
 

 

國 立 交 通 大 學 
 

工業工程與管理學系 
 

博士論文 
 
 
 
 

以多指標評比受評單位時之共同權重分析 
 

Common Weight Analysis to Assess Units with 

Multiple Performance Indices 
 
 
 
 
 
 

研 究 生：彭浩軒 

指導教授：劉復華 博士 

 
 

中 華 民 國 九 十 七 年 七 月 



 

 

以多指標評比受評單位時之共同權重分析 
 

Common Weight Analysis to Assess Units with 

Multiple Performance Indices 

 
研 究 生：彭浩軒 Student: Hao-Hsuan Peng 

指導教授：劉復華 博士 Advisor: Fuh-Hwa Franklin Liu, Ph.D. 

 
國 立 交 通 大 學 
工業工程與管理學系 

博 士 論 文 
 

A Thesis 

Submitted to Department of Industrial Engineering and Management 

College of Management 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Industrial Engineering and Management 
 

July 2008 
 

Hsinchu, Taiwan, Republic of China 
 
 

中    華    民    國    九    十    七    年    七    月



 

 i

以多指標評比受評單位時之共同權重分析 

 
研 究 生：彭浩軒 指導教授：劉復華 博士 

 

 

國立交通大學工業工程與管理學系博士班 

 

摘   要 

一般常見的組織，如銀行、醫院、學校…等等，其管理者經常處理以多指標評比其

轄下單位的問題。管理者常會期望決定各指標的權重，以計算各單位的綜合績效，進一

步將各單位加以排序，並探討組織內部績效變異的趨勢。而建立共同權重的方式簡單可

以分為兩類，事前管理者主觀決定與事後客觀由資料本身來決定，在本研究則是以後者

的方式探討組織內部各單位的績效與排序。以搜尋標竿的機制下來決定共同權重以進行

排序，透過設定虛擬標竿並最小化所有單位與虛擬標竿的差異來完成，而與虛擬標竿保

持無差異之單位即是實質標竿。若以資料包絡分析法的數學模式架構來分析，即是以組

織管理者的角度客觀決定一組共同權重，以進行組織內部的各單位排序。另外，為避免

績效值上限值造成組織內部各單位績效發展上的阻礙，本研究衍生出第二種數學模式，

消除績效值上限為 1 的限制，並以中立妥協的角度產生一組共同權重來進行排序。此一

模式類似於回歸分析最小化各單位之間的差異，而其最大不同在於可同時處理多項應變

數。最後，我們將此兩種共同權重的分析流程，透過數個範例進行應用上的模擬。 

關鍵字：多指標、共同權重、排序、資料包絡分析法、回歸分析 
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Common Weight Analysis to Assess Units with 

Multiple Performance Indices 
 

Student: Hao-Hsuan Peng      Advisor: Fuh-Hwa Franklin Liu, Ph.D. 

Department of Industrial Engineering and Management 

National Chiao Tung University 

Hsin Chu, Taiwan, Republic of China 

 

Abstract 

Managers in many fields such as banks, hospitals, and schools frequently assess units 

under their governance with multiple performance indices. In order to rank the units 

intuitively with a comparable score, managers always try to determine a common set of 

weights attached to the indices across all the units. The determination of weights is divided 

into two ways. One is predetermined subjectively by the manager; the other is determined 

objectively by the data itself. The methodologies proposed in this research belong to the latter. 

We propose a procedure to determine the common weights by searching the benchmark unit. 

One virtual benchmark is defined as units with an efficiency score of 1.0 and all units are 

asked to approach the virtual benchmark as closely as possible. The units with zero gaps to 

the virtual benchmark are the real benchmark. In the structure of the data envelopment 

analysis, the determination of common weights in this research means that the organization 

manager determines the favorable weight to maximize the organization efficiency. 

Additionally, in order to avoid the bias in measurement due to the upper bound of efficiency, 

we develop the second procedure to determine one compromise common set of weights, by 

eliminating the restriction imposing the upper bound of 1.0 on the efficiency score. The model 

we propose is similar to the regression analysis model, with the main difference being that the 

former can handle multiple dependent variables. Finally, the procedures are applied in several 

numerical cases. 

Keywords: multiple performance indices, common set of weights, rank, data envelopment 

analysis, regression analysis. 
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Notations 

Used in Data Envelopment Analysis (DEA) models 

DMU: Decision-making Units 

n  : the number of DMU 

m  : the number of input 

s  : the number of output 

i  : the index of input i 

r  : the index of output r 

j  : the index of DMU j 

o  : the index of object DMU 

iov  : the weight assigned to input i of DMUo 

rou  : the weight assigned to output r of DMUo 

ijv  : the weight assigned to input i of DMUj 

rju  : the weight assigned to output r of DMUj 

ijx  : the input i of DMUj 

rjy  : the output r of DMUj 
∗
oθ  : the efficiency score of the objective DMUo in input-oriented optimization model 
∗
jθ  : the efficiency score of DMUj in input-oriented optimization model 
∗
oη  : the efficiency score of the objective DMUo in output-oriented optimization model 

ε  : the positive Archimedean infinitesimal constant 

E  : the set of efficient DMUs 
∗
jϕ  : the efficiency score of DMUj using common set of weights in DEA structure 

 

Used in Common Weights Analysis (CWA) models 

UOA: Unit of Assessment 

iV  : the common weight assigned to input i across all UOAs 

rU  : the common weight assigned to output r across all UOAs 
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∗ 
iV  : the common weight assigned to input i across all UOAs in the optimization model 

* 
rU  : the common weight assigned to output r across all UOAs in the optimization model 
′

iV  : the arbitrary common weight assigned to input i across all UOAs 
′

rU  : the arbitrary common weight assigned to output r across all UOAs 

iX  : the input i of aggregated DMU 

rY  : the output r of aggregated DMU 
O
jΔ  : the total virtual gap of the outputs for UOAj to the benchmark 

I
jΔ  : the total virtual gap of the inputs for UOAj to the benchmark 

jΔ  : the total virtual gap of the inputs and outputs for UOAj to the benchmark 

jζ  : the CWA efficiency score of UOAj 

O
rε  : the positive Archimedean infinitesimal constant of output r 
I
iε  : the positive Archimedean infinitesimal constant of input i 

jπ  : the produced marginal improvement of UOAj 

rP  : the total shortfall of the output r to benchmark for all UOAs 

iQ  : the total excess of the input i to benchmark for all UOAs 

rjp  : the shortfall of the output r to benchmark for UOAj 

ijq  : the excess of the input i to benchmark for UOAj 

VWR-CWA : CWA with virtual weights restrictions 

jξ  : the VWR-CWA efficiency score of UOAj 

iwα  : the preference of input i to restriction w 

rwβ  : th preference of output r to restriction w 

wk  : the intercept of line restriction w 
o

rjP  : the proportional virtual output r of UOAj 
I

ijP  : the proportional virtual input i of UOAj 

ra  : the lower bound of o
rjP  for all UOAj 

rb  : the upper bound of o
rjP  for all UOAj 

ic  : the lower bound of I
ijP  for all UOAj  

id  : the upper bound of I
ijP  for all UOAj 

OL
rB  : the lower bound of o

rjP   with the parameter -
rδ  



 

 x

OU
rB  : the upper bound of o

rjP  with the parameter +
rδ  

IL
iB  : the lower bound of I

ijP  with the parameter -
iτ  

IU
iB  : the upper bound of I

ijP  with the parameter +
iτ  

 

Used in Most Compromise Weights Analysis (MCWA) models 

A : the set of UOAs above diagonal line 

B : the set of UOAs below diagonal line 

σ  : the variant slope of DL 

A′  : the set of UOAs above diagonal line with unknown slope σ  

B′  : the set of UOAs below diagonal line with unknown slope σ  
A
jΔ  : the total virtual gap of the inputs and outputs of UOAj above the diagonal line 

B
jΔ  : the total virtual gap of the inputs and outputs of UOAj below the diagonal line 

OA
jΔ  : the total virtual gap of the outputs of UOAj above the diagonal line 

IA
jΔ  : the total virtual gap of the inputs for UOAj above the diagonal line 

OB
jΔ  : the total virtual gap of the outputs of UOAj below the diagonal line 

IB
jΔ  : the total virtual gap of the inputs of UOAj below the diagonal line 

O
rε  : the positive Archimedean infinitesimal constant of output r 
I
iε  : the positive Archimedean infinitesimal constant of input i 

jη  : the MCWA efficiency score of UOAj 

Đ : the virtual scale unit for the weighted inputs and outputs. 
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1. Introduction 

We will give a brief description about the motivation, background, problem description, 

assumption, objectives, and organization of the research in this section. 

 

1.1 Motivation and background 

Performance measurement of one organization is that of assessing progress toward 

achieving the predetermined goals. In the process, the variant information derived from 

performance assessments depends on the aims of the assessment. In general, for the purpose 

of improving the worst and rewarding the better units, managers often focus the performance 

management on the generation of objective ranking of the units. However, it is a difficult task 

to assess the organization units while the general manager considers multiple performance 

indices simultaneously. This is especially difficult within the organization, for each unit of 

assessment (UOA), multiple kinds of resources they use, and multiple types of output they 

produce must be considered. For example, all bank branches would typically use staff and 

capital assets to generate income activities, such as advancing loans, selling financial products, 

and carrying out banking transactions for their clients. Generally, the managers predetermine 

the weights subjectively for each performance index. The traditional determination of weights 

possesses the advantage that the determination can easily cover the managers’ preference in 

different performance indices, and it is intuitive without redundant numerical analysis. 

However, the disadvantage is that it is hard to make a decision in determining the weights 

while the managers have no idea about the relationship among the performance indices. 

Sometimes, in the above condition, they need some methodologies to assist them in finishing 

the measurement. 

Data Envelopment Analysis (DEA), originated by Charnes et al. [1], is one famous 

methodology to analyze the relative efficiency of units with multiple performance indices. 

DEA determines a set of the most favorable weights for each unit against all units. In other 

words, units employ a different set of weights to create their most favorable efficiency scores 

individually. DEA successfully separates the units into two subgroups: not-be-dominated and 
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be-dominated units, also known as efficient and inefficient units. The methodology provides 

preliminary useful and valuable information to the unit of rewarding and improvement. 

However, ranking of units in each group is still a challenging task. Cooper and Tone [2] 

proposed that one cannot rank the be-dominated units according to their performance scores, 

since each of them may have a particular set of not-be-dominated units as their reference set. 

All the not-be-dominated units are tied numerically with the performance score 1.0 and 

cannot be ranked. There is a vast amount of literature about ranking the efficient and 

inefficient units and this will be discussed in the following literature review in section 2. 

 

1.2 Problem description and assumption 

The problem is usually expressed as the following: In one organization, n UOAs with the 

known m inputs and s outputs indices are assessed for the purpose of ranking and 

performance improvement. For each UOA, say UOAj, the given values of input and output 

indices are denoted as (x1j, x2j, …, xmj) and (y1j, y2j, …, ysj), respectively. The inputs, or 

resources, are the indices that the lower value is desired in performance measurement. 

Therefore, the indices possess the characteristic of to-be-minimized, also categorized as 

“inputs.” On the other hand, the outputs, also known as production, are the indices that the 

higher is the better. Therefore, the indices possess the characteristic of to-be-maximized, 

which are also categorized as “outputs.” The ratio of the weighted sum of outputs (also called 

virtual output) to the weighted sum of inputs (also called virtual input) is called the efficiency 

score.  

In our solved problem, the indices are assumed that are accumulative to the individual 

unit to the organization. Hence, the statistics, for instance the mean or variance, are not 

suitable to be the index candidates. Although any assessment may have uncountable possible 

performance indices combinations by facing different units even in the same organization, we 

assume that the performance indices and their corresponding data are given in advance in this 

research. Hence, we assumed the indices are determined already and that all of them can be 

quantified as nonnegative real numbers. The data of every UOA in all performance indices 

has been collected without the consideration of missing data. 
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1.3 Objectives of the research 

Without predetermining the weights of performance indices, in this research, we develop 

two procedures to determine the common weights, (V1, V2, …, Vm) and (U1, U2, …, Us), 

relative to the performance indices (x1j, x2j, …, xmj) and (y1j, y2j, …, ysj) across all units of 

organization. The first one is to determine the common weights by searching the benchmark 

unit in the organization. One virtual benchmark is defined as units with an efficiency score of 

1.0 and all units are asked to approach the virtual benchmark as closely as possible. The units 

with zero gaps to the virtual benchmark are the real benchmark. In the structure of data 

envelopment analysis, the determination of common weights in this research means that the 

organization determines the favorable weight to maximize the organization efficiency. The 

obtained common weights can assist the organization managers in generating the individual 

efficiency score for all units and the corresponding ranking problem can be addressed by 

comparing with the scores. 

However, in the first procedure, sometimes there exists some units with the equivalent 

efficiency score of 1.0, due to the constraint that none of the DMU efficiency scores is 

allowed to exceed 1.0. This could possibly lead to the obstruction of efficiency development. 

In order to avoid the bias in measurement due to the upper bound of efficiency, we developed 

the second procedure to determine one compromise common set of weights by eliminating the 

restriction with upper bound of 1.0 in the efficiency score. It leads to the more complete 

ranking, without the repeatable efficiency scores. The proposed model in the second 

procedure is also similar to the regression analysis model, with the main difference being that 

the former can handle multiple dependent variables, while the latter only focuses on one 

dependent variable. 

 

1.4 Organization of the dissertation 

In this research, Chapter 2 provides a review of the related literature about DEA, ranking 

of DEA units, and common weights in the ranking of DEA units. Chapter 3 introduces the 

ranking procedure, including CWA methodology, in view of the management perspective of 

benchmark chasing. In addition, in order to enforce the application in reality, the virtual 
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weights restrictions are considered in CWA to satisfy the real conditions in the assessment. 

Chapter 4 proposes the other methodology, MCWA, to discuss the common weights without 

considering the upper bound 1.0 of efficiency score. It results in some of the efficiency score 

exceeding 1.0 with superior ranking. The conclusion and discussion are presented in Chapter 

5. The structure of this dissertation is illustrated in Figure 1. 
 

 
 

Figure 1. Organization of dissertation 
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2. Literature Review 
We give a series of literature review in DEA, including several famous models and 

ranking methodologies in DEA structure, especially the common weights used in the ranking 

methodologies.  

 

2.1 Data envelopment analysis (DEA) 

Charnes et al. [1] introduce DEA to assess the relative efficiency of a homogeneous 

group of decision-making units (DMUs), such as schools, hospitals, or sales outlets. The 

DMUs usually use a set of resources, referred to as input indices, and transform them into a 

set of outcomes, referred to as output indices. DEA successfully divides them into two 

categories: efficient DMUs and inefficient DMUs. The DMUs in the efficient category have 

identical efficiency score. The initial problem is usually expressed as: n DMUs to be assessed 

with m inputs and s outputs indices. For each DMU, say DMUj, the given values of indices 

are denoted as (x1j, x2j, …, xmj) and (y1j, y2j, …, ysj), respectively. Given the data, DEA 

measures the best practice comparative efficiency of each DMU once and hence needs n 

optimizations, one for each DMUj to be evaluated. Let the DMUj being evaluated on any trial 

be designated as DMUo where o ranges over 1, …, n. We can solve the following multiplier 

form of fractional programming (2-1) or linear programming (2-2) to obtain objective value 

(relative efficiency θo
*) and one comparative set of weights of inputs ( ∗

iov , i = 1, …, m) and 

outputs ( ∗
rou , r = 1, …, s). The symbol ε is a positive Archimedean infinitesimal constant, 

which is used in order to avoid the appearance of zero weights. This zero case in weights 

would result in the meaningless of certain indices used in DEA. It is convenient to solve the 

envelopment form of linear programming (2-3), dual form of (2.2), to obtain objective value 

(relative efficiency θo
*) directly. Besides, linear programming (2-3) can provide the 

information of output shortfalls ( *+
rs ) and input excesses ( *−

is ) to the frontier. 
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It is claimed that object DMUo is comparative efficient, with the efficiency θo
* = 1.0, 

also called an efficient DMU. We define E = { j | θ j* = 1.0, j = 1, 2, …, n} to represent the set 

of efficient DMUs. However, it is not appropriate to claim that they have the equivalent 

performance in actual practice. Managers always face the problem of how to carry out a 

further comparison among DMUs on the set E. In addition, for the category of inefficient 

DMUs, the efficiency score is derived from comparisons involving performances of different 

sets of efficient DMUs. Their performances cannot be compared by comparing them with the 

range of efficiency score generated from the different facets. 

 

DEA-CCR- Output Oriented-Multiplier Form-FP 

∑

∑

=

=∗ = s

r
roro

m

i
ioio

o

uy

vx

1

1minη  (2-4.0) 

,,,1,1..

1

1 nj
uy

vx
ts s

r
rorj

m

i
ioij

K=≥

∑

∑

=

=

 (2-4.1) 
,,,1,0 sruro K=>≥ ε  (2-4.2) 
.,,1,0 mivio K=>≥ ε  (2-4.3) 

 

DEA-CCR- Output Oriented-Multiplier Form-LP 

∑
=

∗ =
m

i
ioioo vx

1
minη  (2-5.0) 

1..
1

=∑
=

s

r
rorouyts

 (2-5.1) 

,,,1,0
11

njuyvx           
s

r
rorj

m

i
ioij K=≥−∑∑

==  (2-5.2) 
,,,1,0 sruro K=>≥ ε  (2-5.3) 
.,,1,0 mivio K=>≥ ε  (2-5.4) 
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DEA-CCR- Output Oriented-Envelopment Form 

⎟
⎠

⎞
⎜
⎝

⎛
++= ∑∑

=

+

=

−
s

r
r

m

i
ioo ss

11

* max εηη  (2-6.0) 

,,,1,.
1

m  i       x sxts io

n

j
ijij K==+∑

=

−λ
 (2-6.1) 

,,,1,
1

s  r  y sy roo

n

j
rjrj K==−∑

=

+ ηλ
 (2-6.2) 

0≥oη  (2-6.3) 
,,,1,0 n  j                          j K=≥λ  (2-6.4) 
,,1,0 m  i                          si K=≥−

 (2-6.5) 
.,,1,0 s  r                     sr K=≥+
 (2-6.6) 

 

The type of models (2-1), (2-2), (2-3) is also called input-oriented model whose 

objective is to minimize inputs while producing at least the given output levels. The opposite 

type of models is called output-oriented model that attempt to maximize outputs while using 

no more than the observed amount of any input, as depicted (2-4), (2-5), (2-6). While 

combining both orientations in a single model, it is called the additive model, as depicted (2-7) 

and (2-8). The model (2-7) represents that each unit chooses the weight most favorable to 

obtain its efficiency score. By the dual model (2-8) of multiplier form (2-7), we can observe 

the input excess ( ∗−
is ) and the output shortfall ( ∗+

rs ) of each unit to the frontier. The sum of 

input excess and the output shortfall stands for the inefficient status of DMUo. When the most 

inefficient status is that there exist zero slack to the frontier, i.e. the maximum sum of slacks is 

zero, we call DMUo is efficient. 

 

DEA-ADD-Multiplier Form 

∑ ∑
= =

−
s

r

m

i
ioiororo vxuy 

1 1

max
 

(2-7.0) 

,,,1,0..
11

n  j vxuy   ts
m

i
ioij

s

r
rorj K=≤−∑∑

==  (2-7.1) 
,,,1,0 sru   ro K=>≥ ε  (2-7.2) 
.,,1,0 miv   io K=>≥ ε  (2-7.3) 
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DEA-ADD-Envelopment Form 

∑∑
=

+

=

− +
s

r
r

m

i
i ss

11
max  (2-8.0) 

,,1,.
1

m  i    xsxts ioi

n

j
jij K==+ −

=
∑ λ

 (2-8.1) 

,,,1,
1

s  r   ysy ror

n

j
jrj K==− +

=
∑ λ

 (2-8.2) 
,,,1,0 n  j                       j K=≥λ  (2-8.3) 
,,,1,0 m  i                       si K=≥−

 (2-8.4) 
.,,1,0 s  r                       sr K=≥+
 (2-8.5) 

 

2.2 Ranking in DEA  

Andersen and Petersen [3] evaluate that a DMU’s efficiency possibly exceeds the 

conventional score 1.0, by comparing the DMU being evaluated with a linear combination of 

other DMUs, while excluding the observations of the DMU being evaluated. They try to 

discriminate between these efficient DMUs, by using different efficiency scores larger than 

1.0. Hashimoto [4] developed a DEA super-efficient model with assurance regions in order to 

rank the DMUs completely. However, the super-efficient methodology can give specialized 

DMUs an excessive high ranking. In order to avoid this problem, Sueyoshi [5] introduced 

specific bounds on the weights in a super-efficient ranking model. The other problem lies with 

an infeasibility issue, Thrall [6] used the model to identify extreme efficient DMUs and noted 

that the super-efficiency CCR model may be infeasible. Zhu [7], Dula and Hickman [8] and 

Seiford and Zhu [9] prove that under some conditions various super-efficient DEA models are 

infeasible. Mehrabian et al. [10] suggested a modification to the dual formulation in order to 

ensure the feasibility. 

Cook et al. [11] developed prioritization models to rank only the efficient units in DEA. 

They divide those with equal scores, on the boundary, by imposing the restrictions on the 

multipliers (weights) in a DEA analysis. Torgersen et al. [12] achieved a complete ranking of 

efficient DMUs by measuring their importance as a benchmark for inefficient DMUs. 

Bardhan et al. [13] ranked inefficient DMUs using Measure Inefficiency Dominance (MID) 
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which is based on slack-adjusted DEA models. The measure ranks the inefficient DMUs 

according to their average proportional inefficiency in all inputs and outputs. Cooper and 

Tone [2] ranked inefficient units according to scalar Measures Inefficiency Proportion (MIP) 

in DEA, based on the slack variables. Doyle and Green [14], in their research into the ranking 

of overall DMUs, developed a ranked scale method utilizing the cross-efficiency matrix, by 

ranking the average efficiency ratios of each unit.  

There is other follow-up research on increasing the DEA’s discrimination power, 

especially the use of weight restrictions – absolute weights restrictions and virtual weights 

restrictions – to reduce the number of efficient DMUs. Absolute weights restrictions were first 

proposed by Thompson et al. [15], imposing acceptable bounds on ratios of weights in DEA 

that is known as the assurance region method. Dyson and Thanassoulis [16] proposed that 

meaningful bounds are directly imposed on individual weights. The other famous method, the 

cone ratio method, proposed and discussed by Charnes et al. [17, 18], is more general than the 

assurance method. The disadvantage of using absolute weights restrictions is that the bounds 

setting is dependent on the units of the indices and the orders of magnitude in the indices 

values. It is not easy for a human to express intuitively their preference for weights 

restrictions. In order to make it easier for a human to quantify value judgments in terms of 

percentage values, virtual weights restrictions was first proposed by Wong and Basely [19], 

setting the lower and/or upper bounds into the ratio of virtual variables. Sarrico and Dyson 

[20] further brought the concept of assurance regions into virtual weights restrictions. They 

showed that the use of the assurance region of virtual weights restrictions is more general and 

preferable to the use of proportional virtual weights restrictions. Bernroider and Stix [21] 

proposed discussion about the interaction between bound setting in the assurance region 

method and the validity of ranking outcomes in the assessment of an information system. 

However, because of the infeasibility problem occurring in the incorporation of lots of 

weights restrictions, Estellita Lins et al. [22] proposed the existence theorem, which 

establishes feasibility conditions for DEA with multiple weights restrictions. Review of other 

several ranking methods was proposed by Alder et al. [23] 
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2.3 Common weights used in ranking of DEA units 

Cook et al. [24] and Roll et al. [25] first introduced the idea of common weights in DEA 

in the context of applying DEA to evaluate highway maintenance units. Cook and Kress [26, 

27] gave a subjective ordinal preference ranking by developing common weights through a 

series of bounded DEA runs, by closing the gap between the upper and lower limits of the 

weights. Roll and Golany [28] considered the common weights for all the units, by 

maximizing the sum of efficiency ratios of all the units, in order to rank each unit. They 

suggest the potential use of the common weights for ranking DMUs. Sinuany–Stern et al. [29] 

used linear discriminant analysis in order to find a score function, which ranks DMUs, given 

the DEA division into efficient and inefficient sets. Friedman and Sinuany–Stern [30] use the 

CCA method by defining a scaling ratio score as a ratio of linear combinations of inputs and 

outputs. Then they utilize the common weights for the linear combinations that drawn from 

the largest eigenvalue of the CCA method. Sinuany–Stern and Friedman [31] developed 

DR/DEA to provide for given inputs and outputs the best common weights in order to rank all 

the units on the same scale. Kao and Hung [32] proposed the compromise solution approach 

to solve the DEA ranking problem with common weights. 

The proposed model in this research determines the common weight by maximizing the 

organization efficiency. It is similar to the analysis by Roll and Golany [28], that proposed 

maximizing the mean of efficiency ratios of all the units to determine the common weights, as 

depicted in model (2-9). The major difference between the two is that, to the objective 

function (2-9.0) of the optimization model, our research used the original data of performance 

indices, while Roll and Golany [28] used the statistic, mean of efficiency ratio, as the 

objective function. In fact, in order to describe the organization’s performance, it is not 

suitable to describe the status of the organization’s operation by the mean of individual 

efficiency ratio, especially while the organization is able to possess the concrete operation 

data in performance indices. Hence, we use the accumulated data across all units in each 

performance index to replace the mean of efficiency ratio in the objective function. In 

addition, in the DEA structure, each unit in turn chooses the favorable weight to obtain the 

efficiency score. Following the structure, the organization plays the role of the aggregated unit 
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to choose the favorable weight in combining with the accumulated data of each performance 

index, for the purpose of obtaining the optimal organization efficiency score. One restriction 

is noted that the performance indices used in our research should possess the property of 

accumulation. So the statistics, for instance the mean, is non-meaningful when accumulated 

across all the units. Therefore, we should avoid the occurrence of statistics in the performance 

indices. 

∑
=

=
n

j
j  

n
    

1

* 1max ϕϕ  (2-9.0) 

,,,1,1.t.s

1

1 n  j     
Vx

Uy
   m

i
iij

s

r
rrj

j K=≤=

∑

∑

=

=ϕ  (2-9.1) 

,,,1,0 sr U r K=>≥ ε  (2-9.2) 
.,,1,0 mi   Vi K=>≥ ε  (2-9.3) 

Kao and Hung [32] proposed the compromise solution approach with the following 

model (2-10). They regarded the DEA efficiency score as the ideal individual benchmark, and 

minimized the distance between the DEA efficiency score and the score obtained from the 

common set of weights. The model (2-10) is equivalent to (2-9) with p = 1 and it is shown 

that the efficiency score obtained by the common set of weights with p = 2 is unique. 

( )
p

n

j

p
jjp    D

/1

1
min ⎥

⎦

⎤
⎢
⎣

⎡
−= ∑

=

∗∗ ϕθ  (2-10.0) 

,,,1,1.t.s

1

1 n  j     
Vx

Uy
   m

i
iij

s

r
rrj

j K=≤=

∑

∑

=

=ϕ  (2-10.1) 

,,,1,0 sr U r K=>≥ ε  (2-10.2) 
.,,1,0 mi   Vi K=>≥ ε  (2-10.3) 

We give the complete description of our methodologies with several models in the 

following sections. Simultaneously, the detailed comparison between the sample model (2-9), 

(2-10) and our models will be introduced in the numerical example 1 in section 3.3. In fact, 

they show the different results in ranking. 
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3. Common Weight Analysis (CWA) to Rank Organization Units 

In this section, we introduce the CWA methodology from the beginning of performance 

measurement philosophy and the development including the model transformation and the 

discussion of alternative optimal solution. Some numerical examples are listed in the final 

subsections. 

 

3.1 Performance measurement philosophy 

In conventional DEA models, each DMU in turn maximizes its efficiency score, under 

the constraint that none of DMUs’ efficiency scores is allowed to exceed 1.0. The general 

manager always intuitively takes the maximal efficiency score 1.0 as the common benchmark 

level for DMUs. In fact, it also should be the benchmark of organization. In the scenario of 

organization benchmark chasing, we will take advantage of this benchmark level to help us 

describe concretely the concept about the generation of common weights here. We introduce 

one procedure to obtain one common set of weights for ranking the units. First, we focus on 

the case that all units on the DEA frontier together determine the single most favorable 

common set of weights in view of maximizing the group’s efficiency score. Then, it is 

expanded to all units including the inefficient ones. 

 

3.2 CWA model 

CWA model is generated from the perspective of gaps minimization between the virtual 

benchmark and real units. By a series of transformation, CWA model also implies the 

performance measurement philosophy that the organization determines the favorable weights 

to obtain the maximum organization efficiency in DEA structure. 

 

3.2.1 Development 

In Figure 2, the vertical and horizontal axes are set to be the virtual output (weighted 

sum of s outputs) and virtual input (weighted sum of m inputs), respectively. By the definition 

of the efficiency score, the common benchmark level is one straight line, with slope 1.0, that 
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passes through the origin in the coordinate. rU  and iV  in the weighted sum denote the 

decision variables of the common weights for the r-th output and i-th input index, respectively. 

The notation of a decision variable with superscript symbols “ ′ ” represents an arbitrary 

assigned value. For any two UOAs, UOAM and UOAN, if given one set of weights rU ′  and 

iV ′ , then the coordinate of points M ′  and N ′  in Figure 2 are ( ∑∑
==

′′
s

r
rrM

m

i
iiM Uy  ,Vx

11

) and 

( ∑∑
==

′′
s

r
rrN 

m

i
iiN Uy  ,Vx

11

). The virtual gap between points M ′ and PM ′  is MΔ′ . Similarly, for 

points N ′  and PN ′ , the virtual gap is NΔ′ . Let the notation of a decision variable with 

superscript “ * ” represents the optimal value of the variable. We want to determine an 

optimal set of weights ∗
rU  and *

iV , such that both points *M  and ∗N  below the 

benchmark line could approach their projection points, P*M and P*N on the benchmark line, 

as close as possible. In other words, by adopting the optimal weights, the total virtual gap 
∗
MΔ + *

NΔ  is the shortest from the location of both UOAs to the benchmark line. 
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Figure 2. Gap analysis for UOAs below the virtual benchmark line 

The following numerical example simulates the above scenario. Table 1 depicts the 

values of UOAA, UOAB, UOAC, and UOAD on two input and two output indices. Given an 

arbitrary set of weights with rU ′= ( 1U ′ , 2U ′ ) = (1, 2) and iV ′= ( 1V ′ , 2V ′ ) = (25, 1), the 
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weighted sum of inputs, weighted sum of outputs, and virtual gap jΔ′  for every UOA are 

recorded. As Figure 3 depicted, while points A′ , B′ ,C′  and D′ are weighted by rU ′= ( 1U ′ , 

2U ′ ) = (1, 2) and iV ′= ( 1V ′ , 2V ′ ) = (25, 1), we can obtain the perpendicular virtual gap to their 

projection points PA′ , PB′ , PC′ and PD′ on the benchmark line. There is a total virtual gap of 

106.06 from the four UOAs to the benchmark line. Our methodology, presented in the 
following subsection, generates one optimal set of weights *U = ( *U1 , *U 2 ) = (1, 3.33) and 

*V = ( *V1 , *V2 ) = (20.33, 1) with only the total virtual gap 8.07. As Figure 4 depicted, while the 

points *A , *B , ∗C and *D are weighted by the optimal common set of weights *U and *V , 

we can obtain the minimum perpendicular virtual gap to their projection points P* A , P* B , 
P* C  and P* D  on the benchmark line. Obviously, the set of weights is favorable to these 

UOAs since they are most close to the benchmark line. 

 

Table 1. Simple example to simulate CWA scenario 

 Index 

Assign arbitrary weight 
( 1V ′ , 2V ′ ) = (25, 1) 
( 1U ′ , 2U ′ ) = ( 1, 2) 

Assign optimal weight 
( *V1 , *

2V ) = (20.33, 1) 
( *U1 , *

2U ) = (1, 3.33) 
UOAj 1x  2x  1y  2y  2125 xx + 21 2yy + jΔ′  2133.20 xx +  21 33.3 yy + *

jΔ  
A 3 5 6 18 80 42 26.87 65.90 65.90 0 
B 4 3 5 22 103 49 38.18 84.32 78.26 4.29
C 2 6 14 9 56 32 16.97 46.66 43.97 3.78
D 3 2 13 15 77 43 24.04 62.90 62.90 0 

Sum       106.06   8.07

 

(3-1) expresses the formulation to the original model of our methodology. The objective 

function (3-1.0) is to minimize the sum of the total virtual gaps of UOAs, in set E, to 

benchmark line. As for the set of constraints (3-1.1), the numerator is the weighted sum of 
outputs plus the virtual gap O

jΔ  and the denominator is the weighted sum of inputs minus the 

virtual gap I
jΔ . They imply that the direction approach to the benchmark line is upwards and 

leftwards at same time. The ratio of the numerator to the denominator equals to 1.0, which 

means that the projection point is on the benchmark line. O
rε  and I

iε  are the positive 

Archimedean infinitesimal constant of output r and input i, respectively. We also avoid a case 

of zero value of indices obtained by choosing the set of zero weights. In our methodology, we 
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assume the benchmark line is located above all UOAs in set E. The optimal common set of 

weights ∗
rU (r = 1, 2, …, s) and ∗

iV (i = 1, 2, …, m) to each efficient UOA would be solved 

and then each efficient UOA could obtain one absolute efficiency score as the standard for 

comparison. 

( )4444  ,C P′

jj yy 21 2+

jj xx 2125 +

( )7676, B P′

( )6161, A P′

( )6060, D P′

( )4377  ,D′ ( )4280  ,A′

( )3256  ,C ′

( )49103, B′

 
Figure 3. Coordinates of UOAs weighted by arbitrary common set of weights 

 

( )32453245 ., .C P*

jj y.y 21 333+

jj xx. 213320 +

( )29812981 ., .B P*

( )965965 ., .AA *P* ≡

( )962962 ., .DD *P* ≡

( )97436646 ., .C*

( )26783284 ., .B*

 
Figure 4. Coordinates of UOAs weighted by optimal common set of weights 
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CWA-FP 
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,,0,, Ej j
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j ∈≥ΔΔΔ  (3-1.2) 

,,,1,0 sr U O
rr K=>≥ ε  (3-1.3) 

.,,1,0 miV I
ii K=>≥ ε  (3-1.4) 

 

The ratio form of constraints in (3-1.1) can be rewritten in a linear form, formulated in the 

constraints (3-2.1). Hence, (3-1) can be transformed into (3-2). 

CWA-LP 1 
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ii K=>≥ ε  (3-2.4) 

 

Since the triangular in Figure 2 is one isosceles right triangular, the relationship between the 
shortest virtual gaps jΔ , O

jΔ , and I
jΔ  can be expressed as I

j
O
jj Δ=Δ=Δ  2 2 . Then, 

(3-2) is then simplified to the following linear programming (3-3). 
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(3-3.3) 
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(3-3.4) 



 

 18

(3-3) could be rewritten to the equivalent linear programming (3-4) by taking out the 

slack variable jΔ  and then aggregating rjy  and ijx  to be ∑
∈

=
Ej

rjr yY  and ∑
∈

=
Ej

iji xX , 

respectively. (3-4) shows that the organization manager determines the common weight by 

maximizing the organization efficiency in the perspective of aggregated UOA with the status 

of organization in all performance indices. 

 

CWA-LP 3 
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,,,1,0 sr U O
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.,,1,0 miV I
ii K=>≥ ε

 
(3-4.3) 

 

In fact, there exists another implicit constraint 0
1 1

≤−∑ ∑
= =

s

r

m

i
iirr VXUY  in (3-4). This constraint 

is redundant since it is a linear combination of the first set of constraints (3-4.1). We regard Xi 

(i = 1, 2, …, m) and Yr (r = 1, 2, …, s) as the input and output indices of one aggregated UOA 

or group. The goal of (3-4.0) is to maximize the efficiency of the aggregated UOA, under the 

constraints that the efficiency score of each UOA in set E cannot exceed the benchmark level. 

While the optimal efficiency of the aggregated UOA occurs, one corresponding set of weights 

is also determined, to be assigned to every UOA in set E. The ranking score that adopts the 

common set of weights generated from (3-4) makes sense because the organization manager 

objectively chooses the common weights for the purpose of maximizing group efficiency. 

For instance, the general manager of a bank desires to measure the performance of all 

branches of the bank. A branch would have a higher performance if the required resources 

could be reduced and the outputs could be increased. The possible resources could be 

employees, the number of bank service counters, etc., while the outputs could be multiple 

business items existing in the bank such as deposit business, loan business, credit card 

business… etc. The general manager desires to have a set of weights for these resources and 
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output indices. However, each branch manager may focus on a different business base, a 

different strategy, or the limited resources. Therefore, it is difficult for the general manager to 

set the weight of each business item subjectively for the discrimination requirement of 

branches. The general manager could take advantage of DEA to distinguish the efficient 

branches from the inefficient ones. While the detailed ranking of efficient branches is 

necessary, the general manager could determine one common set of weights for the purpose of 

maximizing the overall efficient branches’ efficiency (group efficiency) under the constraints 

that every efficient branch’s highest efficiency score cannot exceed 1.0. Because of only 

considering the group of efficient branches, the general manager can take those efficient 

branches as a virtual bank. In other words, the general manager can determine one common 

set of weights for efficient branches, with the purpose of maximizing the virtual bank’s 

efficiency. 

In comparison with additive model (2-7), the difference is that (3-4) chooses the 

aggregated UOA to be the player of determining the favorable weights. In order to obtain 

more information, we transform (3-4) to its dual form (3-5). The dual variables associate to 
(3-4.1), (3-4.2), and (3-4.3) are jπ , rP , and iQ , respectively.  
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,,,1,0 srPr L=≥  
(3-5.4)

 

.,,1,0 miQi L=≥  
(3-5.5) 

 

Similarly, (3-5) can be used to compare with the model (2-8) or Phase II extension of a 

traditional CCR model (3-6) while the parameter θo
* is equal to 1.0. The major difference is 
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that Pr and Qi in (3-5) are respectively the total shortfalls and excesses of all efficient UOAs 

relative to the benchmark line, corresponding to the output index r and input index i. 

 

Phase II extension of CCR model  
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The variable value π j
* in (3-5) is the shadow price of UOAj belongs to set E in the linear 

programming (3-4). Then, the variations of criterion Eq. (3-7) will result in the variation of 

constraint Eq. (3-8). That is, if the right-hand side of the j-th constraint increases 1 unit, then 

the criterion Eq. (3-4.0) will get the variation π j
* as Eq. (3-8). 
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π j
* represents the total virtual gap scale that can be reduced while we release the upper bound 

of efficiency 1.0 for UOAj. If there are multiple UOAs on the benchmark line, π j
* will give 

valuable information to indicate which one most influences the total virtual gap. It is useful 

for determining the priority of UOAs on the benchmark line. In the following subsections, we 

give the following ranking rules for those efficient UOAs. 
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3.2.2 CWA-efficient and CWA ranking rules 

In this section, we will introduce the definition of the CWA-efficient and CWA ranking 

rules. First, the CWA-efficiency score of UOAj is defined as Eq. (3-9). 
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By the value of CWA-efficiency, we can distinguish the UOAs into two separable classes, 

UOAs on the benchmark and those below the benchmark. 

 

Definition 1 
UOAj is CWA-efficient (on the benchmark) if Δj

*
 = 0 or ∗

jζ  = 1.0. Otherwise, UOAj is 

CWA-inefficient (below the benchmark). 

 

The following rules can distinguish the UOAs whether they are on or below the benchmark 

line. 

Rule 1 

The performance of UOAj is better than UOAi if ζ j* > ζ i*. 

Rule 2 

If ζ j
*= ζ i

*= 1, i.e. they are both CWA-efficient (on benchmark line), then the performance of 

UOAj is better than UOAi if πj
* > πi

*. 

Each UOA’s CWA-efficiency score is limited to no greater than 1.0, so there is no UOA 

standing above the benchmark line. Furthermore, we can even ensure that there is at least one 

UOA that joins the assessment located on the benchmark line. 

 

Theorem 1 

There is at least one UOA under the assessment located on the benchmark line. 

Proof. We will use the proof of contradiction to explain the existence of above theorem. 

Assume that there is no UOA on benchmark, so we can obtain the optimal criterion and the 

corresponding optimal value Ur
*, Vi

* and Δj
* where Δj

* > 0 in (3-3) for all j ∈ E (formulated in 
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Eq. (3-10)). That is, each UOA’s efficiency is less than 1 (formulated in Eq. (3-11)). 
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We can set the constant kj (kj > 1) such that the efficiency is equal to 1 for every j ∈ E 

(formulated in Eq. (3-12)). Let K be the minimum of set {kj , for j ∈ E}, then we can obtain 

another feasible common set of weights KUr
* and Vi

* accompanies the smaller Δj
* (at least one 

equals to 0) for all j ∈ E in (3-3). The case will result in smaller criterion and contradicts the 

fact that the current criterion has been minimized. Hence, there is at least one UOA locates on 

benchmark line. ▓ 

 

3.2.3 Virtual gap analysis 

The virtual gaps between virtual input and output indices for each CWA-inefficient 

UOA could be further decomposed into the real gap of each performance index. We can 

further analyze this by translating the model (3-4) to the equivalent model (3-13). As model 

(3-13) showed, Pr and Qi can be partitioned as Pr =∑
∈Ej

rjp and Qi =∑
∈Ej

ijq . And prj and qij are 

the shortfall at the output index r and excess at input index i of UOAj to the benchmark, 

respectively. It means that prj = Prλj and qij = Qiλj with convex combinations of multipliers λj 

≥ 0 and ∑
∈Ej

jλ  =1. 

 

 



 

 23

 
CWA-DLP 2 

∑ ∑∑
∈ ==

⎟
⎠

⎞
⎜
⎝

⎛
+

Ej

m

i
ij

I
i

s

r
rj

O
r qp

11
max εε

 
(3-13.0)

 

( ) ,,,1,.. srpyy  ts
Ej

rjrj
Ej

jrj K=+= ∑∑
∈∈

π
 

(3-13.1)
 

( ) ,,,1, miqxx
Ej

ijij
Ej

jij K=−= ∑∑
∈∈

π
 

(3-13.2)
 

,,0 Ejj ∈≥π  
(3-13.3)

 
,,,,1,0 Ejsrprj ∈=≥ K  

(3-13.4)
 

.,,,1,0 Ejmiqij ∈=≥ K
 

(3-13.5) 

 

The shortfall prj
* and excess qij

* of (3-13) could be obtained by the following theorem. 

 

Theorem 2 

The shortfall prj
* and excess qij

* of CWA-inefficient UOAj to benchmark corresponding to the 

output index r and input index i are Pr
* (Δj

* /Δ*) and Qi
* (Δj

* /Δ*). 

Proof. Since prj
* and qij

* are shortfall and excess of CWA-inefficient UOAj to the benchmark, 

we have Eq. (3-14) holds because of Definition 1. 
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To prove Eq. (3-15) is a truth, we first decompose the numerator and denominator to obtain 

Eq. (3-16) and Eq. (3-17), respectively.  
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Subtract Eq. (3-17) from Eq. (3-16) resulted Eq. (3-18). 
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Since the lower bound of Ur
* and Vi

* is ε, according to Complementary Slackness Theorem, 

the following relationship holds.  
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Therefore, the formula inside the parenthesis in Eq. (3-18) could be substituted by the 

right-hand-side in Eq. (3-19). Obviously, Eq. (3-18) easily translates to Eq. (3-20). 
∗

=

∗

=

∗ Δ+−∑∑ j

m

i
iij

s

r
rrj VxUy 2

11
 (3-20) 

Eq. (3-20) is equal to zero by the fulfillment of constraints in (3-3.1). Hence, Eq. (3-15) 

comes into existence and the theorem is proved. ▓ 

 

3.2.4. Selection of the alternative optimal common sets of weights 

It is worth noting that (3-3) sometimes encounters the existence of alternative weights; 

moreover, different weights can result in different rankings of efficient UOAs. It is necessary 

for the general manager to select the applicable one from these efficient UOAs. We propose 

one approach to assist general managers in dealing with the issue of alternative rankings. 

While the same weighted sum exists, for the case of one set of output indices combining with 

different sets of weights, Obata and Ishii [33] propose that it is preferable for output indices to 

adopt the smaller scale of weight. The choice implies that the current superiority of the 

weighted sum is originated from the indices value itself, rather than from the weights. 

Similarly, it is preferable to use the larger scale of weights for input indices in obtaining the 

weighted sum of inputs. For instance, let ],[ x ya vvv =  and ],[ V Ub
vvv

−= , the inner product of 

av  and b
v

 (weighted sum) is equal to Δ− 2 , as depicted in (3-32.1). While there exist 

multiple solutions in b
v

, we expect the current level of the inner product is generated from the 

worse or smaller b
v

 to show the superiority of dataset av . Therefore, we minimize the scale 

of b
v

 by L1-norm, i.e. the objective function (3-21.0). The following procedure is suggested 

as a way to search the optimal one of the existing alternative set of weights, using the 
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L1-norm. 

Stage 1 

Solve (3-3) and obtain the optimal value Δ*. 

Stage 2 

Solve the following linear programming (3-21) to obtain one optimal common set of weights. 

 

In stage 1, we first have to look for the minimization of the total virtual gap. Then select one 

appropriate weight in stage 2, under the optimal status of (3-3). Thus, we keep the optimal 

criteria value in (3-3.0) as one constraint (3-21.2) in the linear programming (3-21) and then 

take the minimization of the sum of output weights and maximization of the sum of input 

weights as the criterion. 
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3.3 Numerical example 1 

DEA models usually have no more than n/2 indices when assessing n UOAs. Otherwise, 

the number of efficient UOAs becomes unreasonably large. It means that the discriminating 

power of DEA is reduced. The example uses seven UOAs, with three inputs and three outputs. 

The last column in Table 2 shows that the seven UOAs are efficient by radial efficiency 1.0 

obtained by CCR-Input-oriented model.  
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Table 2. Example of data with the number of indices is much larger than UOAs 

UOA x1j x2 j x3 j y1 j y2 j y3 j Efficiency (θ j
*) 

D1 1621 436 205 174 497 22 1 
D2 2718 314 221 172 497 22 1 
D3 1523 345 215 160 443 22 1 
D4 5514 1314 553 487 1925 63 1 
D5 1941 507 309 220 521 36 1 
D6 1496 321 339 109 699 38 1 
D7 932 158 200 37 431 19 1 

 

Table 3 gives the detailed ranking information assessed by adopting CWA. We still find 

that there are five UOAs still on benchmark line. If we release the upper bound of the 

efficiency score 1.0 for these UOAs, then πj
* leads to a reduction in scale in the total virtual 

gap towards the benchmark line. Obviously, a CWA-efficient UOA with a larger πj
* is the 

better one. The total virtual gap can be reduced to a maximum 3.225, compared to the other 

UOAs on the benchmark line, while we release the upper bound of efficiency score to over 

1.0. Therefore, after comparing with πj
*, we are able to determine the final ranking of 

CWA-efficient UOAs to be UOAD3, UOAD6, UOAD1, UOAD4, UOAD5, UOAD7, and UOAD2. 

 
Table 3. Corresponding outcomes of Table 2 assessed by CWA 

UOA Δ j
* π j

* ζ j
* Ranking 

D3 0 3.225 1.000 1 
D6 0 1.772 1.000 2 
D1 0 1.118 1.000 3 
D4 0 0.922 1.000 4 
D5 0 0.028 1.000 5 
D7 304.864 0.000 0.847 6 
D2 925.362 0.000 0.778 7 

 

Besides, we compare the proposed model CWA with the optimization model (2-9) 

proposed by Roll and Golany [28] and optimization model (2-10) proposed by Kao and Hung 

[32] by this dataset. Table 4 and Table 5 show the efficiency score and corresponding ranking. 

Obviously, we observe that the ranking in Table 3 is different to the ranking in Table 4 and 

Table 5. Especially the UOAD2, in the perspective of the organization manager, it is the worst 

one in Table 3. In DEA structure, the common set of weights determined by the organization 
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manager, the aggregated UOA, expresses that the UOAD2 is the most inefficient. However, it 

appears the high ranking in Table 4 and Table 5. On the contrary, UOAD1 shows that it is the 

benchmark in our model while they show the poor ranking in the Table 4 and Table 5. In fact, 

UOAD1 is an efficient unit in DEA from the perspective of organization. In order to accurately 

describe the organization performance, it is better to represent the status of organization’s 

operation by the concrete operation data in performance indices. The mean of individual 

efficiency ratio is the indirect information for one organization especially while the value of 

performance indices across all units can be accumulated as the value of organization. 

 
Table 4. Corresponding outcomes of Table 2 assessed by the model (2-9) 

UOA ∗
jϕ  Ranking 

D2 1.000 1 
D3 1.000 1 
D4 1.000 1 
D5 1.000 1 
D6 1.000 1 
D1 0.965 6 
D7 0.871 7 

 
Table 5. Corresponding outcomes of Table 2 assessed by the model (2-10) with p = 2 

UOA ∗
jϕ  Ranking 

D2 1.000 1 
D3 1.000 1 
D4 1.000 1 
D6 1.000 1 
D1 0.948 5 
D5 0.944 6 
D7 0.911 7 

 

 

3.4 Numerical example 2 

In this subsection, we extend the ranking object from UOAs in set E to E ∪ EC in CWA 

model (3-1) where EC represents the set of inefficient UOAs. It is unfortunate that a 

paradoxical case perpaps exists, that some UOAs in EC are better than UOAs in E by 

comparing the CWA efficiency score. However, the phenomenon is acceptable and 
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explainable without violating the original concept of DEA. In fact, each UOA in EC would 

have a particular reference set that is composed of parts of UOAs in E. One should not declare 

that one certain UOA in E is better than all UOAs in EC.  

We verify the inference mentioned above by practicing one complete example including 

UOAs in set E ∪ EC. As listed in Table 6, 7 UOAs in set E is extended to 11 UOAs in set E ∪ 

EC. Using DEA model (2-1) and CWA methodology, models (3-3), the results are depicted in 

Table 7. In view of CWA, we observe UOAD2 of set E is ranked 11, and is worse than UOAD8, 

UOAD9, UOAD10, and UOAD11 of set EC. Although UOAD2 belongs to set E, it is not an 

element of the reference set for UOAD8, UOAD9, UOAD10, and UOAD11. In other words, 

individual UOAD8, UOAD9, UOAD10, and UOAD11 really are not dominated by UOAD2. 

Therefore, in view of DEA, one should not declare that UOAD2 in set E is better than UOAD8, 

UOAD9, UOAD10, and UOAD11 in set EC. In addition, using DEA model (2-1) to measure the 

relative efficiency of only these 5 UOAs, at this time one would observe that they belong to 

the equivalent set E, just depicted in Table 8. Therefore, the CWA ranking seems also to be 

workable in set E ∪ EC without violating the original concept of DEA. Therefore, CWA 

ranking reflects two consequences. The first is that it is primarily used in ranking the UOAs in 

set E. The second is that when it is used in ranking the UOAs in set E ∪ EC, one could still 

obtain a reasonable conclusion without conflicting with the DEA’s initial classification. 

 

Table 6. Example of including the UOAs in set E ∪ EC 
UOA x1j x2 j x3 j y1 j y2 j y3 j 
D1 1621 436 205 174 497 22 
D2 2718 314 221 172 497 22 
D3 1523 345 215 160 443 22 
D4 5514 1314 553 487 1925 63 
D5 1941 507 309 220 521 36 
D6 1496 321 339 109 699 38 
D7 932 158 200 37 431 19 
D8 2013 1037 412 198 471 32 
D9 1891 976 399 191 491 22 

D10 2277 891 418 241 379 28 
D11 1995 693 349 167 412 31 
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Table 7. The reference set, DEA and CWA efficiency score of example in Table 6 
UOA Reference set DEA Efficiency (θ j

*) CWA Efficiency (ζ j
*) Rank 

D1 D1 1 1 1 
D2 D2 1 0.69 11 
D3 D3 1 0.99 4 
D4 D4 1 0.97 5 
D5 D5 1 1 3 
D6 D6 1 1 2 
D7 D7 1 0.82 6 
D8 D1, D5 0.87 0.72 7 
D9 D1, D5 0.91 0.73 8 

D10 D5 0.93 0.74 9 
D11 D5, D6 0.79 0.71 10 

 

Table 8. The DEA efficiency score evaluated only to 5 debatable UOAs in Table 7 
UOA DEA Efficiency (θ j

*) 
D2 1 
D8 1 
D9 1 

D10 1 
D11 1 

 

3.5 Applying virtual weights restrictions in CWA model 

In order to enforce CWA model in the application of real case and satisfy all kinds of 

restrictions about the performance indices, we take advantage of the virtual weights 

restrictions to assist the manager in obtaining a preferable and robust ranking result for units. 

In order to obtain the preferable ranking, the manager’s subjective preference is considered 

and formulated by the virtual weights restrictions while determining the common weights in 

the procedure. In addition, in order to obtain a robust ranking, we modify the boundary of the 

feasible region of virtual weights restrictions in each assessment. The final statistical ranking 

of all assessments provides the manager with one robust ranking, which is invariant in 

different feasible regions of virtual weights restrictions in the numerical example. 

 

3.5.1 Review of virtual weights restrictions 

Virtual weights restrictions means that the restrictions are imposed on virtual 

input/output, comprising the product of input/output level and weight for the input/output, 
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rather than on weights directly. It is noted that virtual weights restrictions are developed with 

reference to the original absolute weights restrictions in DEA formulation. Different to the 

difficult ascertainment of meaningful bounds in absolute weights restrictions, virtual weights 

restrictions make it intuitive and easy for a manager to express their subjective preference in 

the assessment. 

The proportional virtual weights restrictions and virtual assurance regions separately 

provide a different expression in the preference relationships among performance indices. The 

former represents the importance of one certain input/output attached to the input/output 

measure, and the latter further expresses the known relationship between any two indices, 

even among more indices. In this subsection, we give a brief review of virtual assurance 

regions and proportional virtual weights restrictions. 

 

3.5.1.1 Virtual assurance regions 

Sarrico and Dyson [20] proposed that all the virtual weights restrictions can be 

described by the general set of restrictions expressed by Eq. (3-22). 
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W denotes the number of virtual weights restrictions. αiw denotes the preference of virtual 

input to restriction w in input i. βrw denotes the preference of virtual output to restriction w in 

output r. kw denotes the intercept of line restriction w. While we set αiw = 0 (for all i) or βrw = 0 

(for all r) with kw = 0, Eq. (3-22) translates an ordering of preference in inputs and outputs, as 

expressed in Eq. (3-23) and Eq. (3-24). 
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These kinds of restrictions mentioned above in Eq. (3-23) and Eq. (3-24) are useful while 

managers concentrate the preferences on the indices in the same measure. 

Besides, if there is at least one αiw ≠ 0 (for all i) and one βrw ≠ 0 (for all r) with kw = 0, 



 

 31

Eq. (3-22) can be translated as an ordering of preference in input-output, as expressed in Eq. 

(3-25). 
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Eq. (3-25) is used to express a known relationship between a pair of inputs and outputs. For 

instance, to produce one unit of output, one needs to consume at least a certain level of an 

input. 

 

3.5.1.2 The proportional virtual weights restrictions 

Wong and Basely [19] proposed the use of virtual weights restrictions. In particular, the 

proportional virtual weights restrictions were intended to make it easier for managers to 

quantify value judgments in terms of contribution percentage in the same measure, that is, 

input measure or output measure. Conceptually the proportional virtual output r of DMUj 

represents the importance attached to the output measure (a similar reasoning can be applied 
to the virtual input i). Let O

rjP  and I
ijP  respectively denote the proportional virtual output r 

and input i of DMUj, as follows in Eq. (3-26) and Eq. (3-27). Thus, the manager can 

intuitively set limits on this proportion to reflect value judgments, as follows in Eq. (3-28) and 

Eq. (3-29). 
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The constant values ra , rb , ic , id  are the subjective preference limits provided by 

the manager for output r and input i. Sarrico and Dyson [20] discussed the possible 

infeasibility of multiple proportional virtual weights restrictions resulting from the setting of 

lower and upper bounds, while there exists a large scale range in the index value across all 

units. They proposed one formulation to determine the feasible lower (upper) bound 
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according to the given upper (lower) bound. Estellita Lins et al. [22] proposed one model to 

test the feasibility in DEA models with given weight restrictions, including the absolute and 

virtual weights restrictions, and further modified the bounds using their hyperplane adjusting 

model while infeasibility occurs. 

However, there exists another trap to set the constant value of ra , rb , ic , id  while 

the manager has no idea about the implicit restrictions 1
1

=∑
=

s

r

O
rjP  and 1

1

=∑
=

m

i

I
ijP . For 

instance, there exit two output indices jy1  and jy2  in the output measure for all DMUj. 

While the manager sets 1a = 0.2 and 1b = 0.4 with 20% ≤≤ O
jP1 40%, 2a = 0.2 and 2b = 0.4 

with 20% ≤≤ O
jP2 40% for intuitive convenience, the setting obviously cannot satisfy the 

implicit restriction 121 =+ O
j

O
j PP . In other words, there exists no such feasible O

jP1  and O
jP2  to 

satisfy these proportional virtual weights restrictions in the output measure. We introduce one 

method to set initial feasible bounds on the virtual weights to avoid the possible infeasibility 

in the virtual weights restrictions mentioned above. 

 

3.5.2 The new setting of bounds in proportional virtual weights restrictions 

In order to solve the potential infeasibility issue that occurs in the proportional virtual 

weights restrictions, we propose one systematic setting in the lower and upper bounds of the 

proportional virtual inputs and outputs to ensure the feasibility of proportional virtual weights 

restrictions. Besides solving the infeasibility problems, we use the systematic setting to 

analyze the relationship between ranking and proportional virtual weights restrictions. 

Exploring the reasoning of infeasibility in proportional virtual weights restrictions, 

under the same measure, the sum of the upper bound to all outputs (∑
=

s

r
rb

1
) cannot reach 1.0 or 

the sum of the lower bound to all outputs (∑
=

s

r
ra

1
) exceeds 1.0. In order to avoid this problem, 

we rewrite Eq. (3-28) and Eq. (3-29) to Eq. (3-30) and Eq. (3-31) respectively by formulating 

the lower bound and upper bound of input and output with the function of parameters -
rδ , 

+
rδ , -

iτ  and +
iτ . For the purposes of ensuring the proportion is between 0 and 1.0, we give 

the following range 0 ≦ -
rδ ≦ 1, 0 ≦ +

rδ ≦ s-1, 0 ≦ -
iτ ≦ 1 and 0 ≦ +

iτ ≦ m-1. 
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I
ij
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Eq. (3-30) and Eq. (3-31) can then be rewritten as Eq. (3-32) and Eq. (3-33), respectively.  
,,,1,,,1 nj   srBPB OU

r
O

rj
LO

r KK ==≤≤ ,  (3-32) 

,,,1,,,1 nj   mi  BPB IU
i

I
ij

IL
i KK ==≤≤ ,  (3-33) 

O
rjP  and I

jiP  can only vary within the interval [ OL
rB , OU

rB ] and [ IL
iB , IU

iB ], respectively. 

By combining Eq. (3-30), Eq. (3-31) with Eq. (3-32), Eq. (3-33), we obtain the following 

range 0 ≦ OL
rB ≦ 1/s, 1/s ≦ OU

rB ≦ 1, 0 ≦ IL
iB ≦ 1/m and 1/m ≦ IU

iB ≦ 1. Then, by the 

setting restrictions, the managers can easily avoid the infeasibility problem generated by the 

implicit restrictions 1
1

=∑
=

s

r

O
rjP  and 1

1
=∑

=

m

i

I
ijP .  

In order to match the virtual assurance region, we have rewritten Eq. (3-32) and Eq. 

(3-33) as Eq. (3-22) with appropriate values iwα  and rwβ . For instance, Eq. (3-32) can be 

divided into two parts, OL
r

O
rj BP ≥  and OU

r
O

rj BP ≤ . The former and the latter can be rewritten 

as Eq. (3-22) with the setting of parameters iwα  and rwβ  shown in Eq. (3-34) and Eq. 

(3-35), respectively.  

,,,1,,,1
1

,,,10

sz   sr      
zr   B-
zr     B-

mi                           

OL
z

OL
z

rw

iw

KK

K

==
⎩
⎨
⎧

=
≠

=

==

,
,

,

β

α

 (3-34) 

,,,1,,,1
1

,,,10

sz   sr         
zr   -B
zr      B

mi                           

OU
z

OU
z

rw

iw

KK

K

==
⎩
⎨
⎧

=
≠

=

==

,
,

,

β

α

 (3-35) 

Similarly, while Eq. (3-33) is divided into two parts, IL
i

I
ij BP ≥  and IU

i
I

ij BP ≤ , they can be 

rewritten as Eq. (3-22) with the setting of parameters iwα  and rwβ  shown in Eq. (3-36) and 

Eq. (3-37), respectively. 
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As for the amount of restrictions, if there exist m inputs and s outputs, the proportional virtual 

weights restrictions, both Eq. (3-32) and Eq. (3-33), can be written as 2s + 2m restrictions of 

Eq. (3-22) with W = 2s + 2m. 

The advantage of bound setting in the proportional virtual weights restrictions is that the 

manager can systematically choose lower and upper bound to discuss the variation in the 

ranking of UOAs. For instance, the manager can start the analysis from the unconstrained 
case with the interval [ OL

rB , OU
rB ] = [0%, 100%] to O

rjP and [ IL
iB , IU

iB ] = [0%, 100%] to 
I
jiP , and step by step shorten the interval to the extreme cases that each input or output index 

has equal proportion. They have to note that don’t violate the rules 0 ≦ OL
rB ≦ 1/s, 1/s 

≦ OU
rB ≦ 1, 0 ≦ IL

iB ≦ 1/m and 1/m ≦ IU
iB ≦ 1 to encounter the infeasibility problem. 

 

3.5.3 CWA with virtual weights restrictions (VWR-CWA) 

Because the proportional weights restrictions are one case of the virtual assurance 

regions, we add the general form of virtual weights restriction Eq. (3-22) into the constraints 

of CWA fractional programming (3-1). Then, (3-1) can be translated into (3-38): 
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,,,1,0 srU O
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.,,1,0 miV I
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Following the transformation of the CWA model, the ratio form (3-38) can be rewritten in a 

linear form (3-39) and (3-40), step by step: 
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Assume that variable value π j
* is the shadow price of the set of constraints (3-40.1). Then, 

according to the definition of shadow price, the variations of criterion Eq. (3-41) will result in 

the variation of constraint Eq. (3-42). That is, if the right-hand side of the jth constraint 

increases 1 unit, then the criterion Eq. (3-42) gets the variation π j
*. 
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π j
* represents the marginal influence on the criteria of linear programming (3-40.0), that is, 

the marginal influence on the organization’s overall performance. It gives another priority 

reference while UOAs possess equivalent efficiency score. In the following subsections, we 

analyze further the ranking rules of those UOAs. 

 

3.5.4 VWR-CWA ranking rules 

In this subsection, we define the ranking rules by comparing the absolute efficiency 
score and the shadow price mentioned above with the VWR-CWA efficiency score ∗

jξ  of 

UOAj, as defined as Eq. (3-43): 

,,,1,

1

*

1

*

* n j
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Uy

m

i
iij

s

r
rrj

j K==

∑

∑

=

=ξ  (3-43) 

∗
iV  and ∗

rU  denote the optimal common weights obtained in (3-39) for all UOAs attached to 

the input index i and output index r. One can easily distinguish the UOAs according the 

following rules. 

Rule 3 
The performance of UOAj is better than UOAi if ∗

jξ  > ∗
iξ . 

Rule 4 
If ∗

jξ  = ∗
iξ  = 1.0, then the performance of UOAj is better than UOAi if πj

* > πi
*. 

 

3.6 Numerical example 3 

In this numerical example, there are two sub-examples to join the discussion. We first 

give a test example to demonstrate the discrimination power of the proposed approach. The 

example with the characteristic of a large scale in the values of performance indices across 

UOAs could appeal to the intuitive ranking of UOAs by merely observing the value in the 

performance indices. Then, it showed that VWR-CWA obtained the consistent ranking with 

the intuitive ranking. Secondly, one illustrative example shows how the manager of a retailer 

could obtain preferable and robust ranking results for all branches. 
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3.6.1 Test example 

Table 9 gives the simulated data set, with two inputs and one output for seven UOAs. 

The test example possesses the characteristic of a large-scale range in the value across UOAs, 

such that UOA1, UOA2, UOA3, UOA5, UOA6 and UOA7 are shown to be many times larger 

than UOA4. These UOAs are ranked intuitively as UOA1, UOA2, UOA3, UOA4, UOA5, UOA6, 
UOA7 by comparing the value of input index jx1 . The rankings assessed in CWA, as shown in 

Table 10, are consistent with intuitive ranking in Table 9. By observing the proportion in input 
measure, jx2  plays a more important role than jx1  for all UOAs ( I

j
I
j PP 21 < ) according to 

the assessment results of CWA. We try to add the preference of the performance indices to 

understand whether VWR-CWA works to obtain the consistent ranking with intuitive ranking. 

The general form of virtual assurance region Eq. (3-22) can be rewritten as Eq. (3-44) 

for the test example with two input indices and one output index. 
,7,,1,0111222111  jUyVxVx jjj K=≥++ βαα  (3-44) 

Table 9. Test example with large scale ranges across UOAs 

UOA j 
Input index Output Index 

 Intuitive ranking
jx1  jx2  jy1  

UOA1 470000 700000 200000 1 
UOA2 4800 7000 2000 2 
UOA3 49 70 20 3 
UOA4 5 7 2 4 
UOA5 510 700 200 5 
UOA6 52000 70000 20000 6 
UOA7 530000 700000 200000 7 

 
If we have the preference that the proportion of jx1  is larger than twice of jx2 , then the 

parameters ( 1α , 2α , 1β , 2β ) are substituted by (1, -2, 0, 0). Eq. (3-44) is further rewritten 

as Eq. (3-45) for all UOAj: 
,7,,1,02 2211  jVx-Vx jj K=≥  (3-45) 

Similar to CWA, as Table 10 depicted, VWR-CWA obtains a consistent ranking in the 

large scale range in the value of performance indices across UOAs with our preference in 

input measure. It implies that VWR-CWA provides the available discrimination power in 

assessing the UOAs. 
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Table 10. The assessment results of CWA and VWR-CWA in test example 

 

(1) CWA (2) VWR-CWA with Eq. (3-45) 

( *V1 , *V2 , *U1 ) = (1.00, 1.00, 5.85 ) ( *V1 , *V2 , *U1 ) = (2.98, 1.00, 10.50 ) 

UOA j 
∗
jξ  Ranking 

I
jP1  

I
jP2  

O
jP1  

∗
jξ  Ranking I

jP1  
I
jP2  

O
jP1  

UOA1 1.000 1 40% 60% 100% 1.000 1 67% 33% 100%
UOA2 0.998 2 41% 59% 100% 0.986 2 67% 33% 100%
UOA3 0.996 3 41% 59% 100% 0.972 3 68% 32% 100%
UOA4 0.994 4 42% 58% 100% 0.959 4 68% 32% 100%
UOA5 0.992 5 42% 58% 100% 0.946 5 68% 32% 100%
UOA6 0.990 6 43% 57% 100% 0.933 6 69% 31% 100%
UOA7 0.988 7 43% 57% 100% 0.921 7 69% 31% 100%

 

3.6.2 Illustrative example 

A manager of a retail company governs eight branches and periodically assesses them 

by observing four performance indices: number of Employees, Cost, Turnover, and Profit, as 

depicted in Table 11. Employees and Cost are treated as input indices, while Turnover and 

Profit are the output indices. Lower inputs and higher outputs are preferred to generate a 

higher efficiency score. Different to the first example, the characteristic of a large scale in the 

value is across indices, not UOAs (branches). In the following subsections, we illustrate how 

to obtain the preferable ranking and robust ranking for the manager. 

 

Table 11. The indices data in illustrative example 

Branch j 
Input index Output index  

Employee jx1  Cost jx2  Turnover jy1  Profit jy2  
A 20 6583 7929 419 
B 21 7713 8414 406 
C 18 6980 8020 359 
D 24 8273 9947 373 
E 28 8566 9741 412 
F 23 8397 9408 500 
G 29 7011 7890 621 
H 26 8680 9701 705 

 

3.6.2.1 Preferable ranking 

In order to discuss the proportion of each index in different models, we assess these 
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branches by using DEA (CCR input-oriented model), VWR-DEA (CCR input-oriented model 

with virtual weights restrictions), CWA and VWR-CWA models. The general form of virtual 

weights restrictions Eq. (3-22) can be rewritten as Eq. (3-46) for the current numerical 

example, with two input and two output indices: 
,,,,0222111222111 H AjUyUyVxVx jjjj K=≥+++ ββαα  (3-46) 

If the manager has the preference that the proportion of Profit is no less than half of Turnover, 

then the parameters ( 1α , 2α , 1β , 2β ) are substituted by (0, 0, -1, 2). Eq. (3-46) is further 

rewritten as Eq. (3-47) for all branches j: 
,,,,,02 2211 H AjUyUy- jj K=≥+  (3-47) 

The proportion allocation of each index obtained from the original DEA model, as 

depicted in column (1) of Table 12, is extremely disproportional in most branches, even 

though we add the virtual weights restriction Eq. (3-47) in the DEA model (VWR-DEA), as 

depicted in column (2) of Table 12. For instance, despite the preferable virtual weights 

restriction Eq. (3-47), branches G and H still choose their favorable weight to create a feasible 

disproportion in Turnover (0%) and Profit (100%). Besides, comparing DEA with CWA, as 

depicted in column (1) of Tables 12 and Table 13, the proportion allocation in the DEA model 

is more unstable than the CWA model, without large variation in all branches. The comparison 

between VWR-DEA and VWR-CWA, as depicted in column (2) of Tables 12 and 13, would 

have similar results. These results imply that the proportion allocation obtained, whether in 

the DEA or VWR-DEA models, cannot reflect the manager’s preference altogether. 

CWA provided the assessment results in column (1) of Table 13. They show that branch 

A and B are the best and worst, respectively. Following these common weights ( *V1 , *V2 , 
*U1 , *U2 ) = (1.00, 1.27, 1.00, 1.00) used in CWA, as depicted in column (1) of Table 13, the 

manager would observe a large difference in relative proportion, whether between the virtual 
inputs ( I

jP1 , I
jP2 ) or outputs ( O

jP1 , O
jP2 ); for instance, in the row of branch A, Employee (0.02%) 

vs. Cost (99.8%) and Turnover (95.0%) vs. Profit (5.0%).  

From a managerial scenario, it reveals that the input index Cost and output index 

Turnover take a considerably large proportion of branch A’s rating. The other branches appear 

to be in a similar situation. This kind of extreme disproportion may not be accepted under 
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specific practical exercises, even though the manager expects quick business development. In 

fact, in any case, Profit still plays an important role in rating. The virtual assurance region can 

assist the manager in easily adding his preference in Profit. 

 

Table 12. The proportion results of DEA and VWR-DEA in illustrative example 
Branch 

j 
(1) DEA (2) VWR-DEA with Eq. (3-47) 

I
jP1  I

jP2  O
jP1  O

jP2  I
jP1  I

jP2  O
jP1  O

jP2  

A 35.2% 64.8% 95.1% 4.9% 13.0% 87.0% 58.7% 41.3%
B 45.8% 54.2% 82.6% 17.4% 100.0% 0.0% 60.8% 39.2%
C 65.4% 34.6% 78.1% 21.9% 100.0% 0.0% 62.6% 37.4%
D 34.1% 65.9% 96.5% 3.5% 100.0% 0.0% 66.6% 33.4%
E 0.0% 100.0% 100.0% 0.0% 0.0% 100.0% 63.9% 36.1%
F 46.0% 54.0% 81.2% 18.8% 11.7% 88.3% 58.4% 41.6%
G 10.1% 89.9% 72.4% 27.6% 30.1% 69.9% 0.0% 100.0%
H  7.5% 92.5% 73.9% 26.1% 100.0% 0.0% 0.0% 100.0%

Table 13. The assessment results of CWA and VWR-CWA in illustrative example 

Branch 
j 

(1) CWA (2) VWR-CWA with Eq. (3-47) 

( *V1 , *V2 , *U1 , *U2 ) = (1.00, 1.27, 1.00, 1.00) ( *V1 , *V2 , *U1 , *U2 ) = (94.25, 1.92, 1.00, 13.30)
∗
jζ  Ranking 

I
jP1  

I
jP2  

O
jP1  

O
jP2

∗
jξ  Ranking I

jP1  
I
jP2  

O
jP1  

O
jP2  

A 1.000 1 0.02% 99.8% 95.0% 5.0% 1.000 1 13.0% 87.0% 58.7% 41.3%
B 0.902 8 0.02% 99.8% 95.4% 4.6% 0.935 6 11.8% 88.2% 60.9% 39.1%
C 0.947 4 0.02% 99.8% 95.7% 4.3% 0.996 3 11.2% 88.8% 62.6% 37.4%
D 0.984 2 0.02% 99.8% 96.4% 3.6% 0.964 5 12.5% 87.5% 66.6% 33.4%
E 0.934 6 0.03% 99.7% 95.9% 4.1% 0.878 7 13.8% 86.2% 63.9% 36.1%
F 0.931 7 0.02% 99.8% 95.0% 5.0% 0.975 4 11.9% 88.1% 58.5% 41.5%
G 0.956 3 0.03% 99.7% 92.7% 7.3% 0.875 8 16.9% 83.1% 48.8% 51.2%
H 0.945 5 0.02% 99.8% 93.2% 7.8% 0.998 2 12.8% 87.2% 50.8% 49.2%

The manager reassesses these branches using the VWR-CWA model. The assessment 

results of VWR-CWA are arranged in column (2) of Table 13 by using the other common 

weights ( *V1 , *V2 , *U1 , *U2 ) = (94.25, 1.92, 1.00, 13.3). Focusing on the row of branch A in 

Table 13, the proportion of Turnover ( O
jP1 ) vs. Profit ( O

jP2 ) changes from the CWA 

disproportion 95.0% vs. 5.0% to the 58.7% vs. 41.3% in VWR-CWA. Similar changes also 

can be seen in other branches. The rankings of the eight branches under CWA and VWR-CWA 

are completely different. However, the ranking obtained from VWR-CWA is more preferable 

and reliable to the manager because its preference is considered. 

Obviously, the virtual restriction Eq. (3-47) has an influence on the final ranking of the 

branches. In the above case, Eq. (3-47) is one of general form Eq. (3-22) with the parameter 
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W = 1. In order to strengthen the preference for the manager, they can add more restrictions to 

obtain its most preferable ranking for all branches in VWR-CWA. In addition, the different 

preferable constraints also can be only assigned to certain UOAs to keep the original 

characteristics in performance indices of each UOA. 

 

3.6.2.2 Robust ranking 

Column (2) of Table 13 shows the single preference that the manager assigned. It is 

common that there exists a situation that the manager has no preference about the relationship 

among indices. What they concerned is one acceptable and feasible proportion of virtual 

inputs and virtual outputs in the same measure. The manager can determine the acceptable 
interval [ OL

rB , OU
rB ] and [ IL

iB , IU
iB ] for O

rjP  and I
ijP , respectively. For the current 

numerical example with two inputs (m = 2) and two outputs (s = 2), all the values of -
rδ , +

rδ , 
-
iτ  and +

iτ  are set within 0 and 1 to ensure that O
rjP  and I

ijP  are between 0 and 1. For the 

purposes of clearly illustrating our approach, we set the lower bound OL
rB  = 0.4 and upper 

bound OU
rB  = 0.6, respectively. In other words, O

rjP  would be limited within the interval 

[40%, 60%]. If a larger interval is allowed, one may set the interval [20%, 80%]. 

From a managerial scenario, while managers desire to understand the ranking of 
branches under variant kinds of limitations for O

rjP  and I
ijP , Eq. (3-30) and Eq. (3-31) 

provide one systematic setting of lower bound and upper bound. For the cases where -
rδ  and 

+
rδ  are set at five levels 0.2, 0.4, 0.6, 0.8, and 1.0, O

rjP  would be limited in the gradually 

wider intervals [40%, 60%], [30%, 70%], [20%, 80%], [10%, 90%] and [0%, 100%], 
respectively. With the same setting for −

iτ  and +
iτ , I

ijP  would have the same limitations as 

above. 
Table 14. The 25 combinations of interval limitation for O

rjP  and I
ijP  

Combination symbol [ IU
i

IL
i B ,B ] 

[0%, 100%] [10%, 90%] [20%, 80%] [30%, 70%]  [40%, 60%] 

[ OU
r

OL
r B ,B ] 

[0%, 100%]  C1 C2 C3 C4 C5 
[10%, 90%]  C6 C7 C8 C9 C10 
[20%, 80%] C11 C12 C13 C14 C15 
[30%, 70%]  C16 C17 C18 C19 C20 
[40%, 60%] C21 C22 C23 C24 C25 
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As depicted in Table 14, there are 25 combinations of interval limitation for O
rjP  and 

I
ijP . Obviously, different interval limitations for O

rjP  and I
ijP  may have different assessment 

results for the ranking. In this numerical example, we can employ the VWR-CWA model in 

carrying out an assessment for each combination with corresponding intervals [ IU
i

IL
i B ,B ] and 

[ OU
r

OL
r B ,B ]. For instance, the results for C12 and C22 are depicted in Table 15. For the 

combination C12, the general virtual weights restrictions Eq. (3-44) can be rewritten as Eq. 

(3-48) to Eq. (3-51) by removing four of the same and repeatable restrictions for all branches 

from the parameters setting in Eq. (3-34) to Eq. (3-37): 

,,,,02080 2211 H Aj   Uy.-Uy.  jj K=≥  (3-48) 

,,,,08020 2211 H Aj Uy.Uy.- jj K=≥+  (3-49) 
,,,,01090 2211 H Aj     Vx.-Vx.  jj K=≥  (3-50) 
,,,,09010 2211 H Aj    Vx.Vx.- jj K=≥+  (3-51) 

As Table 15 depicted, the ranking is inconsistent between the two combinations C12 and 

C22. For managers, it is expected that more outcomes form all kinds of combinations that can 

help them make more accurate and robust judgments in the ranking of branches. 

 

Table 15. The assessment results in VWR-CWA of C12 and C22 

 

(1) VWR-CWA of C12 (2) VWR-CWA of C22 

( 1V , 2V , 1U , 2U ) = (191.30, 1.09, 1.00, 6.67) ( 1V , 2V , 1U , 2U ) = (121.38, 2.20, 1.00, 17.78)
Branch 

j 
∗
jξ  Ranking 

I
jP1  

I
jP2

O
jP1  

O
jP2

∗
jξ  Ranking I

jP1  
I
jP2  

O
jP1  

O
jP2

A 0.975 2 35% 65% 74% 26% 0.909 3 14% 86% 52% 48%
B 0.895 7 32% 68% 76% 24% 0.801 6 13% 87% 54% 46%
C 0.942 3 31% 69% 77% 23% 0.821 5 12% 88% 56% 44%
D 0.914 5 34% 66% 80% 20% 0.785 7 14% 86% 60% 40%
E 0.850 8 36% 64% 78% 22% 0.767 8 15% 85% 57% 43%
F 0.940 4 32% 68% 74% 26% 0.860 4 13% 87% 51% 49%
G 0.912 6 42% 58% 66% 34% 1.000 1 19% 81% 42% 58%
H 1.000 1 34% 66% 67% 33% 0.998 2 14% 86% 44% 56%

 

While compiling statistics from 25 combinations, we obtained the percentage of 

occurrence frequency in each ranking, as depicted in Table 16. It is not hard to observe that 

except for branch G, the high occurrence frequency centralizes in a few rankings for other 
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branches. For instance, branch H is only ranked 1st and 2nd. For branch E, the ranking of 7th 

and 8th occurs in all combinations. Undoubtedly, branch H is always better than branch E. If 

managers choose the highest occurrence frequency as the representative branch of each 

ranking level, the ranking list for 1st to 8th is H, A, C, F, D, B, E and G. 

Table 16. The summary of the 25 ranking results with C1 to C25 
Ranking 

Branch j 1st 2nd 3rd 4th 5th 6th 7th 8th 

A 10 8 7 0 0 0 0 0
B 0 0 0 0 0 18 7 0
C 0 0 15 1 9 0 0 0
D 0 0 0 0 15 3 7 0
E 0 0 0 0 0 0 10 15
F 0 0 1 24 0 0 0 0
G 2 5 2 0 1 4 1 10
H 13 12 0 0 0 0 0 0
Total 25 25 25 25 25 25 25 25
Robust Ranking H A C F D B E G

 

Table 17. The ranking of branch G in the 25 ranking results with C1 to C25 

Ranking of Branch G [ IU
i

IL
i B ,B ] 

[0%, 100%] [10%, 90%] [20%, 80%] [30%, 70%]  [40%, 60%] 

[ OU
r

OL
r B ,B ] 

[0%, 100%]  8th 8th 8th 8th 8th 
[10%, 90%]  8th 8th 8th 8th 8th 
[20%, 80%] 6th 6th 6th 6th 7th 
[30%, 70%]  2nd 2nd 2nd 3rd 5th 
[40%, 60%] 1st 1st 2nd 2nd 3rd 

Under the above ranking rule, the ranking of branch G is debatable due to its average 

occurrence in multiple ranking levels. In other words, branch G’s ranking varies largely under 

different combinations. We further observe the ranking status of branch G in all combinations, 

as depicted in Table 17. While fixing the interval [ OL
rB , OU

rB ] with [0%, 100%] or [10%, 

90%] for O
rGP , branch G is ranked the last of all branches, whatever the interval [ IL

iB , IU
iB ] 

for I
iGP . On the contrary, while we shorten the interval [ OL

rB , OU
rB ] step by step from [0%, 

100%] to [40%, 60%] for O
rGP , fixing the interval [ IL

iB , IU
iB ] at [0%, 100%] for I

iGP , branch 

G can reach the best one of all branches. 

Following the above observation, we understand that the ranking of branch G is deeply 

affected by the variation of interval [ OL
rB , OU

rB ]. If the manager is asked to only select some 
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combinations as the reference of assessment, they should concentrate more attention in 

determining the appropriate interval [ OL
rB , OU

rB ]. Branch G will obtain a different ranking 

while the manager determines a different interval [ OL
rB , OU

rB ]. As for the determination of 

interval [ IL
iB , IU

iB ], in this case it is not necessary for the manager to cost more effort 

because these combinations show the same ranking while the interval [ IL
iB , IU

iB ] varies. 

In order to explore the cause of the above phenomenon, we observe the relationship 

between the ranking variations and proportion variations of branch G while varying interval 

[ IL
iB , IU

iB ] or [ OL
rB , OU

rB ], as Table 18 and Table 19 depicted. It is obvious that the values 

of I
GP1 (54%) and I

GP2 (46%) obtained in C1 are simultaneously satisfied with a narrower 

interval [ IL
iB , IU

iB ] in C2, C3, C4, and C5. Therefore, as depicted in Table 18, while fixing 

the interval [ OL
rB , OU

rB ] at [0%, 100%] and shortening the interval [ IL
iB , IU

iB ], we still 

obtain the invariant values of proportion and ranking for branch G. However, as depicted in 

Table 19, O
GP1 (74%) and O

GP2 (26%) obtained in C1 are not satisfied with the narrower 

interval [ OL
rB , OU

rB ] in C6, C11, C16, and C21. In order to satisfy narrower intervals [ OL
rB , 

OU
rB ], the smaller O

GP1  and O
GP2  are necessary. Therefore, the above variation in interval 

[ OL
rB , OU

rB ] easily results in the variations of I
GP1 , I

GP2  and ranking. 

 

Table 18. The proportion variations of indices of branch G while varying [ IL
iB , IU

iB ] 

Combination Ranking [ IU
i

IL
i B ,B ] I

GP1  I
GP2  [ OU

r
OL
r B ,B ] O

GP1  O
GP2  

C1 8th [0%, 100%] 54% 46% [0%, 100%] 74% 26% 
C2 8th [10%, 90%] 54% 46% [0%, 100%] 74% 26% 
C3 8th [20%, 80%] 54% 46% [0%, 100%] 74% 26% 
C4 8th [30%, 70%] 54% 46% [0%, 100%] 74% 26% 
C5 8th [40%, 60%] 54% 46% [0%, 100%] 74% 26% 

 

Table 19. The proportion variations of indices of branch G while varying [ OL
rB , OU

rB ] 
Combination Ranking [ IU

i
IL
i B ,B ] I

GP1  I
GP2  [ OU

r
OL
r B ,B ] O

GP1  O
GP2  

C1 8th [0%, 100%] 54% 46% [0%, 100%] 74% 26% 
C6 8th [0%, 100%] 54% 46% [10%, 90%] 74% 26% 
C11 6th [0%, 100%] 42% 58% [20%, 80%] 66% 34% 
C16 2nd [0%, 100%] 23% 77% [30%, 70%] 53% 47% 
C21 1st [0%, 100%] 19% 81% [40%, 60%] 42% 58% 
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Following the above discussion, we conclude that given the fixed interval [ OL
rB , OU

rB ], 

if the value of I
GP1  and I

GP2  obtained in C1 is feasible in the narrowest interval [ IL
iB , IU

iB ] 

of C5, then the values of I
GP1  and I

GP2  are also feasible in C2, C3, and C4. Most importantly, 

the ranking is invariant with the same proportion in these combinations. If the manager needs 

to complete all combinations, it is helpful for them to deduce the times of assessment by 

omitting C2, C3, and C4 while fixing the interval [ OL
rB , OU

rB ] at [0%, 100%]. 
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4. Most Compromise Weight Analysis (MCWA) to Rank Organization Units 
MCWA model discuss the ranking of organization units by releasing the restrictions that 

the efficiency score of all units can’t exceed the value 1.0 in CWA model. It generates the 

common weights from the perspective of gap minimization similar to the regression analysis 

model. Besides, we consider the cluster analysis in the application of MCWA to solve the 

problem of bias ranking in units because of the different scales. 

 

4.1 Performance measurement philosophy 
The CWA methodology in section 3 follows the DEA structure, using the organization 

manager as the object units to determine the favorable weights. CWA also limits that none of 

DMUs’ efficiency scores is allowed to exceed 1.0. However, the restriction possibly prevents 

the efficiency from being developed for some excellent units. It easily results in the bias in the 

assessment results. In order to make the units possessing the freedom in creating the 

efficiency score, we develop the second procedure to determine one compromise common set 

of weights by eliminating the restriction with upper bound 1.0 in efficiency score. We expand 

the MCWA model proposed by Liu et al. [34] in this section to complete the corresponding 

analysis in ranking. The proposed model in the second procedure is similar to the regression 

analysis model with the main difference that the proposed model can handle multiple 

dependent variables while regression model focus on one dependent variable. 

 

4.2 MCWA model 

We expand the scenario in Figure 2 to the scenario in Figure 5. Given two UOAM and 

UOAN with one known common weight rU~  ( r = 1, 2, …, s) and iV~  (i = 1, 2, …, m) is 

assigned, the sum of virtual gap to Diagonal Line (DL) is A
NΔ~ + B

MΔ
~ , which mean the 

performance variation of two UOAs. However, we want to choose one optimal common 

weight to minimize the sum of virtual gap for purpose of expressing the minimal variation 

between the two UOAs. The minimized sum of virtual gaps is the objective function value of 
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the linear program. For instance, as Figure 5 depicted, the simplified scenario can be modeled 

to Eq. (4-1). The constraints Eq. (4-1.1) and Eq. (4-1.2) stands for the adjustment of two 

UOAs to DL with combination of the virtual gaps OA
NΔ , IA

NΔ , OB
MΔ  and IB

MΔ . 

Assume that there are n UOAs, the model (4-1) can be expanded into model (4-2) with 

some UOAs belong to the set A (UOAs above DL) and the others belong to the set B (UOAs 

below DL). The parameters I
iε  and O

rε  are the positive Archimedean infinitesimal constant 

with scale unit “Đ/ unit of the associated i-th input and r-th output indices”, respectively. The 

symbol Đ denotes the virtual scale unit for the weighted input and outputs. For instance, while 

y1j takes the dollar ($) as its unit, then we obtain the unit of O
1ε  to be the ratio (Đ/$). The 

products I
iε xij and O

rε yrj finally obtain values in Đ that are equivalent to the virtual gaps: 

( IA
jΔ , IB

jΔ ) and ( OA
jΔ , OB

jΔ ), respectively. 

 

N

PN

 IA
NΔ

~

∑
=

m

i
iijVx

1

~

PM

M

A 
NΔ

~

B
M
 Δ~

0

 OA
NΔ

~

 OB
MΔ

~

 IB
MΔ

~

∑
=

s

r
irjUy

1

~

 
Figure 5. Gap analysis for UOAs locating on the both side of diagonal line 

 
In addition, the fractional model (4-2) can be transformed into the linear model (4-3) for 
computation. The triangular in Figure 5 is one isosceles right triangular, so it leads to 

A
j

IA 
j

OA 
j Δ=Δ=Δ

2
1  and B

j
IB 
j

OB 
j Δ=Δ=Δ

2
1 . Then, (4-3) could be rewritten as (4-4). 
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,,,1,0 sr U O
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,,,1,0 mi  V I
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A,j                 ,           A
j
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j
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j ∈≥ΔΔΔ ,0,  (4-2.5) 

B.j                 ,           B
j

OB
j

IB
j ∈≥ΔΔΔ ,0,  (4-2.6) 

 
We expand the model (4-4) into the model (4-5) by adding A

jΔ  and B
jΔ  in each constraint 

for the convenience of computation. Since B 
jΔ  = 0 while Aj∈  and A 

jΔ  = 0 while Bj∈ , 

the variables B 
jΔ  and A 

jΔ  are separately added into (4-5.0), (4-5.1) and (4-5.2). 
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Model (4-5) is equivalent to model (4-6) by combining (4-5.1) with (4-5.2) and combining 

(4-5.5) with (4-5.6), we obtain the formulation (4-6.1) and (4-6.4). 
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Here, we define the MCWA efficiency score ∗
jη  of UOAj, as defined as Eq. (4-7). 
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∗
iV  and ∗

rU  denote the optimal common weights obtained in (4-6) for all UOAs attached to 

the input index i and output index r. 

Model (4-6) is similar to the multiple regression model while we only consider one 

dependent variable and multiple independent variables. The equation (4-6.1) relating m 

independent variables (x1j, x2j, …, xmj) to a dependent variable y of the form can be depicted in 

(4-8). Then, (4-8) can be transformed into common form (4-9) of multiple regression model.  

,1,
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α  (4-9) 

Generally, we desire to minimize the sum of squares ( )B
j

A
jU

Δ−Δ
2  for all UOAj and 

generate the following model (4-10). In the other words, we can regard MCWA model as the 

similar regression model while considering one dependent variable. 
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4.3 Numerical example 4 

In order to describe the methodology readily, we use the same set of hypothetical data 

as depicted in Table 11 to implement the MCWA model. A manager of a retail company 

governs eight branches and periodically assesses them by observing four performance indices: 

number of Employees, Cost, Turnover, and Profit. Employees and Cost are treated as input 

indices, while Turnover and Profit are the output indices. 

 
Table 20. The efficiency score and ranking of using CWA, MCWA and (4-11) models 

Branch 
j 

(1)  CWA (2) MCWA (3) (4-11) with 175.1=∗σ
∗
jζ  Ranking Gap ∗

jη  Ranking Gap Score Ranking Gap 
A 1.000 1 0.00 1.057 1 452.26 1.237 1 358.60 
B 0.902 8 958.54 0.957 8 398.87 1.119 8 385.43 
C 0.947 4 469.24 1.006 3 49.53 1.175 3 0.00 
D 0.984 2 169.98 1.042 2 412.27 1.215 2 285.28 
E 0.934 6 711.65 0.986 7 147.32 1.150 7 191.90 
F 0.931 7 737.85 0.987 6 130.24 1.155 6 148.25 
G 0.956 3 387.45 1.000 4 0.00 1.175 3 0.00 
H 0.945 5 600.87 1.000 4 0.00 1.175 3 0.00 

Total 4033.58 Total 1590.49 Total 1369.46 
Note1: ( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (1.00, 1.27, 1.00, 1.00) in CWA model 

Note2: ( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (13.24, 1.16, 1.00, 1.00) in MCWA model 

Note3: ( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (12.70, 1.00, 1.00, 1.26) in model (4-11) 

We can use the CWA model (3-3) to search the benchmark and the detailed ranking of 

all branches. The corresponding reference information is depicted in the column (1) of Table 

20 and the benchmark is branch-A. In fact, while we use the model (4-6) by releasing the 

restriction that none of DMUs’ efficiency scores is allowed to exceed 1.0, the benchmark is 
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still the branch-A and its efficiency score increases to 1.057 as depicted in the column (2) of 

Table 20. There also exists little variation in the accurate ranking of branches and the ranking 

are similar in the most branches. 

In order to make MCWA model more flexible, Liu and Lin [35] proposed to replace the 

efficiency score 1.0 by the unknown slop σ of DL in MCWA model with some UOAs belong 

to the set A′  (UOAs above DL with slop σ ) and the others belong to the set B′  (UOAs 

below DL with slop σ ). They transform the model (4-2) into the following nonlinear 

programming model (4-11). We reassess the dataset by the model (4-11) and obtain the score 

and ranking in the column (3) of Table 20. We obtain the almost consistent results in ranking 

between MCWA model and model (4-11) and the latter possesses the minimum gap 1369.46. 
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4.4 Applying cluster analysis in MCWA model 
Cluster analysis is a term used to describe a family of statistical procedures specifically 

designed to discover classifications within complex data sets. The objective of cluster analysis 

is to group units into clusters such that units within one cluster share more in common with 

one another than they do with the units of other clusters. Thus, the purpose of the analysis is 

to arrange units into relatively homogenous groups based on multivariate observations. 
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Minimum variation method proposed by Ward [36] is probably the most widely used in 

the cluster analysis. The relative proximity of a set of units can be described using the concept 

of sum of squares, the squared sum of the distances of each unit from the mean value of the 

cluster. Using Ward’s method, the cluster that results in the smallest increase in the sum of 

squares is formed during each step. Every possible combination of cluster formation is 

considered at each subsequent step. The minimum variation method provides the division of 

initial units for the purpose to proceed to further ranking analysis. 

 

4.5 Numerical example 5 

In order to describe the procedure readily, we use the data of Table 21 as our example. 

The input indices include number of employees and cost and the output indices include the 

business of credit, deposit, and loan. We propose a loop with three major steps to classify the 

UOAs.  

Table 21. Dataset of 12 bank branches with 5 performance indices  
Branch 

 j 
 Input index  Output index 
Employee ( jx1 ) 

Person 
Cost ( jx2 )

$ 
Credit ( jy1 ) 

$ 
Deposit ( jy2 ) 

$ 
Loan ( jy3 ) 

$ 
A 23 510 1500 78397 7940 
B 26 571 1705 78680 7970 
C 36 922 1718 63960 6604 
D 42 1012 1812 65426 6682 
E 48 1056 1746 66546 6988 
F 33 799 631 11671 1551 
G 28 544 412 8566 974 
H 39 880 750 12312 1389 
I 40 968 838 13166 1584 
J 29 552 621 7011 789 
K 37 824 720 9974 1002 
L 35 941 695 10087 1192 

Step 0: Initialized the number of subgroup, k=1. 

Step 1: Use the computational model (4-6) to obtain the common set of weights ∗
rU  (r = 1, 

2, …, s) and ∗
iV (i = 1, 2, …, m) for the group of UOAs and compute their efficiency 

scores. Then go to Step 2. 

Step 2: Proceed with a hypothesis test to the obtained efficiency scores with the null 
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hypothesis that the mean of efficiency scores for each subgroup of UOAs is equal to 

1.0. If all the subgroups accept the null hypothesis, stop the procedure here. Otherwise, 

go to Step 3.  

Step 3: Employ Ward’s cluster analysis method [36] to categorize the whole UOAs into k+1 

subgroups. Then the units belong to each of the k+1 subgroups are further processed 

by Step 1. Update k as k+1. 

We randomly generated a large number of experimental datasets. Generally, the final value of 

k would not be more than three. 

Step 1: Applying MCWA to all branches 

Apply the dataset, we called S here, in Table 21 to the MCWA model (4-6), the optimal 

solutions are depicted in Table 22. The objective function value, total virtual gap 2384.92 

(Đ×100) of all branches to DL is the minimized one with the common set of weights 

( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (94.03 Đ/person, 13.45 Đ/$, 1.00 Đ/$, 1.00 Đ/$, 1.00 Đ/$). Then, 

each branch’s coordinates ( *
jx& , *

jy& ) are plotted in Figure 6, with x-axis 21 45130394 x .x . +  

and y-axis 321 111 yyy ++ .  

For instance, branch I locates at coordinate ( *
Ax& , *

Ay& ) = (167.85, 155.88) and is ranked 

9th with the efficiency score 0.929. The virtual gap is 8.46. According to Table 22, branches A 

and L are identified as the best and the worst branches. Besides, relative to DL, the three 

subgroups of branches {A, B, C, D, E}, {H, I, J, K, L} and {F, G} are located above, below 

and on the DL, respectively.  

Step 2: Proceeding with a hypothesis test to the obtained efficiency scores 
According to the efficiency score ∗

jη in Table 22, we reject the null hypothesis with 

p-value 0.043 by using the t-test on the degree 11 and confidence coefficient 0.05. It implies 

that there exists significant difference in the level of branches such that the common set of 

weights cannot efficiently minimize the total virtual gap for the point at all branches in DL. 

The case possibly leads to the bias of ranking. Therefore, we go to the step 3 to classify the 

branches into two subgroups. 
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Step 3: Classifying the branches 

The general manager who governs the branches may observe the above ranking as one 

rough reference while there is a significant difference in the efficiency scores for branches. In 

Step 2, we analyze the dataset of five original performance indices in Table 21 by Ward’s 

method with computer software SPSS 13.0. Then, the 12 branches of initial group S are 

classified into two subgroups, C1= {A, B, C, D, E} and C2 = {F, G, H, I, J, K, L}. The 

minimum total sum of squares 2.44E+08 for these two subgroups is composed of the 

individual subgroup’s sum of squares 2.15E+08 for C1 and 2.89E+07 for C2, respectively. 

Then proceed to the MCWA model for the branches of each subgroup. 

321 yyy ++

21 45130394 x .x. +
0

 

Figure 6. The expression to branches in group S 

Back to Step 1: Applying MCWA to each subgroup of branches 

The datasets of subgroups C1= {A, B, C, D, E} and C2 = {F, G, H, I, J, K, L} are being 

substituted for the original set S in Table 21 to model (4-6), the results of the two subgroups 

are arranged in Table 23. Observe Table 23, the ranking of branches in subgroup C2, F > I > G 

= H = J > K > L is different from the ranking of branches in Table 22, F = G > H > I > J > K > 
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L. The branch I obviously changes its order. In terms of scale, the branches in subgroup C1 are 

obviously larger than subgroup C2. It implies that the scale possesses the influence on the 

common set of weights for the group S. According to our procedure, the branches in subgroup 

C2 have similar scales. Eliminating the effect from the branches of subgroup C1, the common 

set of weights is fairer in ranking the branches of subgroup C2. 

 

Table 22. The computation results to 12 branches of group S 

Branch j 
Score / Rank Virtual input / output Virtual gap 

∗
jη  Rank *

jx& (Đ×100 ) *
jy& (Đ×100 ) ∗

ΔB
j (Đ×100 ) 

∗
ΔA

j (Đ×100 )

A 9.73 1 90.24 878.37 0.00  557.29 
B 8.73 2 101.27 883.55 0.00  553.15 
C 4.58 3 157.90 722.82 0.00  399.46 
D 4.21 4 175.65 739.20 0.00  398.49 
E 4.02 5 187.21 752.80 0.00  399.93 
F 1.00 6 138.53 138.53 0.00  0.00 
G 1.00 6 99.52 99.52 0.00  0.00 
H 0.932 8 155.07 144.51 7.47  0.00 
I 0.929 9 167.85 155.88 8.46  0.00 
J 0.82 10 101.54 84.21 12.25  0.00 
K 0.80 11 145.65 116.96 20.29  0.00 
L 0.75 12 159.52 119.74 28.13  0.00 

Subtotal     76.60 2308.32
Total     2384.92 

Note: ( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (94.03 Đ/person, 13.45 Đ/$, 1.00 Đ/$, 1.00 Đ/$, 1.00 Đ/$) 

 

Then, by setting the confidence coefficient as 0.05, the null hypothesis that the mean of the 

five efficiency scores of subgroup C1 equals to 1 is accepted with p-value 0.17. Similarly, the 

seven efficiency scores of subgroups C2 have also accepted the null hypothesis with p-value 

0.31. Figure 7 and Figure 8 depict the locations of the branches of subgroup C1 and subgroup 

C2, respectively. 
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Table 23. The computation results to branches of 2 disjoint subgroups C1 and C2 

Branch j 
Score / Rank Virtual input / output Virtual gap 

∗
jη  Rank *

jx& (Đ×100 ) *
jy& (Đ×100 ) ∗

ΔB
j (Đ×100 ) ∗

ΔA
j (Đ×100 )

C1 

A 2.36  1 372.54  878.37 0.00 357.68  
B 2.12  2 417.10  883.55 0.00 329.83  
C 1.07  3 673.44  722.82 0.00 34.92  
D 1.00  4 739.20  739.20 0.00 0.00  
E 0.98  5 771.38  752.80 13.14 0.00 

Total    13.14 722.43 

C2 

F 1.04  1 186.85  193.36 0.00 4.60  
G 1.00  3 135.32  135.32 0.00 0.00  
H 1.00  3 209.68  209.68 0.00 0.00  
I 1.01  2 226.40  228.70 0.00 1.62  
J 1.00  3 138.17  138.17 0.00 0.00  
K 0.91  6 197.05  179.53 12.39 0.00 
L 0.84  7 214.40  180.13 24.23 0.00 

Total    36.62 6.22 
Note1: ( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (1.00 Đ/person, 73.00 Đ/$, 1.00 Đ/$, 1.00 Đ/$, 1.00 Đ/$) 

Note2: ( *V1 , *V2 , *U1 , *U2 , *U 3 ) = (146.48 Đ/person, 17.34 Đ/$, 9.69 Đ/$, 1.00 Đ/$, 1.00 Đ/$) 

 

321 yyy ++

21 73 xx +0
 

Figure 7. The expression to branches in subgroup C1 

 



 

 58

321699 yyy . ++

21 341748146 x .x . +0
 

Figure 8. The expression to branches in subgroup C2 
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5. Conclusion and Discussion 
In this research, we develop two procedures to determine the common weights relative to 

the performance indices across all units of organization. The first one is to determine the 

common weights by searching the benchmark unit in the organization. One virtual benchmark 

is defined as units with efficiency score 1.0 and all units are asked to approach the virtual 

benchmark as close as possible. The units with zero gaps to the virtual benchmark are the real 

benchmark. In the structure of data envelopment analysis, the determination of common 

weights in this research means that the organization determines the favorable weight to 

maximize the organization efficiency. The obtained common weights can assist the 

organization managers in generating the individual efficiency score for all units and the 

corresponding ranking problem can be addressed by comparing with the scores. However, in 

the first procedure, sometimes there is existing some units with the equivalent efficiency score 

1.0 due to the constraint that none of DMUs’ efficiency scores is allowed to exceed 1.0. It 

possibly leads to the obstruction of efficiency development. In order to avoid the bias in 

measurement due to the upper bound of efficiency, we develop the second procedure to 

determine one compromise common set of weights by eliminating the restriction with upper 

bound 1.0 in efficiency score. It leads to the more complete ranking without the repeatable 

efficiency scores.  

Several interesting subjects for the further development of this research are discussed. 

Besides the scenarios of benchmark chasing and neutral compromise, risk avoidance owns the 

highest potential for the management. Risk avoidance focuses the prediction of possible and 

potential UOAs with the worst performance and provides the improvement plan in advance. 

The excellent risk avoidance always saves a possible significant lost for organizations. 

In this research, the common set of weights is applied to all UOAs under different 

scenarios and the performance indices are assumed given. Some methods for the selection of 

performance indices will help this research to possess reliable assessment outcomes. 

Statistical approaches and other methods such as analytic hieratical process (AHP) [37] and 

analytic network process (ANP) [38] would help to select appropriate combinations.  
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We used non-negative data for the numerical examples of the procedures proposed. One 

should examine the applicability of the proposed procedures to the other data types, such as 

negative data, probabilistic data, fuzzy data, ordinal data, and interval data in determining the 

common set of weights.  

In numerical example 3, Table 14 shows that five interval limitations were set for both 

the proportional virtual output and proportional virtual input, respectively. In our particular 

numerical example, we observed that the rankings of the UOAs possess the robustness under 

the considerable amount of combinations. In fact, how to determine the amount of interval 

limitations for obtaining the ranking robustness is a critical issue. One would observe the 

interaction between the setting of boundary intervals and the rankings by observing more and 

more combinations. Generally, the rule for setting the interval limitations is straightforward; 

the lower bounds are in increasing order while the upper bounds are in decreasing order. 

Section 4 provides the analysis similar to Least Square Method (LSM). While there are 

existing multiple dependent variables, this model may provide the corresponding analysis. 

The slope of the diagonal line is also another issue. A non-linear programming model can 

search for the optimal slope so that the total gap is further minimized. 
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