; and the winner 

prototype, jW , is evaluated according to a criterion determined by a user defined 

parameter [ ]1 ,0∈ρ . The criterion is applied as follows: 

1) If ρ≥
∧

  
 

 
I
WI J , then the input is considered to belong to match prototype 

in J and pattern is learn by neuron J. 

2) If ρ<
∧

  
 

 
I
WI J , then the system is reset and neuron J is inhibited so that 

it no longer enters the competition for the current pattern. In addition to this, 

a match tracking mechanism raises the value of parameter ρ  so that the 

next winner must be closer to the pattern. After this new competition, 
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another winner is selected. Eventually, a new neuron in 2F  will be 

committed if none of the current neurons is found to match the pattern 

sufficiently.  

When a winner successfully passes the matching criterion, learning occurs. LTM 

weights are updated according to the following learning law:  

( ) ( ) OldOldNew 1 JJJ WIWW ββ −+∧=                (2.23) 

where [ ]1 ,0∈β  is the learning rate: +→ 0β  implies slow learning, while β=1 

implies fast learning and each pattern is incorporated to the knowledge stored by the 

network in just one iteration. 

With complement coding of patterns and the 1L  norm, each 2F  neuron can be 

represented geometrically as a hyperbox in MR  covering all the patterns that it has 

already learned. The size of the hyperbox jR  associated with neuron j, is determined 

by weights jW  as showed in Fig. 2.2. Competition in layer 2F  has also a geometric 

interpretation. Activation function, jT , is a measure of the distance between the 

pattern a  and jR  (Fig. 2.2). Therefore, the neuron with the box lying nearest to the 

pattern will receive the highest activation. Parameter α in Eq. (2.21) is used to 

break ties when several boxes include the pattern; in such case, the smaller the box is, 

the higher the activation received.  

Finally, the learning process can be viewed as the expansion of the winner 

neuron box toward the pattern. If fast learning is applied, the box grows until it 

actually covers the pattern, while under slow learning the box just expands toward the 

pattern but without covering it. 

Referring to Fig. 2.2, it shows the geometric interpretation of Fuzzy ART. Box 

jR  is associated with neuron j, while [ ]4321  , , , IIII=I  is the complement code of 
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input pattern a . Size of box jR  is determined by weighs associated with neuron j, 

[ ]jjjjj WWWW 4321  , , , =W . In a generic M dimensions case, jR  size on dimension I 

is determined by ijW  and jMiW ,+ . 
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Fig. 2.2.  Comparison of ART1 and fuzzy ART. 
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Fig. 2.3.  Geometric interpretation of Fuzzy ART. 
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2.2.2 Fuzzy ARTMAP 

 

Fuzzy ARTMAP is an incremental supervised learning of recognition 

categories and multidimensional maps in response to arbitrary sequences of analog or 

binary input vectors, which may represent fuzzy or crisp sets of features. It realizes a 

new minimax learning rule that conjointly minimizes predictive error and maximizes 

code compression, or generalization. It automatically learns a minimal number of 

recognition categories, or hidden units, which is achieved by a match tracking 

process.  

The applications of ARTMAP involve analog patterns that are not necessarily 

interpreted as fuzzy set, but serve to illustrate the properties of the system and allow 

comparison with several existing systems, such as the benchmark back-propagation 

and genetic algorithm systems. In all cases, fuzzy ARTMAP simulations lead to 

favorable levels of learned predictive accuracy, speed, and code compression in both 

on-line and off-line setting [11]. 

The fuzzy ARTMAP system incorporates two fuzzy ART modules, 

ba ART and ART , that are linked together via an inter-ART module, abF , called a 

map field. The map field is used to form predictive associations between categories 

and to realize the match tracking rule, whereby the vigilance parameter of aART  

increases in response to a predictive mismatch at bART . Match tracking reorganizes 

category structure so that predictive error is not repeated on subsequent presentations 

of the input. The interactions mediated by the map field abF  may be operationally 

characterized as follows.  

ba  and ARTART : Inputs to ba ART and ART  are in the complement code form: for 

aART , [ ]caaAI , == ; and for bART , [ ]cbbBI , ==  (Fig. 2.4). Variables in 
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aART  or bART  are designated by subscripts or superscripts a and b. For aART , let 

[ ]a
M

aaa
a

xxx 221  ,, , L≡x  denote the aF1  output vector; let [ ]a
N

aaa
a

yyy  , , , 21 L≡y  

denote the aF2  output vector; and let [ ]a
Mj

a
j

a
j

a
j a

www 2,21 ,, , L≡w  denote the j-th 

aART  weight vector. For bART , let [ ]b
M

bbb
b

xxx 221  , , , L≡x  denote the bF1  output 

vector; let [ ]b
N

bbb
b

yyy  , , , 21 L≡y  denote the bF2  output vector; and let 

[ ]b
Mk

b
k

b
k

b
k b

www 2,21 ,, , L≡w  denote the k-th bART  weight vector. For the map field, 

let [ ]ab
N

ababab
b

xxx  ,, , 21 L≡x  denote the abF  output vector; and let 

[ ]ab
Nj

ab
j

ab
j

ab
j b

www ,21 ,, , L≡w  denote the weight vector from the jth aF2  node to abF . 

Vectors abbbaa xyxyx  and  ,  ,  ,  ,  are set to 0 during input presentations. 

Map Field Activation: The map field abF  is activated whenever one of the aART  

or bART  categories is active. If node J of aF2  is chosen, then its weights ab
jw  

activate abF   If node K in bF2  is active, then the node K in abF  is activated by 1 

to 1 pathways between bF2  and abF   If both ba ART and ART  are active, then 

abF  becomes active only if aART  predicts the same category as bART  via the 

weights ab
jw . The abF  output vector abx  obeys  

abx =   

              
            

           

 

0
y

w

wy

b

ab
J

ab
J

b ∧

  

inactive is  and inactive is  if
active is  and inactive is  if

inactive is  and active is node th   theif

active is  and active is node th   theif

22

22

22

22

ba

ba

ba

ba

FF
FF

FFJ

FFJ

       (2.24) 

 

By Eq. (2.24), 0x =ab  if the prediction ab
jw  is disconfirmed by by . Such a 

mismatch event triggers an aART  search for a better category, as follows. 

. 

. 
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Match Tracking: At the start of each input presentation the aART  vigilance 

parameter aρ  equals a baseline vigilance, aρ . The map field vigilance parameter is 

abρ . If  

b
ab

ab yx      ρ<                           (2.25) 

then aρ  is increased until it is slightly larger than 1−∧ AwA  a
J , where A is the 

input to aF1 , in complement coding form. Then 

AwAx b
a
J

a ρ    <∧=                      (2.26) 

where J is the index of the active aF2  node. When this occurs, aART  search leads 

either to activation of another aF2  node J with  

AwAx b
a
J

a ρ    ≥∧=                      (2.27) 

and 

b
ab

ab
j

bab ywyx       ρ≥∧=                    (2.28) 

or, if no such node exists, to the shutdown of aF2  for the remainder of the input 

presentation. 

Map Field Learning: Learning rules determine how the map field weights ab
jkw  

change through time. Initially all template weights are set to 1, and learning proceeds 

as follows: 

( ) ( )( ))Old()Old()New(  1 jjj wIwIw ∧−+∧= ββ             (2.29) 

where βis the learning parameter.  
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Fig. 2.4.  Fuzzy ARTMAP Architecture. 

 

During the training of radial basis function, the mean values for the K basis 

functions are first randomly selected and replaced by a new grouped mean after 

distance calculation and category assignation. In this thesis, we have chosen the 

geometry means, generated from the resulting categories of fuzzy ARTMAP, as the 

center locations to replace the randomly selected and fixed entities, chosen from the 

training set. 
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Chapter 3. Protein Secondary Structure Prediction  

 

3.1 Support Vector Machine 

 

    The SVM is a new machine learning method that developed rapidly and has been 

widely used in many kinds of pattern recognition problems. The basic method of 

SVM is to transform the samples into a high-dimension Hilbert space and to seek a 

separating hyperplane in this space. The separating hyperplane, which is called the 

optimal separating hyperplane (OSH), is chosen in such a way as to maximize its 

distance from the closest training samples. As a supervised machine learning 

technology, SVM is well-founded theoretically on statistical learning theory. SVM 

has been successfully applied to many fields of pattern recognition, including object 

recognition, speaker identification and text categorization. The SVM usually 

outperforms other machine learning technologies, including Neural Networks and 

K-Nearest Neighbor classifiers. In recent years, the SVM has been used in 

bioinformatics, including gene expression profile classification, detection of remote 

protein homologies and recognition of translation initiation sites. Hua and Sun [4] 

used a single-layer SVM to analyze protein secondary structure with excellent 

prediction results. Sun et al. [12] describe a dual-layer SVM system used to predict 

secondary structure. The dual-layer SVM system combined with the PSI-BLAST 

profiles provides more accurate prediction than Hua and Sun’s [4] simple SVM 

prediction system. 
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3.2  A Dual-Layer SVM Approach 

 

    A high-performance method was developed for protein secondary structure 

prediction based on the dual-layer support vector machine (SVM) and 

position-specific scoring matrices (PSSMs). SVM is a new machine learning 

technology that has been successfully applied in solving problems in the field of 

bioinformatics. The SVM’s performance is usually better than that of traditional 

machine learning approaches. The performance was further improved by combining 

PSSM profiles with the SVM analysis. 

 However, single-stage approaches are unable to find complex relations among 

different elements in the sequence. So the results could be improved by incorporating 

the interactions or contextual information among the elements of the output sequence 

of secondary structures. Sun et al. [12] proposed a dual-layer SVM which tops the 

overall per-residue accuracy, Q3, at 75.2% on the CB513 data set. 

As with Hua and Sun’s work [4], the present analysis used the classical local 

coding scheme of the protein sequences with a sliding window. PSI-BLAST with n 

rows and 20 columns can be defined for single sequence with n residues. For the first 

layer in the prediction system, each residue is coded as a 21-dimensional vector, 

where the first 20 elements of the vector are the corresponding elements in 

PSI-BLAST matrix and the last unit was added to represent the N- and C-terminus. 

For the second layer, the vector corresponding to a residue has 4 elements, where the 

first 3 elements represent the 3 secondary structures (H, E, C). If the window length is 

l, the dimension of the feature vector is 21*l for the first layer and 4*l for the second 

layer. 

A dual-layer SVM structure was used in the prediction system (see Fig. 3.1). The 

first layer is an SVM classifier that classifies each residue of each sequence into the 3 
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secondary structure classes (H, E, or C). The one-against-rest strategy was used for 

the multiclass classification, so there were three outputs for each residue. The outputs 

represent the probability that the residue belongs to that class. Since the consecutive 

patterns are correlated (e.g., a helix contains at least 4 consecutive patterns, and a 

sheet contains at least 3 consecutive patterns), the second-layer SVM classifier 

filtered successive outputs from the first layer. The target outputs of the second layer 

were the same as the first layer. As with the first-layer SVM, the second layer also 

uses the one-against-rest strategy, with each residue classified into the class with the 

largest output value. 

This analysis used the radial basis function (RBF) kernel in both the first- and 

the second-layer SVM, where γ  is a parameter to be determined. The analysis used 

the soft-margin SVM, so the regularization parameter C  also needed to be regulated. 

1γ  and 1C  were defined as the gamma parameter and the regularization parameter 

in the first-layer SVM, while 2γ   and 2C   were defined as the gamma parameter 

and the regularization parameter in the second-layer SVM. For the CB513 data set, 

1γ = 0.05, 1C = 2.3; and 2γ = 2.5, 2C = 2.0. 
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Fig. 3.1.  The dual-layer SVM architecture. 
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3.3  Quick Radial Basis Function 

 

 Protein secondary structure prediction has been tackled by numerous learning 

algorithms including neural networks, SVM and other famous classifiers, and 

therefore presents as a classic problem for testing the effectiveness of new techniques.  

The QuickRBF package, proposed by Ou et al. [5], can be used to conduct the 

experiments on the most famous data set used in protein secondary structure 

prediction, RS126. The RS126 data has been well studied in many publications. Also, 

the same 7-fold partition used by Riis and Krogh [13] is adopted.  

According to the experiments done by Ou et al. [5], which conducted both the 

LIBSVM, proposed by Lin et al. [6], and QuickRBF approaches in the same 

environment and the same data sets. The detailed accuracy results [5] can be seen in 

Table 3.1. As the Table shows, the QuickRBF method basically delivers the same 

level of accuracy with LIBSVM. 

 

 

Table 3.1: Comparison of classification accuracy of the RS126 data set with 
PSI-BLAST PSSM profiles 

 
RS126 LIBSVM QuickRBF QuickRBF QuickRBF QuickRBF 

Centers  All 12000 5000 1000 

Set A 74.06 74.14 74.01 73.73 72.71 

Set B 77.44 77.01 76.32 75.54 74.76 

Set C 74.99 75.01 75.07 74.93 73.85 

Set D 73.11 73.69 73.72 72.44 71.44 

Set E 74.08 74.19 74.26 73.97 73.14 

Set F 76.93 77.23 77.39 77.28 76.12 

Set G 73.82 74.27 74.30 74.07 74.36 

Average 74.92 75.08 75.01 74.57 73.77 
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3.4  A Cascade of Fuzzy ARTMAP and QuickRBF Approach 

 

An important performance measure of a machine learning algorithm is its 

generalization capability. Generalization is characterized by the number of unseen 

examples correctly predicted by a learning algorithm given sample training data from 

which to learn. One way of increasing a learning algorithm’s generalization ability is 

to reduce its error on training data while providing it training data highly 

representative of the unknown target function. Fuzzy ARTMAP is designed to realize 

a new minimax learning rule that conjointly minimizes predictive error and 

maximized generalization, meaning that the system can learn to create the minimal 

number recognition categories or “hidden nodes” needed to meet the accuracy 

criterion (least prediction error). 

During the training of radial basis function, the mean values for the K basis 

functions are first randomly selected and replaced by a new grouped mean after 

distance calculation and category assignation. In this thesis, we take the advantage of 

the fuzzy ARTMAP which is capable of learning the “hidden units” automatically. 

Specifically, we have chosen the geometry means of categories resulting from the 

fuzzy ARTMAP as the center locations instead of the randomly selected and fixed 

entities chosen from the training set. Therefore, a cascade of fuzzy ARTMAP and 

QuickRBF approach is proposed and described in this section. 

Figure 3.2 shows the geometry mean of a representative category according to 

Eq. (3.1) when M = 2 in this case.  

( ) ( ) ( ) ( )( ) -1  ,,-1  ,-1 
2
1 ,, , ,2M ,2M2,1M1 21 jjMjjjjjMjj WWWWWWCCC +++= ++ KK    (3.1) 

 Referring to Fig. 3.3, the inputs a of aART  are representative vectors of 

21*w dimension. The aART  complement-coding preprocessor transforms the 
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21*w-dimensional vector a into the 2*21*w-dimensional vector )( ca a,A =  at the 

aART  layer a
0F . A is the input vector to the aART  layer a

1F . Similarly, the input to 

b
1F  is the 2*3-dimensional vector )( cb b,B =  where b represents for classes C, E, 

H encoded as (1 0 0), (0 1 0) and (0 0 1), respectively. The aART  vigilance 

parameter aρ  can be adjusted so that the resulting categories are accordingly 

changed. Similarly, other parameters such as bρ , abρ  and β can also alter the 

learning of the neural network. 

A geometry mean procedure is then used to calculate the geometry means of 

each category. In this thesis, this geometry means are applied to stand for the centers 

of each category. Replacing the randomly selected centers by the geometry means 

produced from the fuzzy ARTMAP, the cascade architecture of fuzzy ARTMAP and 

QuickRBF is achieved as shown in Fig. 3.3. 
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Fig. 3.3.  The cascade of Fuzzy ARTMAP and QuickRBF architecture. 
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3.5  A Dual-Layer QuickRBF Approach 

 

 The efficient method was developed for protein secondary structure prediction 

based on the QuickRBF approaches. QuickRBF is an innovative neural network 

technology that is capable of delivering the same level of prediction accuracy as the 

SVM, while enjoying execution efficiency during the phase to construct the classifier. 

 In this thesis, a dual-layer QuickRBF is conducted as shown in Fig. 3.4. The first 

layer is a QuickRBF classifier which maps the 21*w dimension representative vector 

into the 3 classes of PSS (H, E or C). Instead of outputting the class labels, the values 

of individual output nodes which can be regarded as the probability that the residue 

belongs to that class for each residue are fed into the second layer after treating the 

same coding scheme as Hua and Sun [4]. Specifically, the second layer QuickRBF 

classifies the 4*l vectors and the target outputs of the second layer were the same as 

the first layer. Finally, each residue is classified into the class with the largest output 

value. 
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Fig. 3.4.  The dual-layer QuickRBF architecture.
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3.6  Fusion Method 

  

3.6.1  Reliability Index 

  

 The prediction reliability index (RI) was used to access the effectiveness of the 

approaches for the prediction of the secondary structure of a new sequence. The RI 

offers an excellent tool for focusing on key regions having high prediction accuracy. 

There are different definitions of the RI. Here we used a definition similar to that 

proposed by Rost and Sander: RI = maximal_output(I)－Second_largest_output(I).  

If the value of RI > 0.9, then set RI = 0.9, so the value of RI is between 0 and 0.9. The 

distribution of the prediction accuracy with different RIs is illustrated in Fig. 3.5. The 

prediction accuracy of residues with higher RI values is much better than those with 

lower RI values. Therefore, the definition of RI reflects the prediction reliability.  

 In this research, to combine the output from the first and second layer, we 

developed a new classifier design using RI. In this scheme, the output with the 

maximum RI is chosen as the representative classifier for the final decision of the 

class. Based on the largest output value of this representative classifier, the final class 

is chosen. For example, if the output values of the decision function of each classifiers 

(first layer: C/E/H, second layer: C/E/H) are 0.1/0.2/0.7 and 0.3/0.2/0.5, their RI s are 

0.5 (0.7－0.2) and 0.2 (0.5－0.3) respectively. Therefore, the output with highest RI, 

here the first layer, can be chosen for deciding the final class. Once this representative 

classifier is selected, the final class is assigned based on the output value of this 

classifier. In this example, since the largest value of the first layer is the third node, 

the final class if assigned as helix. 
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Reliability index distribution of the first and second layer
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Fig. 3.5.  The accuracy distribution on different Reliability indices (from 0 to 0.9). 
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Fig. 3.6  The number distribution on different Reliability indices (from 0 to 0.9). 
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3.6.2  Linear Combination and Weighted Sum Fusion 

 

Since we have proposed the dual-layer QuickRBF approach based on the PSSM 

profiles to predict the protein secondary structure, we found the difference of 

predictive results between the first and second layer are somewhat distinct. This 

motivates us to design a fusion scheme combining the results of each layer in order to 

raise the overall accuracy. The idea that we have hit upon is the linear combination 

scheme. Referring to Table 3.2, each residue of the present sequence has three target 

labels denoted as C, E and H. The respective results of each label are the linear 

combination of results of the first layer and second layer. Then the final output class 

of each residue is assigned to the one with the largest output value. Namely, it applies 

 

),...,1},,,{(           )(maxarg)(1 mjHEClcxfxP lc
lc

j =∈=       (3.1) 

where lcf  are the linearly combined values shown as follows: 

jjjf

jjjf

jjjf

HHHf

EEEf

CCCf

21 H

21 E

21 C

                        

                        

                        

+==

+==

+==

                      (3.2) 

The next fusion method involves the weighted sum scheme. Referring to Table 

3.3, the respective results of three target labels are taken from the weighted sum of the 

first layer and second layer. The final output class of each residue is assigned to the 

one with the largest output value. Namely, it applies 

 

),...,1},,,{(           )(maxarg)(2 mjHECwsxfxP ws
ws

j =∈=       (3.3) 

where wsf  are the weighted sum shown as follows: 
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jjjf

jjjf

jjjf

HwHwHf

EwEwEf

CwCwCf

2211 H

2211 E

2211 C

                        

                        

                        

+==

+==

+==

                      (3.4) 

 
 

Table 3.2.  Fusion method 1: Linear combination. 

First-Layer QuickRBF Second-Layer QuickRBF
Fusion Method 2 

(Linear Combination) Pred 2  

Coil Sheet Helix Coil Sheet Helix Coil Sheet Helix Class 

1 11C  11E  11H  21C 21E  21H 1fC 1fE  1fH  11P  

2 12C  12E  12H  22C 22E  22H 2fC 2fE 2fH  12P  

3 13C  13E  13H  23C 23E  23H 3fC 3fE 3fH  13P  

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

m mC1
 

mE1  mH1  mC2 mE2 mH 2 fmC fmE fmH  mP1  

 
 

Table 3.3.  Fusion method 2: Weighted Sum. 

First-Layer QuickRBF Second-Layer QuickRBF
Fusion Method 3 
(Weighted Sum) Pred 3  

Coil Sheet Helix Coil Sheet Helix Coil Sheet Helix Class 

1 11C  11E  11H  21C 21E  21H 1fC 1fE  1fH  21P  

2 12C  12E  12H  22C 22E  22H 2fC 2fE 2fH  22P  

3 13C  13E  13H  23C 23E  23H 3fC 3fE 3fH  23P  

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

m mC1
 

mE1  mH1  mC2 mE2 mH 2 fmC fmE fmH  mP2  
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Chapter 4. Experiment and Results  

 

4.1  Datasets 

     

    The set 126 nonhomologous globular protein chains used in the experiment of 

Rost and Sander [1], referred to as the RS126 set, was used to evaluate the accuracy 

of the classifiers. The dataset contained 23606 residues with 32% α-helix, 23% 

β-strand, and 45% coil. Many current secondary structure prediction methods have 

been developed and tested on this dataset. The single stage approaches and 

second-stage approaches were implemented, with multiple sequence alignments, and 

tested on the dataset, using a sevenfold cross validation technique to estimate the 

prediction accuracy. With sevenfold cross validation approximately six-seventh of the 

database was selected for training and, after training, the left one-seventh of the 

dataset was used for testing. In order to avoid the selection of extremely biased 

partitions, the RS126 set was divided into seven subsets with each subset having 

similar size and content of each type of secondary structure as shown in Table 4.1. 

Referring to Table 4.1, four membrane proteins in the set G are eliminated in this 

thesis.  
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Table 4.1.  The database of non-homologous proteins used for seven-fold cross 

validation. All proteins have less than 25% pairwise similarity for lengths great than 

80 residues. 

 

 

 

4.2 Results 

 

4.2.1 Results of the Cascade of Fuzzy ARTMAP and QuickRBF  

 

For the architecture of the cascade of fuzzy ARTMAP and QuickRBF, we 

choose a window size of 15 amino acid residues as input according to other 

benchmark researches such as PSIPRED [14] and SVM [4]. The empirical numbers of 

categories are about 12000, 10000 and 5000 while the defaulting aρ  = 0.8, 0.7 and 

0.4, respectively. We choose bρ  = 1 since the encoded classes are linearly 

independent and orthogonal. We let the map field vigilance parameter abρ  be larger 
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than 0 which means that only the representative vectors holding the same classes will 

have the chance being learned. The β = 1 which means fast learning is adopted in 

this thesis. 

 Table 4.2 shows the performance of the secondary structure predictors using 

single QuickRBF and cascade of fuzzy ARTMAP (FARTMAP) and QuickRBF on 

the RS126 set with multiple sequence alignments. The multi-class techniques of the 

single QuickRBF gave the result for PSS prediction which achieved 75.75% of 3Q  

accuracy while the cascade of the fuzzy ARTMAP and QuickRBF only achieved 

73.91%, or even lower.  

 

Table 4.2.  Single QuickRBF and cascade of FARTMAP and QuickRBF. 

RS126 QuickRBF 
Cascade of 

FARTMAP & 
QuickRBF 

Cascade of 
FARTMAP & 

QuickRBF 

Cascade of 
FARTMAP & 

QuickRBF 

Centers 5000 12000( aρ =0.8) 10000( aρ =0.7) 5000( aρ =0.4) 

Set A 75.97 72.25 70.57 68.84 

Set B 78.34 76.21 74.89 73.77 

Set C 77.01 75.84 73.17 72.15 

Set D 72.51 71.35 68.55 67.57 

Set E 77.83 75.40 74.24 73.58 

Set F 73.26 72.18 69.81 68.22 

Set G 76.31 74.44 72.32 71.66 

Average 75.75 73.91 71.92 70.77 

 

 

4.2.2 Results of the Dual-Layer QuickRBF and Fusion Methods 

 

For QuickRBF classifiers at the first stage, similarly we choose a window size of 

15 amino acid residues as input. At the second stage, the window size of width 13 is 
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used as the coding scheme for second-layer QuickRBF technique. The numbers of 

center selected here were 5000 and 10000 on RS126 which we found the more the 

numbers of center the better the average accuracy. The first fusion method, linear 

combination of first and second layers, is determined empirically for optimal 

performance though the results are only slightly different from the second one. We 

have used several measures to evaluate the prediction accuracy. The Q3 accuracy 

indicates the percentage of correctly predicted residues of three states of secondary 

structure. The CQ , EQ , HQ  accuracies represent the percentage of correctly 

predicted residues of each type of secondary structure.  

Tables 4.3 and 4.4 show the performance of the different secondary structure 

predictors using dual-layer QuickRBF on the RS126 set with multiple sequence 

alignments. Referring to Table 4.3, the multi-class techniques of first fusion method 

has an improved accuracy comparing to the results of each layer. It gave the result for 

PSS prediction which achieved 76.32% of 3Q  accuracy while the accuracy of the 

second fusion method was 76.31%. The best result was found to be the first fusion 

method using reliability index which achieved 76.71% of 3Q  accuracy while the 

prediction accuracy obtained by various methods are shown in Table 4.5 for 

comparison.  
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Table 4.3.  Results of different fusion method with 5000 centers at first stage. 

RS126 
First layer 
QuickRBF 

Second layer
QuickRBF

Fusion Method 1 

(RI) 

Fusion Method 2

(Linear Combine)

Fusion Method 3 

(Weighted sum) 

Centers 5000 1000    

Set A 74.97 74.62 75.26 75.21 75.23 

Set B 78.34 78.28 78.31 78.58 78.55 

Set C 77.01 76.77 76.34 77.04 77.08 

Set D 72.51 71.92 77.14 72.42 72.39 

Set E 77.83 78.54 77.84 79.02 79.01 

Set F 73.26 73.31 75.81 75.10 75.05 

Set G 76.31 77.16 75.80 77.48 77.40 

Average 75.75 75.80 76.42 76.32 76.31 

 

 

Table 4.4.  Results of different fusion method with 10000 centers at first stage. 

RS126 
First layer 
QuickRBF 

Second layer
QuickRBF

Fusion Method 1 

(RI) 

Fusion Method 2

(Linear Combine)

Fusion Method 3 

(Weighted sum) 

Centers 10000 1000    

Set A 75.62 73.91 74.99 75.14 75.16 

Set B 78.37 78.46 79.19 79.16 79.10 

Set C 77.31 76.98 76.57 78.09 78.07 

Set D 72.42 73.44 77.67 73.49 73.45 

Set E 77.97 78.25 78.51 78.35 78.41 

Set F 74.27 74.35 76.06 75.98 75.94 

Set G 76.20 76.43 75.86 76.75 76.72 

Average 76.02 75.97 76.71 76.61 76.60 
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Referring to Table 4.5, PHD [2]: results obtained from Rost and Sander. DSC, 

PREDATOR, NNSSP, CONSENSUS [7]: results obtained on the RS126 set from Cuff 

and Barton. PMSVM [12]: results obtained on CB513 data set from Guo et al.. 

SVMpsi [23]: results obtaind on RS126 data set from Kim and Park. QRBF [5]: 

results obtained from the QuickRBF proposed by Ou et al.. dQRBF: results obtained 

from dual-layer QuickRBF. dfQRBF: results obtained from the first fusion method 

combining QRBF and dQRBF. 

 

Table 4.5.  Results comparison of several methods obtained on RS126 dataset. 

Method 3Q (%) CQ (%) EQ (%) HQ (%) 

PHD [2] 70.8 72.0 66.0 72.0 

DSC [7] 71.1 — — — 

PREDATOR [7] 70.3 — — — 

NNSSP [7] 72.7 — — — 

CONCENSUS [7] 74.8 — — — 

PMSVM [12] 75.2 72.8 71.5 80.4 

SVMpsi [23] 76.1 77.2 63.9 81.5 

QRBF [5] 76.0 75.0 63.1 82.9 
dQRBF 76.0 77.3 64.3 80.9 
dfQRBF 76.7 76.8 64.5 84.7 
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Chapter 5. Conclusion 

  

   In this thesis, a dual-layer QuickRBF is proposed which raises the accuracy to 

76.7% at best. Besides, we also intend to improve the performance of QuickRBF via 

modifying the QuickRBF architecture by using fuzzy ARTMAP for center generation. 

According to the results, it seems that modified architectures of QuickRBF fail to 

raise the accuracy. However, it is demonstrative that the dual-layer QuickRBF makes 

a breakthrough in improving final prediction accuracy which achieves 76.7% in terms 

of Q3. With the aids of fusion method, we think this is a promising way combining 

the results, i.e. 3-state regression value, of different approaches such as SVM (support 

vector machine). We believe that the combination of QuickRBF and SVM would 

bring the current Q3 accuracy into a new high level of reliability due to their 

respective advantages of algorithm. Combined results of QuickRBF and SVM are 

now in the working in our lab and we hope that it will reach a higher accuracy on the 

RS126 dataset. It is suggested that the combination of regression value of different 

approaches will achieve higher prediction accuracies. Besides, a drawback of the 

neural network approach is that, it is unclear how the additional evolutionary 

information affects the prediction accuracy. The inside of a learned neural network 

approach is hard to understand and to translate into useful knowledge. Therefore, the 

second future work is to further study the noise reduction existing in the dataset fed 

into the neural network. If the individual entities of training dataset are not 

independent and representative, it introduces a glut of interference which results in 

poor performance. Some of these aspects are introduced by Guo et al. [12]. Therefore, 

practical coded scheme may be developed to encompass different informative profiles 

and possibly filter the potential noise off. 
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