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Topics on Linear Elliptic Equations

Student : Wen-Wen Yao Adpvisor : Dr.Jong-Eao Lee

Department of Applied Mathematics,
National'Chiao Tung University

Abstract

We study the linear elliptic partial differential equations ( linear elliptic PDEs ). First,
we give some practical examples and show that they are governed by such type of the
equations. Next, we apply several classical methods to solve the linear elliptic PDEs with

the solutions being expressed in various forms. We then identify those solutions.

When we apply Fourier transformations to the whole- and half-line PDEs, it is
necessary to perform the inverse Fourier transformations to derive the PDE solutions, and
it is quite often that those integrals involve the square root operator which is multi-valued
in the complex plane. In order to perform the inverse transformations correctly, we develop
the Riemann surfaces from the complex plane with the proper algebraic structures to assure
that the square root is now a single-valued function on the surfaces, and we are able to
accomplish the inverse transformations analytically and numerically. Some examples are

given to illustrate the entire scheme.

iv



LUARAESTFLTLREY RFIF FEBRRAK Y

~

£

rehF i ER oo Bl A e TR KRR Ho

W AEREARY FRRFEIE S Aot iy 4 e o B A

MR T RS X SRR RA DR § 0 P ATES S E AR

B Bt RE S o - BTk 0 BRI s o BR AR

2

N < 0 i ;

REh~ iz » B RHFBHE G4 %

T\4

P e f ik S g B



Contents

I. IntroduCtion-------mmmmmm oo 1
II. The methods of solving Elliptic PDE ----=-=-=-m-mmmmmmemememememe o -14
I -1 Separation of variableto construct solution of Laplace’s equation------------ 14

II-1.1 The domain is rectangular -------------------- 14

I1-1.2 The domain is Circular ----------=m-mmmmm oo 20

II -2 Finite Fourier transform to construct solution of Laplace’s equation--------- 23

II -3 Fourier transform to construct solution of Laplace’s equation------------------ 28

II -4 Finite difference to construct solution of Laplace’s equation------------------ 32

II. The limit of the methods of solving Elliptic PDE ----------------------- oo oem oo~ 36
IV. Integral evaluations on two-sheeted Riemann surface of genus N ---------------o-oo-- 39
IV-1 Fundamental introduction--4==damme s o de oo 39

IV-2 Riemann surface of the dlgebraic-curve f(z) = ’H(z —z;) with z,€ R----42

j=1
IV-2.1 The horizontal cut structure of f(z) -=------=========m=m-m=—- 42

IV-2.2 The algebraic and geometric structure for Riemann surface of f(z)--46

IV-3 Riemann surface of the algebraic curve f(z)= H (z—z;) with z,€C-50
j=1

IV-3.1 The vertical cut structure of f(z)-----------========m-e=mnm-- -51
IV-3.2 The algebraic and geometric structure for Riemann surface of f(z)----53

IV-4 The integrals over canonical a,b cycles for horizontal cuts and vertical cuts---56

IV-4.1 The a,b cycles over the Riemann surface of f(z) = ’H(z —z;) 56
j=1

IV-4.2 About “Mathematica” and How to modify 59
IV-4.3 An application for the integrals over a,b cycles - --—-60

IV-5 An application for Riemann integrals----------=---=-=-mmmmmmmmmmme 65

vi



I . Introduction

Many important scientific and engineering problems fall into the field of second-order
partial differential equation. We want to recognize the distinguish for second-order partial

differential equation.

The distinction as to Hyperbolic ~ Parabolic ~ or Elliptic for second-order partial
differential equation depends on the coefficients of second-derivative term. we can write

any such general linear partial differential equation of second order in two variables reads °

A(x,y)u  + B(x, y)uxy +C(x, y)uyy +D(x, y)u, + E(x, y)u), +F(x,y)u=0

where (x,y)e Q (Q isdomain).
Depending on the value B® —4AC - we classify the equation as

Hyperbolic ="if ‘B2~ 4AC > 0
Parabolic: = 'if B*—4AC = 0 |,
Elliptic = = if B*—4AC < 0

For example - the Wave equation u, —u, =0 is of Hyperbolic type > and the
Heat partial differential equation u_ —u, =0 is parabolic > while Laplace’s equation

u,+u, =0 is Elliptic.

Elliptic partial differential equation has many applications in engineering’ physics and
material science » for example resistance and capacitance extraction in electronic circuit »
state decomposition in microwave tube > Navier-Stokes equation in incompressible fluid

and device simulation of semiconductor > membrane displacement > torsion and so on .

There is a question > why are most physical problems related to elliptic equation ?
Since Elliptic equation has a term ° Laplacian operator ” > it describe diffusion

phenomenon - like heat diffusion ~ dynamic diffusion etc.

Now consider the steady potential flow in two-dimensional incompressible fluid.
First > we define correlation proper noun. In general > the two-dimensional flow is a flow in

which the velocity component depends on only two space variables. An example is a plane



flow > in which the velocity component depends on two spatial coordinates > x and y >

but not z. An incompressible flow exists if the density of each fluid particle remains

relatively constant as it moves through the flow field - that is CCZZ—’O:O » and for an
t

incompressible flow > the differential equation of mass conservation is

ou, Ou, Ju, . : : : : o

8_+ 3 ' +T =0 1in three-dimensional. The velocity at a given point in space does
X y Z

not vary with time > that is E;_u =(.We call that is the steady flow. The flow is irrotational
t

we call the potential flow. In this we discuss xy — plane - that implies w, =0 > we have
auy aux
ox dy

Let u(x, y)be the velocity of the point (x,y) on xy— plane. Then we have the

differential of mass conservation of incompressible flow in xy — plane .

u au ,
—+—=0 . 1-1
ox  dy (1-1)
This equation is satisfied identically if afunction. ¥ (x, y)is defined such that becomes
0 dy_ -9d| du
— () +—(=—")=0 .. 1-2
ax(ay) ay( ax) (1-2)
Comparison of (1-1) and (1-2) shows that.this new function ¥ must be defined such that
oy oy
=—" and =——" . 1-3
" dy “ ox (1-3)
. . L . du, du
Since this flow is irrotational > we put (1-3) into the —— =—= .
ox  dy
We get
'y 'y
ox> 9y’
2 2
= J "2” + J 1/2/ =0
ox*  dy
2 2 5
= (—+—)Ww=Vy=0 . 1-4
( o oy W v (1-4)

%) is called the Laplacian > and the equation (1-4) is
y

called Laplace’s equation in two dimensional. The inviscid ~ incompressible ~ irrotational

The operator V> = (i2 +
ox

flow fields are governed by Laplace’s equation. This type of flow is commonly called

a potential flow > and the function ¥ is called potential function.



In below > we illustrate the angular motion in the xy — plane. The velocity variation

that causes rotation and angular deformation is illustrated in Figure 1-1(a). In a short time
interval At the line segments OA and OB will rotate through the angles da and Jf

to the new positions OA” and OB’ as is shown in Figure 1-1(b).

du
I8 AyA
|<— ‘PL dy ya

B[ . o B K
., + 3y Ay ,’
Ay 3B, A’
A, A Ay \,'l -7 TR o
\ . PR Jo A
u‘ u .+ " [Pt \5
o— A o= o A_L
Ax
(a) (b)

Figurel-1. Angular motion and deformation of a fluid element

The angular velocity of line OA > W,, 1is

.o
Wou = Jim=" -
For small angles * we have
ou, A
7 = t au
S ~ tandgy =22 = X =—2Ar .
Ax Ax ox
d
fl At )
So that Wy, = lim[-2—] =2
04 A0 Af ox
u
Note that » if a—v is positive » W, will be counterclockwise.
X
Similarly - the angular velocity of line OB > W, is
. op
Wop = lim="
and
o)
5 3
of = tanodf = =Y = A ,
Ay Ay ady
0
A
so that W,p = lim[ Y 1= Y
Ar—0 Al‘ ay

d
Note that > if % is positive » W,, will be clockwise.

OB
y



The rotation » W, - of the element about the Z —axis is defined as the average of the
abgular velocities W,, and W,, of the two mutually perpendicular lines OA and OB.

Thus - if counterclockwise rotation is considered to be positive > it follows that

Since we derive in xy — plane > that implies W, =0 .
So we get

ouy _ou,

ox  dy

We will take as our control volume the small > stationary cubical element shown in
Figure 1-2(a). At the center of the element the fluid density is p and the velocity has

component u, ~ u, and u_ . The rate of mass flow through the surface of the element

y

can be obtained by considering the flow in each of the coordinate directions separately. For
example > in Figure 1-2(b) flow in the . x'~diFection is depicted. Let pu,  represent the

x component of the mass rate of flow per unit area at the center of the element > the rate at
which mass is crossing the left side of the element are obtained as pu dydz and the rate

at which mass is crossing the Tightside. of the element are obtained as

{ pu, + M dx}dydz .
ox
Z
Z
A A
dz
1z
X pu . _*{pux+ a(g:x)dx}dydz
© puxdydz ——» X
d d
v y y
dx dx
Y
(a) (b)

Figure 1-2. A differential element for the development of conservation of mass

When these two expressions are combined ° the net rate of mass flowing from the element

through the two surfaces can be expressed as -



d
Net rate of mass outflow in x —direction = {pux + %dx}dydz — pu dydz
X

= dedydz .
ox

For simplicity » only flow in the x —direction has been considered in Figure 1-2(b) > in

general > there will also be flow inthe y and z—direction. An analysis similar to the one

used for flow in the x—direction shown that

d(pu,)

Net rate of mass outflow in y —direction = {pu ,+ dy}dxdz — pu,dxdz

_ 9puy)
y

dxdydz

and

0
Net rate of mass outflow in z —direction = { pu, + %dz}dxdy —  pu_ dxdy

4

& dedydz .
0z

ap

Since we derive the incompressible‘flow > i.e. o =(0 and p is constant.
t

Thus by the conservation of mass > we have

0
Net rate of mass outflow = M dxdydz + Gpu,) dxdydz + dedydz =0
ox y 0z
0
d(pu,) " (puv) n a(puz) -0 .

ox dy 0z
Since p 1is constant,

ou, Ou, Ju,
o .

+—==0.
ox dy 0Jz

Therefore

As previously mentioned - this equation is also commonly referred to as the continuity

equation.

In below > we consider the a situation that is typical > in which the temperatures is a

function of the coordinates of position of the point in equation.



A piece of metal is 12in.x3in.x6ft. There feet of the slab is kept inside a furnace
but half of the slab protrudes (see Figure 1-3 ). In order to decrease heat losses to the
air > the protruding half is covered with a 1-in.thickness of insulation. If the furnace is
maintained at 950°F - will at points of the metal reach a temperature of 800°F or
higher > in spite of heat loss through the insulation ? Such a question might arise in
heat-treating the slab when the only furnace available to heat the metal is too small to

contain the whole slab.

Partion of slab inside furnace

v

3ft
P / \Sheets of insulation
around the metal slab,

< o lin. thick

6ft

Figure 1-3. A piece of metal is 12in.x3in.x6ft

We derive the relationship for temperature u as a function of space variables for the
equilibrium temperature distribution by the metal piece protruding from the furnace. In this
consider the two spatial coordinates - that is derive the relationship for temperature u as a
function of space variables xand y for the equilibrium temperature distribution on a flat

plate.

First » ideal supposition. One : consider only the case where the temperatures do not
change with time. Second : assume that heat flows only in the x and y -directions and
not in the perpendicular direction ( If the plate is very thin > or if the upper and lower
surfaces are both well insulated > the physical situation will agree with our assumption ) .

Three : assume that no heat is being generated at points in the plate. ( see Figure 1-4)



h
A ,
Yo +dy
_________ A
dy
Yo oo o fe-------- l
dx —
! > The dirc:ection of heat flows
High 7 Low !
| l= X
(@) u, (x4,¥,) u, (x, +dx,y,)

Figure 1-4. The plate which is thin and small

Let h be the thickness of the plate. Heat flows at a rate proportional to the

cross-sectional area ° to the temperature rate of change (u,or u ) and to the thermal

conductivity k > which we will assume constant at all points. The flow of heat is from
high to low temperature » of course 2 meaning. opposite to the direction of increasing

temperature rate of change. We use a minus sign in the equation to account for this :
In the x-directions - the rate’of heat-flow into element at x = x, is-k(hdy)u, .

The rate of change at x,+dx 1is the rate of change at x, plus the increment in the rate of

change over the distance dx :

The rate of change at x, +dx : u, +u dx .
Rate of heat flow out of element at x = x, +dx : -khdylu, +u dx] .
Net rate of heat into element in x -directions : -k(hdy)[u, —(u, +u_dx)]=kh(dxdyu, .

Similarly > in the y -directions we have the Net rate of heat into element in y -directions
- khdx[u, — (u, +u,dy)] = kh(dxdy)u,,

The total heat flowing into the elemental by conduction is the sum of these net
flows inthe x and y-directions. If there is equilibrium as to temperature

distribution - that is steady-state > the total rate of heat flow into the element plus heat

generated must be zero.



Hence
kh(dxdy)(u,, +u, )+ Qh(dxdy) =0

where @ is the rate of heat generation per unit area and Q will often be a function of

xand y.

By above assume second > we have Q=0

and

kh(dxdy)(u,, +u,)=0

= uxx+uyy:V2u=0 . (1-5)

The operator V> = (% + %) is called the Laplacian > and the equation (1-5) is
X y

called Laplace’s equation in two dimensional. Laplace’s equation arises in
steady-state heat conduction problems involving homogeneous solids. For three

dimensional heat flow problems » we would have > analogously »

Consider that heat is being generated at points in the plate. Assume this removal rate
to be a function of the location of the element in the xy— plane > f(x,y) > we would

have > with Qequal to the rate of heat generation per unit area >
kh(dxdy)(u,, +u,)+ Q(x, y)h(dxdy) =0

= kh(dxdy)(V*u) = —Q(x, y)h(dxdy)
= k(Vu)=-0(x,y)

S Vi —%Q(x,y) = fny).

This equation is called Poisson’s equation ( non homogeneous ).

A typical steady-state heat flow problem is the following : A thin steel plate is a
10x20 an rectangular. If one of the 10-cm edges in held at 100°C and the other three
edge are held at 0°C - what are the steady-state temperatures at interior points ? For

steel » k =0.16 cal /sececm®*°C/cm.



Math model - Find u(x,y) such that
ox> 9y’
u(x,0)=100 >
u(x,200=0 >
u0,y)=0 >
u(10,y)=0

0

9

In this statement of the problem » we imagine one corner of the plate at the origin > with

boundary conditions as sketched in Figure 1-5.

Figure 1-5. Laplace’s equation for a rectangular domain

Because the field of application of Laplace’s equation and Poisson’s equation do
not involve time - initial conditions are not prescribed for the solution of equation.
Rather » we find that it is proper to simply prescribed a single boundary condition. Such

problems are them call simply boundary value problems ( BVPs ).

The basic example of an elliptic partial differential equation is Laplace’s equation >
ieV’u=0 in Q (thatisdomain)in n—dimensional Euclidean space » other examples
of elliptic partial differential equations include the nonhomogeneous Poisson’s equation »
ieViu=f(x,y) in Q ( that is domain ). These two equations include most of the

physical applications of elliptic partial differential equation.

Elliptic partial differential equation may have non-constant coefficients and be
non-linear. Despite this variety > the elliptic equations have a well-developed theory. In

this paper » we discuss the linear Elliptic partial differential equation.



By above math model > we know in two dimensions > Laplace’s equation has the

rectangular coordinate representation :
&+&=O for 0<x<a and 0<y<b ,
ox> 9y’
u(x,0)= f(x) ,
u(x,b)=0 ,
u@,y)=0,
u(a,y)=0 .

In rectangular domain > we imagine one corner of the plate at the origin > with boundary
conditions as sketched in Figure 1-6.

Y

T T

u=0 u=0
uﬂ+uW:0

l |

O [ u=f(x) —*

Figure 1-6. Laplace’s “equation for a rectangular domain

Many two dimensional problems involving Laplace’s equation are in region that
lend themselves to a polar description in terms of r and @ - rather than rectangular
coordinates x and y. This means that we need an expression for the Laplacianin
terms of polar coordinates.

Let us consider in the unit circle x* +y® <1 with its values given on the boundary

x> +y® =1. Itis natural to introduce the poor coordinates transformation.

Y
A
Ily (x,y) = (r,0)
(S] |
H > X r= lx2+y2
O X

10



) x=rcosé y Y o, 4
Setting ) and tand=— = Hd=tan” —=tan" (yx)
y=rsin8 by X

We wantto (x,y)—PDE = (r,0)—PDE

-2 y
2)
y

1
u, =u, -r.+u, -0 =u, —(x +y ) (2x)+u9 —u,-(x2+y2) 2()c)+u‘9-(r

X

1+ (= )

1 3 1
w, =u, -r.+u,-0.]1x*+y?) 2 (x)+ur[_71(x2 +92) 220X + (X2 +y?) 2]

ity -6, +ity -1 —2) 11, [—Y) (D + 2P (20)]
X +y

1 1 3

=[u, - (x> +y?) 2(x)+u,, «#yyzn(xz +32) 20 +u, [(—xP)(xP +y?) 2+ (P +y?) 2]

+[utgy - (x o 2 Fg - (xF A E (x)]( )+u9[(2xy)(x +y°)7]

-1

1 - - X
u,=u,-r,+u, 60 =u, ~E(x2 +37) 2Q2y) +u, - =u, - (x> +y*) 2(y)+u, -(m)

1+(2)?
X
o 1 3 il
wy, =lu,, 1, +u,,-60,1(x" +y?) 2(y)Jrur[j(x2 +33) 220+ +y?) 2]
+ug, - 6’ +u, - r]( )+u6[(—2xy)(x +y 7]

1 1 3 1

=[u, - (° + ) 2(3) +uy «)Cszyz)](xz +92) 20 +u, [~y + D) 2+ (2 +y7) 2]

+ugy - (X y Dty (X7 +y?) 2(y)]( )+u9[(—2XY)(x2+y2)_2]

11



Hence

2 2 3 3 L
3 124 +E;_124 =u, (x> +y) "X u,, () +y?) 2 +u [+ YR+ (T + YY) 2]
X’y

3 3 1
Fu, (Y)Y U, )+ 7)) 2 [y )+ YT P+ +y?) 2

3
Fuug (Y)Y Fuy, ()7 +37) 2 +u, [Rxy)(x” + y*) 7]

3
+bt99()c2 + yz)_z)c2 +u, ()cy)()c2 + yz) 2 +u‘9[(—2xy)(x2 + yz)_z]
3 1

=u, -|-ur[—(x2 + yz)_g()c2 + ) +2(x% + yz)_i]+u‘99()c2 +yH)™

=u, +u, (-7 +2r ) tug, r

=u, +—u, +—ug =0
r r

Therefore » a computation shows that Laplace’s equation in polar coordinates is

1 1
U, +—u, +—uy, =0 for0<r<land —z<8<7x ,
r r

u(r,0)= f(6) .

In circular domain > with boundary conditions as sketched in Figure 1-7.

Y A

v
<

u=f(x)

Figure 1-7. Laplace’s equation for a circular domain

12



Laplace’s equation » also called the potential equation > the concept of a potential
function seems to have been first used by Daniel Bernoulli ( 1700 ~ 1782 ) » son of the
more famous Jean Bernoulli > in “Hydrodynamica” in 1738 - and Euler wrote Laplace’s
equation in 1752 - from the continuity equation for incompressible fliulds. The real
progress was made by two of the three L’s > Adrien-Marie Legendre ( 1752 ~ 1833 ) and
Pierre-Simon Laplace ( 1749 ~ 1827 ). ( The other L was Lagrange.) Legendre looked
at the gravitational attraction of spheroids in 1785 and developed the Legendre
polynomials as part of this work. Laplace used expansions in spherical functions to solve

the equation since named after him > and both mathematicians continued their work into the
1790, .

13



II. The methods of solving Elliptic PDE

In this chapter » we considers various aspects of the solution of boundary value

problems for second-order linear elliptic prtial differential equations in two variables.

II -1 Separation of variables to construct solution of system of Laplace’s equation

II -1.1 The domain is a rectangular

Consider  u, +u, =0 forO<x<z > O<y<z

y
To solve u(x,0) = f,(x), graph : A
u(x, ) = f,(x),
u(0,y)=f,(y), f,(x)

u(z, y) = fa(¥)s
where f,f,,f;, f, are given functions .

f,(x) 1

Ansatz  u(x,y)=X(x)Y(y).

v
>

Since u,, = X"(x)Y(y) and u =X (x)Y"(y) .

Put it in the above equation > we have

XY () + XY (1) =0
XYW+ X@Y') _

-
XY (y)
N X”(x)JrY”(y)=0
X(x) Y(y)

X’ Y’
= 7()6) = —7()’)

d X d Y
= E(Y(X))——E(Y()’))

X/I
—(x)=-1
= )Ig” » A is any constant .
—(=41
Y

14



Thus u = X (x)Y(y) is a solution of Laplace’s equation if and only if X (x)and
Y(y) satisfy the two ordinary differential equations .

for some constant A . (2-1)

{X”(x)MX(x) =0
Y'(y)-AY(y)=0

For each value of A each of the above second order equations has two linearly independent
solutions.

A>0

Consider {4 =0 > then we get the two linearly independent solutions
A<0

(D Foreach A>0 - we have
u(x,y) = X(x)Y(y) = linear combination of { e** cos Vax ~ e™* sinAx } o -

@ Foreach =0 > we have
u(x,y) = X (x)Y(y) = linearcombinationof t~ x and vy = { 1-x~y - xy }.

@ Foreach A<0 > we have
u(x,y) = X(x)Y(y) = linear combination of { e cosv— Ay ~ e * sin\/Ay bo

Since we are dealing with a linear problem  the solution can be found as the sum of the solution
of

O<x<rm

u,+u,=0 and { , (2-2)
O<y<rmw

u(x,0) = f,(x),

u(x,7)=0 ,

u(0,y)=0,

u(z,y)=0,

and three other boundary value problems-in each of which # =0 except on one edge. It is

therefore sufficient to solve problems of this kind.

15



Since we wish to have u=0 for x=0 and x=7x > we only consider those solutions of the
equation (2-1) which satisfy these conditions. We must have

X'+AX =0 , O<x<7x Y -A¥=0 , O<y<xw
X(0)= X (1) =0 My =0 '

Consider X(x) and
X' +AX=0 , O<x<nrx
X0)=Xx)=0

This homogeneous problem always has the trivial solution X =0 - but this is of no use to us. We
are interested in case to find the non-trivial solution of X(x). So we must check 4 >0 ~
A=0 and 4<0

D Let A>0 = X(x):sin\/zx or cosvAx .

The general solution of the equation 1s X (x),=.a sin JAx+bcosvAx * where a,b aretobe
determined to satisfy X (0)= X(xz) =0.
So we have

X0)=a-0+b-1=0 ="b=0",

X(x):asin\/Zx = X(ﬂ):asinﬂﬂzo ;

h a=0 = X(0)=0 (@riviatsolution
T Vinar=0 = Vi=n , n=12. ’

wehave A=n>=A4, .Inthis X, (x)=sin,/A x are solutions.

X"+2,X=0 , 0<x<7x

X -
Take X ,(x) satisfies {X(0)=X(7z):0

@ Let A=0 = X(x)=a-1+b-x
X0)=a=0 and X(#)=b-1=b=0
= X(x)=0 (trivial — solution)

16



B let A<0 > X(x):emx or eV

The general solution form X (x) = ae’ ™ +he

9

and X(0)=a+b=0 - X(m)=ae' ™ +be =0 |

X X X

e +e
and coshx = S

—-X

. . e
Since sinhx =

Vs A Ny

this implies sinh~/— Ax = % and cosh+/—Ax = %

So the general solution is X (x) = Asinh+/— Ax+ Bcoshv/—Ax >

and X (0)=Asinh0O+ Bcosh0=0 = B=0 .
= X (x) = Asinh~/— Ax
N R

and X(ﬂ):Asinh«/—ﬂ:A-%zo = A=0 .

We get the solutionis X (x) =0 (trivial — solution )

Finally > for A=4, =n’ with n=123,......

X' ()+A4X(x)=00<x<7x

—=Ax

The system § X(0)=0 have non-trivial solution .

X(7)=0

We have X, (x)=sinnx and it not zero .

X'(x)+A X(x)=00<x<1
Now we have {X(0)=0 and ,
XMH=0

the eigenvalues { 4, =n> |7

n=1

In below > we consider Y(y) system

17

and the eigenfunction{ X, =sinnx |

=l



Notice {Y” “Ar=0 . O<y<z must have non-trivial solution.
Y(r)=0
Foreach 4, : Y'(y)—-n’Y(y)=0
We have the linear independent solution of Y (y) equation are
Y(y)=e' « eV (1>0) = Y (y)=sinhv/Ay or cosh/Ay .

Combination the above solution form
we get Y (y)= ae’ +be™* and Y(7)= ae’ +bhe P =0

= a=e¢" and b=—e'* ,

50 Y(y) =ae'™ +be P = MoV 4 (—e Vi) R

_ eﬂzr(y—l) _ e—ﬂzr(y—l)

Vi) _ D
:z{e;} = 2sinh[v/A(y - 7)] = =2sinh[vA(z - y)].

Foreach A, =n’ = X, (x)=sinnx and Y (y) =sinh(n)(7 - y)

We have constructed the particular solutions

u,(x,y)=X,(x)Y (y)=sinnx-sinh(n)(7x —y) ,

which satisfy all the homogeneous conditions of the problem (2-2). The same true of any finite

linear combination. We attempt to represent the solution # of (2-2) as an infinite series in the

functions u,,:

u(x,y)= icn -sinnx -sinh(n)(r —y) . (2-3)

n=1

We need to determine the coefficients c¢,in such a way that u(x,0) = f,(x) > f,(x) 1is given

function. We must then still check to see whether the convergence of the series is sufficiently

good to ensure the satisfaction of the differential equation and the homogeneous boundary
conditions.

We put y =0 ineach term of the series to obtain the condition
filx)= ZC,, -sinnx-sinh(n7x) .

n=l1

18



If we let
b, =c, -sinh(nx) ,

our problem is to determine b,,b,,... in such a way that for a given function f; (x)

filo) = ibn -sinnx .

n=1

The expansion of an arbitrary function in a series of eigenfunctions is called a Fourier series.
The particular case where the eigenfunctions are all sines is called a Fourier sines series. Now
we derived the problem (2-2) solution 1s

u(x,y) = icn -sinnx - sinh(n)(m —y)

n=1

with u(x,0) = f,(x) = an -sinnx where b, =c, -sinh(nrx).

n=1

In below > we give a example to illustrate above statement.

Example 2-1: ( Using Separation of variables to solve Laplace’s equation )

Solve u,+u, =0 for 0<x<z and O<y<=z,

u(z,y)=u(x,7)=u(0,y)=0,
u(x,0)=x*(r—x) .

Solution :

By equation (2-3) > we have

u(x y)=ib .sinhn(ft—y)

n=1 Slnh(n;z') Sin(nx) and M(.X',O) = ibn Sin(nx) = x2 (7[_ .X) )

n=1

=

) )
_<x (7 — x),sin(nx) > _ EJ.:XZ(E_X) sin(nx)dx .

n

< sin(nx),sin(nx) > /1
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II-1.2 The domain is a circular

We consider a solution u# of Laplace’s equation in the unit circle x>+ 7y’ <1

with its values given on the boundary x*>+y®>=1. It is natural to introduce the polar
coordinates r=+x>+y> and @=tan™ YA computation shows that Laplace’s
X

equation in these coordinates is

1 1
urr+_ur+_2ul99=0 . (2'4)
r r

We seek a solution u(r,8) of this equation for » <1 which is continuous for r <1

and satisfies
u(l,8)= () . (2-5)

The function f(#) is a given continuously differentiable function whichis  periodic of

period 27 . The solution u(r,8) must also be periodic of period 27z in 6.

We apply separation of variables.to* Eaplace’s equation by seeking solutions of the
form R(r)6(0).

Substituting > we have
R"(r)0(0) + T R'(r)6(6)+ iz R(r)8”(0)=0
r r

=  r*R(r6B)+rR'(r)6(6)+R(r)8"(8)=0
» R'(n6(0) . R'(n6(H)  R(r)E"(H)
r +r + =0
R(rO(B)  R(1OO) R(r)6(6)
2 R'(r) N rR’(r) N 80 _ 0
R(r)  R(r) 6(0)
2 R°(r) | R(r)_ 6°(0)
r +r =—
R(r)  R(r) 0(0)
0’(6)+16(6) =0
rP*R(r+rR'(r)—AR(r)=0 ~

=A where A isaconstant

consider the eigenvalue equation for . We are interested in functions which are
periodic of period 27 . We consider in the interval (—7,7) > and pose the boundary

conditions
0(-7)-60(7)=0 |,
O'(-n)-0'(x)=0 .
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It is easy to see that has solutions of period 2z if and only if A=n> with
n=0,12,... > corresponding to these eigenvalues n”> we have the eigenfunctions cos(n6)
and sin(n@). Phere are two eigenfunctions corresponding to each eigenvalue except

A=0.The eigenvalues A=n> with n=0,1,2,... > are said to be double eigenvalues.

We turn now to the equation for R(r) ° for n=0 this has the general solution

n

a+blog, and for n=12,.. » the general solution is ar" +br™. The equation is to be

satisfied on the interval O <r<1. In place of a boundary condition at r=0 we simply
impose the condition that R(r) be finite there.

We are left with the product solutions #" sin(n€@) and r" cos(n@). We seek to solve the
problem (2-4) and (2-5) by a series

u(r,a):%ao +Z(anr" cosn@+b,r"sinn). (2-6)

n=1

Putting r =1 > we see that the coefficients a, and b, are to be chosen so that

f(ﬁ)z%ao+2(an cosn@+b, sinnd) ,

n=1
which is a full Fourier series .

Hence ° we deduce that

an=lj” f(P)cosngdd  for n=012,..

Tz

b, :lj” f(@)sinngdd  for n=123,..
7[ -

We examine the function

u(r,0)= %ao +Zr" (a,cosn@+b, sinn) .

n=1

If c= lJ.” |£(6)|d6 > sothat |a,|<c and |b,|<c > we find that the series for u and its
ﬂ' -
2 n-2

first and second partial derivatives are dominated by the series 22cn r"~= . This series

converges uniformly for r <7, for any r, <I. It follows that u is twice continuously
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differentiable for r <1 > and its derivatives may be formed by term-by term differentiation

of its series. Then

1 1 X .
u, +;u, +r—2u90 = Zr"(an cosn@+b, sinn@)[n(n-1)+n-n’1=0 ,
n=1

so that u(r,0) isharmonic ’ thatisit - satisfies Laplace’s equation.

In below > we give a example to illustrate above statement.

( Using Separation of variables to solve Laplace’s equation )

Example 2-2 :
Solve u,,+7u,+r—2u96:0 for r<1,
u(1,0)=sin’ 0 .
Solution :

By equation (2-6) * we have

u(r,0) _1 a, + Zr” (a,cosnf+b, sinnb) ,

n=1

and
u(,0) = Z(an cosn@+b, sinnb) = sin’ 6.

n=1

=a, = lr sin® @cosngdg :lf1[SSinfz+1)¢—3sin(z—l)¢—sinfz+3)¢+sinfz—3)¢]d¢: 0.
T T8

And b, = 1 j” sin’ gsin ngdg = r ; [3costi—1)g—3cosh+1)p—cost—I)d-+cos+dlds
T 7[ -

n=1

B

n=3

’

o-l>|L-l>|w

otherwise

’

Finally > we get u(r,0) = %rsin@—ir3 sin36 .
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II -2 Finite Fourier transform to construct solution of system of Laplace’s equation

We shall now treat the corresponding non-homogeneous problem
u,+u,=F(xy for O<x<z and O<y<l, (2-7)

u(x,) =u(0,y)=u(r,y)=0 ,
u(x,00=0 ,
by expanding the solution in a Fourier series in terms of the same set of functions.

To solve the above non-homogeneous problem * we expand the solution in a Fourier

sine series for each fixed y -
u(x,y) ~ ibn(y) sinnx .
n=1
The set of sine coefficients
b,(y)= %Lﬂu(x, y)sinnxdx

which is a function of the integer n and "y >determines u(x,y) uniquely. It is called the

finite sine transform of u(x,y).

u . - .
If — is continuous - its finite sine-transform is given by

ox*

2J.”um(x,y)sinnxdx:E[ux(x,y)sinnx \ 0 - rux(x,y)-ncosnxdx]
70 T 0
_2 2 i .
=—-n I u(x,y)sinnxdx
T 0

=(=n"b,(y) ,

because u(0,y) =u(x,y)=0. Differentiating u with respect to x twice corresponds to the
simpler operation of multiplying its finite sine transform by (—=n?).

2
If — is continuous * we can interchange integration and differentiation to show that

dy*
2 ¢z ) 2 o7 9* .
;L u”,(x, y)sinnxdx = ;J.O Wu(x, y)sin nxdx

d 2~ )
= d_y(;L u(x, y)sin nxdx)

=b, (y) .
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Taking the finite sine transform of both sides of (2-7) therefore leads to the equation

u,+u, =F(xy)

2 7 . 2 o7 . 2 o7 .
= —J uxx(x,y)s1nnxdx+—_|. uw(x,y)smnxdx:—_‘. F(x,y)sinnxdx
/4 0 /3 0o /3 0

2

= (—nz)b”(y)+%bn(y)=Bn(y) for n=123,...
Y

= b, (y)-n'h,(y)=B,(y) .

The condition u(x,0) =0 means that

b(0)=0 .

Taking sine transform has reduced the problem (2-7):for a partial differential to the problem
for an ordinary differential equation > ‘that'is

b, (y)—n’b,(y)=B,(y)
b (0)=0

Solving this by a method > we can use Green’s function to solves it » and the solution has
Fourier sine series form. By Schwarz’s inequality for sums and Parseval’s equation > we

have proved the series an (y)sinnx converges uniformly for 0<x<z , 0<y <1,

Under this condition * we get

u(x,y)= ibn(y)sinnx .

n=1

In below > we give a example to illustrate above statement.
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Example 2-3 :  ( Using Finite Fourier Transform to solve  Laplace’s equation )

Solve uxx+u”,=y(1—y)sin3x for O<x<zm , 0<y<l
u(x,0) =u(x,))=u(0,y)=u(z,y)=0 .
Solution :

Let  u(x,y)=Xx0)Y(y)
X”(x)_Y”(y): 2

X(x) Y(y)

X'+AX =0 , O<x<nrxw Y -A¥=0 , 0<y<l
= an

X0)=Xx)=0 Y1)=0

When A>0 > wehave X(x)=asinvAx+bcos/Ax .

And X0)=b-1=0 = b=0,

and  X(m)=asinAr=0 = a=0(¢rivial or siWAr=0 = A=n’ with n=12,.. .
Sowe get X (x) =sin(nx) with n=1,2,..1

For A=0 and A<0 = trivial solution'.

Since A=n> with n=12,.. .
We have Y(y)=Ae” +Be™ and Y(I)=Ae" +Be" =0 = A=-Be ™" |

, ' , . —B )
So Y(y)=Ae” +Be™ =—Bé""> +Be™ =—— (" +¢""™) =sinhn(y—1) with n=12... .
e

Hence u(x,y)= an sinhn(y—1)sinnx .

n=l1

- >
Ansatz u(x,y) = an (y)sinnx where b,(y) = —JO u(x,y)sinnxdx .
T

n=1

2 o7 . 2 . ¥ 3
We have —j u_ (x,y)sinnxdx = —[u (x,y)sinnx \ 0 - I u (x,y)-ncosnxdx]
7o T 0

=2 nzru(x, ysinnxdx = (=n*)b,(y) ,
Vs 0

27 . 270 . d 2 . ”
and ;J.O u, (x, y)smnxdx—;J.O yu(x, y)smnxdx:d—y (7—[-[0 u(x,y)sinnxdy) =b, (y) .
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. _ -3
Given u, +u, =y(l-y)sin’ x

2 o7 . 2 o7 . 2 o7 .3 .
= —J. u . sin nxdx +—J. u,, sin nxdx = —j y(l—=y)sin "~ x-sin nxdx
T 90 T 90 7 T Y0

(—nZ)bn(y)+bn (y)=7—2z_y(1—y)J':sin3x-sinnxdx for n =1,2,...

Ve

= b, (y)—n’b,(y) =£y(l— y)J.:sin3 x sin nxdx .
T

. u(x,0)0=0 = b (0)=0
In this case ° ,
ux)=0 = b,1)=0

Since
J‘: sin * x - sin nxdx = J.:%sin ? x[cos( n —1)x — cos( n + 1) x]dx
71 . : . . .
:L Zsm xlsinnx = sin(n — 2)x — sin(n + 2)x + sin nx]dx
:;J:TBCOS@—1)X"3COS@+1)X—COS®—3)x+cos@z+3)x]dx
3 , n=1
8
D L
8
0 , otherwise
3z 2 3
— —yd=y=—yld-y) , n=1
and 8 7« 4
- 2 -1 .
— o YI=y)=—y(l-y) , n=3
8 & 4

Now we use Green’s function 1o solves it °

=1 a=0
and we have { POy) , and {,3

) | ,about v,,v, satisfy above equation v'—n’v=0 .
q(y)=-n =
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Let v=e"

We have k=
D=v (a)w,(B)—v,(Bv,(@)=e" —¢" .

and

When &< x > we have

G(x, f)—

= v(x)=e" and v,(x)=e

= v, (x)=ne

—ny

’ ’
—ny

" and v, (x)=-ne

POV, (v, ()=, (D9, (D] =1-[ne™ - +ne™ -e”]=2n

v, (&), (@) = v, (@)v, (][, (X)v, (B) = v, (v, (x)]

1 _ .- —ny

= ooy ¢ T e e e e
nie —e

1 e"é _e—nf][en(l—,V) _e—n(l—y)] )

B 2n(e" —e™)

When &2 x > we have

G(x,8)= L[vl(X)vz(Ot) =V, (v (XN [V, (E)v, (B) = v, (B)v, (E)]

1 [e™ _e—ny][en(l—f) _e—n(l—f)] )

B 2n(e" —e™)

So
J’Oy(enf _e—nf)g(l_é:)dg _ J'O,Vgenf _ge—nf _é:Zenf +§267n§d5
1 22y 2 1 2y 2., 4
QL B 2 L S D By
n n n I’l n n l’l n I’l I’l
and
Uoona=¢) e OVE — EVd yz» i,y 1 ); 2y 2 .y, 4
J e & ( 5)«:(% ek 5 e (e O
Hence
) —e"NE1-E)dE)

1 n(l—y) —n(l-y)1 [~ né& —n& ny —ny 1 n(1-¢)
Y) ) _ 1_ + y Y
ey = - e~ (e
1
| coshn(y—a)
= yl-) -4 ——2
n n n n
coshE
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é , n=1
4
y 1 -1
= b, =[GO.OF G+ [ GO (E)dé - - n=3
0 , otherwise
Therefore - the solution 1s
3 cosh(y—g) s 9 cosh3(y—;) ‘
u(x,y)=—{y(1—y)—2+2-7}smx-—{ (I-y)—+————=}sin3x .
4 1 81 81 3
COShE coslk2

II -3 Fourier Transform to construct solution of system of Laplace’s equation

Just as problems on the finite intervals lead to Fourier series > problems on the whole
line (—oo,0) lead to Fourier transform. To understand this relationship ° consider a

function f(x) defined on the interval (—/,/). Its Fourier series > In complex notation > is

inmx

SRR icne L,

n=—oo

where the coefficients are

IVlm

c, j Fe T dy .

The coefficients ¢, define the function f(x) uniquely in the interval (-1,1).
The Fourier integral comes from letting [ — oo . However > this limit is one of the trickiest

in all mathematics because the interval grows simultaneously as the terms change. If we

write k = T » and substitute the coefficients into the series » we get

fx)= Z[j F(e ™ dyle % .

As [ — o > the interval expands to the whole line and the points k get closer toghter. In
the limit we should expect k to become a continuous variable » and the sum to become an

. . . ;o T . .
integral. The distance between two successive k's is Ak = 7 » which we may think of as

becoming dk in the limit. Therefore > we expect the result
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1 = s
f=—[ 1] FGe ™ dyledk . (2-8)

Another way to state the above identity (2-8) is

I = i AW I iwx
fw=—- LOF(w)e o, Where F(w= L, f(x)e"™dx .
Let }(w): j‘: f(x)e™dx | (2-9)
then F(x)=——1im [ e ™ dw |
QT Lo d-L

If the integral in (2-9) converges - it is called the Fourier transform of f(x). It is

sometimes denoted by F[f]. The integral converges if f | f (x)|dx does.

The Fourier transform of f(x) is

FIF I = FoD=] fedx .

and the inverse Fourier transform is

-1 _L = —iwx
f=Ff =] fone™dw .

For functions of two variables > say u(x,y) » and we define

FlulOw. ) =u(w,y) = [ u(x,y)e™dx .

A basic property of the Fourier transform is that the kth derivative u*’ with
k =1,2,... transforms to an algebraic expression ’ that is

Flu* 1w, y) = (=iw) u(w,y) ,

confirming our comment that derivatives are transformed to multiplication. This formula is

easily proved by integration by parts.
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One of the many important formulae which is used in this field is given in the

convolution theorem. The convolution f * ¢ of two functions f and g is defined by

(fx)0 =] fagx—wdu=[" flx—ugwdu .

Now

F[f*g]l= J:e"’* J.: f(u)g(x—u)dudx

= J.:o f(u)J: g(x—u)e™ dxdu .

After applying this change of variables in above equation » we deduce the convolution

theorem which states that

Fif=gl=[ f[ gwe" " dvdx

= J.i f(x)eiwxdx J.i g(V)e’."’vdv =F[fIFlgl=f ¢ ,
and
FIf-gl=fag= | fangtx—uwdu .

This is useful relationship in solving differential equations.

Following is a table of some important basic properties of transforms

A Fow)
1 f iw f
2 () -
3 f(x—a) i f
4 e f () fov-a)
5 af(0)+bg(x) af+bb
6 flav) Lp
a a

Table 2-1. Basic properties of transforms
In below > we give a example to illustrate above statement.
Example 2-4 :  ( Using Fourier Transform to solve Laplace’s equation )

Consider u,, +u, =0 inthehalf plane y =0 subject to the boundary condition

u(x,0)=0(x) with xe R and the condition u(x,y) =0 as /x*+y> — oo,
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Solution :

Using Fourier transform with respect to x >

F[U(X, )’)] = M(W, y) = jjomu(x’ y)eiwxdx ’

2 A
and FI>S]=u, - F[;—Z]=(—iw)2u.

Which implies u satisfies the ODE

A A

u,~wu=0 for y>0 , F[(w0)]=1.

A

The solutions of the ODE are e*™. We must reject a positive exponent since # would

grow exponentially as |w| — oo and.would not have Fourier transform.

So u(w,y)= ¢ Therefore

1 <y iwx
u(x,y):—J e Me™ gy »we R and y=>0 .
27 I

This improper integral clearly converges for y > 0. It is split into to parts and integrated

directly as

1 iwx—wy oo 1 iwx+wy 0
u(x,y)=————""" | {+ ————"" | L]
27(ix — y) 27(ix+y)
o
27 y—ix y+ix
-y
z(x* +y%)

II -4 Finite Difference to construct solution of system of Laplace’s equation

One scheme for solving all kinds of partial differential equations is to replace the

derivatives by difference quotients * converting the equation to a difference equation. We
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then write the difference equation corresponding to each point at the intersections of a
gridwork that subdivides the region of interest at which the function values are unknown.
Solving these equations simultaneously gives values for the function at each node that

approximate the true values. We begin with the two-dimensional case.

Let h=Ax= equal spacing of gridwork in the x—direction > see Figure 2-1. We

assume that the function f(x) has a continuous fourth derivative. By Taylor series °

— ’ f”(xﬂ) 2 f”’(xn) 3 f(lv)(xn) .
fx, +h)=f(x)+ f(x,)h+ > h?+ . X o Bt

x, <& <x +h ,

flx,=h)=f(x,)=f(x)h+

x,—h<¢&, <x,.

f(x,) he— S (x,) X S ) B
2 6 24

It follows that

-2 av)
f('xn+ ) f(‘2xi1)+f(xn f( )+f (f)h“ Where Xn—h<§<xn+h.
h 12
<« >
Yin Ax
Yin of
y, k& %
Ay
v
Yia of
Yio2
X X X X X X

i+2 i+3

Figure 2-1. Taking five interior points

A subscript notation 1s convenient :

fn+1_2hJ:n+fn1 =f,,”+0(h2) .
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In above equation ’ the subscripts on f indicate the x—values at which it 1s evaluated.
The order relation O(h*) signifies that the error approaches proportionality to h* as h — 0.

Similarly > the first derivative is approximated °

S, + )~ fx, —h)
2h

where x, —h<&<x, +h.

()
= f’(xn)+fT@h2

f 1 _f -1 ’ 2
:> n+ n —_ +0 h .
EETYe fu+0h7)

When f isafunction of both x and y ° we get the second partial derivative with

2
respectto x ° J % , > by holding y constant and evaluating the function at three points
X

where x equals x, > x, +h and x, —h.The partial derivative a%yz is similarly

computed > holding x constant. We require that fourth derivatives with respect to both

variables exist.

To solve the Laplace’s equation on aregioniin the xy— plane > we subdivide the

region with equispaced lines parallel to'the “x— and y—axis. Consider a portion of the

region near (x;,y;). We wish to approximate

Viu=u, +u, =0 in D,

u=f in C,
in a bounded domain D with boundary C.

Replacing the Laplace’s equation by the finite difference equation > we get

Vzv(xl.,yj) = v(xi+l’yf)_Zv(xi’fj)-i_v(xi—l’yj) N V(X,',yj+1)—2V(Xi,i1j)+v(xl.,yj_l) 0
(&) ()

It is convenient to let double subscripts on u# 1indicate the x— and y—values :

Vzv _ Vis,j — Zvi,j + Vi n Vi j+

(Ax)’ (Ay)?

—2v, 4V
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We call the points (i+1,7) ~(@—1,j)~(,j+1) and (i, j—1) the nearest neighbors of
the mesh point (7, j).If (7,j) and all its nearest neighbors liein D+C > wecall (i,j) an
1nterior point.

It 1s common to take Ax = Ay =h - resulting in considerable simplification * so that

i-1,; TVijm TVija _4vi,j] =0 . (29)

Note that five points are involved in the relationship of equation (2-9) * points to the
right ~ left ~ above and below the central point (x;, y;) . The approximation has O(h*) error

provided that u 1is sufficiently smooth. This formula is referred to as the five-point star
formula.

The system we get in this way has exactly one solution. To prove this ° suppose that

there were two solutions ° {ui, j} and {vi, j} of (2-9) in D with identical boundary values.
Their difference {ui, ;= Vv,.;J also satisfies (2-9)4n -D- but with zero boundary values. By

the maximum principle * u, ; —v, ; <07 hence #,;; =v, ;. So there is at most one solution.

Now - if we define the error function w=u-—-v .

The boundary value problem for u 1is therefore properly posed. As 2 — 0 the error
w=u—v approaches zero. Thatis > v convergesto u.

In below > we give a example to illustrate above statement.

Example 2-5: ( Using Finite Difference to solve Laplace’s equation )

Find u(x,y) such that

u._+u,_ =0

xx yy ’
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u(x,0) =u(x,10) =u(o,y)=0 ,

u(20,y)=100 .
Solution :
0 0° 0
. u, u/ u .
0 100
0 0° 0

We replace the differential equation by a difference equation:

h_z[ui+l,j tu U gty _4ui,j] =0
= Uy tu U tu —4u =0
= 4”[,,‘ ULy T Wi m W U T 0.

Suppose we choose h =35 > the system of equations 18

5%(0+0+u2+0—4u1)=0 ,
1
5—2(u1+0+u3+0—4u2):0 ,

1
<5 (1, + 0410040 -4u) =0

We can write equations as matrix form and usung ~Metlab” to solve.

The solution to the set of equations is easy when there are only three of them :

u,=1786 ~ u,=7.143 ~ u, =26.786 .

. The limit of the methods of solving Ellpitic PDE

In this chapter » we want to analysis the limit of four methods of solving Laplace’s

equation in chapter II.
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1 ~ The limit of Separation of variables

The standard technique for solving PDE_ on bounded ( rectangular) domains is called
separation of variables. The idea 1s to assume that the unknown function u =u(x,y) 1inan
1nitial boundary value problem can be written as a product of a funvtion of x and a function of
y s thatis > u(x,y)=X(x)Y(y). Thus > the variables separate. If the method 1s to be
successful » when this product 1s substituted into the PDE > the PDE separates into two
ODE_ > one for X(x) and one for Y(y). Therefore > we are left with an ODE boundary
value problem for X(x) andan ODE for Y(y). When we solve for X(x) and
Y(y) » we will have a product solution u(x,y) of the PDE that satisfies the boundary
conditions.

Whether or not the method of separation of variables can be applied to a particular
problem depends not only on the differential equation but also on the shape of the boundary and
on the form of the boundary conditions.

Three things are needed to apply the:methodite a problem in two variables x and y:

(a) The differential operator L must be separable. For example > this elliptic equation

u, +u, +u, =0 it can not usc'Separation of variables to find solution.

(b) All 1nitial and boundary conditions must be on lines x =constant and y = constant.

(c) The linear operators defining the boundary conditions at x = constant must involve no
partial derivatives of u# with respect to y > and their coefficients must be independent of
y. Those at y=constant must involve no partial derivatives of u with respect to
x  and their coefficients must be independent of x.

That the method of separation of variables can only be applied to a special class of
problems.

2 ~ Finite Fourier transform
To solve the nonhomogenous problem * we expand the solution in a Fourier sine series.

The Finite Fourier transforms ° are simply Fourier coefficients. Whenever a homogeneous
problem can be solved by separation of variables in the form of a Fourier series ° the Finite
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Fourier transform reduces the partial differential equation to an infinite system of ordinary
differential equations. These equations can then be solved by the methods of one-sided
Green's  function or Green's function. The Finite Fourier transform is using half -

space domain.
3 » Fourier transform

The Fourier transforms are first encountered in elementary differential equations
courses as a technique for solving linear » constant-coefficient ordinary differential
equations; Fourier transforms convert an ODE into an algebra problem. The ideas easily
extend to PDE_ > where the operation of Fourier transformation converts PDE_ into
ODE . Thus the Fourier transforms is useful as a computational tool in solving differential
equations. In PDE_ the Fourier transform is usually applied to the spatial variable when

it varies over whole line. That is » the Fourier transform is using whole space domain.
4 - Finite Difference

The finite difference method 1s using the domain of rechangular domain or irregular
shape. This methos solution form is discréte!solution and it is the approximate solution (value).
All we need to do 1s to continue to make A smaller. However - this procedure runs into severe
difficulties. It is apparent that the number ‘of ‘equations increases inordinately fast. With A=1.25

» we would have 105 discrete interior points;with - =0.625 » we have 465 discrete interior
points and so on. Storing a matrix with 105 rows and 105 columns would require 105° of
computer memory. Few computer systems allow us such a generous partition ° and overlaying
memory space from disk storage would be extremely time-consuming. Along with memory
requirements > we worry about execution times.

Compared with four methods :

(a) The homogeneous problem can be solved by Separation of variables - Fourier
Transform -~Finite Difference. But to solve the nonhomogeneous problem’ we can use
Finite Fourier Transform.

(b) Separation of variables ~ Finite Fourier Transform and Fourier Transform reduces
the partial differential equation to ordinary differential equations and facilitates us to

solve.

(¢) The solution caused by Separation of variables ~ Finite Fourier Transform or Fourier
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Transform is continuous * whereas the solution caused by Finite Difference is

discrete type and it is the approximate solution.

(d) The Separation of variables method can be applied to rectangle domain; the Finite
Fourier Transform method can be applied to half-space domain; the Fourier
Transform method can be applied to whole space domain ( whole line ); the Finite

Difference methid can be applied to rectangular domain or irregular shape domain.

1V. Integral evaluations on three-sheeted Riemann surface of genus N

We know that there are some differential equations whose solution space is in the
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. . . 1
Riemann surface. In this chapter > we want to compute the integrals j ——dz °> where ¥y
/4

f(@)

is in the Riemann surface of algebraic curve f(z)= /H(z—z ;) - We will develop an
j=1

S
1/Il[(z—zj)

Before computing integrals - it is necessary to discuss the Riemann surface of
f@=TlG-z2).
j=1

IV-1 Fundamental introduction

algorithm such that we can compute the integrals j dz by
r

* Mathematica ”

For simplicity, we take f(z)= Jz 1o define a single-value and analytic function on the

Riemann surface.

Now we let ze C, and use polar form for z. That is,

z=re” 4-1)
= re' "7, (4-2)

Then by (4-1)

and by (4-2)

Therefore f(z) = Jz is a multi-valued function at each ze C and is not analytic on C.

How to make f(z)= Jz tobea single-valued and analytic at every pointon C?

Consider two cuts from 0 to —oo (i.e.the negative real axis).
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Let P ={C\(-,0] | 6, =argze[-7",77) } ,
and
P, ={C\ (0] | 8, =argze[n*377) },

as Figure 4-1 shows.

P1
P2
T 3w~
-’ 0 T 0
(a) (b)
Figure 4-1. Cutfrom Oto —co on PI and P2
Define
fl@=z > ze P,
@) =~z ze P,
LA
then fi(d)= Jz = |z|5e * is single=valued at each ze P, and analyticon P, .

g+2r L .6

4

18 1 2 1
fu@ =T =i =i * =fipeter = e =0

is also single-valued at each ze P, and analyticon P,.

Let
D, ={ (==,0] | argz=7 } ,

as Figure 4-2 shows.

D1

Figure 4-2. CutfromOto —e on DI

argz

T
If ze P, and argz tendsto 7~ > then \/_=|Z|%elT z|z|%elz =i|z|%
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| .argz

T
If ze P, and argz tendsto 7" > then \/_:|Z|E€IT ~~~|z|%elE =i|z|% .

So > \/Z is continuous cross the cut (—e,0] for ze D,.

We define
fS(Z):\/; > Z€ Dl ’
then
L 1
f3(Z):\/_=|Z|2€2 :i|z|2 for ze D, and analyticon D,.
Let

D, ={ (~o,0] | argz=37} ,

as Figure 4-3 shows.

D2

Figure 4-3. Cutfrom0to —c on D2
argz 1 .37 1

If ze P, and argz tendsto 37~ - then \/_=|z|%eiT z|z|5617 =—i|z|5

e ik 1
If ze P, and argz tendsto —z" > then \/_=|Z|2€ 2 =|fre 2 =—il72 .

So > \/Z is continuous cross the cut (—,0] for ze D,.

We define
fi(2)=+z > ze D, ,

then

1
fi(2)= —i|z|E =—f,(z) for ze D, and analyticon D,.

According the discuss above > we can construct a single-valued function for Jz.
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We have the conclusion as the following:
Let R, =P, UP, U(—,0] and a function F:R, — C - define

fitz) , zeP
(=) , ze P,
F(z)= ,
@ f3(zx) . zeD,
(@ , zeD,

then F(z) is single-valued and analytic at every point z€ R,.
Note that f,(z) =—f,(z) and f;(2) =—F,(2).

Moreover > F(z) is defined on a Riemann surface R, which is a generalization of
the complex plane to a surface of more than one sheet such that a multi-valued function has

only one value corresponding to each point on the surface.

IV-2 Riemann surface of the algebraic curve 7 (z) = Iﬂ (z—z;)with z, e R

j=l

Consider f(z) = IH(Z_ZJ) » Z;€R and z, >z, > z; > ... >z, with n
j=1

distance branch points.

IV-2.1 The horizontal cut structure of f(z)

Since f(z) is a two-valued function - in order to define a single-valued and analytic

function > therefore we need branch cuts. But how can we construct branch cuts ?

In this paper > we by face the left direction to do cut explained. For convenience > let

n=4 and n=35 tosee what is going on ?

First > we check if there is any cut > for n=4 and z, =1+ 2z,=2 ~ z; =3 and

z, =4 > as Figure 4-4 shows.

< I I I
-

I I I
1 2 3

I
I
4
Figure 4-4. The branch points are z, =1~ z,=2 ~ z; =3 and z, =4

Put point -1 and —1€ (—oo,1) > then we have
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arg(—1-1)=arg(-2) =

arg(—1-3) =arg(—4) =

-7
T

arg(—1-2)=arg(-3) = { i
T
-7
V4

arg(—1—4):arg(—5)—{ 4
V4

=27
taking 7 1 V=2 v=3 =4 -J=5 = |3 4z[sz¢ = =r20f2
27
taking 7 : V=2 V=3 -v=4-v=5 =[2232 42|52 = 120f: .
Since (4-3) = (4-4) .

So » there isno cut in (—eo,1) .

Put point % and %e (1,2) > then we have
3 1
arg(— -+ =arg(—)=0 ,
gz ) gz)
3 1 -
arg(——2) =arg(——) = ,
ﬂz ) = arg( Q {
3 3 -
arg(——3) =arg(——-) = ,
ﬂz ) = arg( Q {

3 5 -
arg(a —-4)= arg(—a) = { T

1 1
. JT 1 [ 3 [ 5 |1]2[1]2]32[5]2 «=55  J1s]2
taking —7 @ = = |—=L]-= == I = |= =i—
2V 2V 2V 2702 2] |2 |2 16
I T T R 1
. 1 1 3 5 [12]1]213]2]5]2 2  J15]2
taking 77 @ ,|=i[== == xl—-=== = || = e * =—i—
2 2 2 2 120 12| [2] |2 16

Since (4-5) # (4-6).

So > thereisacutin (1,2) .
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Put point % and %e (2,3) » then we have
5 3
arg(—=—-1) =arg(=)=0 ,
g(2 ) g(2)
5 1
arg(——2)=arg(—=)=0 ,
g(2 ) g(z)

5 1
arg(~3) = arg(~) =

arg(% —4)= arg(—%) = {_ﬂ” ,

1 1 1 1

1
(aking — 7 : \ﬁﬂ L3 PP en — 2] @)
2 V2 2 2 (2] |2 2 16
r 11 1
taking T \/E\/I _l. _gzgzlzlzézei(ﬂ'):_iz (4‘8)
2 V2V 2V 2 (2] 12| |2 |2 16
Since (4-7) = (4-8) .
So » there is no cutin (2,3) .
. 7
Put point > and EE (3,4) > then we have
7 5
arg(——1)=arg(—)=0 ,
g(2 ) g(2)
7 3
arg(——2)=arg(—-)=0 ,
g(2 ) g(z)
7 1
arg(——-3)=arg(—)=0 ,
g(2 ) g(2)
7 1 /4
arg(——4) =arg(——) = ,
g(2 ) = arg( 2) {7;
LI T R R 1
(aking 7 : \ﬁ\ﬁﬁ LSRR o i @9
2 V2 V2 2 12| 12] 12| |2 16
LI R T 1
aking 7+ 221 <R < @10)
2 V2 V2 2 12| |12] 12| |2 16

Since (4-9) # (4-10).
So > thereisacutin (3,4) .

44



Hence we have the branch cuts in [1,2] and [3,4]. As Figure 4-5 shows.

Figure 4-5. The cut structure for n =4 branch points in horizontal

But we can use another easier way to get branch cut > as Figure 4-6 shows.

A

A

A

A

Figure 4-6. The cut appears at z < z; foreach z,

When crossing the cut even times [in'each lingsection - it will not change sign. When
crossing the cut odd times in each line section will change sign > this implies the line
section will form a branch cut. Hehce we have the branch cuts in [z,,z;] and [z,,z,].

The cut structure is showed in Figure 4-7:

pe VAV A A VAVAV A

Figure 4-7. The cut structure for four branch points in horizontal

For n=35 > as Figure 4-8 shows. (in a easier way to illustrate )

A

A

A

A

Figure 4-8.  The cut appears at z < z; foreach gz
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We have the branch cuts in (—o,zs] * [z,,2;] and [z,,z,]. The cut structure is

showed in Figure 4-9.

2, Z, Z, Z, Z,

Figure 4-9. The cut structure for five branch points in horizontal

IV-2.2 The algebraic and geometric structure for Riemann surface of f(z)

For simplicity » we use n=4 to discuss the structure for Riemann surface of

4
f()= /H (z—2z;) in horizontal cut.
j=l

(1) Algebraic structure

As Figure 4-10 shows » [z,,zy] [ [Z35 % | ‘represent the cuts in this Riemann surface

N\ 7 N\ 7

and "+” > =" are defined as following (depend on countclockwise — initial edge denote

by + » terminus edge denote by — ) :

Figure 4-10. The algebraic structure for four branch points in horizontal

As we know > a curve crosses the cut from the sheet to another sheet » so the argument
will increase 27 . We can defined the argument of + edge is —7z" and the argument of —

edge is 7~ ; or the argument of +edgeis 7" and the argument of — edge is 37 .
Caseone: If ze I"(+edge of sheet 1)

As the Figure 4-10 shows > z€ [z,,z,]

Since z-z,>0 = arg(z—z;)=0 for j=234,

z-7;<0 = arg(z—z;)=-7 for j=1.
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Then f(2)=]](z-z;)

Casetwo: If ze I (—edgeofsheet 1)

As the Figure 4-10 shows > z€[z,,7,]

Since z—zj>0 = arg(z—zj)=0 for j=234 ,

z-7;<0"= arg(z=z;,)=7x for j=1.

Then f(2)=]](z-z,)

1—2Z

.:J>

I
UN

J
J

1
1k A4 2.
e | I
=2
1
iy A4 2
=l

. 3
=@ [Jl-2| -
j=1

Note that f(z) | ,. = = f(2) | . .



(i1) Geometric structure

After knowing the algebraic structure > we will discuss about how to construct a

geometric structure for Riemann surface of f(z) = H(z —z;) . According to algebraic
j=1

structure for Riemann surface > we know that

if n iseven-then the branch cuts are [z,,z,,1 [2,.,,2,5]...... and [z,,z,] implies we

have %—1 holes » and

if n isodd - then the branch cuts are (—o0,z, 1~ [z, ,,2,,].-... and [z,,z,] > implies we
have nT—l holes.

And we obtain one sheet with two edges in each cut by taken of counterclockwise
which labeled the edge of lower- cut with + and the edge of upper- cut with —. Since there
are two surface > one is > say sheet I with arg f(z) € [-7x, 7) ; another is » say sheet II with

arg f(z)e [x,37).
By definition ’ the — edge of sheet T.isjoined to the + edge of sheet II > and the + edge
of sheet I is joined to the — edge of sheetrII."Whenever crossing the cut > we pass from

one sheet to the other sheet and the value is continuous which from our construction.

Note that f(z) | , = —f(z) | , andfor f(z)supra— half —ball represents sheet
I > and infra — half — ball represents sheet II .

We take n =4 to discuss the geometric structure for Riemann surface of

f()= H (z—z;) inhorizontal cuts. Show as Figure 4-11.
j=1
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z3 z2 Z1

N
)
N

N N oo
Y
¥ ¥ ®
N
=
N

( I ’+):(H) _)

74
Z1

(1.,)=(1,+)

Figure 4-11. The geometric structure for Riemann surface with n =4 in horizontal cut

(ii1) Algebraic structure v.s Geometric structure

We also use n=4 to discuss. Before talking about the relation between algebraic

structure and geometric structure > we need to denote something as the following :
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(a) If the curve is drawn by solid line :

In algebraic structure > it means the curve is in sheet I ;

In geometric structure ° it means the curve is in the overhead Riemann surface.
(b) If the curve is drawn by dash line :

In algebraic structure - it means the curve is in sheet II;

In geometric structure > it means the curve is in the ventral Riemann surface.

We give some example to show that the curve in algebraic structure and its

corresponding in geometric structure in Figure 4-12 to Figure 4-13.

Figure 4-13. The rule in algebraic structure and geometric structure

J=1

IV-3 Riemann surface of the algebraic curve 1 (z) = /f[ (z—z;,) with z,eC

In this section > we discuss the vertical cut structure. We will present two styles of

vertical cuts.
In vertical cut structure » we define that (z, f(z)) belong to sheet I if and only if

. 3z 7w . Iz « .
argH(z—zj)e [—7,5) e arg(z—z;)€ [—?,E) for each j ; (z, f(z))belong to
=

o T 5w T Sx
sheet 1T if and only if ar 7—2z.)€[—,—) ’ ie arg(z—z,)e[—,—) foreachj.
y gl,-]l( DETT) gz-z)el7. ) ]
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IV-3.1 The vertical cut structure of f(z)

n .
k=12,-— > 2,2, " z, represent the n branch points and z,z,,2,2,, " 2,2,

>%n

represent the cuts showed in Figure 4-14.

n-1

2k+1

ReZ

A

Figure 4-14. The vertical cut structure

About vertical cut structure analysis methid is the same as horizontal cut structure.

First > we check if there is any cut > for n=2 and z, =i ~ z, =2i > as Figure 4-15

shows.
ImZ
Z, [~ 2
Z] i
ReZ
O

Figure 4-15. The branch points are z, =i and z, =2i
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Put point 3i and 3ie (0,2i) > then we have

_3z 3z
arg(3i —i) = arg(2i) = 7[2 and  arg(3i—2i) = arg(i) = 7[2 :
2 2
i
taking —— : V2i Wi = lengthxe * =(i)xlength , (4-11)
taking — : N2i Wi = lengthx e D = (i)xlength . (4-12)
Since (4-11) =(4-12).
So » there is no cut in (o0,2i) .
.30 3.
Put point 3 and Ee (i,2i) > then we have
3z
ar (ﬁ—i)—ar (i)— _7 and ar (E—Zi)—ar (—L‘)——Z
&5 ) z &2 875 27
2

taking —3—7[ \/7 1/ = lengthx el ™ = —length (4-13)
taking — \/7 1/ =lengthxe"” = length . 4-14)

Since (4-13) # (4-14).
So > thereisacutin (i,2i) .

Hence we have the branch cuts in [i,2i] . As Figure 4-16 shows.

ImZ

2i

=

i
ReZ

Figure 4-16. The cut structure for n =2 branch points in vertical



But we can use easier way to get branch cut > in this we take n=4 and z, =i »
2, =20 ~ z;=3i and gz, =4i > thatis z,<z,<z;<...<z, ’ as Figure 4-17 shows.

ImZ A A
Z,| 4
Z, | 3i
Z,| 2
Z, [ i
ReZ

Figure 4-17.  The cut appears at z < z; foreach gz,

When crossing the cut even times in each line section - it will not change sign. When
crossing the cut odd times in each line section will change sign > this implies the line

section will form a branch cut. Hence we have the branch cuts in [z,,z;] and [z,,z,].

The cut structure is showed in Figure 4-18.

ImZ
Z; 4i
7
> 3
Z, 2i
Z, 1
ReZ

Figure 4-18. The cut structure for four branch points in vertical

IV-3.2 The algebraic and geometric structure for Riemann surface of f(z)

For simplicity » we use n=4 to discuss the structure for Riemann surface of

4
f()= H(z—z ;) in vertical cut. In the cut structure - we still depond on the
j=1

countclockwise to take “+”~"~" sign. That is the right hand side of each cut represents the
+ edge and the left hand side represents the — edge. The definition of solid — line and

dash — line are the same as horizontal cut case.
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(1) Algebraic structure

As Figure 4-19 shows ° [z,,z,] and [z,,z,] represent the cuts in Riemann surface.

Z, Z, z.
7 PN
% SDAN <
Z
. 7 =
@) (b)

Figure 4-19. The algebraic structure for four branch points in vertical

Caseone: If ze I (+edgeofsheet 1)
As the Figure 4-19 (a)shows ».z € [z,, 7, ]

Since arg(z—zl):—g and arg(z—zz)z_?’?ﬂ ,
71' .
arg(z—z,»)e(—fr,g) for j=34 .
4 4
Then f(z)=[[J(z—z) =]]yz-%,
Jj=1 j=1
3 : 2(z-2;)
L) PR
emse [
j=13,4

1
5 arg(z—z;)

1 15
Z(—%i)|z—zz|2 : H|z—zj|2e 2

Jj=1.3.4

Casetwo: If ze I (—edgeofsheet 1)
As the Figure 4-19 (a) shows » z€[z,,z,]

Since arg(z—zl):—g and arg(z—zz)zg ,

arg(z—z,)e (-7.7) for j=34 .
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4 4
Then f(Z):\/H(Z_Zj) =[1V=-2
j=1 j=1

T e
:|Z_Zz|5‘f’l(4)’ H|Z_Zj e

=134
\/E 1 2 iarg(z—z_,)
=(—=i|z—z,|2- H|z—zj| e ?
2 j=13.4

Note that f(z) | . = = f(2) | ,.

(i1) Geometric structure

n
The construct a geometric structure for Riemann surface of f(z) = /H(z —-z;) is
j=1

the same as horizontal cuts.By above example‘and illustration > we discusses the geometric

structure foe Riemann surface in vertical cuts. Show as Figure 4-20.




(I, =1, -)

I (T,)=(1I, 1)

Figure 4-20. The geometric structure for Riemann surface with n =4 in vertical cuts

IV-4 The integrals over a,b cycles for the horizontal cuts and vertical cuts

! dz:and L dz for n branch points where a, b
“f(z) 55 (2)

represent the a, b cycles over~the»Riemann surface of f(z)= /H(z—z ;) with
j=1

z; € C > and develop an algorithm such that the integrals can be easily computed.

IV-4.1 The a, bcycles over the Riemann surface of f(z)= fH(z -z;)
j=1

(1) In horizontal cut :

We want to evaluate

Let z,,2z,,-++z, arethe n branchpointsin x—axis with z;€ C > then

f(»)= /H(z —z;) formsa N —holes Riemann surface where N e Z *u{o} and
j=1

for n odd

2
-2

N="

foe n even
2



So there are N a, b cycles. The Figure 4-21 represents the a, b cycles in the Riemann

surface for n 1s even and the Figure 4-22 1s the case for n 1s odd.

Figure 4-21. a, b cycles for horizontal cuts of even branch points

Figure 4-22. a, b cycles for horizontal cuts of odd branch points

(11) In vertical cut :

Let z,,2,»""»z,€ C are the n branch points where n is even and z,, = Z2k-1 °

k=12, % . There are "Ly , b cycles in the Riemann surface showed in Figure 4-23.

For a, cycle-itencloses the cut z,,,2,, > b, cycleis passed through the cut z,,_,z,, from

one sheet to the other.
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ReZ

A

Figure 4-23.  a, b cycles for vertical cuts

Let z,,2,,»---,2,€ C arethe n branch points where n iseven and z,, = Z2k-1 *

k=12, % . There are a,=b.cycles.m the Riemann surface showed in Figure 4-24.

ImZ

Figure 4-24. a, b cycles for vertical cuts

58



IV-4.2 About * Mathematica ” and How to modify

All programs in this paper are run by Mathematica . But we can not compute directly °
before computing we need to give some adjustments. Since Mathematica reads argument of any
complex number in (—7z,7z] only ’ then it just gives right answer in sheet I in horizontal cuts
(‘expect at the argument —7 ).

If arg(z—z;)¢ (—7,7] > Mathematica will change the argument into (-7,7]

automatically ° this will make some error in our calculation. In order to get the correct values for
the argument not belong to (—7z,7z] » we should modify the function before computing. In
horizontal cut structure * Mathematica gives correct values in sheet I *we baseon f(z) | , =
- f(z) | , tothe values in sheet II.

In vertical cuts > Mathematica does not give correct value in sheet I. If
3 7w . ) . T
arg(z—z;)€ [—7,5] for some j >then Mathematica will regards as arg(z—z;) € [5,71'].

This implies we need to modify before computing’z.so we will have the correct results. The same
as in horizontal cut > the values in sheet I isfrom. f(z) | , = —f(2) | , .

By above illustration > we get vertical-cut structure . Now > we want to know how to

. . . . Iz @
compute the path integral in vertical cut ? Note that the vertical cut anglee (—7,—)

2
and the angle in Mathematica is (-7, 7] . So > we know when the angle € (—377[,—%) ell »

it need to modify by Mathematica. Therefore * we can get the method to compute the path
integral in vertical cut . First > we use circle ~ rectangle or closed path to cover the a, b
cycles .Then taking every branch points are the coordinate plane zero point * drawing a
coordinate plane ° then may divide into the plane to four parts. Since we have several
branch points > so we will to partition of several parts in the circle - rectangle or closed
path. In below > by vector analysis ; if the angle e II ( Second quadrant ) > that implies the
path need to modify .

Note that - if the path is not to modify and in sheet I - then by Mathematica to
compute * we use + M sign to express it . If the path is need to modify and in sheet 1 -

then by Mathematica to compute > we use —M sign to express it .
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IV-4.3 An application for the integrals over a, b cycles

In this section > we give two examples is with horizontal cut and vertical cut.

Example 4-1:

Let n=6-and z,=4~z,=3~2,=2~z,=1>2z,=-1 and z, =-2 are six branch

points form a horizontal cut as Figure 4-25 shows ; and form a 2- hole Riemann surface.
6 1 1
If f(z)= I_I(z—zj)2 » then Efmdz where r=a,b cycles?
j=l AR

We use “Mathematica” to compute the integral.

Figure 4-25.  a,,b, cycles for six branch points in horizontal cut

(i) For the equivalent path a, :since arg(z-—z ;) =-—7 is not the valid range in

Mathematica * f(z) need to multiple a scalar e = —1. As Figure 4-26 shows.

Figure 4-26. a, cycle and equivalent path a,
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Branch points

-z
72— 2,
72— 24
-2,
72— 2
2— 2

s z-4
& z-3
S z-2
& z-1
& z+1
S z+2

Sheet 1 or sheet I

Total

By “Mathematica” -

Vz e +edge of sheet Iof a, Vz e - edge of sheet I of a,

Interval (1,2) Interval (2,1)

angle value angle value
-7 -M v +M
-7 -M 7 +M
-7 -M T +M

0 +M 0 +M

0 +M 0 +M

0 +M 0 +M
Sheet 1 +M Sheet 1 +M
-M +M

2 1 1 1
_J“ \/z+1\/z+2\/z—1\/z—2\/z—3\/z—4dz+'[2\/z+1\/z+2\/z—1\/z—2\/z—3\/z—4

:_2'[2 !
'z +1Wz+ 2z =1z -2z -3/7—4

Therefore > the integral over a, cycle'is

1

—dz = Ldz=3.3819><10‘49—1.13022i.
@ f(z)

a f(z)

dz =3.3819x10™* —1.13022i .

(i) For the equivalent path bl* : since the interval (—1,1) and (2,3) are not have cut °

so solid line is in sheet I and implies + sign ; dash line is in sheet II and implies —

sign ; now > we illustration the interval (1,2) and itis a cut. As Figure 4-27 shows.

Figure 4-27. b, cycle and equivalent path b,

Vz € + edge of sheet I of b,
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ReZ

V7 € - edge of sheet I of b,

dz



Interval (1,2)

Branch points angle
-z, & -4 -7
-z, & -3 -
-z, & -2 -7
-z, & z-1 0
2—zy & z+1 0
-7, © z+2 0
Sheet I or sheet II Sheet 1

Total

By “Mathematica” >

Interval (2,1)

angle value
2 +M

7[ +M

2 +M

0 +M

0 +M

0 +M
Sheet II -M
-M

J.O ! dz+J3
Iz +1INz+ 2z -1z -2z -3z -4 2Vz+1Vz+ 24z -1

_J-z 1 dZ-J.O
Sz Iz 424z =1z =24z -3z -4 P Vz+ Wz +24z -1

1 1 -1
+’[°\/z+1\/z+2x/z—1\/z—2\/z—3\/z—4dz_’[" Vz+1INz424z-1Vz7-2/7-3/7-4

_J-z 1 dZ-J.l
Pz +1Nz+ 2321z -2z -3z=4 27+ 1z 424z -1

=-0.0760776 +3.77621x107*i .

Therefore > the integral over b,cycle is
1 1

dz =¢ ——=-0.0760776+3.77621x107*i .

W W)

Example 4-2 :

Let n=6>and z,=1+2i >~ z,=1>2,=3i >z, =1 z, =—14+3i and z, =-1+i

are six branch points form a vertical cut as Figure 4-28 shows ; and form a 2- hole

Riemann surface.

6 1
If f(z)=I_I(Z—zj)2 » then §ﬁdz where r=a,b cycles?
j=l VAN

Note that > in vertical cut> we use “Mathematica” to compute the integral > we must modify

the equation first. That is the angle e [—37” ,—7) e Il > the f(z)need to multiple a scalar

—im

e =-1.
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! dz
Nz-24z-3z-4
1
dz
Vz-24z-34z-4
! dz
1
dz
Vz-24z-3Jz-4



ReZ

Figure 4-28. a,,b, cycles for six branch points in vertical cut

(i)  For the equivalent path a, : as Figre 4-29 shows .

ImZ

-1431 3i
1421

+
+

-1 i

O] ReZ

Figure 4-29. Equivalent path a,

Since arglz—z;)e (—3; ~mell for j=123456" f(z)need to multiple a scalar e =—1.

Vz € + edge of sheet I of a, Vz € - edge of sheet I of a,
Interval (3i,2i) Interval (2i,i) Interval (2i,3i) Interval (i,2i)

Branch points angle value angle value angle value angle value
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72—z, &  z—(01+2) I -M I +M I -M I
-z, & z-1 II -M II -M 11 -M II

T T T T
-2 & z-3i - M -—= +M -—— +M -

2 2 2 2

3z kY2 V3 V4
-7, S - - -M —— -M - +M =

2 2 2 2
-2 ©  z—(=1+30) v +M N +M N +M v
21—z, &  z—(=1+1i) I +M I +M I +M I
Sheet I or sheet II sheetl +M  sheetl +M sheetl + M  sheetl

Total -M +M +M
By “Mathematica”
1 B 31
——dz=— J - 7+ z.—dz
“ f(2) ¥ f(Z) x f(Z) f(Z) ¥ f(2)
1 1
=2 ——dz+2f——de =138321-233762i .
P @) 2L f(2)
Therefore - the integral over a, cycleis
Ld = Ldz =1.38321-2.33762i .
o f(2) a f(2)
(ii) For the equivalent path b, : as Figuré 430 shows .
ImZ
-1431 3i
«
+2i
+ +
ReZ

Figure 4-30. Equivalent path b,

Since arglz—z;)e (—327[ ~—mell for j=1234506" f(z)needto multiple a scalar ¢ =

+M

+M

+M

+M

+M
+M

-1.

Vze +edge of sheet Tof b, Vze-edgeof sheet I of b,

Interval (—1+1i,1) Interval (1,—-1+1)
Branch points angle value angle value
-2z I +M 111 +M
-2, I -M I -M
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72— 24 I +M I +M

-2, I +M I +M
174 v +M v +M
1= % v +M v +M
Sheet I or sheet II Sheet I +M Sheet 1T -M
Total -M +M

By “Mathematica” -

1 1 1 -1+ ] -1+ ] .
—dz=—| ——di+ | ——dz=2] ——dz=0590344-1.16143i .
h f(2) i f(2) ¢S] @)
Therefore > the integral over b, cycle is
! dz = Ldz:0.590344—1.16143i .

— dz=§
h f(2) n f(2)

IV-5 An application for Riemann integrals

Consider  u,, +u,, =0 inthehalfplane. y 20 subject to the boundary condition

u(x,00=vx>+1 > with xe R and the condition u(x,y) >0 as x* +y> —oo.

First » we using Fourier transform with respect to  x

Flu(x,y)|=u(w,y) = J._Zu(x’ y)edx |

2 A 2 A A
and F[gy—l;t]=uyy , F[gx—l:]z(—iw)zuz—wzu .

A A

Which implies u satisfies the ODE u,— wru=0,

with the solution of the ODE are ~ u(w,y)=Ae™ +Be™ > we R and y2>0 .

The boundary conditions give
uw,0)=F[f]l=f=A+B ,
and u(w,y)>0 as y-—>oco .

i (w20 = A=0B=/ . which gives u(x,y)=fe™” , weR and y>0 .

w<0 = B=0,A=f
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By the exponential form of Fourier transform > we have the formula is
et ==
T X+ y?

So the convolution theorem yields

u(x,y) = f flx— s) ds

s +y2

SN S ICEUPRN Y S (6 N
= 52 +y T ‘“(s—x)2+y2

Given boundary conditions is

u(x,00= fx)=vx>+1 =  u(s,00=f(s)=+s>+1 .
Vst +1

So u(x,y) = —ds .
‘*(S—X) +y’?

Since s’ +1=+/s+i-+/s—i have two branch points *i.

ImS

[}
+
o~

ReS

v

st +1

We choose close contone C such that 18 analytic.

(s—x)°+y°
2 5
Thatis [ —2 L 4 Zj T _ds=0
C(s—x)+y’ Sk (s— X) +y°
[2 l2
Since j S—+12ds and IC S—szs%O as L — oo

G (s—x)2+y (s—x)2+y
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e

5 2ds—>0 as €—0.
(s—x)"+y

1 i . 1 i .
N N o= —[arg(s+i)] o= —[arg(s—i)] [arg(s+z)+arg(s 1)]
And s+ =\/S+l\/S—l=|S+l|2€2 |s—l|2e2 | 1|2 2

For C,: let s=—0+ia and afrom -Lto —(1+¢&)
then ds=ida and

—O0+ia+i=-0+i(a+1)= arg(-0+ia+i)e 377[
. . . . N4
—0+ia—i=-0+i(a-1)=> arg(-0+ia—i)e 7

j Vs +1 d yJ~—i Vs +1
G

ds

(s—x)2+y2 T —°°(s—x)2+y2

yj_wmkla) +1| i-ida

1
_y _ 1 ) 2
=—| ————=—=(a"-1?da
= (ia—x)2 +y2 ( )
For C,: let s=0+ia and afrom - ={0+&)y“to-L

then ds=ida and
Otia+i=0+i(a+1)= arg(0+ia+i)e %
. . . . . /1
O+ia—i=0+i(a—1) = arg(0+ia—i)e >

J- Vst +1 _lj-—w Vst +1
C

ds = ————ds
(s—x)+y° T (s—x)+y°

y'[l (o x) o |(la) +l|2( i)-ida

-y -1 1 ) 1
=—| ——— (@ -1*da
V4 '[—” (ia—x)2+y2( )

2y -1 1 s i . .
Therefore » u(x,y)= J. >(a” =1)*da (analytic solution)
~ (ia — x) + y
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S~ S A5t w41
u(x,y):lj NS 2+1 2ds:l[—j NS 2+ 2ds+j. NS T — ds]
Tl=(s—x)"+y T Y= (s—x)+y T (s=x)"+y
__ J S “S;rlzds (Mathematica)
T o=(s—x)+y

Now ° fixed y—value and input x—value into above u(x,y)equations,

2,1
3.D
4,1
(10,1)
(20,1)

analytic solution
13470.8+0.08982031
13471.14+0.04693791
13471.3+0.02826331
13471.9+0.004914451
13472.3+0.001244551
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Mathematica
13470.8+0.08982031
13471.14+0.04693791
13471.3+0.02826331

13471.9+0.004914451
13472.3+0.001244551
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