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微聚焦端泵浦掺釹釩酸釔雷射在簡併共振腔下的動態與穩態行為 

 

學生: 戴伯澤                     指導老師: 謝文峰 教授 

                                              吳小華 教授 

 

國立交通大學光電工程學系 

摘要 

 我們研究一個操作在 1/3 簡併共振腔附近與小聚焦端泵浦的掺釹釩

酸釔雷射，其共振腔結構相關的動態行為。強烈聚焦的泵浦光線會因為

熱透鏡的效果，而產生巨大的相位變化進而影響共振腔的結構。為了讓

數值模擬能夠符合實驗的結果，我們將熱透鏡的效應加入數值模擬。數

值模擬可以指出哪些位置可以產生自脈衝的現象，為什麼我們可以在長

短不同共振腔下觀察到時-空不穩脈衝現象，以及只有時間不穩定脈衝，

這些結果都跟實驗非常的符合。除了在長腔的不穩區域之外，我們實驗

上也觀察到橫模的光頻鎖定，及無橫模拍頻。利用基因演算法計算模態

展開時，每個模態的振幅權重以及相對的相位，我們發現在完全簡併的

共振腔下所有的橫模都是同相位。即使我們調離開簡併共振腔，所有的

橫模還是保有相位與光頻的鎖定。即便調離簡併共振腔大約 1mm，我們

仍可以觀察到模形(beam profile)會隨著傳播方向改變 ，這是由於所有的

橫模在一開始就是相位鎖定。 

 由於在簡併共振腔下所有的橫模會保有光頻與相位的鎖定，我們可

以利用這個特性來控制雷射的模形。我們驗證了在一個小聚焦與端泵浦

的掺釹釩酸釔雷射可以直接產生多樣的瓶型光束。只要適當的控制泵浦
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光斑與腔內實光欄的大小，在半共焦腔、1/3 簡併腔、與 1/5 簡併腔下可

以產生不同但是對比度極佳的瓶型光束。這樣的新發現是適用於內含任

意增益介質之小聚焦端泵浦雷射。 

 這樣的雷射也可抑制空間燒洞(spatial hole burning)效應。由於雷射

模會自動調整大小以符合泵浦光斑，雷射可以在被幫浦增益介質區域內

達到很高的光強度，而使得大部分的增益被高強度的駐波消耗掉。我們

利用一個縱向相關的速率方程式來描述與研究這個在平凹共振腔掺釹釩

酸釔雷射的實驗。即使高於 20 倍的閥值，實驗上我們可發現這個抑制空

間燒洞的效應。 
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Dynamics and stability behaviors in tightly focused end-pumped Nd:YVO4 

laser around the degenerate cavity configurations 

 

Student: Po-Tse Tai                 Advisor: Professor Wen-Feng Hsieh        

Professor Hsiao-Hua Wu 

 

Department of Photonics and Institute of Electro-Optical Engineering 

National Chiao Tung University 

Abstract 

We experimentally and numerically studied cavity-dependence of laser 

dynamics in an tightly-focused end-pumped Nd:YVO4 laser which operates 

in the vicinity of 1/3-degenerate cavity.  The tightly-focused pump beam 

results in enormous phase distortion which influences the cavity 

configuration through the thermal lens effect, therefore, the thermal lens 

effect is considered in our simulation.  The simulation results well explain 

our experimental observation including the regions of self-pulsation, the 

reasons why we should observe the temporal or the spatiotemporal dynamics 

in the instability region on short- or long-cavity side of the degeneracy, and 

the influence of thermal lens.  In addition, the transverse modes are all 

frequency-locked over the cavity tuning except for the instability regions.  

By decomposing the calculated mode (similar to the observed one) into the 

degenerate transverse modes to obtain their mode weights and relative 

phases, we found that the transverse modes are all in phase at the exactly 

degenerate cavity.  Except for the cavity configuration within the instability 
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region on the long cavity side, all of the transverse modes are phase- and 

frequency-locked to one another even when the cavity is tuned away from 

the degeneracy.  This finding consists with the experimental observation 

that the stationary transverse mode pattern does vary along the propagation 

axis due to interfere of Guoy phases from the phase-locked transverse modes 

even for cavity length being adjusted 1mm away from the degeneracy. 

Because the transverse modes which govern the laser pattern are 

in-phase and frequency-locked at the degeneracy, we should be able to 

control the laser pattern.  We demonstrate various optical bottle beams can 

be directly generated from a tightly focused end-pumped Nd:YVO4 laser.  

By controlling the size of pump beam and inserting an intracavity aperture in 

the plano-concave cavity, we obtain good contrast optical bottles at 

semi-confocal, 1/3-, and 1/5-degenerate cavity configurations, respectively.  

This new observation is universal that is suitable for any kinds of gain media 

in tightly end-pumped lasers. 

 We also found that the spatial hole-burning effect can be suppressed in 

this laser.  Due to shrinkage of the beam waist of laser mode to match the 

pump beam, this laser can attain very high intensity in the pump region of 

gain medium and therefore most of its gain is depleted even by a standing 

wave.  This was demonstrated by a simulation with spatial dependent rate 

equations and experiment results of a plano-concave Nd:YVO4 laser.  The 

suppression effect was observed up to 20 times the pump threshold. 
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Chapter 1 Introduction  

A laser system must contain a pumping source, gain media, and optical 

resonator.  The simplest kind of optical resonator consists of just two curved 

mirrors set up facing to each other.  Simple two-mirror cavities are widely 

used in practical lasers, and the properties of stable resonators are the basic 

lore of laser physics.  Although the paraxial optics can easily obtain a 

geometrical stable condition, there are many dynamics and stability 

behaviors in some special cavity configurations [1-7].  In this study, we will 

focus on laser dynamics and stationary laser parameters dependent on its 

resonators.    

1.1 Geometrical stable condition  

Gaussian beams are the eigenfunctions of a laser resonator.  We can 

use a complex q-parameter to represent a Gaussian beam of which the real 

and the imaginary parts respectively indicate the radius of curvature and the 

beam width.  The transformation rule of paraxial wave using the ABCD 

matrix elements to relate the q-parameters as it propagates according to the 

so-called ABCD law as 

DCq
BAqq

+
+

=
1

1
2 ,                                         (1.1) 

where q1 is the initial state of Gaussian beam and q2 is the final state after 

Gaussian beam propagates through a paraxial optical system characterized by 

the ABCD matrix.  Let the elements of ABCD matrix in Eq. (1.1) be those 

for a round trip of the laser cavity.  Thus, q1 will equal to q2 because the 
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laser beam should be self-consistent after propagating a round trip.  

Therefore we can solve the self-consitent q-parameter qs as 

2

1
2 2

s

A D A Di

q
B

⎡ ⎤− +⎛ ⎞⎢ ⎥− ± − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦= .                           (1.2) 

For ensuring qs be a complex number, we obtain the criterion of a stable 

cavity: 

1
2

≤
+ DA .                                            (1.3) 

Assume two mirrors which form a resonator having radii of curvature of R1 

and R2 are separated by L, the round trip elements of ABCD matrix are trivial 

to obtain and substitute into Eq. (1.3) and the stable condition of optical 

resonator becomes  

10 21 ≤≤ gg ,                                         (1.4) 

where 
2,1

2,1 1 R
Lg −= .  This stability criterion of Eq. (1.4) is suitable for 

any two-mirror optical resonator and is called the geometrically stable 

condition.  However, we only consider the geometrically stable condition 

for a real laser cavity is not enough if there are additional effects that can 

result in instability output of laser, and we will discuss it as follows. 

1.2 Degenerate cavities and iterative map 

1.2-1 Resonance frequencies and degenerate cavities 
The resonance condition for a standing-wave cavity is that the phase 

shift for total round-trip must be an integer multiple of 2π.  The total phase 

shift from one end of cavity to the other end includes kL and Gouy phase 
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shift terms, where λ
π2=k  is the wave number, λ is wavelength of laser, 

and the Gouy phase is an additional phase introduced by a paraxial wave 

function substitution for an (n,m)-th order Hermite-Gaussian mode in 

mathematics.  The total Gouy phase shift of a laser cavity with resonator 

length L is given in terms of the g-parameters by the formula  

( ) 1
1 21 cos ( )n m g g−+ + ± ,                                 (1.5) 

where n and m are the mode numbers in the x- and y-axes, respectively.  

Because the Gouy phase shift depends on Hermite-Gaussian mode number, 

different transverse modes of a stable Gaussian resonator have different 

resonance frequencies and the resonance frequency of Hermite-Gaussian 

(n,m) mode is therefore given by  

⎟
⎠
⎞

⎜
⎝
⎛ ++

+= −
21

1
,, cos1

2
ggnmq

L
c

qmn π
ν ,                      (1.6) 

where q is the longitudinal mode number.  Form Eq. (1.6), we can define 

νl=c/2L is the longitudinal mode spacing, and νt=(νl/π)arcos[(g1g2)1/2] is the 

transverse mode spacing.  The configurations with g1g2= 0, 1/4, and 1/2 

correspond to νt/νl= 1/2, 1/3, and 1/4, respectively, therefore, we denote them 

as 1/2-, 1/3-, 1/4-degenerate configurations.  In these configurations, the 

fundamental modes may be degenerate with other high-order transverse 

modes which obey Eq. (1.6).  The degenerate modes may through the mode 

competition or the mode beating result in instability of laser output [8-9].  

Therefore, we know the degenerate cavity is a good choice to investigate 

laser dynamics.   
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1.2-2 Iterative map 
 The iterative map is a mathematical tool to realize the dynamic 

behaviors in a physical system.  This method use discrete time system to 

study a continuous system.  Applying the ABCD matrix for a lossless 

two-mirror resonator, we can define a two-dimension iterative map which 

contains the spot size w and radius of curvature R as below [2] 

( )

( )

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛ +

==

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛ +==

+

+

BDwR
DCR

BA

BwR
BA

w,RR

BwR
BAww,Rw

2

2
nnn

2
2

2
n

2

n
nn1n

2
2

2
n

2

n
nnn1n

π
λ

π
λ

π
λ

f

h

.    (1.7) 

The suffix of n represents the round-trip index where A, B, C, and D are 

elements of the round-trip matrix, and the discrete time interval of the map is 

equal to one round-trip time of the resonator.  Under linear stability analysis, 

the stability of fixed point is determined by its Jacobian eigenvalue of the 

map.  The fixed point is the self-consistent solution of q-parameter, i.e., the 

steady-state solution.  Therefore discussing the Jacobin eigenvalue at fixed 

point is equivalent to determine the dynamic stability of laser resonator.   

 Because the map belongs to conserve system, the determinant of 

Jacobian matrix equals to unity and the eigenvalue of Jacobian matrix depend 

on its trace.  For convenience, we use the residue to discuss the stability 

condition which is defined as 

( )[ ]JMTr-2
4
1Res = ,                                     (1.8) 

where MJ is the Jacobian matrix and Tr(MJ) is its trace.  When 0<Res<1, the 

eigenvalues are complex with unity magnitude and the system is stable, 
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whereas the system is unstable with either Res<0 or Res>1.    

 In the standing wave resonators with real round-trip transfer matrices, 

the curvature of laser beam must match the end mirrors.  Therefore, by 

substituting the the trace of Jacobin derived from the round-trip transfer 

matrix into Eq. (1.8), we have the residue  

( )2
21

2

1
1-G2G-1R

BA-1Res =⎟
⎠
⎞⎜

⎝
⎛ += .                      (1.9) 

Here we have defined G1=a-b/R1 and G2=c-d/R2 as the G-parameters for 

general optical resonators, and a, b, c, and d are the elements of transfer 

matrix of single pass between the two end mirrors.  We can use 

G-parameters to discuss the stability of a multi-element resonator. 

 For simplicity, we discuss the stability by a two-mirror resonator.  Thus 

the single pass transfer matrix is ⎥
⎦

⎤
⎢
⎣

⎡
10
L1

 and 

( )2
21 1-g2g-1Res = ,                                    (1.10) 

where 
1,2

1,2 R
L-1g =  and the definition of g-parameters are the same as in 

Eq. (1.4).  From Eq. (1.10), we found that the residue is a function of g1g2 

only.  A plot of the diagram of residue versus g1g2 is presented in Fig. 1-1.  

Since the resonator is dynamically unstable for Res<0 or Res>1, in Fig. 1-1, 

one gets a region with g1g2<0 or g1g2>1.  And the dynamic stable region 

with 0<Res<1 is also geometrically stable corresponding to 0<g1g2<1.  It is 

critical stable for Res=0 with g1g2=0 or g1g2=1.  The stable region of residue 

theorem is the same as the geometrical stability ones which has been 

discussed in Section 1.1.  However, another critical stable point at g1g2=1/2 

with Res=1 in Fig. 1-1 can not be found by using the paraxial optics.  
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Stability region decided by the iterative map of the beam parameters provides 

not only geometrical stable condition but also dynamically critical stable 

condition.   

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

R
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Fig. 1-1 The diagram of residue versus g1g2.  It can easily be 
observed that the stable region of the residue is the same as 
geometrical stable condition. 

 From the residue theorem, these special cases with Res = 0, 1, 3/4, and 

1/2 correspond to the low-order resonance where p=1, 2, 3, and 4 satisfying 

χp=1, respectively.  Here χ is the eigenvalue of MJ.  Under these 

circumstances, the complicated dynamics may occur at these configurations 

if there is a persistent nonlinear effect.  These special conditions correspond 

to g1g2=0 or g1g2=1 for Res=0; g1g2=1/2 for Res=1; g1g2=1/4 or g1g2=3/4 for 

Res=3/4; and g1g2= ( )22 ± /4 for Res=1/2, respectively [1-2].  It is worth 

noting that these configurations correspond to degenerate cavities and these 

degenerate cavities are very sensitive to any perturbation in the laser system.  

Therefore if any nonlinear effect is in a laser system, the laser will present 

various dynamics behavior.  In the previous study [10], the 

cavity-dependent laser dynamics has been studied in a Kerr-lens mode locked 
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(KLM) Ti-sapphire laser.  When the optical Kerr effect was considered as 

the nonlinear dynamical parameter, optical bistability and multiple-period 

bifurcation were numerically demonstrated. 

1.3 Laser patterns in degenerate cavity  

 Even now except for a few special situations, rigorous mathematical 

existence and completeness proofs for optical resonator eigenmodes do not 

exist.  Because the conventionally laser cavity is an open-side optical 

resonator, the laser is not a lossless system.  Real lasers have never had any 

difficulty in finding eigenmodes.  Empirical and experimental evidence 

show the same results of lossless system, such as microwave cavities or 

microwave waveguide, the eigenmodes of laser resonator exist.  Therefore, 

the concept of eigenmodes, such as the Laguerre-Gaussian or the 

Hermite-Gaussian mode, has long time been accepted and provides a 

physically realistic and meaningful basis for describing laser resonator in real 

system.   

 In ray analysis of the resonators, however, a paraxial resonance equation 

[11]  yields the mirror separations of a two-mirror cavity in which any 

arbitrary rays repeat themselves after an integer number (say N) of return 

transits.  It has been argued that a set of paraxial closed ray paths that is 

complete in N round trips might also be regarded as a mode of the resonator.  

By investigating the effects of off-axis pump on the laser with these 

degenerate resonator configurations [12], it can be found that a symmetric 

pattern forms for even N and an asymmetric pattern forms for odd N.  These 

results may be accounted for simply by the introduction of multipass 
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transverse (MPT) modes that self-reproduce after several round trips in terms 

of the ray matrix analysis but not by the superposition of standard cavity 

modes.   

 In the recently study of multi-beam waist mode [13], we can use 

propagation of Gaussian q-parameter at 1/3-degenerate cavity to realize 

multipass transverse mode as showed in Fig. 1-2.  In accordance with Fig. 

1-2(a), in Fig. 1-2(b) we depict the Gaussian-beam evolution in which the 

first round-trip wave begins with Eg1 (w=aa’/2, R1= ∞ ) and reproduces itself 

after three round trips in the cold cavity.  Note that a positive R represents a 

divergent wave riding in the propagation direction.  The second round trip 

begins when Eg2(w2=cc’/2, R2) converges at dd’ owing to negative R2; which 

means that the light wave emanates from Eg2 just as from dd’.  The third 

round trip, with Eg3(w3=w2 , R3=-R2), is divergent from cc’; however, it 

seems to emanate from dIdI’.  As discussed above, it implies that the 

locations of aa’, dd’, and dIdI’ are point sources, respectively, therefore it 

can be expected that three beam waist can be observed after focusing this 

laser mode.   

If we place a transform lens with a focal length of 5.2 cm a distance of 

10.5 cm from a plano-concave cavity which operated at 1/3-degenerate 

cavity with cavity length of 6cm, this is equivalent to propagating a distance 

of 16.5 cm from the flat mirror and then through the transform lens.  

Therefore, three point sources at dd’, aa’, and dIdI’, in the Fig. 1-2 (b), have 

distances of 10.5cm, 16.5cm, and 22.5cm from the transform lens 

respectively.  An image formula of Gauss is used to determine the locations 

of images, as a result, three images are located at 10cm, 7.8cm, and 6.8cm, 



 

9 

respectively.  A charge-coupled device (CCD) directly images the mode 

pattern behind the transform lens and in order to reduce the noise, a laser line 

filter was placed in front of the camera lens of CCD.  The images according 

with distance are shown in Fig. 1-3.  It is clearly that the experiment results 

fit with the calculation of geometric optics and the model of multipass 

transverse mode.   

          

 

Fig. 1-2 The sketch of multipass transverse mode at 1/3-degenerate 
cavity.  (a) Periodic orbits of the q-parameter for the empty cavity.  
The two concentric circles mean that there are infinite sets of 
period-N solutions.  (c) Gaussianbeam evolution in the empty 
cavity.   

 
Fig. 1-3 Propagation of the multi-beam waist mode.  
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In fact, the multi-beam waist made can be explained as a supermode 

[14-15].  The supermode is superposed by many high-order degenerate 

transverse modes, and because of cooperative frequency locking of the 

degenerate modes the laser pattern is temporal stationary.  In addition, the 

pattern propagating in free space along the beam axis is not stationary due to 

the interference of the degenerate modes.  The concept of eigenmodes also 

can well explain the experiment results, although it needs a serial of 

calculation but not an intuitional process.  Nevertheless, it is interesting that 

a complicated problem of wave optics can be simplified to a geometrical 

optics one.   

1.4 Aims of this research  

 In this research, we will investigate the laser dynamics under stationary 

laser parameters in a simple plano-concave tightly-focused end-pumped 

Nd:YVO4 laser near the degenerate resonators, and a model of Huygens’s 

integral together with the rate equations will help us to analyze this laser 

system.   

We found that the laser instability occurs in a very narrow range of cavity 

tuning on each side of the degeneracy points that shows periodic, 

period-doubling, and chaotic time evolutions.  In our experiment, an 

extremely small wp will increase the mode weights of the high-order 

degenerate modes to as much as the fundamental Gaussian mode.  Although 

so many degenerate modes which bring a supermode join to laser instabilities, 

the dynamic behaviors on short-cavity side are only temporal instabilities, the 

instabilities on the long-cavity side are spatiotemporal which results from the 
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nonlinear coupling between the supermode and the other Laguerre-Gaussian 

modes.  From the simulation model, we found that the other 

Laguerre-Gaussian modes are introduced by the thermal lens effect.  It is 

the first time to discuss the relationship between the laser instability and 

thermal lens effect.   

Under tightly-focused pumping, the supermode is formed around the 

degenerate cavity.  We utilize the supermode to directly generate various 

optical bottle beams at different degenerate cavities.  An optical bottle beam 

has a low-intensity zone surrounded by a high intensity shell that can be 

applied to trap low-index micro-particles or blue-detuned atoms.  Optical 

bottle beams had been generated in the use of holograph, spatial light 

modulator, and two-beam interference.  Those methods need enormous 

calculation to prepare a suitable holograph with low conversion efficiency or 

well control of phase retardation for each pixel of SLM and two overlapped 

beams to make the destruction interference occurring at the beam center.  

Our method of generating bottle beams directly from a simple laser is 

convenient for various applications. 

We will also investigate the spectrum of laser at degenerate cavities.  In a 

standing wave resonator, the spatial hole-burning effect can be suppressed.  

This laser can attain very high intensity in the gain medium due to shrinkage 

of its beam waist to match the pump beam and therefore most of its gain is 

depleted even by the standing wave.  This experimental result proves a 

useful method to control the mode selection in this degenerate cavity, instead 

of using otherwise additional dispersion components such as filters or 

gratings.   
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In this dissertation, it will introduce the simulation model which includes 

how the thermal lens effect substitutes or modifies the model in Chapter 2.  

And than we will discuss our experimental results which are laser dynamics 

in Chapter 3, directly generation of optical bottle beam in Chapter 4, and 

optical spectrum of around degenerate cavity in Chapter 5.  Finally, in 

Chapter 6 it will state the conclusions and then give suggestions for future 

work.   



 

13 

References  

[1]. M.D. Wei and W.F. Hsieh, J. Opt. Soc. Am. B 17, 1335 (2000). 

[2]. M.D. Wei, W.F. Hsieh, and C. C. Sung, Opt. Commu. 146, 201 (1998). 

[3]. Y.F. Chen and Y.P. Lan, Phys. Rev. A 63, 063807 (2001).  

[4]. C.H. Chen, M.D. Wei and W.F. Hsieh, J. Opt. Soc. Am. B 18, 1076 

(2001). 

[5]. P. Laporta and M. Brussard, IEEE J. Quantum Electron. 27, 2319 

(1991).   

[6]. H. H. Wu and W. F. Hsieh, J. Opt. Soc. Am. B 18, 7-12 (2001). 

[7]. V. Couderc, O. Guy, A. Barthelemy, C. Froehly, and F. Louradour, Opt. 

Lett. 19, 1134 (1994). 

[8]. L. A. Lugiato, G. L. Oppo, J. R. Tredicce, L. M. Narducci, and M. A. 

Pernigo, J. Opt. Soc. Am. B 7, 1019 (1990). 

[9]. J. R. Tredicce, E. J. Quel, A. M. Ghazzawi, C. Green, M. A. Pernigo, L. 

M. Narducci, and L. A. Lugiato, Phys. Rev. Lett. 62, 1274 (1989). 

[10]. J. H. Lin, M. D. Wei, and W. F. Hsieh, J. Opt. Soc. Am. B 18, 1069 

(2001). 

[11]. Ramsay and J. J. Degnan, Appl. Opt. 9, 385 (1970). 

[12]. E. Siegman, Laser (Mill Vally, CA, 1986). 

[13]. C. H. Chen, P. T. Tai, W. F. Hsieh, and M. D. Wei, J. Opt. Soc. Am. B 20, 

1220 (2003). 

[14]. C. H. Chen, P. T. Tai, W. H. Chiu, and W. F. Hsieh, Opt. Commu. 245, 

301 (2005). 

[15]. L. A. Lugiato, G. L. Oppo, M. A. Pernigo, J. R. Tredicce, and L. M. 

Narducci, Opt. commun. 68, 63 (1988). 
 



 

14 

Chapter 2 Simulation model for our 

laser system 

 Fox and Li approach [1-3] is usually used to elucidate the physical 

picture of radiation in an optical resonator, which repeatedly circulates 

around the cavity that contains a thin slab gain medium.  The transverse 

mode profile can be calculated based on the central laser wavelength because 

the diffraction effect experienced by transverse modes will be essentially the 

same for those any one of axial mode frequencies within the oscillation 

bandwidth.  In the numerical procedure, an arbitrary initial field will 

eventually converge to a state which the mode profile will self-consistent 

after one round-trip.  In our study [4], we use this approach to simulate an 

end-pumped solid-state laser.   

2.1 Huygens’s integral and ABCD matrix 

2.1-1 Huygens’s integral 
 In the classical optics, we can use Huygens’s integral to describe an 

optical field after a certain distance of diffraction.  So we also can use 

Huygens’s integral to describe laser beam in a real resonator.  In Fig. 2-1, it 

is a sketch of one-dimension Huygens’s integral, and it means that the optical 

field of plane Z2 interferes with all of the point sources of plane Z1.  In 

one-dimension condition, the Huygens’s integral is  
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xu  are respectively the wave functions of Z1 and 

Z2 plane, k is the wave number and λ is the wavelength of laser field.   

The ρ(x1,x2) is the distance of the arbitrary position vectors on the Z1 and Z2 

planes.  Therefore we can define ρ as  
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We can use Eq. (2.1) and (2.2) to calculate the diffraction of optical field.   

L

X1

X2

Z

u1(x1)~ u2(x2)~

Z1 Z2  

Fig. 2-1 The sketch of one-dimension Huygens’s integral.  L is the 

separation distance between plane of Z1 and Z2, the )( 11

~
xu  and 

)( 22

~
xu  are the wave function of each plane.   

2.1-2 Relationship between ABCD matrix and Huygens’s integral 
 We usually use the ABCD matrix to present a paraxial system, such as 

laser resonator.  If we substitute the elements of ABCD matrix to Huygens’s 

integral, it will be very convenient for using.   

 Now, we will find the relationship between ρ(x1,x2) and ABCD matrix, 

and substitute to Huygens’s integral.  In Fig. 2-2, a paraxial optical system 

between the plane of Z1 and Z2 can be expressed as  



 

16 

⎢
⎣

⎡
⎥
⎦

⎤
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
'
1

1
'
2

2

x
x

DC
BA

x
x

,                                     (2.3) 

where the x and x’ respectively represent the positions and slopes of the ray 

on the Z1 and Z2 planes.  From the Eq. (2.3), we can get the slope of each 

point as  
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The input ray may be viewed as a ray coming from an object point P1 located 

a distance R1 behind the input plane, as shown in Fig. 2-2.  Hence R1 and R2 

is given by  
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Fermat’s principle says that “all rays connecting two conjugate points must 

have the same optical path length between two points.”  Therefore the ray 

path from P1 to P2 through x1 and x2 will equal to the ray path along the 

optical axis ( 221121 PxxPPP = ).  Both ray paths can be written as  
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From Eq. (2.6), we can get  
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2
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B
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By substituting Eq. (2.7) into Eq. (2.1), the Huygens’s integral becomes  
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Therefore we have the relationship between elements of ABCD matrix and 

the Huygens’s integral.   

P1 P2

R1 R2

L0

Z1 Z2

)( 2,1 xxρ

A B
DC

x2,x2x1,x1' '

 

Fig. 2-2 The sketch of the optical ray through an ABCD paraxial 
system.  The x and x’ respectively present position and slpoe of ray.  
P2 is the conjugate point of P1.   

2.2 Simulation model in a laser cavity  

 Consider the plano–concave axially pumped solid-state laser shown in 

Fig. 2-3.  It consists of a laser crystal with one of its end faces 

high-reflection coated as the flat mirror (M3) and a curved mirror (M2) with 

radius of curvature R as the output coupler which is separated by a distance L.  

Let the reference plane be the place of M1 where the light beam just leaves 

the laser crystal toward the curved mirror.  As discussed previously, one can 

relate the one-dimension Huygens’s integral with the ABCD matrix.  In this 

system, we need two-dimension Huygens’s integral.  However, under 

cylindrical symmetry, simplified formula can be obtained  
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with the round-trip transmission matrix 
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Here )( 'rEm
+  and )(1 rEm

−
+  are the electric fields of the mth and the (m+1)st 

round trips on the planes immediately after and before the gain medium 

(denoted by the superscripts + and -), where r’ and r are the corresponding 

radial coordinates, λ is the wavelength of laser, and J0 is the Bessel function 

of zeroth order.  In a thin-slab approximation, we can relate the electric 

fields +
+1mE  to -

1mE +  (after and before the gain medium) in the same round 

trip as 

)/(]exp[)()( 111 arlNrErE mmm Π××Δ= +
−

+
+

+ ρσ ,                (2.11) 

where 2-1 ρ is the round-trip energy loss, σ is the stimulated-emission cross 

section, ΔN is the population inversion per unit volume, d is the length of the 

active medium, and Π(r/a) is an aperture function that Eq. (2.9) is valid for r 

less than aperture radius a and equals 0 otherwise.  Furthermore, assuming 

that the evolution of the population inversion follows the rate equation of a 

four-level system, we can write the rate equation as 

tNEEtNtNNRNN msmmampmmm ΔΔ−ΔΔ−ΔΔ−+Δ=Δ + )/()( 22
01 γ , (2.12) 

where Rpm is the pumping rate, Δt is the travel time through the gain medium, 

Es is the saturation parameter, γ is the spontaneous decay rate, and N0 is the 

total density of the active medium.  This method was used to model a 
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single-longitudinal multi-transversal high-power solid-state ring laser [5-7] 

and to analyze the decay rate of standing-wave laser cavity in the linear 

regime [8].  It was found that a standing-wave resonator can be 

approximated by a ring resonator if a thin gain medium is placed close to one 

of the end mirrors [9].  For a continuous Gaussian pump profile 

2 2
p0R exp[ / 2 ]pm pR r w= −  with constant pumping beam radius wp throughout 

the active medium (thin slab), the total pumping rate over the entire active 

medium is 

p

p
pm h

P
dVR

υ
=∫ ,                                        (2.13) 

where Pp is the effective pumping power and hνp is the photon energy of the 

pumping laser.  Because we consider only single-longitudinal-mode 

dynamics, we have omitted the dispersion of the active medium and the gain 

is assumed to be real.  Therefore we have four control parameters: ρ, R, wp, 

and Pp, which play important roles in the laser system and will be 

investigated in detail. 

 

Fig. 2-3 The sketch of plano-concave cavity.    
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2.3 Thermal lens and modification of simulation model  

 In continuous-wave (CW) end-pumped solid-state lasers, one must 

consider thermal effects that will impact optical performance.  One 

important effect, thermal lens, results from temperature-induced changes in 

the refractive index of gain medium [10].   

 The periphery of the laser crystal is held at constant temperature by a 

heat sink.  Fig. 2-4 shows the side view and end view of laser rod and heat 

sink.  In the steady state 

( ) ( )zr,Qzr,h =⋅∇ ,                                      (2.14) 

where h is the heat flux, and Q(r,z)=dP(r,z)/dV is the power per unit volume 

deposited as heat in the laser crystal.  The heat flux is related to the 

corresponding temperature distribution within the crystal by  

( ) ( )zr,T-Kzr,h c∇= ,                                    (2.15) 

where Kc is thermal conductivity of laser material.  From Eq. (2.14), we can 

integrate over a crystal volume bounded by a Gaussian surface of radius r 

and infinitesimal thickness Δz.  This yields 

( )
∫ ∫
Δ+

=Δ
zz

z

r

0

dz'dr'r'2
dV

z',r'dpzh2 ππ .                          (2.16) 

Now  

( ) ( )zr,IdV
zr,dP

hα= ,                                   (2.17) 

where α is the absorption coefficient of gain medium and Ih(r,z) is the 

intensity of incident pump light that results in heating of the crystal.  It is 

assumed that  

( ) ( )2
2h oh

p

-2rI r,z I exp exp - zW α
⎛ ⎞
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⎝ ⎠

.                       (2.18) 
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In Eq. (2.18), Ioh is the incident heat irradiance on axis and wp is the pumping 

spot.  Substituting Eqs. (2.17) and (2.18) into (2.16) and performing the 

integration yields 

( ) ( ) ( )2 2
pph 1-exp -2r /P

h r,z exp - z
2 r

wα
α

π

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

,                   (2.19) 

where Pph=πwp
2Ioh/2 is the fraction of pump power that results in heating. 

Substituting Eq. (2.19) into (2.15) and integrating to the crystal boundary, rb, 

the steady-state temperature is  
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ph b b

1 12 2 2
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α α
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where ( ) ( ) ( )z,rT-zr,Tzr,T b=Δ  and E1 is the exponential integral function 

[11].  Therefore the total phase change Δφ, that is accumulated in a single 

pass by the pumping through the laser rod, is given by 

( ) ( )∫ Δ=Δ
l

0

dzzr,nKrφ ,                                   (2.21) 

where ( ) ( ) dT
dnzr,Tzr,n ×Δ=Δ .   
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Fig. 2-4 Side view and end view of an applicable laser rod and 
heat sink.  The length of rod is l, the rod radius is rb, and the 1/e2 
radius of the Gaussian pump spot is ωp. 
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 In order to easily estimate the thermal lens, in the previously study [10], 

they used quadratic power of r to approximate the solution of Eq. (2.21).  

Because the tightly-focused pumping beam is used in our experiment, the 

approximate solution is inappropriate to express the phase change resulting 

from the thermal lens effect.  Therefore the numerical solution of Eq. (2.21) 

is necessary for substituting into Eq. (2.11) to simulate our laser system.   

2.4 Conclusion  

 As discussed above, the simulation model contains a Huygens’s integral 

and a rate equation.  In an end-pumped solid-state laser, thermal induced 

change of refractive index will deform the phase of electric field.  We can 

introduce the radial phase distribution which results from thermal lens to the 

simulated laser system.   

To obtain the time evolution of the output power, we set the reference plane 

with a 600 μm aperture at the flat end mirror and laterally integrated the 

intensity profile for each round trip.  The parameters that were used are the 

stimulated emission cross section of 25x10-19 cm2, the spontaneous decay 

rate of 2y104 s-1, the saturation parameter of the active medium of 1.12y1010 

J F-1 m-2, the fractional thermal loading of 0.23, the absorption coefficient of 

the laser crystal of 1930 m-1, the thermal conductivity of 5.23Wm-1 K-1, the 

thermal-optic coefficient of 8.5y10-6 K-1, and the others are the same as 

described in Section 3.2. 

We use a model of the Huygens’s integral together with the rate equations to 

simulate a real laser system.  Because the thermal lens effect is very 

important in an end-pumped laser, we add numerical model of thermal 
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induced additional phase to modify our simulation.  However, if it is 

necessary in the numerical, we can add or remove thermal lens effect to 

observe the influence of thermal.  This is a useful numerical model which 

will be used in the following chapters to analyze our experiment results.   
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Chapter 3 Laser dynamics around 

1/3-degenerate cavity  

In this chapter, we will control cavity length, pump power and pump 

spot to study the cavity-configuration dependence of laser instability and to 

determine the regions of laser instability.  When the pump size is small, we 

found that the laser always exhibits a stable cw output, except for a narrow 

range of cavity tuning on each side of the degeneracy.  The laser output 

shows self-pulsation with periodic, period-doubling, and chaotic evolutions.  

We also observed various patterns of the far field when we scanned the 

cavity length.  In particular, an anomalous mode pattern is accompanied 

with frequency beating close to the point of degeneration.  The simulation 

in use of Huygens’s integral and rate equations, while taking into account the 

thermal lens effect, shows good agreement with the experiment.   

3.1 Introduction  

It is commonly believed that spontaneous instabilities are impossible in 

class B lasers described by simple two-level rate equations without an 

additional degree of freedom such as external modulation, light injection, or 

delayed feedback, etc. [1].  However, the transverse effects such as gain 

variation and diffraction in the resonator provide the additional degrees of 

freedom and have been demonstrated to play important roles in lasers [2, 3].  

Because various transverse modes may be excited especially when the laser 
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is operated at near-degeneracy, a degenerate resonator is thus a good choice 

for obtaining laser instabilities.  Previously, we have analyzed an iterative 

map of the q-parameter of the resonator [4] and concluded that a laser will 

become unstable near some degenerate cavity configurations under nonlinear 

effects.  Using an end-pumped cw Nd:YVO4 laser, we have studied 

different laser behaviors under various pump sizes [5,6] when the cavity is 

near 1/3-transverse degeneracy (g1g2=1/4).  Recently, the Petermann K 

factor has also been calculated for maxima on each side of the degeneracy 

under strong gain guiding or small pump size [7].  It was emphasized that in 

the vicinity of the degeneracies the empty-cavity degenerate transverse 

modes are phase-locked and the resultant radial phase profile depends 

strongly on the cavity-length detuning.  

3.2 Experiment setup 

The experimental setup is schematically shown in Fig. 3-1.  This laser 

contains a 1-mm thick Nd:YVO4 laser crystal whose one end face acted as 

an end mirror and a spherical mirror with radius of curvature of 8 cm as the 

output coupler (OC).  A cw near-TEM00 Ti–sapphire laser at wavelength of 

808 nm was used as the pump source, which was focused by a collimating 

lens onto the crystal so the pump size was adjustable.  The end face of the 

crystal, which acted as the end mirror and faced to the pump beam, had a 

greater than 99.8% reflectivity at 1.064 μm and greater than 99.5% 

transmission at 808 nm; the other end face comprised an antireflection layer 

at 1.064 μm to avoid the effect of intracavity etalons.  The OC of 10% 

transmission was mounted upon a translation stage so we could tune the 
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cavity length (L) near the degenerate configuration.  The degeneration point 

of g1g2=1/4, which corresponds to L=6 cm, was determined by the cavity 

length where the lowest lasing threshold occurs [8].  The laser output was 

split into two beams, one of which was recorded by a CCD camera and the 

other was further split into two beams that were individually collected by two 

photodiodes (PDs) with rise times<0.3 ns.  The signals of the PDs were then 

fed into a LECROY-9450A oscilloscope (bandwidth 200 MHz) and an 

HP8560E RF spectrum analyzer (bandwidth 2.9 GHz), respectively.  The 

Gaussian pump radius, wp, was determined by the standard knife method.   

Ti-sapphire 
laser

MonitorOscilloscopeComputer

Lens

Nd:YVO4
crystal

OC
R=8cm

Filter

Screen

BS-2

Spectrum 
analyser

BS-1

CCD

PD-2

P
D
-
1

 

Fig. 3-1 The schematic experimental set up.  BS is the beam 
splitter.   

3.3 Experimental results and discussions  

3.3-1 Locations of spontaneous instability 
The output power varied with the cavity length under various pump 

radii and is shown in Fig. 3-2(a).  The bottom three curves for wp=19 μm 

show that a higher pump power not only widens but also heightens the power 

hump.  The laser exhibits a stable cw output for almost entire range of the 
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studied 3-mm cavity tuning.  However, within a narrow range of L on each 

side of the power hump, denoted as stars in Fig. 3-2(a), we always observed 

spontaneous instabilities.  The top two curves are the cavity-dependent 

output power for wp=25 and 34 μm at a pump power of 300 mW, in which 

the triangles and the solid circles denote the unstable regions for both cases.  

Note that the radius of cold-cavity fundamental mode is approximately 108 

μm.  Summarized in Fig. 3-2(b) are the unstable regions in terms of the 

cavity length and the pump power for the three pump sizes of 19, 25, and 34 

μm.  We use a single symbol to denote a narrow unstable region while twin 

symbols are used to encompass a wider unstable region of about 100 μm.  

One can see that the unstable regions on the short-cavity side are well 

separated for different wp and located farther away from degeneracy with 

increasing the pump power; in contrast, those on the long-cavity side are 

located very close to the point of degeneration and are nearly independent of 

the pump power. 
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Fig. 3-2 The observed output power as a function of cavity length 
(a) and the unstable regions in terms of the cavity length and the 
pump power for different wp (b).  The symbols for wp are the same 
in (a) and (b).  The output power is around 40 mW for Ppump=100 
mW as wp=19 μm. Note that we have added 50 mW and 75 mW for 
the curves of Ppump=200 mW and Ppump=100 mW.  The absorption 
efficiency of Ppump is about 60-70%. The lasing threshold is about 
5-30 mW depending on L and wp. 

We use our simulation model which was discussed in chapter 2 to 

simulate the output power with the cavity length and find out the location of 

instability.  Fig. 3-3(a) shows the output power as a function of L!when 

considering the thermal lens effect.  The curves of output power that are 

labeled as triangles, empty squares, and solid circles for wp=25, 30, and 35 

μm, respectively, show asymmetric power humps with respect to the point of 

degeneration.  The dependence of the power hump on wp and Pp (the 

effective pump power) are the same as in Fig. 3-2(a).  The unstable regions 

are summarized for four values of wp in Fig. 3-3(b), which are similar to 

those in Fig. 3-2(b) except that the vertical axis of Fig. 3-3 is the effective 
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pump power that matches with the pump efficiency of ~0.6 taken from the 

measured pumping.  Again, in Fig. 3-3(b) we use a single symbol to denote 

a narrow unstable region while twin symbols are used to encompass a wider 

unstable region.  It shows similar unstable regions and dependence on wp 

and Pp as those in Fig. 3-2(b); for example, at wp=35 μm, the unstable region 

shifts approximately from L=5.94 to 5.90 cm on the short-cavity side as one 

increases the effective pump power to match with the experimental data in 

Fig. 3-2(b).  Moreover, the far-field intensity profiles beside the long-cavity 

unstable region are similar to those in Fig. 2(b) of [6].  In addition, no 

instability can be observed as wp>40 μm, which is also consistent with the 

experiment. 

In order to study the influence of the thermal lens effect, we repeated 

the simulation without considering the thermal lens effect.  The calculated 

output power and the obtained unstable regions are shown in Fig. 3-4(a) and 

(b), respectively.  As compared with Fig. 3-3, it clearly shows that thermal 

lens effect leads to certain phenomena: (1) an asymmetrical shape of the 

power hump; (2) asymmetrical unstable regions with respect to the 

degeneration point; (3) dependence of the region shift on Pp on the 

short-cavity side but not on the long-cavity side; and (4) much less shift of 

the power maximum than shift of the unstable region (e.g., see wp=30 μm 

and Pp=150 mW).   

In summary, adding thermal lens effect in simulation model will obtain 

similar results with the features of instability regions and the diagram of 

output power versus cavity length in experiment.  No matter how the results 

of experiment or simulation (with thermal lens or without thermal lens effect) 
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the instability regions are located at the rim of power hump.  If the wp<40 

μm, we can easily locate the instability regions by the diagram of output 

power versus cavity length.   
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Fig. 3-3 The numerical output power as a function of cavity length 
with considering the thermal lens effect (a) and the unstable 
regions (b) for different wp.  The symbols for wp are the same for 
(a) and (b). 
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Fig. 3-4 The numerical output power as a function of cavity length 
(a) and the unstable regions (b) without considering the thermal 
lens effect.  The symbols for wp are the same for (a) and (b)/!

3.3-2 Laser dynamics in instability region 
When the cavity length was tuned from the long-cavity side toward and 

across the point of degeneration, various far-field mode patterns were 

observed.  The mode pattern shows a near-fundamental Gaussian 

distribution far from degeneracy.  Tuning L!close to the right edge of the 

unstable region, we observed a slightly distorted mode pattern.  When the 

cavity was set within about 100 μm of the unstable region, the mode pattern 

became non-cylindrically symmetric and strongly spread in a special 

direction as shown in Fig. 3-5(a).  This anomalous spreading pattern 

maintained wider than the whole unstable region by few tens of micrometers.  

When L!was tuned across the range that showed the spreading pattern, the 
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far-field pattern recovered to a cylindrically symmetric one but turned into 

many concentric rings with a dark center that is the far-field pattern of the 

multi-beam-waist mode [6].  By further tuning of L!toward the unstable 

region on the short cavity side, we observed the cylindrically symmetric 

mode pattern as shown in Fig. 3-5(b) that differs from the patterns in the 

unstable region of the long-cavity side, as indicated in Fig. 3-5(a). 

(a) (b)(a) (b)(a) (b)

 

Fig. 3-5 The far-field mode patterns inside the long-cavity unstable 
region (a) and inside the short-cavity unstable region (b). 

We further investigated the temporal behaviors of the output power 

within the unstable regions at Ppump=260 mW and wp=34 μm.  Fig. 3-6(a) 

shows a periodic time trace when the cavity was tuned at the edge of the 

long-cavity unstable region.  Its corresponding RF spectrum in Fig. 3-6(b) 

shows one main peak at 1.33 MHz and three harmonics.  When the cavity 

length was decreased by 20 μm from the position of Fig. 3-6(a), a period-2 

evolution was observed.  The time trace and its spectrum are shown in Fig. 

3-6(c) and (d), respectively.  On continuing the decreasing of the cavity 

length, we recorded a chaotic evolution in Fig. 3-6(e) with a broad low 

frequency spectrum indicated in Fig. 3-6(f).  Calculation by use of the chaos 

data analyzer (American Institute of Physics) shows that the correlation 
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dimension of the chaotic evolution is approximately 2.1.  Although the 

temporal behaviors of the cavity configuration-dependent instabilities are 

similar on each side of the degeneracy, the high-frequency responses of their 

power spectra are quite different.  For the long-cavity instabilities we 

observed multiple beating frequencies at 812 MHz, 1.63 GHz, and 2.44 GHz 

(see Fig. 3-6(g)) that were confirmed with a Fabry-Perot interferometer (FPI) 

having FSR=15 GHz and finesse=150.  The transverse mode beating 

pertaining to the Laguerre-Gaussian LG1,0 and/or LG2,0 modes would induce 

spatiotemporal instability, where the subscripts 1 and 2 are the radial indices 

and 0 is the azimuthal index.  However, within the short-cavity unstable 

region the spectrum shows only the longitudinal mode beating at 2.44 GHz 

with the absence of transverse mode beating in both of the RF and the FPI 

spectra.   
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Fig. 3-6 The temporal evolution of laser output.  (a) Periodic, (c) 
period-doubling, and (e) chaotic output within the long-cavity 
unstable region.  The RF spectra (b), (d), and (f), that correspond 
to (a), (c), and (e), respectively.  (g) The high frequency RF 
spectrum of the spreading mode pattern of Fig. 3-3(a). 

To investigate the distinction between the instabilities on the long-cavity 
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side and those of the short-cavity side, we used two PDs at different 

transverse positions to simultaneously record the laser power.  The first PD 

was fixed at the center of the profile as the reference and the second one was 

located at an off-axis position.  When the two detectors were separated 

within a distance, their temporal traces on the oscilloscope were completely 

the same as shown in Fig. 3-7(a).  However, we found for the long-cavity 

instability that the high peak of one trace coincided with the low peak of the 

other trace as shown in Fig. 3-7(b) when the two detectors were separated by 

some specific distance.  This reveals that the intensity profile varies with 

time and thus indicates spatiotemporal instability.  On the other hand, 

within the unstable region of the short-cavity, we always observed the same 

behavior between the two signals no matter at what position the second PD 

was located.  Temporal instability was exhibited on the short-cavity side.  

In addition, we also found that the instabilities on both sides of the 

degeneracy are closely related to high-order transverse modes because the 

instabilities disappeared when a knife-edge was inserted 500 μm into the 

cavity beam to inhibit the high-order transverse modes.  This will be 

explained in the following paragraph.   
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Fig. 3-7 The time traces in oscilloscope when the two PDs were 
separated close to each other (a) and farther away (b) for the 
long-cavity instabilities. 

 We will use our simulation model to explain the observations of 

experiment.  To simplify our discussion, we remove the thermal effect in 

the simulation.  Without the thermal lens effect, not only the power hump 

but also the dynamical behaviors are symmetric with respect to the point of 
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degeneration.  The simulated temporal evolution of the unstable output 

power exhibits self-pulsation on both sides of the degeneracy with a pulsing 

frequency of few hundred kHz (see Fig. 3-8(a)). The simulated intensity 

profile of each round trip show the variation of the on-axis peak intensity 

with time as the characteristic feature of Fig. 3-8(a), but the normalized 

profile varies only a little.  We plotted four normalized intensity profiles in 

Fig. 3-11(b) from the pulse peak to valley to show the variation.  Their 

corresponding far-field intensity profiles [insets in Fig. 3-8(b)], having two 

obvious rings, agree with the photograph of Fig. 3-5(b).  Moreover, the 

far-field intensity profile decreases smoothly and then increases when the 

pulse is growing.  This leads to pure temporal instability.  The modal 

analysis shows that the modes in Fig. 3-8(b) can be decomposed into the 

combination of the near-degenerate LG0,0, LG3,0, /!/!/, LG18,0 modes with 

mode weights and relative phase shifts because LG21,0 undergoes large 

diffraction losses for a 600 μm aperture at the reference plane.  These phase 

shifts must be included because the phase pattern is important as emphasized 

in [7].  We give a fitted result in the figure caption of Fig. 3-8(b).  When 

the thermal lens effect is included, the feature of self-pulsation is unchanged 

for the short-cavity side.  This matches with the general expectation that the 

thermal lens effect will only shift the cavity length.   
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Fig. 3-8 (a) A self-pulsing temporal evolution of the simulated 
output power without the thermal lens effect for M=5.96 cm.  (b) 
The normalized intensity profiles and their corresponding far-field 
profiles (inset) from the pulse peak (solid circles) changes to open 
circles, solid squares and then to the pulse valley (open triangles).  
The normalized profiles of the open triangles are covered by the 
solid squares.  The modal analysis for the profile of solid squares 
are LG0,0(0 。 )+0.63 LG3,0(-75 。 )+0.34 LG6,0(-105 。 )+0.16 
LG9,0(-90。)+0.08 LG12,0(-83。)+0.08 LG15,0(-116。)+0.07 LG18,0(-93。). (c) 
The numerical temporal evolution of the output power in the 
vicinity of the degeneracy with the thermal lens effect for L=6.005 
cm.  Inset is the first 20 iterations.  (d) The intensity profiles and 
their corresponding far-field profiles (inset) of three successive 
round trips. 

 However, on the long-cavity side the region shift seems independent of 

Pp and the self-pulsation becomes the characteristic feature of Fig. 3-8(c), in 

which the output power forms three branches of oscillation.  The first 20 
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iterations in the inset show that the output evolution nearly comes back the 

same value after three round trips; that is the power spectrum indicates one 

peak at roughly 1/3-longitudinal beating frequency that corresponds to the 

experimental data of 812 MHz.  The intensity profiles of three successive 

round trips are shown in Fig. 3-8(c), which are not normalized due to the 

large difference.  The corresponding far-field intensity profiles in the inset 

of Fig. 3-8(d) exhibit a complex feature, which is different from that of the 

short-cavity side.  Unfortunately, we could not yet obtain good fitting data 

by running the same fitting parameters, even when the LG1,0 mode was 

included.  This may be due to the peculiar phase pattern that is deformed 

strongly by the thermal lens effect in the vicinity of the degeneracy.  

Because the beating frequency between the near-degenerate LG modes is 

absent on both long-cavity and short-cavity instabilities, the frequencies of 

the near-degenerate LG modes are locked together to a single frequency.  

Therefore the frequency-locked mode, a supermode [9-10], interacts with the 

inverted populations and thus leads to the short-cavity instabilities.  

However, the long-cavity instabilities arise mainly from the frequency 

beating between the supermode and the other empty-cavity modes.  

Although the asymmetric (spreading) mode pattern of Fig. 3-5(a) cannot be 

produced by using the cylindrically symmetric model with single optical 

frequency, the simulated results agree with the experiment of transverse 

mode beating.  As far as we know, this is the first report that discusses the 

relationship between the instability and the thermal lens effect. 

 Furthermore, when the aperture on the reference plane is decreased to 

450 μm, in accordance with the previous experiment described, the 
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instability disappears.  The stationary mode now consists of the 

near-degenerate LG modes with the same frequency but lack of the 

higher-order LG15,0 and LG18,0 modes.  This fact of transverse mode locking 

was confirmed by the absence of the near-degenerate mode beating and by 

the observation of the intensity profile variation with the propagation 

distance as done in [6].  The supermode lack of the components of the LG15,0 

and LG18,0 modes is unable to arise the instability.  Inserting a knife-edge 

into the cavity beam in our experiment also results in a cylindrically 

symmetric pattern instead of a spreading pattern.  Apparently, the 

high-order modes with small amplitude may play important roles in 

symmetry breaking as indicated in [11].  However, the origin of the 

symmetry breaking is still unknown.   

Going back to Fig. 3-8(a), the pulsation is damped by the relaxation 

oscillation so the pulsing frequency depends on the pump power and the 

cavity length.  Theoretically, the pulsing spectrum can be calculated from 

the Fourier transform of the output power evolution.  Interestingly, by using 

γ=105
 s which the spontaneous decay rate is scaled 5 times we obtained 

periodic pulsing, period-2, and chaotic time evolution of the output power 

when L!was tuned from 5.96 to 5.951 cm with wp=30 μm and an effective 

pump power of 100 mW as show in the Fig. 3-9.  After 5 times scaling the 

dynamic behaviors of simulation, which is the route to chaos, are the same as 

the observations of experiment.   
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Fig. 3-9 The time evolution of self-pulsation by 10 times scaling.  
(a) periodic, (b) period-doubling, and (c) chaotic output are 
respectively located at L=5.955cm, 5.9523, and 5.9505cm.   

3.3-3 Cooperative frequency locking and laser patterns 
The laser cavity operates at exactly degeneracy, the transverse modes 

and longitudinal modes will degenerate.  It is mean that we can not observe 

any mode beating on the RF spectrum.  When laser resonator away from the 

degeneracy the mode beating should be measured result in none-degenerate 
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transverse modes.  However, we also can not observe any mode beating in 

our experiment except the instability of long-cavity as section 3.3-2 

discussing above.  This phenomenon is called as cooperative frequency 

locking [12].  In this section we will use mode expansion to discuss laser 

patterns around degenerate cavity, and we found that vary large range of 

cooperative frequency locking where about several millimeters.  

Cooperative frequency locking due to their nonlinear coupling several 

transverse modes lock to a common optical frequency and particular phase 

differences are selected [13-14].  In the resulting stationary pattern, 

amplitudes and relative phases of the interacting modes are determined by 

the minima of the generalized free energy of the system [15-17].  However, 

in conventional case, there are only several hundreds micrometer away from 

degeneracy to maintain frequency locking [18].   

3.3-3.1 Mode expansion and experiment observations  

We show the normalized intensity profile and the phase profile on the 

reference plane with solid circles in Figs. 3-10(a) and (b) at the degeneracy 

(L = 6 cm) for wp = 30 μm and the effective pump power of 100 mW without 

considering the thermal lens effect.  In order to show the good fitting of 

mode decomposition using genetic algorithm (GA), we plot the fitted results 

in Figs. 3-10(a)-(d) with open circles and use the logarithm scale in Fig. 

3-10(a).  The mode decomposition is done with 13 fitting parameters 

including six amplitude weightings and seven relative phases.  For the 

aperture radius of 600 μm on the reference plane, we expand the calculated 

mode profile into the 1/3-degenerate LGpm modes with p = 0, 3, 6,. . . ,18 and 
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m = 0, where p!is the radial mode index and m is the angular index.  The 

normalized electric field of LGp0 mode can be expressed as 
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is the modal function, E0 is the normalization constant, zR is the Rayleigh 

length, w(z) is the beam radius, R(z) is the radius of curvature of the phase 

front, r and z are, respectively, the radial and axial coordinates, and L0p is the 

Laguerre polynomial for mode index p.  We assume all the excited LGp0 

modes have the same wavenumber and then the intensity profile |η0E00 + 

η3E30 +… + η18E18,0|2 with seven amplitude weightings η(η0 be fixed unity) 

and seven relative phases δp is fitted to the mode-calculation profile.  We 

see that the resultant fitted profiles match with the mode-calculation profiles 

extremely well in Figs. 3-10(a)-(d).  From Fig. 3-10(a) the central lobe of 

the intensity profile is near-Gaussian with the waist radius of ~30 μm 

(approximately equals to the pump radius, see the solid curve in the inset 

with linear scale), which shows that the laser is strongly gain-guided.  Note 

that the radius of the fundamental mode, w0, is 108 μm.  The seriously 

saturated gain distribution is shown with the dashed curve in the inset of Fig. 

3-10(a).  The gain distribution is obtained from the term exp(σΔOd) in Eq. 

(2.11), where ΔO!is r-dependent.  Fig. 3-10(b) shows that the phase profile is 

flat within r!= 200 μm but discontinuously jumps π phase at some positions 
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of r, e.g., the first phase jump at r!= 200 μm corresponds to the position of 

the second intensity zero of the LG3,0 mode.  The relative phases of the 

degenerate LG modes for L!= 6.0 cm show the degenerate LG modes are not 

only phase-locked but also nearly in-phase on the reference plane.  The 

unusual result of flat wavefront on the flat end mirror, obtained in our mode 

calculation including gain, is the same as in [7] and this was discussed 

therein.   

When the cavity length is slightly tuned away from the degeneracy to L!

= 6.01 cm, the central lobe of the intensity profile shows a slightly distorted 

Gaussian in the inset of Fig. 3-10(c) with the solid curve in linear scale.  

Also shown with the dashed curve in the inset is the saturated gain 

distribution.  We can see in Fig. 3-10(d) that the phase pattern is already 

highly curved for r!< 100 μm and no longer has π-jumps at some positions of 

r.  Note that the phase is continuous at r!= 223 μm because the phase jump 

is 2π.  Besides, at L!= 6.01 cm the degenerate LGp0 modes are no longer 

in-phase on the reference plane but have monotonically increasing relative 

phases with the increase of p.  Even so, these LGp0 modes are still 

phase-locked to form a stationary mode.  Such a stationary mode exhibits 

profile variation along the propagation distance due to the variation of Gouy 

phases of the LGp0 modes and it is in fact an optical bottle beam that has been 

presented in [9].  It is worthy to note that nearly the same behavior for the 

case of L = 5.99 cm except that the phase pattern is inverted within r!= 100 

μm and the relative phases of the LGp0 modes decrease monotonically with 

increase of p.  
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Fig. 3-10 The intensity profile in logarithm scale (a) and the phase 
profile (b) at the exact degeneracy (L!= 6.0 cm) obtained from the 
mode calculation (solid circles) and from the fitted result of mode 
decomposition (empty circles).  Inset in (a) are the intensity 
profile in linear scale (solid curve) and the saturated gain 
distribution (dashed curve).  (c) and (d) are, respectively, the 
intensity and phase profiles for L!= 6.01 cm.  

At L = 6.05 cm, the intensity profile is much distorted from Gaussian 

and the phase pattern is highly curved for r < 150 μm.  The mode 

weightings and the relative phases of the LGp0 modes for various cavity 

lengths are summarized in Figs. 3-11(a) and (b) except for the absence of L = 

6.04 cm because the laser instability occurs there as section 3.3-1 and -2 

discussing above.  We can see in Fig. 3-11 that the mode weightings for the 

case of L = 6.05 cm have significant decrease for p = 3, 6, 9 as compared 
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with the case of L = 6.03 cm and that the relative phases no longer 

monotonically increase but alternate for p > 6.   
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Fig. 3-11 The mode weightings (a) and the relative phases (b) of 
the LGp0 modes as L!are tuned away from the degeneracy.   

Although the far-field intensity pattern looks like a Gaussian profile 

when the cavity is tuned far away from the degeneracy to L = 6.10 cm, the 

mode profile still varies along the propagation.  We can see from Fig. 

3-12(a) that the calculated mode profile exhibits a dark center from z = 6.8 to 

8.0 cm where far from the plane mirror.  We therefore used this z-dependent 

profile to verify the phase-locking of degenerate transverse modes as L is 

tuned from 5.90 to 6.10 cm. The profile will appear a dark center 
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approximately from 19 to 23 cm after a convergent lens with focal length of 

7 cm when the convergent lens is put behind the output coupler at a distance 

of 12 cm.  Fig. 3-12(b) shows the photograph taken at a distance of 20.5 cm 

after the convergent lens from our Nd:YVO4 laser as L is set on the right edge 

of the phase-locking region.  We found experimentally that the 

phase-locking region has been shifted ~500 μm toward the short cavity side 

by the thermal lens effect for wp = 30 μm and pump power of 150 mW.   

 

Fig. 3-12 (a) The numerical beam profile variation along the 
propagation distance z for L = 6.10 cm. The intensity profile with a 
dark center can be seen at z = 6.8-8.0 cm that is transformed to a 
distance of 19-23 cm after the convergent lens.  (b) The 
photograph experimentally taken at 20.5 cm after the convergent 
lens. 

3.3-3.2 Briefl summary  

 We have confirmed the phase-locking of degenerate transverse modes 

near the degeneracy of g1g2 = 1/4 in a tightly focused end-pumped Nd:YVO4 

laser that can be verified by observation of beam profile variation along the 

propagation distance within a large cavity-length detuning from the 

(b) 
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degeneracy.  We also decomposed the stationary lasing mode into the 

degenerate Laguerre-Gaussian modes with their relative locked phase.   

3.4 Conclusion 

We have found the cavity-configuration-dependent instabilities and 

determined the two sets of the unstable regions beside the degeneracy near 

g1g2=1/4 in an end-pumped Nd:YVO4 laser with small pump sizes.  We 

illustrated the temporal behavior of the instabilities including the chaotic 

output.  The different far-field patterns beside the unstable regions were 

observed; in particular, a special spreading mode pattern was observed in the 

vicinity of the degeneracy.  Our numerical results, which were obtained 

using a cylindrically symmetric model with single frequency, agree well with 

the experiments and reveal the influence of the thermal lens effect.   

 Even far about 1mm from degeneracy, we also can observe the 

phenomenon of cooperative frequency locking in the experiment.  In the 

numerical, we use GA to realize mode weight of each degenerate mode and 

its corresponding phase.  When we operate the laser cavity at exactly 

degeneracy, all degenerate modes are nearly in-phase on the reference plane.  

This study will help us to control transverse mode for application.   
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Chapter 4 Laser patterns around 

degenerate cavity: optical bottle beams  

 Optical tweezers [1] is a useful technique to manipulate micro-particles 

and biological samples such as DNA’s.  Based on similar technique, atoms 

can also be trapped in use of dipole force [2].  If the trapping beam is 

blue-detuned from the resonant transition of the atoms, the atoms will seek 

dark or the low-field region so that the field distribution will not substantially 

be disturbed by the presence of atoms.  Thus the storage time can approach 

the order of one second [3].  The same character of seeking dark can also be 

applied to the micro-particles that have lower refractive index than the 

surrounding medium [4]. 

An optical bottle beam has a low-intensity zone surrounded by a high 

intensity shell [5-8].  It had been generated by using a hologram constructed 

with Laguerre-Gaussian LG00 and LG20 modes that destructively 

interferences at their beam waists.  Here the first subscript index of LG 

modes is the radial mode index and the second one is the angular mode index.  

Recently, we have shown that a bottle beam can be generated from a simple 

laser near the 1/3 transverse degeneracy but the laser beam consists of many 

degenerate LG modes being in-phase at the beam waist [9].  In this chapter, 

we experimentally demonstrate that various optical bottle beams can be 

generated from a simple laser when it is operated with the degenerate cavities.  

Moreover, good-contrasted optical bottles can be achieved by controlling the 
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sizes of pump laser and of an intracavity aperture. 

4.1 Motivation  

 We first show in Figs. 4-1(a) and 1(b) the differences of the bottle 

beams with destructive and constructive interference of LG00 and LG20 

modes at the beam waist with its width W0.  We see that there are two 

optical bottles ahead and behind the waist in Fig. 4-1(b) due to Gouy phase 

shift, while only one bottle of destructive interference located at the waist in 

Fig. 4-1(a).  The beam with two bottles of Fig. 4-1(b) form a double-well 

potential for blue-detuned cold atoms, so that it may be useful for 

investigating the interaction between two groups of cold or even 

Bose-Einstein condensate atoms [10].  We show the three-dimensional 

potential wells in the right column of Fig. 4-1.  Note that the potential wells 

are plotted only from 0 to 3W0 in the radial direction and the fundamental 

beam waists are assumed to be the same in Figs. 4-1(a)~1(d).  The depth of 

potential well that is proportional to the beam intensity is shallower in Fig. 

4-1(b) than that is in Fig. 4-1(a), but the deeper and the narrower potential 

wells can be constructed by using LG00 and LG30 modes as well as LG00 and 

LG50 modes as shown in Fig. 4-1(c) and 1(d), respectively.  We will show in 

the following that these bottle beams of Figs. 4-1(b)~1(d) can be directly 

generated from a simple laser near the transverse degeneracies of 1/4, 1/3 and 

1/5, respectively. 

Considering the simplest two-mirror cavity with the specified mirror 

curvatures R1, R2 and the effective cavity length L, the resonance frequencies 

of the longitudinal-plus-transverse modes can be given by 
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νm,n,q=qνl+(m+n+1)νt, where νl=c/2L is the longitudinal mode spacing, 

νt=(νl/π)arcos[(g1g2)1/2] is the transverse mode spacing, q is the longitudinal 

mode number, m and n are the transverse mode numbers, and g1,2 = 1- L/R1,2 

being the cavity parameters, respectively [11].  The configurations g1g2 = 

1/4, 1/2 and (1+ 5 )2/16 corresponding to νt/νl =1/3, 1/4 and 1/5 will be 

denoted as 1/3-, 1/4- and 1/5-degenerate configurations, respectively.  From 

previous discussion in the section 3.3, we know that the supermode observed 

at degeneracy is consist of the in-phase degenerate transverse modes.  In our 

previous studies [9, 12], we have shown that an end-pumped Nd:YVO4 laser 

by a small Gaussian pump beam will result in multi beam-waist (MBW) 

mode as it is operated at degenerate resonator configurations.  From Fig. 

1-3, we can observe an optical bottle between two beam waists.  However, 

the contrast between dark center and barrier of the optical bottles were not so 

good as Fig. 4-1(c) because many degenerate eigenmodes are simultaneously 

excited near the 1/3-degenerate cavity.  Furthermore, unequal mode 

weightings will lead to a non-perfect destructive interference bottle with 

non-zero on-axis intensity even when the proper eigenmodes are selected, for 

example, only LG00 and LG30 modes being excited.  However, we can 

control the sizes of pump beam and an intracavity aperture in the 

end-pumped Nd:YVO4 laser to obtain good bottle beams as depicted in Figs. 

4-1(b)-1(d).  
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Fig. 4-1 Intensity patterns and their corresponding 
three-dimension profiles.  (a) out-of-phase summing up LG00 and 
LG20 modes at beam waist, (b~d) in-phase adding LG00 and LG20, 
LG00 and LG30, as well as LG00 and LG50 modes, where the W0 is 
the beam waist, and zR is the Rayleigh length. 

(a) 

(b) 

(c) 

(d) 
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Fig. 4-2 The transverse modes distribution (a) as well as overlap 
integral of pump spot (Wp) and W0.   

We can use Fig. 4-2 to realize the idea for creating a perfectly bottle 

beam.  The transverse mode distribution is show in Fig. 4-2(a).  It can be 

easily observed that the high-order transverse mode widely distribute with 

narrow central portion.  So we can use a hard aperture to increase loss of 

high-order mode; and control lasing transverse modes which only contains 

fundamental and the lowest-order transverse mode.  In addition, the narrow 

central portion indicates that we can use tightly-focused pump spot to 

increase mode weight of the high-order mode.  We show the overlap 

integral of pump field (Wp) with different transverse modes.  The transverse 

modes will have almost equally value of overlap integral when Wp is small 

(a) 

(b) 
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enough.  It tells us small pump spot will increase the mode weight of the 

high-order mode related to the fundamental mode.   

4.2 Experiment setup and discussion 

The experimental setup shows as Fig. 4-3.  A plano-concave laser 

cavity contains a 1 mm-thick Nd:YVO4 crystal and an output coupler with 

radius of the curvature Rc = 8 cm having 10% transmission at the lasing 

wavelength of 1.064 μm.  One surface of the crystal facing to the pumping 

beam acts as a flat mirror of the cavity and is dichroically coated with 

reflection greater than 99.8% at 1.064 μm and transmission greater than 99.5 

% at the pump wavelength of 808 nm; and the other surface was 

anti-reflectively coated at 1.064 μm to avoid intracavity etalons effect.  The 

output coupler was mounted on a translation stage so that we can tune the 

cavity length around the degenerate configurations where semi-confocal is at 

L=4cm, 1/3 degeneracy at L=6cm, and 1/5 degeneracy at L=5.2cm.  The 

pump source is a continuous-wave Ti-sapphire laser with TEM00 mode.  In 

our experiment we used several pump sizes that were determined by the 

standard knife method.  In order to control the lasing modes, we insert a 

knife edge into the cavity against the gain medium as a hard aperture that 

allows the oscillation of mere fundamental mode and a single degenerate 

transverse mode.  For example, the aperture has radius of 300μm on the 

optical axis for sustaining only LG00 and LG20 modes in the semi-confocal or 

1/4-degenerate resonator. 

The Nd:YVO4 laser output was split into two beams.  One of which 

was used to project the far-field pattern on a screen located at a distance of ~ 
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50cm from the flat mirror; the other beam was propagated through a 

transform lens (TL) to study beam propagation and then was detected by a 

Charge Coupled Device (CCD) camera.  To image the mode pattern directly 

behind the TL with less noise, we replaced the camera lens of the CCD by a 

laser line filter and added some adequate absorptive neutral density filters.   

 

Fig. 4-3 The sketch of experiment setups.   

To verify the optical bottles of the above-mentioned modes, we showed 

in Fig. 4-4 the intensity distribution of the optical bottle along the 

propagation distance when the laser is operated at 1/4-degeneracy.  We have 

normalized the propagation distance to the Rayleigh length zR that was 

indicated above the photographs.  The observed optical bottle is ahead of 

the beam waist at z=0, and its extended range is about 2.36zR.  Similar but 

shorter extended regions of optical bottles for the 1/3- and 1/5-degenerates 

can also be observed due to rapid variation of Gouy phases of LG30 and LG50, 

respectively.  Behind the beam waist at z=0 we can also observe a similar 

optical bottle which is consistent with Fig. 4-1(b)~(d) but appears farther 

from the waist.  However, the double optical bottles of Fig. 4-1(b)-(d) 
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should appear symmetrically to the beam waist because of symmetrical 

variation of Gouy phases around the waists.  In the experiment, however, 

we observed unsymmetrical double optical bottles after the transform lens 

(TL).  This can be explained by excess Gouy phase shifts of the higher 

order transverse modes, and therefore formation both LG00 and LGp0 images 

are at different distances.  Assume both of LG00 and LGp0 modes are 

in-phase at the waist, they experience different Gouy phase shifts while they 

reach the TL.  Looking back through TL, those two modes seem to come 

from two different point sources because they experience different phase 

shifts or optical path lengths.  Their images therefore will be slightly 

separated to result in asymmetric double optical bottles.  We can bring these 

two images together again to produce symmetric optical bottles as Fig. 

4-1(b)~(d) by using two lenses to collimate at first then focus the collimated 

beam to form symmetric double optical bottles. 

-2.36zR -1.27zR -zR -0.72zR 0-2.36zR -1.27zR -zR -0.72zR 0

 

Fig. 4-4 The radial intensity patterns of the optical bottle 
generated from a laser operated with the 1/4-degenerate cavity at 
various distances from the transform lens which is indicated above 
the photographs, where zR is the Rayleigh range. 

 Because there are only 30x30 pixels in photographs of Fig. 4-4, the 

spatial resolution is too low to show the detailed beam character, we 

expanded the laser beam by 5 times to monitor the radial distribution of the 

center of various optical bottles.  Shown on the right column of Fig. 4-5 are 



 

60 

the photographs of the bottle beams under 300mW pumping with a pump 

size of 30 μm when the laser is operated at 1/4-degeneracy with an 

intracavity aperture of 300μm and at 1/3-degeneracy with 350μm aperture, 

respectively.  The parallel streaks on the photographs are caused by 

interference from the protection window of the CCD.  By in-phase 

summing the LG00 and LG20 modes for 1/4-degeneracy and the LG00 and 

LG30 modes for 1/3-degeneracy at the beam waist (z = 0), we show the 

calculated optical bottle profiles on the left column of Fig. 4-5 at z = zR and 

at z = zR/ 3  respectively.  We see the excellent agreement between the 

experiments and the calculations.  However, there are about 5% observed 

residual intensity at the center of the bottle for both of the 1/4- and 

1/3-degenerate configurations.  It must be mentioned that each pixel of 

CCD is 7x7μm2 which may not be able to resolve the region of lowest 

intensity of only several microns even having been magnified 5 times.  The 

central pixel may detect some energy adjacent to the optical axis and the 

actual residual intensity should be lower than the measured 5%.   

Because the central portion of LG50 mode is more localized than that of 

LG00, LG20 or LG30, the smaller pump size can effectively decrease the mode 

weight of fundamental mode to enhance LG50 mode.  The higher degenerate 

configuration tends to generate the narrower and the deeper optical bottle by 

choosing the smaller beam size to pump this laser.  In order to obtain the 

narrower and deeper optical bottle, we pay our attention to the 1/5- 

degeneracy.  Note that the fundamental mode radius is 113μm in this case.  

With intracavity aperture of 450μm, we show the experimental results in the 

Figs. 4-6(a)~4-6(c) for the pump radius of 30, 20, and 15μm respectively, 
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and in Fig. 4-6(d) is the calculated bottle with LG00+LG50 at z = 0.324zR.  

Comparing Fig. 4-6(b) with Fig. 4-6(d), we see the bottle with three obvious 

concentric rings that means the aperture has properly selected only LG00 and 

LG50 modes.  We also see from Fig. 4-6(a)~4-6(c) that the central intensity 

decreases from about 13% to 2.5%.  We used the smaller pump size of 20 

μm for the 1/5-degeneracy instead of using pump size of 30μm for the 

1/4-degeneracy and 1/3-degeneracy to achieve the same residue intensity as 

on the right column of Fig. 4-5.  This means that the mode weighting can be 

experimentally controlled by the pump radius.  A small pump size gives the 

mode weight ratio approaching to 1 which leads to optical bottle with good 

contrast. 

 

Fig. 4-5 The calculated radial intensity distributions and the 
experimentally observed beam profiles.  The calculated transverse 
profile of LG00+LG20 is at z = zR and of LG00+LG30 at z = zR/ 3  
that correspond to the photographs taken at 1/4- and 
1/3-degeneracy, respectively.  
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Fig. 4-6 The depth of optical bottle versus different pumping size 
and corresponding calculated profiles at 1/5-degeneracy.  The 
CCD images in (a)~(c) are the beam patterns when the laser is 
operated with pump size of 30μm, 20μm, and 15μm respectively.  
(d) The calculated profile of LG00+LG20 is at z = 0.324 zR 

 One may ask questions that practically how to ensure the laser is 

operated at the degeneracy and how to properly determine the aperture size?  

We will discuss these experimental details in the following.  Because the 

Gouy phase difference of LG00 and LG50 modes is 5π at the far field where 

the profile exhibits a dark center as show in Fig. 4-7, we can easily identify 

the point of 1/5 degeneracy where the laser has the lowest threshold.  And, 

in the Fig. 4-7, by counting number of the concentric rings we can identify 

whether the aperture size is proper, for example, a single concentric ring for 

LG00+LG20, two rings for LG00+LG30, and three rings for LG00+LG50.  In 

addition, one can focus the pumping beam near the rim of the crystal instead 

of actually placing a real aperture against the crystal inside the cavity. 
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Fig. 4-7 Photographs of the far-field patterns by the laser operated 
at semi-confocal, 1/3, and 1/5 degenerate configurations.  The 
hard aperture is 300μm, 350μm, and 430μm, respectively.  The 
corresponding calculation profiles are plotted by in-phase 
summing up the fundamental and the lowest degenerate transverse 
mode. 

Optical bottle beam have been generated in use of holograph [5], spatial 

light modulator [6], and two beam interference [3, 8].  Those methods need 

enormous calculation to prepare a suitable holograph with low conversion 

efficiency, or well control of phase retardation for each pixel of SLM and two 

overlapped beams to make the destruction interference occurring at the beam 

center.  Our method of generating the bottle beams directly from a simple 

laser may be convenient for some applications.  The demonstration of the 

Nd:YVO4 laser in this experiment that emits at wavelength of 1064nm may 
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not be suitable for blue-detuned light trap of atoms.  However, in use of the 

Collins integral together with rate equation to study pattern formation and 

laser dynamics as stated in the previous study [9, 12], and we found that the 

bottle beam from a laser is independent of the active medium as long as it 

satisfies the thin slab approximation and the homogeneous 4-level 

assumption.  If only the pump size is properly controlled smaller than the 

beam waist of the fundamental mode of the cavity and an aperture is 

introduced to eliminate unwanted high order modes, an optical bottle beam 

with double wells results from cooperative frequency locking of the lowest 

two degenerate transverse modes.  Therefore, one can choose an appropriate 

gain medium and employ with the degenerate cavity configurations to 

generate bottle laser beam for trapping atoms in the dark field. 

4.3 Conclusion  

In conclusion, we have demonstrated direct generation of various 

optical bottle beams from the degenerate cavity configurations in a compact 

solid state laser in use of appropriate pumping size and aperture.  In 

particular, the good optical bottle is achieved with the superposition of LG00 

and LG50 modes from the 1/5-degenerate cavity.  This new scheme of 

generating bottle beams from end-pump solid-state lasers may be applied for 

optical atom trap. 
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Chapter 5 Optical spectrum around the 

degenerate cavity:  Suppression of 

spatial hole burning 

The single-frequency laser is essential for stable operation of intracavity 

frequency doubling, precision measurement, high-resolution spectroscopy, 

and laser trapping or cooling.  The most common method of obtaining 

single-frequency operation in a homogeneously broadened solid-state laser is 

to build a traveling wave cavity, usually by means of a ring cavity with an 

intracavity optical diode so as to prevent the spatial hole-burning effect.  To 

acquire single-frequency operation in a linear cavity, however, some ways 

are required to diminish the spatial hole-burning effect.  For example, a 

twisted mode technique [1] had been proposed to achieve uniform energy 

density along the optical axis of the laser cavity.  In addition, the 

mechanisms of Auger upconversion and energy diffusion in the laser crystal 

were also employed to reduce the spatial hole-burning effect [2-4]. 

Recently, it was shown that a plano-concave cavity with the degenerate 

resonator configuration could support arbitrary beam distribution.  Under 

tightly focused pump beam, the laser exhibits shrinking beam waist and the 

lower pump threshold than the neighboring configurations [5, 6].  In this 

Chapter, we will report a novel way by employing the degenerate resonator 
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configuration to relief the spatial hole-burning effect.  Because the laser 

with a degenerate resonator configuration is capable of self-adjusting its 

mode distribution to match the small pump beam, very high intensity is able 

to attain in the gain medium.  Most of the gain, therefore, can be depleted 

even by a standing wave field.  The spatial hole-burning effect is then 

effectively suppressed.  This was numerically simulated in terms of a spatial 

dependent rate equation and experimentally demonstrated by using a 

Nd:YVO4 laser discussed previously.  The Nd:YVO4 laser crystal has high 

absorption coefficient which is a merit for single-frequency operation in a 

standing-wave cavity, but the pump power is usually limited to slightly above 

the threshold [7].  Our method, however, is capable of suppressing the 

spatial hole-burning effect beyond 20 times the pump threshold. 

5.1 Theoretical model and simulation 

In order to investigate the spatial hole-burning effect in a plano-concave 

Nd:YVO4 laser, we employ a spatial dependent rate equation.  By taking 

into account both the Auger upconversion and energy diffusion effects, the 

rate equation for the density of population inversion N(z) in an ideal 

four-level system can be expressed as [2, 4, 8] 
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where z is the cavity axis with z = 0 at the flat mirror, R(z) is the pump rate, 

Is is the saturation intensity, τ is the spontaneous emission lifetime, D is the 

diffusion constant, and A is the Auger upconversion coefficient, respectively.  

Assuming a low roundtrip loss in the plane wave approximation, we can 

write the intensity I(z) of standing wave as 
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( ) ( )kzIzI 2
0 sin4= ,                                      (5.2) 

where k is the propagation wavenumber and I0 is the average intracavity 

intensity.  Because we do not consider the radial effect in Eq. (5.1), the 

pump rate can be written as 

( )
απν
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2
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p e
wh

P
zR ×

×
= ,                                   (5.3) 

where Pp is the incident pump power, h is the Planck’s constant, ν is the 

pump frequency, wp is the pump size, and α is the absorption coefficient at 

pump wavelength.  Under the steady-state condition, we substituted Eqs. 

(5.2) and (5.3) into (5.1), and numerically solved the equation by the 

Newton’s method to obtain the spatial profile of N(z).  The Auger 

upconversion coefficient A = 3x10-21 m3/s [4, 8], diffusion constant D = 

0.7x10-11 m2/s [4], absorption coefficient α = 31.4 cm-1 , and saturation 

intensity Is = 1.19x107 J/(m2s) are used in our simulation. 

Usually the laser is expected to operate at the single longitudinal mode 

when the pump power is just above the threshold.  From the Ref. 7, we 

estimate that the second longitudinal mode would begin to oscillate at γ = 

1.78, where γ is the ratio of pump power to laser threshold, therefore, we will 

discuss the numerical results using the pump power around γ = 1.78.  

Because the thickness of the laser crystal is less than the Rayleigh parameter 

of the pump beam, we assume that the pump size wp is constant throughout 

the crystal.  When a laser operates in the vicinity of g1g2 = 1/4 with a 

spherical of 8-cm radius, the radius of the fundamental transverse mode is 

about 108μm.  It corresponds to Rayleigh parameter of about 34 mm which 

is much longer than the length of gain medium of 1 mm.  In addition, the 
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plane wave assumption is adequate for a beam having or close to Gaussian 

profile.  Note that the laser beam spot in the vicinity of flat mirror (gain 

medium) is almost equal to the pumping size of wp = 20 μm and is similar to 

Gaussian profile [5] when it is operated with the degenerate resonator 

configuration under tightly-focused pumping.  The plane wave assumption 

in Eq. (5.2) is still valid even with the high-order Laguerre-Gaussian mode 

up to LG12,0, whereas, the shrinkage of beam spot can be observed at the 

degeneracy with only a superposition of LG00 and the lowest degenerate 

mode, e.g., LG3,0 for g1g2=1/4 [13]. 

Figure 5-1(a) is the spatial profile of N(z) for a laser operated at cavity 

length L = 6.06cm which is a typical example of population inversion in a 

standing wave resonator.  It only burns a small hole of N(z) at anti-node of 

standing wave and leaves sufficient gain for the second longitudinal mode to 

lase.  The horizontal dash line in this figure stands for the threshold 

population inversion with pump power of 33 mW, the solid and dash curves 

respectively show N(z) for the laser operating at γc = 1.5 and γc = 2.4, where 

the subscript c denotes the conventional cavity.  To allow the second mode 

to oscillate (γc > 1.78), the residual population inversion should higher than 

that for the laser operating at γc = 1.5 as shown in Fig. 5-1 (a). 

If we operate the laser at the degenerate resonator configuration where 

g1g2 = 1/4 (L = 6.0 cm), good overlapping between the pumping and the laser 

beam will result in a lower laser threshold which equals to 15mW.  The 

beam radius will be about 20 μm which approximates to the size of pump.  

The intracavity intensity at the beam waist (z = 0) is about 29 times higher 

than that of the laser with the conventional cavity (L = 6.06-cm).  Because 
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of the very high intracavity intensity, there leaves only a little residual 

population inversion above the threshold which is located around the node of 

the standing wave, as shown in Fig. 5-1(b).  The horizontal dash line again 

stands for the threshold population inversion.   
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Fig. 5-1. Numerical spatial distribution of steady-state upper level 
density to show influence of spatial hole-burning effect.  The 
normalized pumping γ (to the threshold) for both of the 
conventional laser operated at L=6.06cm (a) and bottle beam laser 
at g1g2=1/4 (b). 

Other longitudinal modes could have significant access to the residual 

inversion only if they had at least π/2 phase shift relative to the first mode [7].  

Two lasing frequencies, which is in-phase at beginning, will possess π/2 

(a) 

(b)
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phase difference after propagating a dephasing length.  Usually the first 

lasing mode in a homogeneously broadened gain medium is located near the 

center of gain profile, and the shortest dephasing length is provided by the 

maximum frequency difference.  So we used half of bandwidth to estimate 

the shortest dephasing length to be 700μm.  This implies that the other 

longitudinal mode needs more than 2.3 times absorption depth of Nd:YVO4, 

which is reciprocal of absorption coefficient α, to extract enough residual 

gain to oscillate.  From Fig. 5-1(b), we see that the residual population 

inversion for γd = 1.5, where the subscript d denotes the degenerate cavity, is 

too small to allow oscillation of the second mode.  Nevertheless, for γd = 2.4 

or even the higher pump power, because the higher residual population 

inversion occurs at the nodes of the standing wave, the second mode still can 

not obtain the sufficient gain.  In addition, it is worth to mention that by 

neglecting the energy diffusion and Auger upconversion effects, the last two 

terms of the right-hand side of Eq. (5.1), we still obtained the similar 

numerical results of Fig. 5-1(b).  This implies that the effects of Auger 

upconversion and the energy diffusion are negligible and can be ruled out in 

our case.  Therefore, we conclude that the laser with the degenerate 

resonator configuration is capable of suppressing the spatial hole-burning 

effect by means of gain saturation through the very high intensity in the gain 

medium. 

5.2 Experiment setup and results 

In order to confirm our numerical calculation, the experiment is 

performed in a Nd:YVO4 laser with a plano-concave cavity.   The detail 
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setup similar to the previous Chapters is show in Fig. 5-2.  A photodetector 

(rise time < 0.3 ns) together with a RF spectrum analyzer (HP8560E, 

bandwidth 2.9 GHz) was used for measuring the mode beating and the 

relaxation oscillation.  The optical spectrum was measured by using a 

Fabry-Perot interferometer (FPI, Burleigh) having finesse > 150 

corresponding to a spectral resolution of 100 MHz for a 15 GHz free spectral 

range (FSR).  In addition, the pump size determined by the standard 

knife-edge method is 20 μm, which is less than one-fifth of the waist radius 

(108 μm) of the cold cavity mode.  The cavity length corresponding to the 

degenerate resonator configuration is determined by minimum pump 

threshold [6].  In this experiment, we operated the laser around the 

1/3-degeneracy (L = 6 cm), which corresponds to the longitudinal mode 

spacing of about 2.4 GHz.   
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Fig.5-2 The sketch of experiment setups.   

Figure 5-3 shows a typical single-frequency optical spectrum measured 

by FPI when the laser is operated at γ < 1.8 (~ 1.78) in the conventional 
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cavity configuration (L = 6.06 cm).  The second longitudinal mode appears 

when γc = 1.8 > 1.78 (threshold is 33 mW).  The experiment observation 

agrees well with the theoretical estimation according to the Ref. 7.  Figure 

5-4 (a) and (b) respectively show the FPI and the RF spectra for γc 

= 2.7 (pumping power Pp = 90 mW).  We can clearly see the second 

longitudinal mode and the beating from these two longitudinal modes.  As 

the pump power increases to over 133 mW (γc = 4), we found that an extra 

lasing mode appears at 1.1 GHz away from the main features of the FPI 

spectrum but no corresponding mode beating can be detected by the RF 

spectrum analyzer.  Therefore, we suspected that the spectral spacing of 

these two lasing modes is larger than the bandwidth of the RF spectrum 

analyzer (2.9 GHz).  Indeed, when the FPI with larger FSR (150 GHz or 

even 300 GHz) is used, the measured mode spacing becomes 40 GHz. 
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Fig. 5-3 Single frequency optical spectrum of the Fabry-Perot 
interferometer with FSR = 15 GHz when the pumping is set below 
1.8 times threshold. 
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Fig. 5-4 Typical multiple optical frequency and corresponding RF 
spectrum for the common laser at L=6.06cm.  (a) The 
Fabry-Perot interferometer shows two longitudinal lasing modes 
with spacing of about 2.42 GHz and (b) the beat frequency of two 
longitudinal modes measured by the RF analyzer. 

On the other hand, as the cavity is adjusted to the degenerate resonator 

configuration (L = 6 cm), the single frequency operation is observed, as 

shown in Fig. 5-3, for the pump power as high as 30 mW.  By raising the 

pump power to above 30 mW (γd = 2), we found that the second mode appear 

in the FPI spectrum which is located 58.6 GHz away from the first mode 

rather than ~2.4 GHz.  The next nearest neighboring longitudinal mode is 

not observed even the pumping power increases as high as we can.  The FPI 

and the corresponding RF spectrum at Pp = 310 mW or γd ~20 are shown in 

the Fig. 5-5(a) and (b) respectively.  The inset of Fig. 5-5(b) shows that 

there is neither longitudinal nor transverse mode beating within the 
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bandwidth of the RF spectrum analyzer, the arrow in this figure shows only 

one relaxation oscillation peak (2.4 MHz) existing in the RF spectrum.  One 

may doubt whether the mode spacing of 58.6 GHz comes from the 

intracavity etalon effect.  We estimated the mode spacing resulting from 

etalon effect of 1mm-gain medium is 72 GHz; in addition, there is an 

antireflection coating at 1064 nm on the Nd:YVO4 facet to avoid the effect of 

intracavity etalons. 

As the simulated results discussed in the previous section, the laser with 

the degenerate resonator configuration is able to deplete most of the 

population inversion in a homogeneous broadened gain medium.  We 

therefore expect that the second mode 58.6 GHz away from the first mode 

may have different origin of emission or arise from different manifold of 

transition (sub-peak of inhomogeneous gain profile).  Similarly, the 

sub-peak of the gain profile will also result in occurrence of the second mode 

in the conventional cavity at higher pump power, which is 40 GHz away 

from the first mode.  In the Nd:YVO4 crystal, the crystal field interaction 

gives rise to the Stark splitting at the satellite of 4F3/2, 4I9/2, and 4I11/2 [9].  

Under high-resolution absorption and luminescence studies, it was found that 

the satellite energy of 4F3/2  4I9/2 transition depended on the Nd3+ 

concentration [10].  The lasing transition around 1064 nm is attributed to 

4F3/2  4I11/2.  It contains two closely transitions R1  Y1 and R2  Y2 with 

frequency difference of 90 GHz under 2% Nd3+ doping and 21 GHz under 

0.56% Nd3+ doping [11, 12].  The doping concentration used in our 

experiment is 1%, it is quite reasonable to obtain the frequency difference of 

~42 GHz by simple interpolation.  The frequency difference which is 
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estimated by interpolation is in good agreement with our observation in the 

conventional laser cavity.  Note that because the second mode has a 

frequency more than 40 GHz away from the first mode, it would be easily 

filtered out, for example, by a grating with 1800 grooves/mm.  In principle, 

it is possible to design a cavity that delivers the same tight beam size in a 

fundamental TEM00 mode and achieve the same effect.  However, such a 

cavity is usually operating close to the edge of stability and needs to 

accurately adjust the cavity length according to the spot size of the pump 

beam.  Our scheme, in contrast, is operated within the stability region away 

from the edge of stability.  Without knowing the pump beam size in advance, 

the laser with a degenerate resonator configuration can self-adjust the mode 

distribution to match the small pump beam and as a result the spatial 

hole-burning effect is suppressed. 
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Fig. 5-5 Multiple optical frequency and corresponding RF 
spectrum under 310mW pumping at g1g2=1/4.  (a) The FPI 
spectrum shows mode spacing of about 58.6GHz but without 
longitudinal beating of 2.42 GHz or transverse mode beating in the 
RF spectrum in (b).  An arrow points out the peak due to 
relaxation oscillation. 

5.3 Conclusion 

We have theoretically shown and experimentally demonstrated that the 

spatial hole-burning effect can be suppressed by using a plano-concave 

cavity with degenerate resonator configuration under a tightly focusing pump 

beam.  It not only has the merits of the lowest threshold and stable output 

but also is independent of the gain medium.  The same resonator 

configuration has been employed to generate the multiple beam waists and 
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the optical bottle beam [13, 14], it has potential applications for trapping 

atoms in the dark field if the proper gain medium is chosen to generate 

blue-detuned single frequency laser beam.  
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Chapter 6 Conclusion and Future 

works  

6-1 Laser dynamics  

We use numerical model and experimental to investigate a 

tightly-focused end-pumped Nd:YVO4 laser which operates in the vicinity of 

degenerate cavity configurations.  The cylindrically symmetric model which 

clearly indicates the location of self-pulsation, the reasons why we observe 

the temporal or spatiotemporal dynamics respectively in instability region of 

short- or long-cavity side, and the influence of thermal lens agrees well with 

results of experiment.  However, if we want to observe the route to chaos by 

simulation, we need scaling 5 times the spontaneous emission rate.  It 

indicates that there are something will influence the spontaneous emission 

rate in experiment.  Using simple linear stability analysis of single-mode 

laser, the relaxation oscillation depends on the spontaneous emission rate 

which shows as [1]   

( )
cf

sp
1-2

ττ
γπ =× f ,                                      (6.1) 

where fsp is relaxation oscillation frequency, γ is the normalized pumping 

power, τc is the photon lifetime, and τf is the atom lifetime which equals to 

reciprocal of spontaneous emission rate.  The Nd:YVO4 is class B laser 

whose the polarization lifetime of atom is much shorter than τc.  In such a 
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oscillator, the photons and population inversion are coupled and the 

perturbations, such as white noise, will exhibit relaxation oscillation [2-3].  

We can use RF-spectrum to measure relaxation oscillation versus pumping.  

The experiment results are show in Fig. 6-1.  We use Eq. 6.1 to fit the 

experiment data and find that the τf=33μs in degenerate cavity is the smallest 

which corresponds to the highest spontaneous emission rate.  However, the 

life time of Nd:YVO4 is 90 μs which is indicated by the specification, as 

shows in the numerical result of Fig. 6-1.  It means that we indeed observe 

the spontaneous emission rate speeds up.   
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Fig. 6-1 The relaxation oscillation versus normalization pumping 
power.  The solid square and circular are represent the 
experiment results at 1/3 degeneracy and far 600μm from 1/3 
degeneracy, respectively.  The solid triangle is the numerical 
solution.   

What physical parameters can control instability is very import in laser 

dynamics.  Although the speeding-up spontaneous emission rate will let the 

self-pulsation from period to chaos, we always treat the spontaneous 

emission rate as an inherent process.  It means that the spontaneous 
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emission of atoms will be independent of the environment.  However, from 

our knowledge, the additional process in the upper level density, such as 

cavity QED or Auger upconversion [4-8], will speed up the spontaneous 

emission rate.  Therefore, we can use experiment to determine it in the 

future.   

6.2 Laser linewidth  

In the observations of experiment and mode expansion by method of 

GA, we know that frequency locking of the transverse mode is presented 

around the degenerate cavities.  The frequency locked supermode which 

will shrink its beam waist to fit with pumping beam in turn the spatial hole 

burning is suppressed in a standing-wave resonator.  Because the spatial 

hole burning is suppressed, a single-frequency laser can be easily obtained at 

degeneracy with tightly focused pump for some applications, such as 

precision measurement, high-resolution spectroscopy, and laser trapping or 

cooling.  In these applications, the linewidth of laser must be considered.  

Therefore we can compare the linewidth of locking mode with the single 

mode laser. 

Recently, Maes and Wright [9-10] found that the Petermann K!factor is 

cavity-configuration-dependent near the degenerate cavity configurations in a 

geometrically stable cavity with Gaussian gain.  The K factor first 

introduced by Petermann [11] for gain-guided laser systems, describes the 

enhancement of the quantum-limited laser linewidth.  We can easily realize 

that the large K factor results in wider linewidth.  Therefore it can be 

imaged that the linewidth of laser light will depend on the cavity 
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configuration around degeneracy.   

6.3 Optical trapping  

 Conventionally optical tweezers [12] use tightly-focused Gaussian beam 

to trap micro-particles which have higher refractive index than surround 

medium.  However, this technical can not trap low-index micro-particles.  

Because high intensity area will provide a potential barrier for a low-index 

particle [13], the trapping beam must have low-intensity zone surrounded by 

a high-intensity shell.  This beam is called as optical bottle beam [14].   

 In our experiment, we can utilize different degenerate cavities to 

generate various optical bottle beams; the optical bottles are formed before 

and behind the beam waist.  It is must be noted that the beam waist still 

maintains highly concentrated light spot.  The optical bottle beam which 

produced in our experiment can trap high-index particles by the beam waist 

and trap low-index particles by the optical bottles.  Therefore, we can 

manipulate any kinds of micro-particles by the single beam.  It will very 

useful for the optical trapping.   
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