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Localized State-Dependent Control in QoS Routing

Student: Ting-Jen Yen Advisor: Dr. Wei-Kuo Liao

Department of Communication Engineering
National Chiao Tung University

Abstract

We study the QoS routing problem where the network state information is only
piggybacked in the RESV messages in RSVP (Resource Reservation Protocol) without using
any other routing protocol. Doing so is desirable because it completely eliminates the
communication overheads entailed by frequent state updates by QoS routing protocol.
Basically, our proposed routing called localized state-dependent routing boosts the localized
proportional routing and the state-dependent separable routing formulated by Discrete-Time
Markov Decision Process in such a way that the link state information will be explored if it is
fresh enough; otherwise it remains to use the average bandwidth information. By increasing
the configurable weight on the state-dependent separable routing, we find the performance of
our proposed routing eventually getting better in our selected simulation scenario. Besides, as
the simulation results shown, our proposed routing outperforms the localized proportional

routing and even is nearly optimal when the load is not heavy.
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Chapter 1
Introduction

For a large-scale network, controlling the load to each link is mandatory to meet the
requirements of each connection. Without appropriate load control on links, the load may
exceed the link capacity and end user will experience quality degradation, such as delay jitter,

unexpected dropping packets, etc.

To this end, the IntServ (Integrated Service) working group defined the RSVP (Resource
Reservation Protocol) [7] to enable the reservation-based load control. Consider the case of
one sender and one receiver trying to get a reservation for traffic flowing between them. By
sending a PATH message from the sender to the receiver that contains the flow’s traffic
characteristics (i.e. the sender’s TSpec), the receiver can establish a resource reservation at
each router on that path. Each router looks this PATH message as it goes past, and it figures
out the reverse path. Having received a PATH message, the receiver sends back a RESV
message for resource reservation along the reverse path. This message contains the sender’s
TSpec and an RSpec describing the requirements of this receiver. Each router on the path
looks at the reservation request and tries to allocate the necessary resources to satisfy it. If the
reservation can be made, the RESV request is passed on to the next router. If not, an error
message is returned to the receiver who made the request. If all goes well, the correct

reservation is installed at every router between the sender and the receiver.

The issue of how to direct the PATH message to reduce the chance of declined flow
request is addressed in the QoS routing. Among many alternatives, the source-routing-based
QoS routing has been extensively studied. Essentially, the source selects a “best path” for
flow according to the QoS requirement of the flow and the knowledge of the resource
availability at network nodes. The source-routing-based QoS routing can be categorized by
the way that they gather information about the network state and select a path by this
information. For instance, in the state-dependent routing approach [2] each node can construct
a global view of the network QoS state information through periodic information exchange
among nodes in a network and selects the best path for a flow based on this global view of the
network state. Examples of state-dependent routing approach are those QoS routing schemes

[9, 10] based on QoS extensions to the OSPF (Open Shortest Path First) routing protocol.
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However, for a large-scale network, the prohibitive communication overheads entailed
by such frequent state updates precludes the possibility of always maintaining an accurate
view of the current network QoS state for each node. To handle such scalability problem, in
[4] the authors proposed a method called localized proportional routing, where feasible path
are selected based on the average available bandwidth information and flows are adaptively
proportioned among these feasible path based on locally collected information from other
nodes. Indeed, by collecting the information which is piggybacked in the RESV messages,
there is no need for another protocol to collect the network state information. As shown in
their simulation results, by adaptively proportioning flows the localized proportional routing
approach performs well than the state-dependent routing approach when the update interval is

long enough, typically more than one minute.

In viewing that the state-dependent routing with short update interval still outperforms
the localized proportional routing, we proposed the routing scheme called /localized
state-dependent routing. Briefly put, our proposed routing combines the localized
proportional routing scheme with the state-dependent separable routing formulated by
Discrete-Time Markov Decision Process in a way that the state information will be explored
if it is fresh enough; otherwise it remains to use the average bandwidth information. By
sending RESV message which additionally contains the state information back to source,
source obtains the local network information feedback from the routers, and therefore we do
not increase the communication overhead. From the simulation results of our selected system

model, our proposed routing outperforms the localized proportional routing.

The remainder of this thesis is organized as follows: in chapter 2, we discuss the
necessary background knowledge, including Discrete-Time Markov Decision Process [1],
Resource Reservation Protocol (RSVP) [7], State-Dependent Routing [2], and Adaptive
Proportional Routing [3, 4]. In chapter 3, we describe the proposed “localized state-dependent
routing” to minimize the overall blocking probability by its self-refrained alternative routing
with the localized view of the network state. The simulator design and the simulation results

are shown in chapter 4. Finally, we make a conclusion in chapter 5.



Chapter 2
Background

In this chapter, we will introduce the basic concept of Discrete-Time Markov Process [1]
and RSVP (Resource Reservation Protocol) [7]. And then we introduce two kinds of routing

schemes, state-dependent routing [2] and adaptive proportional routing [3, 4].

2.1 Discrete-Time Markov Decision Process

Suppose that in the system there are N states numbered from 1 to N. If the system now
occupies state 7, the probability of a transition to state j during the next constant time interval is
a function only of i and j and not any history of the system before its arrival in i. In other word,

we may specify a set of conditional probability p, that a system which now occupies state i

will occupy state j after its next transition. Since the system must be in some state after its next

N
transition,z p; =1, where the probability that the system will remain in i, p,, has been
j=1

included. Since p, is probability, 0 = p = 1. The set of transition probabilities for the

process may be described by a transition probability matrix P with elements p, .

Suppose that an N-state Markov process earns 7, if it makes a transition from state i to
state /. We call 7, the “reward” associated with the transition from i to /. The set of rewards for
the process may be described by a reward matrix R with elements ;. The Markov process

generates a sequence of rewards as it makes transitions from state to state. The reward is thus a
random variable with a probability distribution governed by the probabilistic relations of the

Markov process.

Now we define v,(n) as the expected total rewards in the next » transitions if the system is

in state i now. Some reflection on this definition allows us to write the recurrent relation,

N
v(n)=Y p,lr;+v,(n-1] i=12,A,N n=123A 2.1)
Jj=1



If the system makes a transition from i to j, it will earn the reward 7, plus the amount it

expects to earn if it starts in state j with one move fewer remaining. As shown in Eq. (2.1), these

rewards from i to j must be weighted by the probability of such a transition, p,, to obtain the

expected total rewards.

Notice that Eq. (2.1) may be also written in the form

N
v(m)=q,+> p;v,(n=1) i=12A N n=123A (2.2)
j=1
, where the quantity ¢, is defined by
N
4, =>.p7, i=1,2,A,N (2.3)
Jj=1

The quantity ¢, may be defined as the reward to be expected in the next transition out of

state 7. It will be called the “expected immediate reward” for state i. Rewriting Eq. (2.1) as Eq.
(2.2) shows us that it is not necessary to specify both a P matrix and an R matrix in order to
determine the expected earnings of the system. All that is needed is a P matrix and a g column

vector with N components g,. In vector form, Eq. (2.2) may be written as
v(in)=q+Pv(n—-1) n=1,2,3,A (2.4)
, where v(n) is a column vector with N components v, (n), called the total-value vector.

If there is only one recurrent chain in the system so that it is completely ergodic. Consider
a completely ergodic N-state Markov process described by a transition-probability matrix P and
areward matrix R. Suppose that the process is allowed to make transitions for a very, very long
time and that we are interested in the earnings of the process. The total expected earnings
(rewards or costs) depend upon the total number of transitions that the system undergoes, so
that this quantity grows without limit as the number of transitions increases. A more useful
quantity is the average earnings of the process per unit time. This quantity is meaningful if the

process is allowed to make many transitions; it was called the “gain” of the process.



Since the system is completely ergodic, the limiting state probabilities 7, are independent

of the starting state, and the gain g of the system is
N
g= Z 7.9, (2.5)
i=l1

, where ¢, is the expected immediate return state i defined by Eq. (2.3).

Consider the three-dimensional array of Fig. 1, which presents in graphical form the states

and alternatives.

k alternatives

X
jsucceeding
X p: 1 >r1]\ piz vrxl pis ~1411.< state
1 1
; X P25
N 1 presemt state
X
X
1 1 1 1
pSl’ljl pSS ’15

Fig. 1 A possible five-state problem

The array as drawn illustrates a five-state problem that has four alternatives in the first
state, three in the second, two in the third, one in the fourth, and five in the fifth. Entered on the
face of the array are the parameters for the first alternative in each state, the second alternative
in each state, and so forth. An X indicates that we have chosen a particular alternative in a state
with a probability and reward distribution that will govern the behavior of the system at any
time that it enters that state. Thus the alternative selected is called the “decision” for that state.
The set of decisions for all states is called a “policy”. Selection of a policy thus determines the

Markov process with rewards that will describe the operation of the system.

An optimal policy is defined as a policy that maximizes the gain, or average return per

transition. We can find the optimal policy in a small number of iterations by the policy-iteration



method. It is composed of two parts, the value-determination

policy-improvement routine which are diagrammed as shown in Fig.2

operation and the

Value Determination Operation

Use py and g, for a given policy to solve

ar
g+v, =g, + > oy, i=12 .. N
gl

For all relative value v; and g by setting vy to zero

Policy Improvement Routing

o
k k.
g + E Py vy
J=1

k’ becomes the hew decision in ith state,
g becomes g, and p." becomes Pii

For each state i , find the alternative & that maximizes

Using the relative value v, ofthe previous policy,

Fig. 2 Policy Iteration Cycle

In [1] it proves that the new policy will have a higher gain than the old policy. First,

however, we shall show how the value-determination operation and the policy-improvement

routine are combined in an iteration cycle whose objective is to find a policy that has highest

gain among all possible policies. The upper box, the value-determination operation, yields the g

and v, corresponding to a given choice of p, andg,. The lower box yields p, and g, that

increase the gain for a given set of v, . In other words, the value-determination operation yields

values as a function of policy, whereas the policy-improvement routine yields the policy as a

function of the values.

We may enter the iteration cycle in either box. If the value-determination operation is

chosen as the entrance point, an initial policy must be selected. If the cycle is to start in the

policy-improvement routine, then a starting set of values is necessary. The selection of an initial

policy that maximizes expected immediate reward is quite satisfactory in the majority of cases.



At this point it would be wise to say a few words about how to stop the iteration cycle once
it has done its job. The rule is quite simple: The final robust policy has been reached (g is
maximized) when the policies on two successive iterations are identical. In order to prevent the
policy-improvement routine from quibbling over equally good alternatives in a particular state,

it is only necessary to require that the old decision d, be left unchanged if the test quantity for

that d, is as large as that of any other alternative in the new policy determination.

In summary, the policy-iteration method just described has the following three properties:

a. The solution of the sequential decision process is reduced to solving sets of linear
simultaneous equations and subsequent comparisons.

b. Each succeeding policy found in the iteration cycle has a higher gain than the previous
one.

c. The iteration cycle will terminate on the policy that has largest gain attainable within
the realm of the problem; it will usually find this policy in a small number of
iterations.

These three properties are proved in detail in [1].

2.2 RSVP (Resource Reservation Protocol)

The term “Integrated Service” (often called IntServ fo short) refers to a body of work that
was produced by the IETF around 1995-97. The IntServ working group developed
specifications of a number of service classes (e.g. guaranteed service and controlled load
service) designed to meet the need of some the application types. It also defined how RSVP

(Resource Reservation Protocol) could be used to make reservation using these service classes.

With a best-effort service we can just tell the network where we want our packets to go and
leave it at that, but a real-time service involves telling the network something more about the
type of service we require. In addition to describing what we want, we need to tell the network
something about what we are going to inject into it, since a low-bandwidth application is going
to require fewer network resources than a high-bandwidth application. The set of information
that we provide to the network is referred to as a flowspec. There are two separable parts to the
flowspec: the part that describes the flow’s traffic characteristics (called the TSpec) and the part

that describes the service requested from the network (called the RSpec).
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When we ask the network to provide us with a particular service, the network needs to
decide if it can in fact provide that service. The process of deciding when to say no is called
admission control. When some new flow wants to receive a particular level of service,
admission control looks at the TSpec and RSpec of the flow and tries to decide if the desired
service can be provided to that amount of traffic, given the currently available resources,
without causing any previously admitted flow to receive worse service than it had requested.

More knowledge about admission control could be found in [7].

One of the key assumptions underlying RSVP is that it should not detract from the
robustness that we fid in today’s connectionless network. RSVP tries to maintain this
robustness by using the idea of soft state in the routers. In contrast to the hard state found in
connection-oriented networks, soft state doesn’t need to be explicitly deleted when it is no
longer needed. Instead, it times out after some fairly short period if it is not periodically
refreshed. Another important characteristic of RSVP is that it aims to support multicast flows
just as effectively as unicast flows. For multicast applications, rather than having the senders
keep track of a potentially large number of receivers, it makes more sense to let the receivers

keep tack of their own needs.

The soft state and receiver-oriented nature of RSVP give it a number of nice properties.
One nice property is that it is very straightforward to increase or decrease the level of resource
allocation provided to a receiver. Since each receiver periodically sends refresh messages to
keep the soft state in place, it is easy to send a new reservation that asks for a new level of
resources. In the event of a host crash, resources allocated by that host to a flow will naturally
time out and be released. Now we look a little more closely at the mechanics of making a

reservation.

Initially, consider the case of one sender and one receiver trying to get a reservation for
traffic flowing between them. There are two things that need to happen before a receiver can
make a reservation. First, the receiver needs to know what traffic the sender is likely to send so
that it can make an appropriate reservation. That is, it needs to know the sender’s TSpec.
Second, it needs to know what path the packets will follow from sender to receiver, so that it
can establish a resource reservation at each router on that path. Both of these requirements can

be met by sending a PATH message from the sender to the receiver that contains the TSpec.

8



The other thing that happens is that each router looks this PATH message as it goes past, and it
figures out the reverse path that will be used to send reservation from the receiver back to the

sender in an effort to get the reservation to each router on the path.

Having received a PATH message, the receiver sends a reservation back “up” the
multicast tree in a RESV message. This message contains the sender’s TSpec and an RSpec
describing the requirements of this receiver. Each router on the path looks at the reservation
request and tries to allocate the necessary resources to satisfy it. If the reservation can be made,
the RESV request is passed on to the next router. If not, an error message is return to the
receiver who made the request. If all goes well, the correct reservation is installed at every

router between the sender and the receiver.

Now we can see what happens when a router or link fails. Routing protocols will adapt to
the failure and create a new path from sender to receiver. PATH messages are sent about every
30 seconds, and may be sent sooner if a router detects a change in its forwarding table, so the
first one after the new route stabilizes will reach the receiver over the new path. The receiver’s
next RESV message will follow the new path and hopefully establish a new reservation on the
new path. Meanwhile, the routers that are no longer on the path will stop getting RESV message
and these reservations will time out and be released. Thus RSVP deals quite well with changes

in topology, as long as routing changes are not excessively frequent.

As for the case of multi-senders and multi-receivers, it is discussed in detail in [7]. In Fig.

3, it graphically displays how senders make reservations on a multicast tree.

DO "

RESYV

o (mer
erged)
+ PATH 2 RESY™

Receiver 2

Sender 1
5
\ \PATH RE "\/ | Receiver 1
x

Sender 2 -+ ———

RESV

Fig. 3 Make reservation on a multicast tree



2.3 State-Dependent Routing: Separable Routing

Separable routing is the first of some routing schemes for circuit switched telephone traffic
invented at Bellcore. These routing schemes are state-dependent, in the sense that, for each call
attempt, a routing decision is made on the basis of the state of the network (defined in terms of

the numbers of busy and idle trunks in the various links at the moment of the call attempt).

In the state-dependent network, the nodes are connected by links. An n-hop route is a route
which traverses n links, or two end nodes and (n-1) via nodes. Therefore the goal is to find some
rules which make an optimal or almost optimal routing decision, for each call attempt, as a
function of the origin-destination of the call attempt and of the state of the network at the

moment of the call attempt.

There are two kinds of state space of the system: “route-based state space” and “link-based
state space”. We first discuss the route-based state space. For each node pair (S; D) we have a
list of legal routes from S to D; the state of the system at time ¢ is given by the array
{N(S,D,R)(?) }, where the element N(S,D,R)(7) gives the number of busy calls in over route
R at time ¢ for each node pair (S, D). As for the link-based state space, we number the link
description £ = 1, 2.... K, and that the state of the network at any time 7 is given by the array

{ X, (0)}, 1 <k<K,where X, (7) isthe number of busy calls in link & at time ¢.

It must be noted that if calls have independent, exponentially distributed holding times
with the same mean (independent of the node pair of the call), and if each call that is routed as
an n-hop call at once split into n independently terminating one-hop calls with exponential
holding times of the same mean, then the link-based state description would be mathematically
complete. The assumption is, of course, incorrect. The oversimplification is warranted because

of the considerable decrease in complexity, and because it is a fairly minimal source of error.

We assume that there are N nodes (switches) in the network. The links will be numbered &

=1, 2., K=1/2Nx(N -1). Link k has S, trunks (unit of bandwidth), S, > 0. We also
assumed that S, is given and does not vary over time. X, (¢) denotes the number of busy

trunks in link k& at time z. We use the link-based state description, which means that the state of
the network at time ¢ is defined by the vector X (¢) = (X, (¢), X, (1),K , X (¢)).
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In separable routing, we have costs A(k,X,) (0<X, <S§,) for every k (1<k<K),

with the property that
0 <A(k,0) < A(k,]) <K <A(k,S, ) <Ak,S,) =1 (2.6)

, where A(k,X,) isan estimate of the expected cost, in terms of additional calls blocked in the
future, of now adding one call to link £ if that link currently already has X, busy trunks.

Whenever a call attempt is made from node #; to node n,, for each routeR € R(n,,n,) , we

compute the state-dependent cost of routing the call over route R. This cost is computed by the

formula

cost(R) = Y A(k,X,) 2.7)

keR

, where the summation is over all link k in route R. Eq. (2.7) assumes that X, , the number of

busy trunks in link £, is known for all £ € R .

Next, we find the minimum cost route R * :

find R*e R (n,n,) with cost(R*)= min cost(R) (2.8)

ReR (n,n,)
The decision rule now is that

if cost (R *) < 1: route the call over R *, (2.92)
if cost (R *) > 1: block the call. (2.9b)

The intuition behind this rule is that blocking the call leads to the loss of exactly one call
(the blocked call), while routing the call over route R leads to an expected number cost(R) of
future blocked calls.

In [2], N ,(¢) is the total number of call attempts offered to the network during the time
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interval [0, t], and N,(¢) is the total number of calls blocked during the same time interval.
Furthermore, it is assumed that the statistical patterns in the call attempt process are constant
over time (i.e. we assume that the call attempt process is a stationary process), so that the

average arrival rate A, exists, where

A, = limNA—(t) (2.10)
t—0o0 l‘
, and we of course assume that
0< i, < 2.11)

We also consider only state-dependent routing policies for which

OUNG @)
g=lim—2==

t—oo l‘

(2.12)

exist; g is called the overall blocking rate in the network (the average number of calls blocked

per unit of time). Our goal is to find a routing scheme which minimizes g.

Eq. (2.10) and Eq. (2.12) imply the following exists,

p, =8 — im0

2N 0 (2.13)

where Pj is called the average blocking probability.

Let P be a state-dependent routing policy. With some additional assumptions described in

[2], we have a result which is stronger than (2.12)
E[N,(t) | X(0)=x, P] =t-g(P) +v"(x) + o(1) (t > o) (2.14)

, where E[-]denotes the expectation operator and where x is any K-dimensional vector in the
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state space of the stochastic process X(¢). In Eq. (2.14), the conditioning is on the initial state

X(0) and on the fact that policy P is consistently used to make routing decisions, v'"’ (x) is (up

to an undetermined additive constant) the well-known relative value (in Markov decision

processes) or cost of starting in state X(0) = x. Eq. (2.14) also determines this constant. The
"small 0" symbol o(1) means that while for t = o both the RHS and LHS in Eq. (2.14) go to
infinity, the difference goes to zero. Since v'"’(x) represents an expected number of blocked
(lost) calls, we call it the cost of starting in state x under policy P. In Markov decision theory,

determining v (x)from P is called the value determination step. It is convenient to define

v (x) = +o0 for all K-dimensional vector x not in the state space of the process X(¢) . Suppose
that, for any policy P, the value determination step can be done. Then, given any policy Py, it is
possible to find a new policy P; which is at least as good as Po. P; is found by the policy

improvement step defined in Markov decision theory, see [1].

It is well known, see [3], that for this Erlang-B model with calls arriving according to a
Poisson process with intensity A and call holding times which are exponentially distributed with
expected value 1, we say that this system is in state £ (0 < k& < s ) when exactly k& trunks are busy.

In this model, the stationary probability that the system is in state & is equal to

(2.15)

, and that the blocking probability equals

%)
pus.2) =

= B(s,2) (2.16)

s /1.1'
= J!

, where B(s,A) is the well-known Erlang-B function which is defined by Eq. (2.16). The

blocking rate g equals

13



g=g(s,A)=4-B(s,4) (2.17)

In a telephone network where only direct routing is allowed, all links become independent

systems. If each link £ (1 < k£ < K') is modeled as an Erlang-B system with s, trunks and arrival

rate 1, , then the cost function v(-) satisfies

K
v(x, ,K,x, )= ZVk (x;) (2.18)
k=1
. ~ B(s,,A4)
1% +1)—v =k k7 < i<
AVESER'AW) B2 for 0<j<s, (2.19)
D P (s A ve(i) =0 (2.20)
j=0

where [v, (j+1)—v, (/)] is the expected cost of the increase in the number of future blocked
calls, of now adding one call to link £ if the system is 1n state  x = (x,,x,,K ,x, ). It finds that
the cost depends only on x, and is independent of the states of the other links. We thus can take

delta-costs

Ak, x,) = B(s;, 4)

2.21
B(x;, 4) 220)

and use these delta-costs to derive a separable routing scheme.

2.4 Adaptive Proportional Routing: A Localized QoS Routing Approach

QoS (Quality-Of-Service) routing is concerned with the problem of how to select a path
for a flow such that the flow’s QoS requirements such as bandwidth or delay are likely to be met.
Most of the QoS routing schemes proposed so far require periodic exchange of QoS state
information among routers, imposing both communication overhead on the network and

processing overhead on core routers. Furthermore, stale QoS state information causes the
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performance of these QoS routing schemes to degrade drastically. In order to circumvent these
problems, we focus on localized QoS routing schemes where the edge routers make routing

decisions using only local information and thus reducing the overhead at core routers.

We assume that source routing is used, and that network topology information is available
to all source nodes (e.g., via the OSPF protocol), and one or multiple explicit-routed paths are

setup a priori for each source and destination pair using, e.g., MPLS [5].

Fig. 4 Disjoint paths between a source-destination pair

Consider a simple topology shown in- Fig.4, where a source and a destination are
connected by k disjoint pathsr,, 7, ,K .7, . Each path 7 has a (bottleneck) capacity of c, units
of bandwidth and is assumed to be known to the source S. Suppose that calls arrive at the source
S at an average rate A, and the average call holding time is 1/u. We assume that call arrivals are
Poisson and call holding times are exponentially distributed. For simplicity, we also assume

that each call consumes one unit of bandwidth. In other words, path », can accommodate c,

calls at any time. Suppose that, on the average, the proportion of calls routed along path 7,

isa,;, wherei =1,2,K ,K and ZIK:] o, =1. Then the blocking probability b, atpath r, is:

, where v, =a,(A4/ ) 1s referred to as the average load on pathr,. The total load on the

system is denoted by v = z; v,=Alu.

There are two alternative strategies for flow proportioning: equalization of blocking
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probabilities (ebp) and equalization of blocking rates (ebr). Here we skip the first strategy and
account for the ebr strategy. The objective of the ebr strategy is to find a set of

proportions {@,,d,,K ,@, } such that flow blocking rates of all the paths are equalized,

e., 021131 = dzlgz =A =a Kl; «» Where Ei is the flow blocking probability of path 7,.

By incorporating this self-refrained alternative routing method into the virtual capacity
model defined in [3], it devise a theoretical adaptive proportional routing scheme, which is
referred to as the Virtual Capacity based Routing (vcr) scheme. In this ver scheme, it uses the
ebr strategy to proportion calls along the min-hop paths, and proportion calls along the

alternative paths. The scheme is shown in Fig. 5.

1. Procedure W{CR()
2 Set mean block rate of min-hop paths, (”)b 2asd
s B > TN,
&= £
. Set min of min-hop path’s hlock probability.,
B — nﬁnreﬁm br(”)
4. For each path » = =
5 Compute virtual capact 52 —1 Cr2d Cr2d
e — E.. (v .8
6. For each min-hop path 7 = J2®iz
T Compute target load ».* such that
[ (a2
. b i<
A7 = v, FEV F ve D
8. For each alternati path'p " — i
2 Compute target load YW sucl L
o < Cr2d
yr Hb¥F = E (v, F_vco, b
10. For each path #» = R~
11. Compute new proportion v,
B Sl e e (rn+ 1) = —/—* o
DD
B2 End Procedure WCRJ()

Fig. 5 VCR Procedure

Suppose the total load for a source—destination pair is v. At a given step, n > 0 let
v." =a " xv be the amount of the load currently routed along a path» € R , and let b, be
its observed blocking probability on that path. Then the virtual capacity of path r is given
byve,” =E _~'(v,"”,b.") . For each min-hop path, the mean blocking rate of all the min-hop

paths £ is used to compute a new target load. Similarly, for each alternative path, a new

target load is computed using the target blocking probability y xb* where y is a constant

(n+1)
b

parameter. Given these new target loads for all the paths, the new proportion of flows, ,

for each path r, is obtained in lines10—11, resulting in a new load v,"*"” =& “*" xv on path r.
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Chapter 3
Localized State-Dependent Routing

In this chapter, we first describe the shortcomings of the state-dependent separable
routing scheme [2] and adaptive proportional routing scheme [3, 4]. We then propose three
possible boosting methods in anticipate that the shortcomings of both routing schemes can be

remedied.

3.1 Shortcomings of State-Dependent Routing and Proportional Routing

In chapter 2, we understand the concepts of state-dependent separable routing scheme and
adaptive proportional routing scheme. In the state-dependent separable routing formulated by
the Markov decision process, a routing decision is made on the basis of the state of the network.
It gathers global network state information and selects a best path with minimum delta-cost for
an incoming flow based on network state information. The routing will work well when each
source node has a reasonably accurate global view of the network state. Since network resource
availability changes with each flow arrival and departure, it is impractical to maintain an
accurate view of the network state, due to prohibitive communication and processing overheads
entailed by frequent state information exchanges. However, as our simulation in Chapter 4

shown, inaccurate view of network state increases the blocking rate dramatically.

In adaptive proportional routing scheme feasible paths are selected based on infrequently
exchanged average available bandwidth information and flows are adaptively proportioned
among these feasible paths based on locally collected information from other nodes. However,
our simulation also shows that the adaptive proportional routing approach works significantly
worse than the state-dependent separable routing approach if the network state information

obtained in the source is delayed not more than one minute.

3.2 Overview of Proposed Boosting Methods

The above discussions give us the motivation for boosting the state-dependent separable
routing by Markov Decision Process (MDP Routing for shorted) on the basis of Proportional
Routing approach to compensate each other. In this section, we propose three methods to

boost these two routing schemes.
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First, we can statically boost these two routing schemes by assigning fixed weight. For
example, we can assign weight 6(0 <6 <1) for Proportional Routing and weight (1- o) for
MDP Routing. If we prefer the Proportional Routing scheme, we can increase the weight o. It
is noteworthy that the selection of optimal weight ¢ is network-dependent and is expected to

be a difficult task. We propose such a boosting simply for the comparison purpose.

Second, we dynamically adjust the weight of these two routing schemes. Given the
observed blocking probability of these two routing schemes for a fixed time interval, we can
calculate the new weight of these schemes for next time interval to favor the one with low
blocking probability. Using the new weight, we can randomly choose one of these two

schemes to select one best path for various network situations.

And from the observation in Chapter 2, we find that the Proportional Routing approach
works well than the MDP Routing when its update interval is more than one minute. So the
third method is that we can dynamically adjust the weight based on the delay time of local
state information piggybacked in RESV message. If the state information is delayed too long,
the state information must be stale and therefore we prefer to use the average bandwidth
information in Proportional Routing to select a best path. Otherwise, we use the state

information in MDP routing because it is fresh enough. Before we introduce these methods in

detail, we make some assumptions for our model

3.3 Assumptions

We assume that source routing is used, and that network topology information is available
to all source nodes (via the OSPF protocol), and one or multiple explicit-routed paths are setup
a priori for each source and destination pair. In Fig.6, source S has K feasible paths

{r.]i=12,K,K }. Each pathr,can accommodate c, unit of bandwidth. For source S, we
assume that call arrivals are Poisson with intensity 4, and call holding times are independent,

exponentially distributed with mean ¢z (independent of the node pair of the call). For simplicity,

we also assume that each call consumes one unit of bandwidth. Suppose that, on the average,

the proportion of calls routed along path r, ise,, wherei =1,2,K ,K and Zil a, =1.
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Fig. 6 Source routing

And in the following sections, we will introduce particularly these three methods to

boost the Proportional Routing and MDP Routing in various network situations.

3.4 Boosting with Fixed Weights

Every “Update Proportion Interval” (upi), source S calculates the new proportion of

paths { fp[-]} by the VCR algorithm defined in Fig. 5 according to the old proportions of
paths { fp[-]}, the observed blocking probability of paths {bp[-]}, and the load of source S
{v,} during this update proportion interval. And every “Update Lambda Interval” (uli),

source S calculates 4, , the average arrival rate of path i, in order to compute the delta-cost

{dc[] } defined in Eq. (2.21).

When a new call arrives, we first check whether there is available bandwidth or not. If
there is no available bandwidth, we have to reject this call. Otherwise, we select one best path
based on the state information. We have two kinds of approaches to choose one path, i.e.
Proportional Routing and MDP Routing. We can assign fixed weight 6 (0<6 <1) for
Proportional Routing and weight (1- &) for MDP Routing statically. According to the
following pseudo code, we can find out the best path and use RSVP to setup this call along
the selected path.

// pseudo code for path-selecting
If (available bandwidth)
tmp = (rand()%1000) /1000.0; // random value : tmp
if( 0<=tmp && tmp<0)
using “ Proportional Routing ” to select path

else /1 if (0<=tmp && tmp<1 )
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using “ MDP Routing “ to select path
else

Reject this call

3.5 Boosting with Dynamic Weights Adjusted by Blocking Probability

Besides Update Proportion Interval and Update Lambda Interval, we calculate the
blocking probability for calls using Proportional Routing and MDP Routing for every
“Update Weight Interval” (uwi). Then we calculate new weights using the following

equations.
In “n-th” Update Weight Interval.

For Proportional Routing:

bp_PR™ - bpPR" bpPR" bpPR" . bpPR™ - bp PRy bpPR"
ep_ —ep xep xAxeP xep —ep_ xep

where ebPP R" is the blocking probability in k — i1 Update Weight Interval

For MDP Routing:

ebp_MR("): ebpMR“”x ebpMR“’x A XebpMR('H)x ebpMR(’“: ebp_MR('H)x ebpMR(")

where ebpMR “is the blocking probability in k —th Update Weight Interval

New weight for using Proportional Routing:

bp_PR"
S5O — e(n) — — (3.1a)
ebp PR 4 ebp _ MR
New weight for using MDP Routing:
bp MR™
1—5®™ = € (3.1b)

oP_ PR ™, olP MR o
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Different from the previous method which using fixed weights &, we calculate the new

weight 5™ for Proportional Routing and 1— & for MDP Routing in the n-th Update Weight
Interval. According to the following pseudo code, we can find out the best path and use RSVP
to setup this call along the selected path.

// pseudo code for path-selecting
If (available bandwidth)
tmp = (rand()%1000) /1000.0; // random value : tmp
if( O<=tmp && tmp< &™)
using “ Proportional Routing ” to select path
else /1 if (0" <=tmp && tmp<1 )
using “ MDP Routing “ to select path
else

Reject this call

3.6 Boosting with Dynamic \Weights Adjusted by the Delay Time of State
Information

After source S receives the RESV message of RSVP, source S records the moment of

message feedback from path i, i.e. 7,[i]. The delay time, df[i], of a new call attempt at time # is

calculated as follows:

For path i, di[i] =t —t,[i] i=12K . ,K

Different from the previous two methods which choose one of these two routing
approaches to select one best path, we non-linearly combine MDP Routing and Proportional

Routing by the exponentially decayed weights. We introduce this method in detail as follow:

For path i, i=1,2,K,K, we calculate the path-combine-proportion pcp[i], using the

following equation :

pep [i1= (1 —=e 7y fpli]+ e 7 (1 = de [i]) (3.2)
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where vy is a configurable parameter, and

dt[i] is the delay time of this call for path i,
dc[i] is the delta-cost of this call for path i using Eq .(2.21) in MDP routing

Jfpli] 1is the flow-proportion of path i using VCR algorithm in proportional routing,

And then we normalize the path-combine-proportion pcp[i] for pathi, i=12,K ,K

1 - pepli]
pepli] Zj:l,z peplj] (3.3)

.....

Finally we select one path proportionally based on pcp[i] forpathi , i=12K ,K

Given a random valuerv,0<rv<1l, m=12K K

If bv[m —1]< rv < bv[m] , we choose path m as the best path.

Choose Choo Choo
Pathl Path

| Y Y Y | v

bv[(]=0 bv[1] bv[2] LR LR bv|K-2] bv[K-1] bv|[K]=1

where h0]= 0
bvil] = 0 + pepll] ;
bv2]=b1] + pepl2] ;
M
bV K]=bV[K-1]+ pcp| K] =1

When the average load of source is heavy, the state-information is fresh because the

update interval (delay-time information df[i]) of the source is short. When the state information

is fresh, we have better to choose the MDP Routing scheme to find the best path. On the other

hand, if the state information is delayed and outdated, we need to use the Proportional Routing

scheme. Therefore, we have to multiply (1—dc[i]) by e 7“1 and multiply fp[i] by
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1 _ efj/xdt[l']

in order to cooperate these two schemes adaptively and choose one path
proportionally. So we use the different weight with exponentially decayed for MDP routing
and proportional routing. And by sending RESV message which additionally contains the state
information back to source, source obtains the local network information feedback from the

routers, and therefore we do not increase the communication overhead.

In the summary, we illustrate our methods by the following block diagram.

New call

Available
bandwidth ?

Path-Selection Process
W ith

deldl, delilvand fpli]

g e —

v

Resource Reservation
along the scleeted path
by RSVP

New State Information Feedback

to decide whether
there is awvailable bandwidth or not

<&

Fig. 7 Boosting process
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Chapter 4
Simulation Results

In the following we illustrate a simple network topology how our scheme works better

than adaptive proportional routing when the load of source is varying with time.

Consider the fish topology shown in Fig. 8.

Fig. 8 Fish topology

The nodes 1, 2, 3, and 4 are the source nodes and node 12 is the destination node. Each of
node 1 and node 2 has two min-hop paths (12526212, 12527212 and 22526212,
2>5>7->12) and two alternative paths (1252829->12, 1252>10>11>12 and
2252829212, 2>5>10>11->12) to the destination node 12. Other two sources, nodes 3
and node 4, have just one min-hop path (3-2>82>9->12 and 4->10->11->12) to the destination
node 12.The alternative path of source nodel and node 2 share the bottleneck link 9 = 12 and
11> 12 with the min-hop paths of source node 3 and node4. We assume that the capacities cl,
c2, ¢3, and c4 of the bottleneck links are all set to 80 units of bandwidth and others are infinite

bandwidth.

The follow are our simulator design for this fish topology. At first, the Object Model
Diagram in UML is illustrated in Fig. 9 below. There are four Source objects constructed by
system in our simulation model. Source S; and source S, have four feasible paths and source S;

and source S4 have only one feasible path.

24



&1

1 System
4| shame W
itsSystem itsSystem
itsSource ™ + |itsPath
Source & * * Path =
pname | L Ename |
itsSource itzPath
narme
1
Server &

Fig. 9 Object Model Diagram in UML

4.1  Comparison of Proportional Routing and MDP Routing

Before displaying the simulation performance of our proposed routing, we first compare
these two routing approaches “State-Dependent Separable Routing formulated by MDP
“(called MDP routing for shorted) and “Adaptive Proportional Routing” (called Proportional
routing for shorted). We observe the blocking probability of source S; by increasing the update

interval of S; when the average load of all sources 1s set to 40.

—— MDP_ Routing
—— Proportional Routing

0.5

0.45 P —

035 |

o
~

o
W
T

blocking probability

0.25 &
0.2

O 05 1 15 2 25 3 35 4 45 5 55

update interval

Fig. 10 Comparison of Proportional Routing and MDP Routing
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In Fig. 10, we find that the performance of MDP Routing degrades rapidly as the update
interval increases. As for the scheme of Proportional Routing, the blocking probability of S; is
keeping at about 0.3 and is even better than the scheme of MDP Routing when its update
interval is longer than one minute. It is because that the proportional routing adopts the
average available bandwidth information instead of stale state information to make path

selection.

From the observation in Fig. 10, we proposed three boosting methods, which are
mentioned at Chapter 3 in detail. Before we illustrate how these three routing methods
adaptively adjust the load proportion of feasible paths as the load increases, we firstly

introduce some parameters in our simulator.

4.2  Simulator Parameters Setting

We assume that the average offered load of S;, S;, S3, and S4 are 40, 40, 5, and 5
respectively in the beginning. And we set the “Update Proportional Interval” as 10 minutes,
“Update Lambda Interval” as 1 minute and “Update Weight Interval” as 1 minute. For source
S1, we set the initial flow proportion of path 1, 2, 3, and 4 to 0.4999, 0.4999, 0.0001, and 0.0001
respectively. So does source S,. And we set the constant parameter y in Eq.(3.2) to 0.01.
Consider the scenario: when the number of calls generated by source S; is equal to 1000, we
increase the average load of S; and S4 to 20. And when the number of calls generated by source
S; is equal to 3000, we increase the average load of S; and S4 to 40. By increasing the average
load of S; and S4, we study how source S; and S, adjust their flow proportion on the feasible

paths in order to decrease the overall blocking probability.

The following table is the setting of parameters in our simulator.

Parameter Initial value
Path1l Flow-proportion of S1 and S2 0.499
Path2 Flow-proportion of S1 and S2 0.499
Path3 Flow-proportion of S1 and S2 0.001
Path4 Flow-proportion of S1 and S2 0.001
Average Load of S1 and S2 40 calls/min
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Average Load of S3 and S4 5 calls/min
Link Capacity (cl,c2, c3, c4) 80 calls
psi(y) 0.95
Update Proportional Interval 10 minutes
Update Lambda Interval 1 min
Update Weight Interval 1 min
Total Arrival of Sourcel 5000 calls
Gamma( y) 0.01

Table .1 Setting of parameters in our simulator

In the following sections, we will introduce our simulator for these three methods and

their simulation results.

4.3  Simulator Design and Results for BFW

In this method, we assign fix weight o to Proportional Routing and fix weight 1-¢ to
MDP Routing. We define this method as “Boosting with Fixed Weight” (BFW for shorted).

4.3.1 System Operations

system
/ J' Update_Path_Proportion ' Update Path Arival Rate \

Idle?s= [ov2==1]over2[0]=0; overZ[1]=0;
ldlel= |_ [ov1==1]/result_updatel; count2+_f
count! ++ r " -
[systemTime==Update_Interval2*count2)/

|

|

|

| getltsSource(1)->GEN(evlpdate);
| gethtsSource ()= GEN(evlpdate);
|

|

|

|

Updatinm [updateover2()]

[systemTime==Upndate_Intereal1*count1]/

cal_noCallf); calculate nodrival of sources
getitsSource(1)-=GEN e pdatel);
getltsSource(2)-»GEN(evUpdateT);
getltsSource(3)->GEMevUpdate);
getltsSource(d)->GEN(evUpdateT);

‘ Updating [updateavert (] I
T [elze] | Change_S354_Arrival_Rate
______________ ﬂ{ Idle3 avlIpdate3s
fsrand(time(l]); System_Timer :I changeS354 (params-=n);

[systemStop()]

|

|

|

Cj |

Stop= |

trn(1000)/ result_pouti); |
|

\ systemTime++,

[elze]

Fig. 11 System diagram of BFW in UML

27



In Fig.11, there are four sub-states. In System Timer sub-state, timer is running and the
parameter systemTime plus one per second. And in Update Path Proportion sub-state, system
calculates the total arrival of sources during the “Update Proportion Interval”, and triggers the
event evUpdatel of sources to calculate the new path flow proportion ( fp[-]) by VCR
algorithm. And in Update Path Arrival Rate sub-state, system triggers the event evUpdate?2 of
sources to calculate the path arrival rate (A,) during the “Update Lambda Interval”. Finally,

system can change the arrival rate of source S; and S4 in the Change S3;S4 Arrival Rate

sub-state.

4.3.2 Source Operations

source
/ gen_call \

fsranditime(d));
—HEEE S s
[noCall==0] J
= | Arrive s
Fae tmiarivalTime)/
calfuivalTime); callArrival();
(noCall>=Tatal Arrival) L _ 3
stop=1;
|~ Updae_Path_Propoion |
| Update_Path_Arrival_Rate
YCR algarithmi)
Idle1 { | 4 Updating>
3 get_blockprobisname); | Idle2 >
virtualCapacity(sname); eyl pdate? updatepathrater);
evlpdatel targetLoad_min{sname); |
targetLoad_alt(sname); |
newProp(sname];
y } |
Updating= |
YCR algorithm(); |

. P

Fig. 12 Source diagram of BFW in UML

In Fig. 12, there are three sub-states. In the gen call sub-state, source generates calls by
Poisson arrival process. Each call performs callArrival() to find a path by

Path-Selection-Process based on the value of o, path flow-proportion ( fp[-]), and path

delta-cost (dc[-] ). And then source uses RSVP to setup this call along the selected path. When
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the number of call generated by source equals to Total Arrival, source stops generating new
call. In Update Path Proportion sub-state, the event evUpdatel is triggered from system and
source updates the path flow-proportion ( fp[-] ) by VCR algorithm. At last, in
Update Path Arrival Rate sub-state, the event evUpdate? is triggered from system and source

updates the path arrival rate (4, ) in order to calculate the path-delta-cost, (dc[-]) in Eq. (2.21).

4.3.3 Path Operations

Idle wArival!

faranditimed));
e all&rrive(params-=s];

callArrivelint 31070

;f(S|D==1 II SI0==2) if{SID==3 || SI0==4)
i

Ji{f(cuumﬂ:Max_Capacity) {count=<Max_Capacity)
count++; count++;
noAccept++, ) noAccept++
getltsSource(S10)-=ps[pname- 1= pH additsSerer(nodccept new Serer(nodccept));
addltsSerernoAccept new ServernoAccept)) gethtsSenvernofoceptl-»startBehavior]);
getitsServernoAccept)-=startBehayion);

H Ise

else

getltsSource(SI0-=noBlock[pname-1]++
getitsSource(SID)->ps[pname MaksCa

getltsSource(3I0)-=noBlock(f +
!

Fig. 13 Path diagram of BFW in UML

In Fig. 13, it demonstrates that the selected path accepts this call which consumes one unit
of bandwidth (count plus one) and triggers one server object. At the same time, the selected
path has to inform source, which generates this call, the latest state information by RESV

message.

4.3.4 Server Operations
In Fig. 14, it describes that call holding time is exponentially distributed with mean x .

After the serviceTime, this call stops serving and the server object will be terminated.
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alServiceTime( ),
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itsFath-=count = [itsFath-

=ocount)-1;

Fig. 14 Server diagram of BFW in UML

In summary, our simulator model could be illustrated in the sequence diagram below.

System Source Path Server
mitalpeameRE RN, e e
tm(1000)
o) systemTime++ tm{acrival Fine)
Call arrival()
1 tm(1000) Call A{_imission{l
o systemTime++ Accept(Jor Block()
it Accepitdd choose Pat {)_. Capacity --;
tm(1000) . QUEIALE CalServiceTime()
gl ST TG+ tmfarrival Time) . Service start()
a Call arrival() . tm(serviceTime)
. Call Admission) :
. Accept() or Block() "
: if Accept() / choose_Path () | Capacity --;
. — " =vAmval | = CalServiceTime()
i : . Service start()
evUpdate2 : tm(serviceTime)
o Update path arrival rate '
. . Capacity ++, Service stop()
evUpdatel - . .
Update flow proportion . : ;
B F4++ e S
: | by VCR algorithm() |e=2P2CtY TFil4 Service stop()
tm(1000)
systemTime++ . :
evUpdate3 -
Change average Arrival 5
- Rate of S3 and S4 2

Fig. 15 Sequence diagram for BFW in UML
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4.3.5 Simulation Result

Comparsion of BFW with different weight

—— MDP Routing without delay —— MDP Routing with delay
—— Proportional Routing —=— BFW(0.25)
—— BFW(0.5) —— BFW(0.75)
0.35
03 r
025
02 1

0.15 //\\'\
0 e’ |
0 10 20 30 40 50 60 70 80 90 100 110 120

fime

Fig. 16 Comparison of BEW with different weight (o)

blocking probability

(=)
—

~

In Fig.16, the scheme of MDP Routing without delay is nearly optimal because sources
obtain instantaneous network state information. We can find that when the average load of S3
and S4 are low, the performance ot Proportional Routing is worst. As the average load of S;
and S, are increasing, the performance of MDP Routing with delayed information gets worse.
When the average loads of S; and S increase to 40, the performance of MDP Routing with
delayed information gets worse than Proportional Routing. Consider our proposed method
BFW with different value of 6 which is the weight of using Proportional Routing to select
one path. No matter what the value ¢ is, the performance of BFW is better than Proportional

Routing and is better than MDP Routing with delayed information when the load is heavy.

4.4  Simulator Design and Results for BDW-BP

In this method, we dynamically boost the weight adjusted by the observed blocking
probability during a fixed time interval. We define this method as “Boosting with Dynamic
Weights Adjusted by Blocking Probability” (BDW-BP for shorted). The server operation in

UML is the same as previous method.
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4.4.1 System Operations

In order to update the new weights of the new Update Weight Interval, we have to
calculate the blocking probability of calls using Proportional Routing and calls using MDP
Routing in the Update Blocking Probability sub-state in Fig. 17.

getitsSource(!)-=GEN (evlUpdate ),
gefitsSource(2)-=GEM (evlUpdate ),

Updanng_] [updateover2()] 4
N

gystem
/ ] Update_Path_Proportion ‘ Update_Path_Arival_Rate \
Weze | [ov2==1)fover2[0)=0:aver2[1]=0;
Idlet= } [ov1==1]iresult_update]), ‘ cuun12++_f
oA J ‘ [systemTime==UIpdate_IntervalZ*count2)f
|

[systemTime==Update_Intervall*countt)/

cal_hoCalll; calculate noArival of sou K [elsg]
getitsSource(1)-=GEMN(evUpdatet); oy WM, T e e e e e i e
getitsSaurce(2)-=GENevUndatet); § s, P
F—Updates Blocking, Probability
getftaBaurca(3)-=GENEpdate!); - gl e . .
yelltsSource(d)-»GEN(eUpdate1): || gy il | o= tovnlFDoverlid
nunt
| e 'J
Updating updateaver] ()] g | | [zystemTime==Update_Interval Tcount3)
i fefitsSource(1)-=GEMN(evUpdated);
T elee] gefitsBaurce(2)-=GEMN(EvUpdated);
Unpdating [updateovaraq)] P
. R
srandftirne(0il; Systern_Timer el

[systermnStop(]

Change 5354 Arival_Rate

N [St j | 4[] etthdated
i
thangeS3S4(params-=n
1 000) rasult_pout) } (R334l )
|

\ systermTime+s,

Tirming

Fig. 17 System diagram of BDW-BP in UML

4.4.2 Source Operations
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gen_call \

fstandtime(d));

[noCall==0]

Idle Artive oy
i, tmiarivalTime)/

- calArmwalTimel); callArivall);

[noCall==Tatal_Aival}f

b

stop=1;
e UpdawPahPopoton |
| Update_Path_Arival Rate
YCR algorithm()
Lo | + Updating?
1 get_blockprob(zname); | Idle2 »
virtualCapacity(sname); | el Ipdate2 updatepathratef;

elpdatel  targetLoad_min(sname);

targetLoad_alt{sname); i _Up_datzﬁﬁkﬁf_mbﬁil@ ________
newPrap(sname); |
y =i .
Updatings ! " el Updataing:
|_blockingprob);
VCR algorithmi); | | T cal_blockingprab);
|

% A &

Fig. 18 Source Diagram of BDW-BP in UML

Different from the source operations in BEW, when the event evUpdate3 is triggered,
source has to calculate the blocking probability of calls using Proportional Routing and calls
using MDP Routing in order to find out the new weights using Eq. (3.1a) and Eq. (3.1b).

In *“ n-th ” Update Weight Interval:

New weight for using Proportional Routing:

bp PR
s® = €~ - (3.1a)
ebp PR 4 ebp _ MR
New weight for using MDP Routing:
obP MR o
1-6® = (3.1b)

olP PR ™, olP MR o
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And then source chooses one path proportionally based on the new weight 5", path

flow-proportion ( fp[-]), and path delta-cost (dc[]).

4.4.3 Path Operations

ldle

fsranditime(l); wArivall
allArrve(params-=s params-=t);
callArrivefint 510, int type)
f(310==1 || SID==2)
{
iffcount=Max_Capacity) iffSI0==3 || SI0==4)
{ {
count++; ificount<hdax_Capacity)
noAccept++, {
getltsSource(SI0)-=pspn: O court++;
additsSenernoAccent ne erfnaAccept]) noAccept++;
getltsServerinoAccept)-=etartBehayion), addltsZenverinofccept new Serer(noAccept]);
} getlts ServerinoAccept)-=statBehavior]);
elze }
{ else
gettssource(SI0-=ps[pnarme-1 = lax Capacity:
getltsSource(SI0)-=noBlock{pname-1]++, netltsSource(SI0k=noBlock[pname-1]++

}
ifitype ==11  / for Prope Rauting
gethtsSource(310)- =) o
ifftype ==2)  / for MOP Routing
pethtsSource(SID)-»noBlockMR++

Fig. 19 Path Diagram of BDW-BP in UML

Different from path operations in BFW, path has to check the blocked call which is using

Proportional Routing or using MDP Routing, and then informs source that generated this
blocked call.

In summary, our simulator model could be illustrated in the sequence diagram below.
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Source I Path I | Server
el e e S -
tmi 1000) |
systemTime++ tmarrival Time)
Call arrival()
tm( 1000) Call Admissiond()
systemTime-++ Accept() or Block()
“‘rf Accept() / choose_Path () Capacity ==
:I tm( 1 O_UU) evArrival CalServiceTime()
systemTire tm(arrival Time) - Service start()
- Call arrival() - tm(serviceTime)
- Call Admission() =
- Accept() or Block() :
: [ if Accept() / choose_Path () Capacity --;
= T~ _ evlAarnival e CalServiceTime()
e £ - Service start()
evipdate2 : tm(serviceTime)
- Update path arrival rate =
- . Capacity ++ Service stop()
evUpdatel e - i
e Update flow proportion : 5
- | by VCR algorithm() Capacity ++:1 L Service stop()
tmi( 1000)
systemTime++ - :
evilpdate3 >
] l Update Blocking L
= : Probability
. siiiss
evUpdated
-

4.4.4 Simulation Result

blocking probability
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Fig. 21 Comparison of BDW-BP
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The performances of “MDP Routing without delay”, “MDP Routing with delay” and
“Proportional Routing” are the same as the results in Fig. 16. Consider the performance of
BDW-BP, we find that the performance is comparable with the MDP Routing with delayed
information, but is worse than the performance of Proportional Routing when the load is

heavy.

4.5  Simulator Design and Results for BDW-DT

In this method, we dynamically boost the weight adjusted by the delay time of state
information. We define this method as “Boosting with Dynamic Weight Adjusted by the
Delay Time of State Information” (BDW-DT for shorted). The system operations and server
operations in UML are the same as BFW.

4.5.1 Source Operations

The source diagram in UML is the same as the source operations in BFW. For each new

call arrival, source has to calculate the delay-time (dtf[-]) for all feasible paths and

proportionally selects one path using Eq. (3.2).

For path i,i =1,2,K ,K , we calculate the path-combine-proportion pcp][i]

pep [i1= (1 —e 7y fpli]+ e 7" (1 = de [i]) (3.2)

where v is a configurable parameter, and

dt[i] is the delay-time of this call for path i,
dc[i] 1s the delta-cost of this call for path i using Eq .(2.21) in MDP routing

Sfpli] 1is the flow-proportion of path i using VCR algorithm in proportional routing,

4.5.2 Path Operations
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l rsrandditmed0n);
Idle

wATiva X
allAarrivei{params-=5),;

callarrivedint S0
i

noArrival++;

ificount==hlax_Capacityl
i

count++;
noAccept++,
gettsSource(SID-=ack_time[pname-1] = itsSystem-=systemTime;
getitsSourcelSIDN-=ps[pname-1]= count;
addiisServerinosccept,new SemverinoAccept;
getitsServerinoAcceptl-=startBehawiar(;

else
noBlock++;
getit=sSource(SID-=ack_time[pname-1]=itsSystem-=systemTime,;

getltsSDurce(SID}—bps[pname 1]— Max_Zapacity;
getit=Source(=I0 Block[f 1]++;

Fig. 22 Path diagram of BDW-DT in UML

No matter the call is accepted or blocked, path not only feedbacks the state information,
but also asks source to record the ack time[] for this path in order to calculate the delay-time

of state information.

4.5.3 Simulation Result
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Comparison of BDW-DT with different gamma

—— MDP Routing without delay —*— MDP Routing with delay
—— Proportional Routing —=— BDW-DT()
—— BDW-DT(0.1) —>—BDW-DT(0.01)
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Fig. 23 Comparison of BDW-DT with different gamma ()

In Fig. 23, the performances of “MDP Routing without delay”, “MDP Routing with
delay” and “Proportional Routing™ are the same as the results in Fig. 16. By changing the value
of yin Eq. (3.2), we find that the performances of “BDW-DT (0.1)” and “BDW-DT (0.01)”
are better than “BDW-DT (1)”, and are even better than “MDP Routing with delay” when the
load is heavy. Consider Eq.(3.2).

peplil= (A —=e7 ) fpli]+e 7" - (1~ deli]) (32)

When the load is heavy, the link state information is fresh enough. So we increase the weight

—y-di[i] —y-dt

[7] .
e on “l—dc[i]” and decrease the weight (1 —€ l )on fpli]. On the other

hands, the link state information may be delayed, i.e. df[i] is long. So the bigger
e_y'dt[i] compensates the uncertainty of “1—dc[i]”. No matter what the value of df[i] it is, we

adaptively proportion flows in any situation using Eq. (3.2).
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time

Fig. 24 Flow proportion of BDW-DT (gamma=0.01)

In Fig. 24, it illustrates that the flow proportion of min-hop paths and alternative paths. In
the beginning, the flow proportion of min-hop paths is 0.998 and the flow proportion of
alternative path is 0.002. With the mmeasmg ;J,pad of S; and S, the flow proportional of
alternative paths increases becauig_e":" "'e l?l kmg pmbablhty of min-hop paths is higher than

alternative paths. And when the El-bclémg‘ {i Qba,blhty ef alternative path is increasing with the
increasing load of S; and Sy, the syste. I staﬂs_décreasmg the proportion of alternative in order

to equalize the overall blocking rabe.

Comparison of BDW-DT with different gamma

——BDW-DT(1) ——BDW-DT(0.1) —+—BDW-DT(0.2) —— BDW-DT(0.3)
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Fig. 25 Comparison of BDW-DT with different gamma (7))
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In Fig .25, we compare four scenarios where gamma () in Eq. (3.2) is equal to 1, 0.1,

0.2, and 0.3, respectively. From the simulation results, we find that the performance is not

necessarily getting better if we decreasey. We consider that the performance is not only

related toy but also to the load of the network.

Finally, we compare our proposed three methods with MDP Routing and Proportional
Routing in Fig. 26. We find that these three methods indeed boost MDP Routing and

Proportional Routing in some network situation.

Comparison of Different Methods

—*— MDP Routing without delay —— MDP Routing with delay
—— Proportional Routing —=— BFW(delta= 0.5)
—— BDW-BP ——= BDW-DT(gamma = 0.1)
0.35
03 //;I\\\-_, —
Z 025 — .
: N
2 02 e o
. \’/
2015 ¢ BSE
= 01 Vir—=i
0.05

0 10 20 30 40 50 60 70 80 90 100 110 120

time

Fig. 26 Comparison of all methods
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Chapter 5
Conclusion

In this thesis, we first compare the state-dependent separable routing and adaptive
proportional routing with different update interval and find that the latter works significantly
worse than the former if the network state information obtained in the source is delayed not
more than one minute. So we propose three possible boosting methods to compensate the
shortcoming of proportional routing and state-dependent routing. As shown in Fig. 26, when
the load is light, the performance of BDW-BP is better than other boosting methods. But as
the load increases, we find that the performance of BFW is getting better and even better than
MDP Routing with delayed state information when the load is heavy. Therefore, these three
boosting methods are load-dependent and none of them can outperform others in any network

situations.

Our future work will be conducting the simulation on the more complicated network
model where the call arrival rates for most of the source-destination pairs are less frequent. We
believe in such a model the network state tends to be more obsolete whereby configuring the

weight on the state-dependent separable routing will become a more important issue.
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