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Abstract

Managers in many fields sueh as banks, hospitals, and schools frequently assess units
under their governance with, multiple ;performance indices. In order to rank the units
intuitively with a comparable score,- managers  always try to determine a common set of
weights attached to the indices across all the‘units. The determination of weights is divided
into two ways. One is predetermined subjectively by thesmanager; the other is determined
objectively by the data itself.;The methodologies:-proposed in this research belong to the latter.
We propose a procedure to determine the common ‘weights by searching the benchmark unit.
One virtual benchmark is defined as units' with an efficiency score of 1.0 and all units are
asked to approach the virtual benchmark as closely as possible. The units with zero gaps to
the virtual benchmark are the real benchmark. In the structure of the data envelopment
analysis, the determination of common weights in this research means that the organization
manager determines the favorable weight to maximize the organization efficiency.
Additionally, in order to avoid the bias in measurement due to the upper bound of efficiency,
we develop the second procedure to determine one compromise common set of weights, by
eliminating the restriction imposing the upper bound of 1.0 on the efficiency score. The model
we propose is similar to the regression analysis model, with the main difference being that the
former can handle multiple dependent variables. Finally, the procedures are applied in several
numerical cases.

Keywords: multiple performance indices, common set of weights, rank, data envelopment

analysis, regression analysis.
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Notations

Used in Data Envelopment Analysis (DEA) models

DMU: Decision-making Units

n

m

?;

: the number of DMU

: the number of input

: the number of output

: the index of input i

: the index of output

: the index of DMU j

: the index of object DMU

: the weight assigned to input i of DMU,

: the weight assigned tooutput » of DMU,

: the weight assigned to input i of DMU;

: the weight assigned te output 7 of. DMU;

: the input i of DMU;

: the output » of DMU;

: the efficiency score of the objective DMU, in input-oriented optimization model
: the efficiency score of DMU; in input-oriented optimization model

: the efficiency score of the objective DMU, in output-oriented optimization model

: the positive Archimedean infinitesimal constant

: the set of efficient DMUs

: the efficiency score of DMU; using common set of weights in DEA structure

Used in Common Weights Analysis (CWA) models

UOA: Unit of Assessment

v
U

r

: the common weight assigned to input 7 across all UOAs

: the common weight assigned to output 7 across all UOAs
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c

~ %

~

c

P

4

: the common weight assigned to input i across all UOAs in the optimization model

: the common weight assigned to output » across all UOAs in the optimization model

: the arbitrary common weight assigned to input i across all UOAs

: the arbitrary common weight assigned to output r across all UOAs

: the input i of aggregated DMU
: the output » of aggregated DMU
: the total virtual gap of the outputs for UOA, to the benchmark
: the total virtual gap of the inputs for UOA, to the benchmark
: the total virtual gap of the inputs and outputs for UOA; to the benchmark
: the CWA efficiency score of UOA;
: the positive Archimedean infinitesimal constant of output
: the positive Archimedean infinitesimal constant of input i

: the produced marginal improvement.of UOA;

: the total shortfall of the output 7 te benchmark for all UOAs

: the total excess of the input i to benchmark for all UOAs

: the shortfall of the output » to benchmark for, UOA;

: the excess of the input /to benchmark for UOA;

VWR-CWA : CWA with virtual weights restrictions

S

a

iw

ﬂi’w
k

w

P

7

P!

y

: the VWR-CWA efficiency score of UOA;
: the preference of input i to restriction w
: th preference of output 7 to restriction w
: the intercept of line restriction w
: the proportional virtual output » of UOA;
: the proportional virtual input i of UOA;
: the lower bound of P for all UOA;
: the upper bound of P for all UOA;
: the lower bound of P, for all UOA;
: the upper bound of P, for all UOA;

: the lower bound of P with the parameter J,

X



B’ : the upper bound of P; with the parameter &,

IL
Bi

U
Bi

: the lower bound of Bj’ with the parameter 7;

: the upper bound of Bj’ with the parameter 7,

Used in Most Compromise Weights Analysis (MCWA) models

A
B

o

: the set of UOAs above diagonal line

: the set of UOAs below diagonal line

: the variant slope of DL

: the set of UOAs above diagonal line with unknown slope o

: the set of UOAs below diagonal line with unknown slope o

: the total virtual gap of the inputs and outputs of UOA, above the diagonal line
: the total virtual gap of the inputs and outpiits of UOA, below the diagonal line
: the total virtual gap of the outputs of UOA ;above the diagonal line

: the total virtual gap of the inputs forUGQA; above the diagonal line

: the total virtual gap of the outputs of UOA, below the-diagonal line

: the total virtual gap of the inputs of UOA; below the'diagonal line

: the positive Archimedean infinitesimal constant of output »

: the positive Archimedean infinitesimal constant of input i

: the MCWA efficiency score of UOA;

: the virtual scale unit for the weighted inputs and outputs.



1. Introduction

We will give a brief description about the motivation, background, problem description,

assumption, objectives, and organization of the research in this section.

1.1 Motivation and background

Performance measurement of one organization is that of assessing progress toward
achieving the predetermined goals. In the process, the variant information derived from
performance assessments depends on the aims of the assessment. In general, for the purpose
of improving the worst and rewarding the better units, managers often focus the performance
management on the generation of objective ranking of the units. However, it is a difficult task
to assess the organization units while! the general manager considers multiple performance
indices simultaneously. This istespecially difficult within the organization, for each unit of
assessment (UOA), multiple kinds -of resources they use,.and multiple types of output they
produce must be considered. For example, all ' bank -branches would typically use staff and
capital assets to generate income activitics, such as advaneing loans, selling financial products,
and carrying out banking transactions for their clients. Generally, the managers predetermine
the weights subjectively for each performance index. The traditional determination of weights
possesses the advantage that the determination can easily cover the managers’ preference in
different performance indices, and it is intuitive without redundant numerical analysis.
However, the disadvantage is that it is hard to make a decision in determining the weights
while the managers have no idea about the relationship among the performance indices.
Sometimes, in the above condition, they need some methodologies to assist them in finishing
the measurement.

Data Envelopment Analysis (DEA), originated by Charnes et al. [1], is one famous
methodology to analyze the relative efficiency of units with multiple performance indices.
DEA determines a set of the most favorable weights for each unit against all units. In other
words, units employ a different set of weights to create their most favorable efficiency scores

individually. DEA successfully separates the units into two subgroups: not-be-dominated and



be-dominated units, also known as efficient and inefficient units. The methodology provides
preliminary useful and valuable information to the unit of rewarding and improvement.
However, ranking of units in each group is still a challenging task. Cooper and Tone [2]
proposed that one cannot rank the be-dominated units according to their performance scores,
since each of them may have a particular set of not-be-dominated units as their reference set.
All the not-be-dominated units are tied numerically with the performance score 1.0 and
cannot be ranked. There is a vast amount of literature about ranking the efficient and

inefficient units and this will be discussed in the following literature review in section 2.

1.2 Problem description and assumption

The problem is usually expressed as the following: In one organization, » UOAs with the
known m inputs and s outputs #indices are assessed for the purpose of ranking and
performance improvement. For each UOQAy say-UOA, the given values of input and output
indices are denoted as (xy, X2j, ..., X)) -A0d"(Vij V), 1eq Vyj), Tespectively. The inputs, or
resources, are the indices that the lower’ value is desited in performance measurement.
Therefore, the indices possess. the ‘characteristic of to-be-minimized, also categorized as
“inputs.” On the other hand, the outputs, also known.as production, are the indices that the
higher is the better. Therefore, the indices possess the characteristic of to-be-maximized,
which are also categorized as “outputs.” The ratio of the weighted sum of outputs (also called
virtual output) to the weighted sum of inputs (also called virtual input) is called the efficiency
score.

In our solved problem, the indices are assumed that are accumulative to the individual
unit to the organization. Hence, the statistics, for instance the mean or variance, are not
suitable to be the index candidates. Although any assessment may have uncountable possible
performance indices combinations by facing different units even in the same organization, we
assume that the performance indices and their corresponding data are given in advance in this
research. Hence, we assumed the indices are determined already and that all of them can be
quantified as nonnegative real numbers. The data of every UOA in all performance indices

has been collected without the consideration of missing data.
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1.3 Objectives of the research

Without predetermining the weights of performance indices, in this research, we develop
two procedures to determine the common weights, (V1, V2, ..., V) and (U, Us, ..., Uy),
relative to the performance indices (xyj, X2, ..., X»j) and (i, V2, ..., V) across all units of
organization. The first one is to determine the common weights by searching the benchmark
unit in the organization. One virtual benchmark is defined as units with an efficiency score of
1.0 and all units are asked to approach the virtual benchmark as closely as possible. The units
with zero gaps to the virtual benchmark are the real benchmark. In the structure of data
envelopment analysis, the determination of common weights in this research means that the
organization determines the favorable weight to maximize the organization efficiency. The
obtained common weights can assist the organization managers in generating the individual
efficiency score for all units and the corresponding ranking problem can be addressed by
comparing with the scores.

However, in the first procedure, sometimes there exists some units with the equivalent
efficiency score of 1.0, due to the constraint that none of the DMU efficiency scores is
allowed to exceed 1.0. This_could possiblyileaditothe obstruction of efficiency development.
In order to avoid the bias in measurement due to the‘upper bound of efficiency, we developed
the second procedure to determine one compromise common set of weights by eliminating the
restriction with upper bound of 1.0 in the efficiency score. It leads to the more complete
ranking, without the repeatable efficiency scores. The proposed model in the second
procedure is also similar to the regression analysis model, with the main difference being that
the former can handle multiple dependent variables, while the latter only focuses on one

dependent variable.

1.4 Organization of the dissertation

In this research, Chapter 2 provides a review of the related literature about DEA, ranking
of DEA units, and common weights in the ranking of DEA units. Chapter 3 introduces the
ranking procedure, including CWA methodology, in view of the management perspective of

benchmark chasing. In addition, in order to enforce the application in reality, the virtual
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weights restrictions are considered in CWA to satisfy the real conditions in the assessment.
Chapter 4 proposes the other methodology, MCWA, to discuss the common weights without
considering the upper bound 1.0 of efficiency score. It results in some of the efficiency score
exceeding 1.0 with superior ranking. The conclusion and discussion are presented in Chapter

5. The structure of this dissertation is illustrated in Figure 1.

2. Literature Review

' '

3. Common Weight 4. Most Compromise
Analysis (CWA) to Rank Weight Analysis (MCWA)
Organization Units to Rank Organization Units
y Y
3.1 Performance measurement philosophy 4.1 Performance measurement philosophy
| |
3.5 Applying virtual weights 42 MCWA model 4.4 Applying cluster analysis
3.2 CWA model restrictions in CWA model ' mode in MCWA model
| } : ‘ :
3.3 Numerical 3.4 Numerical 3.6 Numerical 4.3 Numerical 4.5 Numerical
example 1 example 2 example 3 example 4 example 5

' , ; ‘ = i

5. Conclusion and Discussion

Figure 1. Organization of dissertation



2. Literature Review

We give a series of literature review in DEA, including several famous models and
ranking methodologies in DEA structure, especially the common weights used in the ranking

methodologies.

2.1 Data envelopment analysis (DEA)

Charnes et al. [1] introduce DEA to assess the relative efficiency of a homogeneous
group of decision-making units (DMUs), such as schools, hospitals, or sales outlets. The
DMUs usually use a set of resources, referred to as input indices, and transform them into a
set of outcomes, referred to as output indices. DEA successfully divides them into two
categories: efficient DMUs and inefficient DMWs. The DMU s in the efficient category have
identical efficiency score. The initial problem is usually expressed as: » DMUs to be assessed
with m inputs and s outputs,indices.-For each DMU, say.DMU;, the given values of indices
are denoted as (xij, X2j, .ws Xmj) and (V1,22 ..., Vy), respectively. Given the data, DEA
measures the best practice.comparative _efficiency of each DMU once and hence needs n
optimizations, one for each DMU; to be evaluated. Let the DMU; being evaluated on any trial
be designated as DMU, where o ranges over 1, ..., n. We can solve the following multiplier
form of fractional programming (2-1) or linear programming (2-2) to obtain objective value

(relative efficiency (90*) and one comparative set of weights of inputs (v ,i=1, ..., m) and

outputs (u, , r =1, ..., s). The symbol ¢ is a positive Archimedean infinitesimal constant,
which is used in order to avoid the appearance of zero weights. This zero case in weights
would result in the meaningless of certain indices used in DEA. It is convenient to solve the
envelopment form of linear programming (2-3), dual form of (2.2), to obtain objective value

(relative efficiency 6,) directly. Besides, linear programming (2-3) can provide the

information of output shortfalls (s:*) and input excesses (s, =k) to the frontier.



DEA-CCR-Input Oriented-Multiplier Form-FP
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It is claimed that object DMU, is comparative efficient, with the efficiency 6," = 1.0,
also called an efficient DMU. We define £ = { | Gj* =1.0,j=1,2, ..., n} to represent the set
of efficient DMUs. However, it is not appropriate to claim that they have the equivalent
performance in actual practice. Managers always face the problem of how to carry out a
further comparison among DMUs on the set £. In addition, for the category of inefficient
DMUs, the efficiency score is derived from comparisons involving performances of different
sets of efficient DMUs. Their performances cannot be compared by comparing them with the

range of efficiency score generated from the different facets.

DEA-CCR- Output Oriented-Multiplier Form-FP
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Z xi() viu
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DEA-CCR- Output Oriented-Multiplier Form-LP
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DEA-CCR- Output Oriented-Envelopment Form
n,” =max 7, +8(2si +ZSJJ (2-6.0)
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S: ZO, I"Il,...,S- (2-66)

The type of models (2-1), (2-2), (2-3) 1s, also called input-oriented model whose
objective is to minimize inputs while producing at least.the given output levels. The opposite
type of models is called output-oriented model that attempt to maximize outputs while using
no more than the observed amount of any. input, -as depicted (2-4), (2-5), (2-6). While
combining both orientations.in a single'model, it is called the additive model, as depicted (2-7)
and (2-8). The model (2-7) répresents that each unit chooses the weight most favorable to
obtain its efficiency score. By the ‘dual model (2-8) of multiplier form (2-7), we can observe
the input excess (s;*) and the output shortfall (s:*) of each unit to the frontier. The sum of
input excess and the output shortfall stands for the inefficient status of DMU,. When the most
inefficient status is that there exist zero slack to the frontier, i.e. the maximum sum of slacks is

zero, we call DMU, is efficient.

DEA-ADD-Multiplier Form

max Zyrouro - ino vio (2-70)
r=1 i=1

s.t. Zy,jum —injvio <0, j=1...,n,
=1 i=1 (2-7.1)
u, =2¢e>0, r=1,...,s, (2-7.2)
v, =2&>0, i=1...,m (2-7.3)



DEA-ADD-Envelopment Form

m N

max Zs; +Z:sr+ (2-8.0)

=i ' (2-8.1)

= (2-8.2)

> =
A.20, Jj=1...,n, (2-8.3)
s; 20, i=1...,m, (2-8.4)
s >0, r=1,...,s. (2-8.5)

2.2 Ranking in DEA

Andersen and Petersen [3] evaluate:that a DMU’s efficiency possibly exceeds the
conventional score 1.0, by comparing the DMU being evaluated with a linear combination of
other DMUs, while excluding the observatiens of.the DPMU being evaluated. They try to
discriminate between these-efficient DMUs, by using différent efficiency scores larger than
1.0. Hashimoto [4] developed a DEA super-efficient model'with assurance regions in order to
rank the DMUs completely. ‘However, the super-efficient methodology can give specialized
DMUs an excessive high ranking, In order to-avoid this problem, Sueyoshi [5] introduced
specific bounds on the weights in a super-efficient ranking model. The other problem lies with
an infeasibility issue, Thrall [6] used the model to identify extreme efficient DMUs and noted
that the super-efficiency CCR model may be infeasible. Zhu [7], Dula and Hickman [8] and
Seiford and Zhu [9] prove that under some conditions various super-efficient DEA models are
infeasible. Mehrabian et al. [10] suggested a modification to the dual formulation in order to
ensure the feasibility.

Cook et al. [11] developed prioritization models to rank only the efficient units in DEA.
They divide those with equal scores, on the boundary, by imposing the restrictions on the
multipliers (weights) in a DEA analysis. Torgersen et al. [12] achieved a complete ranking of
efficient DMUs by measuring their importance as a benchmark for inefficient DMUSs.

Bardhan et al. [13] ranked inefficient DMUs using Measure Inefficiency Dominance (MID)



which is based on slack-adjusted DEA models. The measure ranks the inefficient DMUs
according to their average proportional inefficiency in all inputs and outputs. Cooper and
Tone [2] ranked inefficient units according to scalar Measures Inefficiency Proportion (MIP)
in DEA, based on the slack variables. Doyle and Green [14], in their research into the ranking
of overall DMUs, developed a ranked scale method utilizing the cross-efficiency matrix, by
ranking the average efficiency ratios of each unit.

There is other follow-up research on increasing the DEA’s discrimination power,
especially the use of weight restrictions — absolute weights restrictions and virtual weights
restrictions — to reduce the number of efficient DMUSs. Absolute weights restrictions were first
proposed by Thompson et al. [15], imposing acceptable bounds on ratios of weights in DEA
that is known as the assurance region method. Dyson and Thanassoulis [16] proposed that
meaningful bounds are directly imposed on individual weights. The other famous method, the
cone ratio method, proposed and discussed by Charnes et al. [17, 18], is more general than the
assurance method. The disadvantage of using absoelute weights restrictions is that the bounds
setting is dependent on the units of the indices and the orders of magnitude in the indices
values. It is not easy for._a human.to express intuitively their preference for weights
restrictions. In order to make it easier for a human o ‘quantify value judgments in terms of
percentage values, virtual weights restrictionsiwas first proposed by Wong and Basely [19],
setting the lower and/or upper bounds into the ratio of virtual variables. Sarrico and Dyson
[20] further brought the concept of assurance regions into virtual weights restrictions. They
showed that the use of the assurance region of virtual weights restrictions is more general and
preferable to the use of proportional virtual weights restrictions. Bernroider and Stix [21]
proposed discussion about the interaction between bound setting in the assurance region
method and the validity of ranking outcomes in the assessment of an information system.
However, because of the infeasibility problem occurring in the incorporation of lots of
weights restrictions, Estellita Lins et al. [22] proposed the existence theorem, which
establishes feasibility conditions for DEA with multiple weights restrictions. Review of other

several ranking methods was proposed by Alder et al. [23]
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2.3 Common weights used in ranking of DEA units

Cook et al. [24] and Roll et al. [25] first introduced the idea of common weights in DEA
in the context of applying DEA to evaluate highway maintenance units. Cook and Kress [26,
27] gave a subjective ordinal preference ranking by developing common weights through a
series of bounded DEA runs, by closing the gap between the upper and lower limits of the
weights. Roll and Golany [28] considered the common weights for all the units, by
maximizing the sum of efficiency ratios of all the units, in order to rank each unit. They
suggest the potential use of the common weights for ranking DMUs. Sinuany—Stern et al. [29]
used linear discriminant analysis in order to find a score function, which ranks DMUs, given
the DEA division into efficient and inefficient sets. Friedman and Sinuany—Stern [30] use the
CCA method by defining a scaling ratio score as a ratio of linear combinations of inputs and
outputs. Then they utilize the common weights for the linear combinations that drawn from
the largest eigenvalue of the :CCA method: Sifiuany=Stern and Friedman [31] developed
DR/DEA to provide for given inputs and outputs.the best common weights in order to rank all
the units on the same scale. Kao and Hung'[32] proposed the compromise solution approach
to solve the DEA ranking problem with-common weights.

The proposed model in this research determines the common weight by maximizing the
organization efficiency. It is similar to ‘the analysis by Roll and Golany [28], that proposed
maximizing the mean of efficiency ratios of all the units to determine the common weights, as
depicted in model (2-9). The major difference between the two is that, to the objective
function (2-9.0) of the optimization model, our research used the original data of performance
indices, while Roll and Golany [28] used the statistic, mean of efficiency ratio, as the
objective function. In fact, in order to describe the organization’s performance, it is not
suitable to describe the status of the organization’s operation by the mean of individual
efficiency ratio, especially while the organization is able to possess the concrete operation
data in performance indices. Hence, we use the accumulated data across all units in each
performance index to replace the mean of efficiency ratio in the objective function. In
addition, in the DEA structure, each unit in turn chooses the favorable weight to obtain the

efficiency score. Following the structure, the organization plays the role of the aggregated unit
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to choose the favorable weight in combining with the accumulated data of each performance
index, for the purpose of obtaining the optimal organization efficiency score. One restriction
is noted that the performance indices used in our research should possess the property of
accumulation. So the statistics, for instance the mean, is non-meaningful when accumulated

across all the units. Therefore, we should avoid the occurrence of statistics in the performance

indices.
« I &
9 =max — Y g, (2-9.0)
n 3
ZyrjUr
s.t. go_jz’:—gl, j=1...,n, (2-9.1)
injVi
i=1
U, 2e>0, r=1L...,s, (2-9.2)
V.2e>0, A= Pl ), (2-9.3)

Kao and Hung [32] proposed the compromise solution approach with the following
model (2-10). They regarded the DEA efficiency score.as the ideal individual benchmark, and
minimized the distance between the DEA eéfficiency scor€ and the score obtained from the
common set of weights. The model (2-10) is'equivalent to (2-9) with p = 1 and it is shown

that the efficiency score obtained by-the common set of weights with p = 2 is unique.

1Fp
D’ =min [Z(@;—goj)p} (2-10.0)
Jj=1
yljUr
s.it. @, =——<1, j=1..,n, (2-10.1)
Z%—Vi
=1
U, 2e>0, r=1..,s, (2-10.2)
V.2¢>0, i=1....m. (2-10.3)

We give the complete description of our methodologies with several models in the
following sections. Simultaneously, the detailed comparison between the sample model (2-9),
(2-10) and our models will be introduced in the numerical example 1 in section 3.3. In fact,

they show the different results in ranking.
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3. Common Weight Analysis (CWA) to Rank Organization Units

In this section, we introduce the CWA methodology from the beginning of performance
measurement philosophy and the development including the model transformation and the
discussion of alternative optimal solution. Some numerical examples are listed in the final

subsections.

3.1 Performance measurement philosophy

In conventional DEA models, each DMU in turn maximizes its efficiency score, under
the constraint that none of DMUSs’ efficiency scores is allowed to exceed 1.0. The general
manager always intuitively takes the maximal efficiency score 1.0 as the common benchmark
level for DMU . In fact, it also should be the ' benchmark of organization. In the scenario of
organization benchmark chasing, we will take advantage of this benchmark level to help us
describe concretely the concept about thesgeneration. of'common weights here. We introduce
one procedure to obtain one common set of weights for ranking the units. First, we focus on
the case that all units on the DEA frofntier togcther determine the single most favorable
common set of weights in view of"maximizing thé group’s efficiency score. Then, it is

expanded to all units including the inefficient ones.

3.2 CWA model

CWA model is generated from the perspective of gaps minimization between the virtual
benchmark and real units. By a series of transformation, CWA model also implies the
performance measurement philosophy that the organization determines the favorable weights

to obtain the maximum organization efficiency in DEA structure.

3.2.1 Development
In Figure 2, the vertical and horizontal axes are set to be the virtual output (weighted
sum of s outputs) and virtual input (weighted sum of m inputs), respectively. By the definition

of the efficiency score, the common benchmark level is one straight line, with slope 1.0, that
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passes through the origin in the coordinate. U, and V, in the weighted sum denote the

decision variables of the common weights for the -th output and i-th input index, respectively.

6 1 9

The notation of a decision variable with superscript symbols represents an arbitrary
assigned value. For any two UOAs, UOA,, and UOAy, if given one set of weights U] and

V', then the coordinate of points M' and N’ in Figure 2 are (i x[MVi,’i y,,U') and

i=1 r=1

(i xiNI/["i y,wU'). The virtual gap between points M'and M " is A',. Similarly, for
i=1 =1

points N’ and N'”, the virtual gap is A’,. Let the notation of a decision variable with

2

superscript “ * 7 represents the optimal value of the variable. We want to determine an
optimal set of weights U’ and ¥, , such that both points M~ and N below the

benchmark line could approach their projection points, M “and N"” on the benchmark line,

as close as possible. In other words, by ;adepting the optimal weights, the total virtual gap

A, +A, is the shortest from the location of both UOASs to the benchmark line.

Virtual Output Slope = 1.0
Benchmark
s A
23Ul
r=1

y rNU; ]
=1
0 - »  Virtual Input
x, V!

Figure 2. Gap analysis for UOAs below the virtual benchmark line

The following numerical example simulates the above scenario. Table 1 depicts the

values of UOA,, UOA3, UOA(, and UOAp on two input and two output indices. Given an
arbitrary set of weights with U= (U, U;) = (1, 2) and V/'= (V/, V) = (25, 1), the

14



weighted sum of inputs, weighted sum of outputs, and virtual gap A’; for every UOA are
recorded. As Figure 3 depicted, while points A',B',C' and D'are weighted by U = (U],
U))=(1,2)and V' =V, V,)=(25, 1), we can obtain the perpendicular virtual gap to their
projection points A'", B'",C'"and D'” on the benchmark line. There is a total virtual gap of

106.06 from the four UOAs to the benchmark line. Our methodology, presented in the

following subsection, generates one optimal set of weights U = (U, ,U,) = (1, 3.33) and
V= (V,",V,)=(20.33, 1) with only the total virtual gap 8.07. As Figure 4 depicted, while the

points A", B",C"and D" are weighted by the optimal common set of weights U and V",

we can obtain the minimum perpendicular virtual gap to their projection points 4™ ,B"",
C'" and D" on the benchmark line. Obviously, the set of weights is favorable to these

UOAs since they are most close to the benchmark line.

Table 1. Simple example to simulate C WA'secenario

Assign atbitrary.weight Assign optimal weight
Index (A5 r s (2551) (7', V) =(2033,1)
(Ufh) = (1,2) (U;, U;)=(1,3.33)
UOA, Xox, oyt oy, 28M4xantly, AT 2033x+x, » +3.33y, A
A 3 5 6 718 80 42 26.87 65.90 6590 0
B 4 3 5 22 103 49 38.18 84.32 7826  4.29
C 2 6 14 9 56 32 16.97 46.66 4397  3.78
D 3 2 13 15 77 43 24.04 62.90 6290 0
Sum 106.06 8.07

(3-1) expresses the formulation to the original model of our methodology. The objective
function (3-1.0) is to minimize the sum of the total virtual gaps of UOAs, in set E, to

benchmark line. As for the set of constraints (3-1.1), the numerator is the weighted sum of

outputs plus the virtual gap A° and the denominator is the weighted sum of inputs minus the
puts p gap A; g p

virtual gap Alj . They imply that the direction approach to the benchmark line is upwards and

leftwards at same time. The ratio of the numerator to the denominator equals to 1.0, which

means that the projection point is on the benchmark line. ¢’ and &' are the positive

Archimedean infinitesimal constant of output » and input i, respectively. We also avoid a case

of zero value of indices obtained by choosing the set of zero weights. In our methodology, we
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assume the benchmark line is located above all UOAs in set E. The optimal common set of

weights U (r=1,2,...,s)and V(i =1, 2, ..., m) to each efficient UOA would be solved

and then each efficient UOA could obtain one absolute efficiency score as the standard for

comparison.
Virtual

Output

A

J’1j+2J’2j

D'* (60, 60

C'"(44,44)

0

B'*(76, 76)

A" (61, 61)

Slope = 1.0

Benchmark

B'(103, 49)

D'(77,43) ®.4(80,42)

C'(56/32)

P  Virtual Input
25X X,

Figure 3. Coordinates of UOAs weighted by arbitrary common set of weights

Virtual Output

N +333y,;

0

D" =D(629, 629
C*" (4532, 4532

)

B"" (8129, 81.29)

A" = 47(659, 659)

Slope = 1.0

Benchmark

B’ (84.32, 78.26)

C" (46.66, 43.97)

P  Virtual Input
2033x,; +x,,

Figure 4. Coordinates of UOAs weighted by optimal common set of weights
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CWA-FP
A" = min ZAj.
JjeE
25U, + 4

r=1

S.t. :15 jEEa

m

sz-sz- - A[J

i=1

o I .
NN A 20, jeE,
U, >&%>0, r=1,...,s,

Vi25f>0, i=1,...,m.

(3-1.0)

(3-1.1)

(3-1.2)

(3-1.3)
(3-1.4)

The ratio form of constraints in (3-1.1) can be rewritten in a linear form, formulated in the

constraints (3-2.1). Hence, (3-1) can be transformed into (3-2).

CWA-LP1
A" = min ZAJ'
JeE
s.t. ZyﬁUr—injV,-Jr(A3+Alj)=O, JE€E;
r=1 i=1
o 1 L
AN A 20, e,

o
U, zeg >0, v Lo

Vi251.1>0, M=l - 7

(3-2.0)

(3-2.1)

(3-2.2)

(3-2.3)
(3-2.4)

Since the triangular in Figure 2 is one isosceles right triangular, the relationship between the

shortest virtual gaps A, A%, and A’ can be expressed as A, =2 A =2 A’ . Then,

J?

(3-2) is then simplified to the following linear programming (3-3).

CWA-LP 2
A" = min ZAJ

JjeE

S.t. Zy’fiU" _le-jl/,- + \/EA, =05 jEE’
r=1 i=1

o

Uz2eg >0, r=1,..,s,
I .

V.z¢g >0, i=1,...,m,

A, 20, jekE.
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(3-3.0)

(3-3.1)

(3-3.2)
(3-3.3)
(3-3.4)



(3-3) could be rewritten to the equivalent linear programming (3-4) by taking out the
slack variable A, and then aggregating y, and x, to be Y, :z y,; and X, =Zx”,

JjeE JjeE
respectively. (3-4) shows that the organization manager determines the common weight by

maximizing the organization efficiency in the perspective of aggregated UOA with the status

of organization in all performance indices.

CWA-LP3
-A" = max ZYrUr _inVi (3-4.0)
r=1 i=l1
st. Dy, U, =Y x;V, <0, jek, (3-4.1)
r=1 i=1
U, > >0, r=1...,s, (3-4.2)
V.>¢gl >0, 1=y (3-4.3)

In fact, there exists another‘implicit constraint ZY,Ur L ZX V. <0 in (3-4). This constraint

P ol
is redundant since it is a linear combination of the first set-of constraints (3-4.1). We regard X;
i=1,2,...,m)and Y, (r = 1,2, ..., 5Y as the input and output indices of one aggregated UOA
or group. The goal of (3-4.0) is to maximize the efficiency of the aggregated UOA, under the
constraints that the efficiency score of each UOA in set E cannot exceed the benchmark level.
While the optimal efficiency of the aggregated UOA occurs, one corresponding set of weights
is also determined, to be assigned to every UOA in set E. The ranking score that adopts the
common set of weights generated from (3-4) makes sense because the organization manager
objectively chooses the common weights for the purpose of maximizing group efficiency.

For instance, the general manager of a bank desires to measure the performance of all
branches of the bank. A branch would have a higher performance if the required resources
could be reduced and the outputs could be increased. The possible resources could be
employees, the number of bank service counters, etc., while the outputs could be multiple
business items existing in the bank such as deposit business, loan business, credit card

business... etc. The general manager desires to have a set of weights for these resources and
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output indices. However, each branch manager may focus on a different business base, a
different strategy, or the limited resources. Therefore, it is difficult for the general manager to
set the weight of each business item subjectively for the discrimination requirement of
branches. The general manager could take advantage of DEA to distinguish the efficient
branches from the inefficient ones. While the detailed ranking of efficient branches is
necessary, the general manager could determine one common set of weights for the purpose of
maximizing the overall efficient branches’ efficiency (group efficiency) under the constraints
that every efficient branch’s highest efficiency score cannot exceed 1.0. Because of only
considering the group of efficient branches, the general manager can take those efficient
branches as a virtual bank. In other words, the general manager can determine one common
set of weights for efficient branches, with the purpose of maximizing the virtual bank’s
efficiency.

In comparison with additive modelj(2-7),. the difference is that (3-4) chooses the
aggregated UOA to be the playen of determining the favorable weights. In order to obtain

more information, we transform (3-4) to it§.dual form (3-5). The dual variables associate to

(3-4.1), (3-4.2), and (3-4.3) are 7 £ and- O respectively.

CWA-DLP1
max (25‘;3 +25{Q1} (3-5.0)
r=l1 i=1

s.t. Zy,jizj—P,.:Y,, r=1--,s, (3-5.1)

JeE
le-jﬂ'j-FQi:Xi, i=1,---,m, (3-5.2)

JeE
7,20, jeE, (3-5.3)
3-5.4
Rf > 0’ r = 17 ’S’ ( )
3-5.5
0, =0, i=1---,m ( )

Similarly, (3-5) can be used to compare with the model (2-8) or Phase II extension of a

traditional CCR model (3-6) while the parameter 6, is equal to 1.0. The major difference is

19



that P, and Q; in (3-5) are respectively the total shortfalls and excesses of all efficient UOAs

relative to the benchmark line, corresponding to the output index » and input index i.

Phase Il extension of CCR model

max g(is: +is{j (3-6.0)
r=1 i=1

s.t. Zyrj/ij -s =y, r=1L..,s, (3-6.1)
JjeE
D XA+ =x,,  i=l..m, (3-6.2)
JeE
3-6.3
4,20, jeE, ( )
3-6.4
s 2 O, r= 1, S, ( )
3-6.5
s; 20, i=1mm ( )

The variable value 7, in (325) is the shadow price,of UOA; belongs to set £ in the linear
programming (3-4). Then,.the variations of criterion-Eq. (3-7) will result in the variation of
constraint Eq. (3-8). That is; if theright-hand side of the j=th constraint increases 1 unit, then

the criterion Eq. (3-4.0) will get the variation 72']-* as Eq.(3-8).

iy}jU, —ixijVi <0+1 (3-7)
{Z(Z%,JU Z(Zn” 1(0+1) (3-8)

7rj* represents the total virtual gap scale that can be reduced while we release the upper bound
of efficiency 1.0 for UOA,. If there are multiple UOAs on the benchmark line, 7, will give
valuable information to indicate which one most influences the total virtual gap. It is useful
for determining the priority of UOAs on the benchmark line. In the following subsections, we

give the following ranking rules for those efficient UOAs.
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3.2.2 CWA-efficient and CWA ranking rules
In this section, we will introduce the definition of the CWA-efficient and CWA ranking

rules. First, the CWA-efficiency score of UOA; is defined as Eq. (3-9).

S=rl—f jeE (3-9)

By the value of CWA-efficiency, we can distinguish the UOAs into two separable classes,

UOAs on the benchmark and those below the benchmark.

Definition 1
UOA; is CWA-efficient (on the benchmark) if A" = 0 or ¢ . = 1.0. Otherwise, UOA; is

CWA -inefficient (below the benchmark).

The following rules can distinguish-the UOASs whether they are on or below the benchmark
line.
Rule 1
The performance of UOA, is better than UOA, if £; &7
Rule 2
Ifd j*: ¢ =1, i.e. they are both CWA-efficient (on benchmark line), then the performance of
UOA, is better than UOA,; if 7 > 7; .

Each UOA’s CWA-efficiency score is limited to no greater than 1.0, so there is no UOA
standing above the benchmark line. Furthermore, we can even ensure that there is at least one

UOA that joins the assessment located on the benchmark line.

Theorem 1

There is at least one UOA under the assessment located on the benchmark line.

Proof. We will use the proof of contradiction to explain the existence of above theorem.
Assume that there is no UOA on benchmark, so we can obtain the optimal criterion and the

corresponding optimal value U,”, V;" and Aj* where Aj* >0 1n (3-3) for all j € E (formulated in
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Eq. (3-10)). That is, each UOA’s efficiency is less than 1 (formulated in Eq. (3-11)).

L1 jeE (3-10)

s o, jeE (3-11)

S N Y (3-12)

We can set the constant k; (k; > 1) such that the efficiency is equal to 1 for every j € E
(formulated in Eq. (3-12)). Let K*be'the minimum of set {k; , for j € E}, then we can obtain
another feasible common set ‘of weights K- U,* and Vi* accompanies the smaller Aj* (at least one
equals to 0) for all j € E in%(3-3).-The case willitesult.in smaller criterion and contradicts the

fact that the current criterion has been minimized. Hence, there is at least one UOA locates on

benchmark line. [ |

3.2.3 Virtual gap analysis
The virtual gaps between virtual input and output indices for each CWA-inefficient
UOA could be further decomposed into the real gap of each performance index. We can

further analyze this by translating the model (3-4) to the equivalent model (3-13). As model
(3-13) showed, P, and Q; can be partitioned as P, :Z p,; and Q; :2%‘ . And p,; and gj; are

JjeE JjeE

the shortfall at the output index » and excess at input index i of UOA; to the benchmark,

respectively. It means that p,; = P.4; and ¢g; = Q;4; with convex combinations of multipliers A;
>0 and Zﬂ ;=1L

jeE
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CWA-DLP 2

max Z[Zs:gf)prj +legfqy]

JjeE\ r=l

SL. Zyrj ./ZZ(ylj/+prj)7 rzl,--.,S,
JeE JjeE
Zx?/”./ZZ(xy‘_Qg/l i=1,...,m,
JEE jeE
.20, jeE,

prj 20, 7"=1,.--,S, jEE’

ql.J.ZO, i=1,...,m, jeE.

The shortfall p,;” and excess g;; of (3-13) could be obtained by the following theorem,

Theorem 2

(3-13.0)

(3-13.1)

(3-13.2)
(3-13.3)

(3-13.4)

(3-13.5)

The shortfall p,;” and excessq; -of CWA-inefficient UOA; to benchmark corresponding to the

output index » and input index i are P’ (A_,-* /A*) and Q,-* (Aj* /A).

Proof. Since prj* and Qi/'* are'shortfall and excess of CWA-inefficient UOA; to the benchmark,

we have Eq. (3-14) holds because of Definition 1.

S

>, +p)u

r=1 — 1

m

Z(xij —q;)Vl.*

i=1

(3-14)

(3-15)

To prove Eq. (3-15) is a truth, we first decompose the numerator and denominator to obtain

Eq. (3-16) and Eq. (3-17), respectively.

oAk

23

(3-16)

(3-17)



Subtract Eq. (3-17) from Eq. (3-16) resulted Eq. (3-18).
s m A* s m
AR IR DU T G189
r=1 i=1 r=1 i=1

Since the lower bound of U, and V; is ¢, according to Complementary Slackness Theorem,

the following relationship holds.

SPUI YO =(ie?P:‘ +3s! QZ‘]=«/5A* (3-19)
r=1 i=1 r=1 i=1

Therefore, the formula inside the parenthesis in Eq. (3-18) could be substituted by the
right-hand-side in Eq. (3-19). Obviously, Eq. (3-18) easily translates to Eq. (3-20).
Ny Ur =Y %,V 247 (3-20)
r=1 i=1
Eq. (3-20) is equal to zero by the fulfillment of constraints in (3-3.1). Hence, Eq. (3-15)

comes into existence and the theorem is proved. [ |

3.2.4. Selection of the alternative optimal common sets.of weights

It is worth noting that.(3-3) sometimes encounters the existence of alternative weights;
moreover, different weights«can result in_different rankings: of efficient UOAs. It is necessary
for the general manager to select the applicable one from these efficient UOAs. We propose
one approach to assist general managers in dealing' with the issue of alternative rankings.
While the same weighted sum exists, for the case of one set of output indices combining with
different sets of weights, Obata and Ishii [33] propose that it is preferable for output indices to
adopt the smaller scale of weight. The choice implies that the current superiority of the
weighted sum is originated from the indices value itself, rather than from the weights.
Similarly, it is preferable to use the larger scale of weights for input indices in obtaining the

weighted sum of inputs. For instance, let @ =[,%] and b =[U,-V], the inner product of

a and b (weighted sum) is equal to —\/EA, as depicted in (3-32.1). While there exist
multiple solutions in b , we expect the current level of the inner product is generated from the
worse or smaller b to show the superiority of dataset a. Therefore, we minimize the scale

of b by Li-norm, i.e. the objective function (3-21.0). The following procedure is suggested

as a way to search the optimal one of the existing alternative set of weights, using the
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Li-norm.
Stage 1
Solve (3-3) and obtain the optimal value A

Stage 2

Solve the following linear programming (3-21) to obtain one optimal common set of weights.

In stage 1, we first have to look for the minimization of the total virtual gap. Then select one

appropriate weight in stage 2, under the optimal status of (3-3). Thus, we keep the optimal

criteria value in (3-3.0) as one constraint (3-21.2) in the linear programming (3-21) and then

take the minimization of the sum of output weights and maximization of the sum of input

weights as the criterion.

Optimal weight analysis
min ZUr _sz
r=1 igh

st. Dy, U, =D0xV, +\/§A,- =0, j€<E,
r=1 =1

YA =N

JeE

U .zgl >0, r=1...,s,
Vl.Zgl.[>O, i=1,...,m,
A; 20, jeE.

3.3 Numerical example 1

(3-21.0)

(3-21.1)

(3-21.2)

(3-21.3)

(3-21.4)
(3-21.5)

DEA models usually have no more than n/2 indices when assessing n UOAs. Otherwise,

the number of efficient UOAs becomes unreasonably large. It means that the discriminating

power of DEA is reduced. The example uses seven UOAs, with three inputs and three outputs.

The last column in Table 2 shows that the seven UOAs are efficient by radial efficiency 1.0

obtained by CCR-Input-oriented model.
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Table 2. Example of data with the number of indices is much larger than UOAs

UOA X1 X7 X3 Vij V2 V3 Efficiency (9,-*)
Dl 1621 436 205 174 497 22 1
D2 2718 314 221 172 497 22 1
D3 1523 345 215 160 443 22 1
D4 5514 1314 553 487 1925 63 1
D5 1941 507 309 220 521 36 1
D6 1496 321 339 109 699 38 1
D7 932 158 200 37 431 19 1

Table 3 gives the detailed ranking information assessed by adopting CWA. We still find
that there are five UOAs still on benchmark line. If we release the upper bound of the
efficiency score 1.0 for these UOASs, then 7z leads to a reduction in scale in the total virtual
gap towards the benchmark line. Obviously, a CWA-efficient UOA with a larger 7(,* is the
better one. The total virtual gapican be reduced to a maximum 3.225, compared to the other
UOAs on the benchmark line, while we telease the upper bound of efficiency score to over
1.0. Therefore, after comparing with 79*, we are able to determine the final ranking of

CWA -efficient UOASs to be:UOA p3, UOA s, UOAp 1, UOAp,, UOAps, UOAp7, and UOA ps.

Table 3. Corresponding outcomes of Table 2 assessed by CWA

UOA A 7z ¢ Ranking
D3 0 3.225 1.000 1
D6 0 1.772 1.000 2
D1 0 1.118 1.000 3
D4 0 0.922 1.000 4
D5 0 0.028 1.000 5
D7 304.864 0.000 0.847 6
D2 925.362 0.000 0.778 7

Besides, we compare the proposed model CWA with the optimization model (2-9)
proposed by Roll and Golany [28] and optimization model (2-10) proposed by Kao and Hung
[32] by this dataset. Table 4 and Table 5 show the efficiency score and corresponding ranking.
Obviously, we observe that the ranking in Table 3 is different to the ranking in Table 4 and
Table 5. Especially the UOAp,, in the perspective of the organization manager, it is the worst

one in Table 3. In DEA structure, the common set of weights determined by the organization
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manager, the aggregated UOA, expresses that the UOAp; is the most inefficient. However, it
appears the high ranking in Table 4 and Table 5. On the contrary, UOAp, shows that it is the
benchmark in our model while they show the poor ranking in the Table 4 and Table 5. In fact,
UOAp; is an efficient unit in DEA from the perspective of organization. In order to accurately
describe the organization performance, it is better to represent the status of organization’s
operation by the concrete operation data in performance indices. The mean of individual
efficiency ratio is the indirect information for one organization especially while the value of

performance indices across all units can be accumulated as the value of organization.

Table 4. Corresponding outcomes of Table 2 assessed by the model (2-9)

*

UOA ®, Ranking
D2 1.000 1
D3 1.000 1
D4 1.000 1
D5 1:000 1
D6 1.000 1
D1 0.965 6
D7 0.871 7

Table 5. Corresponding outcomes of Table 2-assessed by the model (2-10) with p =2

*

UOA ®; Ranking
D2 1.000 1
D3 1.000 1
D4 1.000 1
D6 1.000 1
D1 0.948 5
D5 0.944 6
D7 0.911 7

3.4 Numerical example 2

In this subsection, we extend the ranking object from UOAs in set E to E U E€ in CWA
model (3-1) where E€ represents the set of inefficient UOAs. It is unfortunate that a
paradoxical case perpaps exists, that some UOAs in EC are better than UOAs in E by

comparing the CWA efficiency score. However, the phenomenon is acceptable and
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explainable without violating the original concept of DEA. In fact, each UOA in E€ would
have a particular reference set that is composed of parts of UOAs in E. One should not declare
that one certain UOA in E is better than all UOAs in E€.

We verify the inference mentioned above by practicing one complete example including
UOAs in set E U E€. As listed in Table 6, 7 UOASs in set E is extended to 11 UOAs in set £ U
E€. Using DEA model (2-1) and CWA methodology, models (3-3), the results are depicted in
Table 7. In view of CWA, we observe UOAp, of set E is ranked 11, and is worse than UOA pg,
UOApy, UOApio, and UOAp;; of set EF. Although UOAp, belongs to set E, it is not an
element of the reference set for UOApg, UOApy, UOAp;y, and UOAp;;. In other words,
individual UOAps, UOApy, UOAp;y, and UOAp;; really are not dominated by UOAp;.
Therefore, in view of DEA, one should not declare that UOAp, in set E is better than UOA pg,
UOA po, UOA 10, and UOApy; in,set E. In addition, using DEA model (2-1) to measure the
relative efficiency of only these 5 UOAs; at this'time ohe would observe that they belong to
the equivalent set E, just depicted in Table 8. Therefore, the CWA ranking seems also to be
workable in set £ U E€ Without violating’the original concept of DEA. Therefore, CWA
ranking reflects two consequences. The firstis thatit is primarily used in ranking the UOAs in
set E. The second is that when'it is used in rankingthe UOAs in set £ U E, one could still

obtain a reasonable conclusion without conflicting with the DEA’s initial classification.

Table 6. Example of including the UOAs in set E U E©

UOA X1 X2 X3 Yij 2 M3
D1 1621 436 205 174 497 22
D2 2718 314 221 172 497 22
D3 1523 345 215 160 443 22
D4 5514 1314 553 487 1925 63
D5 1941 507 309 220 521 36
D6 1496 321 339 109 699 38
D7 932 158 200 37 431 19
D8 2013 1037 412 198 471 32
D9 1891 976 399 191 491 22
D10 2277 891 418 241 379 28
D11 1995 693 349 167 412 31
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Table 7. The reference set, DEA and CWA efficiency score of example in Table 6
UOA Reference set DEA Efficiency (8,)  CWA Efficiency (£, Rank

DI Dl 1 1 1
D2 D2 1 0.69 11
D3 D3 1 0.99 4
D4 D4 1 0.97 5
D5 D5 1 1 3
D6 D6 1 1 2
D7 D7 1 0.82 6
D8 D1, D5 0.87 0.72 7
D9 DI, D5 0.91 0.73 8
D10 D5 0.93 0.74 9
DI1 D35, D6 0.79 0.71 10

Table 8. The DEA efficiency score evaluated only to 5 debatable UOAs in Table 7

UOA DEA Efficiency (6,
D2 1
D8 1
D9 1

D10 1

D11 1

3.5 Applying virtual weights restrictionsin CWA model

In order to enforce CWA model'in the application. of real case and satisfy all kinds of
restrictions about the performance ‘indices; we take advantage of the virtual weights
restrictions to assist the manager in obtaining a preferable and robust ranking result for units.
In order to obtain the preferable ranking, the manager’s subjective preference is considered
and formulated by the virtual weights restrictions while determining the common weights in
the procedure. In addition, in order to obtain a robust ranking, we modify the boundary of the
feasible region of virtual weights restrictions in each assessment. The final statistical ranking
of all assessments provides the manager with one robust ranking, which is invariant in

different feasible regions of virtual weights restrictions in the numerical example.

3.5.1 Review of virtual weights restrictions
Virtual weights restrictions means that the restrictions are imposed on virtual

input/output, comprising the product of input/output level and weight for the input/output,
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rather than on weights directly. It is noted that virtual weights restrictions are developed with
reference to the original absolute weights restrictions in DEA formulation. Different to the
difficult ascertainment of meaningful bounds in absolute weights restrictions, virtual weights
restrictions make it intuitive and easy for a manager to express their subjective preference in
the assessment.

The proportional virtual weights restrictions and virtual assurance regions separately
provide a different expression in the preference relationships among performance indices. The
former represents the importance of one certain input/output attached to the input/output
measure, and the latter further expresses the known relationship between any two indices,
even among more indices. In this subsection, we give a brief review of virtual assurance

regions and proportional virtual weights restrictions.

3.5.1.1 Virtual assurance regions
Sarrico and Dyson [20] proposed that all' the wvirtual weights restrictions can be

described by the general set of restrictions expressed by Eq.,(3-22).

> a,, x,Vi+> By, U Sdemrw=ty. . . WS j=1,...,n, (3-22)
i=1 r=1
W denotes the number of virtual weights restrictions. a;, denotes the preference of virtual

input to restriction w in input i. 5., denotes the preference of virtual output to restriction w in

output . k,, denotes the intercept of line restriction w. While we set a,, = 0 (for all i) or g, =0

(for all r) with k,, = 0, Eq. (3-22) translates an ordering of preference in inputs and outputs, as

expressed in Eq. (3-23) and Eq. (3-24).

Da, x,V,20, w=1.. W, j=1..,n, (3-23)

i=l1

N B v, U, 20, w=1..,W, j=1,..n, (3-24)

r=1
These kinds of restrictions mentioned above in Eq. (3-23) and Eq. (3-24) are useful while
managers concentrate the preferences on the indices in the same measure.

Besides, if there is at least one a;,, # 0 (for all i) and one S,,, # 0 (for all ») with k,, = 0,
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Eq. (3-22) can be translated as an ordering of preference in input-output, as expressed in Eq.
(3-25).
Na, x V4> B, v,U, 20, w=l. W, j=l...n, (3-25)
i=1 r=1
Eq. (3-25) is used to express a known relationship between a pair of inputs and outputs. For

instance, to produce one unit of output, one needs to consume at least a certain level of an

input.

3.5.1.2 The proportional virtual weights restrictions

Wong and Basely [19] proposed the use of virtual weights restrictions. In particular, the
proportional virtual weights restrictions were intended to make it easier for managers to
quantify value judgments in terms of contribution percentage in the same measure, that is,
input measure or output measure. Conceptually the proportional virtual output » of DMU;
represents the importance attached to the .output measure (a similar reasoning can be applied
to the virtual input 7). Let Pr,(-) and Pif respectively denote the proportional virtual output »
and input i of DMU], as follows in _Eq: (3-26) and Eq. (3-27). Thus, the manager can

intuitively set limits on this propertionito reflect'value judgments, as follows in Eq. (3-28) and

Eq. (3-29).
U
szjﬁLL—,rzhuﬁ,jzynm, (3-26)
Zyry'Ur
r=1
x.V.
P;:%, i=1,...,m, j=1,...,n, (3-27)
Z%-Vi
i=1
a,SPUQSb,,, r=1,....,s, j=1...,n, (3-28)
ciSRdei, i=1....m, j=1...,n, (3-29)

The constant values a,, b

., ¢, d, are the subjective preference limits provided by
the manager for output r and input i. Sarrico and Dyson [20] discussed the possible
infeasibility of multiple proportional virtual weights restrictions resulting from the setting of

lower and upper bounds, while there exists a large scale range in the index value across all

units. They proposed one formulation to determine the feasible lower (upper) bound
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according to the given upper (lower) bound. Estellita Lins et al. [22] proposed one model to
test the feasibility in DEA models with given weight restrictions, including the absolute and
virtual weights restrictions, and further modified the bounds using their hyperplane adjusting
model while infeasibility occurs.

However, there exists another trap to set the constant value of a,, b

ro

¢,, d, while

the manager has no idea about the implicit restrictions ZPr]O =1 and ZPUI =1. For
r=l1 i=1

instance, there exit two output indices y,, and y,; in the output measure for all DMU;.
While the manager sets ¢,= 0.2 and b, = 0.4 with 20%< Pl? <40%, a,= 0.2 and b,= 0.4
with 20%< PZ(; <40% for intuitive convenience, the setting obviously cannot satisfy the

implicit restriction Pl? + Pz(; =1. In other words, there exists no such feasible Pl? and Pz(; to

satisfy these proportional virtual weights restrictions in the output measure. We introduce one
method to set initial feasible bounds on the virtual weights to avoid the possible infeasibility

in the virtual weights restrictions mentioned above.

3.5.2 The new setting of bounds in proportional virtual weights restrictions

In order to solve the potential ihfeasibility-issue that occurs in the proportional virtual
weights restrictions, we propose one systematic.setting in the lower and upper bounds of the
proportional virtual inputs and outputs to ensure the feasibility of proportional virtual weights
restrictions. Besides solving the infeasibility problems, we use the systematic setting to
analyze the relationship between ranking and proportional virtual weights restrictions.

Exploring the reasoning of infeasibility in proportional virtual weights restrictions,

under the same measure, the sum of the upper bound to all outputs (Zb, ) cannot reach 1.0 or

r=1

the sum of the lower bound to all outputs (Z a, ) exceeds 1.0. In order to avoid this problem,

r=1
we rewrite Eq. (3-28) and Eq. (3-29) to Eq. (3-30) and Eq. (3-31) respectively by formulating
the lower bound and upper bound of input and output with the function of parameters o,
o', r; and 7, . For the purposes of ensuring the proportion is between 0 and 1.0, we give

the followingrange 0 =5, = 1,0 =6, = s-1,0 =7, = land 0 =7 = m-1.
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Y5 )< (1467), retins j=lim, (3-30)
S S
%(1-@.‘ )sej’s%(nr,ﬁ ) i=l...m, j=l...n (3-31)

Eq. (3-30) and Eq. (3-31) can then be rewritten as Eq. (3-32) and Eq. (3-33), respectively.
B* <P’<B’, r=1l..s, j=l..,n, (3-32)
B[’LSP;SB,.’U, i=L...,m, j=1...,n, (3-33)

P? and P/ can only vary within the interval [B*, B "] and [B, B/"], respectively.

By combining Eq. (3-30), Eq. (3-31) with Eq. (3-32), Eq. (3-33), we obtain the following
range 0 < B < 1/s, I/s =B’ < 1,0 < B/ < 1/m and 1/m = B/Y =< 1. Then, by the
setting restrictions, the managers can easily avoid the infeasibility problem generated by the

implicit restrictions » P’ =1 and Y P/ =1.
i=1

r=l1
In order to match the virtual.assurance region, we have rewritten Eq. (3-32) and Eq.
(3-33) as Eq. (3-22) with appropriate values..cs and +f3,, . For instance, Eq. (3-32) can be

divided into two parts, P,/ 2B/ and P <B™ . Theformer and the latter can be rewritten

as Eq. (3-22) with the setting ‘of parameters’ e, and g, shown in Eq. (3-34) and Eq.

(3-35), respectively.

a,, =0, i=1,...,m,
-B%, r#z (3-34)
ﬂm:{l—BOL . relns,z2=1,...,s,
a,, =0, i=1,...,m,
B, r#z (3-35)
=4 Z r=1,...,s, z=1,...,8,
ﬂrw {BZOU_I’ r=z

Similarly, while Eq. (3-33) is divided into two parts, P; > B/ and P/ <B/“, they can be

y

rewritten as Eq. (3-22) with the setting of parameters «,, and £ shown in Eq. (3-36) and

Eq. (3-37), respectively.

-BY, %z .
a,, = : i=1....m, z=1,...,m,
1-B*, i==z (3-36)

B.. =0, r=1,...,s,

BZIU, i1#z .
:{BZ’U-I, i=z (3-37)
B.,=0, r=1,...,s,

w
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As for the amount of restrictions, if there exist m inputs and s outputs, the proportional virtual
weights restrictions, both Eq. (3-32) and Eq. (3-33), can be written as 2s + 2m restrictions of
Eq. (3-22) with W =2s + 2m.

The advantage of bound setting in the proportional virtual weights restrictions is that the
manager can systematically choose lower and upper bound to discuss the variation in the

ranking of UOAs. For instance, the manager can start the analysis from the unconstrained
case with the interval [B*, B’"]=[0%, 100%] to P;and [ B, B/]=[0%, 100%] to

Pl.j’ , and step by step shorten the interval to the extreme cases that each input or output index

has equal proportion. They have to note that don’t violate the rules 0 < B < 1/s, 1/s

<B°Y =<1,0 =B" =< 1/mand 1/m = B/Y < 1 to encounter the infeasibility problem.

3.5.3 CWA with virtual weights restrictions (VWR-CWA)
Because the proportional weightsrrestrictions aré, one case of the virtual assurance
regions, we add the general form of virtual weights restriction Eq. (3-22) into the constraints

of CWA fractional programming (3-1). Then, (3-1) can be translated into (3-38):

VWR-CWA-FP
A" =min ) A, (3-38.0)
j=1
ZyrjUr + A?
st S————=1, j=1l..n, (3-38.1)
I
;x[jV[ -4,
Y ax Vi+> Boy,U, 2k, j=Ll..n w=1. W, (3-38.2)
i=l1 r=1
0 A1 , (3-38.3)
A LA 20, j=L...,n,
U, z&’ >0, r=1..,s, (3-38.4)
V,zel >0, i=1...,m (3-38.5)

Following the transformation of the CWA model, the ratio form (3-38) can be rewritten in a

linear form (3-39) and (3-40), step by step:
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VWR-CWA-LP1

A" =min ) A, (3-39.0)
j=1

st Yy U, =D xV, 424,20,  j=L..,n, (3-39.1)
r=l1 i=1
Sa,xVi+Y By, U 2k, j=lL..n w=1L..W, (3-39.2)
i=1 r=l1
U, >g°>0, r=1...,s, (3-39.3)
V.>¢el >0, i=1,...,m, (3-39.4)

3-39.5

A, 20, j=L...,n ( )

VWR-CWA-LP2

A =max Y YU =YXV (3-40.0)
r=1 i=l
st Yy U =%V <0, j =L, n, (3-40.1)
r=1 =1
>, x VY Bayilly 2k ti=L.m w=1,..W, (3-40.2)
i=1 H=1
erzyrj’ r:15"-7S5
= (3-40.3)
X, =Y x;, i=1,...,m
= (3-40.4)
U},Zé‘ro >0, I"Zl,...,S, (3_405)
1 ;T —
V.z¢g >0, i=1,...,m. (3-40.6)

Assume that variable value 7[]‘* is the shadow price of the set of constraints (3-40.1). Then,
according to the definition of shadow price, the variations of criterion Eq. (3-41) will result in
the variation of constraint Eq. (3-42). That is, if the right-hand side of the jth constraint

increases 1 unit, then the criterion Eq. (3-42) gets the variation 7zj*.

Sy U, -l <041, (3-41)

r=1 i=1

A z(i(z"“yﬂ.)ur—i(" xy.]l/i]+zr:(0+1) (3-42)
=1 \j=1 =1 \_j=1
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ﬁj* represents the marginal influence on the criteria of linear programming (3-40.0), that is,
the marginal influence on the organization’s overall performance. It gives another priority
reference while UOAs possess equivalent efficiency score. In the following subsections, we

analyze further the ranking rules of those UOAs.

3.5.4 VWR-CWA ranking rules
In this subsection, we define the ranking rules by comparing the absolute efficiency
score and the shadow price mentioned above with the VWR-CWA efficiency score &, of

UOA;, as defined as Eq. (3-43):

zyij:
;;‘ == j=l...,n, (3-43)

*
ZXUVI»
i=1

V' and U; denote the optimal.common weights-obtained in (3-39) for all UOAs attached to

the input index i and output index-». One can' gasily distinguish the UOAs according the
following rules.

Rule 3

The performance of UO4,; is better thatt UOA i & > &7

Rule 4
If & = & = 1.0, then the performance of UO4,; is better than UO4,; if T >

3.6 Numerical example 3

In this numerical example, there are two sub-examples to join the discussion. We first
give a test example to demonstrate the discrimination power of the proposed approach. The
example with the characteristic of a large scale in the values of performance indices across
UOAs could appeal to the intuitive ranking of UOAs by merely observing the value in the
performance indices. Then, it showed that VWR-CWA obtained the consistent ranking with
the intuitive ranking. Secondly, one illustrative example shows how the manager of a retailer

could obtain preferable and robust ranking results for all branches.
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3.6.1 Test example

Table 9 gives the simulated data set, with two inputs and one output for seven UOAs.
The test example possesses the characteristic of a large-scale range in the value across UOAs,
such that UOA,, UOA,, UOAs, UOAs, UOAs and UOA7 are shown to be many times larger
than UOA4. These UOAs are ranked intuitively as UOA,, UOA,, UOAs, UOAs, UOAs, UOAs,

UOA7 by comparing the value of input index x,; . The rankings assessed in CWA, as shown in

Table 10, are consistent with intuitive ranking in Table 9. By observing the proportion in input

1

measure, x,; plays a more important role than x,; for all UOAs (B’ < P);) according to

the assessment results of CWA. We try to add the preference of the performance indices to
understand whether VWR-CWA works to obtain the consistent ranking with intuitive ranking.
The general form of virtual assurance region Eq. (3-22) can be rewritten as Eq. (3-44)

for the test example with two input+indices and oneoutput index.

ax, Vi +a,x, V,d8y,U, 20, /=151, (3-44)
Table 9. Test example with large scale ranges.across UOAS
Input index Ottput Index . )
U0o4; . o V.. Intuitive ranking
15 2] 1j
UOA, 470000 700000 200000 1
U0A, 4800 7000 2000 2
UOA; 49 70 20 3
UOA4 5 i 2 4
UOA; 510 700 200 5
UOA, 52000 70000 20000 6
U0A4, 530000 700000 200000 7

If we have the preference that the proportion of x,; is larger than twice of x,,, then the
parameters (¢, «,, B, [,) are substituted by (1, -2, 0, 0). Eq. (3-44) is further rewritten
as Eq. (3-45) for all UOA;:

x, Vi-2x, 7,20, j=1...,7, (3-45)

Similar to CWA, as Table 10 depicted, VWR-CWA obtains a consistent ranking in the
large scale range in the value of performance indices across UOAs with our preference in
input measure. It implies that VWR-CWA provides the available discrimination power in

assessing the UOAs.
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Table 10. The assessment results of CWA and VWR-CWA in test example

(1) CWA (2) VWR-CWA with Eq. (3-45)
v v, U =(1.00, 1.00, 5.85 ) Vv, U =(2.98,1.00, 10.50)
UO4; & Ranking B, P, B] & Ranking B P PC

vo4, 1.000 1 40%  60% 100% 1.000 1 67%  33%  100%

U04, 0.998 2 41%  59% 100% 0986 2 67%  33%  100%
Uo04; 099 3 41%  59% 100% 0972 3 68%  32%  100%
UOA4 0994 4 42%  58% 100% 0959 4 68%  32%  100%
U04s 0992 5 42%  58% 100% 0946 5 68%  32%  100%
UOA¢ 0.990 6 43%  57% 100% 0933 6 69% 31%  100%
U04; 0988 7 43%  57% 100% 0921 7 69%  31%  100%

3.6.2 lllustrative example

A manager of a retail company governs eight branches and periodically assesses them
by observing four performance indices: number of Employees, Cost, Turnover, and Profit, as
depicted in Table 11. Employees and Cost are treated as. input indices, while Turnover and
Profit are the output indices. Lower inputs and:higher outputs are preferred to generate a
higher efficiency score. Different to the first example, the characteristic of a large scale in the
value is across indices, not UOAs (branches): In-the following subsections, we illustrate how

to obtain the preferable ranking and rebust ranking for the manager.

Table 11. The indices data in illustrative example

. Input index Output index
Branchj Employee x,; Cost x,, Turnover y,; Profit y,;
A 20 6583 7929 419
B 21 7713 8414 406
C 18 6980 8020 359
D 24 8273 9947 373
E 28 8566 9741 412
F 23 8397 9408 500
G 29 7011 7890 621
H 26 8680 9701 705

3.6.2.1 Preferable ranking

In order to discuss the proportion of each index in different models, we assess these

38



branches by using DEA (CCR input-oriented model), VWR-DEA (CCR input-oriented model
with virtual weights restrictions), CWA and VWR-CWA models. The general form of virtual
weights restrictions Eq. (3-22) can be rewritten as Eq. (3-46) for the current numerical
example, with two input and two output indices:

ax;V, +a,x,V, +ﬂ1yljU1 +ﬂ2y2jU2 20, j=4,...,H, (3-46)

If the manager has the preference that the proportion of Profit is no less than half of Turnover,

then the parameters (¢,, a,, B, fB,) are substituted by (0, 0, -1, 2). Eq. (3-46) is further

rewritten as Eq. (3-47) for all branches ;:
-y,;U +2y,,U, 20, j=4,..,H, (3-47)
The proportion allocation of each index obtained from the original DEA model, as
depicted in column (1) of Table 12, is extremely disproportional in most branches, even
though we add the virtual weightsaestriction Eq! (3-47) in the DEA model (VWR-DEA), as
depicted in column (2) of Table 12. Forinstance, déspite the preferable virtual weights
restriction Eq. (3-47), branches G and H still choose their favorable weight to create a feasible
disproportion in Turnover (0%) and Profit’(100%). Besides, comparing DEA with CWA, as
depicted in column (1) of Tables 12 and Tabler13;the proportion allocation in the DEA model
1s more unstable than the CWAsmodel, without largevariation in all branches. The comparison
between VWR-DEA and VWR-CWA\ as depicted in column (2) of Tables 12 and 13, would
have similar results. These results imply that the proportion allocation obtained, whether in
the DEA or VWR-DEA models, cannot reflect the manager’s preference altogether.
CWA provided the assessment results in column (1) of Table 13. They show that branch

A and B are the best and worst, respectively. Following these common weights (Vl*, Vz* ,

Ul* , Uz*) =(1.00, 1.27, 1.00, 1.00) used in CWA, as depicted in column (1) of Table 13, the

manager would observe a large difference in relative proportion, whether between the virtual

inputs (P’

1j»

P, or outputs (R, P)); for instance, in the row of branch A, Employee (0.02%)

J
vs. Cost (99.8%) and Turnover (95.0%) vs. Profit (5.0%).

From a managerial scenario, it reveals that the input index Cost and output index
Turnover take a considerably large proportion of branch A’s rating. The other branches appear

to be in a similar situation. This kind of extreme disproportion may not be accepted under
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specific practical exercises, even though the manager expects quick business development. In

fact, in any case, Profit still plays an important role in rating. The virtual assurance region can

assist the manager in easily adding his preference in Profit.

Table 12. The proportion results of DEA and VWR-DEA in illustrative example

Branch (1) DEA (2) VWR-DEA with Eq. (3-47)

j P! P B! P P P B! P

A 35.2% 64.8% 95.1% 4.9% 13.0% 87.0% 58.7% 41.3%
B 45.8% 54.2% 82.6% 17.4% 100.0% 0.0% 60.8% 39.2%
C 65.4% 34.6% 78.1% 21.9% 100.0% 0.0% 62.6% 37.4%
D 34.1% 65.9% 96.5% 3.5% 100.0% 0.0% 66.6% 33.4%
E 0.0% 100.0% 100.0% 0.0% 0.0% 100.0% 63.9% 36.1%
F 46.0% 54.0% 81.2% 18.8% 11.7% 88.3% 58.4% 41.6%
G 10.1% 89.9% 72.4% 27.6% 30.1% 69.9% 0.0% 100.0%
H 7.5% 92.5% 73.9% 26.1% 100.0% 0.0% 0.0% 100.0%

Table 13. The assessment results of EWA and VWR-CWA in illustrative example

(1) CWA (2) VWR-CWA with Eq. (3-47)
Branch (" " 1" U, ) =100, 1.27, 100, 1.00) (V"% .U, .U,") = (94.25,1.92, 1.00, 13.30)
¢; Ranking B M BG By P 6 Rauking B, B, B} P]
A 1.000 1 0.02% 99.8%95.0%5.0% 1.000 41 13.0% 87.0% 58.7% 41.3%
B 0902 8 0.02%.99.8%954% 4.6% 0935 . 6 11.8% 88.2% 60.9% 39.1%
C 0947 4 0.029%7%99.8%95.7% 4.3%- 0.996 " 3 11.2% 88.8% 62.6% 37.4%
D 0984 2 0.02% 99.8%96.4% 3.6% 0964 5 12.5% 87.5% 66.6% 33.4%
E 0934 6 0.03% 997%95.9% 4.1% 0878 7 13.8% 86.2% 63.9% 36.1%
F 0931 7 0.02% 99.8%95.0% 5.0% ~0.975 4 11.9% 88.1% 58.5% 41.5%
G 0956 3 0.03% 99.7%92.7% 7.3% 0875 8 16.9% 83.1% 48.8% 51.2%
H 0945 5 0.02% 99.89%93.2% 7.8% 0.998 2 12.8% 87.2% 50.8% 49.2%

The manager reassesses these branches using the VWR-CWA model. The assessment

results of VWR-CWA are arranged in column (2) of Table 13 by using the other common
weights (Vl* , Vz* , Ul* , Uz* ) =1(94.25,1.92, 1.00, 13.3). Focusing on the row of branch A in

Table 13, the proportion of Turnover (PUQ) vs. Profit (PZC;) changes from the CWA

disproportion 95.0% vs. 5.0% to the 58.7% vs. 41.3% in VWR-CWA. Similar changes also

can be seen in other branches. The rankings of the eight branches under CWA and VWR-CWA

are completely different. However, the ranking obtained from VWR-CWA is more preferable

and reliable to the manager because its preference is considered.

Obviously, the virtual restriction Eq. (3-47) has an influence on the final ranking of the

branches. In the above case, Eq. (3-47) is one of general form Eq. (3-22) with the parameter
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W = 1. In order to strengthen the preference for the manager, they can add more restrictions to
obtain its most preferable ranking for all branches in VWR-CWA. In addition, the different
preferable constraints also can be only assigned to certain UOAs to keep the original

characteristics in performance indices of each UOA.

3.6.2.2 Robust ranking

Column (2) of Table 13 shows the single preference that the manager assigned. It is
common that there exists a situation that the manager has no preference about the relationship
among indices. What they concerned is one acceptable and feasible proportion of virtual

inputs and virtual outputs in the same measure. The manager can determine the acceptable

interval [ B>, B’ ] and [B", B ] for P/ and P, respectively. For the current

numerical example with two inputsy(7 = 2) and/‘two.outputs (s = 2), all the values of 5., &,

14

7; and 7z, are set within 0 and 1 to ensure that Prj(.) and P/ are between 0 and 1. For the

purposes of clearly illustrating our approach; we setithe lower bound B” = 0.4 and upper

bound B’ = 0.6, respectively. In other words, P, would be limited within the interval

[40%, 60%]. If a larger interval is allowed; one:may set the interval [20%, 80%].

From a managerial scenario, while managers.desire to understand the ranking of

branches under variant kinds of limitations for P’ and P/, Eq. (3-30) and Eq. (3-31)

7 g
provide one systematic setting of lower bound and upper bound. For the cases where o, and

o, are set at five levels 0.2, 0.4, 0.6, 0.8, and 1.0, P? would be limited in the gradually

7

wider intervals [40%, 60%], [30%, 70%], [20%, 80%], [10%, 90%] and [0%, 100%],

respectively. With the same setting for z; and 7, Ej’ would have the same limitations as

above.

Table 14. The 25 combinations of interval limitation for P¢ and Pij’

]

IL U
Combination symbol (B, .5, ]
[0%, 100%]  [10%, 90%] [20%, 80%] [30%, 70%] [40%, 60%]
[0%, 100%] Cl C2 C3 C4 C5
[10%, 90%)] C6 C7 C8 C9 C10
[B®,B°Y1 [20%, 80%)] Cl1 Cl12 Cl13 Cl4 Cl15
[30%, 70%] C16 C17 C18 C19 C20
[40%, 60%)] C21 C22 C23 C24 C25
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As depicted in Table 14, there are 25 combinations of interval limitation for P’ and

77

P . Obviously, different interval limitations for Prjo and P/ may have different assessment
results for the ranking. In this numerical example, we can employ the VWR-CWA model in
carrying out an assessment for each combination with corresponding intervals [ B/, B/Y ] and
[B®,B°"]. For instance, the results for C12 and C22 are depicted in Table 15. For the
combination C12, the general virtual weights restrictions Eq. (3-44) can be rewritten as Eq.
(3-48) to Eq. (3-51) by removing four of the same and repeatable restrictions for all branches

from the parameters setting in Eq. (3-34) to Eq. (3-37):

08y,U,-02y, U, 20, j=A4,... H, (3-48)
-02y,,U, +08y,,U, 20, j=4,.. H, (3-49)
09x,,V, -0lx,,V, 20,  j=A,.. H, (3-50)
-0.1x, V, +09x, ¥V, 2000 =4, L H; (3-51)

As Table 15 depicted, the rankingis inconsistent between the two combinations C12 and
C22. For managers, it is expected that more outcomes formsall kinds of combinations that can

help them make more accutate and robust judgments in the.ranking of branches.

Table 15. The assessment results in VWR-CWA of C12 and C22
(1) VWR-CWA of C12 (2) VWR-CWA of C22
(V.,V,,U,,U,)= (19130, 1.09, 1.00, 6.67)  (V,,V,,U,,U,)=(121.38,2.20, 1.00, 17.78)

PN i B P, B) B & Raking B) P, B) E
A 0975 2 35% 65%  74% 26% 0909 3 14% 86% 52% 48%
B 0895 7 32% 68%  76% 24%  0.801 6 13% 87% 54% 46%
C 0942 3 31% 69%  77% 23% 0.821 5 12% 88% 56% 44%
D 0914 5 34% 66%  80% 20%  0.785 7 14% 86% 60% 40%
E 0850 8 36% 64%  78% 22%  0.767 8 15% 85% 57% 43%
F 0940 4 32% 68%  74% 26%  0.860 4 13% 87% 51% 49%
G 0912 6 42% 58%  66% 34% 1.000 1 19% 81% 42% 58%
H 1000 1 34% 66%  67% 33% 0.998 2 14% 86% 44% 56%

While compiling statistics from 25 combinations, we obtained the percentage of
occurrence frequency in each ranking, as depicted in Table 16. It is not hard to observe that

except for branch G, the high occurrence frequency centralizes in a few rankings for other
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branches. For instance, branch H is only ranked 1*' and 2. For branch E, the ranking of 7"
and 8" occurs in all combinations. Undoubtedly, branch H is always better than branch E. If
managers choose the highest occurrence frequency as the representative branch of each

ranking level, the ranking list for 1% to 8™ is H,A,C,F,D,B,Eand G

Table 16. The summary of the 25 ranking results with C1 to C25

Ranking 1 nd 3 4th 5th 6t th gt

Branch j

A 10 8 7 0 0 0 0 0
B 0 0 0 0 0 18 7 0
C 0 0 15 1 9 0 0 0
D 0 0 0 0 15 3 7 0
E 0 0 0 0 0 0 10 15
F 0 0 1 24 0 0 0 0
G 2 5 2 0 1 4 1 10
H 13 12 0 0 0 0 0 0
Total 25 25 P35 25 25 25 25 25
Robust Ranking H A C F D B E G

Table 17. The ranking of branch G in the 25 ranking results-with C1 to C25

: [B;",B"Y]
Ranking of Branch G -
[0%, 100%]~_[10%, 90%] [20%, 80%] [30%, 70%] [40%, 60%]
[0%, 100%] g™ g™ g™ g™ g™
[B% B  [20%, 80%] 6™ 6" 6" 6" 7t
[3 O%, 0%] 2Ild 2nd 211d 3I‘d Sth
[40%, 60%] 1™ I ond ond 31

Under the above ranking rule, the ranking of branch G is debatable due to its average
occurrence in multiple ranking levels. In other words, branch G’s ranking varies largely under

different combinations. We further observe the ranking status of branch G in all combinations,

as depicted in Table 17. While fixing the interval [ B, B°Y] with [0%, 100%)] or [10%,

roo

90%] for P2, branch G is ranked the last of all branches, whatever the interval [ B/, B'Y]

for P. . On the contrary, while we shorten the interval [ B, B°Y] step by step from [0%,

roo

100%] to [40%, 60%] for P2, fixing the interval [ B/, B'"] at [0%, 100%] for P., branch
G can reach the best one of all branches.

Following the above observation, we understand that the ranking of branch G is deeply

affected by the variation of interval [ B, B°Y]. If the manager is asked to only select some
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combinations as the reference of assessment, they should concentrate more attention in

determining the appropriate interval [ B, B°“]. Branch G will obtain a different ranking
while the manager determines a different interval [ B, B°"]. As for the determination of

roo

interval [B", B/"], in this case it is not necessary for the manager to cost more effort

because these combinations show the same ranking while the interval [ B, B/Y ] varies.

In order to explore the cause of the above phenomenon, we observe the relationship

between the ranking variations and proportion variations of branch G while varying interval

[B", B/Y]or[B%, B°Y], as Table 18 and Table 19 depicted. It is obvious that the values

of PL(54%) and P, (46%) obtained in Cl are simultaneously satisfied with a narrower
interval [ B, B/Y]in C2, C3, C4, and CS5. Therefore, as depicted in Table 18, while fixing

the interval [B?, B°Y] at [0%, 100%)] and shortening the interval [ B/, B/Y], we still

obtain the invariant values of propertion and ranking for branch G. However, as depicted in
Table 19, P2 (74%) and Pj%(26%) obtained .in Cl are not satisfied with the narrower
interval [Bro o Bro Y1in C6;C11, C16, and C21. In orderto satisfy narrower intervals [BFOL ,
B°], the smaller P2 and P are necessaty. Therefore, the above variation in interval

[BOL

roo

B°Y ] easily results in the variations.of=Rzs P, ; and ranking.

Table 18. The proportion variations of/indices of branch G while varying [ B/, B'']

Combination Ranking [B/",B/"] PL P [B* BY] P° P

Cl g™ [0%, 100%] 54% 46% [0%, 100%]  74% 26%
C2 gt [10%, 90%] 54% 46% [0%, 100%]  74% 26%
C3 gt [20%, 80%] 54% 46% [0%, 100%]  74% 26%
C4 g™t [30%, 70%] 54% 46% [0%, 100%]  74% 26%
C5 g™ [40%, 60%] 54% 46% [0%, 100%]  74% 26%

Table 19. The proportion variations of indices of branch G while varying [ B**, B°Y]

Combination Ranking [B/,B/"] PL P). [B*,B°Y] P2 P

Cl 8% (0%, 100%]  54%  46%  [0%, 100%] 74%  26%
C6 8" [0%, 100%]  54%  46%  [10%,90%] 74% = 26%
Cl1 6" [0%, 100%]  42%  58%  [20%, 80%] 66%  34%
C16 2 (0%, 100%]  23%  77%  [30%,70%] 53%  47%
C21 1 [0%, 100%]  19%  81%  [40%, 60%] 42%  58%
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Following the above discussion, we conclude that given the fixed interval [ B, B°Y],

ro

if the value of P. and P). obtained in C1 is feasible in the narrowest interval [ B, B/Y]

1

of C5, then the values of P, and P/, are also feasible in C2, C3, and C4. Most importantly,
the ranking is invariant with the same proportion in these combinations. If the manager needs
to complete all combinations, it is helpful for them to deduce the times of assessment by
omitting C2, C3, and C4 while fixing the interval [ B®*, B°Y]at [0%, 100%].

roo
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4. Most Compromise Weight Analysis (MCWA) to Rank Organization Units

MCWA model discuss the ranking of organization units by releasing the restrictions that
the efficiency score of all units can’t exceed the value 1.0 in CWA model. It generates the
common weights from the perspective of gap minimization similar to the regression analysis
model. Besides, we consider the cluster analysis in the application of MCWA to solve the

problem of bias ranking in units because of the different scales.

4.1 Performance measurement philosophy

The CWA methodology in section 3 follows the DEA structure, using the organization
manager as the object units to determine the favorable weights. CWA also limits that none of
DMUs?’ efficiency scores is allowed tolexceed 1:0. However, the restriction possibly prevents
the efficiency from being developed for some excellentunits. It easily results in the bias in the
assessment results. In order to make the -units possessing the freedom in creating the
efficiency score, we develop the second procedure to determine one compromise common set
of weights by eliminating the restriction With upper bound-1.0 in efficiency score. We expand
the MCWA model proposed by Liu ¢t al. [34] in this section to complete the corresponding
analysis in ranking. The proposed model in the second procedure is similar to the regression
analysis model with the main difference that the proposed model can handle multiple

dependent variables while regression model focus on one dependent variable.

4.2 MCWA model
We expand the scenario in Figure 2 to the scenario in Figure 5. Given two UOA),, and

UOAy with one known common weight ljr (r=1,2,...,s) and 171 i=1,2,...,m)is
assigned, the sum of virtual gap to Diagonal Line (DL) is Z/}vﬁLZﬁl, which mean the

performance variation of two UOAs. However, we want to choose one optimal common
weight to minimize the sum of virtual gap for purpose of expressing the minimal variation

between the two UOAs. The minimized sum of virtual gaps is the objective function value of
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the linear program. For instance, as Figure 5 depicted, the simplified scenario can be modeled
to Eq. (4-1). The constraints Eq. (4-1.1) and Eq. (4-1.2) stands for the adjustment of two

UOAs to DL with combination of the virtual gaps A%, A%, A% and A" .

Assume that there are n UOAs, the model (4-1) can be expanded into model (4-2) with
some UOAs belong to the set 4 (UOAs above DL) and the others belong to the set B (UOAs
below DL). The parameters ¢/ and ¢ are the positive Archimedean infinitesimal constant
with scale unit “D/ unit of the associated i-th input and r-th output indices”, respectively. The
symbol D denotes the virtual scale unit for the weighted input and outputs. For instance, while
yy; takes the dollar ($) as its unit, then we obtain the unit of & to be the ratio (D/$). The
products ¢/ x; ande’y,; finally obtain values in D that are equivalent to the virtual gaps:

(A%, A7)y and (A%, A7), respectively.

Virtual Output

A Diagonal Line Slope=1.0
y 7 N 4
;y"'U" N _%ilv -
N A
2
NP
MP
N\
A 133 !
|
= ———— —
N M
A
— Virtual Input
0 ~
x.V.

g
i=1

Figure 5. Gap analysis for UOAs locating on the both side of diagonal line

In addition, the fractional model (4-2) can be transformed into the linear model (4-3) for

computation. The triangular in Figure 5 is one isosceles right triangular, so it leads to

AV = AT = L A" and AP =AT = LA@. Then, (4-3) could be rewritten as (4-4).

V2 V2
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MCWA-FP1

min  Af, + A%, (4-1.0)
Z erUr - A(?\I;l
st 22 -1, (4-1.1)

m
Z XV + AIJ/\I/

i=1

ierUr +A(/)lf

= _1L (4-1.2)
Z xiMVi 'AIAI;
i=1
U,2¢e? >0, r=1...,s, (4-1.3)
V.>¢g! >0, i=1...,m, (4-1.4)
Ny NS N AT, A A 20, (4-1.5)
MCWA-FP2
min Y A+ YA (4-2.0)
jed JjeB
S 04
205U, =4
st L R -1 Pl (4-2.1)
25V + A
i=l1
= OB
ZyrjUr +AY
r::’n =1, jeB, (4-2.2)
1B
Z, X, Vi -4
U .>e%>0, r=1...,s, (4-2.3)
V.>¢g!l >0, i=1,...,m, (4-2.4)
A7 AT, 4520, jed (4-2.5)
IB OB B .
AN AT, AT >0, Jj€B. (4-2.6)

We expand the model (4-4) into the model (4-5) by adding Aj. and A’_B/. in each constraint
for the convenience of computation. Since Af =0 while je4 and A jA =0 while j € B,

the variables A7 and A are separately added into (4-5.0), (4-5.1) and (4-5.2).
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MCWA-LP1

min ZA”; +ZA€. (4-3.0)
jed jeB

st Dy U, =D xV, -A"-A% =0, jed, (4-3.1)
r=1 i=1
Z;y,jUr - Z}x"f'Vl’ +A” +A% =0, jeB, (4-3.2)
U >&%>0, r=1,..,s, (4-3.3)
V,2&l >0, i=1..,m, (4-3.4)

14 04 A .
Aj,Aj,AjZO, JeA4, (4-3.5)
1B OB B .
ATAT LA 20, jeB. (4-3.6)
MCWA-LP2

min ) AL+ A (4-4.0)
jed jeB

st. >y, U, - 20w,V - 2B 050 e 4, (4-4.1)
r=1 i=1
; y,U,= Zl:xJV +424% =0, jeB, (4-4.2)
U, >e’ 50, =t (4-4.3)
V,2¢el >0, i=1,..,m, (4-4.4)
A >0, je4. (4-4.5)
A’ 20, jeB. (4-4.6)

MCWA-LP3

min Y (A7 + A7)+ 3 (a7 +47) (4-5.0)
jed jeB

st Yy, U =D xV,-280 +420% =0, jeA, (4-5.1)
r=1 i=1
; y,U, - ZxJV V20" +424° =0, jeB, (4-5.2)
U .>e%>0, r=1,...,s, (4-5.3)
V,2¢el >0, i=1..,m, (4-5.4)
A 20, A% =0, jed, (4-5.5)
A" 20, A"=0, jeB (4-5.6)
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Model (4-5) is equivalent to model (4-6) by combining (4-5.1) with (4-5.2) and combining
(4-5.5) with (4-5.6), we obtain the formulation (4-6.1) and (4-6.4).

MCWA-LP4

min ) (A1 +A?) (4-6.0)
j=1

st >y U =D xV,-280 +420% =0, j=1...n, (4-6.1)
r=1 i=1
U, 2’ >0, r=1...,s, (4-6.2)
V,2¢l >0, i=1,...,m, (4-6.3)
A, A% 20, j=l..n (4-6.4)

Here, we define the MCWA efficiency score 7, of UOA4;, as defined as Eq. (4-7).
Z Vi U,
n, == 5
25V
i=1

V' and U; denote the optimal common weights obtained in (4-6) for all UOAs attached to

j=L.n, (4-7)

the input index 7 and outputiindex 7.

Model (4-6) is similar”to the' multiple regressionsmodel while we only consider one
dependent variable and multiple ;independent variables. The equation (4-6.1) relating m
independent variables (xyj, X2, ..., X,j) to a dependent variable y of the form can be depicted in

(4-8). Then, (4-8) can be transformed into common form (4-9) of multiple regression model.

& XV \/EA/j \/EAEj
N ;o _

=) — ,  Jj=1...,mn, 4-8
o V2 .
R Ry N L (4-9)
i=1

Generally, we desire to minimize the sum of squares Fz(A”; —Af.) for all UOA; and

generate the following model (4-10). In the other words, we can regard MCWA model as the

similar regression model while considering one dependent variable.
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min (A" + %) (4-10.0)

J J
=1
s yj=2xyai+g(&j—&j), j=l..n, (4-10.1)
i=1
> >0, i=1,...m, (4-10.2)
A .
A A 20, j=l...n. (4-10.3)

4.3 Numerical example 4

In order to describe the methodology readily, we use the same set of hypothetical data
as depicted in Table 11 to implement the MCWA model. A manager of a retail company
governs eight branches and periodically assesses them by observing four performance indices:
number of Employees, Cost, Turnover, and Profit. Employees and Cost are treated as input

indices, while Turnover and Profit are the output ifidices.

Table 20. The efficiency scote and ranking of using € WA MCWA and (4-11) models

Branch (1) CWA (2) MCWA (3) (4-11) with o" =1.175
J ¢, Ranking « Gap 7"~ Ranking Gap Score Ranking  Gap
A 1.000 1 0.00 " 1:057 1 452.26 1.237 1 358.60
B 0.902 8 958.54 ©0.957 8 398.87 1.119 8 385.43
C 0.947 4 469.24  +1.006 3 4953 1.175 3 0.00
D 0.984 2 169.98  1.042 2 41227 1.215 2 285.28
E 0.934 6 711.65  0.986 7 14732 1.150 7 191.90
F 0.931 7 737.85  0.987 6 130.24  1.155 6 148.25
G 0.956 3 387.45  1.000 4 0.00 1.175 3 0.00
H 0.945 5 600.87  1.000 4 0.00 1.175 3 0.00

Total 4033.58 Total 1590.49 Total 1369.46

Notel: (¥, ,¥, ,U, ,U, ,U,")=(1.00, 1.27, 1.00, 1.00) in CWA model
Note2: (V,",V, ,U, ,U, ,U,") = (13.24, 1.16, 1.00, 1.00) in MCWA model
Note3: (¥, ,V, ,U, ,U, ,U,") =(12.70, 1.00, 1.00, 1.26) in model (4-11)

We can use the CWA model (3-3) to search the benchmark and the detailed ranking of
all branches. The corresponding reference information is depicted in the column (1) of Table
20 and the benchmark is branch-A. In fact, while we use the model (4-6) by releasing the

restriction that none of DMUSs’ efficiency scores is allowed to exceed 1.0, the benchmark is
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still the branch-A and its efficiency score increases to 1.057 as depicted in the column (2) of
Table 20. There also exists little variation in the accurate ranking of branches and the ranking
are similar in the most branches.

In order to make MCWA model more flexible, Liu and Lin [35] proposed to replace the
efficiency score 1.0 by the unknown slop o of DL in MCWA model with some UOAs belong
to the set A" (UOAs above DL with slop o) and the others belong to the set B (UOAs
below DL with slop o). They transform the model (4-2) into the following nonlinear
programming model (4-11). We reassess the dataset by the model (4-11) and obtain the score
and ranking in the column (3) of Table 20. We obtain the almost consistent results in ranking

between MCWA model and model (4-11) and the latter possesses the minimum gap 1369.46.

min Y AT+ A% (4-11.0)
jed' jeB'
2 y,U, - Ag

st. 20— =0, -jed, (4-11.1)

m
D x5V A
i=1

N OB’
; y,U, #4£°

L g (4-11.2)
inij _AIJB,

i=1
U’,ZE’,O>O, 7"=1,...,S, (4_113)
V.2¢g!l >0, i=1...,m, (4-11.4)
"' o4’ A . ’
AT AT LAY 20, je d, (4-11.5)
1B’ OB' B’ . ’
AT AT LAY 20, jeB. (4-11.6)

4.4 Applying cluster analysis in MCWA model

Cluster analysis is a term used to describe a family of statistical procedures specifically
designed to discover classifications within complex data sets. The objective of cluster analysis
is to group units into clusters such that units within one cluster share more in common with
one another than they do with the units of other clusters. Thus, the purpose of the analysis is

to arrange units into relatively homogenous groups based on multivariate observations.
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Minimum variation method proposed by Ward [36] is probably the most widely used in
the cluster analysis. The relative proximity of a set of units can be described using the concept
of sum of squares, the squared sum of the distances of each unit from the mean value of the
cluster. Using Ward’s method, the cluster that results in the smallest increase in the sum of
squares is formed during each step. Every possible combination of cluster formation is
considered at each subsequent step. The minimum variation method provides the division of

initial units for the purpose to proceed to further ranking analysis.

4.5 Numerical example 5
In order to describe the procedure readily, we use the data of Table 21 as our example.
The input indices include number of employees and cost and the output indices include the

business of credit, deposit, and logn.”We propose asloop with three major steps to classify the

UOA:s.

Table 21. Dataset of 12 bank branches with 5 performance indices

Branch Input index Output index
J Employee ( x; A ) Cost(x, j) Credit ( y, j) Deposit ( y, ; ) Loan (y, j)
Person $ $ $ $
A 23 510 1500 78397 7940
B 26 BT 1705 78680 7970
C 36 922 1718 63960 6604
D 42 1012 1812 65426 6682
E 48 1056 1746 66546 6988
F 33 799 631 11671 1551
G 28 544 412 8566 974
H 39 880 750 12312 1389
I 40 968 838 13166 1584
J 29 552 621 7011 789
K 37 824 720 9974 1002
L 35 941 695 10087 1192

Step 0: Initialized the number of subgroup, k&=1.
Step 1: Use the computational model (4-6) to obtain the common set of weights U~ (r =1,

2,...,8)and V' (i=1,2, ..., m) for the group of UOAs and compute their efficiency

scores. Then go to Step 2.

Step 2: Proceed with a hypothesis test to the obtained efficiency scores with the null
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hypothesis that the mean of efficiency scores for each subgroup of UOAs is equal to
1.0. If all the subgroups accept the null hypothesis, stop the procedure here. Otherwise,
go to Step 3.

Step 3: Employ Ward’s cluster analysis method [36] to categorize the whole UOAs into A+1
subgroups. Then the units belong to each of the £+1 subgroups are further processed
by Step 1. Update k as k+1.

We randomly generated a large number of experimental datasets. Generally, the final value of

k would not be more than three.

Step 1: Applying MCWA to all branches

Apply the dataset, we called S here, in Table 21 to the MCWA model (4-6), the optimal
solutions are depicted in Table 22. The objective function value, total virtual gap 2384.92
(Bx100) of all branches to DL is the minimized oene with the common set of weights
v, v, U U, UL = (94:03 B/person, 13.45 /S, 1:00 B/$, 1.00 B/$, 1.00 B/S). Then,
each branch’s coordinates ()'c;, y;) are plottedsin Figure=6, with x-axis 94.03 x, +13.45x,
and y-axis 1y, +1y, +1y;.

For instance, branch Flocates at coordinate (i, ,3,) = (167.85, 155.88) and is ranked
9™ with the efficiency score 0.929; The virtual gap'is 8.46. According to Table 22, branches A
and L are identified as the best and the worst branches. Besides, relative to DL, the three
subgroups of branches {A, B, C, D, E}, {H, I, J, K, L} and {F, G} are located above, below

and on the DL, respectively.

Step 2: Proceeding with a hypothesis test to the obtained efficiency scores

According to the efficiency score 7’ in Table 22, we reject the null hypothesis with
p-value 0.043 by using the #-test on the degree 11 and confidence coefficient 0.05. It implies
that there exists significant difference in the level of branches such that the common set of
weights cannot efficiently minimize the total virtual gap for the point at all branches in DL.
The case possibly leads to the bias of ranking. Therefore, we go to the step 3 to classify the

branches into two subgroups.
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Step 3: Classifying the branches

The general manager who governs the branches may observe the above ranking as one
rough reference while there is a significant difference in the efficiency scores for branches. In
Step 2, we analyze the dataset of five original performance indices in Table 21 by Ward’s
method with computer software SPSS 13.0. Then, the 12 branches of initial group S are
classified into two subgroups, C;= {A, B, C, D, E} and C, = {F, G, H, I, J, K, L}. The
minimum total sum of squares 2.44E+08 for these two subgroups is composed of the
individual subgroup’s sum of squares 2.15E+08 for C; and 2.89E+07 for C,, respectively.

Then proceed to the MCWA model for the branches of each subgroup.

Virtual Output  j
VitV T Vs

Diagonal Line Slope=1.0
Cl

» Virtual Input
94.03x, +13.45 x,

Figure 6. The expression to branches in group S

Back to Step 1: Applying MCWA to each subgroup of branches

The datasets of subgroups C;= {A, B, C, D, E} and C, = {F, G, H, 1, J, K, L} are being
substituted for the original set S in Table 21 to model (4-6), the results of the two subgroups
are arranged in Table 23. Observe Table 23, the ranking of branches in subgroup C,, F>1>G

=H=1J>K > L is different from the ranking of branches in Table 22, F=G>H>1>J>K >
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L. The branch I obviously changes its order. In terms of scale, the branches in subgroup C; are
obviously larger than subgroup C,. It implies that the scale possesses the influence on the
common set of weights for the group S. According to our procedure, the branches in subgroup
C, have similar scales. Eliminating the effect from the branches of subgroup C;, the common

set of weights is fairer in ranking the branches of subgroup C..

Table 22. The computation results to 12 branches of group S

Score / Rank Virtual input / output Virtual gap
Branch j N L s . .
n; Rank X, (Bx100) y;(Bx100) A% Bx100) A (Dx100)
A 9.73 1 90.24 878.37 0.00 557.29
B 8.73 2 101.27 883.55 0.00 553.15
C 4.58 3 157.90 722.82 0.00 399.46
D 4.21 4 175.65 739.20 0.00 398.49
E 4.02 5 187.21 752.80 0.00 399.93
F 1.00 6 138.53 138.53 0.00 0.00
G 1.00 6 99.52 99.52 0.00 0.00
H 0.932 8 155.07 144.51 7.47 0.00
I 0.929 9 167.85 155.88 8.46 0.00
J 0.82 10 101.54 84.21 12.25 0.00
K 0.80 11 145:65 116.96 20.29 0.00
L 0.75 w2 159.52 119.74 28.13 0.00
Subtotal 76.60 2308.32
Total 2384.92

Note: (V,",V, ,U,",U, ,U,") = (94.03 Blperson, 13.45 B/$, 1.00 B/$, 1.00 B/$, 1.00 B/S)

Then, by setting the confidence coefficient as 0.05, the null hypothesis that the mean of the
five efficiency scores of subgroup C; equals to 1 is accepted with p-value 0.17. Similarly, the
seven efficiency scores of subgroups C, have also accepted the null hypothesis with p-value
0.31. Figure 7 and Figure 8 depict the locations of the branches of subgroup C; and subgroup

C,, respectively.

56



Table 23. The computation results to branches of 2 disjoint subgroups C; and C,

Score / Rank Virtual input / output Virtual gap
Branch j . L " . R
n; Rank X, (x100) y, (Bx100) A% Bx100) A} (Dx100)
A 2.36 1 372.54 878.37 0.00 357.68
B 2.12 2 417.10 883.55 0.00 329.83
C C 1.07 3 673.44 722.82 0.00 34.92
D 1.00 4 739.20 739.20 0.00 0.00
E 0.98 5 771.38 752.80 13.14 0.00
Total 13.14 722.43
F 1.04 1 186.85 193.36 0.00 4.60
G 1.00 3 135.32 135.32 0.00 0.00
H 1.00 3 209.68 209.68 0.00 0.00
C; I 1.01 2 226.40 228.70 0.00 1.62
J 1.00 3 138.17 138.17 0.00 0.00
K 0.91 6 197.05 179.53 12.39 0.00
L 0.84 7 214.40 180.13 24.23 0.00
Total 36.62 6.22

Notel: (¥, ,V, ,U,",U, ,U,") = (1.00,B/person, 73.00 B/$, 1.00 B/$, 1.00 B/$, 1.00 B/S)
Note2: (¥, ,V, ,U, U, ,U, ) =(146.48 D/person, 17.34 D/$, 9.69 B/$, 1.00 B/$, 1.00 D/$)

Diagonal Line Slope=1.0

Virtual Output 4 L A.B

Nth+)

p Virtual Input

x, +73x,

Figure 7. The expression to branches in subgroup C;
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Diagonal Line Slope = 1.0

Virtual Output

969+, +);

» Virtual Input
0 146148 x, +17.34 x,

Figure 8. The expression: to branches in subgroup C,
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5. Conclusion and Discussion

In this research, we develop two procedures to determine the common weights relative to
the performance indices across all units of organization. The first one is to determine the
common weights by searching the benchmark unit in the organization. One virtual benchmark
is defined as units with efficiency score 1.0 and all units are asked to approach the virtual
benchmark as close as possible. The units with zero gaps to the virtual benchmark are the real
benchmark. In the structure of data envelopment analysis, the determination of common
weights in this research means that the organization determines the favorable weight to
maximize the organization efficiency. The obtained common weights can assist the
organization managers in generating the individual efficiency score for all units and the
corresponding ranking problem can be addressed.by comparing with the scores. However, in
the first procedure, sometimes, there is existing some units with the equivalent efficiency score
1.0 due to the constraint that none-of DMUs? efficiency scores is allowed to exceed 1.0. It
possibly leads to the obstruction of efficiency development. In order to avoid the bias in
measurement due to the upper bound _of efficiency, we=develop the second procedure to
determine one compromise common ‘set of weights by.eliminating the restriction with upper
bound 1.0 in efficiency score. It leads to the more complete ranking without the repeatable
efficiency scores.

Several interesting subjects for the further development of this research are discussed.
Besides the scenarios of benchmark chasing and neutral compromise, risk avoidance owns the
highest potential for the management. Risk avoidance focuses the prediction of possible and
potential UOAs with the worst performance and provides the improvement plan in advance.
The excellent risk avoidance always saves a possible significant lost for organizations.

In this research, the common set of weights is applied to all UOAs under different
scenarios and the performance indices are assumed given. Some methods for the selection of
performance indices will help this research to possess reliable assessment outcomes.
Statistical approaches and other methods such as analytic hieratical process (AHP) [37] and

analytic network process (ANP) [38] would help to select appropriate combinations.
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We used non-negative data for the numerical examples of the procedures proposed. One
should examine the applicability of the proposed procedures to the other data types, such as
negative data, probabilistic data, fuzzy data, ordinal data, and interval data in determining the
common set of weights.

In numerical example 3, Table 14 shows that five interval limitations were set for both
the proportional virtual output and proportional virtual input, respectively. In our particular
numerical example, we observed that the rankings of the UOAs possess the robustness under
the considerable amount of combinations. In fact, how to determine the amount of interval
limitations for obtaining the ranking robustness is a critical issue. One would observe the
interaction between the setting of boundary intervals and the rankings by observing more and
more combinations. Generally, the rule for setting the interval limitations is straightforward,
the lower bounds are in increasing order while the upper bounds are in decreasing order.

Section 4 provides the analysis similar to Eeast Square Method (LSM). While there are
existing multiple dependent variables, this model may' provide the corresponding analysis.
The slope of the diagonal line is also anothér issue. A non-linear programming model can

search for the optimal slope’so that the totalrgapisfurther minimized.
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