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摘  要 

    研究線性橢圓偏微分方程(線性橢圓 PDEs) 。首先, 給一些實用的例

子, 同時將二階線性偏微分方程式作一分類。接下來, 運用幾個古典方

法解線性橢圓偏微分方程,並且將該方程式的解以各種形式表示。 

 

    當我們運用傅立葉轉換解整個或半平面的偏微分方程時, 需要利用

逆傅立葉轉換導出該偏微分方程的解, 此時被積分函數中常出現平方根

的形式, 在複數平面上它是多值函數。為了讓逆傅立葉轉換導出的解是

正確的, 我們結合複數平面上的黎曼曲面,藉由適當的代數建構出平方

根在該曲面上是單值, 並且完成逆轉換的解析解與數值解。最後藉由例

子來說明整個計劃。 
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Abstract 

    

We study the linear elliptic partial differential equations ( linear elliptic PDEs ). First, 

we give some practical examples and show that they are governed by such type of the 

equations. Next, we apply several classical methods to solve the linear elliptic PDEs with 

the solutions being expressed in various forms. We then identify those solutions. 

 

    When we apply Fourier transformations to the whole- and half-line PDEs, it is 

necessary to perform the inverse Fourier transformations to derive the PDE solutions, and 

it is quite often that those integrals involve the square root operator which is multi-valued 

in the complex plane. In order to perform the inverse transformations correctly, we develop 

the Riemann surfaces from the complex plane with the proper algebraic structures to assure 

that the square root is now a single-valued function on the surfaces, and we are able to 

accomplish the inverse transformations analytically and numerically. Some examples are 

given to illustrate the entire scheme. 
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ⅠⅠⅠⅠ. . . .  Introduction 

 

Many important scientific and engineering problems fall into the field of second-order 

partial differential equation. We want to recognize the distinguish for second-order partial 

differential equation. 

 

The distinction as to Hyperbolic 、 Parabolic 、or Elliptic  for second-order partial 

differential equation depends on the coefficients of second-derivative term. we can write 

any such general linear partial differential equation of second order in two variables reads， 

 

0),(),(),(),(),(),( =+++++ uyxFuyxEuyxDuyxCuyxBuyxA yxyyxyxx   

where Ω∈),( yx  ( Ω  is domain ). 

 

Depending on the value ACB 42 − ，we classify the equation as 

 

Hyperbolic ⇒  if ACB 42 −  ＞ 0  , 

Parabolic  ⇒  if ACB 42 −  ＝ 0  , 

Elliptic    ⇒  if ACB 42 −  ＜ 0  . 

For example，the Wave  equation 0=− yyxx uu  is of Hyperbolic  type，and the 

Heat partial differential equation 0=− txx uu  is parabolic，while seLaplac ′  equation 

0=+ yyxx uu  is Elliptic . 

 

    Elliptic partial differential equation has many applications in engineering，physics and 

material science，for example resistance and capacitance extraction in electronic circuit，

state decomposition in microwave tube，Navier-Stokes equation in incompressible fluid 

and device simulation of semiconductor，membrane displacement，torsion and so on . 

 

    There is a question，why are most physical problems related to elliptic equation？

Since Elliptic equation has a term 〝 Laplacian operator 〞， it describe diffusion 

phenomenon，like heat diffusion、dynamic diffusion etc. 

 

    Now consider the steady potential flow in two-dimensional incompressible fluid. 

First，we define correlation proper noun. In general，the two-dimensional flow is a flow in 

which the velocity component depends on only two space variables. An example is a plane 
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flow，in which the velocity component depends on two spatial coordinates， x  and y ，

but not z . An incompressible flow exists if the density of each fluid particle remains 

relatively constant as it moves through the flow field，that is 0=
dt

dρ
，and for an 

incompressible flow ， the differential equation of mass conservation is 

0=
∂

∂
+

∂

∂
+

∂

∂

z

u

y

u

x

u
zyx  in three-dimensional.  The velocity at a given point in space does 

not vary with time，that is 0=
∂

∂

t

u
.We call that is the steady flow.  The flow is irrotational 

we call the potential flow. In this we discuss planexy − ，that implies 0=zw ，we have 

y

u

x

u
xy

∂

∂
=

∂

∂
. 

 

    Let ),( yxu be the velocity of the point ),( yx  on planexy − . Then we have the 

differential of mass conservation of incompressible flow in planexy − . 

                0=
∂

∂
+

∂

∂

y

u

x

u yx  .                           ( 1-1 ) 

This equation is satisfied identically if a function ),( yxψ is defined such that becomes 

               0)()( =
∂

∂
−

∂

∂
+

∂

∂

∂

∂

xyyx

ψψ
 .                    ( 1-2 ) 

Comparison of (1-1) and (1-2) shows that this new function ψ  must be defined such that 

                
y

u x
∂

∂
=

ψ
  and  

x
u y

∂

∂
−=

ψ
 .                 ( 1-3 ) 

Since this flow is irrotational，we put (1-3) into the 
y

u

x

u
xy

∂

∂
=

∂

∂
 . 

We get       

                  
2

2

2

2

yx ∂

∂
=

∂

∂
−

ψψ
 

                         ⇒   0
2

2

2

2

=
∂

∂
+

∂

∂

yx

ψψ
 

                         ⇒  0)(
2

2

2

2

2

=∇=
∂

∂
+

∂

∂
ψψ

yx
 .             ( 1-4 ) 

 

The operator )(
22

2

yx ∂

∂
+

∂

∂
=∇  is called the Laplacian ，and the equation (1-4) is  

called seLaplac ′  equation in two dimensional. The inviscid、incompressible、irrotational  

flow fields are governed by seLaplac ′  equation. This type of flow is commonly called  

a potential flow，and the function ψ  is called potential function. 
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    In below，we illustrate the angular motion in the planexy − .  The velocity variation 

that causes rotation and angular deformation is illustrated in Figure 1-1(a).  In a short time 

interval t∆  the line segments OA  and OB will rotate through the angles δα  and δβ  

to the new positions AO ′  and BO ′  as is shown in Figure 1-1(b). 

 

 

 

 

 

 

  

(a)                               (b) 

Figure1-1.  Angular motion and deformation of a fluid element 

 

The angular velocity of line OA ， OAW  is  

t
W

t
OA

∆
=

→∆

δα
0

lim  . 

For small angles，we have  

t
x

u

x

tx
x

u

x

AA y

y

∆
∂

∂
=

∆

∆∆
∂

∂

=
∆

′
=≈ δαδα tan  . 

So that                    
x

u

t

t
x

u

W
y

u

t
OA

∂

∂
=

∆

∆
∂

∂

=
→∆

][lim
0

. 

Note that， if 
x

u y

∂

∂
 is positive， OAW  will be counterclockwise. 

Similarly，the angular velocity of line OB ， OBW  is  

t
W

t
OB

∆
=

→∆

δβ
0

lim  , 

and 

t
y

u

y

ty
y

u

y

BB x

x

∆
∂

∂
=

∆

∆∆
∂

∂

=
∆

′
=≈ δβδβ tan  , 

so that                   
y

u

t

t
y

u

W x

x

t
OB

∂

∂
=

∆

∆
∂

∂

=
→∆

][lim
0

 . 

Note that ，if 
y

u x

∂

∂
 is positive， OBW  will be clockwise. 

A’ 

O A 

B B 

A O 

B’ 

x
x

u
u

y

y ∆
∂

∂
+

y
y

u
u x

x ∆
∂

∂
+

xu

yu

x∆

y∆
y∆

x∆

ty
y

u x ∆∆
∂

∂

ty
y

u x ∆∆
∂

∂

δβ

δα



 

 4 

The rotation， ZW ，of the element about the axisZ −  is defined as the average of the 

abgular velocities OAW  and OBW  of the two mutually perpendicular lines OA  and OB . 

Thus，if counterclockwise rotation is considered to be positive，it follows that 

 

)(
2

1

y

u

x

u
W xy

Z
∂

∂
−

∂

∂
=  . 

 

Since we derive in planexy − ，that implies 0=ZW  . 

So we get                  

y

u

x

u
xy

∂

∂
=

∂

∂
 . 

 

    We will take as our control volume the small，stationary cubical element shown in 

Figure 1-2(a). At the center of the element the fluid density is ρ  and the velocity has 

component xu 、 yu  and zu .  The rate of mass flow through the surface of the element 

can be obtained by considering the flow in each of the coordinate directions separately. For 

example，in Figure 1-2(b) flow in the directionx −  is depicted.  Let xuρ  represent the 

x  component of the mass rate of flow per unit area at the center of the element，the rate at 

which mass is crossing the left side of the element are obtained as dydzu xρ  and the rate 

at which mass is crossing the right side of the element are obtained as 

dydzdx
x

u
u x

x









∂

∂
+

)(ρ
ρ . 

 

 

 

 

 

 

 

 

 

   

(a)                               (b) 

Figure 1-2.  A differential element for the development of conservation of mass 

 

When these two expressions are combined，the net rate of mass flowing from the element 

through the two surfaces can be expressed as ﹕ 

dy 

X 

Y 

Y 

dz 

X 

dx 

dz 

dy 

dx 

uxdydzρ

( )
dydzdx

x

ux
ux









∂

∂
+

ρ
ρ

xuρ

Z 
Z 
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Net rate of mass outflow in directionx −  = dydzdx
x

u
u x

x









∂

∂
+

)(ρ
ρ  － dydzu xρ  

= dxdydz
x

u x

∂

∂ )(ρ
 . 

 

For simplicity，only flow in the directionx − has been considered in Figure 1-2(b)， in 

general，there will also be flow in the y  and directionz − . An analysis similar to the one 

used for flow in the directionx −  shown that 

 

Net rate of mass outflow in directiony −  = dxdzdy
y

u
u

y

y









∂

∂
+

)(ρ
ρ  － dxdzu yρ  

= dxdydz
y

u y

∂

∂ )(ρ
 , 

and 

Net rate of mass outflow in directionz −  = dxdydz
z

u
u z

z









∂

∂
+

)(ρ
ρ  － dxdyu zρ  

= dxdydz
z

u z

∂

∂ )(ρ
 . 

Since we derive the incompressible flow， ..ei 0=
∂

∂

t

ρ
 and ρ  is constant. 

Thus by the conservation of mass，we have 

 

    Net rate of mass outflow = 0
)()()(

=
∂

∂
+

∂

∂
+

∂

∂
dxdydz

z

u
dxdydz

y

u
dxdydz

x

u zyx ρρρ
 

                     ⇒  0
)()()(

=
∂

∂
+

∂

∂
+

∂

∂

z

u

y

u

x

u zyx ρρρ
 . 

 

Since ρ  is constant. 

 

Therefore                  0=
∂

∂
+

∂

∂
+

∂

∂

z

u

y

u

x

u zyx  . 

 

As previously mentioned，this equation is also commonly referred to as the continuity 

equation. 

 

    In below，we consider the a situation that is typical，in which the temperatures is a 

function of the coordinates of position of the point in equation. 
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    A piece of metal is 12in.×3in.×6ft.  There feet of the slab is kept inside a furnace 

but half of the slab protrudes (see Figure 1-3 ).  In order to decrease heat losses to the 

air，the protruding half is covered with a 1-in.thickness of insulation.  If the furnace is 

maintained at F
0950 ，will at points of the metal reach a temperature of F

0800 or 

higher，in spite of heat loss through the insulation？ Such a question might arise in 

heat-treating the slab when the only furnace available to heat the metal is too small to 

contain the whole slab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3.  A piece of metal is 12in.× 3in.×6ft  

 

 

    We derive the relationship for temperature u as a function of space variables for the 

equilibrium temperature distribution by the metal piece protruding from the furnace. In this 

consider the two spatial coordinates，that is derive the relationship for temperature u as a 

function of space variables x and y  for the equilibrium temperature distribution on a flat 

plate. 

 

    First，ideal supposition. One：consider only the case where the temperatures do not 

change with time. Second：assume that heat flows only in the x  and y -directions and 

not in the perpendicular direction ( If the plate is very thin，or if the upper and lower 

surfaces are both well insulated，the physical situation will agree with our assumption ) . 

Three：assume that no heat is being generated at points in the plate. ( see Figure 1-4 ) 

 

12in 

3in 

6ft 

3ft 

Partion of slab inside furnace 

Sheets of insulation 

around the metal slab ,  

1in. thick 
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Figure 1-4.  The plate which is thin and small 

 

Let h  be the thickness of the plate. Heat flows at a rate proportional to the 

cross-sectional area，to the temperature rate of change ( xu or yu )，and to the thermal 

conductivity k ，which we will assume constant at all points.  The flow of heat is from 

high to low temperature，of course，meaning opposite to the direction of increasing 

temperature rate of change.  We use a minus sign in the equation to account for this： 

 

    In the x -directions ，the rate of heat flow into element at 0xx =  is - xuhdyk )(  . 

 

The rate of change at dxx +0  is the rate of change at 0x  plus the increment in the rate of 

change over the distance dx ： 

 

The rate of change at dxx +0 ：   dxuu xxx +  . 

 

Rate of heat flow out of element at dxxx += 0 ：  - ][ dxuukhdy xxx +  . 

 

Net rate of heat into element in x -directions ﹕ - xxxxxx udxdykhdxuuuhdyk )()]()[( =+−  . 

 

Similarly，in the y -directions we have the Net rate of heat into element in y -directions ：

- yyyyyy udxdykhdyuuukhdx )()]([ =+−  . 

    The total heat flowing into the elemental by conduction is the sum of these net  

flows in the x  and y -directions.  If there is equilibrium as to temperature  

distribution，that is steady-state，the total rate of heat flow into the element plus heat  

generated must be zero.  

dyy +0

0y

O 

X 

Y 

dx 

dy 

h 

The direction of heat flows 

Low High 

),( 00 ydxxu x +),( 00 yxu x
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Hence                 

0)())(( =++ dxdyQhuudxdykh yyxx  

where Q  is the rate of heat generation per unit area and Q will often be a function of  

x and y . 

 

By above assume second，we have 0=Q  ， 

and          

0))(( =+ yyxx uudxdykh  

⇒  02 =∇=+ uuu yyxx  .                  ( 1-5 ) 

 

The operator )(
22

2

yx ∂

∂
+

∂

∂
=∇  is called the Laplacian ，and the equation (1-5) is  

called seLaplac ′  equation in two dimensional. seLaplac ′  equation arises in  

steady-state heat conduction problems involving homogeneous solids.  For three  

dimensional heat flow problems，we would have，analogously， 

 

0)(
222

2 =
∂

∂
+

∂

∂
+

∂

∂
=∇ u

zyx
u  . 

 

    Consider that heat is being generated at points in the plate.  Assume this removal rate 

to be a function of the location of the element in the planexy − ， ),( yxf ，we would 

have，with Q equal to the rate of heat generation per unit area， 

0)(),())(( =++ dxdyhyxQuudxdykh yyxx  

⇒  )(),())(( 2
dxdyhyxQudxdykh −=∇  

⇒  ),()( 2
yxQuk −=∇  

⇒  ),(),(
12

yxfyxQ
k

u =−=∇ . 

 

This equation is called snPoisso ′  equation ( non homogeneous ). 

 

   A typical steady-state heat flow problem is the following： A thin steel plate is a 

2010×  an rectangular.  If one of the 10-cm edges in held at C
0100  and the other three 

edge are held at C
00 ，what are the steady-state temperatures at interior points？ For 

steel， 16.0=k cal / sec • 2
cm • C

0 / cm . 
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Math model：Find ),( yxu  such that 

0
2

2

2

2

=
∂

∂
+

∂

∂

y

u

x

u
 , 

100)0,( =xu  ， 

0)20,( =xu   ， 

0),0( =yu   ， 

0),10( =yu   .  

 

In this statement of the problem，we imagine one corner of the plate at the origin，with 

boundary conditions as sketched in Figure 1-5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-5. seLaplac ′  equation for a rectangular domain 

 

    Because the field of application of seLaplac ′  equation and snPoisso ′  equation do 

not involve time，initial conditions are not prescribed for the solution of equation.  

Rather，we find that it is proper to simply prescribed a single boundary condition. Such 

problems are them call simply boundary value problems ( BVPs ). 

 

    The basic example of an elliptic partial differential equation is seLaplac ′  equation，

0.. 2 =∇ uei  in Ω  ( that is domain ) in −n dimensional Euclidean space，other examples 

of elliptic partial differential equations include the nonhomogeneous snPoisso ′  equation，

),(.. 2
yxfuei =∇  in Ω  ( that is domain ).  These two equations include most of the 

physical applications of elliptic partial differential equation. 

 

    Elliptic partial differential equation may have non-constant coefficients and be 

non-linear. Despite this variety，the elliptic equations have a well-developed theory.  In 

this paper，we discuss the linear Elliptic partial differential equation. 

O 

Y 

X 

0=u  0=u  

0=u  

0=u  

0=+ yyxx uu  
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    By above math model，we know in two dimensions， seLaplac ′  equation has the 

rectangular coordinate representation： 

                0
2

2

2

2

=
∂

∂
+

∂

∂

y

u

x

u
  for  0＜ x ＜ a  and  0＜ y ＜b  , 

                        )()0,( xfxu =  , 

0),( =bxu  , 

0),( =you  , 

0),( =yau  . 

 

In rectangular domain，we imagine one corner of the plate at the origin，with boundary 

conditions as sketched in Figure 1-6. 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. seLaplac ′  equation for a rectangular domain 

 

    Many two dimensional problems involving seLaplac ′  equation are in region that 

lend themselves to a polar description in terms of r  and θ ，rather than rectangular 

coordinates x  and y .  This means that we need an expression for the Laplacian in 

terms of polar coordinates. 

Let us consider in the unit circle 22
yx + ＜1 with its values given on the boundary 

122 =+ yx .  It is natural to introduce the poor coordinates transformation. 

 

 

 

 

                                             ),( yx  →  ),( θr  

                                             22
yxr +=  

 

 

Y 

O 

Y 

X 

0=u  0=u  

0=u  

)(xfu =  

0=+ yyxx uu  

a 

b 

y 

x O 

Θ 

X 
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Setting 




=

=

θ

θ

sin

cos

ry

rx
   and 

x

y
=θtan  ⇒  )(tantan 111 −−− == yx

x

y
θ  

 

 

We want to PDEyx −),(  ⇒  PDEr −),( θ  

 

)()()(

)(1

)2()(
2

1
22

2

1

22

2

2

2

1

22

yx

y
uxyxu

x

y

yx
uxyxuuruu rrxxrx

+

−
⋅++⋅=

+

−
⋅++⋅=⋅+⋅=

−
−

−

θθθ θ

 

])())(2()(
2

1
[)()]([ 2

1

222

3

222

1

22
−−−

+++
−

++⋅+⋅= yxxxyxuxyxuruu rxrxrrxx θθ                    

)]2())(1)([()]([ 222

22
xyxyu

yx

y
ruu xrx

−+−−+
+

−
⋅+⋅+ θθθθ θ  

])())([()())](()()([ 2

1

222

3

2222

1

22

22

2

1

22
−−−−

+++−++
+

−
⋅++⋅= yxyxxuxyx

yx

y
uxyxu rrrr θ

   ]))(2[())](()()([ 222

22

2

1

22

22

−
−

++
+

−
+⋅+

+

−
⋅+ yxxyu

yx

y
xyxu

yx

y
u r θθθθ  

 

 

)()()(

)(1

)2()(
2

1
22

2

1

22

2

1

2

1

22

yx

x
uyyxu

x

y

x
uyyxuuruu rryyry

+
⋅++⋅=

+

⋅++⋅=⋅+⋅=
−

−
−

θθθ θ

 

])())(2()(
2

1
[)()]([ 2

1

222

3

222

1

22
−−−

+++
−

++⋅+⋅= yxyyyxuyyxuruu ryryrryy θθ                    

]))(2[()]([ 222

22

−+−+
+

⋅+⋅+ yxxyu
yx

x
ruu yry θθθθ θ  

])())([()())](()()([ 2

1

222

3

2222

1

22

22

2

1

22
−−−−

+++−++
+

⋅++⋅= yxyxyuyyx
yx

x
uyyxu rrrr θ

   ]))(2[())](()()([ 222

22

2

1

22

22

−
−

+−+
+

+⋅+
+

⋅+ yxxyu
yx

x
yyxu

yx

x
u r θθθθ  

 

 



 

 12 

Hence 

])())([())(()( 2

1

222

3

2222

3

222122

2

2

2

2
−

−
−

− +++−++−++=
∂

∂
+

∂

∂
yxyxxuyxxyuxyxu

y

u

x

u
rrrr θ

       

])())([())(()( 2

1

222

3

2222

3

222122
−−−

− +++−+++++ yxyxyuyxxyuyyxu rrrr θ

 

              ]))(2[())(()( 2222

3

222222 −
−

− +++−+++ yxxyuyxxyuyyxu r θθθθ  

              ]))(2[())(()( 2222

3

222222 −
−

− +−+++++ yxxyuyxxyuxyxu r θθθθ  

            1222

1

22222

3

22 )(])(2)()([ −
−−

++++++−+= yxuyxyxyxuu rrr θθ  

            2123 )2( −−− ⋅++⋅−+= rurrruu rrr θθ  

            0
11

2
=++= θθu

r
u

r
u rrr  

 

Therefore，a computation shows that seLaplac ′  equation in polar coordinates is 

 

      0
11

2
=++ θθu

r
u

r
u rrr   for 0＜ r ＜1 and π− ＜θ ＜π  , 

                )(),( θθ fru =  . 

 

In circular domain，with boundary conditions as sketched in Figure 1-7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7. seLaplac ′  equation for a circular domain 

)(xfu =  

Θ 

1 

Y 

X 

0
2 =∇ u
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    seLaplac ′  equation，also called the potential equation，the concept of a potential 

function seems to have been first used by Daniel Bernoulli ( 1700 ~ 1782 )，son of the 

more famous Jean Bernoulli，in〝Hydrodynamica〞in 1738，and Euler wrote seLaplac ′  

equation in 1752 ，from the continuity equation for incompressible fliulds.  The real 

progress was made by two of the three sL′ ，Adrien-Marie Legendre ( 1752 ~ 1833 ) and 

Pierre-Simon Laplace ( 1749 ~ 1827 ) .  ( The other L  was Lagrange.) Legendre looked 

at the gravitational attraction of spheroids in 1785 and developed the Legendre 

polynomials as part of this work. Laplace used expansions in spherical functions to solve 

the equation since named after him，and both mathematicians continued their work into the 

s1790 . 
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ⅡⅡⅡⅡ....  The methods of solving Elliptic PDE 

 

    In this chapter，we considers various aspects of the solution of boundary value 

problems for second-order linear elliptic  prtial differential equations in two variables. 

 

ⅡⅡⅡⅡ-1 Separation of variables to construct solution of system of seLaplac ′ equation 

 

ⅡⅡⅡⅡ-1.1 The domain is a rectangular  

 

Consider   0=+ yyxx uu  for 0< x <π ，0< y <π   . 

To solve           )()0,( 1 xfxu = ,        :graph  

)(),( 3 xfxu =π ,                

          )(),0( 2 yfyu = , 

          )(),( 4 yfyu =π , 

where 4321 ,,, ffff  are given functions . 

   

Ansatz  )()(),( yYxXyxu = . 

Since )()( yYxXu xx
′′=  and )()( yYxXu yy

′′=  . 

Put it in the above equation，we have 

 

0)()()()( =′′+′′ yYxXyYxX  

            0
)()(

)()()()(
=

′′+′′
⇒

yYxX

yYxXyYxX
 

            0
)(

)(

)(

)(
=

′′
+

′′
⇒

yY

yY

xX

xX
 

            )()( y
Y

Y
x

X

X ′′
−=

′′
⇒  

            ))(())(( y
Y

Y

dx

d
x

X

X

dx

d ′′
−=

′′
⇒  

            









=
′′

−=
′′

⇒
λ

λ

)(

)(

y
Y

Y

x
X

X

 ， λ  is any constant . 

f 1 (x) 

f
3
(x) 

1 

1 

x 

y 
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Thus )()( yYxXu =  is a solution of seLaplac ′  equation if and only if )(xX and 

)(yY  satisfy the two ordinary differential equations . 

 

          




=−′′

=+′′

0)()(

0)()(

yYyY

xXxX

λ

λ
 for some constant λ  .              ( 2-1) 

 

For each value of λ  each of the above second order equations has two linearly independent 

solutions.  

Consider 








<

=

>

0

0

0

λ

λ

λ

 ，then we get the two linearly independent solutions 

○1  For each 0>λ ，we have 

 

)()(),( yYxXyxu = ⇒  linear combination of { xe
y λλ cos± 、 xe

y λλ sin± } 0>λ  . 

 

○2  For each 0=λ ，we have 

 

)()(),( yYxXyxu = ⇒  linear combination of 1、x  and y  ⇒  { 1、x、 y 、xy }. 

 

○3  For each 0<λ ，we have 

 

)()(),( yYxXyxu = ⇒  linear combination of { ye x λλ −−± cos 、 }
0

sin <

−±

λ
λ λ ye x  . 

 

Since we are dealing with a linear problem，the solution can be found as the sum of the solution 

of 

                     0=+ yyxx uu  and 




<<

<<

π

π

y

x

0

0
 ,            ( 2-2) 

                              )()0,( 1 xfxu = ,                         

0),( =πxu  , 

0),0( =yu , 

0),( =yu π , 

 

and three other boundary value problems，in each of which 0=u  except on one edge. It is 

therefore sufficient to solve problems of this kind. 

 



 

 16 

Since we wish to have 0=u  for 0=x  and π=x ，we only consider those solutions of the 

equation (2-1) which satisfy these conditions. We must have 

 

        




==

<<=+′′

0)()0(

0,0

π

πλ

XX

xXX
 and 





=

<<=−′′

0)(

0,0

π

πλ

Y

yYY
 . 

 

Consider )(xX  and 

    




==

<<=+′′

0)()0(

0,0

π

πλ

XX

xXX
 . 

 

This homogeneous problem always has the trivial solution 0≡X ，but this is of no use to us. We 

are interested in case to find the non-trivial solution of )(xX .  So we must check 0>λ 、

0=λ  and 0<λ  

 

○1  Let 0>λ  ⇒  xxX λsin)( =  or xλcos  . 

The general solution of the equation is xbxaxX λλ cossin)( +=  ，where ba,  are to be 

determined to satisfy 0)()0( == πXX . 

 

So we have   

010)0( =⋅+⋅= baX  ⇒  0=b  . 

xaxX λsin)( =    ⇒   0sin)( == πλπ aX  ; 

either 




==⇒=

−≡⇒=

,..2,1,0sin

)(0)(0

nn

solutiontrivialxXa

λπλ
, 

 

we have nn λλ == 2  . In this xxX nn λsin)( =  are solutions. 

 

Take )(xX n  satisfies 




==

<<=+′′

0)()0(

0,0

π

πλ

XX

xXX n  . 

 

 

○2  Let 0=λ  ⇒  xbaxX ⋅+⋅= 1)(  

                0)0( == aX  and 01)( ==⋅= bbX π  

             ⇒  0)( ≡xX  ( solutiontrivial − ) 
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○3  Let 0<λ  ⇒  xexX λ−=)(  or x
e

λ−− . 

The general solution form xx beaexX λλ −−− +=)(  ,  

and 0)0( =+= baX  、 0)( =+= −−− λλπ beaeX  . 

Since 
2

sinh
xx

ee
x

−−
=  and 

2
cosh

xx
ee

x
−+

= , 

this implies 
2

sinh
xx

ee
x

λλ

λ
−−− −

=−  and 
2

cosh
xx

ee
x

λλ

λ
−−− +

=−  . 

 

 

So the general solution is xBxAxX λλ −+−= coshsinh)( ， 

and   00cosh0sinh)0( =+= BAX  ⇒  0=B  . 

   ⇒ xAxX λ−= sinh)(   

and  0
2

sinh)( =
−

⋅=−=
−−− λλ

λπ
ee

AAX  ⇒  0=A  . 

We get the solution is 0)( ≡xX  ( solutiontrivial − ) 

 

 

Finally，for 2
nn == λλ  with ,.....3,2,1=n . 

The system 








=

=

<<=+′′

0)(

0)0(

0,0)()(

π

πλ

X

X

xxXxX n

   have non-trivial solution . 

We have nxxX n sin)( =  and it not zero . 

 

Now we have 








=

=

<<=+′′

0)1(

0)0(

10,0)()(

X

X

xxXxX λ

 and , 

the eigenvalues { 2
nn =λ }∞

=1n
  and  the eigenfunction{ nxX n sin= }∞

=1n
 . 

 

In below，we consider )( yY  system 
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Notice 




=

<<=−′′

0)(

0,0

π

πλ

Y

yYY
  must have non-trivial solution. 

 

For each 
nλ  : 0)()( 2 =−′′ yYnyY   . 

We have the linear independent solution of )(yY  equation are  

yeyY λ=)( 、 y
e

λ− ( 0>λ ) ⇒  yyY λsinh)(* =  or yλcosh  . 

Combination the above solution form ， 

we get yy beaeyY λλ −+=)(  and 0)( =+= − πλπλπ beaeY   

⇒  
πλ−= ea  and 

πλ
eb −=  , 

so yyyy eeeebeaeyY λπλλπλλλ −−− −+=+= )()(  

      
)1()1( −−− −= yy

ee
πλπλ

 

      










 −
=

−−−

2
2

)1()1( yy
ee

πλπλ

)](sinh[2 πλ −= y )](sinh[2 y−−= πλ . 

For each 2
nn =λ  ⇒  nxxX n sin)( =  and ))(sinh()( ynyYn −= π  

We have constructed the particular solutions 

 

))(sinh(sin)()(),( ynnxyYxXyxu nnn −⋅== π  , 

 

which satisfy all the homogeneous conditions of the problem (2-2). The same true of any finite 

linear combination. We attempt to represent the solution u  of (2-2) as an infinite series in the 

functions nu : 

∑
∞

=

−⋅⋅=
1

))(sinh(sin),(
n

n ynnxcyxu π  .                      (2-3) 

 

We need to determine the coefficients nc in such a way that )()0,( 1 xfxu = ， )(1 xf  is given 

function. We must then still check to see whether the convergence of the series is sufficiently 

good to ensure the satisfaction of the differential equation and the homogeneous boundary 

conditions. 

 

We put 0=y  in each term of the series to obtain the condition 

∑
∞

=

⋅⋅=
1

1 )sinh(sin)(
n

n nnxcxf π  . 
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If we let  

)sinh( πncb nn ⋅=  , 

 

our problem is to determine ,..., 21 bb  in such a way that for a given function )(1 xf  

 

∑
∞

=

⋅=
1

1 sin)(
n

n nxbxf  . 

 

The expansion of an arbitrary function in a series of eigenfunctions is called a Fourier series. 

The particular case where the eigenfunctions are all sines is called a Fourier sines series. Now 

we derived the problem (2-2) solution is 

 

∑
∞

=

−⋅⋅=
1

))(sinh(sin),(
n

n ynnxcyxu π  , 

 

with ∑
∞

=

⋅==
1

1 sin)()0,(
n

n nxbxfxu  where )sinh( πncb nn ⋅= . 

 

In below，we give a example to illustrate above statement. 

 

 

 

Example 2Example 2Example 2Example 2----1 1 1 1 ::::  ( Using Separation of variables to solve seLaplac ′  equation )    

Solve    0=+ yyxx uu   for  π<< x0  and π<< y0 , 

0),0(),(),( === yuxuyu ππ , 

)()0,( 2
xxxu −= π  . 

 

:Solution   

 

By equation (2-3)，we have 

 

∑
∞

=

−
⋅=

1

)sin(
)sinh(

)(sinh
),(

n

n nx
n

yn
byxu

π

π
 and )()sin()0,(

2

1

xxnxbxu
n

n −==∑
∞

=

π  . 

 

   ⇒   
><

>−<
=

)sin(),sin(

)sin(),(2

nxnx

nxxx
bn

π
∫ −=

π
π

π 0

2 )sin()(
2

dxnxxx . 



 

 20 

ⅡⅡⅡⅡ-1.2 The domain is a circular 

 

We consider a solution u  of seLaplac ′  equation in the unit circle 122 <+ yx  

with its values given on the boundary 122 =+ yx .  It is natural to introduce the polar 

coordinates 22
yxr +=  and 

x

y1tan −=θ . A computation shows that seLaplac ′  

equation in these coordinates is  

 

            0
11

2
=++ θθu

r
u

r
u rrr  .                        ( 2-4) 

We seek a solution ),( θru  of this equation for 1<r  which is continuous for 1≤r  

and satisfies 

            )(),1( θθ fu =  .                              (2-5) 

 

The function )(θf  is a given continuously differentiable function which is   periodic of 

period π2 . The solution ),( θru  must also be periodic of period π2  in θ . 

 

We apply separation of variables to seLaplac ′  equation by seeking solutions of the 

form )()( θθrR . 

 

Substituting，we have 

0)()(
1

)()(
1

)()(
2

=′′+′+′′ θθθθθθ rR
r

rR
r

rR  

         ⇒    0)()()()()()(2 =′′+′+′′ θθθθθθ rRrRrrRr  

         ⇒    0
)()(

)()(

)()(

)()(

)()(

)()(2 =
′′

+
′

+
′′

θθ

θθ

θθ

θθ

θθ

θθ

rR

rR

rR

rR
r

rR

rR
r  

         ⇒    0
)(

)(

)(

)(

)(

)(2 =
′′

+
′

+
′′

θθ

θθ

rR

rR
r

rR

rR
r  

         ⇒    λ
θθ

θθ
=

′′
−=

′
+

′′

)(

)(

)(

)(

)(

)(2

rR

rR
r

rR

rR
r   where λ  is a constant  

⇒    




=−′+′′

=+′′

0)()()(

0)()(
2

rRrRrrRr λ

θλθθθ
 , 

 

consider the eigenvalue equation for θ .  We are interested in functions which are 

periodic of period π2 .  We consider in the interval ),( ππ− ，and pose the boundary 

conditions 

0)()( =−− πθπθ  , 

0)()( =′−−′ πθπθ  . 
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It is easy to see that has solutions of period π2  if and only if 2
n=λ  with 

,...2,1,0=n ，corresponding to these eigenvalues 2
n  we have the eigenfunctions )cos( θn  

and )sin( θn . Phere are two eigenfunctions corresponding to each eigenvalue except 

0=λ . The eigenvalues 2
n=λ  with ,...2,1,0=n ，are said to be double eigenvalues. 

 

We turn now to the equation for )(rR ，for 0=n  this has the general solution 

rba log+  and for ,...2,1=n ，the general solution is nn
brar

−+ . The equation is to be 

satisfied on the interval 10 << r . In place of a boundary condition at 0=r  we simply 

impose the condition that )(rR  be finite there. 

 

We are left with the product solutions )sin( θnr
n  and )cos( θnr

n . We seek to solve the 

problem (2-4) and (2-5) by a series  

 

       ∑
∞

=

++=
1

0 )sincos(
2

1
),(

n

n

n

n

n nrbnraaru θθθ .             (2-6) 

 

Putting 1=r ，we see that the coefficients na  and nb  are to be chosen so that 

 

∑
∞

=

++=
1

0 )sincos(
2

1
)(

n

nn nbnaaf θθθ  , 

 

which is a full Fourier series . 

 

Hence，we deduce that  

  









==

==

∫

∫

−

−

π

π

π

π

φφφ
π

φφφ
π

,...3,2,1sin)(
1

,...2,1,0cos)(
1

nfordnfb

nfordnfa

n

n

  . 

 

We examine the function 

∑
∞

=

++=
1

0 )sincos(
2

1
),(

n

nn

n
nbnararu θθθ  . 

 

If ∫−=
π

π
θθ

π
dfc )(

1
，so that can ≤  and cbn ≤ ，we find that the series for u  and its 

first and second partial derivatives are dominated by the series ∑ −222 nrcn . This series 

converges uniformly for 0rr ≤  for any 10 <r . It follows that u  is twice continuously 
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differentiable for 1<r ，and its derivatives may be formed by term-by term differentiation 

of its series. Then 

0])1()[sincos(
11

1

2

2
=−+−+=++ ∑

∞

=n

nn

n

rrr nnnnnbnaru
r

u
r

u θθθθ  , 

 

so that ),( θru  is harmonic，that is it ，satisfies seLaplac ′  equation. 

 

In below，we give a example to illustrate above statement. 

 

 

Example 2Example 2Example 2Example 2----2 2 2 2 ::::        ( Using Separation of variables to solve seLaplac ′ equation )    

Solve    0
11

2
=++ θθu

r
u

r
u rrr   for  1<r  , 

θθ 3sin),1( =u  . 

                        

:Solution      

 

By equation (2-6)，we have 

 

∑
∞

=

++=
1

0 )sincos(
2

1
),(

n

nn

n nbnararu θθθ  , 

and           

θθθθ 3

1

sin)sincos(),1( =+=∑
∞

=n

nn nbnau . 

 

   ⇒ ∫−=
π

π
φφφ

π
dnan cossin

1 3

∫− −++−−−+=
π

π
φφφφφ

π
dnnnn ])3sin()3sin()1sin(3)1sin(3[

8

11
0=  . 

 

And ∫−=
π

π
φφφ

π
dnbn sinsin

1 3

∫− ++−−+−−=
π

π
φφφφφ

π
dnnnn ])3cos()3cos()1cos(3)1cos(3[

8

11
 

                         














=
−

=

=

otherwise

n

n

,0

3,
4

1

1,
4

3

 . 

Finally，we get θθθ 3sin
4

1
sin

4

3
),( 3

rrru −=  . 
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ⅡⅡⅡⅡ----2222    Finite Fourier transform to construct solution of system of seLaplac ′ equation 

 

We shall now treat the corresponding non-homogeneous problem 

    ),( yxFuu yyxx =+   for  π<< x0  and 10 << y  ,         ( 2-7) 

0),(),0()1,( === yuyuxu π  , 

0)0,( =xu  , 

by expanding the solution in a Fourier series in terms of the same set of functions.  

 

    To solve the above non-homogeneous problem，we expand the solution in a Fourier  

sine series for each fixed y ： 

∑
∞

=1

sin)(~),(
n

n nxybyxu  . 

    The set of sine coefficients 

∫=
π

π 0
sin),(

2
)( nxdxyxuybn  , 

which is a function of the integer n  and y，determines ),( yxu  uniquely. It is called the 

finite sine transform of ),( yxu . 

    If 
2

2

x

u

∂

∂
 is continuous，its finite sine transform is given by 

          ∫ =
π

ππ 0
sin),([

2
sin),(

2
nxyxunxdxyxu xxx │ π

0  - ∫ ⋅
π

0
]cos),( nxdxnyxux  

                               ∫⋅
−

=
π

π 0

2 sin),(
2

nxdxyxun  

                               )()( 2
ybn n−=  , 

because 0),(),0( == yuyu π . Differentiating u with respect to x  twice corresponds to the 

simpler operation of multiplying its finite sine transform by )( 2
n− . 

 

    If 
2

2

y

u

∂

∂
 is continuous，we can interchange integration and differentiation to show that  

∫ ∫ ∂

∂
=

π π

ππ 0 0 2

2

sin),(
2

sin),(
2

nxdxyxu
y

nxdxyxuyy  

                               )sin),(
2

(
0∫=
π

π
nxdxyxu

dy

d
 

                               )( ybn

″
=  . 
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Taking the finite sine transform of both sides of (2-7) therefore leads to the equation 

 

),( yxFuu yyxx =+  

 

⇒  ∫ ∫ ∫=+
π π π

πππ 0 0 0
sin),(

2
sin),(

2
sin),(

2
nxdxyxFnxdxyxunxdxyxu yyxx  

 

⇒  )()()()(
2

2
2

yByb
dy

d
ybn nnn =+−   for ,...3,2,1=n  

 

⇒  )()()( 2 yBybnyb nnn =−
″

 . 

 

The condition 0)0,( =xu  means that 

 

0)0( =nb  . 

 

 

Taking sine transform has reduced the problem (2-7) for a partial differential to the problem  

for an ordinary differential equation，that is 

 







=

=−
″

0)0(

)()()( 2

n

nnn

b

yBybnyb
 . 

 

Solving this by a method，we can use snGree ′  function  to solves it，and the solution has 

Fourier sine series form. By szSchwar ′  inequality for sums and slParseva ′  equation，we 

have proved the series ∑ nxybn sin)(  converges uniformly for π≤≤ x0  , 10 ≤≤ y . 

Under this condition，we get  

∑
∞

=

=
1

sin)(),(
n

n nxybyxu  . 

 

 

In below，we give a example to illustrate above statement. 
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ExampleExampleExampleExample    2222----3 3 3 3 ::::        ( Using Finite Fourier Transform to solve  seLaplac ′  equation )    

Solve      xyyuu yyxx

3sin)1( −=+   for  π<< x0  , 10 << y  , 

0),(),0()1,()0,( ==== yuyuxuxu π  . 

 

:Solution        

Let   )()(),( yYxXyxu =  

      λ−=
′′

−
′′

⇒
)(

)(

)(

)(

yY

yY

xX

xX
 

      ⇒




==

<<=+′′

0)()0(

0,0

π

πλ

XX

xXX
   and  





=

<<=−′′

0)1(

10,0

Y

yYY λ
 . 

 

When 0>λ ，we have xbxaxX λλ cossin)( +=  . 

And  01)0( =⋅= bX  ⇒  0=b , 

and  0sin)( == πλπ aX  ⇒  )(0 triviala =  or 0sin =πλ  ⇒ 2
n=λ  with ,..2,1=n  . 

 

So we get )sin()( nxxX =  with ,..2,1=n  . 

 

For 0=λ  and 0<λ  ⇒  trivial solution . 

 

Since 2
n=λ  with ,..2,1=n  . 

We have nyny
BeAeyY

−+=)(  and 0)1( =+= −nn
BeAeY  ⇒   n

BeA
2−−=  . 

So nyynnyny
BeBeBeAeyY

−−− +−=+= )2()( )( )1()2( ynyn
ee

e

B −− +
−

= )1(sinh −= yn  with ,..2,1=n  . 

Hence ∑
∞

=

−=
1

sin)1(sinh),(
n

n nxynbyxu  . 

 

Ansatz ∑
∞

=

=
1

sin)(),(
n

n nxybyxu  where ∫=
π

π 0
sin),(

2
)( nxdxyxuybn  . 

We have ∫ =
π

ππ 0
sin),([

2
sin),(

2
nxyxunxdxyxu xxx │ π

0  - ∫ ⋅
π

0
]cos),( nxdxnyxux  

                                                      

∫⋅
−

=
π

π 0

2 sin),(
2

nxdxyxun  )()( 2
ybn n−=  , 

and     ∫ ∫ ∂

∂
=

π π

ππ 0 0 2

2

sin),(
2

sin),(
2

nxdxyxu
y

nxdxyxuyy )sin),(
2

(
0∫=
π

π
nxdxyxu

dy

d
 )(ybn

″
=  . 
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Given    xyyuu yyxx

3sin)1( −=+  

 

⇒  ∫ ∫ ∫ ⋅−=+
π π π

πππ 0 0 0

3 sinsin)1(
2

sin
2

sin
2

nxdxxyynxdxunxdxu yyxx
 

⇒  ∫ ⋅−=
″

+−
π

π 0

32 sinsin)1(
2

)()()( nxdxxyyybybn nn
 for ,...2,1=n  

⇒  ∫−=−
″ π

π 0

32 sinsin)1(
2

)()( nxdxxyyybnyb nn
. 

 

In this case，




=⇒=

=⇒=

0)1(0)1,(

0)0(0),(

n

n

bxu

boxu
 , 

Since  

∫ ∫ +−−=⋅
π π

0 0

23 ])1cos()1[cos(sin
2

1
sinsin dxxnxnxnxdxx  

                                 

∫ ++−−−=
π

0
]sin)2sin()2sin([sinsin

4

1
dxnxxnxnnxx  

 

                         ∫ ++−−+−−=
π

0
])3cos()3cos()1cos(3)1cos(3[

8

1
dxxnxnxnxn       

 














=
−

=

=

otherwise

n

n

,0

3,
8

1,
8

3

π

π

 , 

 

and   








=−
−

=−⋅
−

=−=−⋅

3,)1(
4

1
)1(

2

8

1,)1(
4

3
)1(

2

8

3

nyyyy

nyyyy

π

π
π

π

 . 

 

Now we use snGree ′ function  to solves it， 

 

and we have 




−=

=
2

)(

1)(

nyq

yp
and 





=

=

1

0

β

α
 , about 21 ,vv  satisfy above equation 02 =−′′ vnv  . 
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Let ry
ev =   ⇒  ny

exv =)(1  and ny
exv

−=)(2   

⇒  ny
nexv =

′
)(1  and ny

nexv
−−=

′
)(2 . 

 

We have  )]()()()()[( 1221 xvxvxvxvxpk
′

−
′

= neneene
nynynyny 2][1 =⋅+⋅⋅= −−  , 

and     nn
eevvvvD −=−= −)()()()( 2121 αββα  . 

 

When x≤ξ ，we have  

1 2 1 2 1 2 1 2

1
( , ) [ ( ) ( ) ( ) ( )][ ( ) ( ) ( ) ( )]G x v v v v v x v v v x

kD
ξ ξ α α ξ β β= − −  

             ]][[
)(2

1 nynnnynn

nn
eeeeee

een

−−−

−
⋅−⋅−

−
= ξξ  

             ]][[
)(2

1 )1()1( ynynnn

nn
eeee

een

−−−−

−
−−

−
= ξξ  . 

 

When x≥ξ ，we have  

      
1 2 1 2 1 2 1 2

1
( , ) [ ( ) ( ) ( ) ( )][ ( ) ( ) ( ) ( )]G x v x v v v x v v v v

kD
ξ α α ξ β β ξ= − −  

             ]][[
)(2

1 )1()1( ξξ −−−−

−
−−

−
= nnnyny

nn
eeee

een
 . 

 

So   

∫ ∫
−−− +−−=−−

y y
nnnnnn

deeeedee
0 0

22)1()( ξξξξξξξξ ξξξξξξ  

                            
332

2

232

2

2

4
)

221
()

221
(

n
e

nn

y

n

y

nn

y
e

nn

y

n

y

nn

y nyny +−−−++−+−−= −  , 

and  

 

∫ −− −−−
1

)1()1( )1()(
y

nn dee ξξξξξ

3

)1(

32

2

2

)1(

32

2

2

4
)

221
()

221
(

n
e

nn

y

n

y

nn

y
e

nn

y

n

y

nn

y ynyn +−+−−+−−−+= −−−  . 

  

Hence 

+−−−
− ∫

−−−−

−

y
nnynyn

nn
deeee

een 0

)1()1( )1()(]{[
)(2

1
ξξξξξ

∫ −−− −−−−
1

)1()1( })1()(][
y

nnnyny
deeee ξξξξξ  

          

2
cosh

)
2

1
(cosh

22
)1(

1
442 n

yn

nn
yy

n

−
⋅+−−=  . 
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⇒  ∫ ∫+=
y

y
n dfyGdfyGyb

0

1

)(),()(),()( ξξξξξξ  














=
−

=

=

otherwise

n

n

,0

3,
4

1

1,
4

3

 . 

Therefore，the solution is 

     x

y

yyyxu sin}

2

1
cosh

)
2

1
cosh(

22)1({
4

3
),(

−
⋅+−−= - x

y

y
y

3sin}

2

3
cosh

)
2

1
(3cosh

81

2

81

2
)1(

9
{

4

1
−

⋅+−−  . 

 

ⅡⅡⅡⅡ-3 Fourier Transform to construct solution of system of seLaplac ′  equation 

 

Just as problems on the finite intervals lead to Fourier series，problems on the whole  

line ),( ∞−∞  lead to Fourier transform. To understand this relationship，consider a 

function )(xf  defined on the interval ),( ll− . Its Fourier series，In complex notation，is 

 

∑
∞

−∞=n

l

xin

necxf

π

~)(  , 

 

where the coefficients are 

     ∫−
−

=
l

l

l

yin

n dyeyf
l

c

π

)(
2

1
 . 

 

The coefficients nc  define the function )(xf  uniquely in the interval ),( ll− . 

The Fourier integral comes from letting ∞→l . However，this limit is one of the trickiest 

in all mathematics because the interval grows simultaneously as the terms change. If we 

write 
l

n
k

π
= ，and substitute the coefficients into the series，we get 

l
edyeyfxf

ikx
l

l

iky

n

π

π
])([

2

1
)( ∫∑ −

∞

−∞=

=  . 

 

As ∞→l ，the interval expands to the whole line and the points k  get closer toghter. In 

the limit we should expect k  to become a continuous variable，and the sum to become an 

integral. The distance between two successive sk ′  is 
l

k
π

=∆ ，which we may think of as 

becoming dk  in the limit. Therefore，we expect the result 
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             dkedyeyfxf
ikxiky ])([

2

1
)( ∫∫

∞

∞−

−
∞

∞−
=

π
 .                ( 2-8 ) 

 

   Another way to state the above identity (2-8) is 

 

             ∫
∞

∞−
=

ππ 2
)(

2

1
)(

dw
ewFxf

ikx   where  ∫
∞

∞−
= dxexfwF

iwx)()(  . 

 

Let             ∫
∞

∞−
= dxexfwf

iwx)()(
^

 ,                                ( 2-9 ) 

then           
^1

( ) lim ( )
2

L
iwx

LL
f x f w e dw

π
−

−→∞
= ∫  . 

 

If the integral in (2-9) converges，it is called the Fourier transform of )(xf . It is 

sometimes denoted by ][ fF . The integral converges if ∫
∞

∞−
dxxf )(  does. 

 

The Fourier transform of )(xf  is 

∫
∞

∞−
== dxexfwfwfF

iwx)()()]([
^

 , 

 

and the inverse Fourier transform is  

 

∫
∞

∞−

−− == dwewffFxf
iwx)(

2

1
][)(

^
1

π
 . 

 

For functions of two variables，say ),( yxu ，and we define 

∫
∞

∞−
=≡ dxeyxuywuywuF

iwx),(),(),]([
^

 . 

 

A basic property of the Fourier transform is that the k th derivative )(k
u  with 

,...2,1=k  transforms to an algebraic expression，that is 

 

),()(),]([
^

ywuiwywuF
kk −=  , 

 

confirming our comment that derivatives are transformed to multiplication. This formula is 

easily proved by integration by parts. 



 

 30 

One of the many important formulae which is used in this field is given in the 

convolution theorem. The convolution gf ∗  of two functions f  and g  is defined by 

∫ ∫
∞

∞−

∞

∞−
−=−=∗ duuguxfduuxgufxgf )()()()())((  . 

Now 

∫∫
∞

∞−

∞

∞−
−=∗ dudxuxgufegfF

iwx )()(][  

                         = ∫∫
∞

∞−

∞

∞−
− dxdueuxguf

iwx)()(  . 

After applying this change of variables in above equation，we deduce the convolution 

theorem which states that 

∫∫
∞

∞−

+
∞

∞−
=∗ dvdxevgxfgfF

vxiw )()()(][  

                        =
^^

][][)()( gfgFfFdvevgdxexf
iwviwx ⋅==⋅∫∫

∞

∞−

∞

∞−
 , 

and                

∫
∞

∞−

− −=∗=⋅ duuxgufgfgfF )()(][
^^

1  . 

This is useful relationship in solving differential equations. 

Following is a table of some important basic properties of transforms 

 

 )(xf  )(
^

wf  

1 f ′  
^

fiw  

2 )(xxf  
′^

fi  

3 )( axf −  
^

fe
iaw−  

4 )(xfe
iax  )(

^

awf −  

5 )()( xbgxaf +  
^^

bbfa +  

6 )(axf  ][
1

a

w
F

a
 

 

Table 2-1.  Basic properties of transforms 

In below，we give a example to illustrate above statement. 

Example 2Example 2Example 2Example 2----4 4 4 4 ::::        ( Using Fourier Transform to solve seLaplac ′  equation )    

Consider 0=+ yyxx uu  in the half plane 0≥y  subject to the boundary condition 

)()0,( xxu δ=  with Rx ∈  and the condition 0),( →yxu  as ∞→+ 22
yx . 
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:Solution   

 

Using Fourier transform with respect to x ， 

 

∫
∞

∞−
== dxeyxuywuyxuF

iwx),(),()],([
^

 , 

 

and          
^

2

2

][ yyu
y

u
F =

∂

∂
  ，  

^
2

2

2

)(][ uiw
x

u
F −=

∂

∂
 . 

Which implies 
^

u  satisfies the ODE 

0
^

2
^

=− uwu yy   for 0>y  , 1)]0,[( =wF . 

 

The solutions of the ODE are wy
e

± .  We must reject a positive exponent since 
^

u  would 

grow exponentially as ∞→w  and would not have Fourier transform. 

So 
yw

eywu
−

=),(
^

.  Therefore， 

   ∫
∞

∞−

−
= dweeyxu

iwxwy

π2

1
),(    ， Rw ∈  and 0≥y  . 

 

This improper integral clearly converges for 0>y .  It is split into to parts and integrated 

directly as  

wyiwxe
yix

yxu −

−
=

)(2

1
),(

π
︱ ∞

0 + wyiwxe
yix

+

+ )(2

1

π
︱ 0

∞−  

                  )
11

(
2

1

ixyixy +
+

−
=

π
 . 

                  
)( 22

yx

y

+
=

π
 . 

 

ⅡⅡⅡⅡ-4 Finite Difference to construct solution of system of seLaplac ′  equation 

 

 One scheme for solving all kinds of partial differential equations is to replace the  

derivatives by difference quotients，converting the equation to a difference equation.  We 
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then write the difference equation corresponding to each point at the intersections of a 

gridwork that subdivides the region of interest at which the function values are unknown. 

Solving these equations simultaneously gives values for the function at each node that 

approximate the true values.  We begin with the two-dimensional case. 

 

 Let =∆= xh  equal spacing of gridwork in the directionx − ，see Figure 2-1. We 

assume that the function )(xf  has a continuous fourth derivative.  By Taylor series， 

 

   4

)(

32

24

)(

6

)(

2

)(
)()()( h

xf
h

xf
h

xf
hxfxfhxf n

IV

nn

nnn +
′′′

+
′′

+′+=+  , 

   hxx nn +<< 1ξ  , 

 

 4

)(

32

24

)(

6

)(

2

)(
)()()( h

xf
h

xf
h

xf
hxfxfhxf n

IV

nn

nnn +
′′′

−
′′

+′−=− , 

  nn xhx <<− 2ξ . 

It follows that 

 

4
)(

2 12

)(
)(

)()(2)(
h

f
xf

h

hxfxfhxf IV

n

nnn ξ
+′′=

−+−+
  where hxhx nn +<<− ξ . 

 

 

          

 

 

 

 

 

 

 

 

 

Figure 2-1.  Taking five interior points 

 

A subscript notation is convenient :  

 

       )(
2 2

2

11 hOf
h

fff
n

nnn +′′=
+− −+  . 

 

y∆  

x∆  

y i  

y 2−i  

y 1−i  

y 1+i  

y 2+i  

x 3+i  x 2+i  x 1+i  x i  x 1−i  x 2−i  

★ ★ 

★ 

★ 

★ 
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In above equation，the subscripts on f  indicate the valuesx −  at which it is evaluated. 

The order relation )( 2
hO signifies that the error approaches proportionality to 2

h  as 0→h . 

 

     Similarly，the first derivative is approximated， 

 

            2
)(

6

)(
)(

2

)()(
h

f
xf

h

hxfhxf III

n

nn ξ
+′=

−−+
  where hxhx nn +<<− ξ . 

 

⇒     )(
2

211 hOf
h

ff
n

nn +′=
− −+  . 

 

     When f  is a function of both x  and y，we get the second partial derivative with  

respect to x， 2

2

x
u

∂
∂ ，by holding y  constant and evaluating the function at three points  

where x  equals 
nx ， hxn +  and hxn − . The partial derivative 2

2

y
u

∂
∂  is similarly  

computed，holding x  constant.  We require that fourth derivatives with respect to both  

variables exist. 

 

     To solve the seLaplac ′  equation on a region in the planexy − ，we subdivide the  

region with equispaced lines parallel to the −x  and axisy − .  Consider a portion of the  

region near ),( ji yx . We wish to approximate 

02 =+=∇ yyxx uuu     in D , 

                         fu =    in C , 

 

in a bounded domain D  with boundary C . 

 

Replacing the seLaplac ′  equation by the finite difference equation，we get 

 

2

112

)(

),(),(2),(
),(

x

yxvyxvyxv
yxv

jijiji

ji
∆

+−
=∇

−+
0

)(

),(),(2),(

2

11
=

∆

+−
+

−+

y

yxvyxvyxv jijiji
 . 

It is convenient to let double subscripts on u  indicate the −x  and valuesy − : 

 

0
)(

2

)(

2

2

1,,1,

2

,1,,1

,

2 =
∆

+−
+

∆

+−
=∇

−+−+

y

vvv

x

vvv
v

jijijijijiji

ji  . 
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     We call the points ),1( ji + 、 ),1( ji − 、 )1,( +ji  and )1,( −ji  the nearest neighbors of  

the mesh point ),( ji . If ),( ji  and all its nearest neighbors lie in CD + ，we call ),( ji  an  

interior point. 

 

It is common to take hyx =∆=∆ ，resulting in considerable simplification，so that 

 

            0]4[
1

,1,1,,1,12,

2 =−+++=∇ −+−+ jijijijijiji vvvvv
h

v  .        ( 2-9 ) 

 

     Note that five points are involved in the relationship of equation (2-9)，points to the  

right、left、above and below the central point ),( ji yx . The approximation has )( 2
hO  error， 

provided that u  is sufficiently smooth. This formula is referred to as the five-point star  

formula. 

 

     The system we get in this way has exactly one solution.  To prove this，suppose that  

there were two solutions，{ }
jiu ,  and { }

jiv ,  of (2-9) in D  with identical boundary values.   

Their difference { }
jiji vu ,, −  also satisfies (2-9) in D  but with zero boundary values.  By  

the maximum principle， 0,, ≤− jiji vu ，hence jiji vu ,, = .  So there is at most one solution.  

 

      Now，if we define the error function  vuw −=  . 

 

The boundary value problem for u  is therefore properly posed. As 0→h  the error 

vuw −=  approaches zero.  That is， v  converges to u . 

 

      In below，we give a example to illustrate above statement. 

 

 

 

 

Example 2Example 2Example 2Example 2----5 : 5 : 5 : 5 :  ( Using Finite Difference to solve seLaplac ′  equation ) 

 

Find ),( yxu  such that 

0=+ yyxx uu  , 
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          0),()10,(),( === youxuoxu  , 

          100),20( =yu  . 

                

:Solution           

 

 

 

 

 

 

 

We replace the differential equation by a difference equation: 

 0]4[
1

,1,1,,1,12
=−+++ −+−+ jijijijiji uuuuu

h
 

                  ⇒  04 ,1,1,,1,1 =−+++ −+−+ jijijijiji uuuuu  

                  ⇒  04 1,1,,1,1, =−−−− +−−+ jijijijiji uuuuu  . 

Suppose we choose 5=h ，the system of equations is 

 

                                    0)4000(
5

1
122

=−+++ uu  , 

                                    0)400(
5

1
2312

=−+++ uuu  , 

                                    0)401000(
5

1
322

=−+++ uu  . 

 

We can write equations as matrix form and usung 〝Metlab〞to solve. 

                            

The solution to the set of equations is easy when there are only three of them : 

 

                 786.11 =u   、  143.72 =u  、  786.263 =u  . 

ⅢⅢⅢⅢ....  The limit of the methods of solving Ellpitic PDE 

    

                In this chapter，we want to analysis the limit of four methods of solving seLaplac ′  

equation  in chapter Ⅱ.  

u 1  u 2  u
3
 

0 ﾟ 100 ﾟ 

0 ﾟ 0 ﾟ 0 ﾟ 

0 ﾟ 0 ﾟ 0 ﾟ 
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  1、The limit of Separation of variables 

    

                The standard technique for solving sPDE  on bounded ( rectangular) domains is called  

separation of variables.  The idea is to assume that the unknown function ),( yxuu =  in an  

initial boundary value problem can be written as a product of a funvtion of x  and a function of  

y ，that is， )()(),( yYxXyxu = .  Thus，the variables separate.  If the method is to be  

successful，when this product is substituted into the PDE ，the PDE  separates into two  

sODE ，one for )(xX  and one for )(yY . Therefore，we are left with an ODE  boundary  

value  problem for )(xX  and an ODE  for )(yY .  When we solve for )(xX  and  

)(yY ，we will have a product solution ),( yxu  of the PDE  that satisfies the boundary  

conditions. 

 

    Whether or not the method of separation of variables can be applied to a particular  

problem depends not only on the differential equation but also on the shape of the boundary and  

on the form of the boundary conditions.   

 

Three things are needed to apply the method to a problem in two variables x  and y : 

 

(a) The differential operator L  must be separable. For example，this elliptic equation 

0=++ yyxyxx uuu ，it can not use Separation of variables to find solution. 

(b) All initial and boundary conditions must be on lines tconsx tan≡  and tconsy tan≡ . 

(c) The linear operators defining the boundary conditions at tconsx tan≡  must involve no  

partial derivatives of u  with respect to y ，and their coefficients must be independent of 

y . Those at tconsy tan≡  must involve no partial derivatives of u  with respect to 

x ，and their coefficients must be independent of x . 

 

   That the method of separation of variables can only be applied to a special class of 

problems. 

 

 

 

  2、、、、Finite Fourier transform 

 

                    To solve the nonhomogenous problem，we expand the solution in a Fourier sine series. 

The Finite Fourier transforms，are simply Fourier coefficients. Whenever a homogeneous 

problem can be solved by separation of variables in the form of a Fourier series，the Finite 
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Fourier transform reduces the partial differential equation to an infinite system of ordinary 

differential equations. These equations can then be solved by the methods of one-sided 

snGree ′  function  or snGree ′  function . The Finite Fourier transform is using half - 

space domain. 

 

  3、、、、Fourier transform 

 

                 The Fourier transforms are first encountered in elementary differential equations 

courses as a technique for solving linear ， constant-coefficient ordinary differential 

equations; Fourier transforms convert an ODE  into an algebra problem. The ideas easily 

extend to sPDE ，where the operation of Fourier transformation converts sPDE  into 

sODE . Thus the Fourier transforms is useful as a computational tool in solving differential 

equations.  In sPDE  the Fourier transform is usually applied to the spatial variable when 

it varies over whole line.  That is，the Fourier transform is using whole space domain. 

 

  4、、、、Finite Difference 

 

                    The finite difference method is using the domain of rechangular domain or irregular  

shape. This methos solution form is discrete solution and it is the approximate solution (value).   

All we need to do is to continue to make h  smaller. However，this procedure runs into severe  

difficulties. It is apparent that the number of equations increases inordinately fast. With 25.1=h  

，we would have 105 discrete interior points; with 625.0=h ，we have 465 discrete interior 

points and so on. Storing a matrix with 105 rows and 105 columns would require 2105  of 

computer memory. Few computer systems allow us such a generous partition，and overlaying  

memory space from disk storage would be extremely time-consuming. Along with memory  

requirements，we worry about execution times. 

 

Compared with four methodsCompared with four methodsCompared with four methodsCompared with four methods : 

 

(a) The homogeneous problem can be solved by Separation of variables 、 Fourier 

Transform 、Finite Difference. But to solve the nonhomogeneous problem，we can use 

Finite Fourier Transform. 

 

(b)  Separation of variables、Finite Fourier Transform and Fourier Transform reduces  

the partial differential equation to ordinary differential equations and facilitates us to  

solve. 

 

(c) The solution caused by Separation of variables、Finite Fourier Transform or Fourier 



 

 38 

Transform is continuous，whereas the solution caused by Finite Difference  is 

discrete type and it is the approximate solution. 

 

(d) The Separation of variables method can be applied to rectangle domain;  the Finite  

Fourier Transform method can be applied to half-space domain; the Fourier 

Transform method can be applied to whole space domain ( whole line ); the Finite 

Difference methid can be applied to rectangular domain or irregular shape domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ⅣⅣⅣⅣ. . . . Integral evaluations on three-sheeted Riemann surface of genus N 

 

    We know that there are some differential equations whose solution space is in the 
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Riemann surface. In this chapter，we want to compute the integrals ∫γ dz
zf )(

1
，where γ  

is in the Riemann surface of algebraic curve ∏
=

−=
n

j

jzzzf
1

)()( . We will develop an 

algorithm such that we can compute the integrals ∫
∏

=

−
γ

dz

zz
n

j

j

1

)(

1
 by 

〝 Mathematica 〞. 

    Before computing integrals，it is necessary to discuss the Riemann surface of 

∏
=

−=
n

j

jzzzf
1

)()( . 

 

ⅣⅣⅣⅣ-1  Fundamental introduction 

 

    For simplicity, we take zzf =)(  to define a single-value and analytic function on the 

Riemann surface. 

Now we let Cz ∈ , and use polar form for z. That is,  

    
2)-(4                                 .   

1)-(4                                       

)2( πθ

θ

+=

=
i

i

re

rez
 

Then by (4-1) 

22

1 θ
i

erz = , 

and by (4-2) 

22

1
)

2
(

2

1
)

2

2
(

2

1 θ
π

θπθ
iii

erererz −===
+

+

 . 

Therefore zzf =)(  is a multi-valued function at each Cz ∈  and is not analytic on C . 

How to make zzf =)(  to be a single-valued and analytic at every point on C ? 

Consider two cuts from 0 to ∞−  ( ..ei the negative real axis). 
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Let                    {CP =1 ＼ ]0,(−∞ ｜ }),[arg1

−+−∈= ππθ z  , 

and 

{CP =2 ＼ ]0,(−∞ ｜ })3,[arg2

−+∈= ππθ z  , 

as Figure 4-1 shows. 

 

 

 

 

 

 

 

 

Figure 4-1.  Cut from 0 to ∞−  on P1 and P2 

Define  

zzf =)(1 ， 1Pz ∈  , 

zzf =)(2 ， 2Pz ∈  , 

then       22

1

1

1

)(

θ
i

ezzzf ==  is single-valued at each 1Pz ∈  and analytic on 1P . 

)()( 1
22

1

22

1

2

2

2

1

22

1

2

1112

zfezeezezezzzf
i

i
iii

−=−=====
+ θ

π
θπθθ

. 

is also single-valued at each 2Pz ∈  and analytic on 2P . 

 

Let   

{=1D ]0,(−∞ ｜ }π=zarg  , 

as Figure 4-2 shows. 

 

 

 

 

 

 

Figure 4-2.  Cut from 0 to ∞−  on D1 

If 1Pz ∈  and zarg  tends to −π ，then 2

1

22

1

2

arg

2

1

ziezezz
i

z
i

=≈=
π

  . 

-π +      0 π +       0 

π −  3π −  

P1 
P2 

(b) (a) 

D1 

π −  

π +      0       

π=zarg  
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If 2Pz ∈  and zarg  tends to +π ，then 2

1

22

1

2

arg

2

1

ziezezz
i

z
i

=≈=
π

 . 

So， z  is continuous cross the cut ]0,(−∞  for 1Dz ∈ . 

 

We define                       

zzf =)(3 ， 1Dz ∈  , 

then 

2

1

22

1

3 )( ziezzzf
i

===
π

 for 1Dz ∈  and analytic on 1D . 

Let 

{=2D ]0,(−∞ ｜ }π3arg =z  , 

as Figure 4-3 shows. 

 

 

 

 

 

 

 

 

Figure 4-3 .  Cut from 0 to ∞−  on D2  

If 2Pz ∈  and zarg  tends to −π3 ，then 2

1

2

3

2

1

2

arg

2

1

ziezezz
i

z
i

−=≈=
π

  . 

If 1Pz ∈  and zarg  tends to +− π ，then 2

1)
2

(
2

1

2

arg

2

1

ziezezz
i

z
i

−=≈=
−

π

 . 

So， z  is continuous cross the cut ]0,(−∞  for 2Dz ∈ . 

 

We define  

zzf =)(4 ， 2Dz ∈  , 

then 

)()( 3
2

1

4 zfzizf −=−=  for 2Dz ∈  and analytic on 2D . 

According the discuss above，we can construct a single-valued function for z . 

D2 

3π −  

-π +   0 

π3arg =z  
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We have the conclusion as the following: 

Let ]0,(212 −∞∪∪= PPR  and a function CRF →2: ，define 













∈

∈

∈

∈

=

24

13

22

11

,)(

,)(

,)(

,)(

)(

Dzzf

Dzzf

Pzzf

Pzzf

zF  , 

then )(zF  is single-valued and analytic at every point 2Rz ∈ .  

Note that )()( 21 zfzf −=  and )()( 43 zfzf −= . 

 

    Moreover， )(zF  is defined on a Riemann surface 2R  which is a generalization of 

the complex plane to a surface of more than one sheet such that a multi-valued function has 

only one value corresponding to each point on the surface. 

 

ⅣⅣⅣⅣ-2 Riemann surface of the algebraic curve ∏
=

−=
n

j

jzzzf
1

)()( with Rz j ∈  

    Consider ∏
=

−=
n

j

jzzzf
1

)()(  ， Rz j ∈  and 1z ＞ 2z ＞ 3z ＞ … ＞ nz  with n  

distance branch points. 

 

ⅣⅣⅣⅣ-2.1 The horizontal cut structure of )(zf  

 

    Since )(zf  is a two-valued function，in order to define a single-valued and analytic 

function，therefore we need branch cuts. But how can we construct branch cuts？ 

 

    In this paper，we by face the left direction to do cut explained. For convenience，let 

4=n  and 5=n  to see what is going on？ 

 

First，we check if there is any cut，for 4=n  and 11 =z 、 22 =z 、 33 =z  and 

44 =z ，as Figure 4-4 shows. 

 

 

 

Figure 4-4.  The branch points are 11 =z 、 22 =z 、 33 =z  and 44 =z  

Put point -1 and )1,(1 −∞∈− ，then we have 

1 2 3 4 
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

−

=−=−−
π

π
)2arg()11arg(  , 



−

=−=−−
π

π
)3arg()21arg(  , 



−

=−=−−
π

π
)4arg()31arg(  , 



−

=−=−−
π

π
)5arg()41arg(  , 

taking π−  : 2

1)
2

2
(

2

1

2

1

2

1

2

1

12054325432 −==−⋅−⋅−⋅−
− π

i

e  ,          (4-3) 

taking π  : 2

1)
2

2
(

2

1

2

1

2

1

2

1

12054325432 −==−⋅−⋅−⋅−
π

i

e  .            (4-4) 

 

Since (4-3) = (4-4) . 

 

So，there is no cut in )1,(−∞  . 

 

Put point 
2

3
 and )2,1(

2

3
∈ ，then we have 

0)
2

1
arg()1

2

3
arg( ==−  , 

    


−

=−=−
π

π
)

2

1
arg()2

2

3
arg(  , 

    


−

=−=−
π

π
)

2

3
arg()3

2

3
arg(  , 

    


−

=−=−
π

π
)

2

5
arg()4

2

3
arg(  , 

taking π−  : 
2

1

)
2

3
(2

1

2

1

2

1

2

1

16

15

2

5

2

3

2

1

2

1

2

5

2

3

2

1

2

1
ie

i

==−⋅−⋅−⋅
− π

 ,          (4-5) 

taking π  : 
2

1

)
2

3
(2

1

2

1

2

1

2

1

16

15

2

5

2

3

2

1

2

1

2

5

2

3

2

1

2

1
ie

i

−==−⋅−⋅−⋅
π

 .           (4-6) 

 

Since (4-5) ≠  (4-6) . 

 

So，there is a cut in )2,1(  . 
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Put point 
2

5
 and )3,2(

2

5
∈ ，then we have 

0)
2

3
arg()1

2

5
arg( ==−  , 

0)
2

1
arg()2

2

5
arg( ==−  , 

    


−

=−=−
π

π
)

2

1
arg()3

2

5
arg(  , 

    


−

=−=−
π

π
)

2

3
arg()4

2

5
arg(  , 

taking π−  : 
2

1

)(
2

1

2

1

2

1

2

1

16

9

2

3

2

1

2

1

2

3

2

3

2

1

2

1

2

3
−==−⋅−⋅⋅ −πie  ,           (4-7) 

taking π  : 
2

1

)(
2

1

2

1

2

1

2

1

16

9

2

3

2

1

2

1

2

3

2

3

2

1

2

1

2

3
−==−⋅−⋅⋅ πie  .             (4-8)  

 

Since (4-7) = (4-8) . 

So，there is no cut in )3,2(  . 

 

Put point 
2

7
 and )4,3(

2

7
∈ ，then we have 

0)
2

5
arg()1

2

7
arg( ==−  , 

0)
2

3
arg()2

2

7
arg( ==−  , 

0)
2

1
arg()3

2

7
arg( ==−  , 

    


−

=−=−
π

π
)

2

1
arg()4

2

7
arg(  , 

taking π−  : 
2

1

)
2
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1
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1

16

15

2

1

2

1

2

3

2
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1
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5
ie
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−==−⋅⋅⋅
−

π

 ,            (4-9) 

taking π  : 
2

1

)
2

(2

1

2

1

2

1

2

1

16

15

2

1

2

1

2

3

2

5

2

1

2

1

2

3

2

5
ie

i

==−⋅⋅⋅
π

 .               (4-10) 

Since  (4-9) ≠  (4-10) . 

So，there is a cut in )4,3(  . 
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Hence we have the branch cuts in [1,2] and [3,4]. As Figure 4-5 shows. 

 

 

 

 

Figure 4-5.  The cut structure for 4=n  branch points in horizontal  

 

    But we can use another easier way to get branch cut，as Figure 4-6 shows.  

 

 

 

 

 

 

 

Figure 4-6.  The cut appears at z ＜ jz  for each jz  

 

When crossing the cut even times in each line section，it will not change sign. When 

crossing the cut odd times in each line section will change sign，this implies the line 

section will form a branch cut. Hence we have the branch cuts in ],[ 34 zz  and ],[ 12 zz . 

The cut structure is showed in Figure 4-7. 

 

 

 

 

Figure 4-7.  The cut structure for four branch points in horizontal 

 

For 5=n ，as Figure 4-8 shows. ( in a easier way to illustrate ) 

 

 

 

 

 

 

 

 

Figure 4-8.  The cut appears at z ＜ jz  for each jz  

1 2 3 4 

Z 1  Z 4  Z
3
 Z 2  

Z 1  Z 4  Z 3  Z 2  

Z 1  Z 4  Z 3  Z 2  Z 5  
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We have the branch cuts in ],( 5z−∞ ， ],[ 34 zz  and ],[ 12 zz . The cut structure is 

showed in Figure 4-9. 

 

 

 

 

 

Figure 4-9.  The cut structure for five branch points in horizontal 

 

ⅣⅣⅣⅣ-2.2 The algebraic and geometric structure for Riemann surface of )(zf  

 

    For simplicity，we use 4=n  to discuss the structure for Riemann surface of 

∏
=

−=
4

1

)()(
j

jzzzf  in horizontal cut. 

 

(i) Algebraic structure 

 

    As Figure 4-10 shows， ],[ 34 zz 、 ],[ 12 zz  represent the cuts in this Riemann surface 

and 〝+〞，〝–〞are defined as following (depend on countclockwise ― initial edge denote 

by +，terminus edge denote by – ) :  

 

 

 

 

Figure 4-10.  The algebraic structure for four branch points in horizontal 

 

As we know，a curve crosses the cut from the sheet to another sheet，so the argument 

will increase π2 . We can defined the argument of + edge is +− π  and the argument of – 

edge is −π ; or the argument of  + edge is +π  and the argument of – edge is −π3 . 

 

Case one :  If +∈ Iz ( + edge of sheet Ⅰ) 

 

              As the Figure 4-10 shows， ],[ 12 zzz ∈  

                 Since jzz − > 0 ⇒  0)arg( =− jzz  for 4,3,2=j  , 

jzz − < 0 ⇒  π−=− )arg( jzz  for 1=j  . 

Z 1  + 

- - 

+ 

Z 

Z 2  Z 3  Z 4

Z 1  Z 4  Z 3  Z 2  
Z

5
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Then ∏
=

−=
4

1

)()(
j

jzzzf  

          ∏
=

−=
4

1j

jzz  

          0
2

1
4

2

)
2

(
2

1

1

⋅

=

−

∏ −⋅−= i

j

j

i

ezzezz

π

 

          
2

1
4

1

)
2

(

∏
=

−

−⋅=
j

j

i

zze

π

 

          
2

1
4

1

)( ∏
=

−⋅−=
j

jzzi  . 

 

Case two :  If −∈ Iz ( – edge of sheet Ⅰ)  

 

              As the Figure 4-10 shows， ],[ 12 zzz ∈  

                 Since jzz − > 0 ⇒  0)arg( =− jzz  for 4,3,2=j  , 

jzz − < 0 ⇒  π=− )arg( jzz  for 1=j  . 

Then ∏
=

−=
4

1

)()(
j

jzzzf  

         ∏
=

−=
4

1j

jzz  

         0
2

1
4

2

)
2

(
2

1

1

⋅

=

∏ −⋅−= i

j

j

i

ezzezz

π

 

         
2

1
4

1

)
2

(

∏
=

−⋅=
j

j

i

zze

π

 

         
2

1
4

1

)( ∏
=

−⋅=
j

jzzi  . 

Note that )(zf ∣ −I
 = )(zf− ∣ +I

 . 
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 (ii) Geometric structure 

 

    After knowing the algebraic structure，we will discuss about how to construct a 

geometric structure for Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()( . According to algebraic 

structure for Riemann surface，we know that 

 

if n  is even，then the branch cuts are ],[ 1−nn zz 、 ],[ 32 −− nn zz …… and ],[ 12 zz ，implies we 

have 1
2

−
n

 holes，and 

 

if n  is odd，then the branch cuts are ],( nz−∞ 、 ],[ 21 −− nn zz …… and ],[ 12 zz ，implies we 

have 
2

1−n
 holes.  

And we obtain one sheet with two edges in each cut by taken of counterclockwise 

which labeled the edge of lower- cut with + and the edge of upper- cut with –. Since there 

are two surface，one is，say sheet Ⅰwith ),[)(arg ππ−∈zf ; another is，say sheet Ⅱ with 

)3,[)(arg ππ∈zf . 

 

    By definition，the – edge of sheet Ⅰis joined to the + edge of sheet Ⅱ，and the + edge 

of sheet Ⅰ is joined to the – edge of sheet Ⅱ. Whenever crossing the cut，we pass from 

one sheet to the other sheet and the value is continuous which from our construction. 

 

Note that )(zf ∣ II  = )(zf− ∣ I  and for )(zf ，supra – half – ball represents sheet 

Ⅰ，and infra – half – ball represents sheet Ⅱ. 

 

We take 4=n  to discuss the geometric structure for Riemann surface of 

∏
=

−=
n

j

jzzzf
1

)()(  in horizontal cuts. Show as Figure 4-11. 
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Figure 4-11.  The geometric structure for Riemann surface with 4=n  in horizontal cut 

 

 

(iii) Algebraic structure sv.  Geometric structure 

 

    We also use 4=n  to discuss. Before talking about the relation between algebraic 

structure and geometric structure，we need to denote something as the following : 

- - 

Z4  +  Z3 Z2  +  Z1 

- - 

+ + 
Z4      Z3 Z2     Z1 

Z4   +    Z3 

Z4        Z3 

Z4   -    Z3 Z2   -    Z1 

Z2   +    Z1 

Z2        Z1 

Ⅱ 

Ⅰ 

Ⅰ 

Ⅱ 

+ + 

- - 

Z4 

Z3 Z2 
 Z1 

Ⅱ 

Ⅰ 

(Ⅰ,+)=(Ⅱ,-) 

(Ⅰ,-)=(Ⅱ,+) 
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(a) If the curve is drawn by solid line : 

     In algebraic structure，it means the curve is in sheet Ⅰ; 

     In geometric structure，it means the curve is in the overhead Riemann surface. 

(b) If the curve is drawn by dash line : 

In algebraic structure，it means the curve is in sheet Ⅱ; 

     In geometric structure，it means the curve is in the ventral Riemann surface. 

 

We give some example to show that the curve in algebraic structure and its 

corresponding in geometric structure in Figure 4-12 to Figure 4-13. 

 

 

 

 

 

 

 

Figure 4-12.  The rule in algebraic structure and geometric structure 

 

 

 

 

 

 

 

Figure 4-13.  The rule in algebraic structure and geometric structure 

 

ⅣⅣⅣⅣ-3 Riemann surface of the algebraic curve ∏
=

−=
n

j

jzzzf
1

)()( with Cz j ∈  

 

In this section，we discuss the vertical cut structure. We will present two styles of 

vertical cuts. 

In vertical cut structure，we define that ))(,( zfz  belong to sheet Ⅰ if and only if 

∏
=

−∈−
n

j

jzz
1

)
2

,
2

3
[)(arg

ππ
， ..ei )

2
,

2

3
[)arg(

ππ
−∈− jzz  for each j ; ))(,( zfz belong to 

sheet Ⅱ if and only if ∏
=

∈−
n

j

jzz
1

)
2

5
,

2
[)(arg

ππ
， ..ei )

2

5
,

2
[)arg(

ππ
∈− jzz  for each j. 

 

Z4 
Z3 Z2 

 Z1 

Ⅱ 

Ⅰ 

- 

 

+ 

Z1 Z2 Z3 Z4 

- 

 

+ 

Z4 
Z3 Z2 

 Z1 

Ⅱ 

Ⅰ 

- 

 

+ 

Z1 Z2 Z3 Z4 

- 
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ⅣⅣⅣⅣ-3.1 The vertical cut structure of )(zf  

 

    We consider ∏
=

−=
n

j

jzzzf
1

)()(   with Cz j ∈  for nj ,,3,2,1 ⋅⋅⋅⋅⋅=  and we 

by face the up direction to do cut explained. If n  is even and k
n

k
n zz +

+−
=

21
2

，

2
,,2,1
n

k ⋅⋅⋅⋅= ，
nzzz ,,, 21 ⋅⋅⋅⋅⋅  represent the n  branch points and nn zzzzzz 14321 ,,, −⋅⋅⋅⋅⋅  

represent the cuts showed in Figure 4-14. 

                                     

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14.  The vertical cut structure 

 

About vertical cut structure analysis methid is the same as horizontal cut structure. 

First，we check if there is any cut，for 2=n  and iz =1 、 iz 22 = ， as Figure 4-15 

shows. 

 

 

 

 

 

 

 

 

 

 

Figure 4-15.  The branch points are iz =1  and iz 22 =  
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Z 1−n  

Z
12 +k
 

Z
k2

 

Z 2  

Z 1  

O 

2i 

i 

Z 2  

Z
1
 

ReZ 

ImZ 

ReZ 

ImZ 



 

 52 

Put point i3  and )2,(3 ii ∞∈ ，then we have 


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



−

==−

2

2

3

)2arg()3arg(
π

π

iii   and  








−

==−

2

2

3

)arg()23arg(
π

π

iii  , 
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2

3π
−  : lengthielengthii

i

×=×=⋅
−

)(2
)

2

3
(

π

 ,                  (4-11) 

taking  
2

π
 : lengthielengthii

i

×=×=⋅ )(2
)

2
(
π

 .                     (4-12) 

Since  (4-11) = (4-12) . 

 

So，there is no cut in )2,( i∞  . 

 

Put point 
2

3i
 and )2,(

2

3
ii

i
∈ ，then we have 








−

==−

2

2

3

)
2

arg()
2

3
arg(

π

π
i

i
i
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2

)
2

arg()2
2

3
arg(

π
−=−=−

i
i

i
 , 

taking 
2

3π
−  : lengthelength

ii i −=×=−⋅ − )(

22

π
 ,                   (4-13) 

taking  
2

π
 : lengthelength

ii i =×=−⋅ )0(

22
 .                       (4-14) 

 

Since (4-13) ≠  (4-14) . 

 

So，there is a cut in )2,( ii  . 

 

Hence we have the branch cuts in ]2,[ ii  . As Figure 4-16 shows. 

 

 

 

 

 

 

 

 

Figure 4-16.  The cut structure for 2=n  branch points in vertical  
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But we can use easier way to get branch cut，in this we take 4=n  and iz =1 、

iz 22 = 、 iz 33 =  and iz 44 = ，that is 1z < 2z < 3z <…< nz ，as Figure 4-17 shows.  

 

 

 

 

 

 

 

  

 

 

Figure 4-17.  The cut appears at z ＜ jz  for each jz  

When crossing the cut even times in each line section，it will not change sign. When 

crossing the cut odd times in each line section will change sign，this implies the line 

section will form a branch cut. Hence we have the branch cuts in ],[ 34 zz  and ],[ 12 zz . 

The cut structure is showed in Figure 4-18. 

 

 

 

 

 

 

 

 

 

Figure 4-18.  The cut structure for four branch points in vertical 

 

ⅣⅣⅣⅣ-3.2 The algebraic and geometric structure for Riemann surface of )(zf  

  

    For simplicity，we use 4=n  to discuss the structure for Riemann surface of 

∏
=

−=
4

1

)()(
j

jzzzf  in vertical cut. In the cut structure ， we still depond on the 

countclockwise to take〝+〞、〝–〞 sign. That is the right hand side of each cut represents the  

+  edge and the left hand side represents the – edge. The definition of solid – line and 

dash – line are the same as horizontal cut case. 

 i Z 1  
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Z 3  

Z 4  4i 
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Z 3  

Z 4  4i 

3i 
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 ReZ 
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 (i) Algebraic structure 

 

    As Figure 4-19 shows， ],[ 34 zz  and ],[ 12 zz  represent the cuts in Riemann surface. 

 

 

 

 

 

 

 

 

 

 

(a)                                  (b) 

Figure 4-19.  The algebraic structure for four branch points in vertical 

 

Case one :  If +∈ Iz ( + edge of sheet Ⅰ)  

              As the Figure 4-19 (a) shows， ],[ 12 zzz ∈  

                 Since 
2

)arg( 1

π
−=− zz  and 

2

3
)arg( 2

π
−=− zz   , 

)
2

,()arg(
π

π−∈− jzz  for 4,3=j  . 

Then ∏
=

−=
4

1

)()(
j

jzzzf ∏
=

−=
4

1j

jzz  

                      2

)arg(
2

1

4,3,1

)
4

3
(

2

1

2

jzz
i

j

j

i

ezzezz

−

=

−

∏ −⋅−=
π

 

                      2

)arg(
2

1

4,3,1

2

1

2)
2

2
(

jzz
i

j

j ezzzzi

−

=

∏ −⋅−−=  . 

 

Case two :  If −∈ Iz ( – edge of sheet Ⅰ)  

              As the Figure 4-19 (a) shows， ],[ 12 zzz ∈  

                 Since 
2

)arg( 1

π
−=− zz  and 

2
)arg( 2

π
=− zz   , 

)
2

,()arg(
π

π−∈− jzz  for 4,3=j  . 

+    - 

+    - 

Z 2  

Z 1  

Z 3  

Z 4  

+    - +    - 

Z 1  Z
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Z 2  
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Then ∏
=

−=
4

1

)()(
j

jzzzf ∏
=

−=
4

1j

jzz  

                       2

)arg(
2

1

4,3,1

)
4

(
2

1

2

jzz
i

j

j

i

ezzezz

−

=

∏ −⋅−=
π

 

                       2

)arg(
2

1

4,3,1

2

1

2)
2

2
(

jzz
i

j

j ezzzzi

−

=

∏ −⋅−=  . 

Note that )(zf ∣ −I
 = )(zf− ∣ +I

 . 

 

 

 (ii) Geometric structure 

    The construct a geometric structure for Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()(  is 

the same as horizontal cuts.By above example and illustration，we discusses the geometric 

structure foe Riemann surface in vertical cuts. Show as Figure 4-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4ί       3ί 2 ί        ί  

- - 

+ + 
4 ί       3 ί 2 ί       ί 

4 ί    +    3 ί 

4 ί    -    3 ί 2 ί    -    ί 

2 ί    +    ί 

Ⅱ 

Ⅰ 

+ + 

- - 



 

 56 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20.  The geometric structure for Riemann surface with 4=n  in vertical cuts 

 

ⅣⅣⅣⅣ-4 The integrals over a ,b cycles for the horizontal cuts and vertical cuts 

        

                We want to evaluate ∫a dz
zf )(

1
 and ∫b dz

zf )(

1
 for n  branch points where a , b  

represent the a , b  cycles over the Riemann surface of ∏
=

−=
n

j

jzzzf
1

)()(     with    

Cz j ∈ ，and develop an algorithm such that the integrals can be easily computed. 

 

ⅣⅣⅣⅣ----4.14.14.14.1        The    a , , , , b cycles over the Riemann surface offff    ∏
=

−=
n

j

jzzzf
1

)()(     

 (i) In horizontal cut : 

Let nzzz ,,, 21 ⋅⋅⋅⋅⋅     are the n  branch points in axisx −  with    Cz j ∈ ，then  

∏
=

−=
n

j

jzzzf
1

)()(  forms a holesN −  Riemann surface where { }0∪∈ +
ZN  and 
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So there are N  a , b  cycles. The Figure 4-21 represents the a , b  cycles in the Riemann 

surface for n  is even and the Figure 4-22 is the case for n  is odd. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-21.  a , , , , b     cycles for horizontal cuts of even branch points 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-22.  a , , , , b     cycles for horizontal cuts of odd branch points 

 

 

 (ii) In vertical cut : 

 

    Let Czzz n ∈⋅⋅⋅⋅⋅ ,,, 21     are the n  branch points where n  is even and    122 −= kk zz ，

2
,,2,1
n

k ⋅⋅⋅⋅= . There are    
2

2−n
    a ,    b     cycles in the Riemann surface showed in Figure 4-23. 

For ka  cycle，it encloses the cut kk zz 212 − ， kb  cycle is passed through the cut kk zz 212 −  from 

one sheet to the other. 
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Figure 4-23.   a , , , , b     cycles for vertical cuts 

Let Czzz n ∈⋅⋅⋅⋅⋅ ,,, 21     are the n  branch points where n  is even and    122 −= kk zz ，

2
,,2,1
n

k ⋅⋅⋅⋅= . There are    
2

2−n
    a ,    b     cycles in the Riemann surface showed in Figure 4-24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24.  a , , , , b     cycles for vertical cuts 
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ⅣⅣⅣⅣ-4.2     About〝〝〝〝 Mathematica 〞〞〞〞and  How to modify 

    

    All programs in this paper are run by Mathematica . But we can not compute directly，

before computing we need to give some adjustments. Since Mathematica reads argument of any 

complex number in ],( ππ−  only，then it just gives right answer in sheet Ⅰ in horizontal cuts 

( expect at the argument π−  ). 

 

    If ],()arg( ππ−∉− jzz ， Mathematica will change the argument into ],( ππ−  

automatically，this will make some error in our calculation. In order to get the correct values for 

the argument not belong to ],( ππ− ，we should modify the function before computing. In 

horizontal cut structure，Mathematica gives correct values in sheet Ⅰ，we base on )(zf ∣ II  = 

)(zf− ∣ I  to the values in sheet Ⅱ. 

 

    In vertical cuts ， Mathematica does not give correct value in sheet Ⅰ. If 

]
2

,
2

3
[)arg(

ππ
−∈− jzz  for some j，then Mathematica will regards as ],

2
[)arg( π
π

∈− jzz . 

This implies we need to modify before computing，so we will have the correct results. The same 

as in horizontal cut，the values in sheet Ⅱ is from )(zf ∣ II  = )(zf− ∣ I  . 

 

    By above illustration，we get vertical cut structure . Now，we want to know how to 

compute the path integral in vertical cut ? Note that the vertical cut )
2

,
2

3
(

ππ
−∈angle  

and the angle in Mathematica is ],( ππ− . So，we know when the IIangle ∈−−∈ ),
2

3
( π

π
，

it need to modify by Mathematica.  Therefore，we can get the method to compute the path 

integral in vertical cut . First，we use circle 、 rectangle or closed path to cover the a , b  

cycles .Then taking every branch points are the coordinate plane zero point，drawing a 

coordinate plane，then may divide into the plane to four parts. Since we have several 

branch points，so we will to partition of several parts in the circle 、 rectangle or closed 

path. In below，by vector analysis ; if the IIangle ∈ ( Second quadrant )，that implies the 

path need to modify . 

     

 

    Note that，if the path is not to modify and in sheet Ⅰ，then by Mathematica to 

compute，we use M+  sign to express it . If the path is need to modify and in sheet Ⅰ，

then by Mathematica to compute，we use M−  sign to express it .  
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ⅣⅣⅣⅣ-4.3        An application for the integrals over    a , , , , b cycles    

    

                In this section，we give two examples is with horizontal cut and vertical cut.  

 

Example 4-1: 

 

    Let 6=n ，and 41 =z 、 32 =z 、 23 =z 、 14 =z 、 15 −=z  and 26 −=z  are six branch 

points form a horizontal cut as Figure 4-25 shows ; and form a 2- hole Riemann surface. 

 

    If ∏
=

−=
6

1

2

1

)()(
j

jzzzf ，then ∫r dz
zf )(

1
 where bar ,=  cycles ? 

 

    We use 〝Mathematica〞to compute the integral. 

 

 

 

 

 

 

 

 

 

Figure 4-25.  11 ,ba  cycles for six branch points in horizontal cut 

 

 

(i)  For the equivalent path *

1a  : since π−=− )arg( jzz  is not the valid range in 

Mathematica， )(zf  need to multiple a scalar 1−=− πi
e . As Figure 4-26 shows. 

 

 

 

 

 

 

 

Figure 4-26.  1a  cycle and equivalent path *
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∈∀z + edge of sheet Ⅰof *

1a  ∈∀z - edge of sheet Ⅰof *

1a  

Interval )2,1(  Interval )1,2(  

 

 

Branch points angle value angle value 

1zz −   ⇔   4−z  π−  M−  π  M+  

2zz −   ⇔   3−z  π−  M−  π  M+  

3zz −   ⇔   2−z  π−  M−  π  M+  

4zz −   ⇔   1−z  0 M+  0 M+  

5zz −   ⇔   1+z  0 M+  0 M+  

6zz −   ⇔   2+z  0 M+  0 M+  

Sheet Ⅰ or sheet Ⅱ Sheet Ⅰ M+  Sheet Ⅰ M+  
Total  M−   M+  

 

By 〝Mathematica〞， 

 

∫ ∫
−−−−++

+
−−−−++

−
2

1

1

2 432121

1

432121

1
dz

zzzzzz
dz

zzzzzz

∫ −×=
−−−−++

−= −
2

1

49 13022.1103819.3
432121

1
2 idz

zzzzzz
 . 

 

Therefore，the integral over 1a  cycle is 

∫ ∫ −×== −

1
*
1

13022.1103819.3
)(

1

)(

1 49

a a
idz

zf
dz

zf
 . 

 

 

(ii)  For the equivalent path *

1b  : since the interval )1,1(−  and )3,2(  are not have cut，

so solid line is in sheet Ⅰand implies + sign ; dash line is in sheet Ⅱ and implies – 

sign ; now，we illustration the interval )2,1(  and it is a cut. As Figure 4-27 shows. 

 

 

 

 

 

 

 

 

 

Figure 4-27.  1b  cycle and equivalent path *

1b  
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Interval )2,1(  Interval )1,2(   

Branch points angle value angle value 

1zz −   ⇔   4−z  π−  M−  π  M+  

2zz −   ⇔   3−z  π−  M−  π  M+  

3zz −   ⇔   2−z  π−  M−  π  M+  

4zz −   ⇔   1−z  0 M+  0 M+  

5zz −   ⇔   1+z  0 M+  0 M+  

6zz −   ⇔   2+z  0 M+  0 M+  

Sheet Ⅰ or sheet Ⅱ Sheet Ⅰ M+  Sheet Ⅱ M−  

Total  M−   M−  

 

By 〝Mathematica〞， 

∫ ∫− −−−−++
+

−−−−++

0

1

3

2 432121

1

432121

1
dz

zzzzzz
dz

zzzzzz

∫ ∫
−−−−++

−
−−−−++

−
2

3

0

1 432121

1

432121

1
dz

zzzzzz
dz

zzzzzz

∫ ∫
−

−−−−++
−

−−−−++
+

1

0

1

0 432121

1

432121

1
dz

zzzzzz
dz

zzzzzz

∫ ∫
−−−−++

−
−−−−++

−
2

1

1

2 432121

1

432121

1
dz

zzzzzz
dz

zzzzzz

 

i
491077621.30760776.0 −×+−=  . 

 

Therefore，the integral over 2b cycle is 

∫ ∫
−×+−==

1
*
1

491077621.30760776.0
)(

1

)(

1

b b
i

zf
dz

zf
 . 

 

Example 4-2 : 

 

    Let 6=n ，and iz 211 += 、 12 =z 、 iz 33 = 、 iz =4 、 iz 315 +−=  and iz +−= 16  

are six branch points form a vertical cut as Figure 4-28 shows ; and form a 2- hole 

Riemann surface. 

    If ∏
=

−=
6

1

2

1

)()(
j

jzzzf ，then ∫r dz
zf )(

1
 where bar ,=  cycles ? 

Note that，in vertical cut，we use 〝Mathematica〞to compute the integral，we must modify 

the equation first. That is the IIIangle ∈−−∈ ),
2

3
[ π

π
，the )(zf need to multiple a scalar 

1−=− πi
e . 
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Figure 4-28. 11 ,ba  cycles for six branch points in vertical cut 

 

 

(i) For the equivalent path *

1a  : as Figure 4-29 shows .  

 

 

 

    

    

    

    

    

    

    

 

Figure 4-29.  Equivalent path *

1a  

 

 

 

 

Since IIzz j ∈−−∈− ),
2

3
()arg( π

π
 for 6,5,4,3,2,1=j ， )(zf need to multiple a scalar 1−=− πie . 

∈∀z + edge of sheet Ⅰof 
*

1a  ∈∀z - edge of sheet Ⅰof 
*
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Interval )2,3( ii  Interval ),2( ii  Interval )3,2( ii  Interval )2,( ii  

 

 

Branch points angle value angle value angle value angle value 
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1zz −   ⇔   )21( iz +−  II M−  Ⅲ M+  II M−  III M+  

2zz −   ⇔   1−z  II M−  II M−  II M−  II M−  

3zz −   ⇔   iz 3−  
2

π
−  M+  

2

π
−  M+  

2

π
−  M+  

2

π
−  M+  

4zz −   ⇔   iz −  
2

3π
−  M−  

2

3π
−  M−  

2

π
 M+  

2

π
 M+  

5zz −   ⇔   )31( iz +−−  Ⅳ M+  Ⅳ M+  Ⅳ M+  Ⅳ M+  

6zz −   ⇔   )1( iz +−−  I M+  I M+  I M+  I M+  

Sheet Ⅰ or sheet Ⅱ sheetI M+  sheetI M+  sheetI M+  sheetI M+  

Total  M−   M+   M+   M−  

 

By 〝Mathematica〞， 

∫ ∫ ∫ ∫ ∫+−+−=
*
1

2

3 2

2 3

2 )(

1

)(

1

)(

1

)(

1

)(

1

a

i

i

i

i

i

i

i

i
dz

zf
dz

zf
dz

zf
dz

zf
dz

zf
 

∫ ∫+−=
i

i

i

i
dz

zf
dz

zf

2 3

2 )(

1
2

)(

1
2  i33762.238321.1 −=  . 

Therefore，the integral over 1a  cycle is 

∫ ∫ −==
1

*
1

33762.238321.1
)(

1

)(

1

a a
idz

zf
dz

zf
 . 

 

 

(ii) For the equivalent path *

1b  : as Figure 4-30 shows .  

 

 

    

    

    

    

    

    

 

 

Figure 4-30.  Equivalent path *

1b  

Since IIzz j ∈−−∈− ),
2

3
()arg( π

π
 for 6,5,4,3,2,1=j ， )(zf need to multiple a scalar 1−=− πie . 

∈∀z + edge of sheet Ⅰof 
*

2b  ∈∀z - edge of sheet Ⅰof 
*

2b  

Interval )1,1( i+−  Interval )1,1( i+−  

 

 

Branch points angle value angle value 

1zz −    III M+  III M+  

2zz −    II M−  II M−  
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+    - +    - 

1+2ί 

ί 
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3zz −    III M+  III M+  

4zz −    III M+  III M+  

5zz −    Ⅳ M+  Ⅳ M+  

6zz −    Ⅳ M+  Ⅳ M+  

Sheet Ⅰ or sheet Ⅱ Sheet Ⅰ M+  Sheet Ⅱ M−  

Total  M−   M+  

 

By 〝Mathematica〞， 

∫ ∫ ∫ ∫+−

+− +−

−==+−=
*
1

1

1

1

1

1

1
16143.1590344.0

)(

1
2

)(

1

)(

1

)(

1

b i

i i

idz
zf

dz
zf

dz
zf

dz
zf

 . 

 

Therefore，the integral over 1b  cycle is  

 ∫ ∫ −==
1

*
1

16143.1590344.0
)(

1

)(

1

b b
idz

zf
dz

zf
 . 

 

ⅣⅣⅣⅣ-5  An application for Riemann integrals 

     Consider   0=+ yyxx uu  in the half plane 0≥y  subject to the boundary condition 

1)0,( 2 += xxu ，with Rx ∈  and the condition 0),( →yxu  as ∞→+ 22
yx . 

           

First，we using Fourier transform with respect to x  

∫
∞

∞−
== dxeyxuywuyxuF

iwx),(),()],([
^

 , 

and          
^

2

2

][ yyu
y

u
F =

∂

∂
  ，  

^
2

^
2

2

2

)(][ uwuiw
x

u
F −=−=

∂

∂
 . 

Which implies 
^

u  satisfies the ODE   0
^

2
^

=− uwu yy  , 

with the solution of the ODE are   wywy
BeAeywu

−+=),(
^

  ， Rw ∈  and 0≥y  . 

The boundary conditions give 

^^

][)0,( ffFwu == = BA +  , 

and  0),(
^

→ywu    as  ∞→y  . 

If   






==⇒<

==⇒>
^

^

,00

,00

fABw

fBAw
 ,  which gives  

yw
efyxu

−
=

^^

),(  , Rw∈  and 0≥y  . 
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By the exponential form of Fourier transform，we have the formula is 

22

1 1
][

yx

y
eF

yw

+
⋅=

−−

π
 . 

So the convolution theorem yields 

∫
∞

∞− +
−= ds

ys

y
sxfyxu

22

1
)(),(
π

 

                     ∫
∞

∞− +

−
= ds

ys

sxfy
22

)(

π
 ∫

∞

∞− +−
= ds

yxs

sfy
22)(

)(

π
 . 

Given boundary conditions is    

1)()0,( 2 +== xxfxu   ⇒   1)()0,( 2 +== ssfsu  . 

So                    ∫
∞

∞− +−

+
= ds

yxs

sy
yxu

22

2

)(

1
),(

π
 . 

Since isiss −⋅+=+1
2

 have two branch points i± . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We choose close contone C such that 
2

2 2

1

( )

s

s x y

+

− +
 is analytic. 

That is 
2

2 2

1
0

( )C

s
ds

s x y

+
=

− +∫  ⇒  
25

2 2
0

1
0

( )k
k

s
ds

s x y=

+
=

− +
∑∫  

Since 
1

2

2 2

1

( )C

s
ds

s x y

+

− +∫  and 
5

2

2 2

1
0

( )C

s
ds

s x y

+
→

− +∫  as L → ∞  
 

  

 

L−

5C

4C

3C

2C

1C

0C L

i−

i-   +  

-   +  

ImS 

ReS 
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3

2

2 2

1
0

( )C

s
ds

s x y

+
→

− +∫  as 0ε → . 

And 
11 1[arg( )] [arg( )] [arg( ) arg( )]

2 22 2 222 21 1
i i i

s i s i s i s i

s s i s i s i e s i e s e
+ − + + −

+ = + − = + − = +  

 

For 2 :C  let 0s ia= − +  and a from –L to (1 )ε− +  

        then ds ida=  and  

          
3

0 0 ( 1) arg( 0 )
2

ia i i a ia i
π

− + + = − + + ⇒ − + + ∈  

          0 0 ( 1) arg( 0 )
2

ia i i a ia i
π−

− + − = − + − ⇒ − + − ∈  

        
2

2 2

2 2 2 2

1 1

( ) ( )

i

C

s y s
ds ds

s x y s x yπ

−

−∞

+ +
=

− + − +∫ ∫  

                       
1

1
2 2

2 2

1
( ) 1

( )

y
ia i ida

ia x yπ

−

−∞
= + ⋅

− +∫  

                       
1

1
2 2

2 2

1
( 1)

( )

y
a da

ia x yπ

−

−∞

−
= −

− +∫  

 

For 4 :C  let 0s ia= +  and a from (1 )ε− +  to -L 

        then ds ida=  and  

          0 0 ( 1) arg(0 )
2

ia i i a ia i
π−

+ + = + + ⇒ + + ∈  

          0 0 ( 1) arg(0 )
2

ia i i a ia i
π−

+ − = + − ⇒ + − ∈  

        
4

2 2

2 2 2 2

1 1

( ) ( )C i

s y s
ds ds

s x y s x yπ

−∞

−

+ +
=

− + − +∫ ∫  

                       
1

2 2
2 21

1
( ) 1 ( )

( )

y
ia i ida

ia x yπ

−∞

−
= + − ⋅

− +∫  

                       
1

1
2 2

2 2

1
( 1)

( )

y
a da

ia x yπ

−

−∞

−
= −

− +∫  

 

Therefore，   
1

1
2 2

2 2

2 1
( , ) ( 1)

( )

y
u x y a da

ia x yπ

−

−∞

−
= −

− +∫     (analytic solution) 
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2 2 2

2 2 2 2 2 2

1 1 1
( , ) [ ]

( ) ( ) ( )

i

i

y s y s s
u x y ds ds ds

s x y s x y s x yπ π

∞ − −∞

−∞ −∞ −

+ + +
= = − +

− + − + − +∫ ∫ ∫  

         
2

2 2

2 1

( )

iy s
ds

s x yπ

−

−∞

+
= −

− +∫     (Mathematica) 

 

Now，fixed y value−  and input x value−  into above ),( yxu equations, 

 

  

 analytic solution Mathematica 

(2,1) 13470.8+0.0898203i 13470.8+0.0898203i 
(3,1) 13471.1+0.0469379i 13471.1+0.0469379i 
(4,1) 13471.3+0.0282633i 13471.3+0.0282633i 
(10,1) 13471.9+0.00491445i 13471.9+0.00491445i 
(20,1) 13472.3+0.00124455i 13472.3+0.00124455i 
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