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利用實驗分析加速嵌入式 Linux 2.6.14 核心的 

開機時間 

 

研 究 生：楊志堅     指導教授：黃育綸 博士 

 

國 立 交 通 大 學 

電 機 與 控 制 工 程 研 究 所 

 

摘要 

在本篇論文中，我們嘗試利用實驗性的分析方法降低嵌入式Linux 2.6.14核

心的開機時間，並且採用內建德儀OMAP5912核心的開發套件作為實驗平台。首

先我們分析核心的開機流程，接著使用示波器與邏輯分析儀測量整個開機流程中

每一個函式區塊的時間需求。根據所收集到的時間量測資料，我們選擇執行時間

較長的部分，研究與其相關的U-Boot、Linux核心以及BusyBox原始碼，最後判

斷該部分的操作是否可以在經過修改程式碼之後被簡化或是甚至在沒有副作用

的情況下略過。在初步的結果裡，我們已經確認在開機流程中有許多項目是可以

加以修訂來加速開機時間。實驗結果顯示，利用我們所提出的核心設定以及最佳

化方法，我們可以在使用U-Boot 1.1.3、Linux2.6.14核心與BusyBox 1.01的

OMAP5912平台上將整體開機時間由原本的7934.41毫秒大幅減少到1477.77毫

秒。而如此的快速開機是眾多嵌入式系統所需要的重要特性。 
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An Empirical Analysis of Embedded Linux 
Kernel 2.6.14 to Achieve Faster Boot Time 

 

Student: Chih-Chien Yang  Advisor: Dr. Yu-Lun Huang 

 

Department of Electrical and Control Engineering 

National Chiao-Tung University 

 

Abstract 

In this thesis, we try to minimize the boot time of the embedded Linux 2.6.14 

kernel with the empirical approaches. For the experimental purpose, TI’s 

ARM9-based OMAP5912 development kit is selected as our reference platform. 

Firstly, we analyze the boot sequence of the selected kernel and measure the time 

needed for each functional block in the whole sequence using the oscillator and 

logical analyzer. With the collected timing data, we hack in the related codes of 

U-Boot, Linux kernel and BusyBox that expose long execution time and study 

whether they can be either simplified by rewriting the codes or even skipped without 

any side effect. As a preliminary result, we have identified several points in the boot 

sequence that can be reworked to achieve faster boot time. In our experiment on the 

reference platform and with our suggested kernel configuration, we have achieved the 

instant boot of U-Boot 1.1.3, Linux kernel 2.6.14 and BusyBox 1.01 by greatly 

reducing the total boot time from 7934.41 ms to 1477.77 ms which is considered as 

one of the important features on many embedded systems. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

With the development and popularity of the mobile device and high-level 

consumer electronics, there are more and more applications of embedded Linux 

operating system on them. Boot is the first impression of an electronic product for 

consumers; therefore the boot time should not be too long to give consumers a good 

impression. However, the boot time of general embedded Linux operating system on 

the market is about 8-10 seconds on average at present and most of consumer 

electronics use Linux kernel 2.4 as the embedded Linux operating system. But with 

the development of Linux kernel 2.6, using Linux kernel 2.6 as the embedded Linux 

operation system will be a trend certainly in the future. In order to prevent users from 

having bad impressions, the developer let product show boot logo using extra graphic 

chip on screen first during the core processor doing boot. Therefore if we can provide 

fast boot mechanism of Linux kernel 2.6 and enable users to do the first operation of 

the product within a shortest time, users will accept this product even more, 

developers can save the extra hardware cost (the graphic chip) and the product will 

meet the requirements in the future even more. In addition, we can save more valuable 

time in critical reboot operating, if boot is faster. 

 



 2

1.2 Contribution 

At first, we propose the method which measure the exact time needed for each 

specific function, even for specific instruction in the whole boot sequence using the 

oscillator, logical analyzer and other assistant records and information. 

Secondly, with our optimized U-Boot 1.1.3, suggested Linux kernel 2.6.14 

configuration, and optimized BusyBox 1.01, we have achieved the instant boot on the 

OMAP5912OSK by greatly reducing the total boot time from 10062.94 ms to 1477.77 

ms which is considered as one of the important features on many embedded systems. 

And the optimization methods of U-Boot 1.1.3 and BusyBox 1.01 are also suitable for 

other platforms, not only on the OMAP5912OSK. 

 

1.3 Synopsis 

This thesis is organized as follows. In Chapter 2 and Chapter 3, related work and 

background are surveyed. In Chapter 4, we analyze the issue of boot time 

measurement tools, use complex tools and oscillator and logical analyzer to measure 

boot time, and analyze the measurement result to find long execution time operations. 

In Chapter 5, we implement experiments to optimize the lone execution time 

operations in Chapter4 to achieve faster boot time. Finally, we the conclusions and 

further work are given in Chapter 6. 
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Chapter 2 

Related Work 

 

There are many exist techniques to improve the boot time of Linux. They 

improve different parts of full boot process separately. They include the different file 

system structure of flash storage device [1] [2], the special method to execute kernel 

[3] [10] and the process control initialization utility [4]. 

 

2.1 Snapshot Technique for NOR Flash 

 This technique stores snapshot to variable-size areas managed by linked lists and 

sequentially record the location of the stored snapshots to prearranged areas by using 

an ordered tree data structure. 

In Figure 2-1, it can be seen that the first block of flash memory is reserved as a 

root block which sequentially stores pointers to snapshot header blocks. During the 

mount_root operation, the last stored pointer can be found quickly using sequential or 

binary search algorithms. The binary searching divides the root block into two 

sub-blocks and reads the boundary pointer of these sub-blocks. If the pointer is null, 

this searching selects the left sub-block. Otherwise, the other one is selected. With the 

selected sub-block, the above procedure is repeated until the last stored pointer is 

found. Since the block size (Bsize) is typically 128KB in NOR flash and the size of a 

pointer to block is 2B (Psize), this search algorithm has a better time complexity of 

O(lg(Bsize / Psize)) = O(16). 

In summary, this technique only reads lg(Bsize / Psize) x Psize + lg(Bsize / Hsize) x 
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Hsize (=92) bytes in an average case to fine the location of the last stored snapshot, 

providing an instant lookup time. 

However, the author doesn’t release the source code. Therefore we can’t try 

using this technique. 

 

Figure 2.1 Snapshot Management of Snapshot Technique for NOR Flash 

 

2.2 Erase Block Summary 

 Erase Block Summary (EBS) is an improvement to speed up the mount process. 

EBS stores extra summary information at the end of every (closed) erase block. This 

information is generated automatically at file system write operations. To make it 

possible to determine the size of the summary node, there is an 8 byte long summary 

marker node (jffs2_sum_marker) at the end of erase blocks. At mount time 

jffs2_scan_eraseblock() reads the last 8 bytes of the erase block during the scan 

process. If it finds valid sum_marker node, it loads the summary node pointed by the 
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relative offset stored in sum_marker. All information needed at mount time is stored 

in this node, so scanning the full erase block is not necessary. It can cause a big 

speedup, especially at NAND devices. If sum_marker is not found (or invalid) the 

normal scan process will be applied. 

Known the EBS is only existent in JFFS2 image. That is to say, EBS is only 

existent in the parts of used space and not existent in the parts of unused space. 

Therefore, the effect of EBS is limited. 

 

2.3 Kernel Execute-In-Place 

 Execute-In-Place (XIP) allows the kernel run from non-volatile storage directly 

addressable by the CPU, such as NOR flash. This saves RAM space since the text 

section of the kernel is not loaded from flash to RAM. Read-write sections, such as 

the data section and stack, are still copied to RAM. The XIP kernel is not compressed 

since it has to run directly from flash, so it will take more space to store it. The flash 

address used to link the kernel object files, and for storing it, is configuration 

dependent. Therefore, the proper physical address where to store the kernel image 

depending on specific flash memory usage must be known. 

 For OMAP-based platform, Kernel XIP is only effective on OMAP Innovator 

using rrload. Now, Kernel XIP still not support by U-Boot on ARM-based platform. 

 

2.4 InitNG 

 InitNG is a full replacement of the old and in many ways deprecated sysvinit tool 

(init) created by Jimmy Wennlund. It is designed to significantly increase the speed of 
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booting a UNIX-compatible system by starting processes asynchronously. On boot, 

initng will be invoked as the first process (pid = 1) by the kernel. At first, initng will 

parse configuration files located in /etc/initng for critical information such as runlevel 

and service data. After that, all services required by the default runlevel will be started 

as soon as their dependencies are met, allowing services to run in parallel. This 

asynchronous execution can dramatically improve boot time by better utilizing the 

system resources (especially in the case of multiprocessor systems).  

 The last version of InitNG is 0.6.7, which still not support for ARM-based 
platform. 

 

2.5 Summary 

 In Chapter 2, we introduce many new techniques for improve the boot time. 

Some techniques are only absorbed in PPC; some techniques are still not ported to 

OMAP-based platform and others techniques are only working on specific peripheral 

and application. 
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Chapter 3 

Background 

 

On the market, the choices of hardware and software for development of mobile 

device and high-level consumer electronics are very many. To choose a good 

combination for product which is suitable for the function requirement and high return 

on investment is the most important. 

 

3.1 OSK5912 OMAP Starter Kit 

The OMAP 5912 multiprocessor platform is available in the OSK5912 OMAP 

Starter kit by Spectrum Digital. The dual-core architecture provides benefits of both 

DSP and reduced instruction set computer (RISC) technologies [5]. 

The MPU core is the ARM926EJ-S reduced instruction set computer (RISC) 

processor. The ARM926EJ-S is a 32-bit processor core that performs 32-bit or 16-bit 

instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that 

all parts of the processor and memory system can operate continuously. The MPU 

core also incorporates the data and program memory management units (MMUs) with 

table look-aside buffers. To minimize external memory access time, the ARM926EJ-S 

includes an instruction cache, data cache, and a write buffer. In general, these are 

transparent to program execution. 

The DSP core of the OMAP5912 device is based on the TMS320C55x DSP 

generation CPU processor core. The C55x DSP architecture achieves high 

performance and low power through increased parallelism and total focus on 



 8

reduction in power dissipation. The CPU supports an internal bus structure composed 

of one program bus, three data read buses, two data write buses, and additional buses 

dedicated to peripheral and DMA activity. These buses provide the ability to perform 

up to three data reads and two data writes in a single cycle. In parallel, the DMA 

controller can perform up to two data transfers per cycle independent of the CPU 

activity. A central 40-bit arithmetic/logic unit (ALU) is supported by an additional 

16-bit ALU. Using of the ALU provides the ability to optimize parallel activity and 

power consumption. The OMAP5912 DSP core also includes a 24K-byte instruction 

cache to minimize external memory accesses, improving data throughput and 

conserving system power.  

The TMS320C55x DSP core within the OMAP5912 device utilizes three 

powerful hardware accelerator modules which assist the DSP core in implementing 

specific algorithms that are commonly used in video compression applications such as 

MPEG4 encoders/decoders. They are DCT/iDCT Accelerator, Motion Estimation 

Accelerator and Pixel Interpolation Accelerator. These accelerators allow 

implementation of such algorithms using fewer DSP instruction cycles and dissipating 

less power than implementations using only the DSP core. The hardware accelerators 

are utilized via functions from the TMS320C55x Image/Video Processing Library 

available from Texas Instruments. 

The OMAP5912OSK platform also provides rich user interfaces, high processing 

performance, and long battery life through the maximum flexibility of a fully 

integrated mixed processor solution. Therefore, the OMAP5912OSK could meet of 

requirement of following applications:  

 Applications Processing Devices 

 Mobile Communications 

 WAN 802.11X 
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 Bluetooth　 

 GSM, GPRS, EDGE 

 CDMA 

 Video and Image Processing (MPEG4, JPEG, Windows  Media V　 ideo, 

etc.) 

 Advanced Speech Applications (text-to-speech, speech recognition) 

 Audio Processing (MPEG-1 Audio Layer3 [MP3], AMR, WMA, AAC, and 

Other GSM Speech Codecs) 

 Graphics and Video Acceleration 

 Generalized Web Access 

 Data Processing 

For the diversified features and applications, we choose OMAP5912OSK as our 

development platform. 

 

3.2 U-Boot 

 In an embedded system the role of the boot loader is more complicated since 

these systems do not have BIOS to perform the initial system configuration. The low 

level initialization of microprocessors, memory controllers, and other board specific 

hardware must be performed before a Linux kernel image can execute. At a minimum 

an embedded loader provides the following features: 

1. Initializing the hardware, especially the memory controller. 

2. Providing boot parameters for the Linux kernel. 

3. Starting the Linux kernel. 

Additionally, most boot loaders also provide convenience features that simplify 

development:  
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1. Reading and writing arbitrary memory locations. 

2. Uploading new binary images to the board's RAM via a serial line or 

Ethernet. 

3. Copying binary images from RAM to FLASH memory. 

Das U-Boot is a GPL'ed cross-platform boot loader shepherded by Wolfgang 

Denk [6] and provides the full functions of above-mentioned requirement. It also 

provides out-of-the-box support for hundreds of embedded boards and a wide variety 

of CPUs including PowerPC, ARM, XScale, MIPS, Coldfire, NIOS, Microblaze, and 

x86. The easy configuration of U-Boot strikes the right balance between a rich feature 

set and a small binary footprint. Therefore, U-Boot 1.1.3 is the best choice of the boot 

loader on our implementation platform, and supports for Linux kernel 2.6.  

 

3.3 Embedded Linux 

There are many embedded operating system, which are designed to be very 

compact and efficient, forsaking many functionalities that non-embedded computer 

operating systems provide and which may not be used by the specialized applications 

they run. Embedded operating systems include: eCos, Embedded Linux, FreeDOS, 

FreeRTOS, LynxOS RTOS, NetBSD, OpenBSD, Inferno, OSE, OS-9, QNX, 

VxWorks, Windows CE and Windows XP Embedded…etc. Among them, Embedded 

Linux refers to the use of the open source Linux operating system in embedded 

systems such as cell phones, PDAs, media player handsets, and other consumer 

electronics devices.  

In the past an embedded development was mostly performed using proprietary 

code written in assembler. Developers had to write all of the hardware drivers and 

interfaces from scratch. It appeared that the Linux kernel, combined with a small set 
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of other free software utilities, could be fit into the confines of the limited hardware 

space of an embedded device. And a typical installation of embedded Linux takes 

about 2 megabytes. Therefore, we use the embedded Linux kernel 2.6.14 

(linux-2.6.14-omap2) [7] [8] as our embedded operating system. 

 

3.4 BusyBox 

 BusyBox [9] combines tiny versions of many common UNIX utilities into a 

single small executable. It provides replacements for most of the utilities in GNU, 

which are archival utilities, coreutils, console utilities, editors, finding utilities and init 

utilities…etc. The utilities in BusyBox generally have fewer options than their 

full-featured GNU cousins; however, the options that are included provide the 

expected functionality and behave very much like their GNU counterparts. BusyBox 

provides a fairly complete environment for any small or embedded system. 

 BusyBox has been written with size-optimization and limited resources in mind. 

It is also extremely modular so including or excluding commands (or features) is easy 

at compile time. This makes it easy to customize specific embedded systems. To 

create a working system, developers just need to add some device nodes in /dev, a few 

configuration files in /etc, and a Linux kernel. We use BusyBox 1.01 to replace the 

original big file system of PC running Linux. 

 

3.5 Summary 

 In Chapter 3, we describe the background of our development platform. It 

includes powerful OMAP5912OSK, universal U-Boot, the open source embedded 

Linux and tiny BusyBox. 
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Chapter 4 

Boot Time Analysis 

 

Before starting reducing the booting time, we should understand the boot 

sequence first. Then measuring the booting time and analyzing the timing result. 

Finally, to improve the original embedded operating system as fast booting system. 

 

4.1 Boot Sequence 

 We can summarize the initial boot sequence of Linux kernel as follows [10] [11]: 

1. The boot loader arranges for the kernel to be placed at the proper address in 

memory. This code is external to Linux source code and usually the first 

code segment executed once the system is powered on. Finally, this boot 

loader jumps to execute Linux kernel. 

2. Architecture-specific assembly code in Linux kernel performs very 

low-level tasks, such as initializing memory and setting up CPU registers so 

that C code can run flawlessly. This includes selecting a stack area and 

setting the stack pointer accordingly. The amount of such code varies from 

platform to platform; it can range from a few dozen lines up to a few 

thousand lines. 

3. Function start_kernel is called. It acquires the kernel lock, prints the banner, 

and calls function setup_arch to configure the system according to the 

platform's architecture. 

4. Architecture-specific C-language code completes low-level initialization, 



 13

including interrupt vectors initialization, and retrieves a command line for 

start_kernel to use. 

5. start_kernel parses the command line and calls the handlers associated with 

the keyword it identifies. 

6. start_kernel initializes basic facilities and forks the init thread. 

7. init is the first user space application, it does the process control 

initialization, runs the initialization script and start daemons. Finally it starts 

the getty processes that put the login prompt. 

 

4.2 Boot Time Measurement Tools 

 The usual way to look at a program is to start where execution begins. As far as 

Linux is concerned, it's hard to tell where execution begins - it depends on how you 

define begins. Therefore we need to use some measurement tools to assist us 

measuring boot time. 

 

4.2.1 Kernel Function Trace 

Kernel Function Trace (KFT) [10] [12] is a kernel function tracing system, which 

uses the “-finstrument-functions” capability of the gcc compiler to add 

instrumentation callouts to every function entry and exit. The KFT system provides 

for capturing these callouts and generating a trace of events, with timing details. KFT 

is excellent at providing a good timing overview of kernel procedures, allowing you 

to see where time is spent in functions and sub-routines in the kernel. 

 The STATIC_RUN mode of operation with KFT is doing configuration for a 

KFT run and is compiled statically into the kernel. This mode is useful for getting a 
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trace of kernel operation during system boot (before user space is running). 

 The KFT configuration lets you specify how to automatically start and stop a 

trace, whether to include interrupts as part of the trace, and whether to filter the trace 

data by various criteria (for minimum function duration, only certain listed functions, 

etc.) KFT trace data is retrieved by reading from /proc/kft_data after the trace is 

complete. 

Entry     Delta   Function      Caller 
-------- -------- ------------ ------------ 
 0     -1    0xc002307c    0xc00231b4 
 0       -1    0xc002935c    0xc00230b4 
 0    468750    0xc0099bc4    0xc00293ac 
 0    312500    0xc0098c48    0xc0099c20 
 0    312500    0xc009dfe0    0xc0098c88 
 0    312500    0xc009db18    0xc009e1d4 
 0    312500    0xc009cb34    0xc009dbdc 
 0      7813    0xc009ca58    0xc009cf0c 
 0    7813    0xc009c50c    0xc009cadc 
 0    7813    0xc00cd148    0xc009c5ac 
 0     7813    0xc00dacf4    0xc00cd298 
 0     7813    0xc00d29ec    0xc00dad58 

Figure 4.1 Numeric Trace Data of KFT 

Entry     Delta    Function       Caller 
-------- -------- -----------------  ------------ 
 0       -1    run_init_process    init+0xb4 
 0      -1    execve              run_init_process+0x38 
 0    468750    do_execve           execve+0x50 
  0    312500    open_exec           do_execve+0x5c 
 0   312500    path_lookup         open_exec+0x40 
 0  312500    link_path_walk      path_lookup+0x1f4 
 0   312500    __link_path_walk    link_path_walk+0xc4 
 0    7813    do_lookup    __link_path_walk+0x3d8 
 0     7813    real_lookup         do_lookup+0x84 
 0      7813    jffs2_lookup        real_lookup+0xa0 
 0    7813    jffs2_read_inode    jffs2_lookup+0x150 
 0    7813    jffs2_do_read_inode jffs2_read_inode+0x64 

Figure 4.2 Symbolic Trace Date of KFT 

KFT supplies two useful log analysis tools: addr2sym is supplied to convert 

numeric trace data (see Figure 4.1) to kernel symbolic trace data (see Figure 4.2), and 

kd is supplied to process and analyze the data in a KFT trace. By using both tools, the 

log with function name, execution count, amount execution time and average 

execution time of kernel routines can be produced. In addition, a log with the trace of 
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kernel routines in nested (see Figure 4.3) can be produced by using “kd -c”. 

Entry     Delta    PID     Trace 
-------- -------- ----- ------------------------------------------------------- 
  0         -1     1   run_init_process 
 0         -1     1   |  execve 

   0 468750     1   |  |  do_execve 
  0     312500     1   |  |  |  open_exec 
  0     312500     1   |  |  |  |  path_lookup 
   0     312500     1   |  |  |  |  |  link_path_walk 
 0     312500     1   |  |  |  |  |  |  __link_path_walk 
 0  7813     1   |  |  |  |  |  |  |  do_lookup 
 0       7813     1    |  |  |  |  |  |  |  |  real_lookup 
 0       7813     1   |  |  |  |  |  |  |  |  |  jffs2_lookup 
 0       7813     1   |  |  |  |  |  |  |  |  |  |  jffs2_read_inode 
 0     7813     1   |  |  |  |  |  |  |  |  |  |  |  jffs2_do_read_inode 

Figure 4.3 Kernel Routines Date in Nested 

 

4.2.2 Printk Times 

 Printk times [13] is a simple technology which adds some code to the standard 

kernel printk routine, to output timing data with each message. While a crude status, 

this can be used to get an overview of the areas of kernel initialization which take a 

relatively long time. This feature is used to identify areas of the Linux kernel 

requiring work. 

 With printk times turned on, the system emits the timing data as a floating point 

number of seconds (to microsecond resolution) for the time at which the printk started. 

The utility program shows the time between calls, or it can show the times relative to 

a specific message. This makes it easier to see the timing for specific segments of 

kernel code during boot. 

 

4.2.3 initcall-times patch 

 Matt Mackall provided an initcall-times [13] patch which measures times for the 
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initialization of each driver during do_initcalls. This is a special tool to look at the 

time of initialization of buses and drivers. It times just the initcalls and is enabled by 

putting “initcall_debug” on the command line. The records of device initializations 

can be read by dmesg after boot and use grep to find time-consuming initializations 

(see Figure 4.4). 

Calling initcall 0xc000ea6c: ptrace_break_init+0x0/0x2c() 
 initcall elapsed  0.000000s - ptrace_break_init+0x0/0x2c() 
Calling initcall 0xc000f8d4: consistent_init+0x0/0xb4() 
 initcall elapsed  0.000061s - consistent_init+0x0/0xb4() 
Calling initcall 0xc0013a30: helper_init+0x0/0x48() 
 initcall elapsed  0.000427s - helper_init+0x0/0x48() 
Calling initcall 0xc0013b88: ksysfs_init+0x0/0x44() 
 initcall elapsed  0.000122s - ksysfs_init+0x0/0x44() 
Calling initcall 0xc0015958: filelock_init+0x0/0x54() 
 initcall elapsed  0.000091s - filelock_init+0x0/0x54() 
Calling initcall 0xc0016320: init_script_binfmt+0x0/0x1c() 
 initcall elapsed  0.000000s - init_script_binfmt+0x0/0x1c() 

Figure 4.4 Initcall Log in Kernel Ring Buffer 

 

4.2.4 Expect 

 Wolfgang Denk provides a expect [14] script do start-to-finish timings by 

filtering every outputted lines of kermit [15]. The timestamp is refers to the newline 

character, i.e. to the end of each line. Because this expect script measure the time on 

host, it depends on clock of host, not the clock of target. Therefore, the time 

measurement will not make any affection to the target. There is a special parameter 

called “start_string”, which can be set to reset the timestamp (see Figure 4.5). 

 5.837 Starting kernel ... 
 5.837 
 7.717 Uncompressing Linux................................................... 
.......................... done, booting the kernel. 
 8.794 Linux version 2.6.14-omap2 (root@phantom.cn.nctu.edu.tw) (gcc version 3.3.2) 
#2 Tue Jul 18 16:06:26 CST 2006 
 0.008 CPU: ARM926EJ-Sid(wb) [41069263] revision 3 (ARMv5TEJ) 
 0.019 Machine: TI-OSK 
 0.070 Memory policy: ECC disabled, Data cache writeback 
 0.071 OMAP1611b revision 2 handled as 16xx id: 5b058f7948960a0f 

Figure 4.5 The Timestamp Resetting 
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4.3 Measurement Tools Analysis 

 We must to check the accuracy of different tools on OMAP5912OSK. In order to 

obtain exact boot time, we use the oscilloscope to measure signals of RS232_TX 

which represent the console outputs. So we can compare the time before and after 

using specific tool, and cross check with the records of oscilloscope. 

 

4.3.1 Kernel Function Trace 

 Since KFT add instrumentation callouts to every function entry and exit. The 

requirement of system performance will increase in a large amount. Therefore, the 

execution performance of KFT is limited to the platform. If the performance of 

specific platform is not enough, KFT will causes huge overhead when doing record. 

The timing result of KFT is not correct, because the result includes not only original 

execution time but also overheads. 

  In Table 4.1, we observe that the boot time will become 2 times because the 

performance of OMAP5912 can not meet the requirement of KFT. And most of boot 

time waste on routine schedule which reschedules tasks schedule when the usage of 

MPU is almost 100%. 

 

Table 4.1  KFT Activates from start_kernel to to_userspace 

Configuration Boot time 

CONFIG_KFT=n 8.212 seconds 

CONFIG_KFT=y, ONFIG_KFT_STATIC_RUN=n 13.134 seconds 

CONFIG_KFT=y, ONFIG_KFT_STATIC_RUN=y 16.010 seconds 
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4.3.2 Printk Times 

 At first, the time resolution of printk time is not enough to measure the time 

below 1 ms. Printk times uses the routine sched_clock to get timestamp, but 

sched_clock only has a time resolution of 1 jiffy which is 1/HZ = 1/128 = 7.8125 ms 

on OMAP5912. Although the value of HZ is 1000 in part of PC, the time resolution is 

only 1 jiffy = 1/1000 = 1 ms. 

Secondly, OMAP5912 will hang when printk times function is compiled in the 

kernel, therefore we must use it dynamically, i.e. putting “time” on the command line. 

After using printk times dynamically, we observe that not all kernel messages have 

the timestamp (see Figure 4.6) until the kernel commands have passed. 

 

CPU0: I cache: 16384 bytes, associativity 4, 32 byte lines, 128 sets 
CPU0: D cache: 8192 bytes, associativity 4, 32 byte lines, 64 sets 
Built 1 zonelists 
Kernel command line: console=ttyS0,115200n8 noinitrd rw ip=off root=/dev/mtdblock3 
rootfstype=jffs2 mem=32M time 
[    4.512268] Total of 128 interrupts in 4 interrupt banks 
[    4.512634] OMAP GPIO hardware version 1.0 
[    4.512817] MUX: initialized M7_1610_GPIO62 
[    4.512908] PID hash table entries: 256 (order: 8, 4096 bytes) 
[    4.513824] Console: colour dummy device 80x30 

Figure 4.6 No Timestamp before Some Messages 

 

4.3.3 initcall-times patch 

 The default value of CONFIG_LOG_BUF_SHIFT is 14, that is to say, the kernel 

ring buffer size is 214 B = 16 KB [16]. That is not sufficient to hold all the messages 

with the additional information of initcall-times patch. The kernel ring buffer size 

must be modified to 128 KB by setting to CONFIG_LOG_BUF_SHIFT to 17 to 

address the request of initcall-times patch. 
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4.3.4 Expect 

 This method can’t measure the time before console initialized, i.e. the time of the 

hardware initialization time before U-Boot start can’t be measured by expect script.  

Original kernel messages in normal mode are not enough to do accurate analysis; we 

can’t measure the time of specific function or instruction. And the time result will 

include the delay from the RS232_TX ping to kermit doing decode signal to ASCII 

and outing. The delay time is different of each output and the boot time measured 

using expect is not correct enough. 

 

4.4 Boot Time Measurement 

In order to measure the exact boot time, we use the oscillator and logical 

analyzer to record the specific signals on OMAP5912OSK [5] [17]. The DC_IN 

signal represents the DC input status, which is the power status. The DC input 

supplies the core voltage (CVDDx) and the I/O voltage (DVDDx). The MPU_nRESET 

pin is connected to the MPU_RST pin of OMAP5912 core, whose signal represents 

the MPU reset input status. The MPU_RST signal is asserted low until power supplies 

is stable, and then high. MPU core ties the PWRON_RESET pin and MPU_RST pin 

together, therefore the PWRON_RESET signal and MPU_RST signal are the same. 

The RST_OUT signal represents the reset output. The RST_OUT signal is asserted 

low until OMAP5912 finished device reset operation. The signal RS232_TX 

represents the transmit data pin status of RS232, that is to say the console output of 

OMAP5912OSK. The nFLASH.CSx pin is connected to the CSx pin of NOR flash, 

which represents the access status of NOR flash. Referencing following Figure 4.7, 

we decide to use the MPU_RST signal which is asserted from low to high as the start 
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point of boot, and the final signal of RS232_TX (BusyBox banner) as the end point of 

boot. 

 

Figure 4.7 Device Reset Timing of OMAP5912 

  

When boot, we capture the screen output of console as a 1000fps (1000 frames 

per second) movie to assist us to determine specific timestamp. 

The records of oscillator and logical analyzer are ambiguous, we need to do cross 

check of the source code, the signals of MPU_nRESET, the signals of RS232_TX, the 

signals of nFLASH.CSx, the frames of boot movie and the dmesg information to 

determine which signal is represented for the specific one. 

 In order to measure further detailed timestamp of specific function, we use 

different methods and tools at the same time. At first, we trace full source code to 

obtain detailed boot sequence, i.e. from start_armboot of U-Boot to ash_main of 

BusyBox. And then, we hacking the source code to output function names and timings. 

In the source code of U-Boot, we use puts to output U-Boot function names. In the 

source code of Linux kernel, we use printk(KERN_EMERG “ ”) to output kernel 

function names and use sched_clock to calculate each execution time of function. In 

the source code of BusyBox, we use fprintf(stderr, “ ”) to output user space function 

names. 
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After measurement, we can obtain following useful information: 

1. Full console records of boot in 1000fps movie. We can review boot process 

frame by frame (Every frame represents for 1 millisecond). The movie 

frame of finish uncompressing kernel and finish displaying Linux banner 

are show in Figure 4.8 and 4.9. 

 

Figure 4.8 The Movie Frame of Finish Uncompressing Kernel 

 

Figure 4.9 The Movie Frame of Finish Displaying Linux Banner 

 

2. Kernel ring buffer. We can use dmesg to print the kernel ring buffer to 

review kernel and initcall_debug messages during kernel phase (see Figure 

4.4 and 4.6). 
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3. The signal records of DC_IN, MPU_nRESET, RST_OUT, RS232_TX, 

nFLASH.CSx with 100 microsecond’s time resolution (see Figure 4.10). 

 

 

Figure 4.10 The Records of Logic Analyzer 

 

4.5 Boot Sequence Analysis 

After observing and cross check the original records, we add extra timestamp 

points and measure repeatedly to divide boot sequence into three levels: represent the 

level of application’s point of view, the level of functional block’s point of view and 

the level of instruction’s point of view respectively. 
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4.5.1 Level I: From the Application’s Point of View  

 We divide the boot sequence preliminary from the application’s point of view. 

They are three major phases which art boot loader phase, kernel phase and user space 

phase. U-Boot 1.1.3 is executed in boot loader phase. Embedded Linux kernel 2.6.14 

is executed in the kernel phase. BusyBox v1.01 is executed in user space phase. 

 

4.5.2 Level II: From the Functional Block’s Point of View 

We subdivide the three major phases further by timing result, to enable us to 

measure more detailed boot time. In order to do subdivision, we need to cross check 

the boot movie frames, kernel ring buffer and the signal records of oscillator and 

logical to decide the separate time of the different function block. And subdivide the 

boot time to 18 functional blocks by the characteristic of different signal of oscillator 

and logical analyzer, e.g. the flash access status or the console output. The 18 

functional blocks is shown at Table 4.2. 

Table 4.2  The 18 functional blocks 

Start Point End Point  # 

Description 

Device reset start Device reset over 1 

 From the first signal MPU_nRESET becoming high to the first signal 

RST_OUT becoming high. OMAP5912OSK enable the hardware preliminary. 

Device reset over MPU read first instruction 2 

 From the first signal RST_OUT becoming high to the first signal RS232_TX 

becoming low. OMAP5912OSK start to execute the first instruction. 

MPU read first instruction env_relocate_spec start 

Boot 

loader 

phase 

3 

 From the first signal nFLASH.CSx becoming low to the signal RS232_TX of 

function env_relocate_spec start (the signal RS232_TX becoming high). U-boot 

starts and prepares to execute the first function which access flash. 
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env_relocate_spec start env_relocate_spec over 4 

 From the signal RS232_TX of function env_relocate_spec start to the signal 

RS232_TX of function env_relocate_spec over. env_relocate_spec relocates the 

environment parameters. 

env_relocate_spec over Image date checksum start 5 

 From the signal RS232_TX of function env_relocate_spec over to the signal 

RS232_TX of image date checksum start. This function block does not access flash. 

Image date checksum start Image date checksum over 6 

 From the signal RS232_TX of image date checksum start to the signal 

RS232_TX of image date checksum over. U-Boot verifies the image data checksum. 

Image date checksum over Copying image to ram start 7 

 From the signal RS232_TX of image date checksum over to the signal 

RS232_TX of copying image to ram start. U-Boot finished image data checksum and 

prepares copy image to DDRRAM. 

Copying image to ram start Copying image to ram over 8 

 From the signal RS232_TX of copying image to ram start to the signal 

RS232_TX of copying image to ram over. U-Boot copies image from flash to 

DDRRAM. 

Copying image to ram over Transfer control to Linux 

 

9 

 From the signal RS232_TX of copying image to ram over to the signal 

RS232_TX of transferring control to Linux. U-Boot transfers control to Linux kernel. 

Transfer control to Linux Uncompress kernel start 10 

 From the signal RS232_TX of transferring control to Linux to the signal 

RS232_TX of uncompressing kernel start. Linux kernel gets the control and prepares 

to uncompress kernel. 

Uncompress kernel start Uncompress kernel over 11 

 From the signal RS232_TX of the signal RS232_TX of uncompressing kernel 

start to the signal RS232_TX of the signal RS232_TX of uncompressing kernel over. 

Linux kernel is uncompressed. 

Uncompress kernel over jffs2_build_filesystem start 12 

 From the signal RS232_TX of uncompressing kernel over to the signal 

RS232_TX of jffs2_build_filesystem start. Linux kernel uncompressed and execute 

routine start_kernel, Linux kernel does not access flash until the routine mount_root 

invoking jffs2_build_filesystem. 

jffs2_build_filesystem start jffs2_build_filesystem over 13 

 From the signal RS232_TX of jffs2_build_filesystem start to the signal 

RS232_TX of jffs2_build_filesystem over. Linux kernel builds the jffs2 file system. 

Kernel 

phase 

14 jffs2_build_filesystem over Invoke init 
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   From the signal RS232_TX of jffs2_build_filesystem over to the signal 

RS232_TX of invoking init. Root file system has been built and Linux kernel invoke 

the sysvinit tool: /sbin/init. 

Invoke init init_main start 15 

 From the signal RS232_TX of invoking init to the signal RS232_TX of 

invoking init_main start. Linux kernel still run background routines and init wait for 

start. 

init_main start RC script start 16 

 From the signal RS232_TX of invoking init_main start to the signal 

RS232_TX of RC script start. init_main started for user space and prepares to run RC 

script. 

RC script start RC script over 17 

 From the signal RS232_TX of RC script start to the signal RS232_TX of RC 

script over. RC script starts several daemons. 

RC script over Shell prompt 

User 

space 

phase 

18 

 From the signal RS232_TX of RC script over to the signal RS232_TX of shell 

prompt. RC script finished and shell prompt enabled. 

 

 After subdivide the boot sequence to 18 function blocks, each function has the 

similar characteristic. That is to say, the behaviors of all function in a function block 

are almost similar. It is useful for our redundancy analysis. 

 We supply a template of the boot time measurement table. See Table 4.3. 

 

Table 4.3  A Template of Boot Time Measurement Table 

Level II 
Start Point End Point 

 Level I 

Time 
Device reset start Device reset over 

 ms 
Device reset over MPU read first instruction 

 ms 
MPU read first instruction env_relocate_spec start 

 ms 
env_relocate_spec start env_relocate_spec over 

 ms 
env_relocate_spec over image date checksum start 

 ms 
image date checksum start image date checksum over 

Total 
 ms 

Boot Loader 
 ms 

 ms 
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image date checksum over copy image to ram start 
 ms 

copy image to ram start copy image to ram over 
 ms 

copy image to ram over transfer control to Linux 

 

 ms 
transfer control to Linux uncompress kernel start 

 ms 
uncompress kernel start uncompress kernel over 

 ms 
uncompress kernel over jffs2_build_filesystem start 

 ms 
jffs2_build_filesystem start jffs2_build_filesystem over 

 ms 
jffs2_build_filesystem over invoke init 

Kernel 
 ms 

 ms 
invoke init init_main start 

 ms 
init_main start RC script start 

 ms 
RC script start RC script over 

 ms 
RC script over Shell prompt 

 

User Space 
 ms 

 ms 

 

4.5.3 Measurement result 

 The boot time using default setting of U-Boot 1.1.3, Linux kernel 2.6.14 and 

BusyBox 1.01 is 7934.41 ms (Do not include the part of wait). Among them, boot 

loader spends 1111.76 ms, Linux kernel spends 5882.60 ms and user space spends 

943.05 ms. The detailed time is in the Table 4.4. 

Table 4.4  Boot Time with 18 Function Blocks 

Level II 
Start Point End Point 

 Level I 

Time 
Device reset start Device reset over 

31.38 ms 
Device reset over MPU read first instruction 

0.74 ms 
MPU read first instruction env_relocate_spec start 

122.26 ms 
env_relocate_spec start env_relocate_spec over 

44.98 ms 
env_relocate_spec over image date checksum start 

Total 
7934.41 ms 

Boot Loader 
1111.76 ms 

27.62 + 1477.76 ms (wait for user: 1477.76 ms) 
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image date checksum start image date checksum over 
487.92 ms 

image date checksum over copy image to ram start 
0.44 ms 

copy image to ram start copy image to ram over 
395.52 ms 

copy image to ram over transfer control to Linux 

 

0.90 ms 
transfer control to Linux uncompress kernel start 

13.48 ms 
uncompress kernel start uncompress kernel over 

1838.62 ms 
uncompress kernel over jffs2_build_filesystem start 

1840.48 ms 
jffs2_build_filesystem start jffs2_build_filesystem over 

2179.54 ms 
jffs2_build_filesystem over invoke init 

Kernel 
5882.60 ms 

10.48 ms 
invoke init init_main start 

818.22 ms 
init_main start RC script start 

37.10 ms 
RC script start RC script over 

65.98 ms 
RC script over Shell prompt 

 

User Space 
943.05 ms 

21.75 + 656.79 ms (wait for user: 656.79 ms) 
 

4.6 Summary 

 In Chapter 4, we describe the boot sequence and the boot time measurement 

tools, and then analyze the boot time measurement tools. Finally, we purpose a 

method to measure the exact time of specific function or instruction, and measure the 

boot time with 18 function blocks. 
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Chapter 5 

Experiment 

 

 After obtaining the detailed and exact boot time measurement results, we can 

find out the redundant operations. Finally, we can rewrite or skip them to achieve 

faster boot without any side effect.  

 

5.1 Redundancy Analysis 

 By the time measurement result, at first, we can observe many operations of 

accessing flash and some bad configuration during boot loader phase. Secondly, 

during kernel phase, we can obtain the execution of all kernel routines by printk 

useful information. Finally, the choice of file system has huge affection to the boot 

time. After checking that, we can conclude following redundant works and the 

methods of fast boot. 

 

 Boot loader phase 

METHOD 01: Adjust clocking mode 

[Original] The Default setting of U-Boot uses fully synchronous mode as the 

clocking mode [18]. In fully synchronous mode, the MPU, DSP, and Memory traffic 

controller (TC) domains run at the same clock frequency derived from DPLL1.  

[Limitation] The frequency of MPU and DSP are limited by the upper bound of TC 

[19], i.e. 96 MHz. However, the upper bound frequency of MPU and DSP are 192 

MHz. So, the performance of U-Boot is limited because the frequency of each 
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domain. 

[Modification] We changed the clocking mode from fully synchronous mode to 

synchronous scalable mode by setting the value of ARM_SYSST (MPU System 

Status Register) from 0x0000 to 0x1000 [18] [19]. In synchronous scalable mode, the 

domains of MPU, DSP, and TC are synchronous and run at different clock speeds.  

[Improvement] We can ramp up the DPLL1 clock to 192 MHz and let MPU work on 

192 MHz by setting ARMDIV to 00, i.e. the frequency of ARM core equals the 

frequency of DPLL1 divided by 20, and TC work on 96 MHz at the same time by 

setting TCDIV to 01, i.e. the frequency of TC equals the frequency of DPLL1 divided 

by 21. 

 

METHOD 02: Reduce unused console functions 

[Original] During U-Boot doing initialization, the initialization of console device is 

separated into two functions: console_init_f and console_init_r.  

[Limitation] After executing the two functions sequentially, the console device will 

be initialized as a fully console device. However, we do not need U-Boot to provide a 

fully console device during boot. Therefore fully initialization of console device is 

redundant. 

[Modification] After reading the U-Boot source code and doing experiment 

repeatedly, we know that the function console_init_r is useless during boot. Therefore, 

we skip the execution of console_init_r.  

[Improvement] The execution time of console_init_r can be saved. Although we skip 

the execution of console_init_r, boot is still successful and the output messages still 

can be shown by console after the function console_init_f finished the first stage 

initialization of console. 
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METHOD 03: Improve abort boot function 

[Original] The function abortboot will lock U-Boot to wait and check if any key 

already pressed. If there is any key already pressed, function abortboot will abort the 

boot process, and redirect to U-Boot prompt. Otherwise, after numbers of second, 

function abortboot will unlock U-Boot, and resume the boot process. 

[Limitation] The time of waiting is bootdelay seconds; the default value of bootdelay 

is setting as 10. It will waste 1.25s to wait using U-Boot 1.1.3 (The timer is not 

accurate; the correct wait time should be 10s. If the timer is accurate, the boot time 

should add 10-1.25=8.75s more). 

[Modification] We modified the code of function abortboot to reduce the waiting 

time during U-Boot check if any key already pressed. Original abortboot routine will 

spend numbers of seconds to check repeatedly.  

[Improvement] After modifying, abortboot routine will only check once and waste 

no time. The wait time can be saved 

 

METHOD 04: Improve image verification mechanism 

[Original] U-Boot provides an image verification mechanism; it will verify both 

header checksum and data checksum of image at each time during boot.  

[Limitation] In fact, after burning image, we only need to verify the image checksum 

once. If the image is correct, doing image verification each time during boot is 

nonsensical. 

[Modification] We added a new parameter called verify in the U-Boot environment 

parameters and regard it as a switch of the image verification mechanism. When 

verify is y, U-Boot will do header checksum and data checksum same as default. 

When verify is n, U-boot will skip the operation of verification. 

[Improvement] In the practical application, we set verify as y after burning to verify 
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the image checksum and set verify as n if we sure the image is correct. Therefore, we 

can save the time of image verification. 

 

METHOD 05: Use silent console in boot loader phase 

[Original] U-Boot provides some functions to print the information of devices; the 

information is useful during development and debug. In U-Boot, most of device 

initialization and information are deal with separate functions.  

[Limitation] The execution of information function and every console output by 

serial port will spend much time. 

[Modification] We added a new parameter called quiet in the U-Boot environment 

parameters and modified the U-Boot source code to achieve quiet console. When 

quiet is n, U-Boot will show full messages of U-Boot banner, dram configuration, 

flash configuration, function abartboot, image verification and invoking Linux kernel. 

When quiet is y, U-Boot will show no console messages. 

[Improvement] By the parameter quiet, we can use the silent console to reduce boot 

time. 

 

 Kernel phase 

METHOD 06: Use uncompressed kernel image 

[Original] In the past, the cost of flash storage device in embedded product is quite 

high, so compressed kernel is used to reduce the cost of product. However, the 

compressed kernel size of optimized embedded Linux is general less than 1 MB, and 

the uncompressed kernel size is less than 2MB. At present, the cost of 1MB flash 

storage is not so high. Therefore, using uncompressed kernel becomes an acceptable 

choice. 
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[Modification] We change the Makefile in linux/arch/arm/boot to build an 

uncompressed image for U-Boot. 

[Improvement] The size of uncompressed kernel is close to 2.1 times of compressed 

kernel. Therefore the time of coping uncompressed image from flash to ram is close 

to 2.1 times of compressed kernel, too. However, after comparing the time of coping 

image and uncompressing kernel between uncompressed and compressed kernel, 

using uncompressed kernel can save huge proportion of boot time. Although the size 

of uncompressed kernel is bigger, it is still within the default upper limit (2MB). 

 

METHOD 07: Eliminate BogoMIPS calibration 

[Original] The function calibrate_delay [10] [20] [21] can compute an appropriate 

value for loops_per_jiffy and BogoMIPS at boot time. The value of loops_per_jiffy is 

used to execute busy wait (non-yielding) delays inside the Linux kernel and primarily 

dependent on processor speed. BogoMips is an unscientific performance of MPU and 

cache, and the ratio of loops_per_jiffy. Its initial value at boot time is expected to be 

constant for each boot of Linux on the same hardware. 

[Limitation] The value of loops_per_jiffy is primarily dependent on processor speed. 

Therefore, its initial value at boot time is expected to be constant for each boot of 

Linux on the same hardware. We don’t need to compute the value every system boot. 

[Modification] Because of the initial value at boot time is expected to be constant, we 

can preset the initial value in advance. 

[Improvement] By to preset the initial value in advance, we can avoid the delay 

associated with dynamically calculating the value, by the kernel, on every system 

boot. 
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METHOD 08: Use device modularization 

[Original] Kernel initiates many devices during boot in default setting for different 

purpose of every kind of product. 

[Limitation] Because of we might not need all devices as default setting, many 

settings become non-critical or useless. For example, if we don’t need pseudo 

terminal device (PTY), we should remove or modularize it. 

[Modification] By reading the dmesg information, we can observe the useless, 

non-critical or time-consumed devices. After understanding the function of those 

devices, we should decide which the non-critical devices are. In our experiment 

platform, we should change the setting of shared memory file system, paging of 

anonymous memory (swap) support, resetting unused clocks, OMAP multiplexing 

support, PCMCIA/CardBus support, firewall support, loopback device support, initial 

RAM disk support, ATA/ATAPI/MFM/RLL support, PPP support, frame buffer 

devices support, second extended file system support and kernel automounter support 

and NFS file system support…etc, to remove or modularize them. 

[Improvement] By removing and modularizing device driver, we can save much time 

in initiating useless, non-critical or time-consumed device. 

 

METHOD 09: Use silent console in kernel phase 

[Original] During boot, Linux kernel provides much information for debug. Because 

of the printk messages of kernel are quite a lot, they will spend much time by using 

serial port or VGA [10]. 

[Modification] We can add quiet parameter in the kernel command line to changes 

the loglevel to 4, which suppresses the output of regular (non-emergency) printk 

messages. Even though the messages are not printed to the system console, they are 

still placed in the kernel printk buffer, and can be retrieved after boot using the dmesg 
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command. 

[Improvement] We can unable the printk output, and view the message using dmesg. 

That will save some time. 

 

 User space phase 

METHOD 10: Simplify user space utilities 

[Original] BusyBox provide many useful utilities for using of user space. However, 

we should give up some utilities that have similar function or useless in embedded 

product. 

[Modification] To reduce the size of busybox is to reduce the size of file system. We 

can give up some similar utilities and some useless utilities which are related with the 

requirement of a product. Most of archival utilities, editors and console utilities could 

be gave up in embedded product. 

[Improvement] The smaller size of busybox can reduce the execution time of 

busybox. 

 

METHOD 11: Accelerate shell prompt start 

[Original] For the reason of saving memory, BusyBox will lock and wait for user to 

press Enter key to activate shell prompt.  

[Limitation] Generally, user wants to use a product immediately and don’t need to 

press extra key. And the memory using of shell is few comparing full memory size on 

OMAP5912OSK. 

[Modification] We skip the wait operation and put shell prompt directly. 

[Improvement] The time from the “Please press Enter to activate this console” 

massage shown to user pressing enter is measured as 600 ms in average. That is too 

long to reduce the boot time. 
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METHOD 12: Use complex file system 

[Original] By the time measurement result, we can observe function mount_root of 

kernel spend a large amount of time to build the JFFS2 files system. If we can change 

the file system which has a short mount time, the time can be saving. 

[Limitation] Generally, we use the JFFS2 (The Journalling Flash File System, 

version 2) file system which is log-structured and writable on flash storage device in 

embedded systems. However, for a 32MB NOR flash, kernel always spends 2 to 3 

seconds to build the JFFS2 file system. The mount time of JFFS2 file system is too 

long to make the boot time shorter. 

[Modification] For flash storage device, CramFS and SquashFS are highly 

compressed read-only file system, the runtime performance and compression of 

SquashFS is better than CramFS. No matter CramFS or SquashFS, the mount time is 

quite short. 

In view of the characteristics of writable and read-only file system, we use both 

writable and read-only file system on a single flash storage device at the same time. 

First, using appropriate spaces as root file system partition including init and most of 

routines, then using remaining space as writable file system. Finally we let the 

function mount_root just build the root file system, and build the writable file system 

in the background after shell prompt. 

[Improvement] The boot time can be reduced greatly, and we still can do write 

operation on flash storage. 

 

5.2 Comparison 

 In this section, we compare the time needed of affected function block. In 
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addition, we will supply the patch file if we modified the source code. 

 Boot loader phase 

METHOD 01: Adjust clocking mode 

We modified the file u-boot/board/omap5912/platform.S (If you use last version 

of U-Boot, you need to modify the file u-boot/board/omap5912osk/lowlevel_init.S) to 

change the clocking mode. After we change the clocking mode and ramp up the 

frequency of ARM core to 192 MHz, the timer inaccurate timer become accurate one, 

and the wait time of abortboot is also accurate. Therefore, we skip the time 

measurement result of the function block which includes the execution of abortboot.  

Because U-Boot works on the upper limited frequency, operations which use MPU to 

compute data will have the shorter execution time. This part of modification reduces 

the time needed from 4774.72 ms to 3811.24 ms, i.e. 963.48 ms has been eliminated. 

The time comparison is shown at Table 5.1 and the patch is shown at Figure 5.1.  

 

Table 5.1  The Time Comparison of Changing Clocking Mode 

Function block  
Start Point End Point 

Before 
(ms) 

After 
(ms) 

Device reset start  Device reset over 31.38 31.38 
Device reset over MPU read first instruction 0.74 0.82 
MPU read first instruction env_relocate_spec start 122.26 100.42 
env_relocate_spec start env_relocate_spec over 44.98 37.02 
env_relocate_spec over image date checksum start - - 
image date checksum start image date checksum over 487.92 423.68 
image date checksum over copy image to ram start 0.44 0.50 
copy image to ram start copy image to ram over 395.52 323.38 

Boot  
Loader 

copy image to ram over transfer control to Linux 0.90 0.88 
transfer control to Linux uncompress kernel start 13.48 13.32 
uncompress kernel start uncompress kernel over 1836.62 1040.92 

Kernel 

uncompress kernel over jffs2_build_filesystem start 1840.48 1838.92 
Amount  4774.72 3811.24 
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--- board/omap5912osk/platform.S.old    2006-07-20 21:51:21.000000000 +0800 
+++ board/omap5912osk/platform.S        2006-07-20 21:53:38.000000000 +0800 
@@ -79,7 +79,7 @@ 
 
 /* Set CLKM to Sync-Scalable    */ 
 /* I supposedly need to enable the dsp clock before switching */ 
- mov     r1,     #0x0000 
+       mov     r1,     #0x1000 
 ldr     r0,     REG_ARM_SYSST 
 strh    r1,     [r0] 
 mov     r0,     #0x400 
@@ -384,9 +384,9 @@ 
 .word 0x00800002 
 
 VAL_ARM_CKCTL: 
- .word 0x3000 
+       .word 0x050f 
 VAL_DPLL1_CTL: 
- .word 0x2830 
+       .word 0x2810 
 
 #ifdef CONFIG_OSK_OMAP5912 
 VAL_TC_EMIFS_CS0_CONFIG: 

Figure 5.1 The Patch of Changing Clocking Mode 

 

METHOD 02: Reduce unused console functions 

It is easy to skip the fully console device initialization, we delete the function 

call console_init_r in file u-boot/lib_arm/board.c. We also delete the function call 

misc_init_r, because that function is temp one. The time needed is reduced from 

219.73 ms to 0 ms; it is shown at Table 5.2. 

Table 5.2 The Time Reduced by Skipping console_init_r 

Function Before (ms) After (ms) 
console_init_r 219.74 0.0 

 

METHOD 03: Improve abort boot function 

After we simply the function abortboot in u-boot/common/main.c, the time 

needed is reduced from 1704.74ms to 448.12 ms, i.e. 1256.74 ms has been eliminated, 

and it is shown at Table 5.3 and the patch is shown at Figure 5.2. 
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Table 5.3  The Time Reduced by Simplifying abortboot 

Function block 
Start Point End Point 

Before  
(ms) 

After 
 (ms) 

Device reset start Device reset over 31.38 31.38 
Device reset over MPU read first instruction 0.74 0.74 
MPU read first instruction env_relocate_spec start 122.26 124.18 
env_relocate_spec start env_relocate_spec over 44.98 45.28 
env_relocate_spec over image date checksum start 1505.38 246.54 
Amount 1704.74 448.12 

 
--- u-boot-1.1.3/common/main.c.old  2006-07-21 01:04:03.000000000 +0800 
+++ u-boot-1.1.3/common/main.c  2006-07-21 01:07:06.000000000 +0800 
@@ -238,7 +238,6 @@ 
 printf("Hit any key to stop autoboot: %2d ", bootdelay); 
 #endif 
 
-#if defined CONFIG_ZERO_BOOTDELAY_CHECK 
 /* 
 * Check if key already pressed 
 * Don't check if bootdelay < 0 
@@ -250,29 +249,6 @@ 
 abort = 1;      /* don't auto boot      */ 
 } 
 } 
-#endif 
- 
- while ((bootdelay > 0) && (!abort)) { 
- int i; 
- 
- --bootdelay; 
- /* delay 100 * 10ms */ 
-  for (i=0; !abort && i<100; ++i) { 
- if (tstc()) {   /* we got a key press   */ 
- abort  = 1;     /* don't auto boot      */ 
- bootdelay = 0;  /* no more delay   */ 
-# ifdef CONFIG_MENUKEY 
- menukey = getc(); 
-# else 
- (void) getc();  /* consume input        */ 
-# endif 
- break; 
- } 
-  udelay (10000); 
- } 
- 
- printf ("\b\b\b%2d ", bootdelay); 
- } 
 
 putc ('\n'); 

Figure 5.2  The Patch of Simplifying abortboot 
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METHOD 04: Improve image verification mechanism 

After we added a new parameter called verify in the U-Boot environment 

parameters and modified file u-boot/common/cmd_bootm.c. When verify is n, U-boot 

will skip the verification of image header checksum and image data checksum. The 

time needed is reduced from 2193.1 ms to 1702.94 ms, i.e. 490.16 ms has been 

eliminated, and it is shown at Table 5.4 and the patch is shown at Figure 5.3. 

Table 5.4  The Time Reduced by Verification Switch 

Function block  
Start Point End Point 

Before 
(ms) 

After 
(ms) 

Device reset start Device reset over 31.38 31.34 
Device reset over MPU read first instruction 0.74 0.74 
MPU read first instruction env_relocate_spec start 122.26 122.90 
env_relocate_spec start env_relocate_spec over 44.98 45.10 
env_relocate_spec over image date checksum start 1505.38 
image date checksum start image date checksum over 487.92 

Boot  
Loader 

image date checksum over copy image to ram start 0.44 

 
1502.86 

Amount  2193.10 1702.94 
 

--- u-boot-1.1.3/common/cmd_bootm.c.old 2005-08-14 07:53:35.000000000 +0800 
+++ u-boot-1.1.3/common/cmd_bootm.c     2006-07-21 01:45:33.000000000 +0800 
@@ -191,16 +191,18 @@ 
 } 
 SHOW_BOOT_PROGRESS (2); 
 
- data = (ulong)&header; 
- len  = sizeof(image_header_t); 
+ if (verify) { 
+               data = (ulong)&header; 
+               len  = sizeof(image_header_t); 
 
- checksum = ntohl(hdr->ih_hcrc); 
- hdr->ih_hcrc = 0; 
+               checksum = ntohl(hdr->ih_hcrc); 
+               hdr->ih_hcrc = 0; 
 
- if (crc32 (0, (char *)data, len) != checksum) { 
- puts ("Bad Header Checksum\n"); 
- SHOW_BOOT_PROGRESS (-2); 
- return 1; 
+               if (crc32 (0, (char *)data, len) != checksum) { 
+                    puts ("Bad Header Checksum\n"); 
+                       SHOW_BOOT_PROGRESS (-2); 
+                       return 1; 
+               } 
 } 
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 SHOW_BOOT_PROGRESS (3); 

Figure 5.3  The Patch of Verification Switch 

 

METHOD 05: Use silent console in boot loader phase 

There are five files need to be modified. In the file u-boot/common/cmd_bootm.c, 

we need to modify the code of U-Boot banner, print_image_hdr. In the file 

u-boot/common/main.c, we need to modify the code of abortboot message. In the file 

u-boot/include/configs/omap5912osk.h, we set CFG_CONSOLE_INFO_QUIET=1. 

In the file u-boot/lib_arm/armlinux.c, we modify the code of transfer control to Linux. 

Finally, in the file u-boot/lib_arm/board.c, we modify the code of display_banner, 

dram_init, display_dram_config and display_flash_config. This part of silent console 

reduces the time needed from 2603.00 ms to 2557.80 ms, i.e. 45.20 ms has been 

eliminated, and it is shown at Table 5.5 and the sample patch for 

u-boot/lib_arm/armlinux.c is shown at Figure 5.4. 

Table 5.5  The Time Reduced by Silent Console in U-Boot 

Function block  
Start Point End Point 

Before 
(ms) 

After 
(ms) 

Device reset start Device reset over 31.38 31.38 
Device reset over MPU read first instruction 0.74 0.74 
MPU read first instruction env_relocate_spec start 122.26 109.48 
env_relocate_spec start env_relocate_spec over 44.98 45.24 
env_relocate_spec over image date checksum start 1505.38 1474.04 
image date checksum star image date checksum over 487.92 
image date checksum 
over 

copy image to ram start 0.44 

copy image to ram start copy image to ram over 395.52 

 
884.72 

Boot  
Loader 

copy image to ram over transfer control to Linux 0.90 0.78 
Kernel transfer control to Linux uncompress kernel start 13.48 11.42 
Amount  2603.00 2557.80 

 

 

diff -Nur u-boot-1.1.3/lib_arm/armlinux.c u-boot-1.1.3o/lib_arm/armlinux.c 
--- u-boot-1.1.3/lib_arm/armlinux.c     2005-08-14 07:53:35.000000000 +0800 
+++ u-boot-1.1.3o/lib_arm/armlinux.c    2006-07-21 03:43:12.000000000 +0800 
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@@ -85,11 +85,15 @@ 
 void (*theKernel)(int zero, int arch, uint params); 
 image_header_t *hdr = &header; 
 bd_t *bd = gd->bd; 
+       int quiet; 
+       char *s; 
 
 #ifdef CONFIG_CMDLINE_TAG 
 char *commandline = getenv ("bootargs"); 
 #endif 
 
+       s = getenv ("quiet"); 
+       quiet = (s && (*s == 'y')) ? 0 : 1; 
 theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep); 
 
 /* 
@@ -256,7 +260,11 @@ 
 #endif 
 
 /* we assume that the kernel is in place */ 
- printf ("\nStarting kernel ...\n\n"); 
+       if (quiet) { 
+               printf ("\nStarting kernel at %08lx...", 
+                               (ulong) theKernel); 
+       } 
+       printf("\n"); 
 
 #ifdef CONFIG_USB_DEVICE 
 { 

Figure 5.4  The Sample Patch of Silent Console 

 Kernel phase 

METHOD 06: Use uncompressed kernel image 

For uncompressed kernel, we need to increase the size of mtdblock2 to put the 

uncompressed kernel, which is assigned in linux/arch/arm/mach-omap1/board-osk.c 

and linux/include/asm-arm/sizes.h. If the kernel has been optimized, the original size 

of mtdblock2 is enough to put the optimized uncompressed kernel. After using of 

uncompressed kernel, the time needed is reduced from 6282.1 ms to 5369.46 ms, i.e. 

912.64 ms has been eliminated, and it is shown at Table 5.6 and the patch is shown at 

Figure 5.5. The noteworthy one is if we use uncompressed kernel with no image 

verification, the time will be reduced for 912.64+1026.1=1938.74 ms. 

 

Table 5.6  The Time Reduced by Uncompressed Kernel 
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Function block  
Start Point End Point 

Before 
 (ms) 

After 
 (ms) 

Device reset start Device reset over 31.38 31.38 
Device reset over MPU read first instruction 0.74 0.74 
MPU read first instruction env_relocate_spec start 122.26 122.22 
env_relocate_spec start env_relocate_spec over 44.98 45.18 
env_relocate_spec over image date checksum start 1505.38 1505.20 
image date checksum start image date checksum over 487.92 1026.10 
image date checksum over copy image to ram start 0.44 0.64 
copy image to ram start copy image to ram over 395.52 831.58 

Boot  
Loader 
 

copy image to ram over transfer control to Linux 0.90 0.90 
transfer control to Linux uncompress kernel start 13.48 
uncompress kernel start uncompress kernel over 1838.62 

Kernel 
 

uncompress kernel over jffs2_build_filesystem start 1840.48 

 
1805.52 

Amount  6282.1 5369.46 

 

diff -ruN linux-2.6.14.orig/arch/arm/boot/Makefile 
linux-2.6.14/arch/arm/boot/Makefile 

--- linux-2.6.14.orig/arch/arm/boot/Makefile    2006-06-15 21:57:19.000000000 
+0800 

+++ linux-2.6.14/arch/arm/boot/Makefile 2006-06-15 22:20:09.000000000 +0800 

@@ -46,6 +46,10 @@ 

 $(obj)/Image: vmlinux FORCE 

 $(call if_changed,objcopy) 

 @echo '  Kernel: $@ is ready' 

+       $(CONFIG_SHELL) $(MKIMAGE) -A arm -O linux -T kernel \ 

+       -C none -a $(ZRELADDR) -e $(ZRELADDR) -n 'Linux-$(KERNELRELEASE)' \ 

+       -d arch/arm/boot/Image arch/arm/boot/uImage-uncompress 

+       @echo '  Kernel: arch/arm/boot/uImage-uncompress is ready' 

 

 $(obj)/compressed/vmlinux: $(obj)/Image FORCE 

 $(Q)$(MAKE) $(build)=$(obj)/compressed $@ 

diff -ruN linux-2.6.14.orig/Makefile linux-2.6.14/Makefile 

--- linux-2.6.14.orig/Makefile  2006-06-15 22:02:41.000000000 +0800 

+++ linux-2.6.14/Makefile       2006-06-15 22:29:54.000000000 +0800 

@@ -984,7 +984,8 @@ 

 # Directories & files removed with 'make clean' 

 CLEAN_DIRS  += $(MODVERDIR) 

 CLEAN_FILES += vmlinux System.map \ 

-  .tmp_kallsyms* .tmp_version .tmp_vmlinux* .tmp_System.map 

+                .tmp_kallsyms* .tmp_version .tmp_vmlinux* .tmp_System.map \ 
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+               arch/arm/boot/uImage-uncompress 

 

 # Directories & files removed with 'make mrproper' 

 MRPROPER_DIRS  += include/config include2 

Figure 5.5 The Patch of Uncompressed Kernel 

 

METHOD 07: Eliminate BogoMIPS calibration 

By last boot, we can obtain the value of loops_per_jiffy by dmesg, which is 

373760. By put “lpj=373760” (passing 373760 to kernel as the value of 

loops_per_jiffy) in command line, the boot time is reduced from 154.785157 ms to 

0.061036 ms, i.e. 154.724121 ms has been eliminated, and it is shown at Table 5.7 

and the effect is shown at Figure 5.6.  

 

Table 5.7  The Time of calibrate_delay 

normal boot preset loops_per_jiffy 

154.785157 ms 0.061036 ms 

 

Before presetting: 

Calibrating delay loop... 74.75 BogoMIPS (lpj=373760) 

After presetting: 

Calibrating delay loop (skipped)... 74.75 BogoMIPS preset 

Figure 5.6  The Effect of Preset LPJ 

METHOD 08: Use device modularization 

After using the unofficial patch for OMAP5912, we find still many choices can 

be modified. We remove these options: Code maturity level options, Support for 

paging of anonymous memory (swap), Reset unused clocks during boot, OMAP 

multiplexing support, IP kernel level autoconfiguration, Initial RAM disk (initrd) 
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support, ATA/ATAPI/MFM/RLL support, Mouse interface, Keyboards, Virtual 

terminal, Unix98 PTY support, Legacy (BSD) PTY support, Second extended fs 

support, Inotify file change notification support, Dnotify support, Kernel automounter 

support, MSDOS fs support and VFAT (Windows-95) fs support. And then we 

modularize these options: PCCard (PCMCIA/CardBus) support, Unix domain sockets, 

INET (socket monitoring interface), Loopback device support, PPP (point-to-point 

protocol) support, Texas Instruments TLV320AIC23 Codec, Hardware Monitoring 

support ,Support for frame buffer devices ,Kernel automounter version 4 support and 

NFS file system support. Finally, we choose the option: Configure standard kernel 

features (for small systems) to finish this part of works. Finally, by the initcall-times 

patch, we can obtain the value of initcalls. The time measured by initcall-times is 

accurate, which is the same as the value measured by oscilloscope and logic analyzer. 

The boot time is reduced from 1574.645998 ms to 448.913571 ms, i.e. 1125.732427 

ms has been eliminated, and it is shown at Table 5.8.  

 

Table 5.8  The Time of Initcalls 

Inincall name Before (ms) After (ms)

customize_machine 4.516601 4.364014

omap_init_devices 1.983643 1.983642

init_bio 1.037598 0.946044

i2c_init 1.220703 1.373291

omap_i2c_init_driver 2.380371 2.380371

tps_init 11.138916 11.016846

chr_dev_init 8.331299 8.392334

param_sysfs_init 16.387940 9.460449

init_jffs2_fs 1.312256 1.220703

omapfb_init 32.745361 -

tty_init 70.251465 1.922607

pty_init 626.342774 -
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serial8250_init 245.086670 189.575195

noop_init 2.777100 2.899170

as_init 3.814697 3.723144

deadline_init 3.295898 3.234863

cfq_init 3.112793 2.960205

rd_init 23.284912 22.033691

loop_init 10.803223 -

net_olddevs_init 1.586914 1.403808

ppp_init 4.394531 -

smc_init 17.425537 17.211915

i2c_dev_ini 4.577637 4.394531

omapflash_init 59.356690 57.983399

omap_cf_init 273.498535 -

mousedev_init 5.187988 -

omap_kp_init 3.845215 -

omap_ts_init 2.441407 2.044677

inet_init 100.341797 96.527100

bictcp_register 1.861572 1.861572

af_unix_init 3.570556 -

omap1_late_clk_reset 26.733399 -

Amount 1574.645998 448.913571

 

METHOD 09: Use silent console in kernel phase 

After using silent console, the time needed is reduced from 5882.6 ms to 5499.6 

ms, i.e. 383 ms has been eliminated, and it is shown at Table 5.9. 

 

Table 5.9  The Time Reduced by Silent Console in Linux kernel 

Function block 

Start Point End Point 

Before 

 (ms) 

After  

(ms) 

transfer control to Linux uncompress kernel start 13.48 13.38 

uncompress kernel start uncompress kernel over 1838.62 1838.66 

uncompress kernel over jffs2_build_filesystem start 1840.48 1463.88 

jffs2_build_filesystem start jffs2_build_filesystem over 2179.54  
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jffs2_build_filesystem over invoke init 10.48 2183.68 

Amount 5882.60 5499.60 

 

 User space phase 

METHOD 10: Simplify user space utilities 

We give up the most of archival utilities, editors and console utilities, because 

the usage of these utilities is not many. And we remove the utilities for user 

management, login/password management utilities and system logging utilities for 

single user mode. Finally, we add the Linux module utilities, web server, telnet server 

and some daemons. We have built a powerful file system, and the size of pure file 

system without modules is only 636.4 KB using JFFS2. 

METHOD 11: Accelerate shell prompt start 

After skip the wait for enter, the wait time, 600ms in average is reduced. The 

patch is shown at Figure 5.7. 

diff -Nur busybox-1.01/init/init.c busybox-1.01-phantom-v2/init/init.c 
--- busybox-1.01/init/init.c    2005-08-17 09:29:16.000000000 +0800 
+++ busybox-1.01-phantom-v2/init/init.c 2006-07-11 06:13:37.000000000 +0800 
@@ -429,12 +429,14 @@ 
 char *s, *tmpCmd, *cmd[INIT_BUFFS_SIZE], *cmdpath; 
 char buf[INIT_BUFFS_SIZE + 6];  /* INIT_BUFFS_SIZE+strlen("exec ")+1 */ 
 sigset_t nmask, omask; 
+/* skip press_enter */ 
+/* 
 static const char press_enter[] = 
 #ifdef CUSTOMIZED_BANNER 
 #include CUSTOMIZED_BANNER 
 #endif 
 "\nPlease press Enter to activate this console. "; 
- 
+*/ 
 /* Block sigchild while forking.  */ 
 sigemptyset(&nmask); 
 sigaddset(&nmask, SIGCHLD); 
@@ -579,17 +581,18 @@ 
 } 
 } 
 
+/* 
+ * Save memory by not exec-ing anything large (like a shell) 
+ * before the user wants it. This is critical if swap is not 
+ * enabled and the system has low memory. Generally this will 
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+ * be run on the second virtual console, and the first will 
+ * be allowed to start a shell or whatever an init script 
+ * specifies. 
+ */ 
+/* 
 #if !defined(__UCLIBC__) || defined(__ARCH_HAS_MMU__) 
 if (a->action & ASKFIRST) { 
 char c; 
- /* 
- * Save memory by not exec-ing anything large (like a shell) 
-  * before the user wants it. This is critical if swap is 
not 
- * enabled and the system has low memory. Generally this 
will 
- * be run on the second virtual console, and the first will 
-  * be allowed to start a shell or whatever an init script 
- * specifies. 
- */ 
 messageD(LOG, "Waiting for enter to start '%s'" 
  "(pid %d, terminal %s)\n", 
 cmdpath, getpid(), a->terminal); 
@@ -598,7 +601,7 @@ 
 ; 
 } 
 #endif 
- 
+*/ 
 /* Log the process name and args */ 
  message(LOG, "Starting pid %d, console %s: '%s'", 
 getpid(), a->terminal, cmdpath); 

Figure 5.7 The Patch of Quick Shell Prompt 

 

METHOD 12: Use complex file System 

Firstly, the comparison between JFFS2, CramFS and SquashFS is shown at 

Table 5.10. 

Table 5.10  The Comparison between Different FS 

Writable FS Read-only FS  

JFFS2 CramFS SquashFS 

Kernel size (KB) 1721920 1627312 1660832 

FS image size (KB) 1162272 1007616 1085440 

Mount time (ms) 2179.54 8.62 6.98 
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Figure 5.8 The NOR Flash Memory Map 

 

Figure 5.9 The Mount Operation of JFFS2 Partition in Background 
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And we implement a complex file system which includes SquashFS and JFFS2 

FS to reduce the boot time greatly, and we still can do write operation on flash storage. 

The NOR flash memory map is shown at Figure 5.8, and the mount operation of 

JFFS2 partition in background is shown at Figure 5.9, the shell prompt is put at 

1489.59 ms for user, and the JFFS2 partition is mounted at 3744.60 ms in 

background. 

 

5.3 Reduced Functional Ability 

 We built the Table 5.11 to show the functional ability comparison between 
original boor and faster boot, the abilities and characteristics will show in it. 

Table 5.11  Functional Ability Comparison 

 Original Boot Faster Boot 

Clocking mode MPU and DSP work at 96 MHz 
during U-Boot phase 

MPU and DSP work at 192 MHz during U-Boot 
phase 

Console functions U-Boot will provide a fully 
console device 

The command loadb and the console outputs 
work ok 

Abort boot 
function 

U-Boot will wait for user for 1 
second at least 

U-Boot will wait for user for 200 ms at most 

Image verification 
mechanism 

Image verification mechanism is 
always ON 

User can switch the mechanism himself 

Silent console in 
U-Boot 

U-Boot will output the normal 
information 

U-Boot will output no information 

Uncompressed 
Kernel 

The compressed image size is less 
than 1 MB and kernel has been 
uncompressed before start 

The image size is more then 1MB and less than 
2.2MB, and kernel hasn’t been uncompressed 
before start 

BogoMIPS 
calibration 

Kernel compute BogoMIPS and 
loops_per_jiffy every boot 

Kernel get the loops_per_jiffy from command 
line 

Device 
Modularization 

Kernel will initiate all usable 
device during kernel phase 

Some modularized devices have been initiated 
before using them 
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Silent console in 
kernel 

Kernel will output the normal 
information 

Kernel will output no information during boot, 
and store information in kernel ring buffer 

User space 
utilities 

Many useful utilities will be 
supplied, some are similar 

Limited utilities for specific requirement 

Shell prompt start Saving memory and wait for user 
to enable shell prompt 

Shell prompt will use 84 or 96KB of memory 
and user can user shell prompt soon 

File system It will waste 2 to 3 seconds to build 
the JFFS2 file system during boot 

JFFS2 file system will be built in background 
and save 2 to 3 seconds during boot 

 

5.4 Recommendation 

 In Section 5.4, we provide a comparison of original and faster boot. 

Certainly, some method for faster boot will reduce the boot time and also the 

functional abilities. Therefore, we need to do some choices to meet the balance 

between boot time and functional abilities. 

 We recommend that the methods of U-Boot phase must be used, because the 

methods of reducing the time during U-Boot doing boot process are functional 

lossless. Regarding the console information and image verification mechanism, we 

can use the switch to meet the requirement. You only need to do image verification 

again to determine if you shall re-burn the kernel image after system crash and the 

stability of system is not acceptable. 

 The implement of uncompressed image is according to the total size of boot 

loader, kernel and file system. Sometimes, you must upgrade the flash because the 

original flash capability can not meet the requirement of uncompressed kernel image. 

For example, some specific product which has only 2 MB NOR flash, after reducing 

useless modules and utilities of user space, the total size of U-Boot, boot loader 

parameter, uncompressed kernel and root file system can be limited less than 2 MB. 
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Therefore, using uncompressed kernel is feasible. On the other hand, in order to 

provide multi-function and support more devices, a 4MB NOR flash is necessary for a 

complete embedded operating system. At present, the price of 2Mbytes NOR flash 

(Intel JS28F160C3TD70) is US$ 1.596 (price break is 1000) [22], and the price of 

4Mbytes NOR flash (Intel JS28F320C3TD70) is US$ 3.0457 (price break is 1000) 

[23], you must pay more costs for this method. 

Device modularization is limited by the requirement of specific product, if the 

product is required to provide all useable devices immediately after boot; the effect of 

device modularization is restricted. For example, a smartphone should let the function 

of communication usable immediately after boot, and let other functions be initiated 

in background. And other methods of reducing the time during kernel phase are 

functional lossless. 

 If the product need not to store extra data, using a read-only file system is 

recommendable, otherwise using a complex file system can meet the requirement of 

faster boot and data storage. If the product need no shell prompt, the method of 

quicker shell prompt should not be used. If the product is required to provide 

complete utilities; the effect of the part of user space utilities is restricted. 

5.5 Summary 

 In Chapter 5, we implement many methods which reduced the boot time from 

boot loader phase to user space phase. Our optimized U-Boot 1.1.3, suggested Linux 

kernel 2.6.14 configuration, and optimized BusyBox 1.01 are usable immediately and 

modification of hardware is needless.  
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Chapter 6 

Conclusion 

 

 There are many mobile devices and high-level consumer electronics on the 

market, such as Smart Phone, Palm PDA, Pocket PC and Camera Phones, etc; they 

are very convenient and powerful. However, the boot time of them is generally 8~10 

seconds. Most of people are impatient; they want the boot time faster and faster. 

Therefore, we try to improve the boot time of these products which are based on 

embedded platform. We choose the OMAP5912OSK running embedded Linux as our 

experiment platform. OMAP5912OSK based on the dual core processor of 

ARM926EJ-S MPU and TMS320C55x DSP, 32MB NOR flash and 32MB DDR 

SDRAM; they are useful or development. 

We study the source code of U-Boot, Linux kernel and BusyBox, and try to 

measure the boot time by software tools and hardware tools, such as KFT, Printk 

Times, initcall-times patch, expect script, oscilloscope and logic analyzer. After 

obtaining the time measurement results, we subdivide the total boot time to 18 

function blocks, and find out the long execution time operation in each function block. 

By hack related source code, we either simplified by rewriting the codes or even 

skipped without any side effect to reduce the execution time. 

Finally, we optimize the U-Boot 1.1.3 and BusyBox, and suggest a fast boot 

Linux kernel 2.6.14 configuration. With read-only SquashFS file system, the boot 

time is only 1477.77 ms. With our complex writable file system, the boot time is only 

1598.35 ms. By our method , the boot time of mobile devices and high-level 

consumer electronics can also be reduced, people will like these.  
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Chapter 7 

Future Work 

 

We already achieved the fast boot on OMAP5912OSK; we believe that our 

methods can be implemented on other platform. And we will try to build a timing 

equation for fast boot by analyze more detailed time measurement results. By that 

timing equation, we can obtain the boot time by related parameter of specific 

platform. 
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