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Path and Cycle Embedding on Interconnection Networks

Student: Tzu-Liang Kung Advisor: Dr. Tyne Liang
Dr. Lih-Hsing Hsu

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

In many parallel computer systems, processors are connected on the basis of
interconnection networks, referred to as networks henceforth. Among various kinds of
networks, linear arrays and rings are widely applied in parallel and distributed
computation. In particular, paths and cycles are two topological structures commonly
used to model linear arrays and rings, respectively. Therefore we investigate how to
embed paths and cycles into some interconnection networks in this thesis. Because the
components of a network may fail not only accidentally but frequently, it is of great
importance for a network to be capable of tolerating as many faults as possible. In this
thesis the fault-tolerance related issues are also concerned. With the graph
representation of an interconnection network, we can discuss these issues in a formal
way.

Firstly, we study a family of super fault-tolerant hamiltonian networks, namely cycle
composition networks. A k-regular hamiltonian and hamiltonian connected network is
super fault-tolerant hamiltonian if it remains hamiltonian after removing up to k-2
vertices and/or edges and remains hamiltonian connected after removing up to k-3
vertices and/or edges. Super fault-tolerant hamiltonian networks have an optimal
flavor with regard to fault-tolerant hamiltonicity and fault-tolerant hamiltonian
connectivity. For this motivation, we observe that the cycle composition is an
effective framework to construct a (k+2)-regular super fault-tolerant hamiltonian
network on the basis of n k-regular super fault-tolerant hamiltonian networks,
containing the same number of vertices, provided that n=3 and k=4.



Secondly, we investigate a variant of hamiltonian cycles, namely mutually
independent hamiltonian cycles, on some interconnection networks. A set of
hamiltonian cycles, having the same start vertex, is said to be mutually independent if
any two of these hamiltonian cycles traverse different vertices at every time step
except the start-up and termination. In this thesis, we show that the maximum number
of mutually independent hamiltonian cycles can be embedded onto the binary
wrapped butterfly network. Moreover, embedding mutually independent hamiltonian
cycles onto faulty hypercubes and onto faulty star networks are also addressed.

Next, we investigate the conditional-fault tolerance of hypercubes. There is one thing
worth noting. That is, if components of a network fail independently, then it is
unlikely that all failures would be close to each other. When faulty vertices are
concerned, it is reasonable to require that every vertex should have at least g fault-free
neighbors. Analogously, when faulty edges are concerned, it can be assumed that
every vertex is still incident to at least g fault-free edges. In this thesis we first study
the fault diameter of the n-cube only for g=1, and then we explore the feasibility of
fault-tolerant path embedding on hypercubes when g=2.

Keywords: Interconnection network; Hypercube; Star graph; Butterfly graph;
Hamiltonian; Hamiltonian connected; Fault tolerance; Super fault-tolerant
hamiltonian; Conditional fault; Linear array; Ring; Cycle embedding; Path
embedding.
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Chapter 1

Introduction

Many areas of human activity require enormous computational power; computer vision,
robotics, air traffic control, weather prediction, stock market analysis, artificial intelligence,
and numerous military applications are just few examples. The need to interconnect hun-
dreds or more processing elements in computers solving such huge tasks in such a way
that will ensure optimal network performance is paramount. Hence the interconnection
network has been a critical factor affecting the system performance [24]. A multiproces-
sor /multicomputer /communication interconnection network is usually modeled as a graph,
in which the vertices correspond to processors/computers, and the edges correspond to con-
nections or communication links. Many issues, such as communication models, routing
strategies, fault tolerance, reliability, fault diagnosis, etc. are intriguing around the theme of
interconnection networks.

Network embedding is another interesting subject because the portability of the guest
network into the host network would permit executing the guest specified algorithms on the
host with as little modification as possible. By definition [43], embedding one guest network
G into another host network H is a form of injective mapping, n, from the vertex set of G to
the vertex set of H. An edge of GG corresponds to a path of H under 7. Often embedding takes
cycles, paths, trees, or meshes as guest networks because these architectures are extensively
applied in parallel systems. In this thesis, we mainly focus on path and cycle embedding.
Before we proceed to go through the details of our research issues, we briefly introduce some
graph-theoretic notions to be used later.

1.1 Graph-theoretic terminologies

Because the underlying topology of an interconnection network is modeled as a graph,
we use the terms, graph and network, vertex and node, edge and link, interchangeably.
Throughout this thesis, we concentrate on loopless undirected graphs. For the graph def-
initions and notations we follow the ones given by Hsu and Lin [30]. A graph G con-
sists of a nonempty wertex set V(G) and an edge set E(G), which is a subset of {(u,v) |
(u,v) is an unordered pair of V/(G)}. Two vertices, u and v, of G are adjacent if (u,v) €
E(G). A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). Let S be a



nonempty subset of V(G). The subgraph induced by S is the subgraph of G with its vertex
set S and with its edge set that consists of those edges joining any two vertices in S. We
use G — S to denote the subgraph of G induced by V(G) — S. Analogously, the subgraph
generated by a nonempty subset F' C F(G) is the subgraph of G with its edge set F' and
its vertex set consisting of those vertices of GG incident with at least one edge of F. We use
G — F to denote the subgraph of G with vertex set V(G) and edge set E(G) — F. The degree
of a vertex u in G, denoted by degg(u), is the number of edges incident to u. A graph G is
k-regular if all its vertices have the same degree k. For any node u of G, its neighborhood
Ng(u) is defined by Ng(u) = {v € V(G) | (u,v) € E(G)}. A graph G is bipartite if its vertex
set can be partitioned into two disjoint partite sets, Vo(G) and Vi (G), such that every edge
joins a vertex of V5(G) and a vertex of Vi(G).

A matching of size k in a graph G is a set of k£ edges with no shared endpoints. The
vertices incident with the edges of a matching are called saturated by the matching; the
others are unsaturated. A perfect matching is a matching that saturates every vertex of G.
A path P of length k from vertex x to vertex y in a graph G is a sequence of distinct vertices
(v1,v9, ..., Ugsr1) such that x = vy, y = vy, and (v, v;41) € E(G) for every 1 < i < k
if Kk > 1. More precisely, path P is represented as (v, €1, V9, €2,03, ... Uk, €k, Ukt1), Where
e; = (v, v;11) € E(G) for every 1 <i < k. A path of length 0, consisting of a single vertex

x, is denoted by (z). For convenience, we write P as (vi,...,v;,Q,vj,...,Uky1), Where
Q = (Ui, Vit1,...,vj). The i-th vertex of P is denoted by P(i); i.e., P(i) = v;. Moreover,
we use P! to denote the path (vgii,vk,...,v1). To emphasize the beginning and ending

vertices of P, we also write P as P[z,y|. We use ¢(P) to denote the length of P. For any
two distinct vertices u and v of G, the distance between u and v, denoted by dg(u,v), is the
length of the shortest path joining u and v in G. The diameter of G, denoted by D(G), is
defined to be max{dg(u,v) | u,v € V(G)}. A cycleis a path with at least three vertices such
that the last vertex is adjacent to the first one. For clarity, a cycle of length £ is represented

by <’U1a7~)2a s 7Uk7v1>‘

A path (or cycle) of a graph G is a hamiltonian path (or hamiltonian cycle) if it spans
G. A graph is hamiltonian if it has a hamiltonian cycle. A graph is hamiltonian connected
if there exists a hamiltonian path between every pair of distinct vertices. A bipartite graph
is hamiltonian laceable [58] if there exists a hamiltonian path between any two vertices that
are in different partite sets. Moreover, a hamiltonian laceable graph G is hyper-hamiltonian
laceable [45] if, for any vertex v € V;(G), there exists a hamiltonian path of G — {v} between
every pair of distinct vertices in V;_;(G). Later Hsieh et al. [27] introduced strongly hamil-
tonian laceability. A hamiltonian laceable graph G is strongly hamiltonian laceable if there
exists a path of length |V(G)| — 2 between every pair of distinct vertices in the same partite
set.

1.2 Some structured interconnection networks

Many interconnection networks have been proposed in research by [1,13,15,18,26,43,52,55].
In this section, we introduce several of the most popular interconnection networks.



1.2.1 Hypercubes

Hypercube [55] is one of the most attractive interconnection networks already discovered
for parallel computation. Not only is it ideally suited to both special-purpose and general-
purpose tasks, but it can efficiently simulate many other networks [43]. The formal definition
of hypercubes is given as follows.

For the sake of clarity, we use boldface letters to denote n-bit binary strings. Let u =
bu_1...b;...by be an n-bit binary string. For 0 <i < mn—1, we use (u)’ to denote the binary
string b,_1 .. .b;...by. Moreover, we use (u); to denote bit b; of u. The Hamming weight
of u, denoted by wy(u), is [{0 < j <n—1] (u); = 1}|. The n-dimensional hypercube (or
n-cube for short), @,, consists of 2" nodes and n2"! links. Each node corresponds to an
n-bit binary string. Two nodes, u and v, are adjacent if and only if v = (u)? for some i, and
we call the link (u, (u)?) i-dimensional. We define dim((u,v)) =i if v = (u)’. The Hamming
distance between two nodes u and v, denoted by h(u,v), is defined to be {0 < j<n—1|
(u); # (v);}|. Hence two nodes, u and v, are adjacent if and only if A(u,v) = 1. It is well
known that @, is a bipartite graph with partite sets V(@) = {u € V(Q,,) | wg(u) is even}
and V1(Q,) = {u € V(Q,) | wy(u)is odd}. Moreover, @, is both node-transitive and
link-transitive [55].

A variety of issues on hypercubes have been addressed by many researchers [8,23, 39,
46,64,66,67). For example, Latifi et al. [39] proved that an n-cube @, has a hamiltonian
cycle even if it has n — 2 faulty links. Moreover, Tseng [67] showed that a faulty n-cube,
containing f. < n — 4 faulty links and f, < n — 1 faulty nodes with f. + f, <n —1, has a
fault-free cycle of length at least 2™ — 2f,. On the other hand, Tsai et al. [64] showed that
Q. (n > 3) is both hamiltonian laceable and strongly hamiltonian laceable even if it has
n — 2 faulty links. In addition, Fu [23] investigated path embedding in an n-cube with up
to n — 2 faulty nodes.

1.2.2 Star networks

The star network was proposed by Akers and Krishnameurthy [1], as an attractive al-
ternative to the n-cube topology for interconnecting processors in parallel computers. It
can be defined as follows. Let n be a positive integer, and let (n) = {1,...,n}. The n-
dimensional star network, denoted by S,, is a graph with vertex set V(S,) = {uy...u, |
u; € (n) and u; # u; for i # j}. Its adjacency is described as follows: a vertex u = uy ...
u; ... Uy, is adjacent to another vertex v = v;...v;...v, through an edge of dimension i,
2 <i<niftu =, vy =, and u; = v; for j € (n) — {1,i}. By such definition,
Sy is an (n — 1)-regular graph with n! vertices. Moreover, it is both vertex-transitive and
edge-transitive [1]. Three star networks, Sy, S3, and Sy, are illustrated in Figure 1.1.

The star network has also received many researchers’ attention due to its nice topological
properties. For example, the diameter and fault diameters were computed in [1,40,54]. The
hamiltonian properties of star graphs were studied in [21,22,27,36,47,68]. In particular,
Fragopoulou and Akl [21,22] studied the problem of embedding n — 1 directed edge-disjoint
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Figure 1.1: Hlustrations for Sy, S3, and Sj.

spanning trees onto an n-dimensional star network. These spanning trees could be used to
design communication algorithms.

1.2.3 The binary wrapped butterfly networks

Among various kinds of popular network topologies, butterfly networks are very suitable for
VLSI implementation and parallel computing. In particular, the binary wrapped butterfly
graph has gained many researchers’ efforts for its nice topological properties. For example,
it belongs to the family of constant degree-four Cayley graphs [10,69]. Therefore, it is
vertex-transitive. In research by [25,34, 61,65, 70|, embedding various topologies, such as
rings, linear arrays, and binary trees, etc., into the butterfly networks were addressed. The
definition of the binary wrapped butterfly graph is given as follows.

Let Z, = {0,1,...,n — 1} denote the set of integers modulo n. The n-dimensional
binary wrapped butterfly graph (or butterfly graph for short) BF(n) is a graph with vertex set
Z, xZ%. Each vertex is labeled by a two-tuple (¢,aq...ay...a,_1) with alevel £ € Z,, and an
n-bit binary string ag...as...a,_1 € Z5. A level- vertex (¢,;ag...ap...a, 1) is adjacent to
two vertices, (£ 4+ 1)moan,ag...az...a,_1) and (({ — 1)mod n, Qg ...Gp_1 ...0n_1), by Straight
edges, and is adjacent to another two vertices, ((¢ + 1)modan,aq...ap_1GpQp11 .- .0p_1) and
(€ = Dmoan,aq...ap_2Gp_104...an_1), by cross edges. More formally, the edges of BF(n)
can be defined in terms of four generators g, g7, f, and f~! as follows [69]:

g({€; aqg. coilpo1)) = (04 Dwoan,ap...ap...0n-1),
f((l, aq. coilp_1)) = ((L+ Dmodn, g ... Qr_1GeQps1 - - - Qp_1),
g ({,aq. coilpo1)) = (0= Dmodny@g...Gp...Gp-1),

' {lag...ap1...an1)) (£ = D)moda n, agay . ..ag_oGp_1ag . ..an_1),
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Figure 1.2: (a) BF'(3); (b) BF(3) with level-0 vertices replicated to ease visualization.

where @y = ay+1 (mod 2). A level-£ edge of BF(n) is an edge that joins a level-¢ vertex and
a level-(£ + 1)moa » vertex. To avoid the degenerate case, we concern only the case that n > 3.
So, BF(n) is 4-regular. Figure 1.2(a) depicts the structure of BF(3), and Figure 1.2(b) is
another layout of BF(3) with the level-0 vertices replicated to ease visualization.

1.2.4 Cycle composition networks

The following framework, proposed by Chen et al. [12], recursively constructs a family of
interconnection networks. Let Gy, G1,...,G,,_1 be n k-regular graphs with the same number
of vertices. The cycle composition network H = G( Gy, G1, ..., Gp_1; Mo1, Mya, ...,
My —2n-1, Mp_10) is defined to be the graph with vertex set V(H) = U?:_Ol V(G;) and edge
set E(H) = U::J(E(Gi) UM, i11), where M, ; is an arbitrary perfect matching between the
vertex set of G; and the vertex set of G;. It is noticed that both addition and subtraction
will be taken modulo n. For convenience, we abbreviate G(Go, G1, ..., Gn_1; My1, Mio, ...,
My —on-1, Mn_10) as G, n—1,0)- See Figure 1.3 for illustration.

For instance, the k-ary n-cube, an extension of hypercubes, is constructed as a special
case in this way. Many attractive topological properties of k-ary n-cubes were addressed in
research [2,5,7,73]. Similarly, the recursive circulant [52] are also constructed in the same
fashion.



Figure 1.3: Hlustration for G 1,....n—1,0)-

1.3 Synopsis

Linear arrays and rings are two of the most fundamental networks for parallel and distributed
computation. There is a wide range of efficient algorithms developed on the basis of these
two topologies [43]. In particular, paths and cycles are two types of structures commonly
used to model linear array and rings. Because the components of a network may fail not
only accidentally but frequently, it is demanded to consider the fault-tolerance related issues
on interconnection networks. For these two reasons, embedding paths and cycles into a
faulty network is of crucial importance. Faults in a network may take various forms such
as hardware/software errors, vertex/edge faults, etc. Throughout this thesis, vertex-faults
and/or edge-faults are addressed.

First of all, we devote to fault-tolerant hamiltonian properties on cycle composition
networks. A graph G is called [-fault-tolerant hamiltonian (respectively, [-fault-tolerant
hamiltonian connected) if it remains hamiltonian (respectively, hamiltonian connected) after
removing at most [ vertices and/or edges. The fault-tolerant hamiltonicity of G, H(G),
is defined to be the maximum integer [ such that G — F' remains hamiltonian for every
F Cc V(G)U E(G) with |F| < [ if G is hamiltonian, and undefined otherwise. Obviously,
H;(G) < 0(G) — 2, where 6(G) = min{dege(v) | v € V(G)}. A regular graph G is optimal
fault-tolerant hamiltonian if H;(G) = 6(G) — 2. The fault-tolerant hamiltonian connectivity
of G, H}(G), is defined to be the maximum integer [ such that G — F' remains hamiltonian
connected for every F' C V(G) U E(G) with |F| < [ if G is hamiltonian connected, and
undefined otherwise. Obviously, H}(G) < 0(G) — 3. A regular graph G is optimal fault-
tolerant hamiltonian connected if H}(G) = §(G) — 3. We say a regular graph G is super



fault-tolerant hamiltonian if H;(G) = 6(G) — 2 and H}(G) = 0(G) — 3. For instance,
twisted-cubes, crossed-cubes, mobius cubes, and recursive circulant graphs are all super
fault-tolerant hamiltonian [11,31-33,63]. Let Gy, G1,...,G,_1 be n k-regular super fault-
tolerant hamiltonian graphs with the same number of vertices. Then Chen et al. [12] proved
that the cycle composition network G 1,... n—1,0) is super fault-tolerant hamiltonian, provided
that n > 3 and k£ > 5. In this thesis, we will improve the previous result by showing that
Go,1,..n—1,0) 1s still super fault-tolerant hamiltonian even when £ = 4.

Secondly, we investigate a variant of hamiltonian cycles, namely mutually independent
hamiltonian cycles, on some interconnection networks. The mutually independent hamilto-
nian cycles are defined as follows [49,59]. Let G be a graph with N vertices. A hamiltonian
cycle C of G is described by (uj,us,...,uy,u;) to emphasize the order of vertices on C.
Accordingly, wu; is referred to as the beginning vertex. Two hamiltonian cycles of G begin-
ning from a given vertex s, namely Cy = (uq, us, ..., un,u;) and Cy = (v1,va, ..., 0N, V1),
are independent if u; = vy = s and u; # v; for 2 <17 < N. We say a set of m hamiltonian
cycles {Cy,...,C,,} of G, beginning from the same vertex, is m-mutually independent if C;
and C; are independent whenever ¢ # j. In this thesis, we show that the maximum number
of mutually independent hamiltonian cycles can be embedded onto the binary wrapped but-
terfly network. In particular, fault-tolerant embedding of mutually independent hamiltonian
cycles onto faulty hypercubes and faulty star networks are also addressed.

Next, we turn our attention to fault distributions. It is worth noting that, if components
of a network fail independently, then the likelihood that all failures would be close to each
other becomes low. Motivated by this observation, Esfahanian [20] introduced the concept
of forbidden faulty sets. The components of any forbidden faulty set cannot be faulty at the
same time. In particular, for the n-cube, he has defined each forbidden faulty set to consist
of all n neighbors of one processor; thus, there are 2" forbidden faulty sets for an n-cube,
each containing n processors. Later Latifi et al. [42] extended such a concept by defining
the conditional node-faults which require every node to have at least g fault-free neighbors,
g > 1. In this thesis, we concentrate mainly on g = 2.

The condition of having at least two fault-free neighbors for every node is statistically
reasonable. We give the n-cube as an example under the consideration of at most 2n — 5
faults. Suppose, with a random fault model, the probability of node failure is identical, and
nodes fail independently. Let Py(n) denote the probability that every node of an n-cube,
containing 2n — 5 faulty nodes, is adjacent to at least two fault-free neighbors. Because @,
has 2™ nodes, there are (2315) ways to distribute 2n — 5 faulty nodes. In the random fault
model, all these fault distributions have equal probability of occurrence. Clearly, Py(3) =1

4 4
and Py(4) =1— 2 (24()3) = 31 where 2* x (§) is the number of faulty node distributions that

3
there exists some node having three faulty neighbors. When n > 5, the number of faulty node

distributions that there exists some node having n faulty neighbors is 2" x (2:__5") Moreover,

the number of faulty node distributions that there exists some node having exactly n — 1



faulty neighbors is 2" x (") (2:__1). Since (2:__1) > (2:__5”) for n > 5, we can derive that

Py(n) = 1— Pr(some node has at least n — 1 faulty neighbors)
2 x () + 2 () G
(20-s)
2" x (14n) x (379
(20-s)

1_2"><(1+n)><(2"—2n+5)><H2"_5_3k

=N

=1

v

7 I
k=2"—n+1
—3)(n—2 -1 2n —5 1 2n —2 )
= 1_(n in=2) n X.ox T2 nE nt £ L(n).
2n —n+1 2n —n 2n—3 2n—2 2n —1

It is not difficult to compute Py(n) numerically, such as Py(5) = S5 py(6) = 2330521
etc. Since lim,,_.., L(n) = 1, Py(n) approaches to 1 as n increases. Under the condition of
requiring every node to have at least two fault-free neighbors, we will explore the feasibility of
embedding paths, as long as possible, into hypercubes if there are utmost 2n — 5 conditional

node-faults.

On the other hand, conditional link-faults, which require that every node of a network
will be incident to at least two fault-free links, can be addressed as well. This condition is
also meaningful. Let Pp(n) denote the probability that every node of an n-cube containing
2n — 5 faulty links is incident to at least two fault-free links. Suppose the probability of link
failure is identical, and links fail independently. Then Pp(n) can be computed as follows:

1 if n=3,
2"x( ?,) i
] —p e T if n =4,
Pumy=14 " TR

n 2n7:;<527L71*71 n n n><2"71—n
2 )2 () )

n—>5 n—1 n—4

(n><2n*1)
2n—>5

Then Pp(n) approaches to 1 as n increases. Accordingly, it is also intriguing to consider
path embedding on hypercubes with conditional link-faults.

if n > 5.

The rest of this thesis is organized as follows. In Chapter 2, we improve the result
of Chen et al. [12] by showing that a cycle composition network is still super fault-tolerant
hamiltonian even if it is constructed from a collection of 4-regular super fault-tolerant hamil-
tonian graphs. In Chapter 3 and Chapter 4, we study the problem of embedding mutually
independent hamiltonian cycles onto butterfly graphs, faulty hypercubes, and faulty star
networks, respectively. The fault diameter of a conditionally faulty n-cube, with hybrid
node and link faults, is studied in Chapter 5. In Chapter 6 and Chapter 7, we investigate
fault-tolerant path embedding in hypercubes with conditional link-faults and conditional
node-faults, respectively. Finally, the concluding remarks are presented in Chapter 8.



Chapter 2

Fault-tolerant Hamiltonian
Connectedness of Cycle Composition
Networks

A suitable network is generally designed to satisfy some specified requirements. For example,
the hamiltonian property is one of the major concerns for designing the network topology,
and fault tolerance is desirable in massive parallel systems. So these two properties can
be concerned simultaneously. A graph G is called [-fault-tolerant hamiltonian (respectively,
[-fault-tolerant hamiltonian connected) if it remains hamiltonian (respectively, hamiltonian
connected) after removing at most [ vertices and/or edges. The fault-tolerant hamiltonicity
of G, Hs(G), is defined to be the maximum integer [ such that G — F' remains hamiltonian for
every ' C V(G)UE(G) with |F| < [if G is hamiltonian, and undefined otherwise. Obviously,
Hs(G) < 6(G) — 2, where 0(G) = min{dege(v) | v € V(G)}. A regular graph G is optimal
fault-tolerant hamiltonian if Hy(G) = 6(G) — 2. The fault-tolerant hamiltonian connectivity
of G, H}(G), is defined to be the maximum integer [ such that G — I’ remains hamiltonian
connected for every F' C V(G) U E(G) with |F| < [ if G is hamiltonian connected, and
undefined otherwise. Obviously, H}(G) < 0(G) — 3. A regular graph G is optimal fault-
tolerant hamiltonian connected if H(G) = §(G) — 3. We say a regular graph G is said
to be super fault-tolerant hamiltonian if Hy(G) = 0(G) — 2 and H}(G) = 6(G) — 3. For
instance, twisted-cubes, crossed-cubes, mobius cubes, and recursive circulant graphs are all
super fault-tolerant hamiltonian [11,31-33,63].

A network will have higher fault-tolerant capability if it is super fault-tolerant hamilto-
nian. With such motivation Chen et al. [12] proposed a systematic framework to recursively
construct super fault-tolerant hamiltonian graphs. Let Go, Gy, ..., G,_1 be n k-regular su-
per fault-tolerant hamiltonian graphs with the same number of vertices. The cycle compo-
sition network H = G(Go, Gy, ...,Gp_1; Moy, Mo, ..., My_9,-1,M,_10) is defined to be
the graph with vertex set V(H) = |J/—) V(G;) and edge set E(H) = J!—y (E(G;) U M;;11),
where M; ; denotes an arbitrary perfect matching between V(G,;) and V(G;). See Figure 1.3.
It is noted that both addition and subtraction will be considered modulo n. Then Chen et
al. [12] showed that G(GQ, Gl, ce ey Gn—l; M071, MLQ, ceey Mn—2,n—1> Mn—1,0)> abbreviated as



Go,1,...n—1,0) henceforth, is super fault-tolerant hamiltonian for n > 3 and k£ > 5.

Theorem 2.1. [12] Assume n > 3 and k > 5. Let Gy, G1,...,G,_1 be n k-reqular super
fault-tolerant hamiltonian graphs with the same number of vertices. For any 0 <1 <n—1, let
M; ;11 be a perfect matching between V(G;) and V (Giy1). Then G, n-1,0) i (k+2)-regular
super fault-tolerant hamiltonian.

For example, the recursive circulant graph, which was proposed by Park and Chwa [52], is
essentially constructed as a special case in this way, and it is shown to be super fault-tolerant
hamiltonian under a certain condition [63]. Similarly, k-ary n-cubes are also constructed
using this framework [73]. In this chapter, we will improve Theorem 2.1 by showing that
G(0,1,..n—1,0y 1s still super fault-tolerant hamiltonian even when & = 4. Such an extension is
significant because only the remaining case of & = 3 needs to be concerned carefully or to
be checked by computer, while the topological properties of cycle composition networks are
investigated.

2.1 Fault-tolerant hamiltonicity

For the ease of exposition, the notations we use in this chapter are described in advance.
We denote the graph G(G;, Giy1, ..., Gj; M; 41, M1 42, -, M;—1;) by Giiqa,.j). Let u
be a vertex of G;. We use (u)~ to denote the vertex of G;_; such that ((u)~,u) € M;_1,,
and use (u)* to denote the vertex of G;; such that (u,(u)™) € M;;11. Hence we have
u= ((u)7)" = ((u)")~. Moreover, all additions and subtractions are considered modulo n.
In order to prove the main results, we need the following lemmas.

Lemma 2.1. Assume that n > 1. Let Go,G1,...,G,_1 be n 4-reqular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 < i < n — 2, let M; ;1
be a perfect matching between V(G;) and V(Giy1). Moreover, let F; C V(G;) U E(G;) with
|5l < 1 for every 0 < i < n—1 and let X;;11 C M;;+q with | X;;11] < 1 such that
|Fi| + |Fig1] + | Xiia| < 2 is satisfied for all 0 < i < n —2. Let u and v be two vertices
of Go — Fy. Then there ewists a hamiltonian path of Gy, -1y — (Ul'—y Fi) U (Ur=Z Xiir1))
joining u to v.

Proof. For convenience, let F' = (!, Fi) U (U~ Xi.it1). We prove this lemma by induc-
tion on n. Obviously, the result is tr1v1al when n = 1. For any n > 2, suppose that the
result holds for n — 1. Depending on the value of |V (Gy)|, two cases are distinguished.

Case 1: Suppose that |V (Gg)| = 5. Thus Gy is isomorphic to the complete graph of five
vertices, K. Firstly, we assume |Fy| = 0. Since |Fo| + |Fi| + [ Xo1| < 2, we can choose two
vertices z,y of G such that |[{z,y} N{u,v}| < 1and |[FN{(x)*, (y)T, (=, (2)T), (y, (y)")} =
0. Accordingly, we can construct a hamiltonian path P = (u, Py, x,y, P»,v) of Gy, where
P, or P, may be a path of length 0. On the other hand, assume that |Fy| = 1. Since Gy
is 4-regular super fault-tolerant hamiltonian, there exists a hamiltonian path P of Gq — Fj
joining u to v. Since |Fo| + |Fi| + |Xo1] < 2 and |Fy| = 1, there exists an edge (z,y)
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Figure 2.1: Illustration for Lemma 2.1.

on P such that |F N {(x)*, (), (z,()*), (y,(y)")} = 0. Accordingly, we write P =
(u, P1,z,y, Py,v), where P; or P, may be a path of length 0. By induction hypothesis, there
exists a hamiltonian path 7 of G1__. 1y — (Ur! B) U (U2 X, l+1)) joining (x)* to (y)*.
Then (u, Py, z, ()", T, (y)*,y, P»,v) is a hamiltonian path of G, ,—1) — F joining u to v.
See Figure 2.1 for illustration.

Case 2: Suppose that |V (Gy)| > 6. Since G is super fault-tolerant hamiltonian, there
exists a hamiltonian path P of Go— Fp joining u to v. Since |Fy|+|Fi|+|Xo1| < 2, there exists
an edge (z,y) on P such that |[Fn{(x)*, (y)", (z, ()1), (v, (y)T)}| = 0. Accordingly, we write
P = {u, P\, z,y, P»,v), where P; or P, may be a path of length 0. By induction hypothesis,
there exists a hamiltonian path T of Gy 1y — (U F)) U (U= Xa z+1)) joining ()% to
(y)™. Then (u, Py, x, (x)", T, (y)",y, P,v) is a hamﬂtoman path of Gy 1,..n—1y — F' joining
u to v. 0

Lemma 2.2. Assume that n > 1. Let Go,G1,...,G,_1 be n 4-reqular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 < i <n —2, let M, ;11 be a
perfect matching between V(G;) and V(G;41). Moreover, let F; C V(G;)UE(G;) with |F;| <1
for every 0 < i <n—1 and let X; ;41 C M,; ;41 with | X; 41| < 1 for every 0 < i <mn —2
such that |F;| + |Fis1| + | Xiia| < 2 is satisfied for all 0 < i < n —2. Let u be a vertex of
Go — Fy, and let v be a vertexr of Gy — Fy with t > 0. Then there exists a hamiltonian path
of Gio...n1y — (U= Fi) U (UI=S Xiiga)) joining u to v.

Proof. For convenience, let F = (/) Fi) U (Ul—y Xiip1). When t = 0, the statement
follows from Lemma 2.1. Hence we suppose t > 0 in the following. Since G; is 4-regular, we
have |V(Gy)| > 5. Moreover, since |Fy;_1| + |Fi| + | X1 < 2, we can choose a vertex w of
G — (Fy U{v}) such that |F N {w, (w)~, (w,(w)")} =0 and (w)~ # u.

Let yo = w and x;—1; = (w)~. Since every G;, 0 < i < t — 1, is 4-regular and |F;| +
|Fiia] + | Xiie1] < 2, we sequentially choose a vertex x; of G; — F; and denote (x;)" by
Yi+1, such that z; # y; and |F N {x;, yiv1, (T, yir1)} =0 fromi =0toi =t —3if t > 3.
Next, we choose a vertex x;_5 of Gi_a — (Fi_2 U{y;—2}) and denote (x;_2)* by ;1 such that
|F N {zi—2,yi-1, (xr—2,y:-1)}| =0 and y;_1 # x,_1 if ¢ > 2. Since every G;, 0 <i <t —1,is
super fault-tolerant hamiltonian, there exists a hamiltonian path P; of G;— F; joining y; to x;.

11
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joining w to v. Then (u = yo, Po, 2o, (o)™ = Y1, Tioa, (T42)" = yeo1, Por, 11 =
(w)~,w,T,v) is a hamiltonian path of Gy, ,-1y — F joining u to v. See Figure 2.2 for
illustration. O

Using Lemma 2.2, we prove the following theorem.

Theorem 2.2. Assume that n > 3. Let Go, Gy, ...,G,_1 be n 4-reqular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 <1 <n —1, let M; 1 be
a perfect matching between V(G;) and V(Git1). Then Goa,..n-1,0) @5 optimal fault-tolerant
hamiltonian.

Proof. Obviously, G 1. n-1,0 is 6-regular. Thus we are going to show that it is 4-fault-
tolerant hamiltonian. Let F' be a faulty set of G 1, 1,0 with |F| < 4. For convenience,
let F; = FnN(V(G;) UE(G;)) for 0 <i <n— 1. Without loss of generality, we assume that
|Fo| > |F;| for all 1 <i < n—1. Depending on the value of | Fy|, five cases are distinguished.

Case 1: Suppose that |Fo| = 4. Let Fy = {f1, fo, f3, f1+}. Since Gy is 2-fault-tolerant
hamiltonian, there is a hamiltonian cycle C' in Gy — { fs, f1}-

Subcase 1.1: Suppose that both f; and f; are on C' but they are not adjacent. Thus,
we can write C' = (xy, f1,v1, Hi, T2, fa, Y2, Ha, x1), where Hy or Hs may be a path of length
0. By Lemma 2.2, there exists a hamiltonian path Si[(z1)~, (v1)”] in G,—1, and there
exists a hamiltonian path Sa[(22)", (y2)"] in G, n—2y. Then (1, (21)7, 51, (y1)~, y1, Hi, 22,
(z2)", S2, (y2)*, Y2, Hz, #1) is a hamiltonian cycle of Gyg 1, n—10) — F. See Figure 2.3(a) for
illustration.

Subcase 1.2: Suppose that both f; and f, are on (', and they are adjacent. Thus
we write C' = (z, R,y, f1, fo,x). By Lemma 2.2, there exists a hamiltonian path H of
G,..m—1y joining (y)* to (z)*. Then (z,R,y,(y)", H,(x)",x) is a hamiltonian cycle of

.....

Subcase 1.3: Suppose that either f; or fy is on C. Without loss of generality, we
assume that f; is on C. Thus we write C' as (z, R,y, fi1,z). Then a hamiltonian cycle of
Go,1,..n—1,00 — I can be formed in the same way as that used in Subcase 1.2.

12
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Figure 2.3: Hlustration for Case 1 of Theorem 2.2.

Subcase 1.4: Suppose that neither f; nor f; is on C. Therefore we write C as (z, R, y, x)
with any edge (x,y) € E(C). Then a hamiltonian cycle of Gy 1, . n-1,0 — F can be formed
in the same way as that used in Subcase 1.2.

Case 2: Suppose that |Fy| = 3. Let Fy = {fi, f2, f3}. Since Gy is 2-fault-tolerant
hamiltonian, there exists a hamiltonian cycle C' in Gy — {f2, f3}. Hence we have either
fi ¢ V(C)UE(QC) or fi € V(C)U E(C). Accordingly, we write C = (z, R,y,z) by
picking any edge (z,y) on C if f; ¢ V(C) U E(C); we write C = (z,R,y, f1,z) if fi
is on C. Let F/ = F — Fy. Since |F| < 4 and |Fy| = 3, |F'| < 1. Moreover, we

have either [{(z)", (y)", (z, (x)7), (y, () ")} N F| = 0 or {(2)7, (y)7, (z, ()7), (y, () 7)} N
F| = 0. With symmetry, we assume that |{(z)", (v)¥, (z,(2)"),(y,(y)")} N F| = 0. By

.....

(z,R,y, (y)*, H, (x)*, x) is a hamiltonian cycle of Gy 1, n-1,0 — F.

Case 3: Suppose that |Fy| = 2 and |F;| = 2 with any 1 <i <n — 1. Since both Gy and
G, are 2-fault-tolerant hamiltonian, there exists a hamiltonian cycle C'in Gy — Fj, and there
exists a hamiltonian cycle T"in G; — F;. Since every G;, 0 < j < n —1, is 4-regular, we have
IV(G;)| = 5.

Subcase 3.1: Suppose that i € {I,n — 1}. With symmetry, we assume that i = 1.
Apparently, there exists a vertex u in Gy — Fp such that (u)* is in G; — F;. Without loss
of generality, we write C' = (u, Ry, z,u) and T' = ((u)",y, Ra, (u)™) so that (y)T is different
(y)T. Then (u, Ry, x, (x)~, H, (y)*,y, Ra, (u)™, u) is a hamiltonian cyclo of G, . m-10 — F.
See Figure 2.4(a).

Subcase 3.2: Suppose that ¢ ¢ {1,n — 1}. Obviously, there exist a vertex u in Gy — I}
and a vertex v in G; — F; such that (u)™ # (v)~. Without loss of generality, we write C' =
(u,z, Ry,u) and T = (v, Ry, y,v) so that (y)* is different from (x)~. By Lemma 2.2, there ex-

.....

.....

x, Ry, u) is a hamiltonian cycle of Gg 1, n—1,0) — F'. See Figure 2.4(b) for illustration.

Case 4: Suppose that [Fy| = 2 and |F;| < 1 for every 1 < ¢ < n — 1. Since G is
2-fault-tolerant hamiltonian, there exists a hamiltonian cycle C' in Gy — Fy. Since Gy is
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Figure 2.5: Hlustration for Case 4 and Case 5 of Theorem 2.2.

4-regular, we have |V (Gy — [Fp)| > 3. For convenience, let m = |V (G — Fp)|. Accordingly,
we write C' = (ug, uq, U, ..., Upm_1,Ug). Without loss of generality, we assume that |F' N
{(uo)™, (u1)™, (uo, (up)™), (u1, (u1)")} = 0. Let F’ = F — Fy. By Lemma 2.2, there exists

.....

Up, ... Up—1, Up) is @ hamiltonian cycle of Gyg 1, n—1,0)—F. See Figure 2.5(a) for illustration.

Case 5: Suppose that |Fy| < 1. That is, |F;| < 1forall0 < i < n—1. For convenience, let
Xiit1 = FNM; ;1 for 0 <i <n—1. Suppose that there exists an integer ¢ of {0,1,...,n—1}
such that |Fy| + |Fir1| + | Xiee1] > 3. Without loss of generality, ¢ can be assumed to be
n — 1. Otherwise, ¢ is fixed to be n — 1. Accordingly, we have |F;| 4+ |Fi11] + | X;i41| < 2 for
0 <i<n-—2. Since |F,_1| + |Fo| + |Xn-10| < 4, we can choose a vertex = of G,,_1 — F,_1
such that [F'N{(x)", (z,(x)*)}| = 0. Let F' = F — X,,_19. By Lemma 2.2, there exists a
hamiltonian path 7" of Gg ... ,—1y—F" joining = to (z)*. Then (z, T, (z)*, z) is a hamiltonian
cycle of Go1,...n—1,00 — F. See Figure 2.5(b) for illustration. O
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Figure 2.6: Hlustration for Case 1 of Proposition 2.1.

2.2 Fault-tolerant hamiltonian connectedness

In this section, we are going to show that the cycle composition network is optimal fault-
tolerant hamiltonian connected. This result is divided into three propositions.

Proposition 2.1. Assume that n > 1. Let Gy, G1,...,G,_1 be n 4d-reqular super fault-
tolerant hamiltonian graphs with the same number of vertices. For any 0 < i <n —1, let
M, ;11 be a perfect matching between V(G;) and V(Gitq). Let F be a subset of V(Go)UE(G))
with |F| = 3. Then G, n-1,0 — F is hamiltonian connected.

Proof. Let F' = {f1, f2, f3}. Since Gy is 2-fault-tolerant hamiltonian, there exists a hamil-
tonian cycle C' in Gy — {fs, f3}. Since Gy is 4-regular, we have |V (C)| > 3. Let u and
v be two vertices of G 1,..n—1,0 — F. Then we need to construct a hamiltonian path of
Go,1,..n—1,00 — I joining u to v. The following cases are distinguished.

Case 1: Suppose that u and v are in Gg — F. Since Gy is 1-fault-tolerant hamiltonian
connected, there exists a hamiltonian path H of Gy—{ f3} joining u to v. Suppose that f; and
fo are exclusive from H. Thus we write H = (u, Py, x,y, P2, v) with any edge (z,y) € E(H).
Suppose that either f; or f5 is exclusive from H. Without loss of generality, we assume that
fo is exclusive from H. Hence we may write H = (u, Py, x, f1,y, Py, v). Suppose that both
fi1 and f, are on H, and they are adjacent. Thus we write H = (u, Py, z, f1, f2,y, Ps, v).
By Lemma 2.2, there exists a hamiltonian path 7" of Gy, ,—1 joining (z)* to (y)*. Then
(u, Pz, ()%, T, (y)*,y, P»,v) is a hamiltonian path of Gy, ,—1,0) — F joining u to v. See
Figure 2.6(a) for illustration.

Suppose that both f; and f; are on H, and they are not adjacent. Hence we may write
H = (u, Ay, x1, f1, y1, Ao, o, fo, Y, A3, v). Using Lemma 2.2, we can find a hamiltonian
path Dy of Gy, 9 joining (x1)* to (y1)*. Similarly, there exists a hamiltonian path D,
of Gy joining (x2)” to (y2)~. Therefore, (u, Ay, x1, (x1)%, D1, (y1)", y1, A2, 22, (22) 7, Dy,
(Y2)~, Y2, As,v) is a hamiltonian path of G1,. n-1,0 — F joining u to v. See Figure 2.6(b)
for illustration.

Case 2: Suppose that v and v are in G; for some 1 < ¢ < n — 1. With symmetry, we
assume that ¢ # n— 1. Suppose that f; is on the hamiltonian cycle C' of Gy — { f2, f3}. Since
[V (C)| > 3, we write C' = (x, P, y, f1,x). Otherwise, we write C' = (x, P, y, z) with any edge
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Figure 2.7: Hlustration for Case 2 of Proposition 2.1.
(z,y) € E(C).

Subcase 2.1: Suppose that ()" # w and (2)" # v. Thus either (y)~ # (u)* or
(y)~ # (v)T. Without loss of generality, we assume that (y)~ # (v)*. By Lemma 2.2, there

.....

.....

(v)*,v) is a hamiltonian path of G1, n—1,0 — F joining u to v. See Figure 2.7(a) for
illustration.

Subcase 2.2: Suppose that (z)" = w or ()T = v. Without loss of generality, we assume

.....

(y)” to v. Then (u = (x)",x, Py, (y)~,T,v) is a hamiltonian path of G1, . n-10 — F
joining u to v. See Figure 2.7(b) for illustration.

Case 3: Suppose that u is in Gy — F', and v is in G; with any ¢ > 0. Since ¢ # 1 or
i # n — 1, we may assume that ¢ # 1. Since |V(C)| > 3, we write C' = (u, T, z,u) with
z # u. Moreover, T' can be written as (u, P, x, f1,y, Ps, z) if f; is on T, and can be written
as (u, Py, x,y, P, z) otherwise.

Subcase 3.1: Suppose that (z)~ # v. Since (G is 1-fault-tolerant hamiltonian connected,
there exists a hamiltonian path H of G; joining (2)* to (y)*. By Lemma 2.2, there exists

.....

()7, R,v) is a hamiltonian path of Gy, . n-1,0 — F joining u to v. See Figure 2.8(a).

Subcase 3.2: Suppose that (z)~ = v. By Lemma 2.2, there exists a hamiltonian path

.....

a hamiltonian path of G 1, n—1,0) — F joining u to v. See Figure 2.8(b) for illustration.

Case 4: Suppose that u is in G; and v is in G for any 1 <7 < j < n — 1. Suppose that
fiis on C. Then we write C' = (z, P,y, f1,z). Otherwise, we write C' = (z, P, y, x) with any
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Figure 2.9: Illustration for Case 4 of Proposition 2.1.

(x,y) € E(C). Since (z)" # u or (y)* # u, we may assume that (z)" # u.

Subcase 4.1: Suppose that (y)~ # v. By Lemma 2.2, there exists a hamiltonian path
Ty of Gy, joining u to (x)". Similarly, there exists a hamiltonian path 75 of Gy, n-1)

joining (y)~ towv. Then (u, Ty, (x)", x, Py, (y)~, T5, v) is a hamiltonian path of Gip1,..n—1,0—
F joining u to v. See Figure 2.9(a) for illustration.

Subcase 4.2: Suppose that (y)~ = v. By Lemma 2.2, there exists a hamiltonian path
H of Gy, 1y — {v} joining u to (x)*. Then (u, H, (z)",x, P,y, (y)~ = v) is a hamiltonian
path of Gg1,...n—1,0) — F joining u to v. See Figure 2.9(b) for illustration. O

Proposition 2.2. Assume that n > 1. Let Gy, G1,...,G,_1 be n 4-reqular super fault-
tolerant hamiltonian graphs with the same number of vertices. For any 0 <1 < n — 1, let
M; ;11 be a perfect matching between V (G;) and V (Giy1). Let F be a faulty set of Gioa,...n—1,0)
such that |F| = 3 and |F N (V(Go) U E(Gy))| = 2. Then Ga,..n-1,0 — F is hamiltonian
connected.
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Figure 2.10: Hlustration for Case 1 of Proposition 2.2.

Proof. For convenience, let F; = F' N (V(G;) U E(G;)) and X, ;41 = F N M, ;1 for every
0 <i < n—1. Moreover, let F' = F'— F,. Obviously, we have |Fy| = 2, |F'| =1, and |F;| <1
for all 1 < i <n—1. Since Gy is 4-regular, we have |V(Gy)| > 5 and |V(Gy — Fp)| > 3.
Moreover, since G is 2-fault-tolerant hamiltonian, there exists a hamiltonian cycle C' in
Go — Fy. Let v and v be any two vertices of Gy 1,...n—1,0) — . Then we have to construct a
hamiltonian path of G 1, n—1,0) — F joining u to v.

Case 1: Suppose that v and v are in Gy — Fy. Since |V(Gog — Fy)| > 3, we may
write C' = (u, P,y,u), where y # u. Moreover, we may write P = (u, Hy,z,v, Hy,y).
Note that the length of H; becomes zero if v = x. Since |F'| = 1, we have |Xg;| +
|Fi| = 0 or | Xy—10] + [Fn-1| = 0. With symmetry, we assume that | X, ;| + |Fi| = 0. By
(u, Hy,z, ()%, T, (y) ", y, Hy ', v) is a hamiltonian path of Gy n-10 — F joining u to v.
See Figure 2.10 for illustration.

Case 2: Suppose that u and v are in either Gy — F; or G,,_; — F,,_1. With symmetry,
we assume that v and v are in Gy — F}.

Subcase 2.1: Suppose that | X, + [Fi] = 1. Since |V(Gy — Fy)| > 3, we choose a
vertex z of the hamiltonian cycle C' such that |F' N {(x)*, (x, (z)")}| = 0. Hence cycle C
can be written as (y,x, z, P,y). Since (x)" # u or (x)" # v, we assume that (z)* # v.
Since G is 1-fault-tolerant hamiltonian connected, there exists a hamiltonian path Qu, v]
of Gy — Fi. Since ()" # v, we write Q = (u, Ty, ()", w, Ty, v). Note that T3 or T, may be
a path of length 0. Moreover, we select a vertex from {y, z}, say v, such that (y)~ # (w)™.

(u, Ty, (), 2,2, Py, (y) ", H, (w)",w, Ty, v) is a hamiltonian path of G 1, n—1,0)—F joining
u to v. See Figure 2.11(a) for illustration.

Subcase 2.2: Suppose that | Xg ;| + |Fi| = 0. Thus we can choose a vertex = of C' such
that |F'N{(x)*, (x, (x)")}| = 0 and (2)" ¢ {u,v}. Hence the hamiltonian cycle C' of Gy — Fj
can be written as C' = (y, z, z, P, y).

Subcase 2.2.1: Suppose that [{(y)", ()7} N{u,v}| > 1. Without loss of generality, we

.....
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Figure 2.11: Hlustration for Case 2 of Proposition 2.2.

(F"U{u}) joining ()™ to v. Then (u = (2)", 2, P,y,z, (x)",T,v) is a hamiltonian path of
Go,,...n—1,0) — I joining u to v. See Figure 2.11(b) for illustration.

Subcase 2.2.2: Suppose that [{(y)", (2)" }n{u,v}| = 0. Since |[F'n{(y)~, (y,(y) ")} =0
or |[F'N{(2)7, (2, (2)7)}| = 0, we assume that |[F'N{(y)~, (y, (y)")} = 0. Since G, is 1-fault-
tolerant hamiltonian connected, there exists a hamiltonian path @ of G; —{(()*, ((y)~)7)}-
Since ()" ¢ {u,v}, @ can be represented by (u, Ty, wq, (z)T, wq, Ty, v). Note that T} or Ty
may be a path of length 0. Accordingly, we have that [F' N {(w)", (wy, (w1)T)} = 0
or |F" N {(wy)T, (wa, (we)T)} = 0. Without loss of generality, we assume that |F’ N
joining (y)~ to (ws2)*. Then (u, Ty, wq, (x)%, x, 2, Py, (y)~, H, (wy) ", wsy, Ty, v) is a hamilto-
nian path of Gy1,.. n—1,0 — F joining u to v. See Figure 2.11(c).

Case 3: Suppose that v and v are in G;— F; with 1 < @ < n—1. Without loss of generality,
we assume that Z;;ll |F;| + E;;B | X j41] = 0. Since |V(Gy — Fy)| > 3, we first choose a
vertex x of C' such that [F' N {(z)~, (2, (z)7)}| = 0. Thus, we can write C' = (z,z,y, P, 2).
Next, we choose a vertex t of G; — (F; U {u}) such that [F' N {(t)", (¢ (t)")}] = 0 and
()t # (x)~. Since G, is 1-fault-tolerant hamiltonian connected, there is a hamiltonian path
H in G;—F; joining u to t. Then H can be represented by (u, Ry, w, v, Ry, t), where Ry or Ry
may be a path of length 0. Since (y)* # (w)~ or (2)* # (w)~, we assume that (y)* # (w)~.

7777

a result, (u, Ry, w, (w)~, Ty, (y)",y, P,z,x, (x)", Tz, (t)l:t, R3',v) is a hamiltonian path of
G01,..n—1,0) — I joining u to v. See Figure 2.12(a) for illustration.

Case 4: Suppose that u is in Gy — Fy, and v is in G; — F; with any ¢ > 0. Since
|V (Go—Fp)| > 3, we can write C' = (z,u,y, P,x). Since |F'| = 1, we have | X 1|+ |Fi| = 0 or
| X—1.0|+|Fnz1| = 0. Without loss of generality, we assume | X 1|+ |Fi| = 0. Hence, we have
()t #wvor (y)t # v. Without loss of generality, we assume ()™ # v. By Lemma 2.2, there

.....

is a hamiltonian path of G, ,—1,0 — F joining u to v. See Figure 2.12(b) for illustration.
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Figure 2.12: Tllustration for Case 3, Case 4 and Case 5 of Proposition 2.2.

Case 5: Suppose that wisin G; — Fj, and v isin G; — F; forany 1 <i < j<n-—1
Since |F'| = 1, we have |Xo 1|+ |Fi| = 0 or | X,,—10| + |Fr—1| = 0. Without loss of generality,
we assume |X,_1o| + |F,—1] = 0. Since |V(Gy — Fy)| > 3, we can choose a vertex z of
C such that ()™ # w and |[F' N {(2)*, (z, (2)")}| = 0. Moreover, there exists at least
one neighbor of x on C, namely y, satisfying (y)~ # v. Accordingly, we can write C' =
(x, P,y,z). By Lemma 2.2, there exists a hamiltonian path 7} of G,y — F' joining u to

(x)*. Similarly, there exists a hamiltonian path 75 of G411, n—1) — F" joining (y)~ to v.
Then (u, Ty, (x)*,z, P,y, (y)~, T, v) is a hamiltonian path of G 0.1,..n—1,0) — F" joining u to
v. See Figure 2.12(C) for illustration. O

Lemma 2.3. Assume that n > 3. Let Go,G1,...,G,_1 be n 4-reqular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 < i <n —2, let M; ;11 be a
perfect matching between V(G;) and V(G;41). Moreover, let F; C V(G;)UE(G;) with |F;| <1
for every 0 < i <n—1 andlet X; ;11 C M; ;1 with | X; 41| < 1 for every 0 <i < n—2 such
that |F;| 4+ |Fig1| + |Fiaz| + | Xiig1| + [ Xivriv2| < 2 is satisfied for all 0 < i <n—3. Let u
and v be two vertices of Gy — F, with 0 <t <n—1. Then there exists a hamiltonian path of
Goo,.. — (U= B U(UE Xiisn)) goining u to v.

Proof. For convenience, let F = ((J/—) F;)U(U!" X;.+1). Since G} is 4-regular super fault-
tolerant hamiltonian, there exists a hamlltoman path P of Gy — F, joining u to v. Depending
on the value of |F;|, we distinguish the following two cases.

Case 1: Suppose that |F}| = 1. We have |V(G; — F,)| > 4. Let w; = u. Thus we
write P as (u = wy, wq, w3, wy, R,v). Since |Fy| = 1, we have |Fi_1| + |Fip1| + [ Xe—14] +
| Xie41] < 1. Hence, we select a vertex w; from {ws, w3} such that |[F N {(w;)”, (w;)™,
(wi, (w;)7), (wy, (w;)T)} = 0. Accordingly, we can see that either |[F' N { (w;—1)", (wit1)™,
(Wi, (wim1) "), (Wirr, (Wirr)™) H = 0or [F N {(wiz1)”, (wira)™, (wict, (wim1)7), (Wi,
(wix1)T) }| = 0. Without loss of generality, we assume |F N { (wZ U1 (wi) ™, (wi_q,
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(wi—1)T), (wiz1, (wit1)7)} = 0. Hence we can further write P as (u = wq, Pi, w;_1, w;,
Wit1, P, v). By Lemma 2.2, there exists a hamiltonian path 7" of Gy . 1) ((Ut ! o Fi)u
(UiZ 2X, i+1)) joining (w;)~ to (wj;41)”. Similarly, there exists a hamiltonian path Q of
G+, n—1) _((U:L:_Iil-l E)U(U;:til Xii41)) joining (w;—1)* to (w;)™. Then (u = wy, P, w;_1,
(wi—1)™, Q, (wi)™, wy, (w;)™, T, (Wis1)™, wis1, P, v) is a hamiltonian path of Gy, p—1y — F
joining u to v.

Case 2: Suppose that |F;| = 0. Firstly, assume that |V(G,;)| > 6. Hence we can
select two adjacent edges (z,y), (v, z) € E(P) such that |FO{(x)*, (y)", (y) 7, (2)7, (z, (x)T),
(9. (9)), (v () ), (= (=)} = O or [F A {(2)", (2, (2) ), () (0 () o () ), (2 (),
(y)*, ()T} = 0. Without loss of generality, we assume that |F NA{(z)" ,(y)*, (y)~, (=),
(z, (2)T), (y, W)), (y, (¥)7), (2, (2)7)} = 0. Accordingly, P can be written as (u, Py, x,v,
z, Py, v), where P or P, may be a path of length 0. By Lemma 2.2, there exists a hamiltonian
path T of Gy 1y — (Ui, P F) U (UZE Xii41)) joining (y)~ to (2)~. Similarly, there exists
a hamlltonlan path Q of Guy1,. n1) — ((UZ":_;Jrl F)u (U?:_ti-l Xii41)) joining (z)* to (y)*.
Then (u, Py, z, ()", Q, (y)", v, (y) T, (2)7, 2, P5,v) is a hamiltonian path of Gy . n—1y — F
joining u to v.

.....

Secondly, assume that |V (G;)| = 5. Thus G is isomorphic to the complete graph of five
vertices, Ks5. Let V(G;) = {u = wy, wq, w3, wy, ws = v}. First of all, we choose a vertex from
{waq, w3, w4}, say wsy, such that |F N {(wy)~, (ws)T, (we, (w3)7), (wa, (we)*)}| = 0. Then we
choose two vertices x, y from {ws, wy, ws} such that |FN{(z)", (z, (z)), (y)~, (v, (y)")}| = 0.
Accordingly, a hamiltonian path of G; can be written as (u = wy, Pi, z,ws,y, Py, ws = v).
Then a hamiltonian path of Gy, ,—1y — F' joining u to v can be formed in a way similar to
that mentioned above. O

Lemma 2.4. Assume that n > 3. Let Gy, G1,...,G,_1 be n 4-reqular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 < i <n —2, let M; ;11 be a
perfect matching between V(G;) and V(G;41). Moreover, let F; C V(G;)UE(G;) with |F;| <1
for every 0 < i <n—1, and let X; ;41 C M; ;41 with | X; 41| < 1 for every 0 <i < n —2
such that |Fj| 4+ |Fii1| + |Firal + [ Xiiwa| + [ Xis1.i02] < 2 is satisfied for all 0 < i < n — 3.
Let u be a vertex of Gy — Fy, and let v be a vertex of Gy — F, with 0 < s <t <mn—1. Then
there exists a hamiltonian path of Gy . - (U5, 'E)uU (U=, QXl i+1)) joining u to v.

Proof. For convenience, let F = (|J}_ 1F) U (U2 Xiir1). When s = 0, the statement
follows from Lemma 2.2. When 0 < s =t < n — 1, the statement follows from Lemma 2.3.
So, we consider the case when 0 < s < t in the following. Since G is 4-regular, we have
|\V(Gs)| > 5. Moreover, since |Fy| + |Fop1| + | X541 < 2, we can choose a vertex x of
Gs — (FsU{u}) such that |[FN{z, ()T, (z,(x)")}| =0 and ()" # v. By Lemma 2.2, there
exists a hamiltonian path P of G« — (Ui, F3) U (Us " X;.i1)) joining u to 2. Similarly,
there exists a hamiltonian path T of Gei,. n—1)— (Jet o1 Fi)U (U?:_52+1 Xi.it1)) joining (z)*
to v. Then (u, P,x, (x)*,T,v) is a hamlltoman path of G n—1) — F joining u to v. O
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Proposition 2.3. Assume that n > 1. Let Go,G1,...,G,_1 be n 4-reqular super fault-
tolerant hamiltonian graphs with the same number of vertices. For any 0 < i < n — 1, let
M; ;41 be a perfect matching between V (G;) and V (Giy1). Let F be a faulty set of Gio1,...n—1,0)
such that |F| =3 and |[F'N (V(G;) UE(G;))| <1 for0<i<n—1. Then G, n-10 — F
15 hamiltonian connected.

Proof. Let u be a vertex of G, — F,, and let v be a vertex of Gy — F}, for any 0 < a <
b < n — 1. For convenience, let F; = F'N (V(G;) U E(G;)) and X, ;11 = F N M, ;4 for
every 0 < i < n — 1. Obviously, we have |F;| < 1. Moreover, let ¢ be an integer such that
| X¢441] = max{|X; ;41| | 0 < i < n —1}. Depending on the value of | X; 11|, two cases are
distinguished.

Case 1: Suppose that | X; 11| > 1. Without loss of generality, ¢ can be assumed to be
n — 1. Accordingly, we have |X; ;41| < 1 for every 0 < i <n—2. Let I/ = F — X,_1.
Therefore we have |[F'| < 2 and |Fj| 4+ |Fisa| + [Fise| + | Xiia| + [ Xig142] < 2 for all
0<i<n-—3. By Lemma 2.4, G(1,.n1) — F' is hamiltonian connected.

Case 2: Suppose that |X;:11] = 0. Then we set ¢ to be a — 1. Obviously, we have
|Fil + | Figa| + [ Xiia| <2 forall 0 <7 <n—2. By Lemma 2.2, Gy a41,...0-10,...a-1) — I i8
hamiltonian connected.

As a result, we conclude that Gy, n—1,0 — F' is hamiltonian connected. O

Theorem 2.3. Suppose thatn > 3. Let Go, Gy, ...,G,_1 be n 4-reqular super fault-tolerant
hamiltonian graphs with the same number of vertices. For any 0 <i <n —1, let M; 11 be
a perfect matching between V(G;) and V(Git1). Then Goa,. n-1,0) s optimal fault-tolerant
hamiltonian connected.

Proof. Obviously, Go1,. n-1,0) is 6-regular. Thus, we need to show that G, n—1,0 is
3-fault-tolerant hamiltonian connected. Let F' be a faulty set of Gy, 1,0 With |F| < 3.
For convenience, let F; = FN(V(G;)UE(G;)) for 0 < i <n—1. Without loss of generality,
we assume that |Fy| > |F;| for all 1 <i < n —1. Depending on the value of |Fp|, three cases
are distinguished. The first case that |Fy| = 3 is proved by Proposition 2.1. The second
case when |Fy| = 2 is proved by Proposition 2.2. Finally, the case for |Fy| < 1 follows from
Proposition 2.3. O

According to Theorem 2.1, Theorem 2.2, and Theorem 2.3, we have the next corollary.

Corollary 2.1. Suppose that n > 3 and k > 4. Let Gy, G1,...,G,_1 be n k-reqular super
fault-tolerant hamiltonian graphs with the same number of vertices. For any 0 <1 < n—1, let
M; ;11 be a perfect matching between V(G;) and V(Gig1). Then Gioa,...n—1,0) 5 (k+2)-reqular
super fault-tolerant hamiltonian.
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Chapter 3

Mutually Independent Hamiltonian
Cycles in Butterfly Networks

It is well known that the problem of finding hamiltonian cycles in general graphs is NP-
complete. Thus the hamiltonicity has gained many researchers’ efforts, and has been dis-
cussed in many areas. For instance, hamiltonian cycles in Cayley graphs were widely ad-
dressed in computer science [38], in the study of word-hyperbolic groups and automatic
groups [19], in creating Escher-like repeating patterns in hyperbolic plane [17], and in com-
binatorial designs [16]. Unlike the previous results, we would like to concern a variant of
hamiltonian cycles, namely mutually independent hamiltonian cycles [59,60], with regard to
parallel and distributed computation.

The mutually independent hamiltonian cycles are defined as follows. Let G be a graph
with N vertices. A hamiltonian cycle C' of G is described by (uy,us, ..., uy,u;) to em-
phasize its order of vertices. Accordingly, u; is referred to as the beginning vertex. Two
hamiltonian cycles of G beginning from a given vertex s, namely Cy = (uq, ug, ..., uy, 1)
and Cy = (vy,ve, ..., vy, v1), are independent if u; = vy = s and w; # v; for 2 < i < N. Two
hamiltonian paths of G, P, = (uj,us,...,uy) and Py = (vy,09,...,vy), are independent if
up = vy, uy = vy, and u; # v; for every 1 < ¢ < N; P, and P, are fully independent if
u; # v; for every 1 < ¢ < N. We say a set of m hamiltonian cycles {C,...,C,} of G,
beginning from the same vertex, is m-mutually independent if C; and C; are independent
whenever ¢ # j. A set of m hamiltonian paths {P,..., P, } of G are m-mutually indepen-
dent (respectively, m-mutually fully independent) if any two different hamiltonian paths are
independent (respectively, fully independent). Moreover, the mutually independent hamil-
tonicity of G, denoted by ZHC(G), is defined as the maximum integer m such that, for
any vertex u, there exist m-mutually independent hamiltonian cycles of G beginning from
u. Many popular interconnection networks, such as hypercubes [59], star graphs [49], pan-
cake graphs [49], bubble-sort graphs [57], etc. have the maximum numbers of mutually
independent hamiltonian cycles.

The concept of mutually independent hamiltonian cycles can be applied in many differ-
ent areas. For example, communication applications on interconnection networks are often
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viewed as the interleaving of local computation stages and global communication stages.
Such applications can be performed via a message routing protocol, by which information is
transmitted along the communication links in packets of equal size. For the sake of simplifi-
cation, the store-and-forward all-port communication model [35] has been widely adopted as
one basic routing scheme, in which every processor is assumed to be capable of exchanging
messages of fixed length with all its neighbors at each time step. Although routing mes-
sages over a spanning tree on the given network is intuitively the best strategy for message
transmission, Baldi and Ofek [3] presented a systematic comparison between ring and tree
embedding for group (many-to-many) multicast, and concluded that ring embedding remains
a promising alternative. It is worth mentioning that there may be two potential shortcom-
ings incurred by routing messages in a ring structured network [43]. Firstly, at least two
message packets are likely to reside in the same processor, so as to provoke the contention for
the local computation resources. Secondly, two or more message packets will contend for the
use of some communication link (in the same direction). Clearly, the mutually independent
hamiltonian cycles can ease the effects of such shortcomings.

As another example, a Latin square of order n is an n X n array containing the integers
from 1 to n, arranged so that each integer appears exactly once in each row, and exactly once
in each column. If we delete some rows from a Latin square, we will get a Latin rectangle.
Obviously, a Latin square of order n can be thought of as the intermediate vertices of n
mutually independent hamiltonian cycles on the complete graph with n + 1 vertices. Thus
the concept behind mutually independent hamiltonian cycles can be interpreted as a Latin
square/rectangle for graphs. We can consider the following scenario. A tour agency will
organize a 10-day tour to Japan in the Christmas vacation. Suppose that there will be many
people joining this tour. However, the maximum number of people stay in each local area
is limited, say 100 people, for the sake of a hotel contract. One trivial solution is based
on the First-Come-First-Served intuition. So, only 100 people can join this tour. Note
that we cannot schedule the tour in a pipelined manner because the holiday period is fixed.
Fortunately, we observe that scheduling a tour is like a hamiltonian cycle of a graph, in
which a vertex denotes a hotel and an edge denotes the connection between two hotels if
they can be traveled in a reasonable time. Therefore, we can organize all the attendees into
a number of subgroups; each subgroup has its own tour in such a way that no two subgroups
will stay in the same area during the same time period. So any two different tours are indeed
independent hamiltonian cycles. If there exist five mutually independent hamiltonian cycles,
then we may allow up to 500 attendees to visit Japan on a Christmas vacation. Obviously, if
we can find the maximum number of mutually independent hamiltonian cycles, the number
of tour attendees would be maximized.

3.1 Topological structure of butterfly networks
For any ¢ € Z, and i € Zy, we use BF}(n) to denote the subgraph of BF(n) induced by
{(h,ao...a...an_1) € V(BF(n)) | a; = i}. Obviously, { BF)(n), BF/(n)} forms a partition

of BF(n). Moreover, BF} (n) is isomorphic to BF}, (n) for any i, j € Zy and any {1,y € Z,.
With this observation, Wong [70] proposed a stretching operation to obtain BF}(n) from
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BF(n —1). More precisely, the stretching operation can be described as follows.

Let ¢ € Zs and ¢ € Z,, for n > 3. Furthermore, let G, denote the set of all subgraphs
of BF(n). Suppose that G € G,. We define the following subsets of V(BF(n + 1)) and
E(BF(n+1)):

Vi = {{(hyao...ap_vias...an_1)|0<h<{ (hay...ar_1a7...a,-1) € V(G)},
Vo = {{(h+1,a0...arqiap...an,1) | <h<n-—1(h,ay...ap_q1a¢...a,_1) € V(G)},

Vs = {{l,ag...ar—1iap...an—1) | ({,a0...ai—1a;...a,_1) is incident to
a level-(£ — 1)moa » edge in G},
Vi = {{{+1,a0...ap_qia;...an_1) | ({,ao...ap_1ap...a,_1) is incident to

a level-¢ edge in G},
Ey = {({(hyag...ap_qiap...an_1),{(h+1,bg...bp_1iby...b,1)) |0 <h <,
((h,ag...ap_1a7...an_1),{h+1,bg...bp_1by...b,_1)) € E(G)},
Ey, = {((h+1,a0...ap—1iap...an—1), (R4 2)moa(n+1,bg...bp_1ibs...bp_1)) | €< h<n—1,
((hyag...ar_1ap...an 1), {(h+ Dmoan,bg...bp_1bg...b,_1)) € E(G)},
Es = {({({,a0...ap—qias...an—1),({+1,a9...ai—10ap...a,_1)) |
(a9 ...as_1ag...a, 1) is incident to at least one level-(¢ — 1)moa n edge

and at least one level-¢ edge in G}.

The stretching function v, : U,~3 Gn — U,,>4 Gn is defined by assigning ~;(G) as the graph
with the vertex set V; UV, U V3 UV, and the edge set By U E, U E3. Clearly v is well-defined
and one-to-one. We have 7/(G) € G,41 if G € G,,. In particular, v{(BF (n)) = BF}(n+ 1).
In Figure 3.1, we illustrate a subgraph G of BF(3), 7(G) in 70(BF(3)), and 7{(G) in
Y(BF(3)). Obviously, ~; (BF(n)) is isomorphic to vgz(BF(n)) for any 01,0, € Z, and
i,j € Zy. Moreover, v4(P) is a path in BF(n + 1) if P is a path in BF(n).

In fact, BF(n) can be further partitioned. Let m be an integer with 1 < m < n.
Assume that f,...,0, € Z, such that {; < ... < {,. For any iy,...,i, € Z, we use
BF,""(n) to denote the subgraph of BF(n) induced by {(h,ao...a,1) € V(BF(n)) |
ag, = 1; for 1 < j <mj}. In Figure 3.2, we illustrate BF&O(ZL), BF&’S(ZL), BF8§(4), BF&Q’??(ZL),
BF(S’R’??(ZL), and BF8’3’20(4). Clearly BF&’{](ZL) is isomorphic with BF(?”??(ZL); furthermore,
BF(?’ £§(4), BF(?’ ’R 3 (4), and BF(S ’ﬁ 1(4) are also isomorphic. However, BF(S (4) is not isomor-
phic to BF&’QO(ZL).

Lemma 3.1. Assume that n > 3 and i,j,k € Zy. Then BFé{(n) is isomorphic with

BFS,’%_I(n); BFg{';(n), BFS:{:ﬁ_l(n), and BFS:i’fz,n_l(n) are isomorphic.

Obviously, {BFZ;:(n) | G1yeeyim € Zoyly, .. by € Zp,ly < ... < L} forms a

.....

partition of BF(n) for any 1 < m < n. To avoid the complication caused from modular
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Figure 3.1: (a) A subgraph G of BF(3); (b) 7(G) in 10(BF(3)); (c) ¥2(G) in /9(BF(3)).
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Figure 3.2: (a) BFyy'(4); (b) BFy3(4); (¢) BEy3(4); (d) BEyy3(4); (e) BFy15(4); (f)
0,0,0
BEy15(4).
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arithmetic, we restrict our attention on the case that 1 <m <n—1,0</¢; < ... </, and
l; <n—m+j—1for each 1 <j < m. The following two lemmas can be easily verified.

Lemma 3.2. Let 1 < m < n — 1. Suppose that iy,...,i, € Zo and ly,..., L, are integers
such that 0 < 0, < ... </, and {; <n—m+j—1 for each 1 <j <m. Then

o Yoy o o (BELE(3)  ifm=n—1,
BE;m(n) = v oy ool (BE3))  ifm=n—2,

tm—1

iMoo oy (BF(n—m)) otherwise,

Lemma 3.3. Let G be a connected spanning subgraph of BFS:{ (n), with i,j € Zy andn > 3.
Assume that 2 <l <n-—1. Let

Fo = {{l,ag...an-1) € V(G) | ({,aq...a,-1) is not incident to any level-(¢ — 1) edge in G},
e V(G) |

Fr = {{l,ag...a, 1) (G) | (,aq...a,_1) is not incident to any level-¢ edge in G}.
For any p,q € Zs, let
Iy = {{lag...ae_1pqag...an1) | (byag...ap1aq...a,_1) € Fp}
U{{(l+1,ap...ap_1pqae...an—1) | ({;ag...a—1a¢...an_1) € Fp},
Fi = {{{+1,a0...a0-1pgag...an_1) | ({;a0...ap_104...0a,1) € F1}
U{{l+2,a0...ap_1pqag...an1) | ({;ag...ap_qa;...a,_1) € F1},
M, = U {({(lag .. .ap_1pgag...an_1),{(+1,a9...ap_1pqay...a,—1))}, and
#,a0...an—1)¢FoUF
M, = U {((0+1,a0. .. ae-1pqag. .. an-1), (L +2,a0...a-1pqag . ..an_1))}.

<Z,a0...a7,,1>¢F0UF1
Then b NFy =0, b NEF, =0, Fp U, = V(BF&{:’ZEIH(n +2)) = V(v o v(G)), and
Mo UM, € E(v7y, ©7(G))-
3.2 Hamiltonian cycles and paths in butterfly networks

Let G be a subgraph of BF(n). A cycle C in G is called an (-scheduled cycle of G if
every level-£ vertex of G is incident to a level-(¢ — 1)moa » edge and a level-¢ edge on C' [70].
Furthermore, a cycle C in G is a totally scheduled cycle of G if it is an f-scheduled cycle of
G for all £ € Z,, [70]. Obviously, vi(C) with i € {0,1} is a totally scheduled cycle of v{(G)
if C' is a totally scheduled cycle of G.

Lemma 3.4. [70] Let n > 3. Then BF(n) has a totally scheduled hamiltonian cycle.

By stretching operation, we have the following two corollaries.
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Corollary 3.1. Assume that n > 3 and i,j,k € Zy. Then there exists a totally scheduled
hamiltonian cycle of BFg{g(n) including all straight edges of level 0, level 1, and level 2.

Corollary 3.2. Assume thatn > 4 and i,j,p,q € Zy. Then there exists a totally scheduled
hamiltonian cycle of BFy75%(n) including all straight edges of level 0, level 1, level 2, and

level 3 in BFS:{Z@:%(n).

Suppose that e; = (u1,v;1) and ey = (ug, v2) are either any two cross edges of BF'(n) or any
two straight edges of BF(n). Since BF(n) is vertex-transitive, there exists an isomorphism
w over V(BF(n)) such that us = p(uq) and vy = p(vy). Clearly, every hamiltonian cycle of
BF(n) includes at least one cross edge and at least one straight edge.

Lemma 3.5. For any edge e of BF(n) with n > 3, there exists a totally scheduled hamilto-
nian cycle of BF(n) including e.

Lemma 3.6. Assume that i,j,k € Zs. Let e be any edge of BFé{g(ZL) such that e ¢ {
((3,15K0), (0,35k0)), ((3,ijk1), (0,ijk1))}. Then there exists a totally scheduled hamiltonian
cycle C' of BF&{S(ZL) such that e € E(C).

Proof. Obviously, { (0,ijk0), (1,ijk0), (2,ijk0), (3,ijk0), (0,ijkLl), (1,ijk1), (2,4jk1),

3,i5k1), (0,17k0 is the unique hamiltonian cycle of BF, Lk (4), Thus, this lemma is
0,1,2
proved. O

By stretching operation and Corollary 3.1, we have the following corollary.

Corollary 3.3. Suppose that n > 5. Let e be any edge of BFS{g(n) with i,j,k € Zo. Then
there exists a totally scheduled hamiltonian cycle of BF&{g(n) including e.

A path P of BF(n) is weakly (-scheduled if there is at least one non-terminal level-¢
vertex v of P such that v is incident to a level-(£ — 1)moan edge and a level-¢ edge on P.
Figure 3.3 illustrates two weakly 2-scheduled hamiltonian paths P, and P, of BFg{(4) and

their images 73 0 79(P;) and 73 0 49(P) on 7 0 19(BF1(4)) = BF;155(6), respectively.

Lemma 3.7. Letn > 4 and i,j € Zs. Suppose that s is any level-1 vertex of BFS{(n) and
d 1s any level-2 vertex of BFS:{ (n). Then there exists a weakly 2-scheduled hamiltonian path
of BFS:{(n), joining s to d.

Proof. Without loss of generality, we assume that s = (1,ij0"2) and d = (2,ijpqz) with
p,q € Zy and x € Z5~*. We prove this lemma by induction on n. The induction bases are
listed in Table 3.1 and Table 3.2.

As the inductive hypothesis, we assume that the statement holds for BFS:{(n—Q) with n >
6. Now we partition BFS{(n) into {BFé{gg(n) | h,k € Zs}. By the inductive hypothesis,

28



ij0000 ij0010 ij0001 ij0011 ij0000 ij0010 §jO001 ijO011

1 ® @ © 1*...

ijoo ij10 ijo1 ij11 ijoo ij10 ijo1 ij11
10 & ¢ & 20 © ¢ ¢ 10 ¢ ¢ o 20 ® @ ¢

4 4
3
5 5
0
0 0
1 1 1@ )
@ (b) © (d)

Figure 3.3: (a) A weakly 2-scheduled hamiltonian path P; of BFOZ{(4) joins (1,7500) to
(2,4510); (b) 79 0~3(P1) in BFg195(6) =3 0 49(BFy4(4)); (c) a weakly 2-scheduled hamil-
tonian path P» of BF,9(4) joins (1,7j00) to (2,i500); (d) 7§ o 19(P,) in BE15%5(6).

there exists a weakly 2-scheduled hamiltonian path P% of BFy?(n —2) joining (1,450"~%) to
(2,ijx). Hence, there is at least one non-terminal level-2 vertex of P%, say v = (2, ijy) with
y # x, such that v is incident to a level-1 edge and a level-2 edge on P, By Lemma 3.2,
we have BFy{53(n) =18 018 0 1 (BFj(n — 3)) = 78 0 98(BEy(n — 2)). Thus, 7§ 0 15(P™)
is a path on BFé{gg(n) joining s to (2,7j00x) or joining s to (4,:j00z). By Corollary 3.2,
there is a totally scheduled hamiltonian cycle C"* of B F§{§§ (n) including all straight edges
of level 2 and level 3 for any h, k € Zs. l

Let Fj, = {(2,ijw) € V(P™) | (2,ijw) is not incident to any level-(k + 1) edge on P}
with k£ € {0,1}. Obviously, P% is a connected spanning subgraph of BFg{(n —2). By
Lemma 3.3, we have V(7§ 049(P®)) = V(BEy155(n)) — (Fy UF), where Fy = {(2,4j00w) |
(2,ijw) € Fo} U{(3,ij00w) | (2,ijw) € Fy} and Fy = {(3,ij00w) | (2,ijw) € F} U
{{4,1500w) | (2,ijw) € F;}. In addition, we have Fy N F; = 0. If 49 o 49(P%) joins
s to (2,ij00z), let PO = ~9 0 A9(P%) and Fy = Fp. Otherwise, let PO = (5,49 o
~O(PY)Y, (4,500z), (3,i500z), (2,ij00z)) and Fy = Fyp — {(2,ij00x), (3,ij00z)}. For any
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hk € Zy, lot

XM = {((2,ijhkw), (3,ijhkw)) | (2,i700w) and (3,ij00w) are in Fy},
Y = {((2,ijhkw), (3,ijhkw)) | (2,ij00w) and (3,ij00w) are in Fy},
XM = L((3,ijhkw), (4,ijhkw)) | (3,ij00w) and (4,ij00w) are in F}}, and
Y™ = {((3,ijhkw), (4, ijhkw)) | (3,ij00w) and (4,ij00w) are in F}}.

Then we consider the following four cases.

Case 1: If pg = 00, then d = (2,ij00x). It is noticed that v ¢ Fy U Fy. Let

A = {({(2,ij10y), (3,ij00y)), ((2,ij00y), (3,4710y)), ((2,4j11y), (3,1501y)),
((2,4701y), (3,i711y)), ({3, ij11y), (4,1510y)), ((3,7510y), (4,4j11y))} and

B = {((2,1500y), (3,ij00y)), ((2,ij10y), (3,2510y)), ((2,7501y), (3,7501y)),
((2,ij11y), (3, ij11y)), ((3,i710y), (4,i510y)), ({3,4j11y), (4,4j11y))}.

It follows from Lemma 3.3 that ((2,4j00y), (3,ij00y)) € E(P%). By Corollary 3.2, we have
({2,4j10y), (3,i510y)) € E(C™), ({2,4j01y), (3,ij0ly)) € E(C™), ((2,ij11y), (3,ij1ly)) €
E(C1), ((3,i510y), (4,ij10y)) € E(C1), and ((3,ij11y), (4,ij11y)) € E(C'). Then the
subgraph P of BF(;{(n), generated by (E(P%) U E(C'°) U E(C*) U E(C™)U A) — B,
forms a weakly 2-scheduled path of BFS:{ (n) between s and d. Clearly, we have V(P) =
V(BFg{(n)) — (Fp U /Fvl) Since C"* includes all straight edges of level 2 and level 3 in
BF&{gg(n), we have X[ C E(C') and X' c E(C°). Moreover, we have (X;°UX!)NB =
(). Therefore, it follows that (X;° U X{') € E(P). Let P’ be the subgraph generated by
(E(P)U(XP UYL UY uXPuy®PuyM) — (XU XY, Then P is a weakly 2-
scheduled hamiltonian path of BFOi:{ (n) joining s to d. See Figure 3.4 for illustration, in
which 2 0 49(P%) is supposed to join s and (2,ij00x).

Case 2: If pg = 10, then d = (2,i510x). Let

A = {((2,4500z), (3,ij10x)), ((2,4j11y), (3,4501y)), ((2,i501y), (3,j11y)),
((3,ij11y), (4,1j10y)), ((3,i510y), (4,7j11y))} and

B = {((2,ij10z), (3,4j10x)), (2,1j01y), (3,ij01y)), ((2,1j11y), (3,4j11y)),
((3,2710y), (4,1710y)), ((3,i511y), (4,7j11y))}.

Obviously, the subgraph P, generated by (E(P%)U E(C') U E(C®) U E(C™) U A) — B,
forms a weakly 2-scheduled path of BF&{(n) between s and d. Moreover, the subgraph P,
generated by (E(P)U (XL UYPUY) U XPUuYyPuyd) — (X0u XD, is a weakly
2-scheduled hamiltonian path of BFS:{ (n) joining s to d.
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Case 3: If pg = 01, then d = (2,i501x). Let

A = {((2,1500z), (3,ij10z)), ((2,i711x), (3,i501x)), ((3,ij11x), (4,ij10z))} and
B = {({(2,ij01x), (3,ij01x)), ((2,ij11x), (3,ij11z)), ((3,i510z), (4,i710x))}.

Obviously, the subgraph P, generated by (E(P%) U E(C') U E(C*) U E(C*)uU A) — B,
forms a weakly 2-scheduled path of BFS:{(n), between s and d. Moreover, the subgraph P’,
generated by (E(P)U (X UYP UY)?) U (XPPUYP uYP)) — (XU X7, is a weakly
2-scheduled hamiltonian path of BFj7(n) joining s to d.

Case 4: If pg = 11, then d = (2,ij11x). Let

A = {((2,1500z), (3,ij10x)), ((3,i711x), (4,i510x)), ((3,ij01y), (4,i700y)),
((3,2700y), (4,75j01y))} and

B = {((3,ij10z), (4,4510z)), ((3,j00y), (4,400y)), ((3,501y), (4,4701y)),
((2,ig11x), (3,ij11x))}.

The subgraph P, generated by (E(P%)UE(C'°)UE(C)YUE(CM)UA)— B, forms a weakly
2-scheduled path of BFS:{ (n) between s and d. Moreover, the subgraph P’, generated by
(E(P)U (XP UYL UY) U (XPUuYyPuy)) — (X0 u XM, is a weakly 2-scheduled
hamiltonian path of BFS{(TL) joining s to d. O

Table 3.1: Hamiltonian paths of BFS{ (4) between (1,i500) and (2,ijpq) for any p,q € Zs.

(1,4500), (0, 100, (3, ij01), (2, 4511), (1,4511), (0, ij11), (3,511}, (2,4501), (1,4501), (0, 4j01), (3,5j00), (2, i5j10), (1,i510), (0, #10), (3, ij10), (2, 4500

(1,400, (0, i500), (3, 700), (2, ij00), (3, 1510 T,4501), (2, ij01), (3, ij11), (0, 4;10Y, (1, i510), (2, 1710

2,9410), (1, 4510y, (0, i510), (3, i511), (0, ij11

)
)
)
)

)

0,4j11), (1,4511), (2,i511), (3, 1501), (0, 4501
)
)

( (
( (

» (3,4j01), (0, #501), (1, i501), (2, 4501
( (

3 ¢ )s
- %,
(1, 4511), (2, ij11
¢ Y, (3, ij11), {0, 4511, (1, ij11), (2, 111

)s
)

(T, 1;00), (0, i500), (3, 1500), (2, 1500y, (3, 1510
Y, 1,i510), (0, i10

(1,7500), {0, 7500), (3, 4401), (2, 7501), (1, 401), (0, 7501), (3, 2500), (2, 1500}, (3, 4510), (2, 1710

By symmetry, the next corollary can be proved in the way similar to Lemma 3.7.

Corollary 3.4. Assume that n > 4 and 1,j € Zy. Let s be any level-1 vertex of BF(;{ (n)
and d be any level-0 vertex of BF&:{ (n). Then there exists a weakly 0-scheduled hamiltonian
path of BFS:{ (n) joining s to d.

Lemma 3.8. Assume thatn > 4. Let s = (1,0™), d; = (2,0%10"3), and dy = (0,0"). Then
there exist two hamiltonian paths Hy and Hy of BF(?,’P(n) such that the following conditions
are all satisfied: (i) Hy joins s to dy, (i) Ho joins s to dy, and (iii) H1(1) = He(1) = s and
Hy(t) # Ha(t) for each 2 <t < |V (BF&’lo(n))‘ = n2"2.

g(d (3,0210"7%), ug = g~ !(d1) =

Proof. Let v (s) = (2,0™), us = f(u 1) =
= (3,0™). Note that uy = (0,0011) if

—y ) =
(1,0%10"3), ug = f(ug), and us = g(uy) = f(dy)
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Table 3.2: Hamiltonian paths of BFS:{(E)) between (1,i7000) and (2,ijpgx) for any p,q,x €
ZLs.

({1, 15000),
1,1:5011),
1,45001),
1,45010),

({1, :7000),
1,1:5011),
1,145001),
1,1:5010),

({1, :7000),
1,145011),
1,145001),
3,145110),

({1, :7000),
1,145011),
1,145001),

(1, 0, 25000),
(1,
(
¢
(1,
(1,
(1,
(1,
(1,
(1,
(1,
¢
(1,
(1,
(1,
(3,15100),
(
(
(
¢
(
(
(
¢
(
(3,
(0,
¢
(
(
(0,
(

0, i5011),
0, i5001),
0, 1j010),
0, i5000),
0, i5011),
0,i5001),
0,15010),
0, 75000),
0, i5011),
0,i5001),
4,4j110),
0, 75000),
0, i5011),
0,i5001),
2,47100),
0,75000),
2,45010),
1,45111),
4,ij101),
0,77000),
2,47010),
1,45111),
1,45011),
0.7000),
. (2,45010),
1,45111),
2,001},
0
0
1
1

4,i5001), (3,45011), (2, 45111), (1, 45111}, (0, 45111), (4,45111), (3, 5111}, (2, 35011)
4,45011), (3,45001), (2, i5101), (1, 45101}, (0, i5101), (4, 35101}, (3,45101), (2, i5001)
4,i5000), (3,45010), (2,4j110), (1, i5110), (0, i5110), (4,ij110), (3, ij110), (2, i5010)
4,1ij010), (3,145000), (2,45100), (1, ij100), (0, i5100), (4,ij100), (3, 7100}, (2, 5000
1,i5001), (3,45011), (2, i5111), (1, ij111), (0, i5111), (4, i5111), (3, ij111), (2, i;011)
4,45011), (3,45001), (2, i5101), (1, 45101}, (0, i101), (4, i5101), (3,45101), (2, i5001)
4,45000), (3,15010), (2, i5110), (1, 4j110), (0, i7110), (4, ij110), (3,4j110), (2, i5010)
4,i7010), (3,45000), (2,45000), (3, i7100), (4,45100), (0,45100), (1, i7100), (2, 55100
1,5001), (3,45011), (2, i5111), (1, ij111), (0, i5111), (4, i5111), (3, ij111), (2, i;011)
4,45011), (3,45001), (2, i5101), (1, 45101}, (0, ij101), (4, i5101), (3,45101), (2, i5001)
4,5000), (3,45000), (2,45000), (3, i5100), (2,45100), (1,45100), (0, 5100}, (4, i5100)
0,45110), (1,45110), (2, ij110), (3, ij010), (4, ij010), (0, i5010), (1, 5010), (2, 5010
1,35001), (3,45011), (2, i5111), (1, ij111), (0, i5111), (4, i5111), (3, ij111), (2, i;011)
4,45011), (3,45001), (2, i5101), (1, 45101}, (0, i101), (4, i5101), (3,45101), (2, i5001)
4,5000), (3,45010), (2,45010), (1, i5010), (0, i5010), (4,45010), (3, i5000), (2, i5000)
1,5100), (0, i5100), (4, i5100), (3, ij110), (4, i5110), (0, i5110), (1, 45110), (2, 1110
4, 1;000), (3,;000), (2, 15000}, (3, 7100Y, (2, i5100), (1, i5100), (0, i;100y, (4, i;100)
1,5010), (0, 45010), (4, ij010), (3, i5010), (2, ij110), (1, i5110), (0, i5110), (4, i7110)
2,i5111), (3,45011), (4, 5011}, (0, ij011), (1,45011), (2,45011), (3, 5111}, (4, 4i5111)
0,145101), (1,45101), (2, i5101), (3, i5001), (4, ij001), (0, i5001), (1, 45001}, (2, i5001)
1,000y, (3,4;000), (2, 15000}, (3, 7100y, (2, i;100), (1, i5100), (0, 7100y, (4, i;100)
1,i5010), (0,45010), (4, 5010}, (3, 15010}, (2,45110), (1,45110), (0, ij110), (4, ij110)
2,ij111), (3,45011), (4, 45001}, (0, ij001), (1,45001), (2,45001), (3, ij001), (4, ij011)
2,i5011), (3,45111), (4,i5111), (3, 15101}, (4, 45101), (0,45101), (1, 35101}, (2, i5101)

)

)

)

)

N

=

=

=

((1,:3000),
3,15110),
0,15111),
3,101},
(T, 7000y,
3,15110),
0,ij111),
0,i5011),
{{1,72;000),

4, 15000), (3,145000), (2, 15000), (3, i5100Y, (2, i5100), (1, i5100), (0, ij100Y, (4, ;100
1,45010), (0,45010), (4, 5010}, (3, i010), (2,45110), (1,4j110), (0, ij110), (4,110
2,i4111), (3,45111), (4,45111), (3, i5101), (4,45101), (0,45101), (1, i101}, (2, 35101
1,45001), (0,45001), (4,001}, (3,4011), (4,j011), (0,011}, (1,45011), (2,011
4, 15000), (3,45010), (2, 5110), (1, i5110), (0, i5110), (4, i5110), (3, ij110Y, (2, i;010)
4,1i5010), (3,45000), (2,15000), (3, ij100), (2,45100), (1,45100), (0, 7100}, (4, ij100)
2,i5101), (3,45001), (4,45011), (0, ijO11), (1,45011), (2,4j011), (3, ijO11), (4, i;j001)
2,i5001), (3,45101), (4,45101), (3, ij111), (4, 45111), (0, 45111), (1,i5111), (2, 45111)

3, 1]001)
(T, 3000y,
1, Umo)

,45000),
,45010),
,4j101),

,17001),

0, 1]001)

n =4 and uy = (4,02120"™*) if n > 5. We partition BFyy (n) into {BEFy13 (n), BFy1s (n)}.

By Corollary 3.1, there is a hamiltonian cycle Cj of B é] 10 20 (n) including all straight edges

of level 2. Thus, we have (uy,us) € E(Cy). By Lemma 3.6 and Corollary 3.3, there is a

hamiltonian cycle C} of BF(? 10 »(n) such that (up,us) € E(Cy). It is noticed that s and

d; are vertices of degree two in BF(? 10 2 (n) and BF(S f 5 (n), respectively. Therefore, we can

write Cy = (s, uy, us, Py, ds, s) and Cy = (dy, ug, ug, Py, us,dy). As an illustrative example,
Figure 3.5(a) depicts Cy and C) on BF&’{)(4). Figure 3.5(b) illustrates the abstraction of Cj
and C for general n. Since {(uy,us), (di,us)} C E(BF&P(TL)), we set

Hl = <S d27P , Us, Up, U2, Uy, P17u37d1> and

H2 = <87u17u2au4aPlau37d1>u5>P07d2>-
Then it can be verified, as shown on Figure 3.5(c), that H; and H, satisfy the conditions. O

Lemma 3.9. Given any k € {0,1} and n > 4, let (by,wy) be a level-1 straight edge of
BFol’ll;IL€ 1(n) and (by, wsy) be a level-0 straight edge of BF01711’n 1(n) such that wy and wy are

two distinct level-1 vertices. Then there exist two hamiltonian paths Hy and Hy of BFoljl1 (n)
such that the following conditions are all satisfied:

(Z) Hl(l) =b; and H1(7’L2n_2) = wq,
(ii) Hy(1) = by and Hy(n2""2) = ws, and
(iii) Hi(t) # Ho(t) for each 1 <t < n2n=2.

33



BF.2A(n) BF3(n)

BFo12(4) BFo13(4) C, c|
00Q0 0001 0Q10 0011
1 %s * Qus °
! N
2
-1 C, (b)
—:C,
3 BESAN)  BES()
H,: -
’ sd, R Us U, ||u, u, P us d;
4
0 BFiz(n)  BFgiz(n)-{su}
(n P
1 s Ujlu,u, P Ug 0| ug P, d;

(©

Figure 3.5: Hlustration for Lemma 3.8.

Proof. Without loss of generality, we assume that & = 0. Let u; = ¢g"3(by), us = f(uy),
us = g(uz), us = g(uz), us = g" >*(wa) = g7 (ua), ug = flus) = g~H(w1), v = f7(ba),
v = g7 (v1), vy = g (1), v4 = g7 (v3) = g(v1), vs = [T (va) = g7 (b2), and ve =
g " 3(vs) = g(wy). By Corollary 3.1, BF&’ff(n) has a totally scheduled hamiltonian cycle.
By Lemma 3.1, B F017’117’r?_1(n) is isomorphic with B F017,117,20(n)‘ Hence, there also exists a totally
scheduled hamiltonian cycle C of BF017’117’T?_1(n). It is noticed that w; is adjacent to we.
Moreover, wy, ug, by, and ws are all vertices of degree two in BF&’ll,’,?fl(n). Accordingly, Cy
can be written as C() = <UJ1, bl, P(), Uy, Ug, w1>, where PO = <b1, Pol, Vs, bg, Wa, Vg, P02, u1>.

By Lemma 3.6, BF(}7’117’21(4) has a totally scheduled hamiltonian cycle C' such that e &
E(C) if e € E(BF,335(4)) — {((3,1110), (0,1110)), ((3,1111), (0,1111))}. By Lemma 3.1,
BF(}”117§1(4) is isomorphic with BFoljlly’z1 (4). Hence, BF(}”117§1(4) has a totally scheduled hamil-
tonian cycle C' such that e € E(C) if e € E(BFy13(4)) — {({2,1101), (3,1101)), ({2, 1111),
(3,1111))}. Obviously, (us,us) is a level-(n —3) for any n > 4. Therefore, we have (us, us) €
E(BFyy5(4)) — { ((2,1101), (3,1101)), ((2,1111), (3,1111))}. It follows that BFyy (4)
has a totally scheduled hamiltonian cycle C such that (us,u2) € E(C}). By Corollary 3.3,
BF017’117’21(n), n > 5, has a totally scheduled hamiltonian cycle including any required edge.
Since BFO{’llﬁ_l(n) is isomorphic with BF017’117’21 (n), it has a totally scheduled hamiltonian cycle
(' such that (us,us) € E(Cy) if n > 5. In short, by Lemma 3.6 and Corollary 3.3, there is a
totally scheduled hamiltonian cycle C of BFol,’llﬁ_l(n) such that (us,us) € E(Ch). Since us,

. . 111 .
us, v3, and vy are vertices of degree two in BFy ), ;(n), we write Cy = (us, uy, P1, us, s, us),
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Figure 3.6: Ilustration for Lemma 3.9. In (a), (by,w;) = ((2,1100), (1,1100)) and (b, wy) =
((0,1110), (1,1110)) are assumed. In (c), we let Ry = (vy, P, w4, us, us, us, P, va) and
Ry = (vs, Pyy', by, w1, ug, ur, Poy', vg).

where P = (uy, Pi1,v1, 04, 03, V9, P1a, us). Figure 3.6(a) depicts Cp and C; on BFoly’ll(Zl).
Figure 3.6(b) illustrates the abstraction of Cy and C for general n. Then we set

H, = <b1, Po1,v5, b2, wa, v, Poa, U1, Uz, ug, ta, Pr1,v1, Vs, U3, V2, P127U5,U67w1> and

_ -1 -1 -1 -1
H2 - <b27U17P11 7u47u37u27u57P12 7U27U37U47U57P01 7bluw17u67u17P02 7U67w2>-

Since wy # wsy, Uy F Vg, Uz F U3, Ug F Uy, and ug # vg, it can be checked that H; and H,
satisfy the conditions. See Figure 3.6(c) for illustration. O

3.3 Cycle embedding

Theorem 3.1. For alln >3, THC(BF(n)) = 4.

Proof. It is trivial that ZHC(BF(n)) < 6(BF(n)) = 4. Suppose that n = 3. Since BF(3)
is vertex-transitive, we only find 4-mutually independent hamiltonian cycles starting from
vertex (0,000). A set {Cy,Cy, Cs,Cy} of four hamiltonian cycles is listed in Table 3.3. It is
easy to check that they are mutually independent.
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For n > 4, we partition BF(n) into {BFé{(n) | i,j € Zy}. Since BF(n) is vertex-
transitive, we assume that the beginning vertex is s = (1,0"). Let u; = (2,0%10"73),
upy = f~Huy) = (1,0120"7?), uz = g~ H(ua) = (0,01%20"73), uy = f(uz) = (1,130"73), us =
g(ug) = (2,130"73), ug = f~H(us) = (1,1010"73), uy = f~(s) = (0,10""), v; = g7 !(s) =
(0,0M), v = f(v) = (1,10"Y), v3 = g(ve) = (2,10"1), vy = f~H(v3) = (1,120"7?),
vy = g Hvy) = (0,120"2), vg = f(vs) = (1,010"72), and vy = g(vg) = f(s) = (2,010"72).
Obviously, {u1, ug, us, ug, us, ug, w7, v1, Vo, V3, Vg, Vs, Vg, U7} consists of 14 different vertices of
BF(n) such that all (uy,us), (us, us), (us, ug), (ur,s), (v1,v2), (v3,v4), (vs,v6), and (v7, s) are
in E(BF(n)). By Lemma 3.8, there exist two hamiltonian paths P, and P, of BF& (n) such
that (1) Py joins s to uq, (2) P joins s to vy, and (3) Pi(1) = Pa(1) = s and Py (t) # Py(t) for
each 2 < t < n2" 2. By Corollary 3.4, there is a hamiltonian path Q; of BFg’ll(n) joining us
to ug. Similarly, there is a hamiltonian path Ry of BF(},’IO (n) joining ug to uz;. By Lemma 3.7,
there is a hamiltonian path @)y of BFO{’l0 (n) joining vy to vs. Again, there is a hamiltonian
path Ry of BF& ' (n) joining vg to v7. Applying Lemma 3.9, we can find two hamiltonian paths
Sy and Sy of BF017’11(n) such that (1) Sy joins uy to us, (2) Sy joins vy to vz, and (3) S1(t) #
So(t) for each 1 < ¢t < n2"2. We set C) = (s, Py, u1, uz, Q1,us3, Uy, S, us, ug, Ry, u7, s) and
Cy = (s, Py, v1, 09, Q2, V3, V4, S, s, Vg, Ra, v7, ). Figure 3.7(a) and Figure 3.7(b) illustrate
Cy and Cy, respectively. Obviously, C; and Cy are both hamiltonian cycles of BF(n).

In what follows, we claim that C; and C5 are independent: firstly, Lemma 3.8 guarantees
that C1(t) # Cy(t) for all 2 <t < n2"2. Next, we have C,(t) # Cy(t) for n2"24+1 <t <
n2"~! because C) and Cy pass through the vertices of BF(?, '(n) and BFO{’lO (n), respectively.
Moreover, Lemma 3.9 guarantees that C,(t) # Cy(t) for all n2"~'+1 < t < 3xn2"2. Finally,
we have C(t) # Cy(t) for 3 xn2" 2 +1 < t < n2" since C; and C, pass through the vertices
of BF017710 (n) and BF& '(n), respectively. As a consequence, C; and Cy are independent.

Let uy = (0,0120" 1), u) = f(uy) = (1,130"71), ul = g(u)) = (2,130"41), uf =
FHu) = (L1010 4, o) = (210721), of = FN(eh) = (1,120751), o) = g (v]) =
(0,120"731), and v = f(v) = (1,010"31). Obviously, v} # u; and v} # v; for 3 < i < 6. By
Corollary 3.4, there is a hamiltonian path ()3 of BF&’ll(n) joining wus to w4, Similarly, there is
a hamiltonian path Rj3 of BF& (n) joining ug to uz. By Lemma 3.7, there is a hamiltonian
path Q4 of BF,7(n) joining v, to v4. Similarly, there is a hamiltonian path Ry of BF(?”ll (n)
joining vg to v7. We apply Lemma 3.9 to construct two hamiltonian paths S5 and Sy of
BF&’ll(n) such that (1) S5 joins ujy to ug, (2) Sy joins vy to vi, and (3) S3(t) # S4(t) for
all 1 <t < n2"2. Then we set Oy = (s, Py, uy, us, Qs3, ujs, u}, S, uk, uf, B3, uz, s) and Oy =
(s, Py, v1, 2, Qq, V5, VY, Sy, v, v, Ry, v7, s). Similar to C} and Cy, O and O, are independent.

Let C5 = Oy Vand €y = O3 L. For clarity, we list Cy, Cy, Cs, and C, as follows.

Ch (8, Pryuy, ug, Q1, us, ug, St, us, ug, Ri, uz, s),

Cy = <5,P2,U1,U2,Q2,U3,U4752,U5,U6,R2,U77 S>7

Cs = (s,ur, Ry" up, uk, Sqt,ul, uy, Q3 ', ug, ur, Pt s), and
Cy = (s,v7, Ry vk, vk, Syt v, v, Qrt v, v, Pyt s).
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Figure 3.7: Hlustration for Theorem 3.1. (a) Cy; (b) Cy; (¢) Cs; (d) Cy.

Then it is easy to check that C, (5, C3, and C4 are 4-mutually independent hamiltonian
cycles of BF(n) starting from vertex s. See Figures 3.7 for illustration. O

Table 3.3: 4-mutually independent hamiltonian cycles C, Cy, C5, Cy of BF'(3) starting from
vertex (0, 000).

C1  ((0,000), (2,001}, (0,001), (1,001), (2,011), (0,011}, (1,011), (0, 111), (2, 111), (1, 111}, (2, 101), (1, 101),

(0,101), (2,100), (0, 100), (1, 100), (2, 110), (0, 110), (1, 110), (0, 010), (2, 010), (1,010), (2, 000), (1, 000), (0, 000))
Cz ({0, 000), (1, 000), (2,000), (0,001), (1, 001), (2,011), (0, 011), (1, 111), (2, 101), (0, 101y, (1, 101), (2, 111),

(0, 110), (1, 010), (2,010), (0, 010, (1, 110), (2, 100), (0, 100}, (1, 100), (2, 110), (0, 111), (1,011), (2,001}, (0, 000))
Cs ({0, 000Y, (1, 100), (2, 100y, (0, 100), (I, 000), (2, 010), (0, 010Y, (1, 110), (2, 110y, (0, 111), (1, 111), (0, O11),

(2,011), (1,011), (2,001), (0, 001), (1,001), (0, 101), (2, 101), (1, 101), (2, 111), (0, 110), (1, 010), (2, 000}, (0, 000))
Ci _ ((0,000), (2,000), (1,000}, (2,010), (0, 010, (1, 010}, (0, 110), (2, 110), (1, 110), (2, 100y, (0, 101), (1, 001),

(2,001), (0,001, (1,101}, (2, 111), (0, 111), (1,011}, (2,011}, (0, 011), (1,111}, (2,101}, (0, 100}, (1, 100), (0, 000))
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Chapter 4

Mutually Independent Hamiltonian
Cycles in Faulty Networks

As we have introduced in the preceding chapter, many popular interconnection networks
have the maximum numbers of mutually independent hamiltonian cycles. In this chapter,
we will show that such a promising property can be preserved even if there are some faulty
edges in networks. In particular, we concern both faulty hypercubes and faulty star networks.
To simplify our discussion, we permit faulty edges to take place everywhere.

4.1 Faulty hypercubes

As Latifi et al. [39] showed, an n-cube has a hamiltonian cycle even if it has n — 2 faulty
edges. As usual let @), denote an n-cube. By definition, we know that @,, is n-regular. It
is also known that (),, has a recursive construction; that is, it can be decomposed into two
(n — 1)-dimensional subcubes [55]. Let @7 be the subgraph of @,, induced by {u € V(Q,,) |
(u),—1 = j} for j € {0,1}. Obviously, @’ is isomorphic to @Q,,_;. Then an (n — 1)-partition
of Q,, divides the @Q,, along dimension n into Q° and Q!. The set of crossing edges between
Q% and Q!, denoted by E. = {(u,v) € E(Q,) | u € V(Q°%),v € V(Q!)}, consists of all
(n—1)-dimensional edges of @,,. Besides the recursive structure, @), is both vertex-transitive
and edge-transitive [55]. For convenience, we use e to denote the identity vertex 0" of Q.

Sun et al. [59] proved that ZHC(Q,) =n—1ifn € {1,2,3}, and ZHC(Q,) = n if n > 4.
In this section, we would like to show that @, contains (n — 1 — f)-mutually independent
hamiltonian cycles even if f < n — 2 faulty edges occur accidentally.

Theorem 4.1. [59] THC(Q,) =n—1 ifn € {1,2,3} and THC(Q,) =n if n > 4.

The following results are fault-tolerant properties of hypercubes.

Theorem 4.2. [6/] Let n > 3. Suppose that F C E(Q,,) is a set of at most n — 2 faulty
links. Then Q,, — F is both hamiltonian laceable and strongly hamiltonian laceable.
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Theorem 4.3. [64] Let n > 3. Suppose that F C E(Q,,) is a set of at most n — 3 faulty
edges. Then Q,, — F' is hyper-hamiltonian laceable.

Lemma 4.1. [59] Let n > 4. Suppose that x and 'y are any two vertices from different
partite sets of Q. Then Q, — {x,v} is hamiltonian laceable.

4.1.1 Mutually fully-independent hamiltonian paths in faulty hy-
percubes

To embed mutually independent hamiltonian cycles into faulty hypercubes, we need the
following lemmas.

Lemma 4.2. [59] Let Q,, be an n-cube for n > 2. Suppose that {(w;,b;) € E(Q,) |
w; € Vo(Qn),b; € Vi(Q,),1 < i < n — 1} consists of n — 1 distinct edges with no
shared endpoints. Then @, contains (n — 1)-mutually fully independent hamiltonian paths
Pl[Wl, bl], ey Pn—l[wn—h bn—l]-

Let F' be a set of faulty edges of (),,. Suppose that @), is partitioned along dimension n
into Q° and @}, and E. is the set of crossing edges between Q° and @Q!. Then we define
Fo=FNEQ°), F, = FNE(Q)), and F, = FN E,.. Moreover, we set § =n—1—|F| in the
remainder of this chapter. To tolerate faulty edges in hypercubes, we have the next lemma.

Lemma 4.3. Let F C E(Q,) be a set of at most n — 2 faulty edges for n > 3. Suppose that
A= {(w;,b;) € E(Qn) | Wi € Vo(Qn),b; € Vi(Qr),1 < i <6} consists of & distinct edges
with no shared endpoints. Then @, — F contains d-mutually fully independent hamiltonian
paths Py[wy,bq], ..., Ps[ws, bs].

Proof. This proof proceeds by induction on n. First suppose |F| = 0. Then this case
follows from Lemma 4.2. Suppose |F| =n — 2. Then we have d =n—1—(n—2) = 1. By
Theorem 4.2, (),, — F' has a hamiltonian path between any two vertices from different partite
sets. Obviously, the statement holds for ()3, as the induction basis. In what follows we only
consider 1 < |F| <n — 3 and n > 4. As the inductive hypothesis, suppose that the result is
true for @Q,,_1.

Since § + |F| = n — 1 < n, there must exist a dimension d of {0,1,...,n — 1} such
that A U F' contains no d-dimensional edges. Since (), is edge-transitive, we can assume
d = n — 1. Then we partition @, into Q° and Q! along dimension n — 1. Thus each
edge of AU F is in either Q% or QL. Let ro = [{(w;,b;) € E(QY) | 1 < i < 4}| and
ri = [{(wi,b;) € BE(QL) | 1 < i < §}. Clearly, ry +r; = 6. Without loss of generality,
we assume {(wy,b1),..., (W, b))} C E(Q%) and {(W,y11,bro41),-- -, (Ws,bs)} C E(QL).
Since n — 1 =9+ |F| =ro+r1 + |Fo| + | Fi|, we have r; + |Fj| < n — 1 for any 7,5 € {0,1}.
Then we have to take the following cases into account.

Case 1: Suppose r; + |Fj| < n — 2 for any 4,5 € {0,1}. Since ro + |Fo| < n — 2,
ro <n—2—|Fy| = (n—1)—1-]|F)|. By the inductive hypothesis, Q° — Fj has ro-mutually
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fully independent hamiltonian paths H;[w;, b;], 1 < ¢ < ro. Obviously, H;[w;, b;] can be
represented as (w;, H!, u;, b;), where u; is some vertex adjacent to b;. Similarly, Q. — F} has
ri-mutually fully independent hamiltonian paths H;[w;, b;| = (w;, H! u;,b;), ro+1 < i < 4.

Next, we construct ry paths in Q! — F} to incorporate the previously established r
paths of Q% — Fy. Since ry + |Fi| < n — 2, we have rp < n — 2 — |Fy|. By the induc-
tive hypothesis, Q! — F} also contains rg-mutually fully independent hamiltonian paths
Ri[(u)™ Y (b)Y, ..., R [(uy)" 1, (b )™ Y] Similarly, QY — Fy also contains r1-mutually
fully independent hamiltonian paths R,y 1[(Wer1)""t (bros1)™ Y, -+ Rsl(us)™ 1, (bs)™ 1.
Accordingly, we set P;[w;, b;] = (w;, H,u;, (w;)"™", R;, (b;)" !, b;) for every 1 < i < 4.
Thus, {P, ..., Ps} forms a set of §-mutually fully independent hamiltonian paths in @,, —
See Figure 4.1(a) for illustration.

Case 2: Suppose r; + |F;| = n — 1 for some i € {0,1}. Without loss of generality, we
assume 1o + |Fo| =n—1. Since ro =n —1— |Fo| > n—1—|F| =6, we have ry = § and
|Fol = |F| <n—3. Notethat ro—1=0—-1=n—-2—|F|=(n—1)—1—|Fy|. By the
inductive hypothesis, Q% — Fy has (rp — 1)-mutually fully independent hamiltonian paths
H;[w;,by], 2 < i < rg. Again, H;[w;, b;] can be represented as (w;, H!, u;,b;), where u; is
some vertex adjacent to b;.

Subcase 2.1: Suppose n = 4. Thus we have 79 = 2. By Theorem 4.3, QY — F}, has a
hamiltonian path H;[wy,b;] = (wy,uy, Hy, (by)’, b;), where u; is a vertex adjacent to wy,
and j is some integer of {0, 1,2,3}. Let X = {((u;)?, (uz)?)}. Similarly, there are two hamil-
tonian paths Ri[(w1)?, (u;)?] and Ry[(uz)?, (b2)?] in Q) — X. Obviously, we see that R (7) #
Ry(1) and Ry(8) # Ry(2). Then we set Pi[wy,by| = (wy, (w1)3, Ry, (w1)3, uy, H, (b1)?, by)
and Pa[wa, bo] = (wy, Hj, 1y, ()3, Ry, (b2)?, by). Consequently, {P;, P} forms a set of 2-
mutually fully independent hamiltonian paths in Q)4 — F. See Figure 4.1(b) for illustration.

Subcase 2.2: Suppose n > 5. We first consider |Fy| < n — 4. By the inductive hy-
pothesis, Q! has (ry — 1)-mutually fully independent hamiltonian paths R;[(u;)"" %, (b;)"™1],
2 < i < rp. Then we can choose an integer j of {0,1,...,n — 2} such that both (by)? # wy
and ((by)?)" ' ¢ {R;(2"'—1) | 2 <1 < ro} are satisfied. Since ro = n—1—|F| < n—2, such
an integer exists. By Theorem 4.3, Q% — (Fy U {b;}) has a hamiltonian path H;[wy, (by)’] =
(wyi,uy, Hy, (by)?), where u; is some vertex adjdcent to wi. By Lemma 4.1, there ex-

ists a hamiltonian path Ri[(w1)"~", (w)"™'] in @, — {(b1)"~", ((b1)?)""'}. Then we set
Pylwy, by] = (wy, (Wl)n_1>R1a (ul)"_l,ul,Hp (b1)?, ((b1)? )n ! (bl)" ! ,b1) and P[w;, b;] =
(wi, H u, (w)" 1 Ry, (b)" 1 by) for 2 < i <rp. Asa result, {Py,...,P,} forms a set of

ro-mutually fully independent hamiltonian paths in @, — F'. See Figure 4.1(c) for illustration.

Next, we consider |Fy| = n — 3. Thus, we have ry = 2. By Theorem 4.2, Q° — F, has
a hamiltonian path H[w,by] = <w1,u1,Hl, (b1)7,by), where u; is a vertex adjacent to
wi, and j is some integer of {0,1,...,n — 2}. By Lemma 4.1, there exists a hamiltonian
path Rl[( )t (ul)”_l] in Q} — {(by)""1, ((by)?)""'}. By the inductive hypothesis, Q! —
{((bo)™ 1, ((by)? ) 1)} has a hamiltonian path Rs[(uz)"~', (b2)""']. Obviously, we have
Ry(2"71 — 1) # ((by)?)"'. Again, we set Pi[wy,by] = <W1,(W1)" U Ry, (wy)" Y uy, Hy,
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(b1)7, ((b1)?)"~, (b1)"", 1) and Py[wo, by] = (wa, Hj, s, (12)""", Ry, (b2)" ", by). Hence
{Py, P,} forms a set of 2-mutually fully independent hamiltonian paths in @, — F. See
Figure 4.1(c).

Case 3: Suppose that r; +|F;_;| = n — 1 for some i € {0,1}. Without loss of generality,
we assume 11 + |Fy| =n — 1. Since r;y =n—1—|Fy| >n—1—|F| =6, we have r; = §
and Fy = F. By the inductive hypothesis, Q! has (r; — 1)-mutually fully independent
hamiltonian paths H;[w;, b;] = (w;, H! u;, b;), where u; is some vertex adjacent to b; with
1<i<r—1. Sincer; —1=dd-1=n—-2—|F| = (n—l)—1—|F0\ 0 — Fy has
(ry — 1)-mutually fully independent hamiltonian paths R;[(w;)""!, (b;)" '], 1 <4 <7 — 1.
Then we set Pj[w;, b;] = (wy, H,u;, (w;)"!, R, (by)" 1 b;) with 1 <4 < r; — 1. Next, we
have to choose a vertex v of V4(Q%), and construct a hamiltonian path R,,[(w,,)""!, v] in
Q° — Fy such that v # R;(2) and R, (2"7' — 1) # (w;)" ! for every 1 < i <7 —1. We
distinguish the following subcases.

Subcase 3.1: Suppose n # 5 or |F| > 1. One can see that (u;)" ', ..., (uy_1)""!
have at most (r; — 1)(n — 1) neighbors in QY. Since [Vp(Q%)] = 22 > (r; — 1)(n —
1) = (n—2—|F|)(n — 1) in this subcase, we can choose v other than all neighbors of
(u))" Y, ..., (u,_1)"" . Obviously, we have v # R;(2) for 1 <4 < r; — 1. By Theorem 4.2,
there exists a hamiltonian path R, [(w,, )" % v] in Q° — Fy. Since v is not adjacent to any
node of {(u)" !, ..., (u,,_1)" '}, we have R, (2"7!' —1) # (u;)" ! for every 1 <i <7 — 1.
By Theorem 4.3, there exists a hamiltonian path H,, [(v)""! b, | in Q. — {w,,}. Then we
set P, = (W, (W) Y Ry, v, (V)" H, b, ). Consequently, {P, ..., P, } forms a set of
r1-mutually fully independent hamiltonian paths in @, —F. See Figure 4.1(d) for illustration.

In the following, we consider n =5 and |F| = 1; that is, r; = 3.

Subcase 3.2: Suppose that n = 5, |F| = 1, and (u;)" ! and (up)""! have at least
one common neighbor. Since |[V(QY)| =2"2 =8 > 7= (r; —1)(n — 1) — 1, we still can
choose a vertex v from V,(Q%) other than all neighbors of (u;)"~* and (uz)"~!. Obviously,
we have v # R;(2) for 1 < i < r; — 1. By Theorem 4.2, there exists a hamiltonian path
R, [(wy)" 1, v] in Q% — Fy such that R, (2"7! —1) # (u;)"! for every 1 <i <7 — 1. By
Theorem 4.3, there exists a hamiltonian path H,,[(v)"" !, b,,] in Q! —{w,, }. Similarly, we set
P, ={(w,,(w.)" " R.,v,(v)" ' H. ,b,). Then {Py,..., P, } forms a set of r-mutually
fully independent hamiltonian paths in @), — F. See Figure 4.1(d).

Subcase 3.3: Suppose that n =5, |F| = 1, and (u;)"! and (uy)""! have no common
neighbors. Then we assign the vertex v as the one that is adjacent to (u;)"~! but not
identical to R;(2). Obviously, we have v # R;(2) for 1 < i < r; — 1. By Theorem 4.2,
QY —(FyU{(v, (u;)"")}) remains hamiltonian laceable. Thus there exists a hamiltonian path
R [(w,)" 1 v] of Q% — (FoU{(v, (u1)"1)}) such that R, (2" 7' —1) # (u;)"" for every 1 <
i <ry— 1. By Theorem 4.3, there exists a hamiltonian path H,,[(v)""!, b,,] in Q} — {w,, }.
Similarly, we set P,, = (w,,, (w, )" ', R.,,v,(v)"' H, b, ). Then {P,..., P, } forms a
set of r-mutually fully independent hamiltonian paths in @, — F. See Figure 4.1(d). 0
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Figure 4.1: Hlustration for the proof of Lemma 4.3.
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4.1.2 The main theorem

With Lemma 4.3, we can construct the maximum number of mutually independent hamil-
tonian cycles on faulty hypercubes.

Theorem 4.4. Let n > 3. Suppose that FF C E(Q,) consists of at most n — 2 faulty edges.
Then Q,, — F contains (n — 1 — |F|)-mutually independent hamiltonian cycles beginning from
any vertex.

Proof. Since ), is vertex-transitive, we only need to construct d-mutually independent
hamiltonian cycles beginning from e = 0". Suppose |F| = 0. Then the statement follows
from Theorem 4.1. Thus, we only consider the situation that F' is nonempty. Furthermore,
since (), is edge-transitive, we assume that at least one faulty edge is an n-dimensional edge.

The proof idea is based on the partition of (),. As discussed previously, @), can be
partitioned into {Q%, Ql}. Obviously, e is located in Q°. Recall that Fyy and Fy denote the
sets of faulty edges in QY and Q}, respectively. Then the proof idea is outlined as follows:

(1) We first build é-mutually independent hamiltonian cycles C, Cs, . . ., Cs beginning from
ein Q° — Fy.

(2) Next, we have to claim that there must exist an integer ¢, 1 < ¢ < 272 5o that the
crossing edges (C;(2t — 1), (C;(2t — 1))"~1) and (C;(2t), (Cy(2t))"!) are fault-free for
all 1 <1 < 4. For convenience, let x; = C;(2t — 1) and y; = C;(2t).

(3) By Lemma 4.3, Q! — F; contains §-mutually fully independent hamiltonian paths
Rl[(xl)n_17 (yl)nvl]v SRR R5[(Xt5)n_1> (y5)n_1]'

(4) Finally, we obtain the desired hamiltonian cycles from combining C; and R;, 1 <i < §.
See Figure 4.2 for illustration.

More precisely, the proof is by induction on n. It is trivial that the statement holds for
(3, as the induction basis. When n > 4, we assume that the statement holds for ),_1.
Now we consider how to build J-mutually independent hamiltonian cycles in @), — F'. Since
we assume there is at least one n-dimensional faulty edge, we partition @, into {Q°, QL}
along dimension n. Accordingly, we have |Fo| < |F|—1<n—3, |F}| <|F|—-1<n-3,
and (n—1)—1—|Fy| >(n—1)—1—(|F|—=1) =n—1—|F| = 4. Thus, by the induc-
tive hypothesis, Q° — Fyy contains §-mutually independent hamiltonian cycles C, Cs, ..., Cs
beginning from e. For convenience, we assume that the vertices on each cycle are in-
dexed sequentially from 1 to 2"~!; that is, the beginning vertex e has index 1. Next,
we claim that there must exist an integer t, 1 < t < 2”72 so that the crossing edges
(Ci(2t — 1), (Ci(2t — 1)) 1) and (Ci(2t), (C;(2t))"!) are fault-free for all 1 < 7 < 6. If
such edges do not exist, then we have |F| > |F.| > 2"72/§ > |F| for n > 3, leading
to an immediate contradiction. Let x; = C;(2t — 1) and y; = C;(2t). Accordingly, C;
can be represented as (e, P, x;,y;, Hj,e), 1 < i < §. By the definition of hypercubes,
(x;)""' and (y;)"' are adjacent in Q!. By Lemma 4.3, Q. — F} contains J-mutually
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Figure 4.2: Illustration for the proof of Theorem 4.4. Without loss of generality, we assume
x; € V(@) for 1 <i <.

fully independent hamiltonian paths R;[(x1)" !, (y1)" Y, ..., Rs[(xs)" !, (y5)""!]. There-
fore, {{e, P, x;, (x;)" ', Ry, ()" L, yi, Hi,e) | 1 <i < §} forms a set of 6-mutually indepen-
dent hamiltonian cycles beginning from e. O

4.2 Faulty star networks

Tseng et al. [68] addressed fault-tolerant ring embedding in an injured star network, and
showed that an injured n-dimensional star network is still hamiltonian when no more than
n — 3 edge faults occur. As Lin et al. [49] showed, ZHC(S,) = n — 2 if n € {3,4}, and
THC(S,) =n—1ifn > 5. Let F C E(S,,) with |F| < n—3. In this section, we aim to prove
that there exist (n — 2 — | F'|)-mutually independent hamiltonian cycles of S,, — F' beginning
from any vertex of S, if n € {3,4}, and there exist (n — 1 — |F|)-mutually independent
hamiltonian cycles of S,, — F' beginning from any vertex of .S, if n > 5. Before proceeding,
we recite the definition of an n-dimensional star network and introduce its basic properties.

4.2.1 Definition and basic properties of star networks

For the sake of clarity, we recall the definition of star networks in advance. Let n be a
positive integer. We use (n) to denote the set of integers from 1 to n. A permutation on (n),
namely ujus . .. Uy, is a sequence of all elements of (n). An inversion of ujus ... u, is a pair
of integers (i1,1i5) such that u;, < w;, and i; > i5. An even permutation is a permutation
with an even number of inversions, and an odd permutation is a permutation with an odd
number of inversions. The n-dimensional star network, denoted by S,,, is a graph with vertex
set V(S,) ={ur...u, | w; € (n) and u; # u; for i # j}. Its adjacency is defined as follows:
Uy ...U;. ..U, is adjacent to vy ...v;...v, through an edge of dimension ¢ with 2 <17 < n if
w = v;, v = u;, and u; = v; for j € (n) — {1,7}. Obviously, S, is both vertex-transitive
and edge-transitive [1]. Three star networks Sy, S3, and S, are illustrated in Figure 1.1.
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We use a boldface letter to denote any vertex of S,. Moreover, we use e to denote
the vertex 12...n. It is known that S, is a bipartite graph with one partite set V4(5,)
consisting of those vertices corresponding to even permutations and the other partite set
V1(S,) consisting of those vertices corresponding to odd permutations. Let u = ujus ... u,
be a vertex of S,. Then wu; is the i-th coordinate of u, denoted by (u);, for 1 < i < n.
According to the definition of S,,, there is exactly one neighbor v of u such that u and v
are adjacent through an edge in the i-th dimension for 2 < i < n. Therefore, we use (u)’
to denote the unique i-neighbor of u. Obviously, ((u)’)’ = u. For every 1 < i < n, let St
be a subgraph of S,, induced by those vertices u with (u),, = i. Then S,, can be partitioned
into n vertex-disjoint subgraphs S}{Ll}, ey S,{L"}, and each of these subgraphs is isomorphic to
S,_1. For this reason, star networks can be constructed recursively. Let I C (n). We use S!
or UigS;{f} to denote a subgraph of .S,, induced by UigV(S,{f}). For 1 <i # j < n, we use
E™ to denote the set of edges between S\ and S}

Theorem 4.5. [68] Let F C E(S,) with |F| < n—3 forn > 3. Then S,,—F is hamiltonian.

Li et al. [47] introduced the edge-fault-tolerant hamiltonian laceability of a graph G, which
is the integer f such that, for any /' C E(G) with |F| < f, G—F is still hamiltonian laceable
and there exists a subset F’ of E(G) with |F'| = f 4+ 1 such that G — F” is not hamiltonian
laceable. Moreover, the edge-fault-tolerant hyper-hamiltonian laceability of G is defined as
the integer f such that, for any F' C E(G) with |F| < f, G—F is hyper-hamiltonian laceable
and there exists a subset F’ of E(G) with |F’| = f 4 1 such that G — F’ is no longer-hyper
hamiltonian laceable.

Theorem 4.6. [/7] The S, is (n — 3)-edge fault tolerant hamiltonian laceable and (n — 4)-
edge fault tolerant hyper-hamiltonian laceable for n > 4.

Lemma 4.4. [53] Assume that n > 3. Then |E™| = (n —2)! for any 1 < i # j < n.
Moreover, there are (n — 2)!/2 edges joining vertices ofVO(S,{LZ}) to vertices of Vl(Sy{f}).

Lemma 4.5. Forn > 3, let u and v be two distinct vertices of S,, with d(u,v) < 2. Then

(W) # (V)1

Lemma 4.6. Let n > 5. Assume that F C E(S,) with |F| < n —4, and assume that
I={a,...,a} is a subset of r elements of (n) for somer € (n). Suppose that u € Vo(Si™)
and v € Vl(S,{LaT}). Then there exists a hamiltonian path H = (u = x1, Py, y1,X2, P2, yo, . . .,
Xp, Pryyr = V) of ST — F joining u to v such that x;, = u, y, = v, and P; is a hamiltonian
path of st — joining x; to'y; for every 1 <i <r.

Proof. By Theorem 4.6, this statement holds on » = 1. Suppose that r > 2 and we
set x; = u and y, = v. By Lemma 4.4, there are (n — 2)!/2 > n — 4 edges joining
vertices of Vi(Si*) to vertices of Vp(Si***?) for every i € (r — 1). Therefore, we choose
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(yisXiq1) € E%o — F with y; € Vi(S8Y) and x40 € Vo(Si%) for i € (r — 1). By
Theorem 4.6, there exists a hamiltonian path P; of st joining x; to y; for every i € (r).
As a result, (u = x1, P1,y1,X2, P, yo,...,X., P.,y, = v) forms a desired hamiltonian path
of 8! — F joining u to v. O

Lemma 4.7. Let n > 5. Assume that F' C E(S,) with |[F| <n —4 and |F N Sr{f}| <n-5
for every i € (n). Moreover, assume that I = {ay,...,a,} is a subset of r elements of (n)
for some 2 < r < n. Suppose that u € Vo(Si™), w € Vi(SI*), and v € Vo(Si*). Then
there exists a hamiltonian path H of ST — (F U {w}) joining u to v.

Proof. By Lemma 4.4, there are (n — 2)!/2 > n — 3 edges joining vertices of %(Sﬁal}) to
vertices of V4(S4*)). Thus, we choose a vertex x of Vp(Si*?) — {u} with (x); = ay and
(x,(x)") ¢ F. By Theorem 4.6, there exists a hamiltonian path P of Simd — (FU{w})
joining u to x. By Lemma 4.6, there exists a hamiltonian path @ of Si-te) _p joining (x)"
to v. As a result, (u, P, x, (x)", @, v) forms a desired hamiltonian path. a

Lemma 4.8. [/8] Assume that w and b are two adjacent vertices of S,, with n > 4. For
any vertex u in Vy(S,) — {w,b} and for any i € (n), there exists a hamiltonian path P of
Sn — {w, b} joining u to some vertex v of V1(S,) — {w,b} with (v); =i.

Lemma 4.9. Leti € (n) and F C E(S,) with |F| <n —4 for n > 4. Suppose that w and
b are two adjacent vertices of S, and u € Vy(S,) — {w,b}. Then there exists a hamiltonian
path of S, — (F U {w,b}) joining u to some vertex v of V1(S,) — {w,b} with (v); = 1.

Proof. Since S, is vertex-transitive and edge-transitive, we assume that w = e and b = (e)’
with some j € (n) — {1}. Weset F}, = F'N E(S,{Lk}) for every k € (n). Then we prove this
lemma by induction on n. The induction bases depend upon Lemma 4.8. Suppose that
this statement holds on S,,_; with n > 5. We consider the dimensions of all edges of
FU{(e,(e)’)}. If there exists an edge of F' whose dimension, say j', is different from j, we
can partition S, over dimension j’. Otherwise, every edge of F' has the same dimension as

VE

Case 1: There exists an edge of F' whose dimension, say j', is different from j. Since .S,
is edge-transitive, we assume j/ = n. Thus, (e, (e)/) € E(SI™) and |F,| < n — 5 for every
ke (n).

Subcase 1.1: Suppose that u € %(S{g"}). Since |F| < n — 4, we can choose an integer
r € (n — 1) such that |[FF'N E™"| = 0. By induction hypothesis, there exists a hamiltonian
path P of S{™ — (F,,U{e, (€)’}) joining u to a vertex x € V;(S™) with (x); = r. We choose
a vertex v in V4 (S ") with (v); = i. By Lemma 4.6, there exists a hamiltonian path
Q of St joining (x)"™ to v. Then (u, P, x, (x)", @, V) is a desired path.
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Subcase 1.2: Suppose that u € Vo(St) for some k € (n — 1). By Lemma 4.4, there
are (n —2)!/2 > n — 3 edges joining vertices of Vl(S,{Lk}) to vertices of VE](S,{L"}). We choose
a vertex y of V; (S such that (y)" € Vo(Si™) — {e} and (y, (y)") ¢ F. By Theorem 4.6,
there exists a hamiltonian path H of Sk — F} joining u to y. We choose an integer r of
(n — 1) — {k} such that |[F'N E™"| = 0. By induction hypothesis, there exists a hamiltonian
path P of S8™ — (F,,U{e, (e)7}) joining (y)" to a vertex x of V;(Si™) — {(e)’} with (x); = r.
Besides, we choose a vertex v of Vl(Sén_l)_{k’r}) with (v); = i. By Lemma 4.6, there exists a
hamiltonian path ) of Sen=h=tk} _ joining (x)" to v. Then (u, H,y, (y)", P, %, (x)",Q, V)
forms a desired path.

Case 2: Every edge of F' has the same dimension j. Without loss of generality, we may
assume j = n. Thus, |F;| = 0 for every ¢ € (n).

Subcase 2.1: Suppose that u € VO(S,{Lk}) for some k € (n — 1) — {1}. By Lemma 4.4,
there are (n —2)!/2 > n — 4 edges joining vertices of Vl(S,{Lk}) to vertices of VO(ST{LI}). Thus,
we can choose a vertex x of Vl(Sr{Lk}) with (x); = 1 and (x, (x)") ¢ F. By Theorem 4.6,
there exists a hamiltonian path H of Stk joining u to x. Similarly, we can choose a vertex
y of VE)(ST{LI}) with (y); = n and (y, (y)") ¢ F. By Theorem 4.6, there exists a hamiltonian
path P of S — {(e)"} joining (x)" to y. Let v be a vertex in ‘/1(551"71%{1’“) with (v); = 1.
By Lemma 4.7, there exists a hamiltonian path @ of Sy """ — (F U {e}) joining (y)" to
v. Then (u, H,x, (x)", P,y, (y)", @, v) forms a desired path.

Subcase 2.2: Suppose that u € Vp(S4'"). By Lemma 4.4, there are (n — 2)!/2 > n — 4
edges joining vertices of VO(S,}{Ll}) to vertices of Vl(Sgn}). Thus, we can choose a vertex x of
V()(S,gl}) —{u} with (x); = n and (%, (x)") ¢ F. By Theorem 4.6, there exists a hamiltonian
path H of S{ — {(e)"} joining u to x. We choose a vertex v of Vl(Sfln_”_{l}) with (v); = 4.
By Lemma 4.7, there exists a hamiltonian path @ of S~ — (F'U{e}) joining (x)" to v.
Then (u, H,x, (x)", Q,v) forms a desired path.

Subcase 2.3: Suppose that u € VO(S,{l"}). Since |F'| < n—4, we can choose two integers
ky and ko in (n — 1) — {1} such that ((e)*, ((e)*)") ¢ F and ((e)*2, ((e)*)") ¢ F. Let
X ={(e,(e)") |t e (n—1) —{1,kq, ka}}. Obviously, | X| = n — 4. Moreover, we can choose
a vertex x € V4 (S4™) such that (x); € (n—1)—{1, k1, k»} and (x, (x)") ¢ F. Since (x); # ki
and (x); # ko, we have x # (e)* and x # (e)*. By Theorem 4.6, there exists a hamiltonian
path H = (u, Hy, (e)" e, (e)*2, Hy,x) of S — X joining u to x. Let y = (e)k2. Since
(¥)1 # (x)1, we have i 7 (x); or i # (y)1.

Subcase 2.3.1: Suppose that i # (x);. Let k3 = (x);. We choose a vertex v of %(S}{Lk3})
with (v); = i. By Lemma 4.4, there are (n—2)!/2 > n—4 edges joining vertices of V; (S{*)
to vertices of Vo(S&'). Thus, we can choose a vertex z of V4(St*) with (z); = 1 and
(z,(z)") ¢ F. By Theorem 4.6, there exists a hamiltonian path T of Si*™ joining (x)" to
v. Similarly, there is a hamiltonian path P of Stk joining ((e)*)" to z. By Lemma 4.7,
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there exists a hamiltonian path Q of Sy~ "=t} _ (F'u{(e)"}) joining (z)" to (y)". Then
(u, Hy, (e)k, ((e)*)", P,z,(2)", Q, (y)",y, Ha, X, (x)", T, v) a the desired path.

Subcase 2.3.2: Suppose that i # (y);. Let k3 = (y)1. Then the proof of this case is
similar to that of Subcase 2.3.1. O

Lemma 4.10. Let {a,b} C (n) with a < b and let F' C E(S,) with |[F| <n —4 forn > 4.
Suppose that x € Vy(S,,), and assume that X1 and Xy are two distinct neighbors of x. Then
Sn— (FU{x,x1,X2}) has a hamiltonian path between two vertices u and v in Vy(S,) — {x}
such that (u); = a and (v); = b.

Proof. Since S, is vertex-transitive and edge-transitive, we assume that x = e, x; = (e)",
and x, = (e)® with some {iy,i2} C {2,3,...,n}. We prove this lemma by induction on n.

Suppose that n = 4. Thus, we have |F'| = 0. Since 9, is edge-transitive, we assume that
x; = (€)? = 2134 and x, = (e)® = 3214. The required paths of Sy — {1234,2134, 3214} are
listed in Table 4.1.

a=1andb=2 | (1324,3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431)
a=1andb=23 | (1423,2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 4312, 3412, 1432, 1132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241)
a=1andb=4 | (1324, 3142, 41132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 2431, 4231, 3241, 2341, 4321)
a=2and b=3 | (2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 4132, 3142, 1342, 4312, 3412)
a=2and b=4 | (2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132)
a=3andb=4 | (3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213)

Table 4.1: The required hamiltonian path of S; — {1234, 2134, 3214}.

Suppose that the statement holds on S,,_; with n > 5. Let Fj, = F'N E(S{gk}) for every
k € (n). Without loss of generality, suppose that there is at least one edge of F' in dimension
n. Thus, |Fx| < n —5 for every k € (n). Because a < b, we have a # n and b # 1. Since
|F'| < n—4, we can choose an integer ¢ in (n—1) —{1, a} such that |FFNE"| = 0. Moreover,
we choose a vertex v of VO(ST{LI}) with (v); = b.

Case 1: Suppose that i1 # n and is # n. By induction hypothesis, there is a hamiltonian
path H of Si™ — (F, U{e, (e)",(e)2}) joining a vertex u of VO(S,{l"}) with (u); = a to a
vertex y of VO(S,{Ln}) with (y); = ¢. By Lemma 4.6, there exists a hamiltonian path R of

Sr(Ln—1> — F joining (y)" to v. As a result, (u, H,y,(y)", R,v) forms the desired path in
Sn— (FU{e, (e)", (e)}).

Case 2: Either iy = n or i, = n. Without loss of generality, we assume is = n. We
choose a vertex u € VO(S{E”}) with (u); = a. By Lemma 4.9, there exists a hamiltonian path

H of Si™ — (F, U {e, (¢)""}) joining a vertex u to some vertex y of V4(S{™) with (y); = c.
By Lemma 4.7, there exists a hamiltonian path ) of S (F'U{(e)"}) joining (y)" to
v. As aresult, (u, H,y, (y)", @, v) forms a desired path. O
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4.2.2 The main results

Theorem 4.7. [/9] THC(S,) =n—2ifn € {3,4}; THC(S,) =n—1ifn >5.

Lemma 4.11. Let f € E(Sy). Then THC(S, —{f}) = 1.

Proof. Since S, is vertex-transitive, we only consider the mutually independent hamilto-
nian cycles of Sy — {f} beginning from 1234. Suppose that f = (1234,4231). We list all
hamiltonian cycles of S, — {(1234,4231)}, beginning from 1234, in Table 4.2. By brute
force, there do not exist 2-mutually independent hamiltonian cycles of Sy — {(1234,4231)}
beginning from 1234. Thus, ZHC(Ss — {(1234,4231)}) < 1. By Theorem 4.5, there exists a
hamiltonian cycle in Sy — {(1234,4231)}. Hence, ZHC(S, — {f}) = 1. O

(1234, 2134, 3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213, 3214, 1234)
(1234, 2134, 3124, 1324, 4321, 2341, 3241, 4231, 2431, 3421, 1423, 4123, 2143, 1243, 4213, 2413, 3412, 1432, 4132, 3142, 1342, 4312, 2314, 3214, 1234)
(1234, 2134, 3124, 4123, 1423, 2413, 4213, 1243, 2143, 3142, 4132, 1432, 3412, 4312, 1342, 2341, 3241, 4231, 2431, 3421, 4321, 1324, 2314, 3214, 1234)
(1234, 2134, 4132, 1432, 2431, 4231, 3241, 1243, 2143, 3142, 1342, 2341, 4321, 3421, 1423, 4123, 3124, 1324, 2314, 4312, 3412, 2413, 4213, 3214, 1234)
(1234, 2134, 4132, 3142, 1342, 4312, 3412, 1432, 2431, 4231, 3241, 2341, 4321, 3421, 1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 3214, 1234)
(1234, 2134, 4132, 3142, 2143, 4123, 3124, 1324, 2314, 4312, 1342, 2341, 4321, 3421, 1423, 2413, 3412, 1432, 2431, 4231, 3241, 1243, 4213, 3214, 1234)
(
(
(
(
(
(

1234, 3214, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132, 2134, 1234)
1234, 3214, 2314, 1324, 4321, 3421, 2431, 4231, 3241, 2341, 1342, 4312, 3412, 1432, 4132, 3142, 2143, 1243, 4213, 2413, 1423, 4123, 3124, 2134, 1234)
1234, 3214, 2314, 4312, 1342, 3142, 4132, 1432, 3412, 2413, 4213, 1243, 2143, 4123, 1423, 3421, 2431, 4231, 3241, 2341, 4321, 1324, 3124, 2134, 1234)
1234, 3214, 4213, 2413, 1423, 4123, 2143, 1243, 3241, 4231, 2431, 3421, 4321, 2341, 1342, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 2134, 1234)
1234, 3214, 4213, 2413, 3412, 4312, 2314, 1324, 3124, 4123, 1423, 3421, 4321, 2341, 1342, 3142, 2143, 1243, 3241, 4231, 2431, 1432, 4132, 2134, 1234)
1234, 3214, 4213, 1243, 3241, 4231, 2431, 1432, 3412, 2413, 1423, 3421, 4321, 2341, 1342, 4312, 2314, 1324, 3124, 4123, 2143, 3142, 4132, 2134, 1234)

Table 4.2: All hamiltonian cycles of Sy — {(1234,4231)}, beginning from 1234.

Lemma 4.12. Suppose that n > 5 and F' C E(S,) with |F| =n —3. Let u € V(S,). Then
there exist 2-mutually independent hamiltonian cycles of S, — F' beginning from u.

Proof. Since S, is vertex-transitive and edge-transitive, we assume that u = e and also
that F' contains at least one edge in dimension n. Let F, = FNE (Sflk}) for every k € (n).
As a result, |Fy| < n —4 for every k € (n).

Case 1: Suppose that (e, (e)”) ¢ F. Let B = (b; ;) be the 2 X n matrix with

J jfe g —ul-s
n iftr=2and j =1,
bij=¢q j+1 ifi=2and2<j<n-2,
2 ifir=2and j=n—1,
1 ifi=2and j =n.

By Lemma 4.6, there exists a hamiltonian path P of ( ;?:lSébl’j}) — I joining (e)" to e.

Similarly, there exists a hamiltonian path H of ( ?zlSéb“ }) — [ joining e to (e)". Then
we set C; = (e, (e)"”, P,e) and Cy = (e, H,(e)",e). Obviously, {C,Cs} forms a set of 2-
mutually independent hamiltonian cycles of S,, — F' beginning from e. See Figure 4.3(a) for
illustration.

Case 2: Suppose that (e, (e)") € F and |F,| = n — 4. Obviously, |F)| = 0 for every
k € (n—1). By Theorem 4.5, there exists a hamiltonian cycle H = (e, R,q,p,e) of
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s — F,. Accordingly, we have that (p, (p)") ¢ F and (q,(q)") ¢ F. By Lemma 4.5,
(p)1 # (4)1. We set (p)1 = i,_1 and (q); = 4;. Let igi3...4, 5 be an arbitrary permutation
of (n—1) — {ir,in-1}

For 1 <k <n-—2, let x; be a vertex of VO(S{?’“}) such that (xx); = ix41 and (X, (xx)") €
F. By Theorem 4.6, there exists a hamiltonian path P, of St joining (q)" to x;. Similarly,
there exists a hamiltonian path P, of St joining (x;_1)" to x; for 2 < k < n — 2 and
there exists a hamiltonian path P,_; of S§™ ) joining (Xp,—2)" to (p)™. Then we set C} =
(e,R,q, (q)", P, x1, (x1)", Py, X2, (X2)", ..., Xp_2, (Xp-2)", Po_1, (P)", P, €).

Obviously, we can choose a vertex y,_; of ‘/I(Sr{f”’l}) such that (y,_1)1 = iy and
(Yot (yn1)") & F. For 2 < k <n—3, [{u € Vi(S{*) | (u); = iy and d(u, (x4_1)") =
2} =n—3< (n—2)1/2if n > 5. Thus, we choose a vertex y; of Vi(Ss*!) such
that d(yk, (Xk-1)") > 2, (Yr)1 = igy1, and (yx, (yr)") ¢ F for 2 < k < n — 3. Since
{u € VA(SEY) | (u); = i and d(u, (x,_3)") = 2} = n—3 < (n—2)l/2 if n > 5,
we choose a vertex y,_o of Vl(ST{f"’Q}) such that d(y,_2, (X,-3)") > 2, (Yn_2)1 = i1,
and (Yn—2, (Yn2)") ¢ F. By Theorem 4.6, there exists a hamiltonian path @i of Shi
joining (y,—2)" to (q)™. Again, there is a hamiltonian path @y of Si= joining (y,-1)"
to yg, there is a hamiltonian path @Q,_; of ey joining (p)” to y,_1, and there ex-
ists a hamiltonian path @} of Silind joining (yx_1)" to yx for 3 < k < n — 2. Then we

set 102 = <e7 P, (p>n’ Qn-lu Yn—1, (yn—l)n7 Q27 Yo, (Y2)n7 Q37 NED) (Y3)n7 O (yn-Z)nv le (q)n’ q,
R 'e).

In summary, {C7, Cy} forms a set of 2-mutually independent hamiltonian cycles of S,, — F
beginning from e. Figure 4.3(b) illustrates C; and Cy in S.

Case 3: Suppose that (e, (e)") € F and |F,| < n — 5. Since |F| = n — 3, there must
exist an integer i, 1 of (n — 1) — {1} such that |FF'N E-"| = 0. Assume that i; and i, are
two integers of (n — 1) — {i,_1} such that |FF N E%2| = max{|F N E*| | s,t € (n — 1) —
{in_1}}. Moreover, let igiy .. .4, 5 be an arbitrary permutation of (n—1)—{iy, 42, %,_1}. Since
(e,(e)") € F, we have |FNE™2| < n—4. Thus, |[FNE"-24| < n—5and |FNE®#+1] < n—5
for2<k<n-—3.

By Lemma 4.4, there are (n — 2)!/2 > n — 3 edges joining vertices of VO(S}{LH}) to ver-
tices of Vl(S{gil}). Thus, we can choose a vertex w € VO(S,E"}) — {e} such that (w); = 4,
and (w,(w)") ¢ F. By Theorem 4.6, there exists a hamiltonian path R of S — (F, U
{(e)"-1}) joining e to w. For 1 < k < n — 2, let x; be a vertex of VO(S{?’“}) such
that (xx)1 = g1 and (xg, (xx)") ¢ F. By Theorem 4.6, there exists a hamiltonian
path P, of s — F;, joining (w)" to x;. Similarly, there exists a hamiltonian path
P, of Slind F,, joining (xz_1)"™ to x; for 2 < k < n — 2, and there exists a hamil-
tonian path P,_, of St} — F;, | joining (x,_2)" to ((e)=1)". Then we set C; =
(e, R,w,(W)", P1,x1, (x1)", Py, Xo, (X2)", ..., (Xn_2)", Pu_1, ((€)»=1)", (€)i"—1, e).
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Obviously, we can choose a vertex y,_; of VI(S{Z” 1}) such that (y,_1)1 = iy and
(Y1, (Yn_1)") @ F. For 2 < k < n—3, [{uc V(S | (u); = g1 and d(u, (xp_1)") =
2} = n — 3. By Lemma 4.4, there are (n — 2)!/2 edges joining vertices of Vl(Sr{Li’“}) to
vertices of V()(Sif’““}). We emphasize that (n —2)!/2 > (n —3) + (n —5) = 2n — 8 if
n > 5. Thus, we choose a vertex y;, of Vl(S{gi’“}) such that d(yg, (xx—1)") > 2, (Yx)1 = lkt1,
and (yi, (yx)") € F for 2 < k < n— 3. Since (n — 2)1/2 > |[{u € Vi(S{" ) | (u); =
iy and d(u, (x,-3)") =2} +(n—5) = (n—3)+(n—>5) = 2n—8 if n > 5, we choose a vertex
Vn_o Of Vl(S{Z" 2}) such that d(y,_2, (Xn—3)") > 2, (Yn_ 2)1 = i1, and (Yn_2, (Yn_2)") ¢ F.
By Theorem 4.6, there exists a hamiltonian path Q; of S8} — F,, joining (y,—2)" to (w)".
Again, there exists a hamiltonian path @y of S — F;, joining (yn_l)" to yo, there exists
a hamiltonian path Q,_;, of St} — F;,_, joining ((e)™=1)" to y,_1, and there exists a
hamiltonian path @, of Slint _ F;, joining (yx—1)" to yi for 3 <k <n—2. We set Cy = (e,

(e)in717 ((e)inil)np anb Yn-1, (Ynfl>n7 Q27 Yo, (y2>n7 Q37 AED) (y3>n7 R (Y'n—2)n7 le (W>n7
w, R7! e).

As aresult, {C}, Cy} forms a set of 2-mutually independent hamiltonian cycles of S, — F'
beginning from e. Figure 4.3(c) illustrates C; and C5 in Ss. O

Lemma 4.13. Let f be any integer of (n —4) with n > 5. Suppose that F' C E(S,) with
|F| = f. Letu € V(S,). Then there exist (n — 1 — f)-mutually independent hamiltonian
cycles of S,, — F' beginning from u.

Proof. Since 5, is vertex-transitive and edge-transitive, we assume that u = e and F
contains at least one edge in dimension n. Let Fy = F N E(SY) for every k € (n).
Thus, |F}| < n — 5 for every k € (n). Moreover, let A, = E — {(e,(e)")} and let
A; = E""U{(e,(e))} for2<i<n-—1.

Case 1: Suppose that (e, (e)”) € F. We emphasize that there are at least n — 1 — f
elements of {|F' N A, |F N As|,...,|[FNA,_1|} equal to 0. Without loss of generality, we
assume that |F'N (U;ZJ}HAZN = (0. Thus, at least one of {|F'NA],...,[FNAf|} equals to 0.

Subcase 1.1: Suppose that |F'N A;| = 0. Let B = (b;;) be the (n — 1 — f) x n matrix
with
b'_{f+i+j if f+i+j<n,
” f+i+j—n otherwise.
Note that b;,—s_; = n for every 1 <i <n—1— f. Then we construct (n — 1 — f)-mutually
independent hamiltonian cycles {C1, Cs, ..., C,_1_s} of S, — F beginning from e as follows.

Let i € (n—2—f). Weset t; = n— f —i. By Lemma 4.10, there exists a hamiltonian path
Q; of Sib"'”}—(Fbiyti U{e, (e)’1, (e)?n}) joining two vertices x; and y; in V()(S,Ebi’t"})—{e} such
that (x;)1 = biy,—1 and (yi)1 = b;t,4+1. By Lemma 4.6, there exists a hamiltonian path P; of
(U t'_lS{b”}) F joining ((e)b1)" to (x;)". Similarly, there exists a hamiltonian path R; of
(U2 1151%2)) = F joining (,)" to ((e)"+)". Then we set C; = (e, (&)1, (()")", P, (x:)"
&i%w%w%RM®f)"@W”@
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Figure 4.3: The 2-mutually independent hamiltonian cycles in S5 — F' for Lemma 4.12.
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By Lemma 4.9, there exists a hamiltonian path 7" of Glbnrmsal —(Fy,_,_;,U{e, (e)tn-1-1n1})
joining ()’ to a vertex z of V()(S,gb"’l’f’l}) —{e} with (z); = b,_1_y2. By Lemma 4.6, there

exists a hamiltonian path W of (U;?:2S,£b"’1’f’j}) — F joining (z)" to ((e)’»—1-#n)". Then we
set C’n—l—f = <ea (e)bl'na Tz, (Z)n> W, ((e)bnilff’n)m (e)bnilif’na e>'

As a result, {C,...,Cp_o_f,Cp_1_y} forms a set of (n — 1 — f)-mutually independent
hamiltonian cycles of S,, — F' beginning from e. Figure 4.4 illustrates {C}, Cs, C3,Cy4} in
Se — F with |F| = f=1.

Subcase 1.2: Suppose that |[F'N A;| > 0. We emphasize that f > 2 in this subcase.
Thus, at least one of {|F'N As|,...,[F N Ay|} equals to 0. Without loss of generality, we
assume that [F'N Ay| = 0. Let B = (b; ;) be the (n — 1 — f) x n matrix with

fH+i+y if f+1+7<n,
o 2 if f+i+j=n+1,
w iff+i+j=n+2,

f+14+j5—n otherwise.

Then we build (n — 1 — f)-mutually independent hamiltonian cycles {Cy, Cs, ..., Cp_1_y} of
S, — F beginning from e in the same manner as that of Subcase 1.1.

Case 2: Suppose that (e, (e)") ¢ F. We emphasize that there are at least n — 2 — f
elements of {|F'N As|, [FNA;|...,|FNA,_1]} equaling to 0. Without loss of generality, we
assume that |F' N (U?:_J}+2Ai)| = 0. Thus, at least one of {|FFNA;|,...,|[F'NApq]}is 0.

Subcase 2.1: Suppose that [F'N A;| = 0. Let B,, = (b; ;) be the (n — 1 — f) x n matrix
with

152 and i )
Jonr= NI ] )t S [
5 4 2 3 1
and for n > 6,
( i o=
f+i+yg if2<i<mn—2—fand f+i+j<n,
fHi+g—m if2<i<n—-2—fand f+i+7>n,
n ifir=n—1—fand j =1,
bij =4 3 ifi=n—1—fandj=2,

2 ifi=n—1—fandj=3,
n—1 ifi=n—1—fand j =4,
j—1 ifi=n—-1—fand5<757<n-—1,
1 ifi=n—1—fand j=n.

Then we build (n — 1 — f)-mutually independent hamiltonian cycles {C4, Cs, ..., Cph_1_y} of
Sp, — F beginning from e as follows.
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Figure 4.4: Mutually independent hamiltonian cycles in Sg — F' with |F'| = 1 for Subcase 1.1

of Lemma 4.13.
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We choose a vertex v of Vl(S{b1 ”}) {(e)bn—2-r1} with (v); = b;,_1. By Theorem 4.6,
there exists a hamiltonian path W of Si™F — (Fy,,. U {e}) joining v to (e)’»-2-r1. By
Lemma 4.6, there exists a hamiltonian path D of (U?;llS}Ebl’j}) — I joining (e)™ to (v)". We
set O = (e, (e)", D, (v)", v, W, (e)’—2-71 e).

Let i € (n—2— f) —{1}. Weset t; = n— f —i. By Lemma 4.10, there exists a
hamiltonian path Q; of S& " — (Fy,,, U {e, (e)"!, (e)"n}) joining two vertices x; and y;
in VO(S{bi’t"}) — {e} such that (x;); = b;iy,—1 and (y;)1 = bit,+1. By Lemma 4.6, there
b 1S{b”}) F joining ((e)’1)" to (x;)". Similarly, there

exists a hamiltonian path R; of (U?:tiﬂsibu}) F joining (y;)™ to ((e)%n)". Then we set
<Z=®JQWK@WUﬁHK&WXM&JuWJr&iwf)"@W"@

By Lemma 4.4, there are (n — 2)!/2 > n — 3 edges joining vertices of %(S{E"H*M}) to
vertices of W(Sjlb"*l*f’k’l}) for 3 < k <n—1. Thus, we choose a vertex z; of V[)(S,Eb”’l’f’k})
such that (zx)1 = bp—1-r k-1, (Zk, (21)") ¢ F, and z;, # C1((k—1)(n—1)!4+1). By Lemma 4.7,
there exists a hamiltonian path 7" of (U?ZlS;{Lb"’]’f’j}) — (Fu{e}) joining (e)*2" to (z3)". By
Theorem 4.6, there is a hamiltonian path Hj, of S{Eb”’l’f’k} —
3 <k <n-—2. By Lemma 4.6, there exists a hamiltonian path H, ; of (Uj_

=n—1

F joining z,_1 to (e)". Then we set C,_1_; = (e, (e)?" T, (z;;)”,zd,Hd, (z4)", ... Zpa,
Hn—27 (Zn—l)nu Zy—1, Hn—h (e)nu e>'

exists a hamiltonian path P; of (U;

joining z to (zj41)" for
S{bnflff,j}) .

Consequently, {C},Cy, ..., Ch_o_f, C_1_s} forms a set of (n — 1 — f)-mutually indepen-
dent hamiltonian cycles of S,, — F' beginning from e. Figure 4.5(a) illustrates {C1, Cs, C3, Cy}
in S¢ — F with |F| = f = 1.

Subcase 2.2: Suppose that |[FFNA;| > 0. Thus, at least one of {|FNAs|,...,|FNAr|}
equals to 0. Without loss of generality, we assume that |F'N As| = 0. Let B,, = (b; ;) be the
(n —1— f) x n matrix with

(n ifi=1and j =1,

j+1 ifi=1land2<j<n-—2,

2 ifi=1land j=n-—1,

1 ift=1and j =n,

bij=q [+i+] f2<i<n—-2—fand f+i+j<n,

2 if2<i<n—-2—fand f+i1+j5j=n+1,
1 if2<i<n—-2—fand f+i14+75=n+2,
f+i+j—n if2<i<n—-2—fand f+i+j>n+3,
| j ifi=n—1-f.

By Lemma 4.4, there are (n —2)!/2 > n— 3 edges joining vertices of VO(S{ b 2}) to vertices

of Vi (S, Thus, we choose a vertex z of Vy(Si™*!) such that (z); = bii, (z,(2)") ¢ F,

55



and (z)" # (e)’~. By Theorem 4.6, there exists a hamiltonian path 7" of g —(Fy,,U{e})

joining (e)”" to (z)". By Lemma 4.6, there exists a hamiltonian path H of (U;?:2S,£b1’j}) —F
joining z to (e)". Then we set C; = (e, (e)?2, T, (2z)",z, H, (e)", e).

Let i € (n—2— f) —{1}. Wesett; =n— f—i By Lemma 4.10, there exists a
hamiltonian path Q; of Sy’ — (Fy,,, U {e, (e)"!, (e)"n}) joining two vertices x; and y;
in VO(S{bi’t"}) — {e} such that (x;); = b;iy,—1 and (y;)1 = bit,+1. By Lemma 4.6, there
exists a hamiltonian path P; of (U tl_lS{b” ) — F joining ((e)%1)" to (x;)". Similarly, there

exists a hamiltonian path R; of (U?:tiHS{E ”}) F joining (y;)™ to ((e)%n)". Then we set
C; = (e, ()", ((e)" )", P, (x:)", %, Qi, yi, ()", Ri, ((e)"n)", (e)bl" e).

By Lemma 4.4, there are (n — 2)!/2 > n — 3 edges joining vertices of %(S{Eb”’l’f’z}) to
vertices of Vl(Sr{lb'”’l’f’g}). Thus, we choose a vertex w of VO(S;{Ib"’]’f’Q}) such that (w); =
bo—1-f3, (W, (W)") ¢ F, and d(w, (y,—2-5)") > 1. Moreover, we choose a vertex v of

Vl(S}Eb”’l’f’"}) such that (v); = by,—1_f,—1 and (v, (v)") ¢ F. By Lemma 4.6, there exists
a hamiltonian path D; of (U?ZlSib”’l’f’j}) — F joining (e)” to w. Similarly, there exists a

hamiltonian path D, of (U?;;%Sib”’l’f’j}) — F joining (w)" to (v)™. By Theorem 4.6, there

exists a hamiltonian path W of SRt oo (Fy,_,_;, U{e}) joining v to (e)’-2-1. Then
we set Cy1_y = (e, (€)%, Dy, w, (w)", D, (v)", v. W, (e)fn-2-11, )

Hence, {C1,Cy,...,Ch_o_s,Cp_1_s} forms a set of (n — 1 — f)-mutually independent
hamiltonian cycles of S,, — F' beginning from e. Figure 4.5(b) illustrates {C;, Cs, C3,C4} in
Se — F with |F| = f = 1. 0

According to Lemma 4.11, Lemma 4.12, and Lemma 4.13, coupled with the result of
Lin et al. [49], we summarize the embedding of mutually independent hamiltonian cycles in
star networks as follows:

Theorem 4.8. Let F' C E(S,) with |F| <n —3 forn >3, and let u € V(S,,). Then there
exist (n — 2 — | F|)-mutually independent hamiltonian cycles of S, — F beginning from u if
n € {3,4}, and there exist (n — 1 — |F|)-mutually independent hamiltonian cycles of S, — F
beginning from u if n > 5.
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Chapter 5

Fault Diameter of Hypercubes

A variety of graph parameters, such as connectivity [50], wide diameter [29], fault diame-
ter [37], etc. can be used to measure fault tolerance of networks: The connectivity of a graph
G, written by k(G), is the minimum size of a vertex set S such that G — S is disconnected
or has only one vertex; a graph G is said to have fault diameter of D;(G) if its diameter
increases from D(G) to Dy(G) as a consequence of f hybrid node and/or link faults.

Esfahanian [20] observed that the likelihood of having a disconnected n-cube due to n
faulty processors is negligible and asymptotically zero. Motivated by this observation, he
introduced the concept of forbidden faulty sets. The components of any forbidden faulty set
cannot be faulty at the same time. For the n-cube, each forbidden faulty set is defined to
consist of all n neighbors of one processor; thus, there are 2" forbidden faulty sets in an
n-cube, each containing n processors. Later the conditional node-faults [42] were defined in
such a way that every node is required to have at least g fault-free neighbors. It is also
intuitive to extend this concept by defining conditional link-faults, which require that every
node will be incident to at least g fault-free links. In this chapter, we allow node-faults and
link-faults can take place simultaneously. Moreover, we concentrate only on g = 1. Suppose
that u is an arbitrary node of a graph G, and v is a neighbor of u in G. We say v is a
reachable neighbor of u if both v and (u,v) are fault-free; otherwise, v is an unreachable
neighbor of u. We will compute the fault diameter of an n-cube, in which every node is
required to have at least one reachable neighbor.

5.1 Basic properties of hypercubes

Before we proceed to obtain the main results, we introduce some basic properties of hy-
percubes. Again, we use a boldface letter to denote any node of hypercube. Let Q% be
a subgraph of @, induced by {u € V(Q,) | (u); = j} for 0 <i <n—1and j € {0,1}.
Obviously, Q% is isomorphic to @,_;. Then the node partition of @, into subgraphs (?°
and Q%' is called j-partition. The set of crossing links between Q%% and Q%!, denoted by
E:={(u,v) € E(Q,) | ue V(Q:),v e V(Q:")}, consists of all i-dimensional links of Q,,.
In order to clearly indicate the faulty elements in network G, we use F'(G) to denote the set
of all faulty elements in G.
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The following lemma characterizes a collection of n disjoint paths in @,,.

Lemma 5.1. [55] For any two nodes, u and v, of Q,,, there exist n internally node-disjoint
paths joining u and v, h(u,v) of which are of length h(u,v), and the other n — h(u,v) of
which are of length h(u,v) + 2.

The next corollary follows directly from Lemma 5.1.

Corollary 5.1. Let F' be a set of n — 1 node-faults and/or link-faults in Q,,. For any pair
u, v of distinct nodes in Q,, — F, then dg, _r(u,v) < h(u,v) + 2.

By computing the upper bound of distance between any pair of distinct nodes, Latifi [41]
investigated the fault diameter of (),, under the assumption that every node has at least one
fault-free neighbor. It is noticed that only node-faults were addressed in [41].

Theorem 5.1. [/1] Let F' be a set of 2n — 3 faulty nodes in Q,, such that every node of
@ has at least one fault-free neighbor. For any pair u,v of distinct nodes in Q, — F', then
do,-r(u,v) < h(u,v)+ 4.

Theorem 5.2. [/1] Let F' be a set of faulty nodes in Q,, such that every node of Q,, has at
least one fault-free neighbor. Then the diameter of QQ, — F is computed as follows:

D(Q,—F)={ n+1 if|F|=n—1,
n+2 if|F|=2n-3.

5.2 Shortest paths in faulty hypercubes
We can improve Theorem 5.1, mentioned earlier, by proving the next three propositions.

Proposition 5.1. Suppose that u and v are any two distinct nodes of @, with h(u,v) = n.
Let F be a set of 2n — 3 hybrid node-faults and/or link-faults in Q,, such that both u and v
are fault-free with at least one reachable neighbor. Then dg, _r(u,v) = n.

Proof. It is not difficult to verify that this proposition holds for n = 2. Hence we concern
only the case that n > 3. Let I, = {i1,...,4,} be aset of p distinct integers of {0,1,...,n—1}
such that (u)",...,(u)” are reachable neighbors of u. Similarly, let I, = {4},...,4,} C
{0,1,...,n—1} be a set of ¢ distinct integers such that (v)%, ..., (v)% are reachable neighbors
of v. We distinguish the following two cases.

Case 1: Suppose that I, NI, # 0. Let j € I, N I,. Then we partition @, into Q%°
and @%'. For convenience, let Fy = F(Q%°) and F; = F(Q%!'). Since h(u,v) = n, nodes
u and v are located in different subcubes. Moreover, we have h(u, (v)?) = n — 1. By the
pigeonhole principle, we have |Fy| < n — 2 or |Fj| < n — 2. Without loss of generality, we
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assume that |Fy| < n — 2. Moreover, we assume u € V(@Q7%). By Lemma 5.1, Q7 has at
least one fault-free path L of length n — 1 between u and (v)’. Hence (u, L, (v)’,v) forms
a fault-free path of length n between u and v.

Case 2: Suppose that I,NI, = (). Since |F| = 2n—3, we can conclude that 3 < p+¢q < n.
Without loss of generality, we assume that p > ¢. Thus we have p > 2.

Suppose first that n = 3. We have p = 2 and ¢ = 1. Let j € I,. Without loss of
generality, we assume that u € V(Q%%). Obviously, Q%9 is fault-free, and it has a fault-free
path L of length two between u and (v)’. Then (u, L, (v)?,v) is a fault-free path of length
3. See Figure 5.1(a).

Suppose that n > 4. Let j € I,. Since I, NI, = (), (u)’ is a reachable neighbor of
u, whereas (v)? is an unreachable neighbor of v. Again, we assume u € V(Q%%). Let
Fy = F(Q%% and F, = F(Q}'). If |Fy| < n—2, Lemma 5.1 ensures that Q%! has a fault-free
path R of length n—1 between (u)? and v. Hence (u, (u)?, R, v) is a fault-free path of length
n between u and v. See Figure 5.1(b).

Suppose that |Fy| > n—1. Thus we have |Fo|+|Ei| <n—2. Let I, = {k € I, | (v)*)7 €
Ng,_r((v)¥)}, where Ng, _r((v)F) is the set of all reachable neighbors of (v)*.

Subcase 2.1: Suppose that I, #+ (. Let k € I, and © be a subgraph of @),, induced by
{xeV(Q,) | (x); = (u);,(x)r = (u)x}. Then O is an (n—2)-cube inside Q?.°. Because (v)
is an unreachable neighbor of v and it is outside O, there are utmost n — 3 faulty elements
in ©. By Lemma 5.1, © has a fault-free path L of length n — 2 between u and ((v)¥)7. So
(u, L, ((v)*)?, (v)¥,v) is a fault-free path of length n. See Figure 5.1(c).

Subcase 2.2: Suppose that I, = 0. Let k; € I,. Since |F| <2n—3and p+q < n, there
exists an integer ky € {0,1,...,n — 1} — {j, k1} such that ((v)¥)*2 is a reachable neighbor
of (v)¥ and (((v)*)*2)J is a reachable neighbor of ((v)*)*2. Let w = ((v)*)*2 and Q be a
subgraph of @), induced by {x € V(Q,,) | (x); = (u);, (x)r, = (W)k,, (X)k, = ()g, }. Then
is an (n — 3)-cube inside Q%°. Obviously, (u)*', (v)?, and ((v)*')7 are unreachable neighbors
of u, v, and (v)*, respectively. Since (u)*, (v)/, and ((v)")/ are outside {2, there are
utmost n — 4 faulty elements in ). It follows from Lemma 5.1 that () has a fault-free path L
of length n — 3 between u and (w)?. So (u, L, (w)’, w, (w)*2 = (v)¥ v) is a fault-free path
of length n between u and v. See Figure 5.1(d).

In summary, we conclude that dg, —r(u,v) = n, and the proof is completed. O

Proposition 5.2. Suppose that u and v are any two distinct nodes of QQ,, n > 3. Let F be
a set of utmost 2n — 4 hybrid node-faults and/or link-faults in @, such that both u and v
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Figure 5.1: Hlustration for Proposition 5.1.

are fault-free with at least one reachable neighbor. Then

n+1 if h(u,v) =n —1 and n > 3,
n if h(u,v) =n —2 and n # 4,
don-—r(,v) < n+ 2 if h(u,v) =n—2 andn =4,
h(u,v)+4 ifh(u,v) <n-—3andn > 4.

Proposition 5.3. Suppose that u and v are any two distinct nodes of QQ,, n > 2. Let F' be
a set of utmost 2n — 3 hybrid node-faults and/or link-faults in @, such that both u and v
are fault-free with at least one reachable neighbor. Then

n+1 if h(u,v) =n—1andn > 2,
dgu—r(u,v) < { h(u,v)+4 if h(u,v) <n—2 andn > 3.

Proof. For the sake of clarity, we prove Proposition 5.2 and Proposition 5.3 simultaneously.
The proof is by induction on n. Obviously, the result is true for n = 2. As our inductive
hypothesis, we assume that the result holds for @,,_; with n > 3. Since h(u,v) < n —1,
we can partition (), along some dimension j such that both u and v are in the same
subcube. By transitivity, we assume that 7 = 0. Without loss of generality, we assume that
u,v € V(Q%). For convenience, let Fy = F(Q%°) and Fy = F(Q%'). Then we distinguish
two cases.
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Case 1: Suppose that |Fi| < 2n —5 = 2(n — 1) — 3. First, we consider the case
that both u and v have at least one reachable neighbor in Q%!. Then it follows from
the inductive hypothesis that dg,-r(u,v) = dyo1_p (u,v) = n—11if h(u,v) =n —1 for
n >3, dg,-r(u,v) < dgoa F(uv)<n1fh(uv)—n—2forn>3 and dg, —p(u,v) <

o _ F(u v) < h(u, V)+41fh(u v) <n—3 for n > 4. See Figure 5.2(a).

Now we consider the case that either u or v has no reachable neighbors in Q%!'. Thus,
we have |Fi| > n — 1 and |Fp| + |E?| < n —2. Since n — 1 < |Fy| < 2n — 5, we have
n > 4. Without loss of generality, we assume that u has no reachable neighbors in Q%!.
Accordingly, (u)? is the unique reachable neighbor of u.

Suppose first that h(u,v) = n — 1. Since h((u)°,v) = n, it follows from Proposition 5.1
that dg, r((n)°,v) = n. Let P be a fault-free path of length n between (u)° and v.
Obviously, we have u ¢ V(P). Hence (u, (u)’, P,v) turns out to be a fault-free path of
length n + 1. See Figure 5.2(b).

Suppose that h(u,v) < n — 2. If (v)° is a reachable neighbor of v, then it follows from
Corollary 5.1 that dgoo_g ((0)°, (v)?) < h((0)?, (v)°) +2 = h(u,v) + 2 since [Fy| < n — 2.
Let R be a shortest path between (u)? and (v)? in Q%° — Fjy. Then (u, (u)?, R, (v)°, v) forms
a fault-free path of length at most h(u,v) + 4. See Figure 5.2(b). In particular, we have
|Fo| <n—3if |F| = 2n —4. Therefore, Q"° — Fy has a path R of length n — 2 between (u)°
and (v)%if h(u,v) =n — 2 and |F| = 2n — 4. As a result, (u, (0)?, R, (v)°,v) is a fault-free
path of length n. On the other hand, if (v)° is an unreachable neighbor of v, then we have
(v)P € For (v,(v)?) € F. By Lemma 5.1, Q%° has n — 1 internally node-disjoint paths
Li,...,L,_1 between (u)°? and (v)°. For clarity, L; can be written as ((u)°, L., ((v)%)¢, (v)°)
for1<i<n—1. Let T; = ((0)°, L}, ((v)°), (v)’, v) with 1 <i <n—1. Then {Ty,...,T,,_1}
is a set of n — 1 internally node-disjoint paths between (u)’ and v. We distinguish two
subcases.

Subcase 1.1: One of {1y, ..., T, }, say T}, is fault-free. Hence (u, (u)?, T}, v) is a path
of length at most h(u,v)+4 between u and v. See Figure 5.2(d). In partlcular, we consider
the case that h(u,v) = n — 2. Clearly, n — 2 paths of {7},...,7,_1} are of length n — 1.
When n > 5, u and v have no common neighbors. Since

({<v>0,<v,<v>0>}u Ut . ) ) (U v ) -0,

at most n — 3 faults may appear on 11, ...,7T,_1. Hence there still exists a fault-free path T},
of {T1,...,T,_1} such that {(T;) = n — 1 if n > 5. Then (u, (u)?, T}, v) is a fault-free path
of length n.

Subcase 1.2: None of {T1,...,T,_1} is fault-free. We claim first that h(u,v) = 2.
Moreover, it is noticed that |F'| = 2n — 3 in this subcase. Because T, ..., T, _; are internally
node-disjoint and u has n — 1 unreachable neighbors in Q%! we conclude that T;, 1 <
i < n — 1, contains exactly one faulty element. Since V(T;) N V(Q%!) = {v,(v)'} for
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1 < i < n—1, there exist two distinct integers t; and t5, 1 < t1,t5 < n — 1, such that
F(T,,) = {(v)"} = {(u)?} and F(T,,) = {(v)2} = {(u)"*}. By transitivity, we assume
that t;, = n — 1 and ty = n — 2. Again, Lemma 5.1 ensures that Q%! has n — 1 internally
node-disjoint paths Ry,..., R,_; of length at most 4 between u and v. For clarity, we can
write R; as (u, R, (v)’,v) for 1 < i < n— 1. Thus we have (R, 2) = {(R,_;) = 2 and
((R;)) = 4 for 1 < i < n— 3. Because (v)? is an unreachable neighbor of v, thus v has
a reachable neighbor in Q%' say (v)* with some k € {1,...,n — 3}. To be precise, we
write R, = (0, %, yx, (V)5 v) and Ly = ((0)°, (x2)°, (y2)%, (v)*)?, (v)°), where x; is some
neighbor of u, and y; is a common neighbor of x; and (v)*.

Subcase 1.2.1: Suppose that ((v)*)? is an unreachable neighbor of (v)*. Let S,gl) =
(w)°, (x)°, (yx)°) and S = ((y%)°, &, (v)¥) be two paths. Because Ty has only one faulty
element, path S,g,l) is fault-free. Since (V(S,f)) U E(S,iz))> N (U#k V(T;) U E(TZ)> = (), path

S,?) is also fault-free. Then (u, (u)°, S]il), (yx)°, Sl?), (v)¥,v) turns out to be a fault-free path
of length 6. See Figure 5.2(e).

Subcase 1.2.2: Suppose that ((v)*)? is a reachable neighbor of (v)*. Let © be a
subgraph of Q%° induced by {x € V(Q%°) | (x), = (u),,p € {1,...,n—3}—{k}}. Obviously,
© is isomorphic to 3. Then we claim that |F(©)] < 2. Since |Fy| < n — 2, this claim holds
for n = 4 trivially. In what follows, we concern that n > 5. It is easy to see that Ly, L, _s,
and L, are inside ©. Moreover, we have (V(T;) U E(T;)) N (V(©) U E(0)) = {(u)°} for
ie{l,...,n—3}—{k}. Since T; contains one faulty element for each 1 <i <n—1, at least
n — 4 faulty elements are outside ©; i.e., |F(©)| < 2. Since h((u)?, ((v)*)?) = 3, it follows
from Lemma 5.1 that © has a fault-free path S of length 3 between (u)? and ((v)*)?. As a
result, (u, (n)°, S, (v)¥)?, (v)k,v) is a fault-free path of length 6. See Figure 5.2(f).

Case 2: Suppose that |Fy| > 2n — 4. Thus, we have |Fy| + |E?| < 1.

Subcase 2.1: Suppose that (u)? and (v)? are reachable neighbors of u and v, respec-
tively. Since |F;| < 1, it follows from Lemma 5.1 that Q%! has a fault-free path R of length
at most h(u,v) + 2 between (u)? and (v)°. Then (u, (u)’, R, (v)% v) is a fault-free path
of length at most h(u,v) 4+ 4 between u and v. See Figure 5.2(g). Obviously, we have
{(R) = h(u,v) if |F| < 2n — 4. Therefore, (u,(u)’, R, (v)° v) turns out to be a fault-free
path of length h(u,v) + 2.

Subcase 2.2: Suppose that (u)? or (v)° is an unreachable neighbor of u or v, re-
spectively. If |F| < 2n — 4, then |Fi| + |E?] = 0. Thus we have |F| = 2n — 3 in
this case. Since |Fj| + |E°| < 1, we assume that (u)? is an unreachable neighbor of u
and (v)? is a reachable neighbor of v. Let (u)* be a reachable neighbor of u with some
ke {1,....n—1}. If (w)* = v, then we have dg, p(u,v) = h(u,v) = 1. In what
follows we assume (u)* # v. Since |Fy| + |E°| < 1, node ((u)*)/ is a reachable neigh-
bor of (w)k. If (u), # (V)i, then A((u)*,v) = h(u,v) — 1. By Lemma 5.1, Q%! has
a fault-free path R of length at most h((u)*,v) + 2 = h(u,v) + 1 between ((u)*)° and
(v)°. Then (u, (u)*, ((0)*)% R, (v)° v) is a fault-free path of length at most h(u,v) + 4.
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(9) (h)

Figure 5.2: Ilustration for Proposition 5.3.

Otherwise, if (u), = (v)g, then h((u)*,v) = h(u,v) + 1. Since |F}| < 1, Lemma 5.1
ensures that Q%! has a fault-free path R of length h(u,v) + 1 between ((u)*)? and (v)°.
Then (u, (u)*, (0)F)% R, (v)°,v) is a fault-free path of length at most h(u,v) + 4. See
Figure 5.2(h).

The proof is completed. O

According to Lemma 5.1 and Propositions 5.1—5.3, we can compute the fault diameter
of hypercubes as follows.

Theorem 5.3. Let F' be a set of hybrid node-faults and/or link-faults in Q,, n > 3, such
that every node of Q,, has at least one reachable neighbor. Then the diameter of Q), — F' is
computed as follows:

n if [F] <n—2andn >3,

n+1 ifn—1<|F|<2n—4 andn #4,
DQ,—F)=¢ n+1 if|[F|=3andn =4,

n+2 if |F|=4 andn =4,

n+2 if|F|=2n—3 andn > 3.

Proof. Suppose first that n # 4. The results are direct consequences from Lemma 5.1 and
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Figure 5.3: The distance between 0100 and 0111 in the faulty 4-cube is 6.

Propositions 5.1—5.3.

Suppose that n = 4. Applying Lemma 5.1 and Propositions 5.1—5.3, we have D(Q, —
F)=4if |F|<2,D(Qs—F)=5if |[F| =3, D(Qs— F) <6if |F| =4, and D(Q4— F) =6
if |F| = 5. Let F = {0000,0101,0110, (0111,1111)}. Then dg,-r(0100,0111) = 6. See
Figure 5.3. Therefore, D(Q, — F) = 6 if |F| = 4.

The proof is completed. 0
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Chapter 6

Paths of Variable Lengths in
Hypercubes with Conditional
Link-faults

The minimum degree of a graph G, denoted by 6(G), is defined to be min{degs(v) | v €
V(G)}. Again we use F(G) to denote the set of all faulty elements in graph G. Clearly, a
graph G will have no hamiltonian cycles if (G — F/(G)) < 2. Moreover, a graph G will have
no hamiltonian paths between some pair of distinct nodes if 6(G — F(G)) = 2. To understand
more about networks’ fault-tolerant capabilities in the perspective on path embedding, we
concern the model of conditional faults as introduced in the preceding chapter. Throughout
out this chapter, a graph G is said to be conditionally faulty if and only if §(G — F(G)) > 2.
In order to simplify our discussion, only link-faults are addressed in this chapter. Thus a
network is conditionally faulty if its every node is incident to at least two fault-free links.

We focus only on hypercubes. As before we denote by Q% a subgraph of Q,, induced by
{ueV(Q,) | (u);=7j},for0<i<n—1andje{0,1}. Let u be any node of Q,, and let
v = ((u)?)!. Suppose that F = {(u,(u)’) [2<i<n—1}U{(v,(v))|2<i<n-—1}is
a set of 2n — 4 faulty links in @),,. Obviously, (), — F' has no hamiltonian paths between u
and (u)!. For this reason, we concern 2n — 5 faulty links only.

The condition of requiring every node to be incident to at least two fault-free links is
meaningful. Suppose that the probabilities of link-failures are independent and identical.
Let Pp(n) denote the probability that every node of an n-cube, containing 2n — 5 faulty
links, is incident to at least two fault-free links. As discussed in Section 1.3 of Chapter 1,

24><(§)
we have Pr(3) =1, P(4) =1 — iR and
3
AL nx2""!—n 4+ (™ nx2"~l_n
Pr(n)=1- ( n—>5 )(n><2"1)(n_1)( n—4 )
2n—>5

for n > 5. Apparently Pp(n) approaches to 1 as n increases. See Table 6.1.
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Table 6.1: Values of Pp(n).

n Pr(n)

5 > (0.999

6 > (0.99999

7 >1—-8x107"°
8 >1—4x1071
9 >1—4x10"16
10 >1—-9x 1072
11 >1—6x10"%
12 >1—9x 10732
13 >1—4x10738
14 >1-3x107%
15 >1-7x10"%

Under the consideration of 2n — 5 conditional link-faults, Chan and Lee [8] discussed
the existence of hamiltonian cycles in an n-cube with 2n — 5 conditional link-faults. In
addition, Tsai [66] showed that an injured n-cube contains a fault-free cycle of every even
length from 4 to 2" inclusive even if it has up to 2n — 5 conditional link-faults. It was also
proved in [66] that an n-cube with 2n — 5 conditional link-faults is hamiltonian laceable and
strongly hamiltonian laceable. As Shih [56] showed, any fault-free link of a faulty n-cube lies
on a cycle of even length in the range from 6 to 2" when up to 2n — 5 conditional link-faults
may occur. In other words, there exists a path of odd length from 1 to 2" — 1, excluding 3,
between any two adjacent nodes in a faulty n-cube with 2n — 5 conditional link-faults. We
are curious whether paths of variable lengths still can be constructed to join two arbitrary
nodes of distance greater than 1. Later we will show that a conditionally faulty n-cube, with
2n — 5 faulty links, actually contains a path of length [ between any pair u,v of distinct
nodes, with distance d* > 1, for each integer [ satisfying both d* <1 < 2" —1 and 2|(l — d*).

6.1 Partition of a faulty n-cube

Suppose that Q,,, n > 4, is conditionally faulty with 2n — 5 faulty links. For convenience,
let F'= F(Q,) and F; denote the set of faulty i-dimensional links. Since |F| = 2n — 5, there
are utmost two nodes of (), incident to n — 2 faulty links. For any two distinct nodes, u and
v, of @, the procedure Partition(Q,, F', u, v) determines a dimension j according to the
following rules:

(1) Suppose that there are exactly two nodes incident to n — 2 faulty links. Then the two
nodes must be connected by a faulty link (w,(w)7) with some j € {0,1,...,n — 1}.
Obviously, both Q7% and @Q’'! are conditionally faulty with n — 3 faulty links.

(2) Suppose that there is only one node, namely z, incident to n — 2 faulty links. Let
S={0<i<n—1|(z(2)") € F}={ks,...,k,} and {0,1,....n—1} =S = {ky, ko }.
Then both Q%% and Q%' are conditionally faulty for each i € S.
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(2.1) If there exists a dimension j of S such that |F;| > 1, then we partition @, along
dimension j. Otherwise, if there exists a dimension j of S such that |F(Q7°)] -
|F(Q%1)] > 0, then we partition @Q,, along dimension j. Obviously, both Q%% and
Q%' contain 2n — 7 or less faulty links.

(2.2) Suppose that |F;| = 1 and |F(Q%%)] - |F(Q%Y)| = 0 for every i € S. That is, for
any i € S, either |F(Q%%)| or |F(Q%')| remains 2n — 6. Hence, for any (x,y) €
F —{(z,(2)") | i € S}, we have (x); = (y); = (z); for every i € S. That is, for
(x,y) € F—{(z,(2)") | i € S}, we have x,y € {z, (2)*, (2)*, ((z)*)*2}. Because
both (z, (z)*) and (z, (z)*?) are fault-free, it follows that F'—{(z, (z)?) | i € S} C
{((2)™, ((2)")"), ((2)", ((2)")*)}. Since |F —{(z, (2)") | i € S} =n—-3 <2,
we obtain n € {4,5}. The faulty links are distributed as illustrated in Figure 6.1.

(2.2.1) If there exists a dimension j of S such that (z)? is neither u nor v, then we
partition (), along dimension j.

(2.2.2) Otherwise, we have {u,v} = {(z)" | i € S}; thus, we have n = 4. In this
case, we partition )4 along any dimension j € S. Clearly, u and v belong to
the same partite set of ().

(3) Suppose that every node is incident to utmost n — 3 faulty links. Obviously, every
(n — 1)-cube in @, is conditionally faulty. Let S ={0<i<n-—1|F; # 0}.

(3.1) Suppose that |F};| > 2 with some j € S. Then both Q%° and Q%' contain 2n — 7
or less faulty links.

(3.2) Suppose that |F;| < 1 for each i € S. Clearly we have 2n—5 = |F| = |U,.s Fi| =
Y ics | Fil < niie, n <5, Then a dimension j of S can be chosen so that both
Q79 and Q%! contain 2n — 7 or less faulty links.

(3.2.1) When n = 5, we claim that |F(Q%%)] - |F(Q%Y)| > 0 for some j € S. Let
e; = (bia-..bii...bio, big...bs...bp) be an i-dimensional link of Qs for i €
{0,1,2,3,4}. Suppose that F' = {eg, €1, €2, e3,€4} is a faulty set of Q5 such
that |F(QL°)] - |F(QL")| = 0 for each i € {0,1,2,3,4}. Then we have by; =
bi; = bo; = bg; = by, for each i € {0,1,2,3,4}; i.e., all faulty links are incident
with an identical node. This contradicts the assumption that every node is
incident to utmost n — 3 faulty links.

(3.2.2) Similarly, there exists an integer j € S such that |F(Q%°)| - |[F(Q%")| > 0.

In summary, the proposed procedure determines a j-partition of Q,, such that both Q7:°
and Q7! are conditionally faulty with |F(Q%%)] + |F(Q%')] < 2n — 6.

6.2 Path embedding in faulty hypercubes

The following theorem characterizes a property of some shortest paths in a faulty n-cube.
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(b)

Figure 6.1: The distributions of faulty links indicated in (2.2).

Theorem 6.1. Let F' be a set of 2n — 5 faulty links in ), such that every node of Q, — F
has at least two neighbors. Moreover, let j be an integer of {0,1,...,n — 1} such that both
Q29 and Q%' are conditionally faulty with 2n — T or less faulty links. Suppose that u is a
node of Q%°, and v is a node of Q. Then there exists a shortest path P* between u and v

in Qn, — F such that P* crosses the dimension j exactly once.

Proof. Since |F(Q7°%)| + |F(Q%Y)| < |F| = 2n — 5, we assume that |[F(Q%!)| < n — 3.
Since (u); # (v);, every shortest path between u and v crosses the dimension j an odd
number of times. If there exists a shortest path between u and v crossing the dimension
7 exactly once, the proof is done. Thus, we assume that one shortest path between u
and v, namely P, crosses the dimension j more than once. Accordingly, the shortest path P
can be represented as (u, Py, x1, (x1)7, Pp, (X2)7, X2, P, X3, (X3)7, . .., X, (x,.)7, Pr, v) with odd
integer r > 3. For convenience, let H = ((x1)7, Py, (x2)?, X2, P5, X3, (x3)7, . . ., X, (X,)7, Py, V).
By Corollary 5.1, we have dy1pgin((%1)7,v) < h((x1)?,v) + 2. Suppose that R is a
shortest path between (x;)7 and v in Q%' — F(Q%'). Then we have ((H) < ¢(R). Since
r > 3, we have ((H) > h((x1)’,v) +2 > ((R). As a result, P* = (u, Py, %y, (x1)’, R, V)
happens to be a shortest path between u and v and it crosses the dimension j exactly
once. U

Theorem 6.2 is proved in [71].

Theorem 6.2. [71] Let F be a set of n — 2 faulty links in Q,, (n > 2). Suppose that u and
v are any two different nodes of Q,, — F. Then Q, — F contains a path of length | between
u and v for every l satisfying dg, —r(u,v) <1 <2"—1 and 2|(l — dg,-r(u,Vv)).

As Tsai [66] showed, an n-cube with 2n — 5 conditional link-faults is both hamiltonian

laceable and strongly hamiltonian laceable.

Theorem 6.3. [66] Let F be a set of faulty links in Q,, (n > 3) such that every node of
Q. — F has at least two neighbors. Then @), — F is both hamiltonian laceable and strongly
hamiltonian laceable if |F| < 2n — 5.
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The next two lemmas will be applied to prove Theorem 7.3.

Lemma 6.1. [66] Assume that n > 2. Let x and u be two distinct nodes of Vo(Qy); let'y
and v be two distinct nodes of V1(Q,). Then there exist two node-disjoint paths P; and Py
such that the following conditions are satisfied: (1) Py joins x toy, (2) Py joinsu to v, and

(3) V(P) UV (P) =V(Qn).

Lemma 6.2. Let v be any node of Q,, (n > 3), and let (w,b) be any link of Q,, —{v}. For
every odd integer 1 in the range from 1 to 2™ — 3, Q,, — {v} has a path of length | between w
and b.

Proof. Since (), is node-transitive, we assume that v = 0". We prove this lemma by the
induction on n. The induction base depends on )3. With the link-transitivity, the required
paths are listed in Table 6.2.

Table 6.2: The paths of variable lengths between w and b in @3 — {000}.
(w,b) = (011,001 (011,111,101,001), (011,111,110, 100, 101, 001

) )
(w,b) = (011,111) | (011,001, 101, 111), (011,001, 101, 100, 110, 111)
(w,b) = (101,001) | (101,111, 011,001), (101,100,110, 111,011, 001)
(w,b) = (101,100) | (101,111, 110, 100Y, (101, 111,011,010, 110, 100)
(w,b) = (101, 111) | (101,100, 110, 111), (101, 100, 110,010, 011, 111)

When n > 4, we assume that the result is true for (),_;. Then we partition @, along
some dimension p other than dim((w,b)). Obviously, v is located in QP°.

Case 1: Suppose that (w,b) is in QPY. By the inductive hypothesis, Q?° — {v} has a
path of odd length [ between w and b for any odd integer [, from 1 to 2"~' —3. Let H be a
path of length 2! — 3 between w and b in Q7Y — {v}. Since 2"! —3 > 1, we can represent
H as (w,u, Hy,b). By Theorem 6.2, Q%! has a path H; of odd length [; between (w)P and
(b)P for any odd integer /; from 1 to 27! — 1. As a result, (w, (w)?, H;, (u)?,u, Hy,b) is a
path of odd length 2"~! — 2 + [;, in the range from 2"~ ! — 1 to 2" — 3.

Case 2: Suppose that (w, b) is in Q?'. By Theorem 6.2, Q»' has a path of odd length [,
between w and b for any odd integer /; from 1 to 2"~'—1. Let H be a path of length 2"~ —1
between w and b in QP'!. Then we can choose a link (x,y) on H such that v ¢ {(x)?, (y)"}.
Hence, we can represent H as (w, Hj,x,y, H/,b). By the inductive hypothesis, Q»° — {v}
has a path Hy of odd length [y between (x)P and (y)? for any odd integer Iy from 1 to 2"~ —3.
As a result, (w, H{, x, (x)?, Hy, (y)?,y, H,b) is a path of odd length 2"~! 4 [;, in the range
from 27! + 1 to 2" — 3. O

As Shih [56] showed, any fault-free link of @), lies on a cycle of even length from 6 to 2"
when up to 2n — 5 conditional link-faults may occur.
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Theorem 6.4. [56] Let I be a set of 2n — 5 faulty links in Q,, such that every node of
Q. — F has at least two neighbors. Suppose that u and v are any two adjacent nodes of
@, — F. Then Q, — F contains a path of odd length | between w and v if | is in the range
from 1 to 2" — 1 excluding 3.

In the following discussion, we devote to constructing paths between any two nodes with
distance greater than 1.

Theorem 6.5. Let F' be a set of 2n — 5 faulty links in @, (n > 3) such that every node of
Q. — F has at least two neighbors. Suppose that u and v are two arbitrary nodes of @), — F
with distance d* = dg, —p(u,v) > 2. Then Q, — F' contains a path of length | between u and
v for every integer | satisfying both d* <1< 2" —1 and 2|(l — d*).

Proof. Applying procedure Partition(Q),,, F', u, v), we can determine a j-partition of @,
such that both Q7% and Q7! are conditionally faulty with |F(Q7%)|+ |F(Q%Y)] < 2n—6. As
a result, the proof can proceed by the induction on n. The induction base, depending upon
Qs3, follows from Theorem 6.2. As our inductive hypothesis, we assume that the result holds
for Q,,—1 when n > 4.

Case I: Suppose that u and v are in the different partite sets of (),,. Without loss of
generality, we assume that u € V5(Q,) and v € Vi(Q,). By Theorem 6.3, ), — F is
hamiltonian laceable. Moreover, a shortest path between u and v can be easily obtained by
a simple breadth-first search. Therefore, we mainly concentrate on the paths of odd lengths
in the range from d* + 2 to 2" — 3.

Subcase I.1: Suppose that |F(Q%°)] < 2n — 7 and |F(Q7')| < 2n — 7. Without loss of
generality, we assume that |F(Q20)| > |F(Q%')|; thus, |F(Q%Y)| <n — 3.

Subcase 1.1.1: Suppose that both u and v are in Q%°. By the inductive hypoth-
esis, Q3% — F(Q7°) contains a path Hy of length 2"~! — 1 between u and v. Let A =
{(Ho(i), Ho(i + 1)) | 1 <i <271 i =1 (mod 2)} be a set of disjoint links on Hy. Since
|A| = (2”7—21_11 > 2n — 5 for any n > 4, there exists a link (w,b) of A such that (w, (w)’),
(b, (b)7), and ((w)7, (b)?) are all fault-free. Hence, Hy can be written as (u, H), w, b, H),v).
Since |F(Q7:Y)| < n — 3, it follows from Theorem 6.2 that Q' — F(Q%') contains a path
H, of odd length I; between (w)’ and (b) for any odd integer [; from 1 to 2"7! — 1. As a
result, (u, Hy, w, (w)?, Hy, (b)?, b, HJ,v) is a path of odd length 2"~! +;, in the range from
271 41 to 2" — 1. See Figure 6.2(a) for illustration.

The paths of lengths less than 2"~ +1 can be obtained as follows. By Proposition 5.3, we
have d* = dq,—r(u,v) < h(u,v) +4 and dg;0_pgi0) (0, v) < h(u,v) + 4. By the inductive
hypothesis, Q70 — F(Q%°) has a path Ty of length Iy between u and v for any odd integer
lo in the range from dgio_p g0 (0, v) to 2"t — 1. If d* = h(u,v) or d* = h(u,v) + 4, then
dQ%O_F(Q%O)(u, V) = d*. Otherwise, if d* = h(u, V) + 2, then dQ%O_F(Q%O)(u, V) < d*+2.

Subcase 1.1.2: Suppose that both u and v are in Q%'. Since |F(Q%')] < n — 3, it
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Figure 6.2: Hlustration for Subcase I.1.

follows from Corollary 5.1 that d* < dQﬁ,l_F(Q%@)(u, v) < h(u,v) + 2. Thus, there exists a
shortest path between u and v in @),, — F' that does not cross the dimension j. By inductive
hypothesis, Q%! — F(Q%') contains a path T} of odd length [; between u and v for each
odd integer Iy from d* to 2"~' — 1. Let T, be a path of length 2"~! — 1 between u and v
in Q%' — F(Q'). Moreover, let A = {(T(3), Tl(z +1) |1 <i<2"1i=1 (mod 2)} be
a set of disjoint links on 7. Since |A| = [2= _11 > 2n — 5 for n > 4, there exists a link
(w,b) of A such that (w, (w)?), (b, (b)7), and (( )7, (b)7) are all fault-free. Hence, T can
be written as (u, T, w, b, T}, v). Since |F(Q%°)| < 2n — 7, it follows from Theorem 6.4 that
Q39 — F(Q%°) contains a path Ty of odd length Iy between (w)’ and (b)’ for any odd integer
lp in the range from 1 to 2"~! — 1 excluding 3. As a result, (u, T}, w, (w)’, Ty, (b)?, b, T}, v)
is a path of odd length 27~! + [y, in the range from 2"~! + 1 to 2" — 1 excluding 2"~! + 3.
See Figure 6.2(b) for illustration.

The path of length 2"~ + 3 is discussed as follows. When n = 4, we have |F (Q%O)\ 1.
Thus, there exists an integer k of {0,1,2,3} — {j, dim((w,b))} such that ((w)7, ((w)?)F),
(b7, (b)), and (((w)))F, (b)7)") ave all fault-free. Hence, (u, T}, w, (w)?, (w)/)¥, (b)),
(b)?,b, Ty, v) is a path of length 11. See Figure 6.2(c) for illustration. When n > 5, we
have |A| — |F| = |A| — (2n —5) = [znle_w (2n — 5) > 2. Thus, there is a link (x,y) of
A, other than (w,b), such that (x,y) and (w,b) have no shared endpoints and (x (x)j ),
(y, (y)), and ((x)7, (y)’) are all fault-free. Without loss of generality, T can be written as
(u, R}, w,b, R, x,y,R{",v). Hence, (u,Rj,w,(w)’, (b) b, R],x,(x)/, (y),y,R/',v) is a
path of length 2”1 4 3. See Figure 6.2(d).

Subcase 1.1.3: Suppose that u is in Q%°, and v is in Q%'. By Theorem 6.1, we have a
shortest path P* between u and v in (), — F such that P* crosses the dimension j exactly
once. Thus, P* can be represented as (u, Py, x, (x)’, P;,v), where P, is a shortest path
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joining u to some node x in Q%% — F(Q%°), and P; is a shortest path joining (x)7 to v in
Q7 — F(Q7Y). See Figure 6.2(e,f) for illustration.

Subcase 1.1.3.1: Suppose that ¢(Py) > 0 and £(P;) > 0. By Theorem 6.2, Q%! — F(Q%1)
contains a path T} of length I; between (x)? and v for each [y satisfying £(P) <1; <211
and 2|(I; — ¢(Py)). Suppose that ¢(Py) = 1. It follows from Theorem 6.4 that Q%% — F(Q7:0)
contains a path T of odd length [y between u and x for any odd integer [y in the range from 1
to 2”71 —1 excluding 3. Suppose that ¢(Fy) > 1. By the inductive hypothesis, Q%% — F'(Q?:°)
contains a path Tj of length ly between u and x for each [ satisfying £(FPy) < lp <2771 —1
and 2|(ly — £(Pp)). As aresult, (u, Ty, x, (x)?,T1, v) is a path of odd length Iy +1; + 1, in the
range from d* to 2" — 3.

Subcase 1.1.3.2: Suppose that ((Fy) = 0 or £(P;) = 0. Since d* = dg,—r(u,u) > 1,
we have u # x or v # (x)/. With symmetry, we assume that ¢(Py) = 0. By the inductive
hypothesis, Q%! — F(Q%!) contains a path Tj of even length [; between (x)? and v for each
even integer I; from ¢(P;) to 2"71 —2. As aresult, (u = x, (x)7, T, v) is a path of odd length
Iy + 1 in the range from /(P;) + 1= d* to 2" 1 — 1.

The paths of odd lengths in the range from 27! +1 to 2" — 1 are constructed as follows.
Since |V1(Q%%)] = 2"72 > 2n — 5 for n > 4, we can choose a node y from V(@) such that
(v, (y)?) is fault-free. Let Ry be a path joining u to y in Q%° — F(Q7%), and Ry be a path
joining (y)? to v in Q%' — F(Q%'). Similar to Subcase 1.1.3.1, H = (u, Ry, y, (y)’, R1, V) is
a path of any odd length in the range from d' = dg0_p(gi0) (0, y) + dQ%,LF(Q%,l)((y)j, v)+1
to 2" — 1. By Theorem 5.3, we have d' < (n+1) + (n — 1) +1 < 2" ! + 1 for n > 4. That
is, H can be a path of any odd length in the range from 2"~ + 1 to 2" — 1.

Subcase 1.2: Suppose that [F(Q2%)] = 2n — 6 or |F(Q%Y)| = 2n — 6. Without loss
of generality, we assume that |F(Q7°)] = 2n — 6. Thus, Q%' is fault-free. By procedure
Partition(Q,,, F', u, v), the faulty links are distributed as shown in Figure 6.1.

Subcase 1.2.1: Suppose that both u and v are in Q2°. Let (w,b) be a faulty link
of @70 such that both (w,(w)?) and (b, (b)?) are fault-free. For convenience, let Fy =
F(Q%%) — {(w,b)}. By the inductive hypothesis, Q»° — F, has a path P of odd length [
between u and v for any odd integer I in the range from d;.0o_p (u,v) to 2n=1 1. If (w, b)
is on P, we write P, as (u, P/, w,b, P/,v) and define P, = (u, P/, w, (w)?, (b)?,b, P v).
Otherwise, P, can be written as (u, P/, x,y, P/',v), where (x,y) is a link on P, such that both
(x, (x)7) and (y, (y)?) are fault-free. Similarly, we define P, = (u, P/, x, (x), (y)’,y, P, v).
Then P, is a path of length [+ 2. By Proposition 5.3, we have d* = dg,-r(u,v) < h(u,v)+4
and dio_p (0, v) < h(u,v) +4. First, if * = h(u,v) or d* = h(u, v) +4, then we have d* =
dgio_p, (1, v), and thus [ ranges from d* to 2" ' —1. Next, if d* = h(u,v)+2 = dy0_p (0, V),
then [ ranges from d* to 2"~' — 1. Finally, if d* = h(u, v) +2 and dgio_p, (0, v) = h(u,v)+4,
then [ ranges from d* + 2 to 2"~! — 1. For the final case, a shortest path between u and v in
@, — F can be constructed by a breadth-first search. In summary, the paths of odd lengths
from d* + 2 to 27! + 1 are constructed.
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By Theorem 6.2, Q%! contains a path T} of length {; between (w)? and (b)? for each odd
integer [; from 1 to 2"~ —1. Similarly, Q%' contains a path R; of length [; between (x)’ and
(y)? for each odd integer {; from 1 to 2"~'—1. Thus, (u, Py, ,,w,(w)’,T1,(b)", b, Py, |,
v) (or (u, Py, _,,x,(x)7, Ry, (y),y, Py—1_;, V) is a path of length 2"~' + [;, in the range

from 2"~ ' 4+ 1 to 2" — 1.

Subcase 1.2.2: Suppose that both u and v are in Q%'. Let (w, (w)’) be a faulty link in
Q%% such that both (w, (w)?) and ((w)?, ((w)?)?) are fault-free. Since d* = dg, _p(u,v) > 1,
we assume that (w)’ is different from u and v. Moreover, since n > 4, we assume that
te{0,1,...,n—1}—{j,i}. Let X = {((w)/, (W))*) | k & {i,j,t}}. Since |X| =n—3, our
inductive hypothesis ensures that Q7! — X contains a path T} of odd length I; between u and
v for any odd integer [; satisfying d* < l; < 2" ' —1. Let T; denote a path of length 2"~* —1
between u and v in Q! — X. It is noted that ((w)’, ((w)?)?) is on T;. Hence, T} can be
represented as (u, T}, (w)’, ((w)?)!, T}, v). By Theorem 6.4, Q7° — (F(Q7%) — {(w, (w)")})
contains a path Tj of odd length [y between w and (w)* for 5 < [y < 2" ! — 1. As a result,
(u, Ty, (W), w, Ty, (w)', ((w)?)!, T{',v) is a path of odd length 2"~' + [, in the range from
271 4+ 5 to 2" — 1. See Figure 6.3(a) for illustration.

Let Ty denote the longest path between w and (w)" in Q}° — (F(Q%°) — {(w, (w)")}).
Moreover, let A = {(To(k), To(k +1)) | 1 <k <2"7' k =1 (mod 2)} be a set of disjoint
links on Ty. The paths of lengths 2°~! + 1 and 2"~! + 3 can be obtained as follows:

(a) Since |A| = (2"721_11 > 3 for n > 4, there exists a link (x,y) of A such that both
Fn{(x,x)),(y,(y))} =0 and {(x)7, (y)’} N {u,v} = 0 are satisfied. Without loss
of generality, we assume that x € V5(@,,). By Lemma 6.1, there exist two node-disjoint
paths P, and P in Q%' such that (i) P, joins u to (x)7, (ii) P, joins (y)? to v, and (iii)
V(P)UV(P) =V (Q%). As aresult, (u, P, (x)7,x,y, (y)?, P, Vv) is a path of length
271 4+ 1. See Figure 6.3(b) for illustration.

(b) We write Ty as (W = Xg,X1,...,Xon1_; = (w)'). Then we can choose a pair of nodes
from {{xg, x3}, {x1, X4}, {X2, X5} }, namely {xy, Xz 3}, such that both F N {(x, (xz)?),
(Xp13, (Xpe3)?)} = 0 and |{(xx)?, (xx13)'} N {u,v}| < 1 are satisfied.

(b.1) Suppose that x; € Vo(Q,). If [{(xx)’, (xx13)’} N {u,v}| = 0, Lemma 6.1 en-
sures that 7! has two node-disjoint paths P; and P, such that (i) P, joins u
to (x)?, (ii) P joins (x343)’ to v, and (iii) V(P) UV (P) = V(Q%'). Hence,
(w, Py, (Xx)?, Xy Xy 1, Xit2s Xkt 3, (Xp43)?, Po, v) is a path of length 271 + 3. If
H{(xx)?, (xra3)’ N {u, v} = 1, we assume that (x;)? = v. By Theorem 4.3, Q7! —
{v} has a hamiltonian path H; joining u to (xz13)’. Then (u, Hy, (Xr13)?, Xp43,
X2, Xpt1, Xk, (Xx)? = V) is a path of length 2"~ 4 3. See Figure 6.3(c).

(b.2) Suppose that x; € V1(Q,,). The required paths can be obtained similarly.

Subcase 1.2.3: Suppose that u is in Q%°, and v is in @', If (u, (u)?) is fault-free, the
shortest path between u and v can be of the form (u, (u)’, Py, v), where P is a shortest path
joining (u)’ to v in Q%'. By the inductive hypothesis, Q%' contains a path T} of even length
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Figure 6.3: Hlustration for Subcase [.2.

l; between (u)? and v for any even integer I, from dg;1((u)’,v) = d* —1 to 2"~! —2. Then
(u, (u)?,Ty,v) is a path of odd length ; + 1 in the range from d* to 2"~' — 1. On the other
hand, if (u, (u)’) is faulty, we choose a neighbor of u, namely x, in Q%% — F(Q%°). Obviously,
we have either h((x)’,v) = h(u,v) — 2 or h((x)?,v) = h(u,v). Let R; be a shortest path
joining (x)7 to v in @%'. Then (u,x, (x)?, Ry, v) is a path of length h(u,v) or h(u,v) + 2.
Thus, we have d* < h(u,v) + 2. By Theorem 6.2, Q%! has a path T} of length I; between
(x)? and v for any odd integer I from h((x)’,v) to 2"~' — 1. Then (u,x, (x)?,T3,v) is a
path of odd length /; + 2 in the range from d* + 2 to 2"~ ! + 1.

The paths of lengths greater than 2"~! — 1 can be obtained as follows. Since |F(Q4°)| =
2n — 6, the j-partition determined by Partition(Q,,, F', u, v) guarantees that link (v, (v)7)
is fault-free if h(u,v) is odd. (See (2.2) in Section 6.1). Let (w,b) be a faulty link in
Q%9 such that both (w,(w)’) and (b, (b)?) are fault-free. By the inductive hypothesis,
Q39 — (F(Q%%) — {(w,b)}) contains a path Hy of length 2"~! — 2 between u to (v)?. Three
subcases are distinguished.

Subcase 1.2.3.1: Suppose that (w,b) is not located on Hy. See Figure 6.3(d). We
choose a link (x,y) on Hy such that (x, (x)?) and (y, (y)?) are fault-free, and ((x)7, (y)?) is
not incident with v. Thus, Hy can be represented as (u, Hj, x,y, H}J, (v)’). By Lemma 6.2,
Q%' — {v} contains a path T} of odd length [; between (x)’ and (y)’ for any odd integer
[y from 1 to 2"~1 — 3. Consequently, (u, H}, x, (x)7, T, (y)?,y, H,(v)’,v) is a path of odd
length 2"~ + [;, in the range from 27! + 1 to 2" — 3.

Subcase 1.2.3.2: Suppose that (w,b) is located on Hy, and (w,b) is not incident

with (v)7. See Figure 6.3(e). Thus, Hy can be represented as (u, Hy,w,b, H, (v)?). By
Lemma 6.2, @' — {v} contains a path T; of odd length [; between (w)’ and (b)? for
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1 <l <271 —3. Hence, (u, Hy,w,(w)’, Ty, (b)?, b, H),(v)’,v) is a path of odd length
27~ 4+ [, in the range 2"~ ! + 1 to 2" — 3.

Subcase 1.2.3.3: Suppose that (w, b) is located on Hy, and (w, b) is incident with (v).
See Figure 6.3(f). Let w = (v)?. Thus, Hy can be represented as (u, H),b,w = (v)7).
By Theorem 6.2, Q%' contains a path T of odd length I; between (b)? and v for any odd
integer [; satisfying 1 < [; < 2"7! — 1. Then (u, H}, b, (b)/,T},v) is a path of odd length
271 4+ [} — 2, in the range from 2"7! — 1 to 2" — 3.

Case II: Suppose that u and v belong to the same partite set of (,, — F'. Thus, the distance
d* between u and v is even. Without loss of generality, we assume that u,v € V4(Q,,). By
Theorem 6.3, @), — F is strongly hamiltonian laceable. Moreover, a shortest path between
u and v can be obtained by a breadth-first search. Hence, we concentrate on the paths of
even lengths in the range from d* + 2 to 2" — 4.

Subcase I1.1: Suppose that |F(Q%°)| < 2n — 7 and |F(Q71)| < 2n — 7. Without loss of
generality, we assume that |F(Q2%)| > |F(Q%")|. Thus, |F(Q%Y)] <n — 3.

Subcase I1.1.1: Suppose that both u and v are in 7%, By the inductive hypothesis,
Q39— F(@%°) has a path Hy of length 2! —2 between u and v. Let A = {(Ho(4), Ho(i+1)) |
1 <i<2—1,4=1 (mod2)} be a set of disjoint links on H,. First, suppose that
|F(Q%°)] > 0. Since |A] = (271721_21 > 2n — 5 — |F(Q%°)| for n > 4, there exists a link (w, b)
of A such that (w,(w)7), (b, (b)’), and ((W?j, (b)7) are all fault-free. Next, suppose that
|F(QE%)| = 0 and n > 5. Since |A] = [25=2] > 2n — 5, there still exists a link (w,b)
of A such that (w, (w)?), (b, (b)?), and ((w)’, (b)?) are all fault-free. Finally, suppose that
|F(Q%%)| = 0 and n = 4. If there does not exist any node z of V;(Q%°) such that (z, (z)7) is
faulty, there must exist a link (w,b) on Hy such that (w, (w)?), (b, (b)), and ((w)’, (b)’)
are all fault-free. If there exists a node z of Vi(Q%°) such that (z,(z)’) is faulty, then it
follows from Theorem 4.3 that @}° — {z} has a hamiltonian path, still namely Hy, between
u and v. Obviously, there also exists a link (w,b) on Hy such that (w, (w)?), (b, (b)), and
((w)?, (b)?) are all fault-free. In summary, H, can be written as (u, H), w, b, HJ,v). Since
|F(Q%Y)] < n—3, it follows from Theorem 6.2 that Q%! — F(Q%!) contains a path H; of odd
length [; between (w)’ and (b)? for any odd integer [; satisfying 1 <1, < 2" ! —1. Asa
result, (u, H), w,(w)’, Hy, (b)), b, H},v) is a path of even length in the range from 2"! to
2n —2.

The paths of lengths less than 2"~! are obtained as follows. By Proposition 5.3, we
have d* = dg,-r(u,v) < h(u,v) +4 and dgj0_pioy(u,v) < h(u,v) + 4. By inductive
hypothesis, Q20— F(Q7°) has a path Tj of length Iy between u and v for any even length from
dgi0_pigio) (1, v) to 2n=1 92 If d* = h(u,v) or d* = h(u, v)+4, then dpio_pgioy(u,v) = d".
If d* = h(u,v) + 2, then ngo @iy (u,v) < d* +2.

Subcase I1.1.2: Suppose that both u and v are in @Q’:'. Since |F(Q%:')| < n—3, it follows

from Lemma 5.1 that d* < h(u,u) + 2. Thus, @, — F' has a shortest path between u and v
that does not cross the dimension j. By the inductive hypothesis, Q%' — F(Q%!) contains a
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path T} of length {1 between u and v for any even integer [; satisfying d* < [; < 27! — 2.
Let T; be a path of length 2"~! — 2 between u and v in Q' — F(Q%'). Moreover, let
A={(T(i), T1(i+1)]1<i<2"1—1i=1 (mod 2)} be a set of disjoint links on 7.
First, suppose that |F(Q%")] > 0. Since |A| = [Z572] > 2n—5 — |F(Q%")| for n > 4, there
exists a link (w,b) € A such that (w,(w)?), (b, (b)), and ((w)’, (b)?) are all fault-free.
Next, suppose that |[F(Q%")| = 0 and n > 5. Since |A| = [£5=2] > 2n — 5, there still exists
a link (w,b) € A such that (w, (w)7), (b, (b)?) and ((w)’, (b)’) are all fault-free. Finally,
suppose that |[F(Q%")] = 0 and n = 4. If there does not exist any node z of V;(Q%") such
that (z,(z)?) is faulty, there exists a link (w,b) on T, such that (w, (w)’), (b, (b)’) and
(w), (b) ) are all fault-free. If there exists a node z of V;(Q%") such that (z,(z)7) is faulty,
Theorem 4.3 ensures that @' — {z} has a hamiltonian path, still namely T, between u
and v. Obviously, there also exists a link (w,b) on T, such that (w, (w)7), (b, (b)’) and
((w)?, (b)?) are all fault-free. In summary, T; can be written as (u, T}, w, b, T}, v). Since
|F(Q%%)] < 2n — 7, it follows from Theorem 6.4 that Q% — F(Q%°) contains a path Tp of
length Iy between (w)’ and (b)? for any odd integer [y from 1 to 2"~ ! — 1 excluding 3. As a
result, (u, T}, w, (w)?, Ty, (b)?, b, T}, v) is a path of any even length in the range from 2"~
to 2" — 2, excluding 2"~ ! + 2.

The path of length 2"7' + 2 is discussed as follows. When n = 4, |F(Q%%)| < 1.
Thus, there exists an integer k of {0,1,2,3} — {j,dim((w,b))} such that ((w)’, ((w )J)k)
((b)j, ((b))*), and (((w)?)*, ((b)?)*) are all fault-free. Hence, (u, T}, w, (w)’, (w)?)k, ((b)7)*
(b)?, b, Ty, v) is a path of length 10. When n > 5, we have |A| — |F| = (&1 - (2n —

),

Y

2
5) > 2. Thus, there is another link (x,y) of A, other than (w,b), such that (x, (x)’

(y,(y)?), and ((x)?, (y)?) are all fault-free. Without loss of generality, T, can be written as
(u, R}, w,b, R}, x,y, R" v). Hence, (u, R}, w,(w)’, (b)/.b, R} x, (x), (y),y,R]',v) is a
path of length 2"~ 4+ 2.

Subcase I1.1.3: Suppose that u is in @%° and v is in Q%'. By Theorem 6.1, there exists
a shortest path P* between u and v in ),, — F' such that P* crosses the dimension j exactly
once. Thus, P* can be written as (u, Py, x, (x)?, P;,v), where P, is a shortest path joining u
to some node x in Q7% — F(Q%°) and P, is a shortest path joining (x)’ to v in Q%! — F(Q%1).

Subcase I1.1.3.1: Suppose that ¢(Py) > 0 and £(P;) > 0. By Theorem 6.2, Q7! —F(Q%)
has a path T} of length I; between (x)’ and v for each [; satisfying ¢(P;) <1, <21 —1
and 2|(I; — ¢(P;)). Suppose that {(FP) = 1. By Theorem 6.4, @° — F(Q%°) has a path
Ty of length Iy between u and x for any odd integer [y from 1 to 2"~! — 1 excluding 3.
Suppose that £(P) > 1. By the inductive hypothesis, Q2% — F(Q’°) has a path T} of length
lo between u and x for each [y satisfying ¢(Py) < Iy < 2" — 1 and 2|(ly — ¢(F,)). Hence,
(u, Ty, x, (x)?, Ty, v) is a path of even length Iy + I; + 1 in the range from d* to 2" — 2.

Subcase I1.1.3.2: Suppose that ((F) = 0 or £(P;) = 0. With symmetry, we assume
u = x. By the inductive hypothesis, Q7! — F(Q%') contains a path T; of length I; between
(u)? and v for any odd integer I, form ¢(P;) to 2"~' — 1. Then (u, (u)?,T},v) is a path of
even length [; + 1 in the range from ¢(P) + 1 = d* to 2" L.
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The paths of lengths greater than 2"~! are constructed as follows. Since |V (Q%%) —{u}|—
(2n —5) > 1 for n > 4, we can choose a node y from V(Q%°) — {u} such that (y, (y)?) is
fault-free and (y)? is not v. Let Ry be a path joining u to y in Q%°—F(Q%°) and R; be a path
joining (y)’ to v in Q%! — F(Q%'). Similar to Subcase 11.1.3.1, H = (u, Ry, y, (y)’, R1, V)
is a path of even length in the range from d' = djyy0_ 00, (1, y) +dQ%1_F(Q%1)((y)j, v)+1to
2" — 2. By Theorem 5.3, we have d' < (n+1)+ (n—1)+1 < 2" ' 42 for n > 4. Therefore,
H is a path of even length in the range from 2"~! + 2 to 2" — 2.

Subcase II.2: Suppose that |F(Q%%)] < 2n — 6 or |F(Q%')] < 2n — 6. Without loss of
generality, we assume that |F(Q7%)| = 2n — 6. Thus, Q%' is fault-free. It is noticed that the
faulty links are distributed as shown in Figure 6.1.

Subcase I1.2.1: Suppose that both u and v are in Q%°. Let (w,b) be a faulty link of Q7:°
such that both (w, (w)?) and (b, (b)?) are fault-free. Let Iy = F(Q2°) — {(w,b)}. By the
inductive hypothesis, Q7" — F}, has a path P, of length [ between u and v for any even integer [
from dyj0_p (a,v) to 2n=1—2. If (w,b) is on P, we write P, as (u, P/, w, b, P, v) and define
P = (u, P/,w,(w)’ (b)/ b, P/',v). Otherwise, P, can be written as (u, P/,x,y, P/, v),
where (x,y) is a link on P, such that both (x, (x)7) and (y, (y)’) are fault-free. Similarly, we
define P, = (u, P/.x,(x)?,(y),y, P/,v). Then P, is a path of length [+2. By Proposition 5.3,
we have d* = dq,-r(u,v) < h(u,v) +4 and dgyio_p (0, v) < h(u,v) +4. If dyio_p (u,v) =
d*, then path P, is the desired path. Otherwise, if dQ’;;O—Fo(u’ v) = d* + 2, then P, is a path
of even length in the range from d* + 4 to 2"~ 1. It is noticed that a shortest path between
u and v in ), — F' can be constructed based on a breadth-first search.

By Theorem 6.2, Q%' contains a path T; of length [; between (w)’ and (b)’ or a path
R; of odd length [; between (x)? and (y)? for any odd integer /; from 1 to 2"~! — 1. Thus,
(w,Py.y o, w, (W), Ty, (b)), b, P}, ,,v) (or (u, Py, . X, (X)7,R1,(y), ¥, Ppr-1_o,V)) is
a path of even length in the range from 2"~! to 2" — 2.

Subcase I1.2.2: Suppose that both u and v are in Q%'. Let (w,(w)?) be a faulty
link of Q%% such that both (w,(w)?) and ((w)’, ((w)")?) are fault-free. Since n > 4, we
assume that t € {0,1,...,n — 1} — {j,i}. Moreover, we assume that w € V5(Q%%). Let
X ={((x)7, (x))*) | k & {i,j,t}}. Since | X| = n—3, our inductive hypothesis ensures that
Q%' — X contains a path T} of even length [; between u and v for d* < [; < 2! — 2. Let
T, denote the longest path between u and v in Q%' — X. It is noted that ((w)7, ((w)’)?)
is on T;. Hence, T can be represented as (u, 77, (w)’, (w)))?, T/, v). By the inductive
hypothesis, @70 — (F(Q%°%) — {(w, (w)")}) contains a path T} of odd length [y between w to
(w) for 5 <y < 2" ' —1. As a result, (u, T}, (W), w, Tp, (W), (w)?), T}, v) is a path of
even length 2"~! + [y — 1, in the range from 2"~ ! + 4 to 2" — 2.

Let A = {(T(k), Ty(k+1)) |1 <k <2'—1k =1 (mod 2)} be a set of disjoint
links on T';. Then the paths of lengths 2"~ and 2"~ + 2 can be obtained as follows. When
n = 4, we suppose that {p,q,j,i} = {0,1,2,3}. Since (w,(w)) is faulty, we have either

{(w, (w)7), (w)?, (W)7)), (W)P)', (w))} 0 F = 0 or {(w, (w)7), (W), (wW)7)"), (w)7)",

78



(w)?, (w)?)? )} N F = (. Without loss of generality, we assume {(w, (w)P), (w)?, ((w)")! Y,
(W), (WPV)} 0 F = 0. Obviousl, (77, (w) w, (w)P, (W)Y (W), (WP )5 0, v) s a
path of length 2"~! + 2. Moreover, since |A| — |F| = [#5=1] — (2n — 5) = 1 for n = 4,
there exists one link (x,y) € A such that (x, (x)?), (y, (y)?), and ((x)?, (y)?) is fault-free.
Hence, T can be represented as (u, Ry, X,y, Ry, v). Obviously, (u, Ry, x, (x)?, (y)’,y, Ra, v)
is a path of length 2"~'. When n > 5, we have |A| — |F| = [%1 — (2n —5) > 2. Thus,
there are two links (xi,y1), (X2,y2) € A such that {(xx, (xx)?), (¥, (yr)?), ((xx)’, (y&)?) |
k=1,2}NF = (. Hence, T; can be represented as (u, Ry, X1, y1, Ra, X2, yg,Rg, v). Ob-
viously, (u, Ry, %1, (x1)7, (y1)?, y1, R2, X2, ¥2, R3, v) and (u, Ry, x1, (x1)7, (y1)’, y1, Ro, Xo,
(x2)7, (y2)?, y2, R3, v) are paths of length 27! and of length 2"~ + 2, respectively.

Subcase I1.2.3: Suppose that u is in Q2° and v is in Q%'. If (u, (u)?) is fault-free, the
shortest path between u and v can be of the form (u, (u)’, P;,v), where P, is a shortest
path joining (u)’ to v in @%'. By the inductive hypothesis, Q%' contains a path T; of
odd length I; between (u)? and v for d* — 1 < [} < 2"7' — 1. Then (u,(u)/,T},v) is
a path of even length in the range from d* to 2" '. If (u, (u)’) is faulty, we choose a
neighbor of u in Q7Y — F(Q%°), namely x, such that (x)’ # v. Obviously, we have either
h((x)?,v) = h(u,v) — 2 or h((x)’,v) = h(u,v). Let Ry be a shortest path joining (x)’ to v
in Q4. Then (u,x, (x)7, Ry, V) is a path of length h(u, v) or h(u,v) + 2. By Theorem 6.2,
Q%! contains a path T} of even length I; between (x)7 and v for any even integer [; from
h((x)?,v) to 2"~ ! — 2. Then (u,x,(x)?,T},v) is a path of even length in the range from
d* + 2 to 2n7 L,

The paths of lengths greater than 2"~! are obtained as follows. Let (w,b) be a faulty
link in Q%9 such that both (w,(w)/) and (b, (b)?) are fault-free. Depending on whether
(v, (v)?) is faulty, we distinguish two subcases.

Subcase I1.2.3.1: Suppose that (v, (v)’) is fault-free. By the inductive hypothesis,
Q30 — (F(Q%°%) — {(w,b)}) contains a path Hy of length 2"~! — 1 between u to (v).

Subcase I1.2.3.1.a: Suppose that (w,b) is not located on Hy. We choose a link (x,y)
on Hy such that (x, (x)7) and (y, (y)?) are fault-free and ((x)’, (y)?) is not incident with v.
Thus, Hy can be represented as (u, H),x,y, HY, (v)?). By Lemma 6.2, Q%! — {v} contains
a path Ty of odd length I; between (x)7 and (y)’ for any odd integer I; from 1 to 277! — 3.
Consequently, (u, Hj, x, (x)?, Ty, (y)?,y, H}, (v)?,v) is a path of even length 27! + [ 4 1,
in the range from 2"~! 4 2 to 2" — 2.

Subcase 11.2.3.1.b: Suppose that (w,b) is located on Hy and (w,b) is not incident
with (v)7. Thus, Hy can be represented as (u, Hj, w, b, H{/, (v)?). By Lemma 6.2, Q%' —{v}
contains a path Tj of odd length I; between (w)’ and (b)’ for any odd integer /; from 1 to
2=t — 3. Then (u, H),w, (w)’, Ty, (b)), b, H}, (v)’, v) is a path of even length 2"~ 4 1; + 1,
in the range from 27! + 2 to 2" — 2.

Subcase I1.2.3.1.c: Suppose that (w,b) is on Hy and (w,b) is incident with (v)7. Let
b = (v)’. Thus, Hy can be written as (u, H}, w,b = (v)7). By Theorem 6.2, Q! has a path
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Ty of odd length I; between (w)? and v for 1 < l; <21 — 1. Thus, (u, H},w, (w)?, T}, V)
is a path of even length 2”1 4+ 1; — 1, in the range from 2"~ ! to 2" — 2.

Subcase I1.2.3.2: Suppose that (v, (v)?) is faulty. According to procedure Partition(Q,,
F', u, v), this subcase occurs only when n = 4 and there is a unique node z of V;(Q4) such
that both (z,u) and (z,v) are faulty links. In addition, each faulty link corresponds to a
unique dimension. By transitivity, we assume that z = 0001, u = 0101, and v = 1001. Then
the paths obtained by brute force are listed in Table 6.3. U

Table 6.3: The paths of lengths 10, 12, and 14 between u = 0101 and v = 1001 in Q4 —
{ef, (0001, 0101), (0001, 1001)}.

e; € {(0000, 0010), (0010, 0011)} | (u = 0101, 0100, 0110, 0111, 0011, 0001, 0000, 1000, 1100, 1101, 1001 = v

(u = 0101, 0100, 0110, 0111, 0011, 0001, 0000, 1000, 1100, 1110, 1111, 1101, 1001 = v)

(u = 0101, 0100, 0110, 0111, 0011, 0001, 0000, 1000, 1100, 1110, 1010, 1011, 1111, 1101, 1001 = v}
e; = (0100, 0110) (u = 0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1100, 1101, 1001 = v}

(u = 0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1100, 1110, 1111, 1101, 1001 = v)

(u = 0101, 0111, 0110, 0010, 0011, 0001, 0000, 1000, 1100, 1110, 1010, 1011, 1111, 1101, 1001 = v)
e; = (0110, 0111) {u = 0101, 0111, 0011, 0010, 0110, 0100, 0000, 1000, 1100, 1101, 1001 = v

(u = 0101, 0111, 0011, 0010, 0110, 0100, 0000, 1000, 1100, 1110, 1111, 1101, 1001 = v)

(u = 0101, 0111, 0011, 0010, 0110, 0100, 0000, 1000, 1100, 1110, 1010, 1011, 1111, 1101, 1001 = v)
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Chapter 7

Long Paths in Faulty Hypercubes
with Conditional Node-faults

In contrast to the preceding chapter in which only link-faults are taken into account, we
address only node-faults in this chapter. Hence, a network will be called conditionally faulty
if and only if its every node has at least two fault-free neighbors.

This chapter is aimed to show that a conditionally faulty n-cube, with f < 2n —5 faulty
nodes, contains a fault-free path of length at least 2" — 2f — 1 (respectively, 2" — 2f — 2)
between any two fault-free nodes of odd (respectively, even) distance. Why do we concern
only 2n — 5 faulty nodes? Consider a 4-cube with four faulty nodes, 0000, 0011, 1100, and
1111, as shown in Figure 7.1, in which every node has at least two fault-free neighbors. We
can see that the length of the longest path between nodes 0110 and 1001 is 4 < 24 —2.4—2.
This is the reason why we concentrate only on f < 2n — 5 faulty nodes.

It is sufficient to assume that every node should have at least two fault-free neighbors
while a long path is constructed between every pair of fault-free nodes. Consider the scenario
that u is a fault-free node with only one fault-free neighbor, namely v. Then the longest
path between u and v happens to be of length 1. To avoid such a degenerate situation, it
is necessary that, for any pair u, v of adjacent nodes, u has some fault-free neighbor other
than v, and vice versa. On the other hand, it is also statistically reasonable to require
that every node needs to have at least two fault-free neighbors. Suppose, with a random
fault model, the probabilities of node failures are identical and independent. Let Py(n)
denote the probability that every node of the n-cube @),,, containing 2n — 5 faulty nodes, is
adjacent to at least two fault-free neighbors. As discussed in Section 1.3, we have Py (3) = 1,

2" —n

PN(4) = 1 — 24(;(4()3> — 31 and PN('TL) = 1 — an( n—>5 )—’(—2:;( ()nnl)( n:4:n> for eaCh n Z 5 Clearly

357
3 2n—>5

Py (n) approaches to 1 as n increases.
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Figure 7.1: A conditionally faulty ()4 with four faulty nodes. Every faulty node is marked
by an “X” symbol. The length of the longest path between nodes 0110 and 1001 is 4.

7.1 Partition of an n-cube with conditional node-faults

Here we will show that a conditionally faulty n-cube can be partitioned into two conditionally
faulty subcubes if it has 2n — 5 or less faulty nodes. Recall that F/(G) denotes the set of all
faulty elements in a network G. Let u be a node of G. For convenience, we use N§ (u) to
denote the set of all faulty neighbors of u; i.e., N5 (u) = Ng(u) N F(G).

Suppose @, n > 4, is conditionally faulty with f < 2n — 5 faulty nodes. Moreover,
suppose u, v, and w are three nodes of this faulty n-cube, and each of them has only two
fault-free neighbors. Then we discuss how the faulty nodes will be distributed conditionally.
For simplification, let U = N} (u), V. = N§ (v), and W = N§ (w).

If VW[ =0, then we have f > |V UW| = |V|+ |W| = 2n — 4, contradicting the
requirement that f < 2n — 5. Therefore, |V N W| > 1 needs to be satisfied. Similarly, we
also have [UNV| > 1 and |[UNW]| > 1. Since any two nodes of an n-cube can have utmost
two common neighbors, we obtain that [V NW/| |UNV|,|UNW| € {1,2}. We first consider
the case that at least one of [V NW|, [UNV|, and |U N W/ is equal to 1. Without loss of
generality, we suppose |V NW| = 1.

I. Firstly, we concern the case that |[VNW|=|UNV|=|UNnW|=1. If [UNnVNW|>1,
we have 2n —5 > f > |UUVUW|=3n—-2)—(1+1+1)+1 = 3n-28; ie,
n < 3. Since n > 4, we only concern |[U NV NW/|=0. Then we have 2n —5 > f >
[UUVUW|>3n—2)—(1+14+1) =3n—9;ie.,n < 4. Figure 7.2(a) depicts a faulty
4-cube with [VNW| = |UNV|=|UNW|=1and [UNVNW|=0. Figure 7.2(b) is a
cube-styled layout isomorphic to Figure 7.2(a). We can examine Figure 7.2(a) in a top-
down viewpoint. Since hypercube is node-transitive, we can assume that u = t;. By
link-transitivity, we assume that t4 and ¢ are faulty neighbors of u. Since |[UNV| =1,
we obtain v € {t7,tg, to, t10}. Without loss of generality, we assume that v = t19. Since
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(b)

Figure 7.2: Every faulty node is marked by an “X” symbol. (a) The Q, with [Nj, (u) N
NG, (V)| = ING, (v) NN, (w)| = [NE, (u) N N, (w)| = 1; (b) a layout isomorphic to (a); (c
the Q4 with [N, (w) N NG, (v)| = NG, (v) N NG, (w)| = 1 and [N, (u) N NG, (w)] = 2; (d) a
layout isomorphic to (c).

IT.

I1I.

UNW|=|VNW|=1and |[UNVNW| =0, we see that w = tg and VW = {t15}.
As a consequence, this happens to be the only possibility. However, node t1; has only
one fault-free neighbor. Thus it is not conditionally faulty.

Secondly, we consider the case that [V NW| = |UNV| =1 and [UNW| = 2. By
the definition of hypercube, we see that |Ng, (1) N Ng, (v) N Ng, (w)| < 1. Obviously,
we have |[U NV NW| < |Ng,(u) N Ng,(v) N Ng, (w)|. In particular, we claim that
[lUNV NW| = 1. Suppose, by contradiction, that |[U NV NW| = 0. Then we have
unvnw = (UnV)NUNW) = . Since UNV # @ and UNW ## ), we conclude that
VNW = (). That is, the assumption of |[UNVNW| = 0 leads to a contradiction between
VAW|=1and VNW =0. As aresult, |UNV NW]|is equal to 1. Accordingly, we
have 2n =5 > f > |UUVUW|=3n—-2)—(1+1+2)+1=3n—-9;ie,n <4
See Figure 7.2(c) for illustration. For clarity, Figure 7.2(d) is an isomorphic layout
of Figure 7.2(c). Similarly, we can examine Figure 7.2(c) in a top-down viewpoint.
By node-transitivity, we assume that u = ¢;. By link-transitivity, we assume that
ty and t5 are faulty neighbors of u. Since |U N W| = 2, we have w = t;;. Since
VNW|=|UNV|=1and [UNV NW| =1, we obtain v € {t7,ts,t9, t10}. Without
loss of generality, we assume that v = ¢;5. Then this turns out to be the only possibility.
It is noticed that node tg has only two fault-free neighbors.

Next, we concern the case that [V NW|=1and |[UNV|=|UNW| = 2. Similarly, we
have |[UNVNW| = 1. Since (UNV)U(UNW) C U, we have [(UNV)U(UNW)| < |U].
However, we have a contradiction that [(UNV)U(UNW)| = [UNV|+|UNW|—=|UNVN
W|=2+2—1=3>n-2=|U|ifn <4. In what follows, we suppose that n > 5. As a
consequence, we have 2n—5 > f > [UUVUW| = 3(n—2)—(1+2+2)+1 = 3n—10; i.e.,
n = 5. See Figure 7.3(a). Again, we examine Figure 7.3(a) in a top-down viewpoint.
By node-transitivity, we assume that u = ¢;. By link-transitivity, we assume that
ty, t5, and tg are faulty neighbors of u. Since [UNV| = |UNW| = 2, we have
{v,w} C {t14, t15, t16}. Without loss of generality, we assume that v = t14 and w = ty5.
Since |V NW| =1, we have tos ¢ V UW. Moreover, we have 2n —5 > f > [VUW| =
VI+|W|—-|VnW|=m-2)+(n—-2)—1=2n—>5; that is, f = 2n — 5 and
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Figure 7.3: Every faulty node is marked by an “X” symbol. Each of u, v, w, and z has only
two fault-free neighbors. (a) The Q5 with [N (v) N N (w)| = 1 and |[Nf_ (u) N NE, (v)| =

|N55(u)ﬁN55(W)| = 2; (b) the Q5 with |N55(u)ﬂN55(v)| = |N55(V)QNF5(W)\ = |N55(u)ﬂ
N55(W)\ = 2.

U CVUW. Then we have either t59 € V or to3 € V. Without loss of generality,
we assume that to,3 € V. Similarly, we can assume that to5 € W. As a result, this
is the only possibility. It is noted that node t;5 = z has three faulty neighbors, and
|NG, (x)] < 2 for each x € V(Qs5) — {u, v, w,z}.

Now we consider the case that |V NW| = |[UNV| = |UNW| = 2. Again, we have
UNV NW| = 1. Since (UNV)U (UNW)| < |U|, we still have a contradiction that
(UNnWVYUUnW)|=1UnV|+|lUNW|-UNVNW|=242-1=3>n-2=1U|
if n < 4. In what follows, we suppose n > 5. Then we have 2n —5 > f > |[UUV UW| =
3n—2)—(2+2+2)+1=3n—11;ie,n € {5,6}. Notethat UUVUW|=4ifn=25
and [UUV UW| =7if n =6. See Figure 7.3(b) and Figure 7.4(a,b). In Figure 7.3(b),
it is not difficult to see that |Nj, (x)| < 2 for each x € V(Q5) — {u,v,w,z}. We explain
Figure 7.4 as follows. By node-transitivity, we assume that u = ¢;. By link-transitivity, we
assume that t4, t5, tg, and t; are faulty neighbors of u. Since |[UNV| = |UNW| = 2, we
deduce that {v,w} C {t; | 17 <1i < 22}. Since [UNV NW| = 1, we can assume that v = ty
and w = t22. Then we have |Vﬂ {tgo,tgﬁ,tgg, t42}| = 2 and |Wﬂ {t32, t38, t41, t42}| = 2. Since
[V NW| =2 we have VW = {tg,ts}. If t39 € V and t45 € W, then node t13 happens to
have only two fault-free neighbors (see Figure 7.4(a)); otherwise, we have |N§ (x)| < 3 for
each x € V(Qs) — {u,v,w} (see Figure 7.4(b), in which nodes t35 and ¢, for example, are
faulty). Hence these figures cover all possibilities.

According to the analysis presented earlier, a conditionally faulty n-cube with f <2n—5
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The links among nodes tzs,...,ts» are omitted.

The links among nodes tz,...,ts7 are omitted.
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faulty nodes is likely to contain three or four nodes, every of which has only two fault-free
neighbors. Since 2n — 5 < n — 2 for n < 3, we concentrate only on the case that n > 4. To
summarize, we have the following two lemmas.

Lemma 7.1. Suppose that an n-cube Q,, (n > 4) is conditionally faulty with f < 2n—>5 faulty
nodes. Letu,v,w,z € V(Qy) such that NS (u)| = [Nj, (v)| = IN§ (w)| = |NS (z)| = n—2
and |N§ (x)| < n=3 for everyx € V(Qn)—{u,v,w,z}. Then the faulty nodes are distributed
as illustrated in Figure 7.2(c), Figure 7.3(a,b), and Figure 7.4(a). In Figure 7.2(c) and
Figure 7.3(a), no dimensions can be used to partition Q,, in such a way that both resulting
subcubes are conditionally faulty. In Figure 7.3(b) and Figure 7.4(a), there exists some
dimension j of {0,1,...,n — 1} such that both Q7° and Q%' are conditionally faulty with
2n — 7 or less faulty nodes.

Proof. In Figure 7.2(c) and Figure 7.3(a), we check, by brute force, that either Q¥ or Q%1
contains a node with only one fault-free neighbor for each k& € {0,1,...,n—1}; that is, there
does not exist any dimension to partition ),, such that both (n — 1)-cubes are conditionally
faulty. In Figure 7.3(b) and Figure 7.4(a), let j be any integer of {0,1,...,n — 1} such that
(u)’ is faulty. Then both Q7% and Q%' are conditionally faulty with 2n — 7 or less faulty
nodes. O

Lemma 7.2. Suppose that an n-cube Q,, (n > 4) is conditionally faulty with f < 2n —5
faulty nodes. Let u,v,w € V(Qy) such that NS (u)| = |N§ (v)| = NS (w)| =n —2 and
NG (x)| < n =3 for every x € V(Qn) — {u,v,w}. Then the faulty nodes are distributed
as illustrated in Figure 7.4(b). Moreover, there exists some dimension j of {0,1,...,n —1}
such that both Q7° and Q7' are conditionally faulty with 2n — 7 or less faulty nodes.

Proof. Let j € {0,1,...,n — 1} such that (u)! € Nj (u) N Nj (v) N N5 (w). Then both
Q79 and Q%! are conditionally faulty with 2n — 7 or less faulty nodes. O

Lemma 7.3. Suppose that an n-cube @, (n > 4) is conditionally faulty with f < 2n —5
faulty nodes. Let w and v be two nodes of Q, such that NS (u)| = [Nj (v)] =n —2 and
ING, (x)] < n—3 for every x € V(Qn) — {u,v}. Then there exists some dimension k of
{0,1,...,n — 1} such that both Q¥ and Q%' are conditionally faulty. When n > 5, both
QFO and Q%' contain 2n — 7 or less faulty nodes.

Proof. Since [N§ (u)] =[N}, (v)| =n—2and f < 2n—5, we have [N} (u)N N (v)| > 1.
Since any two nodes of (),, can have utmost two common neighbors, we consider the following
two cases.

Case 1: Suppose that [N} (u) N Nj (v)| = 2. Let i and j be two integers such that
{(u)’, (u)7} = N§, (u) " N§ (v). Obviously, we have (u)’ = (v)? and (u)’ = (v)’. Then we
can partition @, along dimension k € {4,j}. As a result, both Q%% and Q%! contain at least
n — 3 faulty nodes. See Figure 7.5(a).

Case 2: Suppose that [N} (u) N N§ (v)| = 1. We claim first that this case holds only
for n > 5. By contradiction, we suppose n = 4. Let p and g be two integers such that both
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Figure 7.5: Every faulty node is marked by an “X” symbol. (a,b) [N} (u)| = [N (v)| =
n—2and NS (x)| <n—3forx e V(Q,) —{u,v}; (c) a faulty node distribution on Qs;
(d) a conditionally faulty 4-cube with four faulty nodes.

(u)? and (u)? are faulty. Since |[Nj5 (u) N Nj (v)| = 1, we have v # ((u)?)?. Thus node
((u)?)? happens to have only two fault-free neighbors, which contradicts the assumption that
ING, (x)| < n—3 for every x € V(Q,) — {u, v}.

Let ¢ and j be two integers such that {(u)'} = {(v)7} = Nj (u) N N§ (v). Since
NG, (w) = {()'} + NG, (v) = {(v)’}] = 2(n=3) >n—-2=[{0,1,....n— 1} — {i,j}
for n > 5, there exists some dimension k of {0,1,...,n — 1} — {4,5} such that both (u)*
and (v)¥ are faulty. As a result, either Q¥ or QF! contains exactly two faulty nodes. See
Figure 7.5(b).

In either case, both Q% and QF! are conditionally faulty. O

Lemma 7.4. Suppose that an n-cube Q,, (n > 4) is conditionally faulty with f < 2n —5
faulty nodes. Let z be a unique node with exactly n — 2 faulty neighbors. Then there exists
some dimension j of {0,1,...,n — 1} such that both Q7° and Q%' are conditionally faulty.
Except for the case depicted in Figure 7.5(c), both Q%° and Q%' contain 2n — T or less faulty
nodes if n > 5.

Proof. Since @), is node-transitive, we assume z = 0". Since @), is also link-transitive, we
assume that (z)° and (z)' are fault-free. Because z is a unique node with exactly n— 2 faulty
neighbors, we have |N§n (x)| <n—3forx e V(Q,) —{z}. Forevery k € {2,3,...,n— 1},
we have Ngk’o (x) € N§, (x) and Ngk,l(y) C N, (y) for x € V(QEY) —{z} and y € V(Q&').
Thus we obtain |N£ﬁ,o(x)| < NG, (x)] < n—3 and |N£ﬁ71(y)| < [N, (y)] < n—3 for
x € V(QF°) —{z} and y € V(Q®!). In addition, we have |N£k70(z)| =n—-2)—1=n-3
for every k € {2,3,...,n — 1}. Let j be an integer of {2,3,...,n — 1}. Then both @7° and
Q%1 are conditionally faulty.

Suppose f < 2n—6. We see that, for any j € {2,3,...,n—1}, both @%° and Q%' contain
2n — 7 or less faulty nodes.

Suppose f = 2n—5. We assume, by contraposition, that either Q%° or Q7! contains 2n—6
faulty nodes for any j € {2,3,...,n—1}. Then, for any x of F(Q,) —{(z)* |2 < k <n—1},
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we have (x); = (z); for every j € {2,3,...,n — 1}. Hence we have F(Q,) — {(z)" |2 < k <
n—1} C {5, ((2))'}. Since [F(Qu) ~ (&) |2<k<n—1}|=f~(n-2) =n-3<
2 = {2z, ((z)°)'}], we derive that n < 5. That is, if n > 6, there exists some dimension j
of {2,3,...,n — 1} such that both @7° and Q%' are conditionally faulty with 2n — 7 or less
faulty nodes. Since |F(Q,) —{(z)f|2<k<n-—1} =2for n =5, nodes z and ((z)°)! are
faulty; that is, F(Qs) = {z, (z)% (z)3, (2)*, ((z)°)'}, as shown in Figure 7.5(c). Therefore,
Figure 7.5(c) happens to be the only possibility that either @7° or Q7! contains 2n — 6 faulty
nodes for every j € {2,3,...,n— 1}. O

Lemma 7.5. Suppose that an n-cube Q,, (n > 4) contains f < 2n — 5 faulty nodes such
that every node has at least three fault-free neighbors. Then there exists some dimension j
of {0,1,...,n—1} such that both Q3° and Q%' are conditionally faulty. Forn > 5, both QJ.°
and Q5 contain 2n — 7 or less faulty nodes.

Proof. Since every node has at least three fault-free neighbors, every (n — 1)-dimensional
subcube of @), is conditionally faulty. First, we consider the case that f < 2n — 6. Let u
and v be two distinct faulty nodes, and let j € {0,1,...,n— 1} such that (u); # (v);. Then
both Q7% and Q%' contain 2n — 7 or less faulty nodes.

Now we consider the case that f = 2n — 5. For n > 5, we claim that there exists some
dimension j of {0,1,...,n — 1} such that |F(Q7°)| < 2n — 7 and |F(Q%')] < 2n — 7. For
0 <k <n-—1, we define that ¢ = 1 if (u); = (v); for every two distinct faulty nodes
u,v € F(Q,), and ¢, = 0 otherwise. Let ¢ = "/, gx. Clearly, all faulty nodes are located
in either Q0 or Q%1 if ¢, = 1. For convenience, let {0 <k <n—1|¢q, =0} = {i1,...,in_q}-
Then both Q%% and Q%' contain at least one faulty node for j € {iy,..., 0,4}

Suppose, by contradiction, either Q%% or Q%! contains only one faulty node for every
G € i1, . inq} Forve F(Q,), let Av)={0<k<n—1]|F(Q) ={v}or F(Q¥) =
{v}}. Since @, is node-transitive, we assume that e = 0" is a faulty node such that |A(e)]
achieves the maximum of set {|A(v)| | v € F(Q,)}. For convenience, let p = |A(e)|. Obvi-
ously, we have 1 < p < n — q. Moreover, let A(e) = {i1,...,i,}. For v e F(Qn) — {e}, we
see that (v)g =1 for each k € {iy,...,ip}. Let B(k) ={v € F(Q,) —{e} | (V)i # (e)x} for

k € {ips1,.-,in_q}. Since we assumed, by contradiction, that either Q2% or Q%! has only
one faulty node for each j € {iy,...,4,,}, we have |B(j)\ =1 for each j € {ip41,---,0n—q}-
Since (), is link-transitive, we assume that {i1,...,4,} =4{0,...,p—1}and {ipt1,. .., i} =

{p,....n —q—1}. Then we have (F(Qn) — {e}) — Uyegi,,,,..iny B(k) € {07717} Ac-
cordingly, we derive that 1 = [{0" 717} > |(F(Qn) — {e}) = Useqs, s, BRI =
F(Qu)] — Hed — Sheqin iy IBO = (21— 5) — 1 — (n— g —p); that &8, p+0<7—n

Recall that p > 1 and ¢ > 0. Thus, we have n € {5,6}. Now we can identify all faulty
nodes according to the values of p, ¢, and n.

Case 1: Suppose (n,q,p) = (5,0,1). Since p = 1, we have (v)y = 1 for each v €
F(Qs) —{e} and |B(j)| = 1 for each j € {1,2,3,4}. Thus we have F(Q5) = {00000, 00011,
00101, 01001, 10001}. Clearly, node 00001 has five faulty neighbors.

88



Case 2: Suppose (n,q,p) = (5,0,2). Similarly, we have F'(Q5) = {00000, 00111, 01011,
10011, 00011}. Then node 00011 has three faulty neighbors.

Case 3: Suppose (n,q,p) = (5,1,1). We have F(Q5) = {00000, 00011, 00101, 01001,
00001}. Again, node 00001 has four faulty neighbors.

Case 4: Suppose (n,q,p) = (6,0,1). We have F'(Qg) = {000000, 000011, 000101, 001001,
010001, 100001, 000001}. Thus, node 000001 has six faulty neighbors.

In short, node 0" P1? has at least n—2 faulty neighbors, which contradicts the requirement
that every node has at least three fault-free neighbors. Hence there exists some dimension j
of {0,1,...,n — 1} such that both Q%% and Q%! are conditionally faulty with 2n — 7 or less
faulty nodes. O

Suppose that @), is conditionally faulty with utmost 2n —5 faulty nodes. Let F' = F(Q,,).
For n > 5, we propose a procedure PARTITION(Q,, F) to determine j-partition of @,
according to the following rules:

(1) Suppose that at least three nodes of @), have exactly n — 2 faulty neighbors, respec-
tively. If @, has its faulty nodes distributed as shown in Figure 7.3(a), it will be
partitioned along dimension j = dim((t1,t5)). Then one resulting subcube has its
faulty nodes distributed as in Figure 7.2(b). Otherwise, Lemma 7.1 and Lemma 7.2
ensure that (), can be partitioned along some dimension j such that both Q%° and
Q%1 are conditionally faulty with 2n — 7 or less faulty nodes.

(2) Suppose that there exist exactly two nodes of @), with n — 2 faulty neighbors, respec-
tively. By Lemma 7.3, there exists some dimension j of {0,1,...,n—1} such that both
Q79 and Q%' are conditionally faulty with 2n — 7 or less faulty nodes.

(3) Suppose that there is only one node of ),, with exactly n—2 faulty neighbors. Denote it
by z. If the faulty nodes are distributed as in Figure 7.5(c), we partition @,, along any
dimension j € {i | (z)" is faulty}. Then one resulting subcube turns out to have 2n—6
faulty nodes, distributed as in Figure 7.5(d). Otherwise, we can apply Lemma 7.4 to
choose a dimension j of {0, 1,...,n —1} such that both Q%° and Q7! are conditionally
faulty with 2n — 7 or less faulty nodes.

(4) Suppose that every node of ), has at least three fault-free neighbors. Obviously, every
(n — 1)-cube is conditionally faulty. By Lemma 7.5, there exists some dimension j of
{0,1,...,n — 1} such that both @7° and Q7! contain 2n — 7 or less faulty nodes.

The following corollary summarizes what is obtained by procedure PARTITION(Q,, F).
Also, it is a summary of Lemmas 7.1—7.5.
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Corollary 7.1. Suppose that an n-cube Q,, (n > 5) is conditionally faulty with f < 2n —5
faulty nodes. FExcept for the cases illustrated in Figure 7.2(c), Figure 7.3(a), and Fig-
ure 7.5(c), there exists some dimension j of {0,1,...,n — 1} such that both Q%% and ;!
are conditionally faulty with 2n — 7 or less faulty nodes.

7.2 Long path embedding in faulty hypercubes
The following theorem was proved by Fu [23].

Theorem 7.1. [23] Suppose that n > 3. Let u and v denote two arbitrary fault-free nodes
of an n-cube with f < n — 2 faulty nodes. If h(u,v) is odd (or even), then there exists a
fault-free path of length at least 2" — 2f — 1 (or 2" — 2f — 2) between u and v.

To improve the above result, we need the following lemma.

Lemma 7.6. Let z € V(Qu), {4,4,p,q} = {0,1,2,3}, and F = {(2)", (z)?, (z)’}. Suppose
that s and t are any two nodes of Q4 — F such that {s,t} # {z,(z)?}. Then Q4 — F has a
path of length at least 9 or 8 between s and t if h(s,t) is odd or even, respectively.

Proof. By symmetry, let z = 0000, ¢ =0, j = 1, p = 2, and ¢ = 3. We partition )4 into
30 and Q3'. Then Q7' is fault-free and z € V4(Q7").

Case 1: Both s and t are in QZ’O — F'. Since Qi’l is fault-free, Theorem 4.2 ensures that
Q> contains a path P of length 7 (respectively, 6) between (s)? and (t)® if h(s,t) is odd
(respectively, even). Thus, (s, (s)?, P, (t)3,t) is a fault-free path of length 9 (respectively, 8)
between s and t if A(s,t) is odd (respectively, even).

Case 2: Both s and t are in Q2. If h(s,t) is odd, Theorem 4.2 ensures that Q3" —
{(1101,1111)} contains a path P of length 7 between s and t. Clearly, path P does not
pass through (1101,1111). Since it spans Q7', we have 1111 € V(P). Accordingly, link
(1110,1111) or (1011,1111) is on P. Thus P can be written as (s, Ry, 1110,1111, Ry, t)
or (s,T1,1011, 1111, Ty, t). As a result, (s, Ry, 1110,0110,0111, 1111, Ry, t) or (s, T}, 1011,
0011,0111,1111, 75, t) is a path of length 9 between s and t. On the other hand, if A(s,t)
is even, then we consider two cases as follows. Suppose first that s;t € Vy( 2’1). By
Theorem 4.2, Q7" — {(1101,1111)} contains a path P of length 6 between s and t. Again,
link (1110,1111) or (1011,1111) is on P, and thus the desired path can be constructed as
above. Suppose that s,t € V;(Q3"). By Theorem 4.3, Q3" — {1001} contains a path P of
length 6 between s and t. Obviously, link (1110, 1111), (1101,1111), or (1011,1111) is on P.
Hence the desired path can be constructed similarly.

Case 3: Suppose that s is in Qi’o — F and t is in Qi’l. First, we consider the case that
s #z. If s € V5(Q4), then s is adjacent to node 0111. Clearly, there exists some node v of
{0110,0101, 0011} — {s} such that (v)? # t. By Theorem 4.2, Qi’l has a path P of length 6
or 7 between (v)? and t if h(s, t) is odd or even, respectively. Then (s,0111,v, (v)3, P,t) is a
fault-free path of length 9 or 10 if A(s, t) is odd or even, respectively. If s € V1(Qy4), then we
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have s = 0111. Obviously, there exists some node u of {0110, 0101,0011} such that (u)? # t.
Similarly, Q3" has a path T of length 7 (respectively, 6) between (u)? and t if h(s, t) is odd
(respectively, even). Then (s,u, (u)?, T,t) is a fault-free path of length 9 (respectively, 8) if
h(s,t) is odd (respectively, even).

Next, we consider the case that s = z. If h(s,t) is even, it follows from Theorem 4.2
that Q3" has a path H of length 7 between (s)® = (z)® and t. Then (s = z,(z)*, H,t) is
a fault-free path of length 8. If h(s,t) is odd, Theorem 4.3 ensures that Q3" — {1100} has
a path R of length 6 between (z)? and t. Clearly, node 1111 is on R. Accordingly, link
(1111,1110), (1111,1101), or (1111,1011) is on R. For example, path R can be written as
((z)%, Ry, 1111, 1110, Ry, t) if (1111,1110) € E(R). Then (s = z, (2)?, Ry, 1111,0111, 0110,
1110, Ry, t) is a fault-free path of length 9 between s and t. O

Lemma 7.7. Suppose that Q)3 is conditionally faulty with f < 2 faulty nodes. Let s and t
denote any two fault-free nodes of Q3. Then Q)3 contains a fault-free path of length at least
7 —2f (respectively,6 — 2f) between s and t if h(s,t) is odd (respectively, even).

Proof. If f < 2, this result follows from Theorem 7.1. Thus we only consider the case that
f = 2. For convenience, let F' = F(Q3). Since @3 is node-transitive, we assume that node
000 is faulty. To require that every node of (3 has at least two fault-free neighbors, the
other faulty node must be one of {001,010, 100, 111}.

Case 1: One of {001,010, 100} is faulty. Obviously, each of {001,010, 100} is adjacent
to 000. Since Q3 is link-transitive, we assume that 001 € F'; that is, ' = {000,001}. Then
we partition Qs into Q5 and Q3. Hence we have F C V(Q4"). See Figure 7.6(a).

Subcase 1.1: Both s and t are in Qé’o — F. Without loss of generality, we assume that
s = 101 and t = 100. Obviously, (s = 101,111,110, 100 = t) is a fault-free path of length
3=T7—-2-2.

Subcase 1.2: Both s and t are in Qé’l. If h(s,t) is odd, then Qé’l contains a path of
length 3 between s and t. Otherwise, Qél contains a path of length 2 between s and t.

Subcase 1.3: Suppose that s is in Qé’o — F and t is in Qil Without loss of generality,
we assume s = 101 and list the required path in Table 7.1.

Case 2: Node 111 is faulty. See Figure 7.6(b) for illustration.

Subcase 2.1: Both s and t are in Q5 — {000}. For every possible combination of s and
t, we list the required paths in Table 7.1.

Subcase 2.2: Both s and t are in Qé’l — {111}. This subcase is symmetric to Subcase
2.1.
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Table 7.1: The required paths for Lemma 7.7 and Lemma 7.8.

Subcase 1.3 of Lemma 7.7
s =101 t =010 (s = 101,100, 110,010 = t)
t =011 (s = 101,111,011 = t)
t =110 (s =101,100,110 = t)
t=111 (s =101,100,110,111 = t)

Subcase 2.1 of Lemma 7.7

s =101 t =001 (s =101,100,110,010,011,001 = t)
t =100 (s = 101,001,011,010,110,100 = t)
s =001 t =100 (s =001,011,010, 110,100 = t)

Subcase 2.3 of Lemma 7.7
s =001 t =010 (s =001,011,010 = t)

t=011 | (s=001,101,100,110,010,011 = t)
t=110 | (s=001,011,010,110 = t)
s=100 | t=010 | (s=100,110,010=t)

(
(
{
t=011 | (s=100,110,010,011 = t)
t=110 | (s=100,101,001,011,010,110 = t)
(
(
{

s=101 |t=010 | (s=101,100,110,010= t)
t=011 | (s=101,001,011=t)
t=110 | (s= 101,100,110 =t)

Lemma 7.8

b; =001 | by =010 | (by =001, 101,100, 110,010 = bs)

by =100 | (b; =001,101,111,110, 100 = by)

by, =111 | (b; = 001,101,100,110,111 = by)
( )
( )

b1 =010 | by = 100 | (b; = 010,110, 111,101,100 = by
by, = 111 | (by = 010, 110, 100, 101, 111 = by

100

Figure 7.6: (a,b) Illustrations for Lemma 7.7; (c) the distribution of faulty nodes indicated
in Lemma 7.8.
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Subcase 2.3: Suppose that s is in Q3" — {000} and t is in Q3" — {111}. For every
possible combination of s and t, we list the required paths in Table 7.1.

In summary, Q3 — F' contains a path of length at least 7 — 2f (respectively, 6 — 2f)
between s and t if A(s,t) is odd (respectively, even). O

Lemma 7.8. Let w € Vp(Q3) and {i,j5,k} = {0,1,2}. Suppose that by and by are two
arbitrary nodes of V1(Qs3). Then Q3 — {w, ((wW)")?} contains a path of length 4 between by

and by if and only if {by, by} # {(w)*, (((w)")/)*}.

Proof. Since ()3 is node-transitive and link-transitive, we assume that w = 000, ¢ = 0,
j=1,and k = 2. See Figure 7.6(c). Then we list all the required paths in Table 7.1. O

Theorem 7.2. Let F' be a set of f < 3 faulty nodes in ()4 such that every node of Q4 has at
least two fault-free neighbors. Suppose that s and t are two arbitrary nodes of Qu — F. Then
Q4 — F contains a path of length at least 15 — 2f (respectively, 14 — 2f ) between s and t if
h(s,t) is odd (respectively, even).

Proof. If f < 3, this result follows from Theorem 7.1. Thus we concentrate only on the
case that f = 3. By Lemmas 7.1—7.5, Figure 7.2(c) happens to be a unique case that a
conditionally faulty (), with three faulty nodes cannot be partitioned along any dimension
in such a way that both subcubes are conditionally faulty. On this occasion, we partition
(4 along an arbitrary dimension j; otherwise, there exists some dimension j such that both
Q%" and Q)" are conditionally faulty.

Case 1: Both @Q%° and Q%" are conditionally faulty. For convenience, let Fy = F(Q%°)
and Fy = F(Q%"). Without loss of generality, we assume that f, = |Fp| = 2 and f, = |Fy| =
1. Moreover, we assume s € Vy(Qq — F).

Subcase 1.1: Both s and t are in Qi’o. By Lemma 7.7, de‘,o — Iy contains a path
Hy of length at least 3 = 7 — 2f, (respectively, 2 = 6 — 2f;) between s and t if h(s,t) is
odd (respectively, even). Obviously, Hy can be written as (s = xq,x;, Xy, Hj, t). If (x;)’
is faulty, then (x)7 and (x,)’ are fault-free. By Theorem 4.3, @Q}' is hyper-hamiltonian
laceable. Thus Q}' — {(x;)7} has a hamiltonian path H; between (x,)’ and (x5)7. As
a result, (s = Xo, (x0)/, H1, (X2)?, X2, H}, t) is a fault-free path of length at least 15 — 2f
(respectively, 14 — 2f) when h(s,t) is odd (respectively, even). If (x;)’ is fault-free, then
(x0)? or (x3)7 is fault-free. Suppose, for example, that (x¢)? is fault-free. By Lemma 7.7,
Qi’l — Fy has a fault-free path H; of length at least 7 — 2f; between (x¢)’ and (x;)?. As
a result, (s = X, (x0)?, Hy, (x1)7, X1, X9, Hj, t) is a fault-free path of length at least 15 — 2f
(respectively, 14 — 2f) when h(s,t) is odd (respectively, even).

Subcase 1.2: Both s and t are in Q%'. First, we consider the case that h(s,t) is odd.
By Lemma 7.7, Qi’l — Fi contains a path 77 of length at least 5 = 7 — 2f; between s and
t. Let A={(T1(4),T1(i+1)) |1 <i<5andi=1 (mod 2)} be a set of disjoint links on
Ty. Since |A] = 3 > f, there exists an odd integer 2, 1 <7 < 5, such that both (77(7))’ and
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(T1(1+41))’ are fault-free. Let w = T} (i ) and b = T7(i+1). Accordingly, T} can be written as
(s, T],w,b Tl”, ). By Lemma 7.7, Q] — Fy has a path T} of length at least 7 — 2 f, between
(w)’ and (b)?. As a result, (s, T}, w, (w)’, Ty, (b)?, b, T/, t) is a fault-free path of length at
least 15 — 2f between s and t.

Next, we consider the case that h(s,t) is even. Hence we have t € V4(Q4 — F). Let u
denote the faulty node in Qi’l. Then we distinguish the following two subcases.

Subcase 1.2.1: Suppose that u € Vl(Qﬁ’l). By Theorem 4.3, Qi’l is hyper-hamiltonian
laceable. Thus @}' — {u} has a hamiltonian path H; from s to t. Obviously, the length
of Hy is equal to 6. Let B = {(H(i),H1(i+1)) |1 <i<6andi=1 (mod 2)} be a set
of disjoint links on 73. Since |B| = 3 > fo, there exists an odd integer 7, 1 < 7 < 6, such
that both (H(7)) and (H;(i + 1))? are fault-free. Let w = H;(2) and b = H;(i + 1). Thus
Hi can be written as (s, H|, w, b, H/,t). By Lemma 7.7, Q}° — F, has a path Hy of length
at least 7 — 2fy between (w)? and (b)’. As a result, (s, H;,w, (w)?, Hy, (b)), b, H/ t) is a
fault-free path of length at least 14 — 2fy > 14 — 2f between s and t.

Subcase 1.2.2: Suppose that u € VO(Q] ). Since h(s,t) is even, it follows from
Lemma 7.7 that Q’ — Fi has a path T; of length at least 6 — 2f; = 4 between s and
t. If there exists a link (w,b) on T} such that both (w)’ and (b)’ are fault-free, then
a path of length at least 14 — 2f can be constructed in a way similar to that described
in Subcase 1.2.1. Otherwise, we have Fy N {(T1(4))’, (T1(i + 1))’} # 0 for every i. Then
we claim that both (77(2))7 and (71(4))’ are faulty. Since f, = 2, we see that |Fy N
{(T (1)), (T1(2)), (T1(3))} = 1 and [Fy N {(T1(3))’, (T1(4))’, (T1(5))’}| = 1. Then we have
Fon{(n(1)), (T1(2)), (T:(3))} = (Fo n{(Ta (1)), (T1(2))'}) N (Fo N{(T1(2)), (Ta(3))'}) =
(T:(2))"). Smilarly, we have £ (T, 3)), (T3 (4)), (T3(3))'} = {(T3(4))'). That is, Fy =
{(T1(2)), (Ty(4))}. By Lemma 7.8, Q4° — F, contains either a path T, of length 4 between
( 1(1))? and (T1(3))? or a path Ry of length 4 between (T7(3))7 and (T7(5))’. As aresult, (s =

71 (1), (Th(1))’, To, (T3(3)), T1(3), T1(4), T1(5) = t) or (s = T1(1)7T1(2)aT1(3)7(T1(3))jaRoa
(T1(5)), Ty (5) = t) is a fault-free path of length 8 = 14 — 2f.

Subcase 1.3: Suppose that s is in Q}” and t is in Q}'. Since f; = 2, we have |V;(Q%°) —
Fo| > 2 = |F U {t}] and |V(Q}°) — (Fy U {s})| = 5 > |Fy U {t}|. If h(s,t) is odd, we
choose a node x of Vi(Q}") — Fy such that (x)7 is fault-free; otherwise, we choose a node
x of V(Q4") — (Fy U {s}) such that (x)? ¢ Fy, U{t}. By Lemma 7.7, Q}° — Fy contains a
path Hy of length at least 7 — 2f, (respectlvely, 6 — 2fy) between s and x when h(s,x) is
odd (respectively, even). Similarly, Q4 — I contains a path H; of length at least 7 — 2f;
(respectively, 6 — 2f1) between (x)’ and t when h((x)?,t) is odd (respectively, even). As
a result, (s, Hy,x, (x)’, Hy,t) is a fault-free path of length at least 15 — 2f (respectively,
14 — 2f) if h(s, t) is odd (respectively, even).

Case 2: Suppose @4 has its faulty nodes distributed as in Figure 7.2(c). To be precise,
we assume F' = {0000,0011,1100}. Then we partition Q4 into QZ’O and Qi’l. It is noticed
that Qi’o is not conditionally faulty.
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Subcase 2.1: Both s and t are in Q3" —{0000,0011}. By Theorem 7.1, Q3° — {0000} has
a path Tg of length at least 5 (respectively, 4) between s and t if h(s, t) is odd (respectively,
even).

We consider first that h(s,t) is odd. Thus the length of path Tj is greater than or equal
to 5. Then Ty passes through every node of V4 (Q2°) — {0000}. In particular, the faulty node
0011 is on Ty. Hence Ty can be written as (s, T, x,0011,y, 7, t). Since A(0011,1100) = 4,
both (x)* and (y)? are fault-free. Since h((x)?, (y)?®) is even, Theorem 7.1 ensures that

®1 — {1100} has a path T} of length at least 4 between (x)* and (y)®. As a result,
(s, T}, x, ()%, T, (y)%,y, Ty, t) is a fault-free path of length at least 9 = 15 — 2f.

Next, we consider the case that h(s,t) is even. We distinguish whether the faulty node
0011 is on Tp. If node 0011 is on Tj, then a path of length at least 8 can be constructed to join
s and t in a way similar to that described earlier. Otherwise, there exists a link (w,b) on Tj
such that both (w)? and (b)? are fault-free. Hence Ty can be written as (s, Ry, w, b, R, t).
By Theorem 7.1, Q7" — {1100} has a path T} of length at least 5 between (w)® and (b)3.
Then (s, Ry, w,(w)3 T1,(b) b, Rj,t) turns out to be a fault-free path of length at least
10 > 14 — 2f.

Subcase 2.2: Suppose that s is in Q" — {0000,0011} and t is in Q7' — {1100}. By
Theorem 7.1, Q3" — {0000} has a path T of length at least 5 (respectively, 4) between
nodes s and 0011 if A(s,0011) is odd (respectively, even). Accordingly, we write Ty as
(s, T§,%,y,0011). Since h(0011,1100) = 4, both (x)* and (y)? is fault-free. On the one
hand, we assume (y)® # t. By Theorem 7.1, Q7' — {1100} has a path T} of length at
least 5 (respectively, 4) between (y)® and t if h((y)3,t) is odd (respectively, even). As a
result, (s, T3, x,y, (y)?, 11, t) is a fault-free path of length at least 9 = 15 — 2f (respectively,
8 = 14 — 2f) if h(s,t) is odd (respectively, even). On the other hand, if (y)* = t, then
Theorem 7.1 ensures that Q7' — {1100} has a path R; of length at least 5 between (x)* and
(y)3. Then (s, T},x,(x)3, Ry, (y)? = t) turns out to be a fault-free path of length at least
9 =15—2f (respectively, 8 = 14 — 2f) if h(s,t) is odd (respectively, even).

Subcase 2.3: Both s and t are in Q7' — {1100}. We list the required paths obtained
by brute force in Table 7.2.

Therefore the proof is completed. O

With Theorem 7.2 and Lemma 7.6, we will be able to prove the next theorem.

Theorem 7.3. Let F be a set of [ faulty nodes in @Q, (n > 1) such that every node of Q,
has at least two fault-free neighbors. Suppose f =0 if n € {1,2}, and f <2n —5 if n > 3.
Let s and t be two arbitrary nodes of Q, — F. Then Q, — F contains a path of length at least
2" —2f — 1 (respectively, 2™ — 2f — 2) between s and t if h(s,t) is odd (respectively, even).

Proof. The result is trivial for n € {1,2}. When n € {3,4}, the result follows from Theo-
rem 7.1 or Theorem 7.2, respectively. In what follows we consider the case that n > 5. Except
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Table 7.2: The required paths in Subcase 2.3 of Theorem 7.2.
s=1101 | t = 1110 | (s = 1101, 1001, 0001, 0101, 0100, 0110, 0010, 1010, 1110 = t)

t = 1111 | (s = 1101, 1001, 0001, 0101, 0100, 0110, 0010, 1010, 1110, 1111 = t)

t = 1000 | (s = 1101,0101,0001, 1001, 1011, 1111, 1110, 1010, 1000 = t)

t = 1001 | (s = 1101,0101,0100, 0110, 1110, 1111, 1011, 1010, 1000, 1001 = t)

t = 1010 | (s = 1101,0101,0100, 0110, 1110, 1111, 1011, 1001, 1000, 1010 = t)

t = 1011 | (s = 1101, 0101, 0001, 1001, 1000, 1010, 1110, 1111, 1011 = t)
s=1110 | t =1111 | (s = 1110, 1010, 1000, 1001, 1101, 0101, 0100, 0110, 0111, 1111 = t)

t = 1000 | (s = 1110, 0110, 0100, 0101, 0001, 1001, 1011, 1010, 1000 = t)

t = 1001 | (s = 1110,0110,0100, 0101, 1101, 1111, 1011, 1010, 1000, 1001 = t)

t = 1010 | (s = 1110, 0110, 0100, 0101, 0001, 1001, 1101, 1111, 1011, 1010 = t)

s=1111 | t =1000 | (s = 1111,0111, 0110, 0100, 0101, 0001, 1001, 1011, 1010, 1000 = t)

s =1001 | t = 1010
t =1011
s =1010 | t = 1011

1001, 1011, 1111, 0111, 0101, 0100, 0110, 1110, 1010 = )
1001, 1000, 1010, 1110, 0110, 0100, 0101, 1101, 1111, 1011 = )
1010, 1000, 1001, 1101, 0101, 0100, 0110, 0111, 1111, 1011 = t)

(
(
(
(
(
(
(
(
2
t = 1011 | (s = 1110, 0110, 0100, 0101, 0001, 1001, 1101, 1111, 1011 = t)
{
(
(
(
(
(
(
(
(
(

t = 1001 | (s = 1111,0111,0101, 0100, 0110, 0010, 1010, 1000, 1001 = t)
t = 1010 | (s = 1111,0111,0110,0100, 0101, 1101, 1001, 1000, 1010 = t)
t = 1011 | (s = 1111,0111,0101, 0100, 0110, 0010, 1010, 1000, 1001, 1011 = t)
s=1000 | t = 1001 | (s = 1000, 1010, 1110, 0110, 0100, 0101, 1101, 1111, 1011, 1001 = t)
t = 1010 | (s = 1000, 1001, 1101, 0101, 0100, 0110, 1110, 1111, 1011, 1010 = t)
t = 1011 | (s = 1000, 1001, 1101, 0101, 0100, 0110, 1110, 1111, 1011 = t)
S
S
S

for the faulty node distribution illustrated in Figure 7.3(a), procedure PARTITION(Q,, F)
returns j-partition of @,, such that both Q7% and Q7! are conditionally faulty. If Q5 has its
faulty nodes distributed as in Figure 7.3(a), then PARTITION(Qs, F') returns j-partition of
@5 such that one subcube has its faulty nodes distributed as in Figure 7.2(b). Accordingly,
the proof can be justified by the induction on n. Our inductive hypothesis is that the result
holds for Q,,_;. For convenience, let Fy = F(Q%°) and F; = F(Q%'). Moreover, let fy = | Fp|
and f; = |Fi|. Without loss of generality, we assume that s € V4(Q,, — F).

Case 1: Suppose fy < 2n — 7 and f; < 2n — 7. Without loss of generality, we assume
that fo < fi. In particular, for the case illustrated in Figure 7.3(a), QJSO is conditionally
faulty with fy = 2 faulty nodes, and ngl is not conditionally faulty with f; = 3 faulty nodes
distributed as in Figure 7.2(b).

Subcase 1.1: Both s and t are in @%°. By inductive hypothesis, Q7 — F contains a
path Hy of length L at least 2”1 — 2fy — 1 (respectively, 2"~! — 2fy — 2) between s and t if
h(s,t) is odd (respectively, even). Clearly, we have [{v € V(Q%!) | \Ngj’l(vﬂ >n—2} <1
Let A = {(Ho(i),Ho(i +1)) |1 <i< Landi=1 (mod2)} be a set of disjoint links on
Hy. Since [A] = [£] > fi+1 > |[FLU{v € V(Q3") | |N5%1(v)| > n — 2} for n > 5,
there exists an odd integer 7, 1 < i < L, such that |Fy N {(Hy(?))/, (Ho(i + 1))’} = 0,
|N£%1((Ho(i))j)| <n -3, and |N53-L,1((Ho(i +1))7)| < n — 3 are satisfied. Let x = Hy(7) and

y = Hy(2 + 1). Hence path Hy can be written as (s, H),x,y, H],t).

If Q%1 is conditionally faulty, our inductive hypothesis asserts that Q%! — F} has a path
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H, of length at least 27! — 2f; — 1 between (x)’ and (y)’. Otherwise, the faulty nodes of
Q%1 are distributed as in Figure 7.2(b). Since both (x)’ and (y)’ have two or more fault-free
neighbors in @', Lemma 7.6 ensures that Q%! has a fault-free path H; of length at least
2771 — 2f; — 1 between (x)7 and (y)’. Then (s, H},x, (x)7, Hy, (y)’,y, Hj,t) is a fault-free
path of length at least 2" — 2f — 1 (respectively, 2" — 2f — 2) between s and t if A(s,t) is
odd (respectively, even). See Figure 7.7(a).

Subcase 1.2: Both s and t are in Q%'. We consider first that the faulty nodes of Q%'
are distributed as depicted in Figure 7.2(b). Let z denote the node with only one fault-free
neighbor r in Q2". Note that fy = 2 and f; = 3.

Suppose {s,t} = {z,r}. Then a long path between s and t is constructed as follows. On
the one hand, we assume that s = z and t = r. Since [Vo(QL°) — Fo| > [Vo(QL%)| — |Fo| =
212> 4= |F1U{t}\ there exists some fault-free node x of V5(Q%°) such that (x)7 ¢ FyU{t}.
By inductive hypothesis, Q’ — F, has a path Hj of length at least 2* — 2f, — 1 between
(s)? and x. By Lemma 7.6, Qj ' — [} has a path H; of length at least 2* — 2f; — 2 between
(x)? and t. As a result, (s, (s)?, Hy,x, (x)’, Hy,t) is a fault-free path of length at least
25 — 2f — 1 (see Figure 7.7(b)). On the other hand, we assume that t = z and s = r. Since
V1(QL°) — F0| > [VA(QLO)| = |Fy| =2t —2> 4= |F1 U{s}|, there exists some fault-free node
x of V1 (Q2°) such that (x)7 ¢ Fy U{s}. Again, the inductive hypothesis asserts that QLY has
a fault-free path Hy of length at least 2% — 2fy — 1 between x and (t)’; Lemma 7.6 asserts
that Q7! has a fault-free path H; of length at least 2* — 2f; — 2 between s and (x)?. Then
(s, Hy, (x)7,x, Hy, (t)7, t) is a fault-free path of length at least 25 —2f —1 (see Figure 7.7(c)).

Suppose {s,t} # {z,r}. Then Lemma 7.6 asserts that Qé’l — F} contains a path H; of
length L at least 2% — 2f; — 1 (respectively, 2% — 2f; — 2) between s and t if h(s, t) is odd
(respectively, even). Let A = {(H(i),H1(i+1)) |1 <i< Landi=1 (mod 2)} be a set
of disjoint links. Since |[A| = [£] > 2 = fq, there exists an odd integer i, 1 < < L, such
that Fo N {(H1(2))?, (H1(2 + 1))} = 0. Let x = Hy(i) and y = H;(i + 1). Accordingly,
path H; can be written as (s, H],x,y, H/,t). Again, the inductive hypothesis asserts that
Qé’o — F, has a path Hj of length at least 2* — 2f; — 1 between (x)’ and (y)’. Then
(s, Hy,x, (x)?, Ho, (y)’,y, H{, t) is a fault-free path of length at least 2° —2f —1 or 2° —2f —2
if h(s,t) is odd or even, respectively. See Figure 7.7(d).

Now we consider the case that faulty nodes of ngl are not distributed as depicted in
Figure 7.2(b), or n > 6. Then @Q’:! is conditionally faulty. By inductive hypothesis, Q%! —
has a path H; of length L at least 2"~ —2f; —1 (respectively, 2"t —2 f; —2) between s and t if
h(s,t) is odd (respectively, even). Similarly, let A = {(H,(7), H1(i+1)) |1 <i< Landi=1
(mod 2)} be a set of disjoint links. Since |A| = [£] > f; for n > 5, there is a link (x,y) of A
such that Fyy N {(x)?, (y)’} = 0. Accordingly, path H; can be written as (s, H;,x,y, H{,t).
By inductive hypothesis, Q7% — Fjy has a path Hy of length at least 2"~* — 2f; — 1 between
(x)? and (y)’. Again, (s, H},x, (x)?, Ho, (y)’,y, H{,t) is a fault-free path of length at least
2" —2f —1or 2" —2f —2if h(s,t) is odd or even, respectively. See Figure 7.7(d).

Subcase 1.3: Suppose that s is in @%° and t is in @%'. Note that [{x € V(Q%') |
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|N£%1(x)| > n — 2} < 1. On the one hand, we consider the case that node t has only
one fault-free neighbor, denoted by r, in @%!. On this occasion, n is equal to 5. Since
Vi(QE°) — Fy| > 272 — fo > fi + 2 = |FL U {t,r}| for n = 5, there exists a fault-free node
b of V1(Q%°) — Fy such that (b)? ¢ Fy U {t,r}. On the other hand, we consider the case
that node t has at least two fault-free neighbors in Q%'. Since |Vi(Q7°) — Fy| > 272 — fy >
fit2 z [Bi]+ [t} + [{x € V(@) | INSu ()] = n =2} = [F U {t} U{x € V(Q}) |
|N£%1(x)| > n — 2}| for n > 5, there exists a fault-free node b of V;(Q%°) — Fy such that

(b)) ¢ FLU{t}U{x e V(Q}") | INj,.(x)] = n—2}.

By inductive hypothesis, Q%% — F, has a path Hy of length at least 27! — 2fy — 1
between s and b. If the faulty nodes of Q7! are distributed as illustrated in Figure 7.2(b),
Lemma 7.6 asserts that Q%! — F| has a path H; of length at least 2"~ —2f; —1 (respectively,
2n=1 —2f) — 2) between (b)? and t if h((b)7,t) is odd (respectively, even); otherwise, the
inductive hypothesis asserts that Q7! — Fy has a path H; of length at least 27! — 2f; — 1
(respectively, 2"~ 1 — 2f; — 2) between (b)? and t if h((b)’,t) is odd (respectively, even).
Then (s, Hy, b, (b)?, Hy,t) is a fault-free path of length at least 2" — 2f — 1 (respectively,
2" — 2f — 2) between s and t if h(s,t) is odd (respectively, even). See Figure 7.7(e).

Case 2: Suppose either fy = 2n —6 or f; = 2n — 6. By Lemmas 7.1—-7.5, we know that
this case may occur while n = 5. More precisely, the faulty nodes happen to be distributed
as illustrated in Figure 7.5(c) where z is itself a faulty node with three faulty neighbors.
Without loss of generality, we assume that fy = 4; thus, (z)’ is a unique faulty node in Qé’l.

Subcase 2.1: Both s and t are in Q2°. By inductive hypothesis, Q2° — (F, — {z})
contains a path Hy of length L at least 9 = 2% — 2.3 — 1 (respectively, 8 = 2* — 2.3 — 2)
between s and t if i(s,t) is odd (respectively, even).

First, we consider the case that node z is not on Hy. Let A = {(Ho(i), Ho(i + 1)) | 1 <
i< Landi=1 (mod 2)} be a set of disjoint links on Hy. Since |A| = [£] > 1 = f;, there
exists an odd integer 7, 1 < i < L, such that both (Hy(2))? and (Hy(i+1))? are fault-free. Let
x = Hy(i) and y = Hy(2+1). Hence path H, can be written as (s, Hj,x,y, HJ,t). It follows
from inductive hypothesis that Qél —{(z)?} has a path H; of length at least 13 = 2—2-1—1
between (x)’ and (y)?. Then (s, H),x, (x)?, Hy, (y)’,y, H],t) is a fault-free path of length
at least 23 > 2° — 2.5 — 1 (respectively, 22 > 2° — 2.5 —2) between s and t if h(s, t) is odd
(respectively, even).

Now we consider the case that node z is on Hy. Since the length of Hj is at least 9, we
can write Hy as (s, Hj, x,z,y, HJ,t). Clearly, (x)’ and (y)’ are fault-free nodes in the same
partite set of Q2. By Theorem 4.3, Q%' is hyper-hamiltonian laceable; thus Q' — {(z)7}
has a path H; of length 14 between (x)’ and (y)?. Then (s, H}, x, (x)/, Hy, (y)’,y, H{, t)
is a fault-free path of length at least 23 > 2° — 2.5 — 1 (respectively, 22 > 2° — 2.5 — 2)
between s and t if h(s,t) is odd (respectively, even).

Subcase 2.2: Both s and t are in Qg’l. For the sake of clarity, we distinguish whether
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Figure 7.7: Illustration for Theorem 7.3.
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h(s,t) is odd or even.

)7} contains a path
Hy of length L at least 13 between s and t. Obviously, we have ) ¢ V(H;). Conse-
quently, (v)? # z for any v € V(H;). Let A = {(H.1(:),H1(i+1)) |1 <i< Landi=1
(mod 2)} be a set of disjoint links on Hj. Since |A| — [Fy — {z}| = [£] = (fo — 1) >
7— (4 —1) = 4, there exist four links of A, namely (x1,¥y1), (X2,¥2), (X3,¥3), and (x4,y4),
such that (x;)7 and (y;)? are fault-free for all 7 € {1,2,3,4}. Thus path H; can be written
as <S Pl,Xl,yl, PQ,XQ, Yo, Pg,Xg,'y:g, P4,X4,y4, P5‘,t>. Then <S, Pl,Xl, (Xl) (Y1) Y1, PQ,XQ,
(x2)7, (y2)’, ¥a, P3, X3, (x3)7, (¥3)?, ¥3, Pas X4, (Xa)?, (y4)7, ya, Ps, t) is a fault-free path of length
at least 21 = 25 — 2.5 — 1 between s and t. See Figure 7.7(f).

Suppose that h(s,t) is odd. By inductive hypothesis, QX' — {(z
(z
|

Suppose that h(s,t) is even. If s and (z)’ belong to the different partite sets of le,
Theorem 4.3 asserts that Q' — {(z)7} has a path H; of length 14 between s and t. Similar
to the case that h(s,t) is odd, there exist four disjoint links on Hy, namely (x1,y1), (X2,¥2),
(x3,y3), and (x4,y4), such that (x;)7 and (y;)’ are fault-free for all i € {1,2,3,4}. Accord-
ingly, we can write H; = <S P1,x1,y1, P2, X2, Y2, P3, X3, ¥3, Pa, X4, y4, Ps, t). Then (s, P, xy,
(x1)7, (y1)7, y1, P, Xa, (%2)7, (y2)7, ¥2, Ps, X3, (x3)7, (y3)7, ¥3, P, X4, (X4)7, (Y4)?, ¥a, Ps, t) is
a fault-free path of length at least 22 > 25— 2.5 — 2 between s and t. If nodes s and (z)’
belong to the same partite set of Q , then we construct a fault-free path as follows. Since
Q] is Condltlonally faulty, we denote by x any fault-free neighbor of z in QJ By inductive
hypothesis, Q] —(Fy—{z}) has a path Hy of length at least 9 = 2* —2.3—1 between x and z.
We can write path Hy as (x, Hj,y,z), where y is also a fault-free neighbor of z. Without loss
of generality, let j = 4, {x,y} = {(2)°, (2)'}, and X = {((2)’, ((2)")?), ((z)’, ((2))*)}. Since
| X | = 2, Theorem 4.2 ensures that Q’ — X is strongly hamiltonian laceable; hence it has a
path H; of length 14 between s and t. Obviously, both ((z)’, (x)7) and ((z)’, (y)?) are on Hy,
and we can write H; as (s, H, (x)’, (z)’, (y)?, H{,t). Then (s, H}, (x)?,x, H},y, (y)?, H{, t)
is a fault-free path of length at least 22 > 2° — 2.5 — 2 between s and t.

Subcase 2.3: Suppose that s is in Qé’o and t is in Qé’l. By inductive hypothesis,
QL% — (Fy — {z}) has a path Hy of length at least 9 (respectively, 8) between s and z if
h(s,z) is odd (respectively, even). Accordingly, path H, can be written as (s, H),X,y, z).
Since (z)’ is a unique faulty node in Q') both (x)7 and (y)’ are fault-free.

If (y)7 # t, it follows from inductive hypothesis that QL' —{(z)’} has a path H; of length
at least 13 (respectively, 12) between (y)’ and t if h((y)’,t) is odd (respectively, even).
Then (s, H),x,y, (y)?, Hi,t) is a path of length at least 21 = 25 — 2.5 — 1 (respectively,
20 = 2% — 2.5 — 2) between s and t if h(s,t) is odd (respectively, even). See Figure 7.7(g).
Otherwise, if (y)? = t, then our inductive hypothesis asserts that Q2" — {(z)’} has a path
H, of length at least 13 between (x)’ and (y)?. Then (s, H},x, (x)7, Hy, (y)’ = t) is a path
of length at least 21 = 2° — 2.5 — 1 (respectively, 20 = 2° — 2 -5 — 2) between s and t if
h(s,t) is odd (respectively, even). See Figure 7.7(h).

Therefore the proof is completed. O
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Chapter 8

Conclusion and Future Works

Paths and cycles are two network structures extensively used in distributed systems and
parallel computation. In this thesis, we introduce some research issues on embedding paths
and cycles into interconnection networks.

Firstly, we devote to investigating fault-tolerant hamiltonian connectedness of cycle com-
position networks. In Chapter 2, we improve the result of Chen et al. [12] by showing that
the cycle composition network Go 1, n—1,0) is super fault-tolerant hamiltonian even if it is
composed of n 4-regular super fault-tolerant hamiltonian networks Gy, ..., G,_1, provided
that n > 3. However, we conjecture that this result may not be true if the cycle composition
network is constructed on the basis of cubic networks. Therefore such an improvement is of
significance because only the remaining case for 3-regular graphs needs to be checked with
brute force or by computer.

Secondly, we restrict our attention to the applicability of hamiltonian cycles on intercon-
nection networks. Both Chapter 3 and Chapter 4 are dedicated to exploring how to embed
mutually independent hamiltonian cycles onto interconnection networks. In Chapter 3 we
show that the binary wrapped butterfly graph BF'(n) has 4-mutually independent hamilto-
nian cycles, beginning from any vertex, for n > 3. In Chapter 4, we first prove that a faulty
n-cube contains (n — 1 — f)-mutually independent hamiltonian cycles, beginning from any
vertex, when not more than f < n — 2 faulty edges may occur accidentally. However, we
conjecture this result can be further refined; that is, we believe that a faulty n-cube really
can be embedded with up to (n — f)-mutually independent hamiltonian cycles, beginning
from any vertex, when f < n — 2 faulty edges occur. Next, we also prove that a faulty star
network S,, has (n — 1 — f)-mutually independent hamiltonian cycles, beginning from any
vertex, if only f < mn — 2 faulty edges occur accidentally, provided that n > 4.

Finally, we concern the problem of embedding various paths into conditionally faulty
hypercubes. In advance, the fault diameter of the n-cube is computed in Chapter 5. In
Chapter 6 we investigate the method for embedding paths of variable lengths into hypercubes,
whose every node is assumed to be incident to at least two fault-free links. In Chapter 7 we
show that a long path between any two nodes can be embedded into a conditionally faulty
hypercube, whose every node is assumed to have at least two fault-free neighbors.
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For the purpose of efficient data transmission, one of our future work is directed to explore
the feasibility of finding as many mutually independent edge-disjoint hamiltonian cycles as
possible. Another future research issue will be dedicated to generalizing the conditional-fault
tolerance in the perspective on path embedding. Besides path and cycle embedding, tree
embedding is also an important research topic widely addressed in the area of interconnec-
tion networks. By definition, a tree is a connected graph without cycles. In practice, tree
structures are very useful for network communication too. Hence, in our future work, we
also plan to design efficient communication algorithms on the basis of tree embedding.
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