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ABSTRACT

The majority of human coding regions have been sequenced and several
genome sequencing projects have been completed. With the growth of large-scale
sequencing data, an efficient approach 'to analyze. protein is more important since
protein function and structurés are crucral issues. in bioinformatics. Nowadays,
scientists use X-ray diffraction”or nuclear-magnetic resonance (NMR) to solve the
protein structure problems. Even though ‘chemical experiments can achieve high
accuracy, they in the mean time incur high cost and long time to solve the protein
problems. Hence, computational tools are then applied thereto and considered as
promising ways which not only reduce the time and the cost but also maintain reliable
predictive results. The protein secondary prediction (PSS) is an intermediate but
useful step for the three-dimensional (tertiary) structure prediction. In the previous
work, researchers always focused on classifying three states of protein secondary
structure: helix, strand and coil classes. It is a common classification problem for the
prediction of protein secondary structure.

In this thesis, a high-performance method was developed for protein secondary

structure prediction based on the dual-layer QuickRBF technology that has been



successfully applied in solving problems in the field of bioinformatics. The
QuickRBF is capable of delivering the same level of performance as the state of art
approach, SVM, while having execution efficiency during the phase to construct the
classifier. The performance was further improved by combining PSSM profiles with
the QuickRBF analysis where the PSSMs were generated from PSI-BLAST profiles,
which contain important evolution information. The final prediction results were
generated from the first fusion method. We report a maximum prediction accuracy of

76.7% on the famous RS126 dataset based on the PSI-BLAST profiles.
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Chapter 1. Introduction

1.1 Motivation and the Background of This Research

The number of known proteins and its structure has been increased in recent
years. Since protein applications are more widely used, there will be a lot of problems
to be solved. Nowadays, scientists use X-ray diffraction or nuclear magnetic
resonance (NMR) to solve the protein structure problems, because protein structures
are closed related to their functions. Even though chemical experiments can achieve
high accuracy, they in the mean time incur high costs and long time to solve the
protein problems. Hence, computational tools are then applied thereto and considered
as promising ways which not only reduce the time and the costs but also maintain
reliable predictive results. This motivation is triggered by the basic hypothesis that the
three-dimensional (tertiary) structure of a protein is uniquely determined by its
sequence of amino acids. Therefore, predicting protein structure from amino acid
sequences becomes one of the most important issues in molecular biology.

The protein secondary prediction (PSS) is an intermediate and useful step for the
three-dimensional (tertiary) structure prediction. To better predict secondary structure,
many computational techniques have been proposed in the literature to solve the PSS
prediction problem, for example: PHD, a novel prediction method proposed by Rost
and Sander which uses evolutionary information and has obtained significant
improvements [1]-[3]; SVM, a new method introduced by Hua and Sun which is
based on statistical learning theory (SLT) [4]; and QuickRBF, a fast and innovative
method proposed by Ou et al. [5] which is capable of delivering the same level of

prediction accuracy as the LIBSVM proposed by Lin et al. [6], while having



execution efficiency during the phase to construct the classifier.

Despite the existence of many approaches, this issue still remains to be further
studied. We propose that the single-stage approaches are unable to find complex
relations (correlations) among different elements in the sequence. The result of
incorporating second stage could be improved by incorporating the interactions or
contextual information among the output elements of the secondary structures
prediction, which are considerably reduced in their complexity. We believe it is
feasible to enhance present single-stage approaches by cascading and fusing with
another prediction scheme at their outputs and propose to use RBFN as the
second-stage.

This thesis investigates the use of Radial Basis Function Networks for PSS
prediction. We establish the QuickRBF technique based on multi-classifier to PSS
prediction. Moreover, we caseade. two multi-class- QuickRBFs for the prediction
scheme to improve the prediction aceuracy-from the output of the first stage. Finally,
different fusion methods are applied and a high level of accuracy was achieved. We
report a prediction accuracy of 76.7% on RS126 dataset based on PSI-BLAST

profiles.

1.2 Introduction to the Protein Secondary Structure

Protein secondary structure prediction is to predict protein secondary structure
based only on its sequence, where each amino acid is assigned a structure state, helix
(H), strand (E) or coil (C). The secondary structure we used is assigned from the
experimentally determined tertiary structure by the benchmark secondary structure

definition, DSSP. According to DSSP, 8 types of protein secondary structure elements



were classified and denoted by letters: H (o-helix), E (extended B-strand), G
(3,,-helix), I (TT-helix), B (isolated B-strand), T (turn), S (bend) and ““  (rest). The

8 classes are usually reduced to three states of helix (H), sheet (E) and coil (C) by
using one of the following methods:

1. H,G and I to H; E to E; all other states to C

2. H,G to H; E,B to E; all other states to C

3. H,G to H; E to E; all other states to C

4. H to H; E,B to E; all other states to C

5. H to H; E to E; all other states to C

The 8- to 3-state reduction method can alter the apparent prediction accuracy [6].
Although we can expect an accuracy increase by using method 5, we used the first
method which is adopted by HYPROSP, [8]; [9]-

The traditional three classes: a-helix, B-sheet and loop (coil) representing all the
rest. The o-helix (Fig. 1.1) is-the=classie-element of protein structure which is
predicted to be stable and energetically“favorable in proteins. Alpha helices in proteins
are found when a stretch of consecutive residues all have the phi, psi angle pair
approximately -85° and -50°, corresponding to the allowed region in the bottom left

quadrant of the Ramachandran plot (Fig. 1.2).
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Only in the a-helix are the backbone atoms properly packed to provide a stable
structure. In globular proteins, the average length for a-helices is around ten residues,
corresponding to three turns. The rise per residue of an o-helix is 1.5 A along the
helical axis, which corresponds to about 15 A from one end to the other of an average
a-helix.

The second major structural element found in globular proteins is the B-sheet.
This structure is built up from a combination of several regions of the polypeptide
chain, in contrast to the a-helix, which is built up from one continuous region. These
regions, B-strands, are usually from five to ten residues long and are in an almost fully
extended conformation with phi, psi angles within the broad structurally allowed
region in the upper left quadrant of the Ramachandran plot (Fig. 1.2). The B-strands
can interact in two ways to form a pleated sheet- parallel and anti-parallel. Each of
the two forms has a distinctive pattern of hydrogen-bonding. The anti-parallel B-sheet
(Fig. 1.3) has narrowly spaced hydrogen-bond-pairs that alternate with widely spaced
pairs. Parallel B-sheets (Fig. 1.4) have evenly spaced hydrogen bonds that bridge the

B-strands at an angle.
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Fig. 1.4. The Parallel B-sheet.

Most protein structures are.built up from combinations of secondary structure
elements, a-helices and B-strands,.which are connected by loop regions of various
lengths and irregular shape. The loop regions.are aiways at the surface of protein
molecules. Loop regions exposed to.solvent are rich in charge and polar hydrophilic
residues. Loop regions that connect two adjacent anti-parallel B-strands are called the

hairpin loops. Short hairpin loops are usually called reverse turns or simply turns.

Fig. 1.5. Two hairpin loops between three anti-parallel B-strands.



1.3 Introduction to Neural Networks and Approximation Schemes

The problem of learning a mapping between an input and an output space is
essentially equivalent to the problem of synthesizing an associative memory that
retrieves the appropriate output when presented with the input and generalizes when
presented with new inputs. It is also equivalent to the problem of estimating the
system that transforms inputs into outputs given a set of examples of input-output
pairs. A classical framework for this problem is Approximation Theory. Almost all
approximation schemes can be mapped into some kind of network that can be dubbed
as a “neural network.” Networks, after all, can be regarded as a graphic notation for a
large class of algorithms. In the context of this thesis, a network is a function
represented by the composition of many basic functions.

To measure the quality of the.approximation, one introduces a distance function
Pto determine the distance EO[f(X);"F(W.,-X)] of an approximation F(W, X)
from f(X). The distance is usuallyinduced by a norm, for instance the standard L,
norm. The approximation problem can be then stated formally as:

Approximation problem: If /(X) is a continuous function defined on set X, and
F(W, X) is an approximating function that depends continuously on W € P and X,
the approximation problem is to determine the parameters W* such that

P F(W*, X), fIX)] <p[F(W, X), fIX)] (1.1)
for all W in the set P.

With these definitions we can consider a few examples of F(W, X), shown in
the Fig. 1.6 where (a) indicates a linear approximating function, (b) indicates
polynomial estimators and other linear combinations of nonlinear features on the
input, and (c) indicates a back-propagation network.

1) The classical linear case is



2)

3)

F(W, X) = WX (1.2)

where W is an m X n matrix and X is an n-dimensional vector. It
corresponds to a network without hidden units;

The classical approximation scheme is linear in a suitable basis of functions

@.(X) of the original inputs X, that is
F(W, X) = Wo,(X) (1.3)

and corresponds to a network with one layer of hidden units. Spline
interpolation and many approximation schemes, such as expansions in

series of orthogonal polynomials, are included in this representation. When

the @, are products and powers of the input components X,, F is a

polynomial.
The nested sigmoids scheme (usually called back-propagation, BP in short)

can be written as

F(W,X)=p(3 w,p(Q0V.p(.p(Xu,X)).))  (14)

and corresponds to a multilayer network of units that sum their inputs with
“weights” w, v, u,... and then perform a sigmoidal transformation of this
sum. This scheme (of nested nonlinear functions) is unusual in the classical

theory of the approximation of continuous functions.

In general, each approximation scheme has some specific algorithm for finding

the optimal set of parameters W. An approach that works in general, though it may
not be the most efficient in any specific case, is some relaxation method, such as
gradient descent or conjugate gradient or simulated annealing, in parameter space,
attempting to minimize the error p over the set of examples. In any case, our
discussion suggests that networks of the type used recently for simple learning tasks

can be considered as specific methods of function approximation. In this thesis, the

8



applied networks of the type is an efficient construction of Radial Basis Function
Networks used for fast modeling tasks and can be considered as specific methods of

function approximation.

Fig. 1.6. Approximation functions with different estimators.



1.4 Thesis Outline

The organization of this thesis is structured as follows. Chapter 1 introduces the
role of neural networks and the motivation and the background of this thesis. In
Chapter 2, the quick radial basis function networks will be described. Moreover, we
will present the fuzzy ARTMAP which was applied to a cascade of fuzzy ARTMAP
and QuickRBF architecture detailed in the next chapter. We then will introduce the
benchmark SVM approaches, and our paralleling QuickRBF architectures using
different fusion methods in Chapter 3. In Chapter 4, the experiment of computer
simulation and the results are conducted and compared to other prevailing methods,
such as single stage SVM approach, dual-SVM approach and the famous PHD.

Finally, the conclusion and future work of this thesis are presented in Chapter 5.

10



Chapter 2. Quick Radial Basis Functions

2.1 Radial Basis Functions and QuickRBF

Networks based on radial basis functions have been developed to address some
of the problems encountered with training multilayer perceptrons: radial basis
functions are usually able to converge and the training is much more rapid. Both are
feed-forward networks with similar-looking diagrams and their applications are
similar; however, the principles of action of radial basis function networks and the
way they are trained are quite different from multilayer perceptrons.

An RBFN (radial basis function network),consists of three layers, namely the
input layer, the hidden layer and the output layer: The input layer broadcasts the
coordinates of the input vector to each of the nodes in the hidden layer. Each node in
the hidden layer then produces “an activation based on the associated radial basis
function. Finally, each node in the output layer computes a linear combination of the
activations of the hidden nodes.

For radial basis function networks, each hidden unit represents the center of a
cluster in the data space. Input to a hidden unit in a radial basis function is not the
weighted sum of its inputs but a distance measure: a measure of how far the input
vector is from the center of the basis function for that hidden unit. Various distance
measures are used, but perhaps the most common is the well-known Eculidean
distance measure.

If x and M are vectors, the Eculidean distance between them is given by

D=[x—pl= [0 —p) 2.1)

where x is an input vector and M is the location vector of the basis function for hidden

11



node j. The hidden node then computes its outputs as a function of the distance
between the input vector and its center. For the Gaussian radial basis function the
hidden unit output is

2 2
-D; /20;

h.(D;)= € (2.2)

where D, is the Euclidean distance between an input vector and the location vector

for hidden unit j; /4, is the output of hidden j and o; is a measure of the size of the

cluster j (in statistical terms it is called the variance or the square of the standard
deviation).

How an RBFN reacts to a given input stimulus is completely determined by the
activation functions associated with the hidden nodes and the weights associated with
the links between the hidden layer and the output layer. The general mathematical

form of the output nodes in an RBEN is as follows:

0, 2.3)

¢, (xX) = ij[ ¢(”x1 — H,;

where ¢,(X) is the function corresponding to the j-th output unit (class ) and is a
linear combination of k radial basis function #(-) with center &, and bandwidtho,.
Also, W; is the weight vector of class j and W is the weight corresponding to the

Jj-th class and i-th center. The general architecture of RBFN is shown as follows.

12



Input Layer Hidden Layer Qutput Layer

Fig. 2.1.  General Architectiire of Radial Basis Function Networks.

We can see that constructing ‘an RBFN involves determining the values of three
sets of parameters: the centers (#;), the bandwidths (o;) and the weights (W), in

order to minimize a suitable cost function.

In QuickRBF package, the centers are randomly selected and bandwidth are
fixed and set as 5 for each kernel function for conducting the simplest method. The
transformation between the inputs and the corresponding outputs of the hidden units is
now fixed. The network can thus be viewed as an equivalent single-layer network
with linear output units. Then, the LMSE method is used to determine the weights
associated with the links between the hidden layer and the output layer.

Assume h is the output of the hidden layer.
T
h=[ 4, $(x)..... 4 ] 2.4)

where £ is the number of centers, ¢, (x) is the output value of first kernel function

13



with input x. Then, the discriminant function ¢; (x) of class j can be expressed by the

following:
c;(x)=w;h, j=12,...m (2.5)

where m is the number of class, and w is the weight vector of class j. We can show

w,=[ W), W), wi(x) [ (2.6)
After calculating the discriminant function value of each class, we choose the class
with the biggest discriminant function value as the classification result. We will
discuss how to get the weight vectors by using least mean square error method in the

following.

For a classification problem with m classes, let V, designate the i-th column

vector of an /77 x /m identity matrix and W-be.an 4 x /1 matrix of weights:
W=[wl, Wosoos W, ] (2.7)

Then the objective function to be minimized
L 2
J(W):ZP].EJ.{HWTh—VjH } 2.8)
j=1

where P, and E {-} are the a priori probability and the expected value of class /,

respectively.

To find the optimal W that minimizes J, the gradient of J(W) is set to be zero:
v, Jw)=2Y PE{hh" W23 PE VI =[0] (29
Jj=1 Jj=1

where [0] is a Ax /m null matrix. Let K, denote the class-conditional matrix of the

second-order moments of h, i.c.

14



K,=E{hn"} (2.10)

If K denotes the matrix of the second-order moments under the mixture distribution,

we have

K:ZPjKj (2.11)

j=1
Then Eq. (2.9) becomes
KW=M (2.12)

where

M=>PE thjV/ (2.13)

j=1

If K is nonsingular, the optimal W can be calculated by
W =K'M (2.14)
However, there is a critical*drawback of this method. That is, K may be singular
and this will crash the whole ptocedure.-By observing the matrix hh', we are aware
of that the matrix hh"is symméttic positive semi-definite (PSD) matrix with rank
equal to 1. Since K is the summation of hh' for each training instance, K is also a
PSD matrix with rank smaller than n. However, PSD matrix may be a singular matrix,
so we should add the regularization term to make sure the matrix will be invertible. In

the regularization theory, it consists in replacing the objective function as follows:
J(W):ZIP].E].{HW h-V,| }+/1_Z; wiw, (2.15)
J= J=

where A is the regularization parameter.
Then the Eq. (2.12) becomes
(K+ AW =M (2.16)
If weset 4>0, (K + /11) will be a positive definite (PD) matrix and therefore

is nonsingular. The optimal W can be calculated by

15



W =(K+)'M (2.17)

However, the PD matrix has many good properties, and one of them is a special
and efficient triangular decomposition, Cholesky decomposition. By using Cholesky
decomposition, we can decompose the (K + AI) matrix as follows:
(K+AI)=LL" (2.18)

where L is a lower triangular matrix. Then, the Eq. (2.16) becomes
(LL")w =M (2.19)
Actually, the linear system can be solved efficiently by using back-substitution

twice. Finally, we can get the optimal W] for class j from W', and then the optimal

discriminant function ¢;(x) for class is derived. By using the regularization theory,

the optimal weights can be obtained analytically and efficiently.
2.2 Fuzzy ART and Fuzzy ARTMAP

The aim of classification, or cluster analysis, is to organize observations into
similar groups. Cluster analysis is a commonly used, appealing and conceptually
intuitive statistical method. Some of its uses include pattern recognition, where pixels
of obtained images are grouped into clusters with similar attributes for targeted
objects; gene expression analysis, where genes with similar expression patterns are
grouped together and so on. A cluster analysis results in a simplification of a data set
for two reasons: first, because each cluster, which is now relatively homogeneous, can
be analyzed separately, and second, because the data set can be summarized by a
description of each cluster. Thus, it can be used to effectively reduce the size of
massive amounts of data. In this thesis, a famous tool of cluster discovery, fuzzy

ARTMAP, is adopted to retrieve certain features existing in the dataset, and detailed

16



as follows.
2.2.1 Fuzzy ART

The Fuzzy ART architecture is capable of performing unsupervised learning
against either binary or analog input vectors. Basically, Fuzzy ART consists of three
neural layers: preprocessing £, matching F, and competitive F,.

Every input vector component, a,, must be normalized between 0 and 1. Layer
F, 1s formed by 2M neurons, with M being the dimension of the input vectors, and
provides the complement code of the input vectors according to the following

expression:

, (2.20)

| a, 1<isM
| 1-a, o MiFT<i<2M

Layer F, is also formed by 2M"neurons-and its function is to verify the match
between input patterns and prototypes learned by theé network. Finally, layer F, is a
competitive layer. It works as a content'addressable memory (Carpenter ef al., 1998)
where each neuron stores a prototype of a class of input vectors. F, is formed by a
total number of N neurons which are recruited dynamically as they are needed to

encode new classes of incoming vectors. Each layer is connected to the next through a

set of adaptive weighted paths. These weights, W, form the long term memory

(LTM) element of the neural network and evolve during the training phase. Every
weight is initialized to 1 at the beginning of the training and monotonically decreases
as the training proceeds and patterns are learned. This monotonical decrease of
weights guarantees the eventual stability of the network.

Unsupervised learning in Fuzzy ART is performed in the following way. Each

input pattern, a, is put into its complement code, I, according to Eq. (2.20), and then
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it is transmitted through F, to layer F,.Eachneuron jin F, receives an activation,

T;(D), that is a function of the input pattern and the LTM weights:
r=+—'  j=1..,N (2.21)

where Wj:[W w

iy j2""’Wj2MJ are the weights associated with neuron j;

| is
M

the L' norm, |x|=)x,; xAy=min{x,y} is the fuzzy AND operator, for
i=1

vectors, XAy=vVv with v=min{x,y} and «e€ [0,00] is a choice parameter
(typically a~0").
At this point, the neurons in F, hold a WTA competition to select which

neuron, J; is going to learn the pattern:

= argmax{Tj} (2.22)

J
After the competition, only the output of the winning neuron remains set to 1 and
descends through the top-down weighted-‘paths so that the prototype of neuron J is

presented in layer F]. In F, the matching between the input pattern, I; and the winner

prototype, W,, is evaluated according to a criterion determined by a user defined

parameter p € [O, 1]. The criterion is applied as follows:

IAW
1) If u > p, then the input is considered to belong to match prototype

1]

in J and pattern is learn by neuron J.

|I/\Wj|

1]

it no longer enters the competition for the current pattern. In addition to this,

2) If < p, then the system is reset and neuron J is inhibited so that

a match tracking mechanism raises the value of parameter p so that the

next winner must be closer to the pattern. After this new competition,
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another winner is selected. Eventually, a new neuron in F, will be
committed if none of the current neurons is found to match the pattern
sufficiently.

When a winner successfully passes the matching criterion, learning occurs. LTM

weights are updated according to the following learning law:

W = B(WOAT)+(1- B)W O (2.23)
where [ e [O, 1] is the learning rate: S — 0" implies slow learning, while [3=1
implies fast learning and each pattern is incorporated to the knowledge stored by the
network in just one iteration.

With complement coding of patterns and the L' norm, each F, neuron can be
represented geometrically as a hyperbox,in ,R" covering all the patterns that it has

already learned. The size of the hyperbox R, assoeiated with neuron j, is determined
by weights W, as showed in Fig. 2, 2. Competition in layer F, has also a geometric
interpretation. Activation function, “T;;-is @ mcasure of the distance between the

pattern a and R, (Fig. 2.2). Therefore, the neuron with the box lying nearest to the

pattern will receive the highest activation. Parameter O in Eq. (2.21) is used to
break ties when several boxes include the pattern; in such case, the smaller the box is,
the higher the activation received.

Finally, the learning process can be viewed as the expansion of the winner
neuron box toward the pattern. If fast learning is applied, the box grows until it
actually covers the pattern, while under slow learning the box just expands toward the
pattern but without covering it.

Referring to Fig. 2.2, it shows the geometric interpretation of Fuzzy ART. Box

R, is associated with neuron j, while I= [11,] VAV 4] 1s the complement code of
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input pattern a . Size of box R, is determined by weighs associated with neuron j,

W, =|w,.m,,.W

1o 30 Wa; J In a generic M dimensions case, R; size on dimension I

is determined by W and W,

i+M,j *
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2.2.2 Fuzzy ARTMAP

Fuzzy ARTMAP is an incremental supervised learning of recognition
categories and multidimensional maps in response to arbitrary sequences of analog or
binary input vectors, which may represent fuzzy or crisp sets of features. It realizes a
new minimax learning rule that conjointly minimizes predictive error and maximizes
code compression, or generalization. It automatically learns a minimal number of
recognition categories, or hidden units, which is achieved by a match tracking
process.

The applications of ARTMAP involve analog patterns that are not necessarily
interpreted as fuzzy set, but serve to illustrate the properties of the system and allow
comparison with several existing.Systems, such as the benchmark back-propagation
and genetic algorithm systems. In.‘all cases; fuzzy: ARTMAP simulations lead to
favorable levels of learned predictive accuracy, speed, and code compression in both
on-line and off-line setting [11].

The fuzzy ARTMAP system incorporates two fuzzy ART modules,

ART, and ART,, that are linked together via an inter-ART module, F @ called a

map field. The map field is used to form predictive associations between categories

and to realize the match tracking rule, whereby the vigilance parameter of ART,
increases in response to a predictive mismatch at ART, . Match tracking reorganizes
category structure so that predictive error is not repeated on subsequent presentations

of the input. The interactions mediated by the map field F*° may be operationally

characterized as follows.

ART, and ART, : Inputs to ART, and ART, are in the complement code form: for

ART I=A=[a,a"]; and for ART,, I=B=[b,bc] (Fig. 2.4). Variables in

a?’
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ART, or ART, are designated by subscripts or superscripts @ and b. For ART,, let
x‘ = [xl",x;,-~-, xg’Mu] denote the F* output vector; let y* = [yf,y§,~-~, y]‘i,a]

a

denote the F," output vector; and let wi = [wjl,wﬂ;--,wj,mu] denote the j-th

ART, weight vector. For ART,, let x” E[xf’ ,xé’,---,xé’Mb] denote the F’ output
vector; let y’ = [ yLyh, e yfi,b] denote the F, output vector; and let
w! = [w,fl, Wiast s Wi, Mb] denote the k-th ART, weight vector. For the map field,
let x”= [xfb,xé’b,~-~,x]‘i,i denote the F, output vector; and let
w? = [w. wjz,-n,w;‘f’Nb] denote the weight vector from the jth F,' node to F®.
Vectors x“, y*, x”, y”, andx“ are set.to.0 during input presentations.

Map Field Activation: The map field F® - jis activated whenever one of the ART,
or ART, categories is active.If nodem/ofF, 'is chosen, then its weights wjb
activate F*. Ifnode K in F, is active, then the node K in F is activated by 1
to 1 pathways between F, and F* If both ART, and ART, are active, then

F® becomes active only if ART, predicts the same category as ART, via the

weights w?’. The F* output vector x* obeys

Yy AW if the Jth F,' nodeis activeand F, is active
. w if the Jth F, node s active and F, is inactive
x"= ’ o b (2.24)
y’ if F,' isinactiveand F,’ is active
0 if F) isinactiveand F} isinactive

By Eq. (2.24), x® =0 if the prediction w? is disconfirmed by y’. Such a

mismatch event triggers an ART, search for a better category, as follows.
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Match Tracking: At the start of each input presentation the ART, vigilance

parameter p, equals a baseline vigilance, p,. The map field vigilance parameter is
pab : If

‘ Xab

< pu| ¥’ (2.25)

then p, 1is increased until it is slightly larger than ‘A AW A|_1 , where A is the

inputto F“, in complement coding form. Then

< py|A (2.26)

‘x“ =‘AAWZ

where J is the index of the active F,’ node. When this occurs, ART, search leads

either to activation of another F," node J with

[

=|Anwilz p,|Al (2.27)
and

ab
‘X 2 pab

:‘ y’ /\w;’.b yb‘ (2.28)

or, if no such node exists, to the ‘shutdown.of “F," for the remainder of the input

presentation.

Map Field Learning: Learning rules determine how the map field weights wjf
change through time. Initially all template weights are set to 1, and learning proceeds
as follows:

Wi = (1AW )4 (1- g TAWE?) (2.29)

where [3is the learning parameter.
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During the training of radiél b;fsis’ function, th‘La mean values for the K basis

functions are first randomly sellactéci ‘and re;plaCéd by a new grouped mean after

distance calculation and category assignation. In this thesis, we have chosen the

geometry means, generated from the resulting categories of fuzzy ARTMAP, as the

center locations to replace the randomly selected and fixed entities, chosen from the

training set.
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Chapter 3. Protein Secondary Structure Prediction

3.1 Support Vector Machine

The SVM is a new machine learning method that developed rapidly and has been
widely used in many kinds of pattern recognition problems. The basic method of
SVM is to transform the samples into a high-dimension Hilbert space and to seek a
separating hyperplane in this space. The separating hyperplane, which is called the
optimal separating hyperplane (OSH), is chosen in such a way as to maximize its
distance from the closest training samples. As a supervised machine learning
technology, SVM is well-founded theoretically on statistical learning theory. SVM
has been successfully applied to many fields of pattern recognition, including object
recognition, speaker identification and text categorization. The SVM usually
outperforms other machine learfung. technologies, including Neural Networks and
K-Nearest Neighbor classifiers. In recent years, the SVM has been used in
bioinformatics, including gene expression profile classification, detection of remote
protein homologies and recognition of translation initiation sites. Hua and Sun [4]
used a single-layer SVM to analyze protein secondary structure with excellent
prediction results. Sun et al. [12] describe a dual-layer SVM system used to predict
secondary structure. The dual-layer SVM system combined with the PSI-BLAST
profiles provides more accurate prediction than Hua and Sun’s [4] simple SVM

prediction system.

26



3.2 A Dual-Layer SVM Approach

A high-performance method was developed for protein secondary structure
prediction based on the dual-layer support vector machine (SVM) and
position-specific scoring matrices (PSSMs). SVM is a new machine learning
technology that has been successfully applied in solving problems in the field of
bioinformatics. The SVM’s performance is usually better than that of traditional
machine learning approaches. The performance was further improved by combining
PSSM profiles with the SVM analysis.

However, single-stage approaches are unable to find complex relations among
different elements in the sequence. So the results could be improved by incorporating
the interactions or contextual information among the elements of the output sequence
of secondary structures. Sun et-al.[12] propesed a-dual-layer SVM which tops the
overall per-residue accuracy, Q3; at 75:2%-on.the CB513 data set.

As with Hua and Sun’s work<[4};.the present analysis used the classical local
coding scheme of the protein sequences with a sliding window. PSI-BLAST with »
rows and 20 columns can be defined for single sequence with n residues. For the first
layer in the prediction system, each residue is coded as a 21-dimensional vector,
where the first 20 elements of the vector are the corresponding elements in
PSI-BLAST matrix and the last unit was added to represent the N- and C-terminus.
For the second layer, the vector corresponding to a residue has 4 elements, where the
first 3 elements represent the 3 secondary structures (H, E, C). If the window length is
[, the dimension of the feature vector is 21*/ for the first layer and 4*/ for the second
layer.

A dual-layer SVM structure was used in the prediction system (see Fig. 3.1). The

first layer is an SVM classifier that classifies each residue of each sequence into the 3
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secondary structure classes (H, E, or C). The one-against-rest strategy was used for
the multiclass classification, so there were three outputs for each residue. The outputs
represent the probability that the residue belongs to that class. Since the consecutive
patterns are correlated (e.g., a helix contains at least 4 consecutive patterns, and a
sheet contains at least 3 consecutive patterns), the second-layer SVM classifier
filtered successive outputs from the first layer. The target outputs of the second layer
were the same as the first layer. As with the first-layer SVM, the second layer also
uses the one-against-rest strategy, with each residue classified into the class with the
largest output value.

This analysis used the radial basis function (RBF) kernel in both the first- and

the second-layer SVM, where y is a parameter to be determined. The analysis used
the soft-margin SVM, so the regularization parameter C also needed to be regulated.
y, and C, were defined as the gamma parameter dnd the regularization parameter

in the first-layer SVM, while 7, . and C,-‘were.defined as the gamma parameter

and the regularization parameter in the'second-layer SVM. For the CB513 data set,

7,=0.05, C,=23;and y,=2.5, C,=2.0.
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3.3 Quick Radial Basis Function

Protein secondary structure prediction has been tackled by numerous learning
algorithms including neural networks, SVM and other famous classifiers, and
therefore presents as a classic problem for testing the effectiveness of new techniques.

The QuickRBF package, proposed by Ou ef al. [5], can be used to conduct the
experiments on the most famous data set used in protein secondary structure
prediction, RS126. The RS126 data has been well studied in many publications. Also,
the same 7-fold partition used by Riis and Krogh [13] is adopted.

According to the experiments done by Ou et al. [5], which conducted both the
LIBSVM, proposed by Lin et al. [6], and QuickRBF approaches in the same
environment and the same data sets,«The detailed accuracy results [5] can be seen in
Table 3.1. As the Table shows; the QuickRBE. method basically delivers the same

level of accuracy with LIBSVM.

Table 3.1: Comparison of classification accuracy of the RS126 data set with
PSI-BLAST PSSM profiles

RS126 [LIBSVM|QuickRBF|QuickRBF|QuickRBF|QuickRBF

Centers All 12000 | 5000 1000
SetA | 74.06 | 74.14 | 7401 | 73.73 | 72.71
SetB | 77.44 | 77.01 | 7632 | 7554 | 74.76
SetC | 7499 | 75.01 | 75.07 | 7493 | 73.85
SetD | 73.11 | 73.69 | 73.72 | 7244 | 71.44
SetE | 74.08 | 74.19 | 7426 | 73.97 | 73.14
SetF | 76.93 | 7723 | 7739 | 7728 | 76.12
SetG | 73.82 | 7427 | 7430 | 74.07 | 7436

Average| 74.92 | 7508 | 7501 | 7457 | 73.77
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3.4 A Cascade of Fuzzy ARTMAP and QuickRBF Approach

An important performance measure of a machine learning algorithm is its
generalization capability. Generalization is characterized by the number of unseen
examples correctly predicted by a learning algorithm given sample training data from
which to learn. One way of increasing a learning algorithm’s generalization ability is
to reduce its error on training data while providing it training data highly
representative of the unknown target function. Fuzzy ARTMAP is designed to realize
a new minimax learning rule that conjointly minimizes predictive error and
maximized generalization, meaning that the system can learn to create the minimal
number recognition categories or,‘hidden nedes” needed to meet the accuracy
criterion (least prediction error).

During the training of radial basis-function, the mean values for the K basis
functions are first randomly selected and replaced by a new grouped mean after
distance calculation and category assignation. In this thesis, we take the advantage of
the fuzzy ARTMAP which is capable of learning the “hidden units” automatically.
Specifically, we have chosen the geometry means of categories resulting from the
fuzzy ARTMAP as the center locations instead of the randomly selected and fixed
entities chosen from the training set. Therefore, a cascade of fuzzy ARTMAP and
QuickRBF approach is proposed and described in this section.

Figure 3.2 shows the geometry mean of a representative category according to
Eq. (3.1) when M = 2 in this case.

(clj,czj,...,ch)%(mj (=W ) W+ (W ) Wy, + (- ,)) BD)

Referring to Fig. 3.3, the inputs a of ART, are representative vectors of
21*w dimension. The ART, complement-coding preprocessor transforms the
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21 *w-dimensional vector a into the 2*21 *w-dimensional vector A =(a,a“) at the
ART, layer F;.A is the input vector to the ART, layerF. Similarly, the input to

F is the 2*3-dimensional vector B =(b,b‘) where b represents for classes C, E,
H encoded as (1 0 0), (0 1 0) and (0 O 1), respectively. The ART, vigilance
parameter p, can be adjusted so that the resulting categories are accordingly
changed. Similarly, other parameters such as p,, p, and [3 can also alter the
learning of the neural network.

A geometry mean procedure is then used to calculate the geometry means of
each category. In this thesis, this geometry means are applied to stand for the centers
of each category. Replacing the randomly selected centers by the geometry means
produced from the fuzzy ARTMAP, the. cascade architecture of fuzzy ARTMAP and

QuickRBF is achieved as shown in Fig. 3:3:
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Fig. 3.3. The cascade of Fuzzy ARTMAP and QuickRBF architecture.
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3.5 A Dual-Layer QuickRBF Approach

The efficient method was developed for protein secondary structure prediction
based on the QuickRBF approaches. QuickRBF is an innovative neural network
technology that is capable of delivering the same level of prediction accuracy as the
SVM, while enjoying execution efficiency during the phase to construct the classifier.

In this thesis, a dual-layer QuickRBF is conducted as shown in Fig. 3.4. The first
layer is a QuickRBF classifier which maps the 21*w dimension representative vector
into the 3 classes of PSS (H, E or C). Instead of outputting the class labels, the values
of individual output nodes which can be regarded as the probability that the residue
belongs to that class for each residue are fed into the second layer after treating the
same coding scheme as Hua and.Sun [4]. Specifically, the second layer QuickRBF
classifies the 4*/ vectors and the target outputs of the second layer were the same as
the first layer. Finally, each residue is-€lassified into the class with the largest output

value.
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3.6 Fusion Method

3.6.1 Reliability Index

The prediction reliability index (RI) was used to access the effectiveness of the
approaches for the prediction of the secondary structure of a new sequence. The RI
offers an excellent tool for focusing on key regions having high prediction accuracy.
There are different definitions of the RI. Here we used a definition similar to that
proposed by Rost and Sander: RI = maximal output(I) Second largest output(I).
If the value of RI > 0.9, then set RI = 0.9, so the value of RI is between 0 and 0.9. The
distribution of the prediction accuracy with different Rls is illustrated in Fig. 3.5. The
prediction accuracy of residues with higher RI'values is much better than those with
lower RI values. Therefore, the definition of RI reflects the prediction reliability.

In this research, to combine the outputfrom-the first and second layer, we
developed a new classifier designs using REIn this scheme, the output with the
maximum RI is chosen as the representative classifier for the final decision of the
class. Based on the largest output value of this representative classifier, the final class
is chosen. For example, if the output values of the decision function of each classifiers
(first layer: C/E/H, second layer: C/E/H) are 0.1/0.2/0.7 and 0.3/0.2/0.5, their RI s are
0.5 (0.7 0.2) and 0.2 (0.5 0.3) respectively. Therefore, the output with highest RI,
here the first layer, can be chosen for deciding the final class. Once this representative
classifier is selected, the final class is assigned based on the output value of this
classifier. In this example, since the largest value of the first layer is the third node,

the final class if assigned as helix.
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3.6.2 Linear Combination and Weighted Sum Fusion

Since we have proposed the dual-layer QuickRBF approach based on the PSSM
profiles to predict the protein secondary structure, we found the difference of
predictive results between the first and second layer are somewhat distinct. This
motivates us to design a fusion scheme combining the results of each layer in order to
raise the overall accuracy. The idea that we have hit upon is the linear combination
scheme. Referring to Table 3.2, each residue of the present sequence has three target
labels denoted as C, E and H. The respective results of each label are the linear
combination of results of the first layer and second layer. Then the final output class

of each residue is assigned to the one with the largest output value. Namely, it applies

B, (x) = arg max,f;.(x) (lee{C,E.,H},j=1,...,m) 3.1

le

where f,. are the linearly combined-values'shown as follows:
Je=Cr =G+ G,
Je=E, =E , +E,; (3.2)
fu=H,;=H  +H,,
The next fusion method involves the weighted sum scheme. Referring to Table
3.3, the respective results of three target labels are taken from the weighted sum of the

first layer and second layer. The final output class of each residue is assigned to the

one with the largest output value. Namely, it applies

P, (x) = argmax f, (x) (wse{C,E,H},j=1,..,m) (3.3)

ws

where f, are the weighted sum shown as follows:
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Je= ij = chlj +W2C2j
I = E,, =wE  +wWE,, 3.4
Ju=H;; =wH, +w,H

2j

Table 3.2. Fusion method 1: Linear combination.

Fusion Method 2

First-Layer QuickRBF | Second-Layer QuickRBF (Linear Combination) Pred 2

Coil | Sheet | Helix | Coil | Sheet | Helix | Coil | Sheet | Helix Class

Cll E11 Hl] C21 E21 H21 Cfl Efl Hfl Pl]

C12 E12 le sz Ezz sz Cf2 Ef2 Hf2 Plz

C13 E13 H13 C23 E23 H23 Cf3 Ef3 Hf3 1)13

m m m m m m m

Table 3.3. Fusion method 2: Weighted Sum.

Fusion Method 3

First-Layer QuickRBF | Second-Layer QuickRBF (Weighted Sum) Pred 3

Coil | Sheet | Helix | Coil | Sheet | Helix | Coil | Sheet | Helix Class

Cll E11 H11 C21 EZI H21 Cfl Efl Hfl le

C12 E12 H12 C22 E22 H22 sz Ef2 Hf2 P22

C13 E13 H13 C23 E23 H23 Cf3 Ef3 Hf3 st

Im Im m C2m E2m m Cfm Efm Hfm })2m
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Chapter 4. Experiment and Results

4.1 Datasets

The set 126 nonhomologous globular protein chains used in the experiment of
Rost and Sander [1], referred to as the RS126 set, was used to evaluate the accuracy
of the classifiers. The dataset contained 23606 residues with 32% a-helix, 23%
B-strand, and 45% coil. Many current secondary structure prediction methods have
been developed and tested on this dataset. The single stage approaches and
second-stage approaches were implemented, with multiple sequence alignments, and
tested on the dataset, using a sevenfold ecross:validation technique to estimate the
prediction accuracy. With sevenfold cross validation:approximately six-seventh of the
database was selected for training and, after training, the left one-seventh of the
dataset was used for testing. Inorder to avoid the selection of extremely biased
partitions, the RS126 set was divided into seven subsets with each subset having
similar size and content of each type of secondary structure as shown in Table 4.1.
Referring to Table 4.1, four membrane proteins in the set G are eliminated in this

thesis.
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Table 4.1. The database of non-homologous proteins used for seven-fold cross
validation. All proteins have less than 25% pairwise similarity for lengths great than

80 residues.

256b_A  2aat Sabp Gacn lacx Sadh 3ait
set A 2ak3_A  2alp 9api_A  9apiB lazu levo 1bbp.A

1bds Ibmv_l 1bmv_2 3blm 4bp2

2cab Tcat_A lebh leeh 2cey-A ledh ledt_A
set B 3cla 3cln dems 4epal Gepa Gepp depv

lern lese l Gets 2evp S5evt_R

leca Gdfr 3ebx Ser2 K letu 1fc2.C Lfdl_H
set C ldur LEkf 1fnd 2fxb 1fxi A 2fox lgbn_A

2gbp ladb lgdl_ O 2gls_A  2gnd

lgpl-A derl Lhip Ghir 3hmg A 3hmg B 2hmz_A
set D Shvp-A  2ilb 3ich Ticd Lil8-A 9ins_B 1158

lap 5ldh 1gdj 2lhb 1lmb_3

2ltn_A 2ltn.B - Slyz Ilmep_ . 2mev_.d  2orl_L lovo_A
set B Ipaz Opap 2pcy 4ptk 3pgm 2phh lpyvp

11092  2Zpab_ A 2mhu lmrt Ippt

lrbp Irhd drhv_l drhv.d drhvod Jrnt Trsa
set F 2rsp.A - drxn 1s01 3sdhA dsgh.l Ishl 2sns

2so0d_ B 2stv 2tegp.l 1tes_| 3tim_A

6tmn_lk  2tmv_P 1tnf_A 4ts1_A lubg 2utg A 9wega A
set G 2wrp-R 1bks_.A 1bks.B 4xia_ A  2tsc_A lpre.C 1pre_H

lpre_L lpre_M

4.2 Results

4.2.1 Results of the Cascade of Fuzzy ARTMAP and QuickRBF

For the architecture of the cascade of fuzzy ARTMAP and QuickRBF, we
choose a window size of 15 amino acid residues as input according to other
benchmark researches such as PSIPRED [14] and SVM [4]. The empirical numbers of

categories are about 12000, 10000 and 5000 while the defaulting p, = 0.8, 0.7 and
0.4, respectively. We choose p, = 1 since the encoded classes are linearly

independent and orthogonal. We let the map field vigilance parameter p, be larger
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than 0 which means that only the representative vectors holding the same classes will
have the chance being learned. The [3 = 1 which means fast learning is adopted in
this thesis.

Table 4.2 shows the performance of the secondary structure predictors using
single QuickRBF and cascade of fuzzy ARTMAP (FARTMAP) and QuickRBF on
the RS126 set with multiple sequence alignments. The multi-class techniques of the
single QuickRBF gave the result for PSS prediction which achieved 75.75% of Q,
accuracy while the cascade of the fuzzy ARTMAP and QuickRBF only achieved

73.91%, or even lower.

Table 4.2.  Single QuickRBF and cascade of FARTMAP and QuickRBF.

Cascade of Cascade of Cascade of
RS126 |QuickRBF| FARTMAP & | ‘FARTMAP & | FARTMAP &
QuickRBF QuickRBF QuickRBF
Centers | 5000 |12000( p,=0.8){10000¢ o, =0.7)[5000( p,=0.4)
Set A 75.97 72.25 70.57 68.84
Set B 78.34 76.21 74.89 73.77
Set C 77.01 75.84 73.17 72.15
Set D 72.51 71.35 68.55 67.57
Set E 77.83 75.40 74.24 73.58
Set F 73.26 72.18 69.81 68.22
Set G 76.31 74.44 72.32 71.66
Average | 75.75 73.91 71.92 70.77

4.2.2 Results of the Dual-Layer QuickRBF and Fusion Methods

For QuickRBF classifiers at the first stage, similarly we choose a window size of

15 amino acid residues as input. At the second stage, the window size of width 13 is
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used as the coding scheme for second-layer QuickRBF technique. The numbers of
center selected here were 5000 and 10000 on RS126 which we found the more the
numbers of center the better the average accuracy. The first fusion method, linear
combination of first and second layers, is determined empirically for optimal
performance though the results are only slightly different from the second one. We
have used several measures to evaluate the prediction accuracy. The Q3 accuracy
indicates the percentage of correctly predicted residues of three states of secondary
structure. The Q., Qg, Q, accuracies represent the percentage of correctly
predicted residues of each type of secondary structure.

Tables 4.3 and 4.4 show the performance of the different secondary structure
predictors using dual-layer QuickRBF on the RS126 set with multiple sequence
alignments. Referring to Table 4.3} the multi-class techniques of first fusion method
has an improved accuracy comparing to the results of each layer. It gave the result for
PSS prediction which achieved 76.32% of Q. aceuracy while the accuracy of the
second fusion method was 76.31%: The best-tfesult was found to be the first fusion
method using reliability index which achieved 76.71% of Q, accuracy while the
prediction accuracy obtained by various methods are shown in Table 4.5 for

comparison.
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Table 4.3.

Results of different fusion method with 5000 centers at first stage.

First layer | Second layer | Fusion Method 1 | Fusion Method 2 | Fusion Method 3
RS126 QuickRBF | QuickRBF (RI) (Linear Combine) | (Weighted sum)
Centers 5000 1000

Set A 74.97 74.62 75.26 75.21 75.23
Set B 78.34 78.28 78.31 78.58 78.55
Set C 77.01 76.77 76.34 77.04 77.08
Set D 72.51 71.92 77.14 72.42 72.39
Set E 77.83 78.54 77.84 79.02 79.01
Set F 73.26 73.31 75.81 75.10 75.05
Set G 76.31 77.16 75.80 77.48 77.40
Average| 75.75 75.80 76.42 76.32 76.31

Table 4.4. Results of different fusion-method with 10000 centers at first stage.

First layer | Second layer, | Fusion Method 1 f:Fusion Method 2 | Fusion Method 3
RS126 QuickRBF | QuickRBE (RI) (Linear Combine) | (Weighted sum)
Centers| 10000 1000

Set A 75.62 73.91 74.99 75.14 75.16
Set B 78.37 78.46 79.19 79.16 79.10
Set C 77.31 76.98 76.57 78.09 78.07
Set D 72.42 73.44 77.67 73.49 73.45
Set E 77.97 78.25 78.51 78.35 78.41
Set F 74.27 74.35 76.06 75.98 75.94
Set G 76.20 76.43 75.86 76.75 76.72
Average| 76.02 75.97 76.71 76.61 76.60

44




Referring to Table 4.5, PHD [2]: results obtained from Rost and Sander. DSC,
PREDATOR, NNSSP, CONSENSUS [7]: results obtained on the RS126 set from Cuff
and Barton. PMSVM [12]: results obtained on CB513 data set from Guo et al..
SVMpsi [23]: results obtaind on RS126 data set from Kim and Park. QRBF [5]:
results obtained from the QuickRBF proposed by Ou et al.. dQRBF: results obtained
from dual-layer QuickRBF. dfQRBF: results obtained from the first fusion method

combining QRBF and dQRBF.

Table 4.5. Results comparison of several methods obtained on RS126 dataset.

Method Q;(%) Q¢ (%) Qg (%) Qy (%)
PHD [2] 70.8 72.0 66.0 72.0
DSC [7] 71 = — —
PREDATOR [7] 70.3 L3 — —
NNSSP [7] 72.7 £ — —
CONCENSUS [7] 74.8 s | — —
PMSVM [12] 752 728 71.5 80.4
SVMpsi [23] 76.1 77.2 63.9 81.5
QRBF [5] 76.0 75.0 63.1 82.9
dQRBF 76.0 77.3 64.3 80.9
dfQRBF 76.7 76.8 64.5 84.7
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Chapter 5. Conclusion

In this thesis, a dual-layer QuickRBF is proposed which raises the accuracy to
76.7% at best. Besides, we also intend to improve the performance of QuickRBF via
modifying the QuickRBF architecture by using fuzzy ARTMAP for center generation.
According to the results, it seems that modified architectures of QuickRBF fail to
raise the accuracy. However, it is demonstrative that the dual-layer QuickRBF makes
a breakthrough in improving final prediction accuracy which achieves 76.7% in terms
of Q3. With the aids of fusion method, we think this is a promising way combining
the results, i.e. 3-state regression value, of different approaches such as SVM (support
vector machine). We believe that the combination of QuickRBF and SVM would
bring the current Q3 accuracy: into-a new high devel of reliability due to their
respective advantages of algorithm. Combined results of QuickRBF and SVM are
now in the working in our lab and ' we hope that it will reach a higher accuracy on the
RS126 dataset. It is suggested that the combination of regression value of different
approaches will achieve higher prediction accuracies. Besides, a drawback of the
neural network approach is that, it is unclear how the additional evolutionary
information affects the prediction accuracy. The inside of a learned neural network
approach is hard to understand and to translate into useful knowledge. Therefore, the
second future work is to further study the noise reduction existing in the dataset fed
into the neural network. If the individual entities of training dataset are not
independent and representative, it introduces a glut of interference which results in
poor performance. Some of these aspects are introduced by Guo et al. [12]. Therefore,
practical coded scheme may be developed to encompass different informative profiles

and possibly filter the potential noise off.
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