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Dynamics and stability behaviors in tightly focused end-pumped Nd:Y VO,

laser around the degenerate cavity configurations

Student: Po-Tse Tai Advisor: Professor Wen-Feng Hsieh

Professor Hsiao-Hua Wu

Department of Photonics and Institute of Electro-Optical Engineering

National Chiao Tung University

Abstract

We experimentally and numerically. studied cavity-dependence of laser
dynamics in an tightly=focused end-pumped Nd:Y VO, laser which operates
in the vicinity of 1/3-degenerate cavity. | The tightly-focused pump beam
results in enormous phase distortion which influences the cavity
configuration through the thermal lens effect, therefore, the thermal lens
effect is considered in our simulation. The simulation results well explain
our experimental observation including the regions of self-pulsation, the
reasons why we should observe the temporal or the spatiotemporal dynamics
in the instability region on short- or long-cavity side of the degeneracy, and
the influence of thermal lens. In addition, the transverse modes are all
frequency-locked over the cavity tuning except for the instability regions.
By decomposing the calculated mode (similar to the observed one) into the
degenerate transverse modes to obtain their mode weights and relative
phases, we found that the transverse modes are all in phase at the exactly

degenerate cavity. Except for the cavity configuration within the instability
11T



region on the long cavity side, all of the transverse modes are phase- and
frequency-locked to one another even when the cavity is tuned away from
the degeneracy. This finding consists with the experimental observation
that the stationary transverse mode pattern does vary along the propagation
axis due to interfere of Guoy phases from the phase-locked transverse modes
even for cavity length being adjusted Imm away from the degeneracy.

Because the transverse modes which govern the laser pattern are
in-phase and frequency-locked at the degeneracy, we should be able to
control the laser pattern. We demonstrate various optical bottle beams can
be directly generated from a tightly focused end-pumped Nd:YVO; laser.
By controlling the size of pump beam and inserting an intracavity aperture in
the plano-concave cavity, we obtaingood contrast optical bottles at
semi-confocal, 1/3-, and 1/5-degencrate cavity configurations, respectively.
This new observation is universal.that.is suitable for any kinds of gain media
in tightly end-pumped lasers.

We also found that the spatial hole-burning effect can be suppressed in
this laser. Due to shrinkage of the beam waist of laser mode to match the
pump beam, this laser can attain very high intensity in the pump region of
gain medium and therefore most of its gain is depleted even by a standing
wave. This was demonstrated by a simulation with spatial dependent rate
equations and experiment results of a plano-concave Nd:YVOy, laser. The

suppression effect was observed up to 20 times the pump threshold.
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Chapter 1 Introduction

A laser system must contain a pumping source, gain media, and optical
resonator. The simplest kind of optical resonator consists of just two curved
mirrors set up facing to each other. Simple two-mirror cavities are widely
used in practical lasers, and the properties of stable resonators are the basic
lore of laser physics. Although the paraxial optics can easily obtain a
geometrical stable condition, there are many dynamics and stability
behaviors in some special cavity configurations [1-7]. In this study, we will
focus on laser dynamics and stationary laser parameters dependent on its

resonators.

1.1 Geometrical stable condition

Gaussian beams are the eigenfunctions of a laser resonator. We can
use a complex g-parameter to represent a Gaussian beam of which the real
and the imaginary parts respectively indicate the radius of curvature and the
beam width. The transformation rule of paraxial wave using the ABCD
matrix elements to relate the g-parameters as it propagates according to the

so-called ABCD law as

Ag, + B
) = —C , (1.1)
q,+D
where Q; is the initial state of Gaussian beam and Q; is the final state after
Gaussian beam propagates through a paraxial optical system characterized by

the ABCD matrix. Let the elements of ABCD matrix in Eq. (1.1) be those

for a round trip of the laser cavity. Thus, (; will equal to g, because the

1



laser beam should be self-consistent after propagating a round trip.

Therefore we can solve the self-consitent g-parameter s as

[_AZDii I_KA;DT]

B

q, = (1.2)

For ensuring qs be a complex number, we obtain the criterion of a stable

cavity:

‘A+D <1. (1.3)

2

Assume two mirrors which form a resonator having radii of curvature of R;
and R, are separated by L, the round trip elements of ABCD matrix are trivial
to obtain and substitute into Eq. (1.3) and the stable condition of optical

resonator becomes

0<90,0, <1, (1.4)

where g, =1 _%Q . % This stability criterion of Eq. (1.4) is suitable for
1,2

any two-mirror optical resonator and is called the geometrically stable
condition. However, we only consider the geometrically stable condition
for a real laser cavity is not enough if there are additional effects that can

result in instability output of laser, and we will discuss it as follows.
1.2 Degenerate cavities and iterative map

1.2-1 Resonance frequencies and degenerate cavities

The resonance condition for a standing-wave cavity is that the phase
shift for total round-trip must be an integer multiple of 2.  The total phase

shift from one end of cavity to the other end includes kL and Gouy phase

2



shift terms, wherek = 2% is the wave number, A is wavelength of laser,

and the Gouy phase is an additional phase introduced by a paraxial wave
function substitution for an (n,m)-th order Hermite-Gaussian mode in
mathematics. The total Gouy phase shift of a laser cavity with resonator

length L is given in terms of the g-parameters by the formula

(n+m+1)cos™(£4/9,9,), (1.5)

where n and m are the mode numbers in the x- and y-axes, respectively.
Because the Gouy phase shift depends on Hermite-Gaussian mode number,
different transverse modes of a stable Gaussian resonator have different
resonance frequencies and the resonance frequency of Hermite-Gaussian
(n,m) mode is therefore given by

c( mZ+n +1
v TR Akl 2

nma =5 | cos’ glgzj, (1.6)

T
where q is the longitudinal ‘ mode number.” Form Eq. (1.6), we can define
vi=c/2L is the longitudinal mode 'spacing, and vi=(vi/7)arcos[(g1g2)"] is the
transverse mode spacing. The configurations with g;g= 0, 1/4, and 1/2
correspond to v/vi= 1/2, 1/3, and 1/4, respectively, therefore, we denote them
as 1/2-, 1/3-, 1/4-degenerate configurations. In these configurations, the
fundamental modes may be degenerate with other high-order transverse
modes which obey Eq. (1.6). The degenerate modes may through the mode
competition or the mode beating result in instability of laser output [8-9].
Therefore, we know the degenerate cavity is a good choice to investigate

laser dynamics.



1.2-2 Iterative map

The iterative map is a mathematical tool to realize the dynamic
behaviors in a physical system. This method use discrete time system to
study a continuous system. Applying the ABCD matrix for a lossless
two-mirror resonator, we can define a two-dimension iterative map which

contains the spot size w and radius of curvature R as below [2]

w., =h(R ,w, )= wn\/(A +%j +(%ZWEJZB2
7 L
(22 0 (e o0

The suffix of n represents the.tound-trip index where A, B, C, and D are

1{n+l = f(Rn’Wn):

elements of the round-trip matriX; and the discrete time interval of the map is
equal to one round-trip-time of the reésonator. Under linear stability analysis,
the stability of fixed point isdetermined by its Jacobian eigenvalue of the
map. The fixed point is the self-consistent solution of g-parameter, i.e., the
steady-state solution. Therefore discussing the Jacobin eigenvalue at fixed
point is equivalent to determine the dynamic stability of laser resonator.
Because the map belongs to conserve system, the determinant of
Jacobian matrix equals to unity and the eigenvalue of Jacobian matrix depend
on its trace. For convenience, we use the residue to discuss the stability

condition which is defined as
Res:%[2-Tr(MJ)], (1.8)

where Mjis the Jacobian matrix and Tr(M;) is its trace. When 0<Res<I, the

eigenvalues are complex with unity magnitude and the system is stable,



whereas the system is unstable with either Res<0 or Res>1.

In the standing wave resonators with real round-trip transfer matrices,
the curvature of laser beam must match the end mirrors. Therefore, by
substituting the the trace of Jacobin derived from the round-trip transfer

matrix into Eq. (1.8), we have the residue

Res:l-(A+%l)2:1-(2G1G2-1)2. (1.9)

Here we have defined G;=a-b/R; and G,=c-d/R, as the G-parameters for
general optical resonators, and a, b, ¢, and d are the elements of transfer
matrix of single pass between the two end mirrors. We can use
G-parameters to discuss the stability of a multi-element resonator.

For simplicity, we discuss the stability by a two-mirror resonator. Thus

{8
the single pass transfer:matrix is {0 1} and

Res=1-(2g,g, -1)*; (1.10)

where g, =1- LR and the definition of g-parameters are the same as in
1,2

Eq. (1.4). From Eq. (1.10), we found that the residue is a function of ¢;Q>
only. A plot of the diagram of residue versus g;g; is presented in Fig. 1-1.
Since the resonator is dynamically unstable for Res<0 or Res>1, in Fig. 1-1,
one gets a region with ¢;g,<0 or g;0,>1. And the dynamic stable region
with 0<Res<lI is also geometrically stable corresponding to 0<g;g,<l. Itis
critical stable for Res=0 with g;9,=0 or 9;g,=1. The stable region of residue
theorem is the same as the geometrical stability ones which has been
discussed in Section 1.1. However, another critical stable point at g;9,=1/2
with Res=1 in Fig. 1-1 can not be found by using the paraxial optics.

5



Stability region decided by the iterative map of the beam parameters provides
not only geometrical stable condition but also dynamically critical stable

condition.

1.04

0.8

0.6+

0.4

Rresidue

0.2

0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0

9,0,

Fig. 1-1 The diagram of residue versus g:0.. It can easily be
observed that the stable region‘of the residue is the same as
geometrical stable condition:

From the residue theorem;these special cases with Res = 0, 1, 3/4, and
1/2 correspond to the low-orderresonance where p=1, 2, 3, and 4 satisfying
xP=1, respectively. Here 7y is the eigenvalue of M;.  Under these
circumstances, the complicated dynamics may occur at these configurations

if there is a persistent nonlinear effect. These special conditions correspond
to 9:9>=0 or ¢g:9>=1 for Res=0; g,0,=1/2 for Res=1; ¢:9,=1/4 or g,9,=3/4 for
Res=3/4; and ¢:0>= (2 +4/2 )/4 for Res=1/2, respectively [1-2]. It is worth
noting that these configurations correspond to degenerate cavities and these
degenerate cavities are very sensitive to any perturbation in the laser system.
Therefore if any nonlinear effect is in a laser system, the laser will present
various dynamics behavior. In the previous study [10], the

cavity-dependent laser dynamics has been studied in a Kerr-lens mode locked

6



(KLM) Ti-sapphire laser. When the optical Kerr effect was considered as
the nonlinear dynamical parameter, optical bistability and multiple-period

bifurcation were numerically demonstrated.

1.3 Laser patterns in degenerate cavity

Even now except for a few special situations, rigorous mathematical
existence and completeness proofs for optical resonator eigenmodes do not
exist. Because the conventionally laser cavity is an open-side optical
resonator, the laser is not a lossless system. Real lasers have never had any
difficulty in finding eigenmodes. Empirical and experimental evidence
show the same results of lossless system, such as microwave cavities or
microwave waveguide, theseigenmodes-of laser resonator exist. Therefore,
the concept of eigenmodes, “suchiias' the Laguerre-Gaussian or the
Hermite-Gaussian mode, has-“long time been accepted and provides a
physically realistic and meaningful basis.for describing laser resonator in real
system.

In ray analysis of the resonators, however, a paraxial resonance equation
[11] yields the mirror separations of a two-mirror cavity in which any
arbitrary rays repeat themselves after an integer number (say N) of return
transits. It has been argued that a set of paraxial closed ray paths that is
complete in N round trips might also be regarded as a mode of the resonator.
By investigating the effects of off-axis pump on the laser with these
degenerate resonator configurations [12], it can be found that a symmetric
pattern forms for even N and an asymmetric pattern forms for odd N. These

results may be accounted for simply by the introduction of multipass



transverse (MPT) modes that self-reproduce after several round trips in terms
of the ray matrix analysis but not by the superposition of standard cavity
modes.

In the recently study of multi-beam waist mode [13], we can use
propagation of Gaussian q-parameter at 1/3-degenerate cavity to realize
multipass transverse mode as showed in Fig. 1-2. In accordance with Fig.
1-2(a), in Fig. 1-2(b) we depict the Gaussian-beam evolution in which the
first round-trip wave begins with Eg; (w,=aa’/2, Rj=) and reproduces itself
after three round trips in the cold cavity. Note that a positive R represents a
divergent wave riding in the propagation direction. The second round trip
begins when Eg(w>=cc’/2, Ry) converges at dd’ owing to negative R2; which
means that the light waye emanates from Eg just as from dd’. The third
round trip, with Egs(ws=wz , R3==Ry), 1s divergent from cc’; however, it
seems to emanate from . dIdF:-+As-discussed above, it implies that the
locations of aa’, dd’, and dIdI’ are point sources, respectively, therefore it
can be expected that three beam waist can be observed after focusing this
laser mode.

If we place a transform lens with a focal length of 5.2 cm a distance of
10.5 cm from a plano-concave cavity which operated at 1/3-degenerate
cavity with cavity length of 6¢cm, this is equivalent to propagating a distance
of 16.5 cm from the flat mirror and then through the transform lens.
Therefore, three point sources at dd’, aa’, and dIdI’, in the Fig. 1-2 (b), have
distances of 10.5cm, 16.5cm, and 22.5cm from the transform lens
respectively. An image formula of Gauss is used to determine the locations

of images, as a result, three images are located at 10cm, 7.8cm, and 6.8cm,



respectively. A charge-coupled device (CCD) directly images the mode
pattern behind the transform lens and in order to reduce the noise, a laser line
filter was placed in front of the camera lens of CCD. The images according
with distance are shown in Fig. 1-3. It is clearly that the experiment results
fit with the calculation of geometric optics and the model of multipass

transverse mode.

(a)
I/R Eg3(W3,R3)
Eq1(Wi,R m
Ego(w2,R2)

(b)

ry b

'l c

Ll j

E :I ----------- a_ ’. d’

v o dl ;

A0 el ’

Fig. 1-2 The sketch of multipass transverse mode at 1/3-degenerate
cavity. (@) Periodic orbits of the g-parameter for the empty cavity.
The two concentric circles mean that there are infinite sets of
period-N solutions. (c) Gaussianbeam evolution in the empty
cavity.

7Z=6.8cm 7cm 7.8cm 8cm 9cm
. [ 4] » v

Fig. 1-3 Propagation of the multi-beam waist mode.
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In fact, the multi-beam waist made can be explained as a supermode
[14-15]. The supermode is superposed by many high-order degenerate
transverse modes, and because of cooperative frequency locking of the
degenerate modes the laser pattern is temporal stationary. In addition, the
pattern propagating in free space along the beam axis is not stationary due to
the interference of the degenerate modes. The concept of eigenmodes also
can well explain the experiment results, although it needs a serial of
calculation but not an intuitional process. Nevertheless, it is interesting that
a complicated problem of wave optics can be simplified to a geometrical

optics one.

1.4 Aims of this research

In this research, we will investigate the laser dynamics under stationary
laser parameters in a:simple“plano-congave tightly-focused end-pumped
Nd:YVOy laser near the degenerate resonators, and a model of Huygens’s
integral together with the rate equations will help us to analyze this laser
system.

We found that the laser instability occurs in a very narrow range of cavity
tuning on each side of the degeneracy points that shows periodic,
period-doubling, and chaotic time evolutions. In our experiment, an
extremely small w, will increase the mode weights of the high-order
degenerate modes to as much as the fundamental Gaussian mode. Although
so many degenerate modes which bring a supermode join to laser instabilities,
the dynamic behaviors on short-cavity side are only temporal instabilities, the

instabilities on the long-cavity side are spatiotemporal which results from the

10



nonlinear coupling between the supermode and the other Laguerre-Gaussian
modes. From the simulation model, we found that the other
Laguerre-Gaussian modes are introduced by the thermal lens effect. It is
the first time to discuss the relationship between the laser instability and
thermal lens effect.

Under tightly-focused pumping, the supermode is formed around the
degenerate cavity. We utilize the supermode to directly generate various
optical bottle beams at different degenerate cavities. An optical bottle beam
has a low-intensity zone surrounded by a high intensity shell that can be
applied to trap low-index micro-particles or blue-detuned atoms. Optical
bottle beams had been generated in the use of holograph, spatial light
modulator, and two-beam interference.. Those methods need enormous
calculation to prepare a suitable holograph with low conversion efficiency or
well control of phase retardation-fer-each pixel of SLM and two overlapped
beams to make the destruction. interference occurring at the beam center.
Our method of generating bottle beams directly from a simple laser is
convenient for various applications.

We will also investigate the spectrum of laser at degenerate cavities. In a
standing wave resonator, the spatial hole-burning effect can be suppressed.
This laser can attain very high intensity in the gain medium due to shrinkage
of its beam waist to match the pump beam and therefore most of its gain is
depleted even by the standing wave. This experimental result proves a
useful method to control the mode selection in this degenerate cavity, instead
of using otherwise additional dispersion components such as filters or

gratings.

11



In this dissertation, it will introduce the simulation model which includes
how the thermal lens effect substitutes or modifies the model in Chapter 2.
And than we will discuss our experimental results which are laser dynamics
in Chapter 3, directly generation of optical bottle beam in Chapter 4, and
optical spectrum of around degenerate cavity in Chapter 5. Finally, in
Chapter 6 it will state the conclusions and then give suggestions for future

work.
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Chapter 2 Simulation model for our

laser system

Fox and Li approach [1-3] is usually used to elucidate the physical
picture of radiation in an optical resonator, which repeatedly circulates
around the cavity that contains a thin slab gain medium. The transverse
mode profile can be calculated based on the central laser wavelength because
the diffraction effect experienced by transverse modes will be essentially the
same for those any one of’axial miode frequencies within the oscillation
bandwidth. In the numerical:procedure; an arbitrary initial field will
eventually converge to a state.which the mode profile will self-consistent
after one round-trip. In-our study [4],;we use this approach to simulate an

end-pumped solid-state laser.
2.1 Huygens'’s integral and ABCD matrix

2.1-1 Huygens'’s integral

In the classical optics, we can use Huygens’s integral to describe an
optical field after a certain distance of diffraction. So we also can use
Huygens’s integral to describe laser beam in a real resonator. In Fig. 2-1, it
is a sketch of one-dimension Huygens’s integral, and it means that the optical
field of plane Z, interferes with all of the point sources of plane Z;. In

one-dimension condition, the Huygens’s integral is
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U2(%,) = E [7 wi) expl=jkp(x,. %,)1dx, . @.1)

where the l]l(xl) and l]z(Xz) are respectively the wave functions of Z; and
Z, plane, k is the wave number and A is the wavelength of laser field.
The p(x1,x2) is the distance of the arbitrary position vectors on the Z; and Z,

planes. Therefore we can define p as

2

PO%X) =L+ () = Ly BB (22)

We can use Eq. (2.1) and (2.2) to calculate the diffraction of optical field.

az(Xz)

Ny

\ i

T (

Z1 Z>

Fig. 2-1 The sketch of one-dimension Huygens’s integral. L is the

separation distance between plane of Z; and Z,, the ﬂl(xl) and

l]z(Xz) are the wave function of each plane.

2.1-2 Relationship between ABCD matrix and Huygens’s integral

We usually use the ABCD matrix to present a paraxial system, such as
laser resonator. If we substitute the elements of ABCD matrix to Huygens’s
integral, it will be very convenient for using.

Now, we will find the relationship between p(x;,x;) and ABCD matrix,
and substitute to Huygens’s integral. In Fig. 2-2, a paraxial optical system

between the plane of Z; and Z, can be expressed as
15



| |A B|X 53
x,| |[C D|x]| 2.3)

where the x and x’ respectively represent the positions and slopes of the ray

on the Z; and Z;, planes. From the Eq. (2.3), we can get the slope of each

point as
W =X AX,
- B (2.4)
— sz —X
’ B

The input ray may be viewed as a ray coming from an object point P; located

a distance R, behind the input plane, as shown in Fig. 2-2.  Hence R; and R,

is given by
R _x _  Bx
n X X, —AX 2.5)
R, _Xx _ Bx
n, x, Dx,—%

Fermat’s principle says that “all rays egnnecting two conjugate points must
have the same optical path length between two points.” Therefore the ray

path from P; to P, through x; and x, will equal to the ray path along the

optical axis (R P, = Bx x,P,). Both ray paths can be written as

ﬁ: anl + Lo _anz

PX,X,P, = (R + %)% + p(X, %) =N, (R +%;)"2 . (2.6)
Nes x>
~N (R + =)+ p(X, %) — Ny (R, + =2
(R, 2R1) p(X,%X,) =N, (R, 2R2)

From Eq. (2.6), we can get
p(X, %)=L, +%(AXIZ -2x,X, + Dx3). (2.7)
By substituting Eq. (2.7) into Eq. (2.1), the Huygens’s integral becomes
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u2(06,) = 5 expl=JkLy 1 un (6 expl—j o (Ax] ~2xx, + Dx))ldx,

(2.8)
Therefore we have the relationship between elements of ABCD matrix and

the Huygens’s integral.

Z1 Z2
] ]
i p(xi.x2) i
i ’ \\ il - ~ i
Xx,z(/li/( A B \\%Xlz
- . \.\: C D 1/ .
I?/l— | : N P2
)
-~ .
Ri " ! V' Re

Fig. 2-2 The sketch of;the eptical. ray.through an ABCD paraxial
system. The x and x’ respectively present position and slpoe of ray.
P, is the conjugate point of P;.

2.2 Simulation model'in‘a’laser cavity

Consider the plano—concave axially pumped solid-state laser shown in
Fig. 2-3. It consists of a laser crystal with one of its end faces
high-reflection coated as the flat mirror (M3) and a curved mirror (M) with
radius of curvature R as the output coupler which is separated by a distance L.
Let the reference plane be the place of M; where the light beam just leaves
the laser crystal toward the curved mirror. As discussed previously, one can
relate the one-dimension Huygens’s integral with the ABCD matrix. In this
system, we need two-dimension Huygens’s integral. However, under

cylindrical symmetry, simplified formula can be obtained
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27t
BA

J27exp[ j2KkL]

rdr,
BA )

Er;+1(r) =

jE;(r')exp[%(ArQ + Drz)}lo(

2.9)

with the round-trip transmission matrix

A B 2.10
c Dl (2.10)

Here E'(r') and E_(r) are the electric fields of the mth and the (m+1)st
round trips on the planes immediately after and before the gain medium
(denoted by the superscripts + and -), where r’ and r are the corresponding
radial coordinates, A is the wavelength of laser, and J is the Bessel function
of zeroth order. In a thin-slab approximation, we can relate the electric

fields E*

m+1

to E_ ., (afterand before the gain medium) in the same round
trip as

E, . (r)=E, (rexp[cANtIxp xIKr/a), (2.11)

m+1

where 1- p”is the round-trip ‘energy loss, c is the stimulated-emission cross

section, AN is the population inversion per unit volume, d is the length of the
active medium, and I'l(r/a) is an aperture function that Eq. (2.9) is valid for r
less than aperture radius a and equals 0 otherwise. Furthermore, assuming
that the evolution of the population inversion follows the rate equation of a

four-level system, we can write the rate equation as
AN, =AN_ +R_ (N, —AN At —y, AN At—(E; /ESAN AL, (2.12)
where Ry 1s the pumping rate, At is the travel time through the gain medium,

Es is the saturation parameter, y is the spontaneous decay rate, and Ny is the

total density of the active medium. This method was used to model a

18



single-longitudinal multi-transversal high-power solid-state ring laser [5-7]
and to analyze the decay rate of standing-wave laser cavity in the linear
regime [8]. It was found that a standing-wave resonator can be
approximated by a ring resonator if a thin gain medium is placed close to one

of the end mirrors [9]. For a continuous Gaussian pump profile
Rom =R exp[-r’/ 2W[2)] with constant pumping beam radius W, throughout

the active medium (thin slab), the total pumping rate over the entire active

medium is

P
[RondV =—2-, (2.13)

hup

where P, is the effective pumping power and hvy is the photon energy of the
pumping laser.  Because we _consider only single-longitudinal-mode
dynamics, we have oniitted the dispetsion of the active medium and the gain
1s assumed to be real. =Therefore we have four control parameters: p, R, Wy,
and Pp, which play important;teles in the laser system and will be

investigated in detail.

Output
coupler

Fig. 2-3 The sketch of plano-concave cavity.
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2.3 Thermal lens and modification of simulation model

In continuous-wave (CW) end-pumped solid-state lasers, one must
consider thermal effects that will impact optical performance. One
important effect, thermal lens, results from temperature-induced changes in
the refractive index of gain medium [10].

The periphery of the laser crystal is held at constant temperature by a
heat sink. Fig. 2-4 shows the side view and end view of laser rod and heat
sink. In the steady state

V-h(r,z)=Q(r,z), (2.14)
where h is the heat flux, and Q(r,z)=dP(r,z)/dV is the power per unit volume
deposited as heat in the laser crystal. The heat flux is related to the
corresponding temperature distribution within the crystal by

h(r,z) = -K VT(r,2), (2.15)
where K, is thermal conductivity of lasermaterial. From Eq. (2.14), we can
integrate over a crystal volume bounded by a Gaussian surface of radius r

and infinitesimal thickness Az. This yields

z+Az Vo
2nzh= | | [ Py (2.16)
v dV
Now
dP(r,z)dV =al, (r,z), (2.17)

where o is the absorption coefficient of gain medium and In(r,z) is the
intensity of incident pump light that results in heating of the crystal. It is

assumed that

I, (r,z) = Iohexp('z%\/zjexp(—az) . (2.18)

p
20



In Eq. (2.18), Ion 1s the incident heat irradiance on axis and w,, is the pumping
spot. Substituting Eqs. (2.17) and (2.18) into (2.16) and performing the

integration yields

P l-exp(-2r°/w’
h(raz)=az;h eXlo(-az)[ exp(rr ")} (2.19)

where Pph=nwp210h/2 is the fraction of pump power that results in heating.
Substituting Eq. (2.19) into (2.15) and integrating to the crystal boundary, r,

the steady-state temperature is

aP_ exp(-az r2 2r? 2r?
AT(T,Z) :p};‘.T()lln[r%j'FEl (W—Z\J -El [VJ] , (220)

¢ P P
where AT(r,z)z T(r,z)— T(rb,z) and E; is the exponential integral function
[11]. Therefore the total phase change A¢, that is accumulated in a single
pass by the pumping through the laser rod, isigiven by

Ad(r)= jKAn(r,z)dz . (2.21)

where An(r, z) = AT(r, z) X d%T .

le— Copper.

\Fixed T

Side view End view

Fig. 2-4 Side view and end view of an applicable laser rod and
heat sink. The length of rod is I, the rod radius is r,, and the 1/e?
radius of the Gaussian pump spot is @.
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In order to easily estimate the thermal lens, in the previously study [10],
they used quadratic power of r to approximate the solution of Eq. (2.21).
Because the tightly-focused pumping beam is used in our experiment, the
approximate solution is inappropriate to express the phase change resulting
from the thermal lens effect. Therefore the numerical solution of Eq. (2.21)

is necessary for substituting into Eq. (2.11) to simulate our laser system.

2.4 Conclusion

As discussed above, the simulation model contains a Huygens’s integral
and a rate equation. In an end-pumped solid-state laser, thermal induced
change of refractive index will deform the phase of electric field. We can
introduce the radial phase distribution which results from thermal lens to the
simulated laser system,

To obtain the time evolution 'of the output power, we set the reference plane
with a 600 pum aperture at the flat end mirror and laterally integrated the
intensity profile for each round trip. The parameters that were used are the
stimulated emission cross section of 25x10™"° c¢m?, the spontaneous decay

rate of 2y10* s™', the saturation parameter of the active medium of 1.12y10"

J F' m™, the fractional thermal loading of 0.23, the absorption coefficient of
the laser crystal of 1930 m™, the thermal conductivity of 5.23Wm™ K™, the
thermal-optic coefficient of 8.5v10° K™, and the others are the same as
described in Section 3.2.

We use a model of the Huygens’s integral together with the rate equations to
simulate a real laser system. Because the thermal lens effect is very
important in an end-pumped laser, we add numerical model of thermal

22



induced additional phase to modify our simulation. However, if it is
necessary in the numerical, we can add or remove thermal lens effect to
observe the influence of thermal. This is a useful numerical model which

will be used in the following chapters to analyze our experiment results.
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Chapter 3 Laser dynamics around

1/3-degenerate cavity

In this chapter, we will control cavity length, pump power and pump
spot to study the cavity-configuration dependence of laser instability and to
determine the regions of laser instability. When the pump size is small, we
found that the laser always exhibits a stable cw output, except for a narrow
range of cavity tuning on each side of the degeneracy. The laser output
shows self-pulsation with petiodic, period-doubling, and chaotic evolutions.
We also observed various patterns of.the' far field when we scanned the
cavity length. In particular, an anomalous mode pattern is accompanied
with frequency beating close to the point of degeneration. The simulation
in use of Huygens’s integral and rate equations, while taking into account the

thermal lens effect, shows good agreement with the experiment.

3.1 Introduction

It is commonly believed that spontaneous instabilities are impossible in
class B lasers described by simple two-level rate equations without an
additional degree of freedom such as external modulation, light injection, or
delayed feedback, etc. [1]. However, the transverse effects such as gain
variation and diffraction in the resonator provide the additional degrees of
freedom and have been demonstrated to play important roles in lasers [2, 3].

Because various transverse modes may be excited especially when the laser

25



is operated at near-degeneracy, a degenerate resonator is thus a good choice
for obtaining laser instabilities. Previously, we have analyzed an iterative
map of the g-parameter of the resonator [4] and concluded that a laser will
become unstable near some degenerate cavity configurations under nonlinear
effects. Using an end-pumped cw Nd:YVO4 laser, we have studied
different laser behaviors under various pump sizes [5,6] when the cavity is
near 1/3-transverse degeneracy (gig,=1/4). Recently, the Petermann K
factor has also been calculated for maxima on each side of the degeneracy
under strong gain guiding or small pump size [7]. It was emphasized that in
the vicinity of the degeneracies the empty-cavity degenerate transverse
modes are phase-locked and the resultant radial phase profile depends

strongly on the cavity-length detuning.

3.2 Experiment setup

The experimental setup:is schematically shown in Fig. 3-1. This laser
contains a 1-mm thick Nd:YVO4 laser crystal whose one end face acted as
an end mirror and a spherical mirror with radius of curvature of 8 cm as the
output coupler (OC). A cw near-TEMyy Ti—sapphire laser at wavelength of
808 nm was used as the pump source, which was focused by a collimating
lens onto the crystal so the pump size was adjustable. The end face of the
crystal, which acted as the end mirror and faced to the pump beam, had a
greater than 99.8% reflectivity at 1.064 pm and greater than 99.5%
transmission at 808 nm; the other end face comprised an antireflection layer
at 1.064 um to avoid the effect of intracavity etalons. The OC of 10%

transmission was mounted upon a translation stage so we could tune the
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cavity length (L) near the degenerate configuration. The degeneration point
of g1g,=1/4, which corresponds to L=6 cm, was determined by the cavity
length where the lowest lasing threshold occurs [8]. The laser output was
split into two beams, one of which was recorded by a CCD camera and the
other was further split into two beams that were individually collected by two
photodiodes (PDs) with rise times<0.3 ns. The signals of the PDs were then
fed into a LECROY-9450A oscilloscope (bandwidth 200 MHz) and an
HP8560E RF spectrum analyzer (bandwidth 2.9 GHz), respectively. The

Gaussian pump radius, wy,, was determined by the standard knife method.

0C
Lens R=8cm / Screen

-+

-
Ti-sapphire | A =Un, o z2ni
laser ::O>*|]‘ ---------- H%S_l &

Nd:YV04
crystal  Filter PD-2

aQ TE @'

N - - =
Computer| Oscilloscope | Spectrum

— 7

Monitor
analyser

Fig. 3-1 The schematic experimental set up. BS is the beam
splitter.

3.3 Experimental results and discussions

3.3-1 Locations of spontaneous instability

The output power varied with the cavity length under various pump
radii and is shown in Fig. 3-2(a). The bottom three curves for w,=19 um
show that a higher pump power not only widens but also heightens the power

hump. The laser exhibits a stable cw output for almost entire range of the
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studied 3-mm cavity tuning. However, within a narrow range of L on each
side of the power hump, denoted as stars in Fig. 3-2(a), we always observed
spontaneous instabilities. The top two curves are the cavity-dependent
output power for w,=25 and 34 pm at a pump power of 300 mW, in which
the triangles and the solid circles denote the unstable regions for both cases.
Note that the radius of cold-cavity fundamental mode is approximately 108
pum. Summarized in Fig. 3-2(b) are the unstable regions in terms of the
cavity length and the pump power for the three pump sizes of 19, 25, and 34
um. We use a single symbol to denote a narrow unstable region while twin
symbols are used to encompass a wider unstable region of about 100 um.
One can see that the unstable regions on the short-cavity side are well
separated for different w; and docated farther away from degeneracy with
increasing the pump power; in contfast, those on the long-cavity side are
located very close to the point.of degeneration and are nearly independent of

the pump power.
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Fig. 3-2 The observed output power as a function of cavity length
(a) and the unstable regions in terms of the cavity length and the
pump power for different wi(b).+. The symbols for wyare the same
in (a) and (b). The output-power is around 40 mW for Ppump,=100
mW as w,=19 xm. Note that we have added 50 mW and 75 mW for
the curves of Ppunp=200' mW-and-Pp,;p=100 mW. The absorption
efficiency of Ppympis about 60-70%. The lasing threshold is about
5-30 mW depending‘on L.and wp.

We use our simulation model which was discussed in chapter 2 to
simulate the output power with the cavity length and find out the location of
instability. Fig. 3-3(a) shows the output power as a function of L!when
considering the thermal lens effect. The curves of output power that are
labeled as triangles, empty squares, and solid circles for w,=25, 30, and 35
um, respectively, show asymmetric power humps with respect to the point of
degeneration. The dependence of the power hump on w, and P, (the
effective pump power) are the same as in Fig. 3-2(a). The unstable regions
are summarized for four values of wpin Fig. 3-3(b), which are similar to

those in Fig. 3-2(b) except that the vertical axis of Fig. 3-3 is the effective
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pump power that matches with the pump efficiency of ~0.6 taken from the
measured pumping. Again, in Fig. 3-3(b) we use a single symbol to denote
a narrow unstable region while twin symbols are used to encompass a wider
unstable region. It shows similar unstable regions and dependence on w;
and Pyas those in Fig. 3-2(b); for example, at w,=35 pum, the unstable region
shifts approximately from L=5.94 to 5.90 cm on the short-cavity side as one
increases the effective pump power to match with the experimental data in
Fig. 3-2(b). Moreover, the far-field intensity profiles beside the long-cavity
unstable region are similar to those in Fig. 2(b) of [6]. In addition, no
instability can be observed as w,>40 um, which is also consistent with the
experiment.

In order to study the influence of the thermal lens effect, we repeated
the simulation without-considering the thermal lens effect. The calculated
output power and the obtained unstable regions are shown in Fig. 3-4(a) and
(b), respectively. As compared with Fig. 3-3, it clearly shows that thermal
lens effect leads to certain phenomena: (1) an asymmetrical shape of the
power hump; (2) asymmetrical unstable regions with respect to the
degeneration point; (3) dependence of the region shift on P, on the
short-cavity side but not on the long-cavity side; and (4) much less shift of
the power maximum than shift of the unstable region (e.g., see wy=30 um
and P,=150 mW).

In summary, adding thermal lens effect in simulation model will obtain
similar results with the features of instability regions and the diagram of
output power versus cavity length in experiment. No matter how the results
of experiment or simulation (with thermal lens or without thermal lens effect)
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the instability regions are located at the rim of power hump. If the w,<40
um, we can easily locate the instability regions by the diagram of output

power versus cavity length.
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Fig. 3-3 The numerical output power as a function of cavity length
with considering the thermal lens effect (a) and the unstable
regions (b) for different w,. The symbols for wpare the same for
(a) and (b).

31



150-
S @ P =200mW
P rd A\A
é A/ \A
o \
) //‘ W
A ™ A—A—y
S 10 T s T
o g _/ \%@&\k
= covseuagpe #al \j{ijﬁjﬁijﬁ:ﬁ:ﬁ;‘ﬂ
S sf o P=1somw T
5.9 6.0 6.1
L (cm)
200+ (b) m A4 0D o M =
A A a
< 1504 m aa ooO = “u =
=
é L] AL a a a
o> 1001 a 0 o
°c = wp20
50 A oo oo 4| A wp25
° o wp30
® wp35
0 T T T
59 6.0 6.1
L (cm)

Fig. 3-4 The numerical output power as a function of cavity length
(a) and the unstable regions (b) without considering the thermal
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3.3-2 Laser dynamics in instability region

When the cavity length was tuned from the long-cavity side toward and
across the point of degeneration, various far-field mode patterns were
observed. = The mode pattern shows a near-fundamental Gaussian
distribution far from degeneracy. Tuning L!close to the right edge of the
unstable region, we observed a slightly distorted mode pattern. When the
cavity was set within about 100 um of the unstable region, the mode pattern
became non-cylindrically symmetric and strongly spread in a special
direction as shown in Fig. 3-5(a). This anomalous spreading pattern
maintained wider than the whole unstable region by few tens of micrometers.

When L!was tuned across the range that showed the spreading pattern, the
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far-field pattern recovered to a cylindrically symmetric one but turned into
many concentric rings with a dark center that is the far-field pattern of the
multi-beam-waist mode [6]. By further tuning of L!toward the unstable
region on the short cavity side, we observed the cylindrically symmetric
mode pattern as shown in Fig. 3-5(b) that differs from the patterns in the

unstable region of the long-cavity side, as indicated in Fig. 3-5(a).

Fig. 3-5 The far-field. mode patterns.inside the long-cavity unstable
region (a) and inside the short-cavity unstable region (b).

We further investigated “the temporal behaviors of the output power
within the unstable regions at Ppumy=260 mW and w,=34 um. Fig. 3-6(a)
shows a periodic time trace when the cavity was tuned at the edge of the
long-cavity unstable region. Its corresponding RF spectrum in Fig. 3-6(b)
shows one main peak at 1.33 MHz and three harmonics. When the cavity
length was decreased by 20 um from the position of Fig. 3-6(a), a period-2
evolution was observed. The time trace and its spectrum are shown in Fig.
3-6(c) and (d), respectively. On continuing the decreasing of the cavity
length, we recorded a chaotic evolution in Fig. 3-6(e) with a broad low
frequency spectrum indicated in Fig. 3-6(f). Calculation by use of the chaos

data analyzer (American Institute of Physics) shows that the correlation
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dimension of the chaotic evolution is approximately 2.1. Although the
temporal behaviors of the cavity configuration-dependent instabilities are
similar on each side of the degeneracy, the high-frequency responses of their
power spectra are quite different. For the long-cavity instabilities we
observed multiple beating frequencies at 812 MHz, 1.63 GHz, and 2.44 GHz
(see Fig. 3-6(g)) that were confirmed with a Fabry-Perot interferometer (FPI)
having FSR=15 GHz and finesse=150. The transverse mode beating
pertaining to the Laguerre-Gaussian LGioand/or LG2omodes would induce
spatiotemporal instability, where the subscripts 1 and 2 are the radial indices
and 0 is the azimuthal index. However, within the short-cavity unstable
region the spectrum shows only the longitudinal mode beating at 2.44 GHz
with the absence of transyerse mode beating in both of the RF and the FPI

spectra.
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Fig. 3-6 The temporal evolution of laser output. (a) Periodic, (c)
period-doubling, and (e) chaotic output within the long-cavity
unstable region. The RF spectra (b), (d), and (f), that correspond
to (a), (c), and (e), respectively. (g) The high frequency RF
spectrum of the spreading mode pattern of Fig. 3-3(a).

To investigate the distinction between the instabilities on the long-cavity
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side and those of the short-cavity side, we used two PDs at different
transverse positions to simultaneously record the laser power. The first PD
was fixed at the center of the profile as the reference and the second one was
located at an off-axis position. When the two detectors were separated
within a distance, their temporal traces on the oscilloscope were completely
the same as shown in Fig. 3-7(a). However, we found for the long-cavity
instability that the high peak of one trace coincided with the low peak of the
other trace as shown in Fig. 3-7(b) when the two detectors were separated by
some specific distance. This reveals that the intensity profile varies with
time and thus indicates spatiotemporal instability. On the other hand,
within the unstable region of the short-cavity, we always observed the same
behavior between the twa'signals no matter at what position the second PD
was located. Temporal jinstability was exhibited on the short-cavity side.
In addition, we also “foundthat-the instabilities on both sides of the
degeneracy are closely related to-high-order transverse modes because the
instabilities disappeared when a knife-edge was inserted 500 pum into the
cavity beam to inhibit the high-order transverse modes. This will be

explained in the following paragraph.
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Fig. 3-7 The time traces in oscilloscope when the two PDs were
separated close to each other (a) and farther away (b) for the
long-cavity instabilities.

We will use our simulation model to explain the observations of
experiment. To simplify our discussion, we remove the thermal effect in
the simulation. Without the thermal lens effect, not only the power hump

but also the dynamical behaviors are symmetric with respect to the point of
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degeneration. The simulated temporal evolution of the unstable output
power exhibits self-pulsation on both sides of the degeneracy with a pulsing
frequency of few hundred kHz (see Fig. 3-8(a)). The simulated intensity
profile of each round trip show the variation of the on-axis peak intensity
with time as the characteristic feature of Fig. 3-8(a), but the normalized
profile varies only a little. We plotted four normalized intensity profiles in
Fig. 3-11(b) from the pulse peak to valley to show the variation. Their
corresponding far-field intensity profiles [insets in Fig. 3-8(b)], having two
obvious rings, agree with the photograph of Fig. 3-5(b). Moreover, the
far-field intensity profile decreases smoothly and then increases when the
pulse is growing. This leads to pure temporal instability. The modal
analysis shows that the modes in Fig. 3-8(b) can be decomposed into the

combination of the near-degenerate“LGoo, 1.Gso, /!/!/, LGiso modes with

mode weights and relative phase-shifts ‘because LG:10 undergoes large
diffraction losses for a 600 [1m aperture at the reference plane. These phase
shifts must be included because the phase pattern is important as emphasized
in [7]. We give a fitted result in the figure caption of Fig. 3-8(b). When
the thermal lens effect is included, the feature of self-pulsation is unchanged
for the short-cavity side. This matches with the general expectation that the

thermal lens effect will only shift the cavity length.
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Fig. 3-8 (a) A self-pulsing temporal evolution of the simulated
output power without the thermal”lens effect for #=5.96 cm. (b)
The normalized intensity profiles and their corresponding far-field
profiles (inset) from the pulse peak (solid circles) changes to open
circles, solid squares and then to the pulse valley (open triangles).
The normalized profiles of the open triangles are covered by the

solid squares.

The modal analysis for the profile of solid squares

are LGop(0 ~ )+0.63 LGso(-75 = )+0.34 LGeo(-105 = )+0.16
LGso(-90)+0.08 LG120(-83 )+0.08 LGis0o(-116 )+0.07 LGiso(-93). (C)
The numerical temporal evolution of the output power in the
vicinity of the degeneracy with the thermal lens effect for L=6.005
(d) The intensity profiles and
their corresponding far-field profiles (inset) of three successive
round trips.

cm.

Inset is the first 20 iterations.

However, on the long-cavity side the region shift seems independent of

Pyand the self-pulsation becomes the characteristic feature of Fig. 3-8(c), in

which the output power forms three branches of oscillation.
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iterations in the inset show that the output evolution nearly comes back the
same value after three round trips; that is the power spectrum indicates one
peak at roughly 1/3-longitudinal beating frequency that corresponds to the
experimental data of 812 MHz. The intensity profiles of three successive
round trips are shown in Fig. 3-8(c), which are not normalized due to the
large difference. The corresponding far-field intensity profiles in the inset
of Fig. 3-8(d) exhibit a complex feature, which is different from that of the
short-cavity side. Unfortunately, we could not yet obtain good fitting data
by running the same fitting parameters, even when the LGio mode was
included. This may be due to the peculiar phase pattern that is deformed
strongly by the thermal lens effect in the vicinity of the degeneracy.
Because the beating frequency between.the near-degenerate LG modes is
absent on both long-cavity and short-cavity instabilities, the frequencies of
the near-degenerate LG mades-are-locked together to a single frequency.
Therefore the frequency-locked mode; a'supermode [9-10], interacts with the
inverted populations and thus leads to the short-cavity instabilities.
However, the long-cavity instabilities arise mainly from the frequency
beating between the supermode and the other empty-cavity modes.
Although the asymmetric (spreading) mode pattern of Fig. 3-5(a) cannot be
produced by using the cylindrically symmetric model with single optical
frequency, the simulated results agree with the experiment of transverse
mode beating. As far as we know, this is the first report that discusses the
relationship between the instability and the thermal lens effect.

Furthermore, when the aperture on the reference plane is decreased to

450 pm, in accordance with the previous experiment described, the
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instability disappears. =~ The stationary mode now consists of the
near-degenerate LG modes with the same frequency but lack of the
higher-order LGisoand LGisomodes. This fact of transverse mode locking
was confirmed by the absence of the near-degenerate mode beating and by
the observation of the intensity profile variation with the propagation
distance as done in [6]. The supermode lack of the components of the LGis,o
and LGisomodes is unable to arise the instability. Inserting a knife-edge
into the cavity beam in our experiment also results in a cylindrically
symmetric pattern instead of a spreading pattern.  Apparently, the
high-order modes with small amplitude may play important roles in
symmetry breaking as indicated in [11]. However, the origin of the
symmetry breaking is stillunknown.

Going back to Fig. 3-8(a), thespulsation is damped by the relaxation
oscillation so the pulsing frequeney-depends on the pump power and the
cavity length. Theoretically, the pulsing spectrum can be calculated from
the Fourier transform of the output power evolution. Interestingly, by using
y=10" s which the spontaneous decay rate is scaled 5 times we obtained
periodic pulsing, period-2, and chaotic time evolution of the output power
when L!was tuned from 5.96 to 5.951 cm with w,=30 um and an effective
pump power of 100 mW as show in the Fig. 3-9. After 5 times scaling the
dynamic behaviors of simulation, which is the route to chaos, are the same as

the observations of experiment.
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Fig. 3-9 The time evolution of self-pulsation by 10 times scaling.
(a) periodic, (b) period-doubling, and (c) chaotic output are
respectively located at L=5.955cm, 5.9523, and 5.9505cm.

3.3-3 Cooperative frequency locking and laser patterns

The laser cavity operates at exactly degeneracy, the transverse modes
and longitudinal modes will degenerate. It is mean that we can not observe
any mode beating on the RF spectrum. When laser resonator away from the

degeneracy the mode beating should be measured result in none-degenerate
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transverse modes. However, we also can not observe any mode beating in
our experiment except the instability of long-cavity as section 3.3-2
discussing above. This phenomenon is called as cooperative frequency
locking [12]. In this section we will use mode expansion to discuss laser
patterns around degenerate cavity, and we found that vary large range of
cooperative  frequency locking where about several millimeters.
Cooperative frequency locking due to their nonlinear coupling several
transverse modes lock to a common optical frequency and particular phase
differences are selected [13-14]. In the resulting stationary pattern,
amplitudes and relative phases of the interacting modes are determined by
the minima of the generalized free energy of the system [15-17]. However,
in conventional case, therg are only several hundreds micrometer away from

degeneracy to maintain-frequency locking [ 18].

3.3-3.1 Mode expansion and experiment observations

We show the normalized intensity profile and the phase profile on the
reference plane with solid circles in Figs. 3-10(a) and (b) at the degeneracy
(L = 6 cm) for w, = 30 um and the effective pump power of 100 mW without
considering the thermal lens effect. In order to show the good fitting of
mode decomposition using genetic algorithm (GA), we plot the fitted results
in Figs. 3-10(a)-(d) with open circles and use the logarithm scale in Fig.
3-10(a). The mode decomposition is done with 13 fitting parameters
including six amplitude weightings and seven relative phases. For the
aperture radius of 600 um on the reference plane, we expand the calculated

mode profile into the 1/3-degenerate LG, modes with p =0, 3, 6,. .. ,18 and
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m = 0, where p'is the radial mode index and m is the angular index. The

normalized electric field of LG,p mode can be expressed as

ol ol ]

3.1)

where

2

Ay(r2)=E, % LO"[%}

is the modal function, Ey is the normalization constant, zr is the Rayleigh
length, w(z) is the beam radius, R(z) is the radius of curvature of the phase
front, r and z are, respectively, the radial and axial coordinates, and Loy is the
Laguerre polynomial for thode index p.  We assume all the excited LGy
modes have the same-wavenumber .and then the intensity profile |noEgo +
M3E30 +... + NisEiso” with seven-amplitude weightings 1(1obe fixed unity)
and seven relative phases ‘9,is fitted to the mode-calculation profile. We
see that the resultant fitted profiles match with the mode-calculation profiles
extremely well in Figs. 3-10(a)-(d). From Fig. 3-10(a) the central lobe of
the intensity profile is near-Gaussian with the waist radius of ~30 um
(approximately equals to the pump radius, see the solid curve in the inset
with linear scale), which shows that the laser is strongly gain-guided. Note
that the radius of the fundamental mode, wy, is 108 pum. The seriously
saturated gain distribution is shown with the dashed curve in the inset of Fig.

3-10(a). The gain distribution is obtained from the term exp(cAOd) in Eq.
(2.11), where AOis r-dependent.  Fig. 3-10(b) shows that the phase profile is

flat within r!= 200 um but discontinuously jumps © phase at some positions
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of 1, e.g., the first phase jump at r!= 200 um corresponds to the position of
the second intensity zero of the LGsomode. The relative phases of the
degenerate LG modes for L!= 6.0 cm show the degenerate LG modes are not
only phase-locked but also nearly in-phase on the reference plane. The
unusual result of flat wavefront on the flat end mirror, obtained in our mode
calculation including gain, is the same as in [7] and this was discussed
therein.

When the cavity length is slightly tuned away from the degeneracy to L!
= 6.01 cm, the central lobe of the intensity profile shows a slightly distorted
Gaussian in the inset of Fig. 3-10(c) with the solid curve in linear scale.
Also shown with the dashed curve in the inset is the saturated gain
distribution. We can se¢ in Fig. 3-10(d) that the phase pattern is already
highly curved for r!< [00;um and no‘longer has n-jumps at some positions of
r.  Note that the phase-is continuous-at r!= 223 um because the phase jump
is 2m. Besides, at L!= 6.01‘e¢m the ‘degenerate LG, modes are no longer
in-phase on the reference plane but have monotonically increasing relative
phases with the increase of p. Even so, these LGy modes are still
phase-locked to form a stationary mode. Such a stationary mode exhibits
profile variation along the propagation distance due to the variation of Gouy
phases of the LG,omodes and it is in fact an optical bottle beam that has been
presented in [9]. It is worthy to note that nearly the same behavior for the
case of L = 5.99 cm except that the phase pattern is inverted within r!= 100
um and the relative phases of the LG,y modes decrease monotonically with

increase of p.
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Fig. 3-10 The intensity profile’in-logarithm scale (a) and the phase
profile (b) at the exact degeneracy (L: /= 6.0 cm) obtained from the
mode calculation (solid circles).and from the fitted result of mode
decomposition (empty circles). Inset in (a) are the intensity
profile in linear scale (solid curve) and the saturated gain
distribution (dashed curve). (c) and (d) are, respectively, the
intensity and phase profiles for L /= 6.01 cm.

At L = 6.05 cm, the intensity profile is much distorted from Gaussian
and the phase pattern is highly curved for r < 150 um. The mode
weightings and the relative phases of the LG,y modes for various cavity
lengths are summarized in Figs. 3-11(a) and (b) except for the absence of L =
6.04 cm because the laser instability occurs there as section 3.3-1 and -2
discussing above. We can see in Fig. 3-11 that the mode weightings for the

case of L = 6.05 cm have significant decrease for p = 3, 6, 9 as compared
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with the case of L = 6.03 cm and that the relative phases no longer

monotonically increase but alternate for p > 6.
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Fig. 3-11 The mode weightings (a) and the relative phases (b) of
the LGy modes as L ‘are tuned away from the degeneracy.

Although the far-field intensity pattern looks like a Gaussian profile
when the cavity is tuned far away from the degeneracy to L = 6.10 cm, the
mode profile still varies along the propagation. We can see from Fig.
3-12(a) that the calculated mode profile exhibits a dark center from z = 6.8 to
8.0 cm where far from the plane mirror. We therefore used this z-dependent
profile to verify the phase-locking of degenerate transverse modes as L is

tuned from 5.90 to 6.10 cm. The profile will appear a dark center
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approximately from 19 to 23 cm after a convergent lens with focal length of
7 cm when the convergent lens is put behind the output coupler at a distance
of 12 ecm. Fig. 3-12(b) shows the photograph taken at a distance of 20.5 cm
after the convergent lens from our Nd:YVOeslaser as L is set on the right edge
of the phase-locking region. We found experimentally that the

phase-locking region has been shifted ~500 um toward the short cavity side

by the thermal lens effect for w,= 30 um and pump power of 150 mW.

Intensity (arb. units)

Fig. 3-12 (a) The numerical beam profile variation along the
propagation distance z for L = 6.10 cm. The intensity profile with a
dark center can be seen at z = 6.8-8.0 cm that is transformed to a
distance of 19-23 cm after the convergent lens. (b) The
photograph experimentally taken at 20.5 cm after the convergent
lens.

3.3-3.2 Briefl summary

We have confirmed the phase-locking of degenerate transverse modes
near the degeneracy of g;g2, = 1/4 in a tightly focused end-pumped Nd:YVO4
laser that can be verified by observation of beam profile variation along the
propagation distance within a large cavity-length detuning from the
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degeneracy. We also decomposed the stationary lasing mode into the

degenerate Laguerre-Gaussian modes with their relative locked phase.

3.4 Conclusion

We have found the cavity-configuration-dependent instabilities and
determined the two sets of the unstable regions beside the degeneracy near
g212=1/4 in an end-pumped Nd:YVO4 laser with small pump sizes. We
illustrated the temporal behavior of the instabilities including the chaotic
output. The different far-field patterns beside the unstable regions were
observed; in particular, a special spreading mode pattern was observed in the
vicinity of the degeneracy. Our numerical results, which were obtained
using a cylindrically symmetric model with single frequency, agree well with
the experiments and reyeal the imfluence of the thermal lens effect.

Even far about “lmm from degeneracy, we also can observe the
phenomenon of cooperative: frequency locking in the experiment. In the
numerical, we use GA to realize mode weight of each degenerate mode and
its corresponding phase. When we operate the laser cavity at exactly
degeneracy, all degenerate modes are nearly in-phase on the reference plane.

This study will help us to control transverse mode for application.
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Chapter 4 Laser patterns around

degenerate cavity: optical bottle beams

Optical tweezers [1] is a useful technique to manipulate micro-particles
and biological samples such as DNA’s. Based on similar technique, atoms
can also be trapped in use of dipole force [2]. If the trapping beam is
blue-detuned from the resonant transition of the atoms, the atoms will seek
dark or the low-field region so that the field distribution will not substantially
be disturbed by the presence ‘of atoms:, Thus the storage time can approach
the order of one second{3].. The same.character of seeking dark can also be
applied to the micro-particles that have 'lower refractive index than the
surrounding medium [4].

An optical bottle beam has a low-intensity zone surrounded by a high
intensity shell [5-8]. It had been generated by using a hologram constructed
with Laguerre-Gaussian LGy and LGy modes that destructively
interferences at their beam waists. Here the first subscript index of LG
modes is the radial mode index and the second one is the angular mode index.
Recently, we have shown that a bottle beam can be generated from a simple
laser near the 1/3 transverse degeneracy but the laser beam consists of many
degenerate LG modes being in-phase at the beam waist [9]. In this chapter,
we experimentally demonstrate that various optical bottle beams can be
generated from a simple laser when it is operated with the degenerate cavities.

Moreover, good-contrasted optical bottles can be achieved by controlling the
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sizes of pump laser and of an intracavity aperture.

4.1 Motivation

We first show in Figs. 4-1(a) and 1(b) the differences of the bottle
beams with destructive and constructive interference of LGy and LGy
modes at the beam waist with its width W,. We see that there are two
optical bottles ahead and behind the waist in Fig. 4-1(b) due to Gouy phase
shift, while only one bottle of destructive interference located at the waist in
Fig. 4-1(a). The beam with two bottles of Fig. 4-1(b) form a double-well
potential for blue-detuned cold atoms, so that it may be useful for
investigating the interaction between two groups of cold or even
Bose-Einstein condensate satoms [10]2. We show the three-dimensional
potential wells in the right column of Fig. 4-1. Note that the potential wells
are plotted only from 0 to 3Wg-in the radial direction and the fundamental
beam waists are assumed t0 be the same in Figs. 4-1(a)~1(d). The depth of
potential well that is proportional to the beam intensity is shallower in Fig.
4-1(b) than that is in Fig. 4-1(a), but the deeper and the narrower potential
wells can be constructed by using LGgy and LG3y modes as well as LGy and
LGsp modes as shown in Fig. 4-1(c) and 1(d), respectively. We will show in
the following that these bottle beams of Figs. 4-1(b)~1(d) can be directly
generated from a simple laser near the transverse degeneracies of 1/4, 1/3 and
1/5, respectively.

Considering the simplest two-mirror cavity with the specified mirror
curvatures R, Ry and the effective cavity length L, the resonance frequencies

of the longitudinal-plus-transverse modes can be given by
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Vmng=qvit(m+n+1)vy, where vi=c/2L is the longitudinal mode spacing,

I ?] is the transverse mode spacing, q is the longitudinal

vi=(vil m)arcos[(9102)
mode number, m and n are the transverse mode numbers, and g;2= 1- L/R1>
being the cavity parameters, respectively [11]. The configurations ¢ig; =

1/4, 1/2 and (1+45)*/16 corresponding to vi/vi =1/3, 1/4 and 1/5 will be

denoted as 1/3-, 1/4- and 1/5-degenerate configurations, respectively. From
previous discussion in the section 3.3, we know that the supermode observed
at degeneracy is consist of the in-phase degenerate transverse modes. In our
previous studies [9, 12], we have shown that an end-pumped Nd:Y VO, laser
by a small Gaussian pump beam will result in multi beam-waist (MBW)
mode as it is operated at degenerate resonator configurations. From Fig.
1-3, we can observe an optical bettlesbetween two beam waists. However,
the contrast between dark center and barrier of the optical bottles were not so
good as Fig. 4-1(c) because many degenerate eigenmodes are simultaneously
excited near the 1/3-degenerate ‘cavity.  Furthermore, unequal mode
weightings will lead to a non-perfect destructive interference bottle with
non-zero on-axis intensity even when the proper eigenmodes are selected, for
example, only LGgy and LGsp modes being excited. However, we can
control the sizes of pump beam and an intracavity aperture in the
end-pumped Nd:YVOy laser to obtain good bottle beams as depicted in Figs.

4-1(b)-1(d).
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Fig. 4-1 Intensity patterns and their corresponding
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LG, modes at beam waist, (b~d) in-phase adding LG, and LG,
LGoo and LGgo, as well as LGy and LGsy modes, where the Wy is
the beam waist, and zy is the Rayleigh length.
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We can use Fig. 4-2 to realize the idea for creating a perfectly bottle
beam. The transverse mode distribution is show in Fig. 4-2(a). It can be
easily observed that the high-order transverse mode widely distribute with
narrow central portion. So we can use a hard aperture to increase loss of
high-order mode; and control lasing transverse modes which only contains
fundamental and the lowest-order transverse mode. In addition, the narrow
central portion indicates that we can use tightly-focused pump spot to
increase mode weight of the high-order mode. We show the overlap
integral of pump field (W) with different transverse modes. The transverse

modes will have almost equally value of overlap integral when W, is small
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enough. It tells us small pump spot will increase the mode weight of the

high-order mode related to the fundamental mode.

4.2 Experiment setup and discussion

The experimental setup shows as Fig. 4-3. A plano-concave laser
cavity contains a 1 mm-thick Nd:YVOy crystal and an output coupler with
radius of the curvature R, = 8 cm having 10% transmission at the lasing
wavelength of 1.064 um. One surface of the crystal facing to the pumping
beam acts as a flat mirror of the cavity and is dichroically coated with
reflection greater than 99.8% at 1.064 um and transmission greater than 99.5
% at the pump wavelength of 808 nm; and the other surface was
anti-reflectively coated at.1.064 um to-avoid intracavity etalons effect. The
output coupler was mounted on a translation stage so that we can tune the
cavity length around the degenerate-eonfigurations where semi-confocal is at
L=4cm, 1/3 degeneracy at I.=6em;and 1/5 degeneracy at L=5.2cm. The
pump source is a continuous-wave Ti-sapphire laser with TEMyy mode. In
our experiment we used several pump sizes that were determined by the
standard knife method. In order to control the lasing modes, we insert a
knife edge into the cavity against the gain medium as a hard aperture that
allows the oscillation of mere fundamental mode and a single degenerate
transverse mode. For example, the aperture has radius of 300um on the
optical axis for sustaining only LGg and LG,y modes in the semi-confocal or
1/4-degenerate resonator.

The Nd:YVOy, laser output was split into two beams. One of which

was used to project the far-field pattern on a screen located at a distance of ~
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50cm from the flat mirror; the other beam was propagated through a
transform lens (TL) to study beam propagation and then was detected by a
Charge Coupled Device (CCD) camera. To image the mode pattern directly
behind the TL with less noise, we replaced the camera lens of the CCD by a

laser line filter and added some adequate absorptive neutral density filters.

P A CCD
INd:YV04 | s
CL | erystal 0C 1L Without
BS * " g :Ocamera lens

laser cavity

Image plane -
far field

Fig. 4-3 The sketch of experiment setups.

To verify the optical bottles.of the dbove-mentioned modes, we showed
in Fig. 4-4 the intensity distribution of the optical bottle along the
propagation distance when the laser is operated at 1/4-degeneracy. We have
normalized the propagation distance to the Rayleigh length zr that was
indicated above the photographs. The observed optical bottle is ahead of
the beam waist at z=0, and its extended range is about 2.36zg. Similar but
shorter extended regions of optical bottles for the 1/3- and 1/5-degenerates
can also be observed due to rapid variation of Gouy phases of LG3p and LGsy,
respectively. Behind the beam waist at z=0 we can also observe a similar
optical bottle which is consistent with Fig. 4-1(b)~(d) but appears farther

from the waist. However, the double optical bottles of Fig. 4-1(b)-(d)
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should appear symmetrically to the beam waist because of symmetrical
variation of Gouy phases around the waists. In the experiment, however,
we observed unsymmetrical double optical bottles after the transform lens
(TL). This can be explained by excess Gouy phase shifts of the higher
order transverse modes, and therefore formation both LGyy and LGy, images
are at different distances. Assume both of LGy and LG,y modes are
in-phase at the waist, they experience different Gouy phase shifts while they
reach the TL. Looking back through TL, those two modes seem to come
from two different point sources because they experience different phase
shifts or optical path lengths. Their images therefore will be slightly
separated to result in asymmetric double optical bottles. We can bring these
two images together again to produce'.symmetric optical bottles as Fig.
4-1(b)~(d) by using twe lenses to' collimate at first then focus the collimated

beam to form symmetric double.eptiealbottles.

236z, -127z, -z, -072z; O

* © 0 o

Fig. 4-4 The radial intensity patterns of the optical bottle
generated from a laser operated with the 1/4-degenerate cavity at
various distances from the transform lens which is indicated above
the photographs, where zr is the Rayleigh range.

Because there are only 30x30 pixels in photographs of Fig. 4-4, the
spatial resolution is too low to show the detailed beam character, we
expanded the laser beam by 5 times to monitor the radial distribution of the

center of various optical bottles. Shown on the right column of Fig. 4-5 are
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the photographs of the bottle beams under 300mW pumping with a pump
size of 30 um when the laser is operated at 1/4-degeneracy with an
intracavity aperture of 300um and at 1/3-degeneracy with 350um aperture,
respectively.  The parallel streaks on the photographs are caused by
interference from the protection window of the CCD. By in-phase
summing the LGy and LG,y modes for 1/4-degeneracy and the LGy, and
LGj;p modes for 1/3-degeneracy at the beam waist (z = 0), we show the
calculated optical bottle profiles on the left column of Fig. 4-5 at z = zg and
at z = zr/5 respectively. We see the excellent agreement between the
experiments and the calculations. However, there are about 5% observed
residual intensity at the center of the bottle for both of the 1/4- and
1/3-degenerate configurations. ,Jt.must'be mentioned that each pixel of
CCD is 7x7um” which may not be able to resolve the region of lowest
intensity of only several microns.even having been magnified 5 times. The
central pixel may detect some energy adjacent to the optical axis and the
actual residual intensity should be lower than the measured 5%.

Because the central portion of LGsy mode is more localized than that of
LGoo, LGy or LGsg, the smaller pump size can effectively decrease the mode
weight of fundamental mode to enhance LGso mode. The higher degenerate
configuration tends to generate the narrower and the deeper optical bottle by
choosing the smaller beam size to pump this laser. In order to obtain the
narrower and deeper optical bottle, we pay our attention to the 1/5-
degeneracy. Note that the fundamental mode radius is 113um in this case.

With intracavity aperture of 450um, we show the experimental results in the

Figs. 4-6(a)~4-6(c) for the pump radius of 30, 20, and 15um respectively,
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and in Fig. 4-6(d) is the calculated bottle with LGoy+LGso at z = 0.324zp.
Comparing Fig. 4-6(b) with Fig. 4-6(d), we see the bottle with three obvious
concentric rings that means the aperture has properly selected only LGy and
LGso modes. We also see from Fig. 4-6(a)~4-6(c) that the central intensity
decreases from about 13% to 2.5%. We used the smaller pump size of 20
um for the 1/5-degeneracy instead of using pump size of 30um for the
1/4-degeneracy and 1/3-degeneracy to achieve the same residue intensity as
on the right column of Fig. 4-5. This means that the mode weighting can be
experimentally controlled by the pump radius. A small pump size gives the
mode weight ratio approaching to 1 which leads to optical bottle with good

contrast.

calculated observed

Pump spot-size=30pm

=

Fig. 4-5 The calculated radial intensity distributions and the
experimentally observed beam profiles. The calculated transverse
profile of LGoo+LGy is at z = zg and of LGgo+LGgo at z = zR/+/3
that correspond to the photographs taken at 1/4- and
1/3-degeneracy, respectively.
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113 degeneracy

LGy, +165, I

Fig. 4-6 The depth of optical bottle versus different pumping size
and corresponding calculated profiles at 1/5-degeneracy. The
CCD images in (a)~(c) are the beam patterns when the laser is
operated with pump size of 30um, 20um, and 15.m respectively.
(d) The calculated profile of LGgo+LGyis at z = 0.324 zx

One may ask questions_that practically how to ensure the laser is
operated at the degeneraey and how to, properly determine the aperture size?
We will discuss these-experimental details-in the following. Because the
Gouy phase difference of L'Ggy and L:Gsy modes is 5w at the far field where
the profile exhibits a dark center ‘as'show in Fig. 4-7, we can easily identify
the point of 1/5 degeneracy where the laser has the lowest threshold. And,
in the Fig. 4-7, by counting number of the concentric rings we can identify
whether the aperture size is proper, for example, a single concentric ring for
LGoo+LGao, two rings for LGoo+LGso, and three rings for LGoo+LGso. In
addition, one can focus the pumping beam near the rim of the crystal instead

of actually placing a real aperture against the crystal inside the cavity.
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Fig. 4-7 Photographs of the-far-field patterns by the laser operated
at semi-confocal, 1/3, ‘and 1/5 degenerate configurations. The
hard aperture is 300zm;3504m, and 430um, respectively. The
corresponding calculation ~ profiles are plotted by in-phase
summing up the fundamental and the lowest degenerate transverse
mode.

Optical bottle beam have been generated in use of holograph [5], spatial
light modulator [6], and two beam interference [3, 8]. Those methods need
enormous calculation to prepare a suitable holograph with low conversion
efficiency, or well control of phase retardation for each pixel of SLM and two
overlapped beams to make the destruction interference occurring at the beam
center. Our method of generating the bottle beams directly from a simple
laser may be convenient for some applications. The demonstration of the

Nd:YVO4q laser in this experiment that emits at wavelength of 1064nm may
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not be suitable for blue-detuned light trap of atoms. However, in use of the
Collins integral together with rate equation to study pattern formation and
laser dynamics as stated in the previous study [9, 12], and we found that the
bottle beam from a laser is independent of the active medium as long as it
satisfies the thin slab approximation and the homogeneous 4-level
assumption. If only the pump size is properly controlled smaller than the
beam waist of the fundamental mode of the cavity and an aperture is
introduced to eliminate unwanted high order modes, an optical bottle beam
with double wells results from cooperative frequency locking of the lowest
two degenerate transverse modes. Therefore, one can choose an appropriate
gain medium and employ with the degenerate cavity configurations to

generate bottle laser beam'for trapping atoms in the dark field.

4.3 Conclusion

In conclusion, we "have demonstrated direct generation of various
optical bottle beams from the degenerate cavity configurations in a compact
solid state laser in use of appropriate pumping size and aperture. In
particular, the good optical bottle is achieved with the superposition of LGy
and LGsp modes from the 1/5-degenerate cavity. This new scheme of
generating bottle beams from end-pump solid-state lasers may be applied for

optical atom trap.
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Chapter 5 Optical spectrum around the

degenerate cavity: Suppression of

spatial hole burning

The single-frequency laser is essential for stable operation of intracavity
frequency doubling, precision measurement, high-resolution spectroscopy,
and laser trapping or cooling. The most common method of obtaining
single-frequency operation in a homogeneously broadened solid-state laser is
to build a traveling wave, cavity, usually by means of a ring cavity with an
intracavity optical diode so as to prevent the spatial hole-burning effect. To
acquire single-frequency operation in a linear cavity, however, some ways
are required to diminish the spatial hole-burning effect. For example, a
twisted mode technique [1] had been proposed to achieve uniform energy
density along the optical axis of the laser cavity. In addition, the
mechanisms of Auger upconversion and energy diffusion in the laser crystal
were also employed to reduce the spatial hole-burning effect [2-4].

Recently, it was shown that a plano-concave cavity with the degenerate
resonator configuration could support arbitrary beam distribution. Under
tightly focused pump beam, the laser exhibits shrinking beam waist and the
lower pump threshold than the neighboring configurations [5, 6]. In this
Chapter, we will report a novel way by employing the degenerate resonator
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configuration to relief the spatial hole-burning effect. Because the laser
with a degenerate resonator configuration is capable of self-adjusting its
mode distribution to match the small pump beam, very high intensity is able
to attain in the gain medium. Most of the gain, therefore, can be depleted
even by a standing wave field. The spatial hole-burning effect is then
effectively suppressed. This was numerically simulated in terms of a spatial
dependent rate equation and experimentally demonstrated by using a
Nd:YVO4q laser discussed previously. The Nd:YVO; laser crystal has high
absorption coefficient which is a merit for single-frequency operation in a
standing-wave cavity, but the pump power is usually limited to slightly above
the threshold [7]. Our method, however, is capable of suppressing the

spatial hole-burning effect'beyond 20 times the pump threshold.

5.1 Theoretical model and simulation

In order to investigate the spatial hole-burning effect in a plano-concave
Nd:YVO; laser, we employ a spatial dependent rate equation. By taking
into account both the Auger upconversion and energy diffusion effects, the
rate equation for the density of population inversion N(z) in an ideal

four-level system can be expressed as [2, 4, 8]

2N fR(z)_(H@jN(z)m[az%fz)j— AN, (5.D)

s
where z is the cavity axis with z = 0 at the flat mirror, R(z) is the pump rate,
Is is the saturation intensity, 7 is the spontaneous emission lifetime, D is the
diffusion constant, and A is the Auger upconversion coefficient, respectively.
Assuming a low roundtrip loss in the plane wave approximation, we can

write the intensity 1(z) of standing wave as
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1(z)=41,sin*(kz), (5.2)
where Kk is the propagation wavenumber and |y is the average intracavity
intensity. Because we do not consider the radial effect in Eq. (5.1), the

pump rate can be written as

P e—az
R(z)= P 5.3
@) hv x 2w’ o (5-3)

where Pp is the incident pump power, h is the Planck’s constant, v is the
pump frequency, Wy is the pump size, and o is the absorption coefficient at
pump wavelength. Under the steady-state condition, we substituted Egs.
(5.2) and (5.3) into (5.1), and numerically solved the equation by the
Newton’s method to obtain the spatial profile of N(z). The Auger
upconversion coefficientsA = 3x10~" m?/s [4, 8], diffusion constant D =
0.7x10™"" m?s [4], absorption coefficient- o.=31.4 cm™ , and saturation
intensity Is=1.19x10’ J/(m’s) are used’in our simulation.

Usually the laser is expected te ‘operate at the single longitudinal mode
when the pump power is just above the threshold. From the Ref. 7, we
estimate that the second longitudinal mode would begin to oscillate at y=
1.78, where 7 is the ratio of pump power to laser threshold, therefore, we will
discuss the numerical results using the pump power around y= 1.78.
Because the thickness of the laser crystal is less than the Rayleigh parameter
of the pump beam, we assume that the pump size wj is constant throughout
the crystal. When a laser operates in the vicinity of g;g, = 1/4 with a
spherical of 8-cm radius, the radius of the fundamental transverse mode is
about 108um. It corresponds to Rayleigh parameter of about 34 mm which

is much longer than the length of gain medium of 1 mm. In addition, the
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plane wave assumption is adequate for a beam having or close to Gaussian
profile. Note that the laser beam spot in the vicinity of flat mirror (gain
medium) is almost equal to the pumping size of Wy= 20 pm and is similar to
Gaussian profile [5] when it is operated with the degenerate resonator
configuration under tightly-focused pumping. The plane wave assumption
in Eq. (5.2) is still valid even with the high-order Laguerre-Gaussian mode
up to LGiap, whereas, the shrinkage of beam spot can be observed at the
degeneracy with only a superposition of LGy and the lowest degenerate
mode, e.g., LG3 for g;g,=1/4 [13].

Figure 5-1(a) is the spatial profile of N(z) for a laser operated at cavity
length L = 6.06cm which is a typical example of population inversion in a
standing wave resonator.« It only burns a small hole of N(z) at anti-node of
standing wave and leayes sufficient gain for-the second longitudinal mode to
lase. The horizontal’dashlime—in=this figure stands for the threshold
population inversion with pump power of 33 mW, the solid and dash curves
respectively show N(z) for the laser operating at y.= 1.5 and y.= 2.4, where
the subscript ¢ denotes the conventional cavity. To allow the second mode
to oscillate (y.> 1.78), the residual population inversion should higher than
that for the laser operating at y.= 1.5 as shown in Fig. 5-1 (a).

If we operate the laser at the degenerate resonator configuration where
g12>=1/4 (L = 6.0 cm), good overlapping between the pumping and the laser
beam will result in a lower laser threshold which equals to 15mW. The
beam radius will be about 20 um which approximates to the size of pump.
The intracavity intensity at the beam waist (z = 0) is about 29 times higher

than that of the laser with the conventional cavity (L = 6.06-cm). Because
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of the very high intracavity intensity, there leaves only a little residual
population inversion above the threshold which is located around the node of
the standing wave, as shown in Fig. 5-1(b). The horizontal dash line again

stands for the threshold population inversion.

—
E
S g (a)
—
o
:!/ 74 . o~
\ 7’ \ ’
C 6- \ ’ AY 4
9 \\ '/‘YC:2'4“ //
n \ ! k '
o 54 \ ! N !
o \ / N //
> 4] : 6=
£ N & AN .
g 34 N S<==="threshold
% 24
Y
o
o0
o

Laserraxis, z

w

N
N

[N
s

Population inversion(1018/m?)

o

Laser axis, z

Fig. 5-1. Numerical spatial distribution of steady-state upper level
density to show influence of spatial hole-burning effect. The

normalized pumping y¢o the threshold) for both of the
conventional laser operated at L=6.06cm (a) and bottle beam laser
at g10.=1/4 (b).

Other longitudinal modes could have significant access to the residual
inversion only if they had at least ©/2 phase shift relative to the first mode [7].

Two lasing frequencies, which is in-phase at beginning, will possess m/2
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phase difference after propagating a dephasing length. Usually the first
lasing mode in a homogeneously broadened gain medium is located near the
center of gain profile, and the shortest dephasing length is provided by the
maximum frequency difference. So we used half of bandwidth to estimate
the shortest dephasing length to be 700um. This implies that the other
longitudinal mode needs more than 2.3 times absorption depth of Nd:Y VO,
which is reciprocal of absorption coefficient o, to extract enough residual
gain to oscillate. From Fig. 5-1(b), we see that the residual population
inversion for y4= 1.5, where the subscript d denotes the degenerate cavity, is
too small to allow oscillation of the second mode. Nevertheless, for y4= 2.4
or even the higher pump power, because the higher residual population
inversion occurs at the nodes ofithesstanding wave, the second mode still can
not obtain the sufficient' gain. In‘addition; it is worth to mention that by
neglecting the energy diffusion and-Auger upconversion effects, the last two
terms of the right-hand side ‘of Eq. (5.1), we still obtained the similar
numerical results of Fig. 5-1(b). This implies that the effects of Auger
upconversion and the energy diffusion are negligible and can be ruled out in
our case. Therefore, we conclude that the laser with the degenerate
resonator configuration is capable of suppressing the spatial hole-burning
effect by means of gain saturation through the very high intensity in the gain

medium.

5.2 Experiment setup and results

In order to confirm our numerical calculation, the experiment is

performed in a Nd:YVO, laser with a plano-concave cavity.  The detail
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setup similar to the previous Chapters is show in Fig. 5-2. A photodetector
(rise time < 0.3 ns) together with a RF spectrum analyzer (HP8560E,
bandwidth 2.9 GHz) was used for measuring the mode beating and the
relaxation oscillation. The optical spectrum was measured by using a
Fabry-Perot interferometer (FPI, Burleigh) having finesse > 150
corresponding to a spectral resolution of 100 MHz for a 15 GHz free spectral
range (FSR). In addition, the pump size determined by the standard
knife-edge method is 20 um, which is less than one-fifth of the waist radius
(108 um) of the cold cavity mode. The cavity length corresponding to the
degenerate resonator configuration is determined by minimum pump
threshold [6]. In this experiment, we operated the laser around the
1/3-degeneracy (L = 6 .6m), which cotresponds to the longitudinal mode

spacing of about 2.4 GHz.
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Fig.5-2 The sketch of experiment setups.

Figure 5-3 shows a typical single-frequency optical spectrum measured

by FPI when the laser is operated at y< 1.8 (~ 1.78) in the conventional
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cavity configuration (L = 6.06 cm). The second longitudinal mode appears
when v, = 1.8 > 1.78 (threshold is 33 mW). The experiment observation
agrees well with the theoretical estimation according to the Ref. 7. Figure
5-4 (a) and (b) respectively show the FPI and the RF spectra for vy,
=2.7 (pumping power P, = 90 mW). We can clearly see the second
longitudinal mode and the beating from these two longitudinal modes. As
the pump power increases to over 133 mW (y.= 4), we found that an extra
lasing mode appears at 1.1 GHz away from the main features of the FPI
spectrum but no corresponding mode beating can be detected by the RF
spectrum analyzer. Therefore, we suspected that the spectral spacing of
these two lasing modes is larger than the bandwidth of the RF spectrum
analyzer (2.9 GHz). Indeed, when.the FPI with larger FSR (150 GHz or

even 300 GHz) is used, the measured mode spacing becomes 40 GHz.

FSR =15 GHz

0.50+

Intensity (a.u)

0.254

Fig. 5-3 Single frequency optical spectrum of the Fabry-Perot
interferometer with FSR = 15 GHz when the pumping is set below
1.8 times threshold.
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Fig. 5-4 Typical multiple optical frequency and corresponding RF
spectrum for the jcommon -laser ‘at L=6.06cm. (a) The
Fabry-Perot interferometer-shows twa: longitudinal lasing modes
with spacing of about 242 GHz-and (b) the beat frequency of two
longitudinal modes measured by the' RF analyzer.

On the other hand, as the cavity is adjusted to the degenerate resonator
configuration (L = 6 cm), the single frequency operation is observed, as
shown in Fig. 5-3, for the pump power as high as 30 mW. By raising the
pump power to above 30 mW (yq4= 2), we found that the second mode appear
in the FPI spectrum which is located 58.6 GHz away from the first mode
rather than ~2.4 GHz. The next nearest neighboring longitudinal mode is
not observed even the pumping power increases as high as we can. The FPI
and the corresponding RF spectrum at P,= 310 mW or y4~20 are shown in
the Fig. 5-5(a) and (b) respectively. The inset of Fig. 5-5(b) shows that

there is neither longitudinal nor transverse mode beating within the
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bandwidth of the RF spectrum analyzer, the arrow in this figure shows only
one relaxation oscillation peak (2.4 MHz) existing in the RF spectrum. One
may doubt whether the mode spacing of 58.6 GHz comes from the
intracavity etalon effect. We estimated the mode spacing resulting from
etalon effect of Imm-gain medium is 72 GHz; in addition, there is an
antireflection coating at 1064 nm on the Nd:YVO; facet to avoid the effect of
intracavity etalons.

As the simulated results discussed in the previous section, the laser with
the degenerate resonator configuration is able to deplete most of the
population inversion in a homogeneous broadened gain medium. We
therefore expect that the second mode 58.6 GHz away from the first mode
may have different origin of emission or arise from different manifold of
transition (sub-peak -of .inhomogeneous gain profile). Similarly, the
sub-peak of the gain profile ‘will-alse-result in occurrence of the second mode
in the conventional cavity" at higher pump power, which is 40 GHz away
from the first mode. In the Nd:YVO; crystal, the crystal field interaction
gives rise to the Stark splitting at the satellite of 4F3/2, 419/2, and 4111/2 [9].
Under high-resolution absorption and luminescence studies, it was found that
the satellite energy of 4F3/2 > 419/2 transition depended on the Nd*
concentration [10]. The lasing transition around 1064 nm is attributed to
“Fin > 1. It contains two closely transitions R; = Y, and R, 2 Y, with
frequency difference of 90 GHz under 2% Nd** doping and 21 GHz under
0.56% Nd’* doping [11, 12]. The doping concentration used in our
experiment is 1%, it is quite reasonable to obtain the frequency difference of

~42 GHz by simple interpolation. The frequency difference which is
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estimated by interpolation is in good agreement with our observation in the
conventional laser cavity. Note that because the second mode has a
frequency more than 40 GHz away from the first mode, it would be easily
filtered out, for example, by a grating with 1800 grooves/mm. In principle,
it is possible to design a cavity that delivers the same tight beam size in a
fundamental TEMy, mode and achieve the same effect. However, such a
cavity is usually operating close to the edge of stability and needs to
accurately adjust the cavity length according to the spot size of the pump
beam. Our scheme, in contrast, is operated within the stability region away
from the edge of stability. Without knowing the pump beam size in advance,
the laser with a degenerate resonator configuration can self-adjust the mode
distribution to match the small pump beam and as a result the spatial

hole-burning effect is suppressed.
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Fig. 5-5 Multiple optical~frequency and corresponding RF
spectrum under 310mW. pumping‘at g:9.=1/4. (a) The FPI
spectrum shows mode spacing of about 58.6GHz but without
longitudinal beating of 2.42 GHz or transverse mode beating in the
RF spectrum in (b). An arrow points out the peak due to
relaxation oscillation.

5.3 Conclusion

We have theoretically shown and experimentally demonstrated that the
spatial hole-burning effect can be suppressed by using a plano-concave
cavity with degenerate resonator configuration under a tightly focusing pump
beam. It not only has the merits of the lowest threshold and stable output
but also is independent of the gain medium. The same resonator

configuration has been employed to generate the multiple beam waists and
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the optical bottle beam [13, 14], it has potential applications for trapping
atoms in the dark field if the proper gain medium is chosen to generate

blue-detuned single frequency laser beam.
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Chapter 6 Conclusion and Future

works

6-1 Laser dynamics

We wuse numerical model and experimental to investigate a
tightly-focused end-pumped Nd:YVO; laser which operates in the vicinity of
degenerate cavity configurations. The cylindrically symmetric model which
clearly indicates the location of self-pulsation, the reasons why we observe
the temporal or spatiotemporal dynamics tespectively in instability region of
short- or long-cavity side; and the mfluence-of thermal lens agrees well with
results of experiment. ~However,[if we want to observe the route to chaos by
simulation, we need scaling. 5 times the spontaneous emission rate. It
indicates that there are something will influence the spontaneous emission
rate in experiment. Using simple linear stability analysis of single-mode
laser, the relaxation oscillation depends on the spontaneous emission rate

which shows as [1]

2 xf, = 7'1), (6.1)

where fy, is relaxation oscillation frequency, y is the normalized pumping
power, T. is the photon lifetime, and t¢ is the atom lifetime which equals to
reciprocal of spontaneous emission rate. The Nd:YVO;, is class B laser
whose the polarization lifetime of atom is much shorter than t.. In such a
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oscillator, the photons and population inversion are coupled and the
perturbations, such as white noise, will exhibit relaxation oscillation [2-3].
We can use RF-spectrum to measure relaxation oscillation versus pumping.
The experiment results are show in Fig. 6-1. We use Eq. 6.1 to fit the
experiment data and find that the 1=33us in degenerate cavity is the smallest
which corresponds to the highest spontaneous emission rate. However, the
life time of Nd:YVO, is 90 us which is indicated by the specification, as
shows in the numerical result of Fig. 6-1. It means that we indeed observe

the spontaneous emission rate speeds up.

2.00E+012
m 1/3 dégeneracy L]
1@ Far'600pm from-1/3.degeneracy - 33.83us.~
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Fig. 6-1 The relaxation oscillation versus normalization pumping
power. The solid square and circular are represent the
experiment results at 1/3 degeneracy and far 600uxm from 1/3
degeneracy, respectively. The solid triangle is the numerical
solution.

What physical parameters can control instability is very import in laser
dynamics. Although the speeding-up spontaneous emission rate will let the
self-pulsation from period to chaos, we always treat the spontaneous

emission rate as an inherent process. It means that the spontaneous
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emission of atoms will be independent of the environment. However, from
our knowledge, the additional process in the upper level density, such as
cavity QED or Auger upconversion [4-8], will speed up the spontaneous
emission rate. Therefore, we can use experiment to determine it in the

future.

6.2 Laser linewidth

In the observations of experiment and mode expansion by method of
GA, we know that frequency locking of the transverse mode is presented
around the degenerate cavities. The frequency locked supermode which
will shrink its beam waist to fit with pumping beam in turn the spatial hole
burning is suppressed in.a’standing-wave resonator. Because the spatial
hole burning is suppressed, a single-frequency laser can be easily obtained at
degeneracy with tightly focused pump for some applications, such as
precision measurement, high-resolution.spectroscopy, and laser trapping or
cooling. In these applications, the linewidth of laser must be considered.
Therefore we can compare the linewidth of locking mode with the single
mode laser.

Recently, Maes and Wright [9-10] found that the Petermann K ! factor is
cavity-configuration-dependent near the degenerate cavity configurations in a
geometrically stable cavity with Gaussian gain. The K factor first
introduced by Petermann [11] for gain-guided laser systems, describes the
enhancement of the quantum-limited laser linewidth. We can easily realize
that the large K factor results in wider linewidth. Therefore it can be

imaged that the linewidth of laser light will depend on the -cavity
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configuration around degeneracy.

6.3 Optical trapping

Conventionally optical tweezers [12] use tightly-focused Gaussian beam
to trap micro-particles which have higher refractive index than surround
medium. However, this technical can not trap low-index micro-particles.
Because high intensity area will provide a potential barrier for a low-index
particle [13], the trapping beam must have low-intensity zone surrounded by
a high-intensity shell. This beam is called as optical bottle beam [14].

In our experiment, we can utilize different degenerate cavities to
generate various optical bottle beams; the optical bottles are formed before
and behind the beam waist: It is must be noted that the beam waist still
maintains highly concentrated light spot.” - The optical bottle beam which
produced in our expertment, can-trap high-index particles by the beam waist
and trap low-index particles. by theoptical bottles. Therefore, we can
manipulate any kinds of micro-particles by the single beam. It will very

useful for the optical trapping.
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