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Abstract

Microarray gene expression profiling technology is one of the most important research
topics in cancer research or clinical diagnosis of disease. The gene expression data pro-
vide valuable information in the understanding of genes, biological networks, and cellular
states. Through microarray techniques, we can find out the important genes which partic-
ipate in the genetic regulation and rebuild cellular dynamic regulation networks from gene
expression data to discover more‘delicate and substantial functions in molecular biology,
biochemistry, bioengineering, and.pharmaceutics. ©One goal in analyzing expression data
is to determine how genes are expressed‘as a result; of certain cellular conditions (e.g., how
genes are expressed in diseased and healthy cells). Another goal is to determine how the
expression of any particular gene might affect the expression of other genes in the same
genetic network. To achieve the two objectives of microarray data analysis mentioned
above, two of the important issues in microarray data analysis are the gene expression
classification and the genetic networks inference problem.

First, when dealing with the gene expression classification problem, an accurate clas-
sifier with linguistic interpretability using a small number of relevant genes is beneficial
to microarray data analysis and development of inexpensive diagnostic tests. Several
frequently used techniques for designing classifiers of microarray data, such as support
vector machine, neural networks, k-nearest neighbor rule, and logistic regression model,
suffer from low interpretabilities. This thesis proposes an interpretable gene expression
classifier (named iGEC) with an accurate and compact fuzzy rule base for microarray
data analysis. The design of iGEC has three objectives to be simultaneously optimized:

maximal classification accuracy, minimal number of rules, and minimal number of used
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genes. A novel intelligent genetic algorithm (IGA) is used to efficiently solve the design
problem with a large number of tuning parameters. The performance of iGEC is evaluated
using eight commonly-used data sets. It is shown that iGEC has an accurate, concise,
and interpretable rule base (1.1 rules per class) on average in terms of test classification
accuracy (87.9%), rule number (3.9), and used gene number (5.0). Moreover, iGEC not
only has better performance than the existing fuzzy rule-based classifier in terms of the
above-mentioned objectives, but also is more accurate than some existing non-rule-based
classifiers.

Second, for the genetic networks inference problems, it is desirable to rebuild the re-
lationships of regulation between genes from gene expression profiles. S-system model
is suitable to characterize biochemical network systems and capable to analyze the reg-
ulatory system dynamics. However, inference of an S-system model of N-gene genetic
networks has 2N (N + 1) parameters_in a set of non-linear differential equations to be
optimized. This thesis proposes.an intelligent two-stage evolutionary algorithm (iTEA)
to efficiently infer the S-systenrmeodels of genetic networks from time-series data of gene
expression. To cope with curseiof dimnensionality, the proposed algorithm consists of two
stages where each uses a divide-and-conquer strategy. The optimization problem is first
decomposed into N subproblems having 2(N + 1) parameters each. At the first stage,
each subproblem is solved using the novel intelligent genetic algorithm (IGA) with in-
telligent crossover based on orthogonal experimental design (OED). At the second stage,
the obtained N solutions to the N subproblems are combined and refined using an OED-
based simulated annealing algorithm for handling noisy gene expression profiles. The
effectiveness of iTEA is evaluated using simulated expression patterns with and without
noise running on a single-processor PC. It is shown that 1) IGA is efficient enough to
solve subproblems; 2) IGA is significantly superior to the existing method SPXGA; and

3) iTEA performs well in inferring S-system models for dynamic pathway identification.

Keywords: Evolutionary algorithm; Intelligent genetic algorithm; Orthogonal experi-
mental design; Divide-and-conquer; Pattern recognition; Fuzzy classifier; Gene expression;

Microarray data analysis; Genetic network; Pathway identification; S-system model.
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Chapter 1

Introduction

1.1 Motivation

Microarray gene expression profiling technology is one of the most important research
topics in cancer research or clinical diagnosis of disease. The gene expression data pro-
vide valuable information in the understanding of genes, biological networks, and cellular
states. Through microarray technigues, we can find out the important genes which partic-
ipate in the genetic regulation ahd rebuild cellular dynamic regulation networks from gene
expression data to discover more delicate and substantial functions in molecular biology,
biochemistry, bioengineering, and pharmacetutics.»One goal in analyzing expression data
is to determine how genes are expressed as‘a result of certain cellular conditions (e.g.,
how genes are expressed in diseased and healthy cells) [1]. Another goal is to determine
how the expression of any particular gene might affect the expression of other genes in
the same genetic network [2, 3, 4, 5].

To achieve the two objectives of microarray data analysis mentioned above, the most
important issues in microarray data analysis are the gene expression classification and the
genetic networks inference problem. In this thesis, we proposed two efficient algorithms
to cope with these two important topics of microarray data analysis. Following is the
introduction about the gene expression and the genetic networks inference problem, and
the corresponding proposed algorithms to handle these two major problems in microarray

data analysis.



1.2 Survey of the Related Works

1.2.1 Gene Expression Classification Problems

Given a large number of profiles contained thousands of genes in each experiment, we
want to understand a global overview among lots of genes involved in the microarray
experiments [6]. In such a case, gene expression classification was used to determine
function for unknown genes [7], to look at expression programs for different systems in
the cell [8] and for identifying sets of genes that are specifically involved in a certain type
of cancer or other diseases [9]. Another major purpose in gene expression classification
is effective data organization and visualization. It is thus not surprising that early work
on gene expression analysis has focused on this level, and several classification algorithms
have been suggested for gene expression data [10, 11].

The practical applications of microarray gene expression profiles include management
of cancer and infectious diseases.’ There are many machine learning techniques, such
as support vector machine (SVM), neural networks (NN), k-nearest neighbor rule (k-
NN), and logistic regression have been-used in gene expression data classification [12,
13]. However, due to the following three features about microarray data analysis, gene

expression classification still remains difficult:

1) high dimensionality: there are thousands of genes (or features) in the microarray

experiment;

2) few samples: compared with the number of genes, the number of samples was

relatively few, usually fewer than one hundred;

3) given thousands of genes, only a small number of them show strong correlation with

a certain phenotype [14].

Statnikov et al. investigated various classifiers which can handle data sets having
multiple classes [12]. The results indicate that the multicategory SVM is the most effective
classifier for tumor classification in terms of classification accuracy using large numbers

of genes. However, given thousands of genes, only a small number of them show strong



correlation with a certain phenotype [14]. Unfortunately, it is intractable to identify the
optimal subset from thousands of genes, while taking classification accuracy and linguistic
interpretability into account.

Liu et al. proposed a feature selection method which combines top-ranked, test-
statistic, and principle component analysis in conjunction with ensemble NN to design
classifiers [15]. Zhou and Mao suggested a filter-like evaluation criterion, called LS Bound
measure, derived from leave-one-out procedure of least squares support vector machines
(LS-SVMs), which provides gene subsets leading to more accurate classification [16]. Liu
et al. combined the entropy-based feature (gene) selection method using simulated an-
nealing and k-NN classifier for cancer classification [17].

To advance the classification performance using a small number of genes, it is better
to take both gene selection and classifier design into account simultaneously. Li et al.
proposed a hybrid method of the genetigalgorithm (GA)-based gene selection and k-NN
classifier to assess the importange of gemes-for classification [18]. Ooi and Tan proposed
a GA/MLH (maximal likelihood)sbased method for- the multicategory prediction of gene
expression data [19].

An accurate classifier with linguistic interprétability is beneficial to microarray data
analysis. However, the learning results of the above-mentioned classifiers cannot be sum-
marized into human-interpretable forms for biologists and biomedical scientists [13]. Li et
al. used a tree structure to classify the microarray samples [20]. Hvidsten et al. proposed
learning rule-based models of biological process from gene expression time profiles using
gene ontology [21]. Vinterbo et al. presented a rule-induction and filtering strategy to ob-
tain an accurate, small, and interpretable fuzzy classifier using a grid partition of feature
space, compared with the classifier of logistic regression [13]. However, the grid partition
method often results in too many fuzzy rules for human to handle. And the adopted rule

filtering strategies often cause the loss of accuracy.

1.2.2 Genetic Network Inference Problems

The goal of constructing genetic network models is to reveal the regulation rules behind

the gene expression data. The genetic network may be used as instructions for further



biological experiments to discover more delicate and substantial functions in molecular
biology, biochemistry, bioengineering, and pharmaceutics. The traditional biological ex-
periments mainly concentrate on small-scale or local reaction among parts of complex
biological system behavior. When faced with large-scale genetic networks, the efficient
method with increased computational efficiency is desirable.

Most of the mathematical algorithms and models proposed to describe biochemical
networks include [22]: Boolean network model [23], Bayesian network [24, 25], and differ-
ential model or S-system model [26]. In Boolean network models, gene expression levels
can be referred to two situations, true or false. These models have the advantage that they
can be solved with less computing effort. But the drawback is that they can’t quantify in-
teraction intensity between genes and not adequate in analyzing cyclic network structure
such as feedback regulatory loops. Bayesian network model is able to deal with linear,
non-linear, and combinatorial problems,also used to infer genetic networks. But similar
to Boolean networks, it suffers from thessame dilemma and only applicable to acyclic
structures [22, 24]. To cope with the eyclie nietworks, some authors adopted the adapted
dynamic Bayesian network [27,-28].

Another frequently used approach.is to usedifferential equation models for analysis of
gene expression. The most popular model can be referred to the S-system model which
has been considered suitable to characterize biochemical network systems and capable to
analyze the regulatory system dynamics [29, 30, 31, 32, 33, 34, 35, 26]. The S-system

model is a set of non-linear differential equations as the following form:

d‘)jt(t) — o ﬂ X09(t—1) - B, ﬂ XM —1) (1.1)

j=1

where X;(t) represents the expression level of gene i at time ¢ and N is the number of
genes in a genetic network. «; and (3; are rate constants which indicate the direction of
mass flow and must be positive. g;; and h;; are kinetic orders which reflect the intensity
of interaction from gene j to ¢. For inferring an S-system model, it is necessary to
estimate all the 2N (N + 1) S-system parameters (o, 53;, gij, hi;) from experimental time-
series data of gene expression. Essentially, this reverse engineering problem is a large-

scale parameter optimization problem (LPOP) which is time-consuming and intractable.



Genetic algorithm (GA) [36] plays an important role in solving the optimization problem
of dynamic modeling of genetic networks using the S-system model [29, 30, 31, 33].
Kikuchi et al. used GA with simplex crossover (SPXGA) to improve the optimization
ability for dynamic modeling of genetic networks from N = 2 to 5 [29]. SPXGA suc-
cessfully inferred the dynamics of a small genetic network using only time-series data of
gene expression. When deal with a more complicated structure with a large number of
genes (i.e., N = 10), it is hard to obtain a satisfactory solution in a limited amount of
computation time. To infer large-scale genetic network models, Maki et al. proposed an
efficient problem decomposition strategy to divide the inference problem into N separated
small subproblems [32]. To reduce search time of the inference problem, Voit and Almeida
proposed an approach to transforming the problem into several sets of decoupled algebraic
equations, which can be processed efficiently in parallel or sequentially [26]. Kimura et
al. used a cooperative coevolutionary algorithm with the problem decomposition strategy
to efficiently infer large-scale S-system models with noisy time-series data [31]. However,
the existing efficient evolutionary algorithms‘required parallel computing on a PC cluster

for efficiently obtaining satisfactery solutions{29,/30, 31].

1.3 Sketch of the Thesis

1.3.1 An Interpretable Gene Expression Classifier for Gene Ex-
pression Classification
In this study, we propose an interpretable gene expression classifier (named iGEC) with
an accurate and compact fuzzy rule base using a scatter partition of feature space for
microarray data analysis. Because gene expression data have the property of natural
clustering, fuzzy classifiers using a scatter partition of feature spaces often have a smaller
number of rules than those using grid partition [37]. The design of iGEC has three objec-
tives to be simultaneously optimized: maximal classification accuracy, minimal number of
rules, and minimal number of used features. In designing iGEC, the flexible membership
function optimization, rule filtering, and gene selection strategies are simultaneously op-
timized. A novel intelligent genetic algorithm (IGA) is used to efficiently solve the design

problem with a large number of tuning parameters [38]. It is noted that the similar fuzzy



rule-based classifier to iGEC is averagely better than the C4.5 classifier using 11 machine
learning data sets in terms of classification accuracy, rule number, and used feature num-
ber [37]. The performance of iGEC is evaluated using eight gene expression data sets.
It is shown that iGEC has an accurate, concise, and interpretable rule base (1.13 rules
per class averagely) in terms of averaged classification accuracy (87.89%), rule number
(3.91), and used gene number (4.97). Moreover, iGEC not only has better performance
than Vinterbo’s classifier in terms of the above-mentioned objectives, but also is more
accurate than some non-rule-based classifiers using a large number of genes. Further, the
proposed iGEC can be extended to an interpretable scoring fuzzy classifier (iISFC) which

can effectively quantify the certainty grades of samples belonging to each class.

1.3.2 An Intelligent Two-stage Evolutionary Algorithm for In-
ference of Genetic Network

For the genetic network inference problems; we propose an intelligent two-stage evolu-
tionary algorithm (iTEA) to iufer S-system models of large-scale genetic networks from
small-noise gene expression data using-a single-CPU PC. iTEA consists of two stages
where each uses a divide-and-conquerstrategy. We solve the optimization problem by de-
composing it into N subproblems having 2(N+-1) parameters each when the measurement
noise is small. In stage 1, each subproblem is solved using the novel intelligent genetic al-
gorithm (IGA) based on orthogonal experimental design (OED). In stage 2, the obtained
N solutions to the N subproblems are combined and refined using a novel OED-based
orthogonal simulated annealing algorithm (OSA) for handling noisy gene expression data.
The effectiveness of iTEA is evaluated using simulated expression patterns with/without
noise. It will be shown that 1) IGA is efficient enough to solve subproblems; 2) IGA is
significantly superior to the existing method SPXGA [29]; and 3) iTEA performs well in
inferring S-system models of large-scale genetic networks from small-noise gene expression

data.



1.4 Organization

This monograph is divided into three parts. The first part (Chapter 3) is devoted to
the intelligent genetic algorithm (IGA). The second part (Chapter 4) devoted to using
IGA to design an interpretable fuzzy rule-base classifier for microarray gene expression
classification. The third part (Chapter 5) is devoted to an intelligent two-stage evolu-
tionary algorithm (iTEA) to solve genetic network inference problem. Finally, the detail
organization is as follows.

Chapter 2 contains the introductions of several common used classifiers for gene expres-
sion classification, four kinds of genetic network models for describing genetic networks,
and finally, the genetic algorithm which is one of the evolutionary algorithm is presented.

Chapter 3 presents the novel efficient intelligent genetic algorithm (IGA) using the
efficient divide-and-conquer strategy and being good at solving the large-scale parameter
optimization problem (LPOP) based on orthogonal experimental design (OED) and factor
analysis.

Chapter 4 contains two major parts: One'is how the designing problem of an in-
terpretable gene expression classifier (iGEC) with accurate and compact fuzzy rule base
to be transformed into an LPOP. The other is how to use IGA to optimize the design
problem. Finally, the experimental results of iGEC on eight benchmark data sets and
conclusions for iGEC are presented.

Chapter 5 proposes an intelligent two-stage evolutionary algorithm (iTEA) to opti-
mize genetic network inference problem. The variant of intelligent genetic algorithm and
another novel OED-based simulated annealing algorithm (OSA) used in each stages, and
the combination of these two algorithms for iTEA are introduced in this chapter. In the
last part of this chapter are the experimental results and conclusions for iTEA.

Chapter 6 concludes the thesis. It starts with the summary of the goals and the
importances of gene expression classification and genetic network inference problems in
microarray data analysis. Following are the results and future works of our two proposed

optimization methods for the two topics mentioned above.



Chapter 2

Background

2.1 Classifiers for Gene Expression Classification

Several common machine learning methods, such as neural network, k-neast-neighbor
rule, support vector machine, and fuzzy rule-base classifier, have been used for gene
expression classification. Each method has its own characteristics. Following are the brief

introductions of these machine learing metheds mentioned above.

2.1.1 Neural Networks (INN)

Imitating the biological nervous'systems, such as the brain, the neural network is a way of
information processing or classification method which is inspired from the way of informa-
tion processing of the neuron in biological nervous systems. Neural network is composed
of a large number of highly interconnected processing nodes (neurones) working in uni-
son to solve specific classification problems and there exists a weight value for a certain
simple calculation in each link between two nodes. Following are the two common used
variations of neural networks: backpropagation neural networks (BNN) and probabilistic

neural networks (PNN).
Backpropagation Neural Networks (BNN)

Because of the easiness and effectiveness of their learning strategy, backpropagation neural
networks (BNN) are one of the most common neural network structures and have been
used in a wide range of machine learning applications, such as gene expression data

classification problem.



The structure of the BNN is a network of nodes arranged in three layers—the input,
hidden, and output layers. The input and output layers serve as nodes to buffer input
and output for the model, respectively, and the hidden layer serves to provide a means
for input relations to be represented in the output.

When presented with an input pattern, each input node takes the value of the corre-
sponding attribute in the input pattern. During the training phase of the network, once
a classification has been given, it is compared to the actual classification. This is then
“backpropagated” through the network, which causes the hidden and output layer nodes
to adjust their weights in response to any error in classification, if it occurs. The advan-
tages and limitations of BNN are: 1) BNN performs well in prediction and classification;
2) Although, BNN is slow compared to other machine learning methods, such as support
vector machines, it is reasonable for neural network; 3) The learning results are lack of
explanation of what has been learned, .[12..39] applied this method to the gene expression

data classification problem.
Probabilistic Neural Networks (PNIN)

Probabilistic neural networks (PNN) ¢an be used for classification problems. Rather than
the BNN directly fitting the training samples, PNN is interpreted as a function which
approximates the probability density function (pdf) of the underlying training samples’
distribution.

During the test phase, when a sample forms an input vector is presented, the first layer
computes distances from the input vector to the training input vectors, and produces a
vector whose elements indicate how close the input is to a training input. The second
layer (or pattern layer) sums these contributions for each class of inputs to produce as its
net output a vector of probabilities. Finally, a compete transfer function on the output of
the second layer picks the maximum of these probabilities, and makes the corresponding
classified decision.

Not only because that PNN identifies the commonalities in the training examples and
allows to perform classification of unseen samples, but also the learning rule of PNN

is simple and requires only a single pass through the training data. The PNN offers the



following advantages [40]: 1) rapid training speed: the PNN is much faster than backprop-
agation; 2) guaranteed convergence to a Bayes classifier if enough training examples are
provided,that is it approaches Bayes optimality; 3) enabling incremental training which is
fast, that is additionally provided training exmaples can be incorporated without difficul-
ties; 4) robustness to noisy examples. [12, 41, 42, 43] applied PNN to classify microarray

samples.

2.1.2 k-nearest-neighbor Rule (k-NN)

The k-nearest-neighbor (k-NN) rule represents one of the most widely used classifiers in
pattern recognition. The k-NN rule is based on the nearest neighbor algorithm which is
a simple classification algorithm; a query data is classified according to the classification
of the nearest neighbor from a database of known classifications, i.e. a reference dataset.
By means of generalization the nearest neighbor algorithm, we obtained the so-called k-
nearest neighbor algorithm, where the k-nearest samples are selected and the query data
is assigned the class most frequently represented among them. A further extension is to
weight the k-nearest samples with a certain power of the distance from the query data.
Although it is simple, k-NN can give competitive performance compared to many other
methods. There are some applications of the nearest neighbor methods on bioinformatics,
such as to predict protein secondary structure and to classify biological and medical data
[44]. However, because of the small number of microarray samples, the k-nearest neighbor
method often leads to the problem of overfitting and performs not very well on microarray

data analysis. [12, 45] used the k-NN rule for gene expression classification.

2.1.3 Support Vector Machine (SVM)

The support vector machines (SVM) are learning machine based on the statistical theory
proposed be Vapnik [46]. Not like the most of machine learning methods which minimize
the classification error, the objective of SVM is to maximize the upper bound of the error
rate under a certain probability such that SVM can make the classification precisely.
The main idea of the SVM is that: given a set of training data samples under a

non-linearly separable low-dimension. The SVM non-linearly maps their low dimensional
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input space into a high dimensional feature space. In this high dimesional feature space,
SVM finds a linear hyperplane and use this to make the classification. The corresponding
classification using the optimal hyperplane has the two properties: 1) leaving the largest
possible part of training samples of the same class on the same side; 2) maximizing the
distance of the each class from this hyper plane. If SVM can find the optimal linearly
separable hyperplane which minimize the probability of misclassifying the training sam-
ples, the unseen test samples will be well classified, too. Figure 2.1 demonstrates the
illumination of the learning principle and testing behavior of SVM. In the left diagram
with small separating margin, the unknown test sample, x, would be classified to class
2, however, according to the distances between sample x and each class, sample x should
belong to class 1. Therefore, the right diagram with large separating margin will provides

better test accuracy when coping with the unknown test samples.

Feature 1 ) Feature 1

A small margin A .

X |-¥ large margin
N R
Class 1 Class 1
3 O
Class 2 Class 2

0 0.° o ©

oo o O 0o O
O
Feature 2 Feature 2

4 decision boundaries &

Figure 2.1. Illumination of the learning principle and testing behavior of SVM.

The SVM is the most popularly used on the microarray data analysis [12, 45, 47, 48,
49]. Because of the characteristic that it is not easily to be overfitting when the number of
training samples is small, the SVM performs well on the gene expression data classification

problem.

2.1.4 Fuzzy Rule-Base Classifier

There are many machine learning techniques, such as support vector machine (SVM),

neural networks (NN), k-nearest neighbor (k-NN), and logistic regression have been used
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in gene expression data classification [12, 13]. However, the learning results of the above-
mentioned classifiers cannot be summarized into human-interpretable forms for biologists
and biomedical scientists [13]. Fuzzy Rule-Base Classifier not only provides the human-
interpretable if-then learning rules but also adopts the “fuzzy” concept to describe the
continuous feature value rather than “crisp” one.

The form of a fuzzy if-then rule is:
R:1If ... then Class is ....

The most distinguishing property of fuzzy logic is that it deals with fuzzy propositions,
that is, propositions which contain fuzzy variables and fuzzy values, for example, “the
gene X; is up-regulated.” or “the gene X is down-regulated.”. However, the truth values
for fuzzy propositions are not binary value , i.e. TRUE/FALSE only, as is the case in
propositional boolean logic, but include, all. the possibilites of certainty grade between two
extreme values.

In fuzzy systems, there are thtee major fuzzy partition methods for the feature space
of a membership functions: grid pattitions-tree partition and scatter partition. In Ho et
al. ’s work [37], they are briefly deseribed as.follows. Figure 2.2 is the brief illuminations

of the three partition method.
Grid Partition

Grid partition is the most commonly used fuzzy partition approach. There may be p"™
fuzzy rules in the case of p fuzzy sets on each axis of an n — D feature space using grid
partition. A major advantage of grid partition is that fuzzy rules obtained from fixed
linguistic fuzzy grids are always linguistically interpretable. However, the grid partition
method often results in too many fuzzy rules for human to handle. And the adopted rule

filtering strategies often cause the loss of accuracy.
Tree partition

Tree partition results from a series of guillotine cuts. A guillotine cut is made entirely

across the subspace to be partitioned, and each of the regions thus produced can then
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be subjected to independent guillotine cutting. Tree partition can significantly relieve
the problem of rule explosion and accelerate classification, but its application to high-

dimensional problems faces practical problems [50].
Scatter Partition

Scatter partition uses multi-dimensional antecedent fuzzy sets. From the viewpoint of
classification performance, scatter partition may be the most effective approach to de-
signing high-dimensional fuzzy classifiers [51]. Scatter partition usually generates fewer
fuzzy regions than the grid and tree partitions owing to the natural clustering property
of training patterns. However, scatter partition of high-dimensional feature spaces is dif-
ficult, and thus some learning or automatic evolutionary procedures become necessary

[50].

(a) (b) (©)

Figure 2.2. Illuminations of the three fuzzy partition methods: (a) grid partition; (b) tree
partition; (c) scatter partiton.

Each fuzzy partition method forms a corresponding membership functions representing
the fuzzy concept mentioned above. Recently, Vinterbo et al. proposed a small and
interpretable fuzzy rule-based classifier using a grid partition of feature space for gene
expression classification [13]. Because of the continuous and noisy gene expression data
of microarray experiments, the fuzzy classifier often makes the classification result more

precisely.
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2.2 Models of Genetic Network

The first issue of the inference problem of genetic network is which genetic work model is
going to be adopted and to describe the interaction among genes. Based on the nature of
the regulation interaction, reverse engineering algorithms for genetic network modeling,
in general, can be classified into three categories: by Boolean rules, by stochastic formulas
and theory, and by differential equations. In Wu et al. ’s work [52], they summarized
the most frequently used models among the four major categories mentioned above: 1)
boolean network model, 2) Bayesian network model, 3) linear differential network model,
and 4) S-system network model. Following are the brief descriptions about these four

models.

2.2.1 Boolean Network Model

Boolean network model is the simplést andsthe most computationally effective model
system that can give some insight;into. the overall behavior of large genetic networks
[53]. In Boolean network models; the interaction between genes can be referred to two
situations, true or false (on or off) and the stateiis determined by a Boolean function of
the states of some other genes. These simple models have the advantage that they can be
solved with less computing effort. But the drawback is that they can’t quantify interaction
intensity between genes and not adequate in analyzing cyclic network structure such as
feedback regulatory loops. [54, 55, 56] adopted the Boolean network model to describe

the regulation of genetic network.

2.2.2 Bayesian Network Model

Bayesian network model which is able to deal with linear, non-linear, and combinatorial
problems is also used to describe genetic networks. Rather than the only two extreme
states adopted in Boolean network model, Bayesian network use the stochastic method to
model the causality between genes which can quantify degrees of the interactions among
networks. There are a set of nodes and a set of edges, which together constitute a directed

acyclic graph in a bayesian network. The nodes in the graph represent random variables,
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while the edges indicate the existence of direct causal connections between the linked nodes
and the strengths of these connections are expressed in terms of conditional probabilities.
But similar to Boolean networks, it suffers from the same dilemma and only applicable to
acyclic structures [22, 24]. To cope with the cyclic networks and dynamic modeling the

gene regulation, some authors adopted the adapted dynamic Bayesian network [27, 28].

2.2.3 Linear Differential Network Model

The linear differential model is one of the simplest ways to dynamically model the inter-
actions between genes. Linear differential models assume that the change of each gene
at one time point is determined by a weighted sum of the expressions of all genes at the
previous one time point. The mathematical formulism of the linear differential model for

a continuous-time system with N genes is described as follows [23]:

dX;(t)
dt

N
=) wyp Xt 1)+ bi=1,..., N, (2.1)
j=1

where X;(t) is the expression level of the 7;; gene at time ¢, N indicates the number of
genes in this genetic network, and b; is-&bias term indicating whether gene 7 is expressed
or not in the absence of regulatory inputs.

The linear differential model is very simple such that it can provide the chance to
researchers for finding out the most significant information without taking too complex
computational cost. However, there is a major drawback when using the linear differential
model: the assumption of linear gene-regulation relationship is unrealistic. To cope with
the nonlinear complex systems, such as gene expression networks and metabolic pathways,
we need a more general, non-linear, and representative model. [57, 58] applied the linear

differential equations to modeling the gene regulation relationship.

2.2.4 S-system Network Model

Another frequently used approach is to use non-linear differential equation models for
analysis of gene expression. The most popular model can be referred to the S-system
model which has been considered suitable to characterize biochemical network systems

and capable to analyze the regulatory system dynamics [29, 30, 31, 32, 33, 34, 35, 26].
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The S-system model is a set of non-linear differential equations as the following form:

dX;(1)
dt

N - N .
= [[ X7t =1 =B [ X7 (t—1) (2.2)
=1 j=1

where X;(t) represents the expression level of gene i at time ¢t and N is the number of
genes in a genetic network. «; and (; are rate constants which indicate the direction of
mass flow and must be positive. g;; and h;; are kinetic orders which reflect the intensity of
interaction from gene j to i. For inferring an S-system model, it is necessary to estimate
all the 2N (N +1) S-system parameters (o, 3;, gi;, hi;) from experimental time-series data
of gene expression.

The S-system models have the ability not only to describe a non-linear gene regulation
system but also to cope with the cyclic networks and the dynamic regulation between
genes. However, the reverse engineering problem of this general and representative model
is a large-scale parameter optimization; problem with 2N (N + 1) parameters which is
time-consuming and intractables’ Genetigralgorithm (GA) [36] plays an important role
in solving the optimization problem of dynamic'medeling of genetic networks using the

S-system model [29, 30, 31, 33]:

2.3 Genetic Algorithm (GA)

Recently, genetic algorithm (GA) proposed by J. H. Holland in 1970 has become the one
of the most popular optimization methods [36]. GA has the advantages that it provides
the robust solution quality and that although GA does not need the additional domain
knowledge to search the solution space, however, applying appropriate prior knowledge
leads to better performance. The main difference between GA and traditional numerical
methods is that: 1) GA adopts the coding strategy to transform the candidate solution
to “individual chromosome” consisting of a group of parameters; 2) with the population
of chromosomes and the specific operators to exchange the information between chromo-
somes during searching, GA can efficiently search for the optimal solutions in the search
space with high probability to finding out the global optima. Figure 2.3 showes the illumi-

nations of the searching models of GA and traditional numerical methods. The qualities
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Figure 2.3. Illuminations of the searching behaviors between genetic algorithm and tra-
ditional numerical method; (a) traditional numerical method; (b) genetic algorithm.

of the solutions using traditional numerical methods highly depends on the initial given
value such that it is easy to fall into local optima.

GA consists of three basic operators: 1) Selection: attempting to apply pressure upon
the population in a manner similar to that of natural selection found in biological systems;
2) Crossover: allowing solutions to exchange information in a way similar to that used by
natural organism undergoing sexual reproduction; 3) Mutation: used to randomly change
(flip) the value of single parameter (bit) within-the individual chromosome. Figure 2.4
is the flowchart of GA. In this-flowghart, the lighter the color of gene is, the better the
value of the gene contains. Following are the brief introductions about the major issues in
GA: encoding scheme and fitness function, population initialization, selection, crossover,

mutation, and termination condition.

2.3.1 Encoding Scheme and Fitness Function

The first stage of building a genetic algorithm is to decide on a genetic representation of
a candidate solution to the original problem. This involves defining and arranging each
parameter within the individual chromosome and the mapping approach from individual
chromosomes and the corresponding candidate solutions to problems being solved.

After deciding on the representation of chromosomes is to design an appropriate fit-
ness function. The fitness functions (or objective functions) are used to quantify each
candidate solution mapped from one chromosome, and often, they can be maximized or
minimized. Because of the selection operator based on the fitness values a lot, the per-

formance of genetic algorithms usually highly depends on the convenience of the adopted
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Figure 2.4. The flowchart of geneti¢ algorithm. The lighter the color of gene is, the better
the value of the gene contains.

fitness functions.
Following is a simple example for encoding scheme and fitness function design. If we

want to maximize the following equation f(x):
f(z) = 2?; for integer x and 0 < z < 4095. (2.3)

We can just use f(z) as the fitness function to be maximized, and adopt the binary
representation strategy to encode the value of x such that “110101100100” implies z =
3428 while “010100001100” represents x = 1292.

2.3.2 Population Initialization

One of the characteristics of genetic algorithms is doing parallel search in the solution

space with a set of candidate solutions. This set of candidate solutions is called a “popu-
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lation”. To achieve the objective of searching the solution space globally, the chromosomes
of populations usually are randomly initialized such that each chromosome will be scat-
tered over the solution space uniformly. However, if there are constraints on solutions to
the problem being solved, how to guarantee all initial chromosomes feasible is an impor-

tant issue to be considered.

2.3.3 Selection

Selection attempts to apply pressure upon the population in a manner similar to that of
natural selection found in biological systems. Poorer performing individuals are weeded
out and better (fitter) performing ones have a greater chance of promoting the information
they contain within the next generation. The typical selection operators can be classified
to two categories, parent selection and survivor selection. Both of them are to distinguish
among individuals based on their qualities, however parent selection is responsible to allow
the fitter individuals to become parents of the néxt generation, while survivor selection is
called after having created the offspring of the selected parents and decide which individual
will exist in the next generation: Because'of the selection operator, GA can guarantee that
after iterated generations, the average quality.of*the entire population will be improved
with a high probability. Following, we will introduce the most common used methods
for parent selection: roulette wheel selection and binary tournament selection, and for

survivor selection: ranking selection.
Roulette Wheel Selection

With this approach, the probability of selection for one individual is based on the propor-
tion of its fitness to the sum of fitness of entire population. Given the fitness value of the
iy, individual, f;, and the size of population is N,,,, the probability of the i, individual
being selected is:

fi

p— —J (2.4)
S f;

Suppose that there are four individual in the population, and their fitness values
and the corresponding selected probabilities are showed in Figure 2.5. For example, in

selection, first, randomly generate a real number in [0, 1]. If the real number is in [0,0.1]
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then child 1, C is selected; if the random value is in (0.1, 0.3] then child 2, Cy is selected.
Repeat the steps mentioned above, until the number of individuals in the mating pool is

equal to the size of population in the previous generation.

Individuals C 1 Cz C 3 C4
Fitness 10 20 30 40
Selected Probability 0.1 0.2 0.3 0.4

Binary Tournament Selection

The main idea of binary tournament selection is that when doing parent selection, repeat
to randomly picking up two individual and place the fitter one to the mating pool, until the
number of individuals in the mating pool is equal to the size of population in the previous
generation. Compared with roulette wheel selection, in the later period of evolutionary
computing, binary tournament selection has a better ability to distinguish the fitter one
from two individuals. That is because that in the later period of evolutionary computing,
the fitness values of all individual in the population converged such that because of the
closed fitness values between individuals, when using roulette wheel selection, it is more
difficult to distinguish the better one by two almost the same probabilities. However,

even though the fitness values of population have converged, by means of judging which
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one of two has the better fitness, binary tournament selection can still select the better

one successfully.
Ranking Selection

Ranking selection is the simplest approach to survivor selection. Rank selection method
replaces the worst Py X N, individuals with the best P; x N, individuals to form a
new population, where Ps is a selection probability and N, is the size of population.
Although it is simple, ranking selection have the advantage that it can efficiently speed
up the convergence of the entire population and improve the average quality of entire

population a lot. [38] adopted ranking selection in their selection operator of GA.

2.3.4 Crossover

The major advantage of genetic algorithm is that with the population of chromosomes
(candidate solutions) and the spegific operators, crossover, each individual in the pop-
ulation can efficiently searching the solution space concurrently. As the name indicate,
crossover or recombination allowing two.parent individuals to exchange their parameters
or information in a way similar+te that used-by matural organism undergoing sexual re-
production. With a probabilistic parameter, P,., controlling whether the selected pairs of
individuals doing crossover or not, we can mate two individuals with different but desir-
able features to produce the offspring that combines both of those features. Cooperating
with the selection operator, once the better or fitter offspring are generated, they have
the higher probability to survive after selection such that the average fitness of population
is successfully improved. The most used variations of crossover operator are: one-point

crossover, multi-point crossover, and uniform crossover.
One-point Crossover

Before doing one-point crossover, Randomly generate a cut point, then exchange the all
parameters of the two parent behind the position of cut point. Figure 2.6(a) shows the

behavior of one-point crossover.
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Multi-point Crossover

First, randomly generate multiple cut points. After the positions of multiple cut points
are determined, randomly determine whether the parameters of parents between all pairs
of successive cut points to be exchange or not. Figure 2.6(b) shows the behavior of

multi-point crossover.
Uniform Crossover

Before doing uniform crossover, randomly generate a binary bit string with length being
the same as the number of parameters in the individual chromosome. This binary bit
string is used as a mask. If a bit value is one, it means that the corresponding parameter
should be exchanged, while zero bit implies that the corresponding parameters will not

to be exchanged. Figure 2.6(c) shows the behavior of uniform crossover.

Mask
Cut point Multiple cut points | 1|0| 1| 1|0| 1|0| 0| 1|
AT AT
P, (Rl e P (T
o
LI || PP <onl | PIEES | I G [ [P [ | [
GUITTTT ITT] oERTTTTT 1 &[T TTT ]
(a) (b) (c)

Figure 2.6. Illuminations of (a) one-point crossover, (b) multi-point crossover, and (c)
uniform crossover.

2.3.5 Mutation

Mutation operators randomly change (flip) the value of single parameter (bit) within
individual chromosome. When doing mutation operation, each parameter or bit in a
single individual chromosome is determined whether its value is changed or not based
on a probabilistic parameter P,,. Because of the experiences of medical science, usually,
the mutation brings harmful effects to individuals such that we often set P,, with a
small value. However, the mutation operators still have the significant importance during

evolutionary computing. According to the selection and crossover operator, the average

22



quality of population will be improved during iterated generations. However, in the last
period of evolutionary computing, the fitness values among populations converge and all
information contained in the individuals is almost the same. Without producing some
new information or parameter values, the entire candidate solutions of population will be
trapped into local optima. In this situation, the mutation operator can bring the new
information to the entire population such that the population may jump the local optima
and find out the global ones.

The mostly used methods of mutation operations are bit flip mutation for binary
bit string or randomly generating the perturbing value for each real-valued parameter.
The bit flip mutation for binary bit string is that when doing mutation, each bit in the
individual have the probability P, to flip its value, such as change 1 to 0 or reverse 0
to 1. Figure 2.7 shows the behavior of bit flip mutation. The other commonly used
mutation for real-valued parameters is,described below. With a probability P,,, assume
a real-valued parameter x is to be mutated.+A perturbation z’ of x is generated by the
Cauchy-Lorentz probability distribution [59]: The mutated value of z is x + 2’ or  — 2/,

determined randomly.

Mutation point

|

tloll1fo[1]1]olo] ~ mmy  []ofolt[o[1]1]o]o

Figure 2.7. An example of bit flip mutation.

2.3.6 Termination Condition

The termination conditions are the criterions that we terminate the evolutionary search
or computing of genetic algorithm. The commonly used termination conditions may be:
1) the average or best fitness values is improved to a default value; 2) The number of
generations or fitness evaluation is up to a upper bound set in advance; 3) The best
fitness is still not improved after a number of generations; 4) other criterions designed by

the users.
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Chapter 3

Intelligent Genetic Algorithm

The used intelligent genetic algorithm (IGA) is a specific variant of the intelligent evolu-
tionary algorithm [38] to solve the large-scale parameter optimization problems (LPOP).
The main difference between IGA and the traditional GA [36] is an efficient intelligent
crossover operation. The intelligent crossover is based on orthogonal experimental design
to solve intractable optimization problems .comprising lots of design parameters. The
following sections describe orthogonal lexperimental design, factor analysis, intelligent
crossover, and the simple intelligent genetic algorithm. The merits of orthogonal exper-
imental design and the superiotity of intelligent ¢rossover can be further referred to [37]

and [38].

3.1 Concept of Orthogonal Experimental Design (OED)

An efficient way to study the effect of several factors simultaneously is to use OED with
both orthogonal array (OA) and factor analysis [60, 61, 62]. The factors are the variables
(parameters), which affect response variables, and a setting (or a discriminative value) of
a factor is regarded as a level of the factor. OED utilizes properties of fractional factorial
experiments to efficiently determine the best combination of factor levels to use in design
problems.

OA is a fractional factorial array, which assures a balanced comparison of levels of
any factor. OA is an array of numbers arranged in rows and columns where each row
represents the levels of factors in each combination, and each column represents a specific

factor that can be changed from each combination. The term “main effect” designates
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the effect on response variables that one can trace to a design parameter [62]. The array
is called orthogonal because all columns can be evaluated independently of one another,
and the main effect of one factor does not bother the estimation of the main effect of
another factor. Factor analysis using the orthogonal array’s tabulation of experimental
results can evaluate the effects of individual factors on the evaluation function, rank the
most effective factors, and determine the best level for each factor such that the evaluation
function is optimized.

OED can provide near-optimal quality characteristics for a specific objective. Fur-
thermore, there is a large saving in the experimental effort. OED specifies the procedure
of drawing a representative sample of experiments with the intention of reaching a sound
decision [62]. Therefore, OED using OA and factor analysis is regarded as a systematic

reasoning method.

3.2 Orthogonal Array

In this study, the two-level and three-level OAs aré€ used for IGA and OSA [63], respec-
tively. The two-level OAs used-in IGATaredéescribed below. Let there be o factors, with
two levels each. The total number: of level ¢ombinations is 2% for a complete factorial
experiment. To use an OA of « factors, we obtain an integer M = 2M°g2(e+D1 where the
bracket represents an upper ceiling operation, build an OA Lj;(2M~1) with M rows and
M — 1 columns, use the first a columns, and ignore the other M — a — 1 columns. OA
can reduce the number of level combinations for factor analysis. For instance, Table 3.1
shows an OA Lg(27) The number of OA combinations required to analyze all individual
factors is only M = O(«), where o +1 < M < 2a.

OSA uses three-level OAs where each factor has three levels. The total number of level
combinations for « factors is 3% for a complete factorial experiment. To use a three-level
OA of a factors, we obtain an integer M = 3108322+ D1 build an OA Ly, (3M~1/2) with M
rows and (M —1)/2 columns, use the first a columns, and ignore the other (M —1)/2 — «
columns. The number of OA combinations required to analyze all individual factors is

only M = O(«), where 2o +1 < M < 6 — 3.
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Table 3.1. An Orthogonal Array of Lg(27).

Factor d
Experiment no. V; Vo Vi3 Vi V5 Vi Vi Fitness values
1 1 1 1 1 1 1 1 Y1
2 1 1 1 2 2 2 2 Yo
3 1 2 2 1 1 2 2 Y3
4 1 2 2 2 2 1 1 Y4
5 2 1 2 1 2 1 2 Ys
6 2 1 2 2 1 2 1 Vs
7 2 2 1 1 2 2 1 Y7
8 2 2 1 2 1 1 2 Us

Algorithm of constructing the two- and three-level OAs can be found in [63]. After
proper tabulation of experimental results, the summarized data are analyzed using factor

analysis to determine the relative level effects of factors.

3.3 Factor Analysis

Consider the OA Ly (2M~1) or L (3Mmb/3)is ised. Let v, denote a function value of

the combination ¢, where ¢t = 1./, M. Define the main effect of factor d with level k£ as
Sag where d=1,..., a:
M
Sak= Zthb (3.1)
t=1

where W, = 1 if the level of factor d of combination ¢ is k; otherwise, W; = 0. Consider
that the objective function is to be minimized. For the two-level OA, level 1 of factor d
makes a better contribution to the objective function than level 2 of factor d does when
Sa1 < Saga. If Sg1 > Sgo, level 2 is better. If Sy; = Sy, levels 1 and 2 have the same
contribution. The main effect reveals the individual effect of a factor. The most effective
factor d has the largest main effect difference M EDy = |Sg1 — Sao|-

For the three-level OA, the level k of factor d makes the best contribution to the
objective function than the other two levels of factor d do when Sy, = min{Sg1, Sa2, Sas }-
On the contrary, if the objective function is to be maximized, the level k is the best one
when Sy = max{Sg, Sa2, Sas}. The most effective factor has the largest one of main
effect differences MED; = max{Sq1, Sq2, Saz} — min{ Sy, Sqo, Saz}. After the better one

of two/three levels of each factor is determined, a reasoned combination consisting of «
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factors with the better /best levels can be easily derived.

3.4 Intelligent Crossover

All parameters are encoded into a chromosome using binary codes or real values. Like

traditional GAs, two parents P; and P, produce two children C; and C5 in one crossover

operation.

Let all encoded parameters be randomly assigned into a groups where each

group is treated as a factor. The following steps describe the intelligent crossover opera-

tion.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Use the first o columns of an OA L, (2M71).

Let levels 1 and 2 of factor d represent the dy, groups of parameters coming

from parents P, and P;, respectively.

Evaluate the fitness values y; for experiment ¢ where ¢t = 2,..., M. The value

Y1 is the fitness value of P;.

Compute the main effect Sgi where d.=-1,...,a and k£ =1, 2.

Determine the better one of two levels of each factor.

The chromosome of Cf/is-formedising the combination of the better genes
from the derived corresponding parents.

The chromosome of Cy is formed similarly as C7, except that the factor with
the smallest main effect difference adopts the other level.

The best two individuals among P;, P, Ci, Cs, and M — 1 combinations of

OA are used as the final children C} and Cs for elitist strategy.

One intelligent crossover operation takes M + 1 fitness evaluations, where a + 1 <

M < 2a, to explore the search space of 2% combinations.

3.5 The Simple Intelligent Genetic Algorithm

The used IGA is given as follows:

Step 1:

Randomly generate an initial population with N,,, individuals.
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Evaluate fitness values of all individuals. Let I, be the best individual in the
population.

Use the simple ranking selection that replaces the worst Py x N,,, individuals
with the best P X N,,, individuals to form a new population, where P is a
selection probability.

Randomly select P. x N, individuals including Ipes:, where P, is a crossover
probability. Perform intelligent crossover operations for all selected pairs of
parents.

Apply a conventional bit flip mutation for binary bit string or mutation of
randomly generating the perturbing value for each real-valued parameter to
the population using a mutation probability P,,. To prevent the best fitness
value from deteriorating, mutation is not applied to the best individual.
Termination test: If a presspeeifiedtermination condition is satisfied, stop the

algorithm. Otherwise, ga td Step 2.
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Chapter 4

Interpretable Gene Expression
Classifier

4.1 The Proposed Interpretable Gene Expression Clas-
sifier (iIGEC)

This section proposes an interpretable gene expression classifier (named iGEC) with an
accurate and compact fuzzy rule base using a scatter partition of feature space for mi-
croarray data analysis. The design of 1GEC has three objectives to be simultaneously
optimized: maximal classification acquracy, minimal number of rules, and minimal num-
ber of used genes. The novel intelligent genetic algorithm introduced in Chapter 3 is used
to efficiently solve the design problem with a large number of tuning parameters.

The performance of iGEC is evaluated using eight data sets and high performance of
iGEC mainly arises from two aspects. One is to simultaneously optimize all parameters in
the design of iGEC where all the elements of the fuzzy classifier design have been moved
in parameters of a large parameter optimization problem. The other is to use an efficient
optimization algorithm IGA which uses a divide-and-conquer strategy to effectively solve

these optimization problems.

4.1.1 Flexible Generic Parameterized Membership Functions

The classifier design of iGEC uses flexible generic parameterized fuzzy regions which can
be determined by flexible generic parameterized membership functions (FGPMFs) and
a hyperbox-type fuzzy partition of feature space. Each fuzzy region corresponds to a

parameterized fuzzy rule. In this study, each value of gene expression is normalized into
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(a) (® (©) (d)
Figure 4.1. Illuminations of FGPMF. (a) a >0 and d < 1. (b) a <0< b. (c) b<0. (d)
b<0andc>1.

a real number in the unit interval [0, 1]. An FGPMF with a single fuzzy set is defined as:
0 ifr<aorz>d,

(x—a)/(b—a) ifa<az<b,
(d—z)/(d—c) ifc<zx<d,

1 ifb<z<c,

where z € [0,1] and a < b < ¢ < d,,The variables a, b, ¢, and d determining the
shape of a trapezoidal fuzzy set are theparametérs to be optimized. It is well recognized
that confining genetic searches:within feasible regions is often much more reliable than
penalty approaches for handling constrained-problems [64]. Therefore, five parameters
Vi vz ... V5 e [0,1] without constraints instead of a, b, ¢, and d are encoded into a
chromosome for facilitating IGA. Let an additional variable L = V! where b < L < C
which determines the location of the fuzzy set characterizing the occurrence of training

patterns. When V* are obtained, variables a, b, ¢, and d can be derived as follows:

a=L—(V2+V3),
b=L—V3,
c= L+ V4,
d=L+(V*+V?).

This transformation can always make the derived values of a, b, ¢, and d feasible and

reduce interactions among encoded parameters of chromosomes. Some illuminations of

FGPMF are shown in Figure 4.1.
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Figure 4.2. Examples of an antecedent fuzzy set A;; with linguistic values (L: low, ML:
medium low, M: medium, MH: medium high, H: high). (a) Aj; represents {ML, M, MH}.
(b) Aj; represents {ML, M, MH, H}, i.e., not Low. (c) Aj; represents {L, ML, M, MH, H
} or ALL.

4.1.2 Fuzzy Rule and Fuzzy Reasoning Method

The following fuzzy if-then rules for n-dimensional pattern classification problems are

used in the design of iGEC:
R; :1f zyis Aj; and ... and =z, is Aj,, then Class CL; with CF}, j =1,...,N.

where R; is a rule label, x; denaotes a gene variable, Aj; is an antecedent fuzzy set, C' is
a number of classes, CL; € 1, ~. ,C denotes a consequent class label, C'F} is a certainty
grade of this rule in the unit interval [0:“1],"and N s a number of initial fuzzy rules in the
training phase.

To enhance interpretability of fuzzy rules, linguistic variables in fuzzy rules can be
used. Each variable z; has a linguistic set U = {L, ML, M, MH, H}. Each linguistic value
of x; equally represents 1/5 of the domain [0, 1]. Following the quantization criterion,
we can consider genes to be regulated according to a qualitative level. For example, x;
is Low for down-regulated genes; x; is Medium for neutral genes; and z; is High for up-
regulated genes. An antecedent fuzzy set A;; € A, where A, denotes a set of subsets of
U. Examples of linguistic antecedent fuzzy sets are shown in Figure 4.2.

In the training phase, all the variables C'L; and C'F} are treated as parametric genes
encoded in chromosomes and their near-optimal values are obtained using IGA. The
following fuzzy reasoning method is adopted to determine the class of an input pattern

zp = (Tp1, Tpa, - - -, Tpy) based on voting using multiple fuzzy if-then rules:
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Step 1: Calculate score Seasso(v = 1,. .., C) for each class as follows:

SClassv = E RjEFC  [bj (I,Ep) ’ CFJ
CLj:Classv (43)

1 () =TTy pi(@pi),
where F'C denotes the fuzzy classifier, the scalar value and represents the

membership function of the antecedent fuzzy set Aj;.

Step 2: Classify z,, as the class with a maximal value of Scigsso-

4.1.3 Fitness Function and Chromosome Representation

We define the fitness function of designing iGEC using IGA as follows:
max Fit(FC) = NCP — W, - N, — Wy - Ny, (4.4)

where W, and Wy are positive weights. This fitness function is used to simultaneously
optimize the following three objeetives: to maximize the number NC'P of the correctly
classified training patterns and to minimize the number N, of fuzzy rules and the number
Ny of used features (genes). The weights should be specified based on the designer’s
preference. In this study, we used W,"= 0.1 and' W = 0.001.

A chromosome consists of control genes for selecting useful genes and significant fuzzy
rules, and parametric genes for encoding the membership functions and fuzzy rules. The
control genes comprise two types of parameters. One is parameter r;, j = 1,..., N,
represented by one bit for eliminating unnecessary fuzzy rules. If r; = 0, the fuzzy rule
R; is excluded from the rule base. Otherwise, R; is included. The other is parameter f;,
t=1,...,n, represented by one bit for eliminating useless genes. If f; = 0, the gene z; is
excluded from the classifier. Otherwise, x; is included. The parametric genes consist of

three types:
1) Vﬁ €[0,1], k =1,...,5, for determining the antecedent fuzzy set A;;;

2) CL; for determining the consequent class label of rule R;; and

3) CF; € [0,1] for determining the certainty grade of rule R;;
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Figure 4.3. Chromosome representation.
where 7 = 1,...,N and ¢ = 1,...,n. A rule base with N fuzzy rules is represented

as an individual, as shown in Figure 4.3. The number of encoding parameters to be
optimized is equal to N, = n + 3N + 5Nn. A chromosome representation uses a binary
string for encoding control and parametric genes. There are eight bits for encoding one of
parameters lej and C'F;. Since each fuzzy region defines a fuzzy rule, the initial setting of
N is independent of n but dependent on the number of fuzzy regions. Generally, N is set
to the maximal number of possible fuzzy regions. In this study, N = 3C". The design of
an efficient fuzzy classifier is formulated as a large-scale parameter optimization problem
(LPOP). Once the near-optimal solution.is found, an accurate classifier with a compact

fuzzy rule base can be obtained.

4.1.4 The Used Intelligent Genetic Algorithm to Solve the De-
sign Problem of iGEC

Here we use the simple intelligent genetic algorithm (IGA) which is a specific variant of
the intelligent evolutionary algorithm [38] to solve the design problem of iGEC. The main
difference between IGA and the traditional GA [36] is an efficient intelligent crossover
operation. The intelligent crossover is based on orthogonal experimental design to solve
intractable optimization problems comprising lots of design parameters. The intelligent
crossover is presented while the merits of orthogonal experimental design and the superi-

ority of intelligent crossover can be further referred to [37] and [38].
Orthogonal Experimental Design

The two-level orthogonal arrays (OAs) used in IGA are described below. Let there be «
factors, with two levels each. The total number of level combinations is 2% for a complete
factorial experiment. To use an OA of « factors, we obtain an integer M = 2Mlog2(a+1)]

where the bracket represents an upper ceiling operation, build an OA Lj,(2M~1) with
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M rows and M — 1 columns, use the first a columns, and ignore the other M — a — 1
columns. OA can reduce the number of level combinations for factor analysis. The number
of OA combinations required to analyze all individual factors is only M = O(«), where
a+1< M < 2.

After proper tabulation of experimental results, the summarized data are analyzed

using factor analysis to determine the relative effects of levels of various factors as follows.

Let y; denote a objective function value of the combination ¢, where t = 1,..., M. Define
the main effect of factor d with level k as Sg, where d =1,..., a:
M
Sae =D yWs, (4.5)
t=1

where W, = 1 if the level of factor d of combination ¢ is k; otherwise, W; = 0. Consider
that the objective function is to be maximized. For the two-level OA, level 1 of factor d
makes a better contribution to the objective function than level 2 of factor d does when
Sq1 > Sago. If Sg1 < Sgo, level 24s better. TfS3; = Sy, levels 1 and 2 have the same
contribution. The main effect reveals the individual effect of a factor. The most effective
factor d has the largest main effect difference. M ED, = |Sq1 — Saa|. After the better one
of two levels of each factor is detérmined, an effi¢ciént combination consisting of all factors

with the better levels can be easily derived.
Intelligent Crossover

All parameters are encoded into a chromosome using binary codes. Like traditional GAs,
two parents P, and P, produce two children C'; and C5 in one crossover operation. Let
all encoded parameters be randomly assigned into a groups where each group is treated

as a factor. The following steps describe the intelligent crossover operation:

Step 1: Use the first o columns of an OA Ly, (2M71).

Step 2: Let levels 1 and 2 of factor d represent the dy, groups of parameters coming

from parents P, and P;, respectively.
Step 3: Evaluate the fitness values y; for experiment ¢t where t = 2,..., M. The value

Y1 is the fitness value of P;.

Step 4: Compute the main effect Sy, where d =1,...,c and k =1, 2.
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Step 5:

Step 6:

Step 7:

Step 8:

Determine the better one of two levels of each factor.

The chromosome of C; is formed using the combination of the better genes
from the derived corresponding parents.

The chromosome of Cy is formed similarly as C}, except that the factor with
the smallest main effect difference adopts the other level.

The best two individuals among P;, P, C, Cs, and M — 1 combinations of

OA are used as the final children C} and Cs for elitist strategy.

The Used Intelligent Genetic Algorithm

The used IGA is given as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Randomly generate an initial population with NN, individuals.

Evaluate fitness values of all individuals. Let ;.o be the best individual in the
population.

Use the simple rankiilg seleétion that replaces the worst Py x N,,, individuals
with the best Py x N, individuals to form a new population, where P; is a
selection probability.

Randomly select P. x Ny individuals including Ipes:, where P, is a crossover
probability. Perform intelligent crossover operations for all selected pairs of
parents.

Apply a conventional bit-inverse mutation operator to the population using a
mutation probability P,,. To prevent the best fitness value from deteriorating,
mutation is not applied to the best individual.

Termination test: If a pre-specified termination condition is satisfied, stop the

algorithm. Otherwise, go to Step 2.

4.2 Experimental Results of iGEC

4.2.1 Implementation and Data Sets

The parameter settings of IGA from [37] are N,,, = 20, P. = 0.7, P, =1—P,, P,, = 0.01,

and a = 15. Because the search space of optimal design of iGEC is proportional to the
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number N, of parameters to be optimized, the stopping condition is suggested to use a
fixed number 100 x N, of fitness evaluations [37] for the following two reasons: 1) for future
comparisons with other methods based on the same computation cost; and 2) satisfactory
solutions can be obtained which are not sensitive to the number of evaluations used. Of
course, if the number of evaluations is increased, the results may be slightly improved.
Because of the non-deterministic characteristic of GA, all the experimental results are the
average values of 30 independent runs. For each run, a ten-fold cross validation (10-CV)
is adopted. Note that the algorithm proposed by [13] is deterministic that the results are
the same for all independent runs.

For comparison, we adopted the same Wilcoxon rank sum test with [13] as a non-
parametric feature pre-selection method. In this study, we pre-selected n = 10, 15, 20
and 100 representative genes to evaluate the performance of iGEC. Considering the test
accuracy as well as the numbers of rules, and genes, n = 15 (slightly better) is suggested as
the default setting of iGEC in this studysslf.the mumber C' of classes is further increased
(e.g., C' > 10), the number n is'suggested to be proportionally increased.

Table 4.1 shows the eight data sets from-{12}; which are available from http://www.gems-
systems.org. The following experiments are.designed to evaluate the proposed method
using comparisons with some existing rule and non-rule based classifiers. The first com-
parison is made between iGEC and the Vinterbo’s fuzzy rule-based classifier [13] and the

second one between iGEC and the non-rule-based classifiers in [12].

4.2.2 Experiment 1-Comparison between iGEC and the Vin-
terbo’s Fuzzy Rule-based Classifier

For comparisons, we conducted two evaluations on the Vinterbo’s method using different
numbers of pre-selected genes. One is to use 200 pre-selected genes (V200), which is
the same with that in [13]. The other is to use 15 genes (V15), which is the same
with that of the proposed method. Table 4.2 shows the statistical results (mean and
standard deviation) of iGEC and the Vinterbo’s classifier in terms of training accuracy,
test accuracy, number of rules, number of genes, and rule number per class. The results of

the Vinterbo’s classifier were obtained by running the same program provided by Vinterbo
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Figure 4.4. The box plots of the statistical results. (a) training accuracy, (b) test accuracy,
(¢) number of rules, and (d) number of used-genes.

et al. [13]. The same data which have the-same partition are used for iGEC, V200, and
V15. Figure 4.4 presents the experimental irésults using box plots. Figure 4.5(a) and
4.5(b) show the three-dimensional scatter plots in terms of test accuracy, rule number,
and gene number for data sets lung cancer and SRBCT, respectively.

From Table 4.2, we can observe that iGEC performs better than the Vinterbo’s clas-
sifier using 200 candidate genes (V200) in the five measures: TrC'R (97.1% vs. 81.5%),
TeCR (87.9% vs. 81.2%), N, (3.9 vs. 4.9), Ny (5.0 vs. 7.2), and N,/C (1.1 vs. 1.4).
Note that V200 is better than V15 but using more candidate genes and computation
time. Moreover, the classifiers V200 compare favorably to those of a logistic regression
model which is one of the frequently used classification method applied in the biomedical
domain [13].

Figure 4.6 shows an example of iGEC using the data set leukemial where 90% samples
are for training and the rest for test. The classifier has four fuzzy rules using three genes

L05148, U46499, and U05259, where TrCR = 100% and TeCR = 100%. The fuzzy rules
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Table 4.2. The statistical results of iGEC and the Vinterbo’s classifier on training accuracy
(TrCR), test accuracy (TeCR), number of rules (V,), number of genes (Ny), and rule
number per class (Nr/C).

Data Set Method TrCR(%) TeCR(%) N, Ny N,/C
iGEC 924+£05 83.7+4.0 50£02 594+04 1.00
brain tumorl V200 80.85 81.25 6.50 8.60 1.30
V15 78.66 85.00 6.00 9.20 1.20
iGEC 97.0+05 724+99 44402 55+03 1.11
brain tumor2 V200 60.00 60.00 4.00 8.30 1.00
V15 66.60 63.33 5.10 6.70 1.27
iGEC 985+£03 912426 25£01 3.7+0.3 1.28
DLBCL V200 85.91 85.00 2.60 3.80 1.30
V15 84.65 78.33 7.00 6.90 3.50
iGEC 99.7+0.1 94.0+25 35401 41+02 1.18
leukemial V200 90.15 92.00 5.30 7.30 1.76
V15 87.61 84.00 4.90 8.10 1.63
iGEC 98.7+0.2 8.3+44 33+01 43+03 1.12
leukemia2 V200 81.97 76.67 4.30 5.50 1.43
V15 74.70 71.67 3.50 4.10 1.16
iGEC 92.7.4£0.7 8.0+1.8 55£03 694+0.3 1.10
lung cancer V200 85.35 84:44 7.80 14.50 1.56
V15 81.57 8278 8.30 8.90 1.66
iGEC 97.9+0.2 “90.9+25 244+01 41+03 1.21
prostate tumor V200 81.50 82.00 3.00 3.30 1.50
V15 84.46 8400 2.90 5.10 1.45
iGEC 99.84+ 0.1 92.3+27 434+02 48+04 1.08
SRBCT V200 86.36 88.33 5.80 6.20 1.45
V15 78.44 71.67 5.10 10.20 1.27
iGEC 97.1 87.9 3.9 5.0 1.1
Mean V200 81.5 81.2 4.9 7.2 1.4
V15 79.6 77.6 5.4 7.4 1.6

Test Accuracy
Test Accuracy

(a) (b)

Figure 4.5. The 3D scatter plots. (a) lung cancer (b) SRBCT.
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Figure 4.6. Fuzzy rules of the data set leukemial using 90% samples for training and the
rest for test. The training and test accuracies are both 100%.

are linguistically interpretable as follows:

Ry: If L0O5148 is not up-regulated and U05259 is not down-regulated, then Class “ALL
B-Cell” with C'F = 0.243;

Ro: If LO5148 is ALL and U46499 is neutral or up-regulated, then Class “ALL B-Cell”
with CF = 0.682;

R3: If L05148 is not down-regulated; U46499 is' ALL and U05259 is ALL, then Class
“ALL T-Cell” with C'Fi=0.710;

Ry: If 105148 is ALL, U46499 is ALL and U05259 is ALL, then Class “AML” with
CF =0.722.

Where the membership functions of genes U46499 and U05259 in R; and Rs, respectively,
are “don’t care” which can reduce the rule length. From the compact rule base, it is
easy to interpret the classification model from gene expression data. The fuzzy rules
can be examined by biomedical researchers. Due to the natural clustering property of
gene expression data, each of the classes “ALL T-Cell” and “AML” has one fuzzy rule
corresponding to one fuzzy region while the class “ALL B-Cell” has two fuzzy regions
overlapped. Furthermore, we can know the distribution of samples of each class from
the corresponding membership function in the feature space. The fuzzy rule base can
determine the class of unknown samples using Eq. 4.3.

To further realize whether these three genes 1.05148, U46499, and U05259 make sense
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Table 4.3. Selected genes for the leukemial data set example. For each gene we counted
the number of articles that were retrieved by a PubMed query consisting of the gene name
and the string “leukemia”.

Gene  Description f of References
M11722 Human terminal transferase mRNA 154
L05148 Human protein tyrosine kinase related mRNA se- 26

quence
M63138 Human cathepsin D 24
M31523 Human transcription factor (E2A) mRNA 17
U05259 Human MB-1 gene, complete cds 12
U46499 Homo sapiens microsomal glutathione transferase 10
(MGST1) gene, 3’ sequence
M27891 Human cystatin C gene 5
U16954 Human (AF1q) mRNA 3

as a group and their biological relationship, we process the average linkage (average dis-
tance, UPGMA) clustering based on Euclidean distances squared by EPCLUST [73].
Figure 4.7 shows the clustering result. From Figure 4.7, we can observe that most of
the samples belonging to same glass are grouped together. From thousands of genes,
the proposed method can identify. few but relevant-genes to make accurate classification.
Furthermore, the biological finding is'interpretable from the obtained compact fuzzy rule
base. Therefore, iGEC is beneficial to microarray’data analysis and development of inex-
pensive diagnostic tests.

Besides the leukemial classifier using the gene set {L.05148, U46499, U05259} shown
in Figure 4.6, there are other sets of three genes which can establish the classifiers with
both 100% training and test accuracies as follows: {L05148, M63138, U05259}, {M11722,
L05148, U46499}, {M31523, U16954, U46499}, and {U16954, M27891, U05259}. This
scenario results from that the microarray data have a large number of genes but a very
small number of samples. iGEC can provide important knowledge to biological scientists.
Table 4.3 gives descriptions of the selected genes from the data set leukemial of 72 samples.
For each gene, we counted the number of articles that were retrieved by a PubMed query
containing the gene name and the key string “leukemia”. By combining more gene sets
of solutions, most of genes highly related to the leukemia disease can be obtained.

Due to different merits of fuzzy partitions such as grid partition, tree partition, and

scatter partition, they cannot be directly compared using some specific measurements [37].
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Figure 4.7. The clustering result of 72 samples in data set leukemial using the three
selected genes by the clustering algorithm EPCLUST [73].
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However, iGEC has 1.1 fuzzy regions for describing the sample distribution of each class
averagely. Besides the above-mentioned advantages of easy interpretation and economical
experiments, the proposed fuzzy rule-base method using a scatter partition of feature
space can enclose all possible occurrences of samples in the same class with one or few
hyperbox-type fuzzy regions. In other words, the fuzzy regions of scatter partition can
represent one class more independently than those of grid partition. Therefore, iGEC can

reject the unknown sample if it belongs to no fuzzy region that no fuzzy rule is fired.

4.2.3 Experiment 2-Comparison between iGEC and Non-rule-
based Classifiers

To further evaluate accuracy of the proposed method, we compared iGEC with some
non-rule-based classifiers without using gene selection methods in [12]. Table 4.4 shows
the test accuracy comparisons using 10-CV on the eight data sets between iGEC and the
following methods: multi-category,support veetor machine (SVM), k-nearest neighbors (k-
NN), backpropagation neural nétworks (BNNJjand probabilistic neural networks (PNN)
which are the most common methods for gene expression data analysis. The results are
obtained from [12].

Table 4.4 indicates that the multieategory SVM with 93.63% average test accuracy
on the eight data sets is the most accurate classifier for diseases classification. However,
it is not practical to use as many as 7965.6 genes on average to classify diseases samples
for economical biomedical test in real applications. The proposed fuzzy classifier iGEC
with 87.9% using 5.0 genes on average is superior to k-NN (84.49%), NN (82.54%), and
PNN (79.49%) in terms of accuracy and number of genes. Because the sample sizes of
microarray data are extremely small, it results in the high training accuracy (97.1%)
and relatively low test accuracy (87.9%). When the number of samples is increased, the
test accuracy can be further advanced [37]. From the viewpoint of analysis and practical

applications, iGEC can serve as one of efficient tools for analysis of gene expression profiles.
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Table 4.4. The test accuracies and numbers of used genes for iGEC and non-rule-based
classifiers using 10-CV. The results of the non-rule-based classifiers without using gene
selection methods are obtained from [12].

Accuracy(%)

Data Set £ of genes SVM kNN BNN PNN iGEC f of genes
in non- in iGEC
rule-based
classifiers

brain tumorl 5920 91.67 87.94 84.72 79.61 &88.71 6

brain tumor?2 10367 77.00 68.67 60.33 62.83 7245 6

DLBCL 5469 97.50 86.96 89.64 80.89 91.22 4

leukemial 5327 97.50 83.57 76.61 &85.00 94.00 4

leukemia2 11225 97.32 87.14 91.03 &83.21 85.33 4

lung cancer 12600 96.05 89.64 &7.80 &85.66 8R8.09 7

prostate tumor 10509 92.00 85.09 79.18 79.18 90.97 4

SRBCT 2308 100.00 86.90 91.03 79.50 92.33 5

Mean 7965.6 93.63 84.49 8254 79.49 &87.89 5.0

4.3 Discussions of iGEC

In pattern recognition problems,‘the scoring-ability is important not only to quantify the
certainty grades of samples belonging to each class, but also to help researchers to finding
out the true active samples and filteringrout-the background noise [74]. Liu et al. [75]
proposed a scoring algorithm based:on negative entropy to position specific frequency
matrix (PSFM) and Markov model to predict protein-DNA binding site. Murvai et al.
[76] used a probabilistic scoring method for protein domain identification. Jensen and Liu
[77] proposed a bayesian scoring function approach to motif discovery.

It is necessary to cope with the following difficulties in designing the scoring system,
described below. 1) It is desirable to select a minimal number of relevant genes while
maintaining the highest accuracy for designing tumor classifiers, which is essential for
developing inexpensive diagnostic tests. 2) The derived scores can faithfully respond
to accurate tumor classification with an interpretable manner. To achieve the above-
mentioned goals, our proposed interpretable gene expression classifier (iGEC) can be
extended to be a scoring method named iSFC, interpretable scoring fuzzy classifier.

The design of iSFC has the same three classification objectives as iGEC and one scor-

ing function objectives to be simultaneously optimized: maximal classification accuracy,
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minimal number of rules, minimal number of used features, and maximal area under a
ROC curve. The detail designing implementation and the experimental results of iSFC
can be referred from our previous research [78]. From the experimental results, we have
shown that iSFC has concisely interpretable rules and better performance than the ex-
isting Vinterbo’s classifier [13]. iSFC is also comparable to some non-rule-based methods
[12] using a large number of genes in terms of accuracy performance. Furthermore, the ef-
ficient scoring ability of iSFC is evaluated using the mean areas under ROC curves having

0.984 and 0.930 for training and test data, respectively.

4.4 Conclusions for iGEC

Microarray data analysis and gene expression classification are important research top-
ics in bioinformatics such that how to design an accurate, compact, and linguistically
interpretable classifier is the major concernin this study. We proposed an interpretable
gene expression classifier, namediiGEC; for mieroarray data analysis. The design of iGEC
includes almost all aspects related to the-design of compact fuzzy rule-based classifica-
tion systems: gene selection, rule selection; meémbership function tuning, consequent class
determination, and certainty grade tuming. Consequently, an efficient optimization algo-
rithm IGA is used to solve the resultant optimization problem with a large number of
parameters.

The superiority of the proposed iGEC was evaluated by computer simulation on eight
data sets of gene expression. The experimental results reveal that the proposed method
can obtain interpretable classifiers with an accurate and compact fuzzy rule base, com-
pared with the existing fuzzy classifier. iGEC is an efficient tool for analysis of gene
expression profiles. Furthermore, the proposed iGEC can be extended to an interpretable
scoring fuzzy classifier ;named iSFC, which has the ability to effectively quantify the

certainty grades of samples belonging to each class.
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Chapter 5

Inference of Genetic Network

In this thesis, we propose an intelligent two-stage evolutionary algorithm (iTEA) to ef-
ficiently infer the S-system models of large-scale genetic networks from small-noise gene
expression profiles using a single-processor PC. To cope with curse of dimensionality, the
proposed algorithm consists of two stages where each uses a divide-and-conquer strategy.
The optimization problem is first decomposed into N subproblems having 2(N + 1) pa-
rameters. At the first stage, each subproblemi.is solved using the novel intelligent genetic
algorithm (IGA) which is a specifi¢ variant-of the intelligent evolutionary algorithm [38].
The intelligent crossover of IGAzappliesorthogonal éxperimental design (OED) [60, 61, 62]
to speed up the search by using a systematic reasoning method instead of the conventional
generate-and-go method of GA. At the second stage, the obtained N solutions to the N
subproblems are combined and refined using an OED-based simulated annealing algo-
rithm (OSA) [63] for handling noisy gene expression profiles. The effectiveness of iTEA
is evaluated using simulated expression patterns with and without noise. It will be shown
that: 1) IGA is efficient enough to solve subproblems; 2) IGA is significantly superior to
the existing method SPXGA [29] in solving subproblems; and 3) iTEA performs well in

inferring S-system models of genetic networks from small-noise gene expression profiles.

5.1 The Investigated Problem

5.1.1 Problem Statement

Generally, the genetic network inference problem using an S-system model is formulated

as a parameter optimization problem with 2N (N +1) S-system parameters («a;, 3;, gij, hij)
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and the following objective function [29, 30, 31]:

N T
Xca A _Xe:c i
minimize f = Y ( l’;{ PLl)2 (5.1)
exp,i,t

i=11t=1

where Xz, is an experimentally observed expression level of gene 7 at time ¢, and X4
is a numerically calculated expression level, N is the number of genes in the network, and
T is the number of sampling points of observed data. When all S-system parameters are
estimated, X4+ can be derived by using Eq. 2.2 and the given initial level X, ;0.
Since the degree of freedom of an S-system model is high, multiple sets of time-
series data are generally conducted to enhance the probability of finding correct solutions.
Because of high cost of experiments, it is not convenient to get sufficient time-series data
generally. Due to the high degree of freedom, inference of the S-system model often has
multiple optimal solutions to best fit the observed time-series data [26, 29, 30, 31, 32,
33, 35]. The investigated problem is difficult due to the characteristics of high degree
of freedom, high dimensionality,»multimedality, strong interaction among parameters of
the S-system model, and measurement noise. Therefore, it is hard to obtain a correct
network structure with accurate parameter-values.' Generally, additional data or biological

knowledge is needed to improve solution qualify[26].

5.1.2 Useful Techniques

Two useful techniques in optimizing the objective function 5.1 are introduced. One is the
problem decomposition strategy for large-scale genetic networks [32] and the other is to

incorporate a priori knowledge to reduce computation cost [30, 31, 35], described below.
Problem decomposition

The large-scale problems of S-system models are difficult to solve directly. Maki et al. [32]
proposed an efficient strategy of dividing the inference problem into N separated small
subproblems. Each subproblem corresponds to one gene. The objective function of the

i-th subproblem for gene i is as follows:

T
Lo o Xcal,i,t - Xeacp,i,t
minimize fi =Y ( e
exp,i,t

t=1

2. (5.2)
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For noise-free or small-noise gene expression profiles, the expression level X4, of gene
¢ at time ¢ can be numerically calculated by using Eq. 2.2. Otherwise, the following

modified differential equations are used for large-noise gene expression profiles [30, 31]:

X; A N Vit —1)=X;(t—1) if j =i
d d’Lt(t) = H }/}g” (t—l)—ﬁl H th” (t—l) Where .7( ) AJ( ) j .
j=1 j=1 Y;(t—1) = X;(t —1) otherwise

(5.3)

When 2(N + 1) S-system parameters {«;, gi1, - - -, gin, Bis Rit, - - -, hin } are estimated, we
can obtain the estimated gene expression level X, ;, for the i-th subproblem using Eq.
2.2 or Eq. 5.3 depending on the size of measurement noise. However, how to effec-
tively obtain accurate X ; 1s essentially important. To overcome the disadvantage of the
problem decomposition when dealing the given data with large measurement noise [30],
Kimura et al. [31] used a cooperative coevolutionary algorithm to simultaneously solve
the subproblems by deriving X ; from, estimating the best individuals of the subproblems,
each of which is given as a solution. of Ee:75:3. It.is shown empirically that the method
slightly enhanced the probability ‘of finding the correct interactions of a network using a

PC cluster [31].
Adding a penalty term

In the S-system model, if there are no interaction between two genes ¢ and j, the S-
system parameters correspond to the interaction term, g;; and h;;, are zero. Because of
the connectivity of the genetic network has been known to be sparse [79], the following
fitness function incorporating a penalty term is conveniently added to reduce the search

space and improve the accuracy of the inferred genetic network model [30, 31]:

Lo 4 Xcalit_Xezpit 2 =
minimize f; = Z( = ) +c (1G] + |Hijl), (5.4)

t=1 Xm}%i,t j=1

where ¢ is a penalty weight, I is a maximum indegree that the maximal number of genes
which directly affect gene i. G;; and H;; are given by rearranging g;; and h;; in ascending
order of their absolute values. The penalty term forces most of the kinetic orders (g;,
hi;) down to zero. In the meantime, if the number of genes that directly affect the gene i

is smaller than 7/, this term will not penalize. In such case, the optimal solutions to the
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fitness functions Eq. 5.2 and Eq. 5.4 are identical. To reduce the computation cost, the
structure skeletalizing technique [35] was applied. This technique assigns a value of zero
to the kinetic orders when their absolute values are less than a given threshold d,. In this

study, d;, = 3 x 1072

5.2 The Proposed Intelligent Two-stage Evolution-
ary Algorithm (iTEA)

It is well recognized that divide-and-conquer is an efficient approach to solving large-
scale problems. The divide-and-conquer mechanism breaks a large-scale problem into
several subproblems that are similar to the original one but smaller in size, solves the
sub-problems concurrently, and then combines these solutions to create a solution to
the original problem. Figure 5.1 shows a flowchart of the proposed two-stage evolutionary
algorithm iTEA. At the first stage, N solutions to the N subproblems are obtained by IGA
which is an efficient population;hased optimization algorithm. At the second stage, the
N solutions are combined into -an'initial selution to-be refined by searching for a globally
optimal solution using OSA which is'an-effictent point-based optimization algorithm. Both
IGA and OSA use the divide-and‘eonguer mechanism based on orthogonal experimental

design.

5.2.1 Orthogonal Experimental Design and Factor Analysis

The two-level and three-level OAs are used for IGA and OSA, respectively. The two-level
OAs used in IGA are described below. Let there be o factors, with two levels each. The
total number of level combinations is 2¢ for a complete factorial experiment. To use an
OA of « factors, we obtain an integer M = 2Mg2(e+D1 where the bracket represents an
upper ceiling operation, build an OA L, (2™~!) with M rows and M — 1 columns, use
the first a columns, and ignore the other M — a — 1 columns. OA can reduce the number
of level combinations for factor analysis. The number of OA combinations required to
analyze all individual factors is only M = O(«), where a +1 < M < 2a.

OSA uses three-level OAs where each factor has three levels. The total number of level

combinations for a factors is 3% for a complete factorial experiment. To use a three-level
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Figure 5.1. Flowchart of the proposed two-stage evolutionary algorithm iTEA.

OA of a factors, we obtain an integer M =318 26511 build an OA Ly, (3M~1/2) with M
rows and (M —1)/2 columns, use the first e eolumns, and ignore the other (M —1)/2 —«
columns. The number of OA combinations required to analyze all individual factors is
only M = O(«), where 2o +1 < M < 6 — 3.

Algorithm of constructing the two- and three-level OAs can be found in [63]. After
proper tabulation of experimental results, the summarized data are analyzed using factor

analysis to determine the relative effects of levels of various factors as follows. Let y,

denote a objective function value of the combination ¢, where t = 1,..., M. Define the
main effect of factor d with level k as Sy, where d =1,..., a:
M
Sar = Zthh (5.5)

t=1
where W, = 1 if the level of factor d of combination ¢ is k; otherwise, W; = 0. Consider
that the objective function is to be minimized. For the two-level OA, level 1 of factor d

makes a better contribution to the objective function than level 2 of factor d does when
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Sq1 < Sga. If Sq1 > Sgo, level 2 is better. If Sy; = Sy, levels 1 and 2 have the same
contribution. The main effect reveals the individual effect of a factor. The most effective
factor d has the largest main effect difference M ED; = |Sg1 — Saal-

For the three-level OA, the level k of factor d makes the best contribution to the
objective function than the other two levels of factor d do when Sy, = min{Sg, Sa2, Sas }-
On the contrary, if the objective function is to be maximized, the level k is the best one
when Sy, = max{Sg1, Sa2, Saz}. The most effective factor has the largest one of main
effect differences M E Dy = max{Sq1, Sa2, Saz} — min{ Sy, Sqa, Saz}. After the better one
of two/three levels of each factor is determined, a reasoned combination consisting of «

factors with the better /best levels can be easily derived.

5.2.2 IGA for Solving Subproblems

Intelligent Crossover

The intelligent crossover plays an‘important role in IGA. IGA solves an individual sub-
problem with N genes having:2(N + 1) parameters to be optimized. The intelligent
crossover uses a divide-and-conquer. approach, which consists of adaptively dividing two
parents into « pairs of parametet: groups, economically identifying the potentially better
one of two groups of each pair, and systematically obtaining a potentially good approxi-
mation to the best one of all 2% combinations using at most 2« fitness evaluations. Like
traditional GAs, two parents P; and P, produce two children C'; and C5 using one crossover
operation. The intelligent crossover determines the recombination of P; and P, for ef-
ficiently generating good children. Let the set of parameters in the ¢-th subproblem be
{ai, gi1y -+ Gin, Bis hity - - -, hin }. We divided the two sets INC' = {«;, gi1, ..., gin} and
DEC = {3;, hi, ..., hin} which control the gene expression level increasing or decreasing
into [a/2] and [«/2] groups, respectively. To make a sufficient use of all columns in OAs,
a is usually set to 2 — 1 where w is an integer. In this study, we used a = 7 for problems
with N < 30. The value of o would properly increase when N increases. The discussion
between « and the number of parameters to be optimized can be referred to [38].
Because the parameters belonging to the same one of two sets INC and DEC have

strong interactions, we don’t use the conventional encoding scheme of GA that all pa-
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rameters are encoded into a chromosome in a fixed order. Instead, all parameters are

represented using real values with no order. For each time using an intelligent crossover

operation,

INC and DEC are randomly divided into [«/2] and |«/2] groups with a

variable size for each group. The parameters of two parents are grouped using the same

division operation. Each group is treated as a factor. The « factors are randomly num-

bered in using OED. The numbering order does not affect the effectiveness of intelligent

crossover because of the property of OA [38]. Note that there is no fixed genotype of

S-system parameters used. The following steps describe how to use OED with « factors

to achieve the intelligent crossover of IGA for a fitness function y.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

The two sets INC = {«, gi1,--.,9n} and DEC = {0, hi1,...,hin} of S-
system parameters are randomly divided into [a/2] and |«/2| groups (fac-
tors), respectively.

Use a two-level OA L, 1(2%) with-a. + 1 rows and « columns.

Let levels 1 and 2 of:factorfd represent.the d-th groups coming from parents
P, and P,, respectively:

Evaluate the fitness“values ;. for-experiment ¢ where t = 2,..., a + 1. The
value y; is the fitness value of ;.

Compute the main effect Sy, where d =1,...,a and k =1, 2.

Determine the better one of two levels of each factor according to the main
effect.

The chromosome of (' is formed using the combination of the better groups
from the derived corresponding parents.

The chromosome of C} is formed similarly as C, except that the factor with
the smallest main effect difference adopts the other level.

The best two individuals among Py, Py, C7, Cy, and o combinations of OA are

used as the final children C and Cj for elitist strategy.

One intelligent crossover operation takes o+ 2 fitness evaluations to explore the search

space of 2% combinations. Generally, ' is a potentially good approximation to the best

one of 2% combinations.
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Ilustrative Example of Intelligent Crossover

Tables 5.1 and 5.2 show an illustrative example of using intelligent crossover with OED
in solving the first subproblem of inferring an S-system model with N = 5. The details
of the test problem are given in Section 5.3.1. We used an OA Lg(27) for « = 7. The
two sets of S-system parameters INC' = {ay, g11,---,915} and DEC = {81, h11, ..., hi5}
are randomly divided and assigned to four and three groups (factors) respectively as
follows: Vi = {h13>h15}7 Vo = {914}> Vs = {9127913}, Vy = {0617915}, Vs = {h117h12}7
Ve = {P1,h1s}, and Vz = {g11}. The parameter values of parents are given in Table
5.2. Table 5.1 shows all results of intelligent crossover using OED. First, we evaluate the
response variable g, of the combination ¢, where t = 1,2,...,8. Second, we compute the
main effect Sy where d =1,2,...,7 and k = 1,2. For example, Sos = y3 +ys +y7 +ys =
147.65. Third, the better level of each factor based on the main effect is determined. For
example, the better level of factor lsigilével 2 since Si9(153.97) < S1;(157.50). Finally,
the better levels of factors (V1, V%, Ve Wiy V5, Vs V7) are (2, 2, 1, 1, 1, 2, 2) and then
y = 30.22 can be obtained from the reasoned combihation. This reasoned combination is
used to form the child C; of the crossoveroperation. The least effective factor is d = 5
with M EDs = 2.06 which is the smallest.one, so the second child C5 is formed similarly
as (' except V5, which adopts level 2. Note that the ranks of C; and C5 are 2 and 4
respectively among 128 combinations of a complete factorial experiment. It reveals that

the reasoning operation of intelligent crossover for generating children is efficient.

The Used Intelligent Genetic Algorithm

IGA is used to solve the N individual subproblems with the fitness function Eq. 5.4. The
gene expression level of X ;, is numerically calculated using Eq. 2.2 rather than Eq. 5.3

due to the following reasons:

1) According to the simulation using IGA, the method using Eq. 2.2 is simple and
fast, and its solution is accurate enough in terms of fitness value from noise-free
gene expression profiles.

2) We would further refine the combined solutions of the N subproblems from the

aspect of global optimization using OSA for handling noisy gene expression profiles.
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3) The estimation method for Xj in Eq. 5.3 using a cooperative coevolutionary algo-

rithm on a PC cluster [31] is not suitable for the IGA-based method because that

IGA solves each subproblem independently on a single-processor PC. Furthermore,

the method using estimation of X ; only slightly enhanced the probability of finding

the correct interactions of a network [31].

The main differences of the used IGA from the conventional GAs are chromosome

encoding and crossover operation mentioned above. Besides, the used mutation is also

different from the conventional one, described as follows. Assume a real-value parameter

x is to be mutated. A perturbation z is generated by the Cauchy-Lorentz probability

distribution [59]. The mutated value of x is ' = x 4+ = or © — Z, determined randomly.

If 2/ is out of the domain range of z, we randomly assign a feasible value to z’. The used

simple IGA is described below.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

(Initiation) Randomlysgenerate an initial population with N,,, feasible indi-
viduals of 2(N + 1)-real-value parameters.

(Evaluation) Evaluate fitness-values of all individuals.

(Selection) Use the simple.ranking election that replaces the worst Py X Ny,
individuals with the best P x IV, individuals to form a new population, where
P; is a selection probability. Let ;s be the best individual in the population.
(Crossover) Randomly select P. x N, individuals including lpest, where P, is
a crossover probability. Perform intelligent crossover operations for all selected
pairs of parents.

(Mutation) Apply the above-mentioned mutation operator to the population
using a mutation probability P,,. To prevent the best fitness value from dete-
riorating, mutation is not applied to the best individual.

(Termination test) If a prespecified number N, of fitness evaluations is
achieved or some stopping condition is met, then stop the algorithm. Oth-

erwise, go to Step 2.
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5.2.3 OSA for Refining the Combined Solution

To compensate the disregard of estimating accurate gene expression levels of other genes
from noisy data of gene expression, all the solutions to N subproblems are combined and
then refined using OSA from the aspect of global optimization. The main difference of
OSA from the conventional simulated annealing is the move generation mechanism, as
shown in Figure 5.2 [63]. OSA uses an intelligent generation mechanism (IGM) based
on OED to systematically reason a good candidate solution as the next move. The high
performance of OSA arises from IGM which is the main phase of OSA. IGM is similar to
the intelligent crossover of IGA using the divide-and-conquer mechanism for large-scale
optimization problems, which is also efficient in determining a good approximation to
the best solution in the neighborhood of the current solution. OSA uses the following

objective function for global optimization:

Y& Xcalit_Xex iyt \ 2 n
minimize F =Y > (=0 BE2 4+ 0N (1G] + [Higl). (5.6)
i=1 t=1 Xewp,i,t i=1 j=1

The following two section deseribe the used IGM and give the procedure of global

optimization using OSA.
Intelligent Generation Mechanism (IGM)

Let all the N solutions be combined into an initial solution S of OSA to be refined.
Let S = (s1,...,5s,) where s; is one of S-system parameters and p = 2N (N + 1). IGM
generates two temporary solutions S4 = (ay,...,a,) and Sg = (by,...,b,) by perturbing

S, where a; and b; are defined as follows:

a; =58+ 85 bi=s—s,i=1,...,p. (5.7)

('

The values of s} are generated by the Cauchy-Lorentz probability distribution. IGM aims
at efficiently combining good values of parameters from solutions S, S4 and Sp to generate
a good candidate solution ) for the next move of S.

Divide all the p parameters into m nonoverlapping groups with variable sizes using
the same division operation for S, S4 and Sg. In this study, the used OA is Lgy,41(3™)

and m = 13 for N < 30. How to decide the proper value of m and OA can be referred to
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Figure 5.2. Flowchart of OSA with an intelligent generation mechanism applying a sys-
tematic reasoning method based on orthogonal experimental design instead of the con-
ventional generate-and-test method [63].
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[63]. Due to the same reason with that of intelligent crossover, the two sets {«;, ¢;;} and
{B:, hi; } are randomly divided into seven and six parameter groups, respectively. How to
perform an IGM operation with m groups using a current solution S and the objective

function F'in Eq. 5.6 is described as follows:

Step 1: Generate two temporary solutions S, and S using S.

Step 2: Using the same division operation, the two sets INC = {«;, g1, - .., 9in } and
DEC = {3, hia,...,hin} in each of S, Sy, and Sp are randomly divided into
(m+1)/2 and (m — 1)/2 groups (factors), respectively.

Step 3: Let levels 1, 2, and 3 of factor represent the groups coming from S, Sy, and
Sp, respectively.

Step 4: Compute y; of the generated combination, where t = 2,3,...,2m + 1. Note
that y; = F'(5).

Step 5: Compute the main effect Sy whered=1,...,m and k = 1,2, 3.

Step 6: Determine the best-one. of threeslevels of each factor according to the main
effect.

Step 7: The candidate solution/@:is formed using the combination of the best groups.

Step 8: Verify that () is superior to the 2m sampling solutions derived from the OA
combinations and ) # S. If it is not true, select the best one from the 2m

sampling solutions as Q).

The number of objective function evaluations is 2m + 1 per IGM operation, which

includes 2m evaluations in Step 4 and one in Step 8.
Global Optimization Using OSA

The main power of OSA mainly arises from using IGM to efficiently search for a good
candidate solution. OSA uses a simple geometric cooling rule by updating the temperature
at the (i+1)-th temperature step using the formula: Temp;,; = CR-Temp;, i =0,1,.. .,
where C'R is the cooling rate which is a constant smaller than 1 but close to 1 (e.g.,

CR = 0.99). The higher the temperature, the larger it is the possibility of accepting the
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candidate solution worse than the current solution. In this study, a simple version of OSA

proposed in [63] is used. The used OSA is described below.

Step 1: (Initialization) Initialize Temp = Tempy and C'R. Let the combined solution
S be an initial solution and compute F'(S).

Step 2: (Perturbation) Perform an IGM operation using S to generate a candidate
solution Q).

Step 3: (Acceptance criterion) Accept ) to be the new S with probability P(Q):

1 i F(Q) < F(S),
P(Q) = 5.8
) exp(FHED) i F(Q) > F(S). )

Step 4: (Decreasing temperature) Let the new value of Temp be CR - Temp.

Step 5: (Termination test) If a pre-specified stopping criterion is met, stop the algo-

rithm. Otherwise, go to,Step 2.

OA specifies a small number of representative combinations that are uniformly dis-
tributed over the neighborhood of the.current solution. Furthermore, the factor analysis
makes IGM more efficient in obtaining a goodcandidate solution which is a potentially
good approximation to the best solution in the neighborhood of the current solution.
When OSA is compared with SA using the same number of function evaluations, the
actual computation time of OSA is generally much smaller than that of SA because OSA
uses a smaller number of iterations [63].

In this study, if the solutions to subproblems are accurate enough whose fitness values
are sufficiently small, OSA plays a role in finely tuning the values of parameters but not
the structure from the aspect of global optimization. In such case, Tempy can be set to
a very small value. If the fitness values are not satisfactory, Tempy can be enlarged to

search for a better solution which the structure of the S-system model may be modified.

5.2.4 iTEA Using IGA and OSA

The proposed algorithm iTEA uses both IGA and OSA in stages 1 and 2, respectively.

IGA aims to obtain solutions to subproblems with significant accuracy in terms of the
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objective function value which can best fit the given gene expression profiles. If noise
is very small, IGA is effective enough and the improvement of OSA in stage 2 is not
significant. When noise becomes larger, the best fit of the observed gene expression profiles
is leaved to OSA from the aspect of global optimization. The proposed evolutionary

divide-and-conquer approach using two stages is given as follows:

Stage 1: Apply IGA to solve N individual subproblems independently using the fitness
function Eq. 5.4. The gene expression level of X 4, at time ¢ is numerically
calculated using Eq. 2.2. R > 1 independent runs are conducted for each
subproblem and the best solution to each subproblem is selected.

Stage 2: Combine these N best solutions (v, gi1, - -, gins Biy ity - - hin ), i =1,... N
into an initial solution S. Apply OSA to refine S using an objective function

Fin Eq. 5.6.

5.3 Experimental Results'of iTEA

We conducted some evaluations for the proposed algorithm iTEA. The used parameters
in iTEA are described below. ForIGA, N,,, =20, P; = 0.2, P, = 0.8, and P,, = 0.2.
The penalty coefficient ¢ = 1.0 in Eq. 5.4"and Eq. 5.6. For noisy gene expression profiles,
R = 10 for IGA in stage 1. From our computer simulation results, OSA performs well

generally by giving a very small value to T'empy, e.g., 0.001.

5.3.1 Experiment 1-Performance of IGA

In this experiment, two target genetic networks with N = 5 and 10 are used to evaluate
the performance of IGA. For a small-scale target network, we used the same S-system
model of a genetic network consisting of N = 5 genes from [29]. This model has been
developed to analyze the interaction of regulator and effector genes, which has feedback
loops. The S-system parameters of the target network are given in Table 5.3. The ranges
of the S-system parameters are [0, 15.0] for o; and ;, and [-3.0, 3.0] for ¢;; and h;;. To
enhance the probability of finding the correct solution, 15 sets of noise-free time-series

data were used where each covering all 5 genes as a sufficient amount of observed gene
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expression profiles. The sets of time-series data were obtained by using Eq. 2.2. The

initial values of these sets are listed in Table 5.4. T" = 11 sampling points for the time-

series data were assigned on each gene in each set, and hence the observed time-series

data on each gene consist of 15 x 11 = 165 sampling points. For this network model,

we have to estimate 60 parameters of the S-system. Let I = 2 and N, = 2 x 10° for

IGA in this experiment. Because of no measurement noise, no refinement of using OSA

is required.

Table 5.3. The S-system parameters of a small-scale target network with N = 5 from

[29).
toq; gn G2 93 G4 s Bi ha hio his hi hgs
1 5 0 0 1 0O -1 10 2 0 0 0 0
2 10 2 0 0 0 0 10 O 2 0 0 0
3 10 0 -1 0 0 0 10 O -1 2 0 0
4 8 0 0 2 0O -1 10 O 0 0 2 0
5 10 0 0 0 2 0 10 O 0 0. 0 2

Table 5.4. 15 Sets of initial gene expression levels of the target network with N = 5 from

[29].

Set WX Wi 0 Xy X5
1 @67 "0.12 0.14" 0.16 0.18
2 0.10770.70 0714 0.16 0.18
3 010 0.12 0.70 0.16 0.18
4 010 0.12 0.14 0.70 0.18
5 0.10 0.12 0.14 0.16 0.70
6 070 070 0.14 0.16 0.70
7 010 0.70 0.70 0.16 0.18
§ 010 0.12 0.70 0.70 0.18
9 0.10 0.12 0.14 0.70 0.70
10 0.70 0.12 0.14 0.16 0.70
11 0.20 0.70 0.14 0.10 0.40
12 0.10 0.15 0.10 0.16 0.18
13 0.30 0.12 0.70 0.10 0.10
14 0.10 0.25 0.70 0.10 0.30
15 0.20 0.12 0.70 0.16 0.20

The S-system parameters of the best solution in terms of fitness value from 30 indepen-

dent runs are listed in Table 5.5. The fitness value is smaller than 1076 for each subprob-

lem using Eq. 5.4. The genetic structure is correct and the parameter values are precise

enough to biologically interpret the network. Our method running on a single-processor
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PC (Pentium IIT 933 MHz) takes 5.8 minutes averagely to solve the five subproblems
without using any auxiliary technique to save computation time, such as the estimation
of slopes in the preprocessing using an artificial neural network [26]. This is far less com-
putation time from a comparison with the method PEACE1 (Predictor by Evolutionary
Algorithms and Canonical Equations 1) proposed in Kikuchi et al. [29] using SPXGA.
PEACEL running on a PC cluster (Pentium IIT 933 MHz x 1040 processors) took more
than 10 hours to estimate the same S-system parameters. The method [31] running on a
PC cluster (Pentium IIT 933 MHz x 8 processors) required about 89.0 minutes to solve
the same problem.

Table 5.5. The estimated S-system parameters sets with N = 5. The fitness value of each
subproblem is smaller than 1075,

i Q; gi1 Jio 9i3 Jia 9is

1  5.002163 0 0 0.999995 0 -0.999868
2 10.000714 1.999865 0 0 0 0

3 9.997750 0 -1.000208 0 0 0

4 7.991448 0 0 2.000909 0 -1.000599
5 10.004309 0 0 0 1.998261 0

i Bi Dy Pz his Piig his

1 10.001932 1.996719 0 0 0 0

2 9.996852 0 17999167 0 0 0

3 10.000212 0 -1.000058"."1.999683 0 0

4 9.992125 0 0 0 2.006558 0

5  9.976999 0 0 0 0 1.994196

Another genetic network of N = 10 genes is given in Tables 5.6 and 5.7. There
are 169 and 51 zero and non-zero values of S-system parameters, respectively. We used
15 sets of gene expression profiles with I = 3 and 7" = 11. The stopping condition is
when the fitness value is still not improved after 100 generations. The best solution in
terms of fitness value from 30 independent runs is listed in Table 5.8. The corresponding
fitness values in Eq. 5.4 for 10 subproblems are given in Table 5.9. There are no false-
negative interaction and only 9 false-positive interactions whose magnitudes are relatively
small. This experiment running on a single-processor PC (P4 2.8 GHz) takes 4.5 minutes
averagely for one subproblem. From these encouraging results, IGA has the ability to
efficiently solve the inference problems with NV = 5 and 10, better than the SPXGA-based

method [29] which can infer the dynamics of a small network with N = 5.
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Table 5.6. S-system parameters of target network with N = 10.

Lo g Y2 93 G4 Yis Y6 Gir Yis  Gio  Gilo
1 5 0 0 0 1 0 -2 0 0 0 0
2 10 O 0 1 0 0 0 0 -1 0 0
3 8 -1 0 0 -1 0 0 0 0 0 0
4 10 O 0 0 0 2 0 0 0 1 0
5 10 0 2 0 0 0 -1 0 0 0 0
6 5 0 0 0 0 0 0 0 0 2 -2
7 10 O 0 0 0 0 1 0 0 0 -1
8 5 1 -2 0 0 0 0 1 0 0 0
9 10 O 0 1 0 0 0 0 -2 0 0
10 8 2 0 0 0 0 0 -1 0 0 0
i B hit hio hig hiy his hie hir hig hig hio
1 10 2 0 0 0 0 0 0 0 0 0
2 10 0 2 0 0 0 0 0 0 0 0
3 10 O 0 2 0 0 0 0 0 0 0
4 10 O 0 0 2 0 0 0 0 0 0
5 10 0 0 0 0 2 0 0 0 0 0
6 10 O 0 0 0 0 2 0 0 0 0
7 10 O 0 0 0 0 0 2 0 0 0
8 10 0 0 0 0 0 0 0 2 0 0
9 10 O 0 0 0 0 0 0 0 2 0
10 10 O 0 0 0 0 0 0 0 0 2

5.3.2 Experiment 2-Comparison between SPXGA and IGA

In this experiment, we conducted some ‘experiments using S-system models containing
N =5,10,...,30 genes as target networks to show that IGA is significantly better than
SPXGA [29] for solving subproblems in terms of fitness value using the same number N,
of fitness evaluations.

We generated feasible expression patterns for comparing the optimization abilities of
IGA and SPXGA. Six sets of time-series data of gene expression are generated where each
covering all N genes. The values of gene expression levels are generated in the range [0,
1.0]. The parameters «; and f; € [0, 15.0] and g¢;; and h;; € [-3.0, 3.0]. Let I = 3 and
T = 11. We conducted 30 independent runs for the first subproblem of each experiment
using IGA and SPXGA to compare the effectiveness by a statistical t-test method. For
each experiment, the stopping condition is N.,, = 5000 x N. The parameters used in
SPXGA are identical to those in [29].

Figure 5.3 gives the convergences of 30 runs for comparisons between IGA and SPXGA
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Table 5.7. 15 Sets of initial gene expression levels of the target network with N = 10.

Set X1 X2 X3 X4 X5 X6 X7 Xg Xg X10
0.10 0.12 0.14 0.16 0.18 0.20 0.22 024 0.26 0.28
0.70 0.12 0.14 0.16 0.18 0.20 0.22 024 0.26 0.70
0.10 0.70 0.14 0.16 0.18 0.20 0.22 0.24 0.70 0.28
0.10 0.12 0.70 0.16 0.18 0.20 0.22 0.70 0.26 0.28
0.10 0.12 0.14 0.70 0.18 0.20 0.70 0.24 0.26 0.28
0.10 0.12 0.14 0.16 0.70 0.20 0.22 0.24 0.26 0.28
0.10 0.12 0.14 0.16 0.18 0.70 0.22 024 0.26 0.28
0.10 0.12 0.14 0.16 0.18 0.20 0.70 0.24 0.26 0.28
9 010 0.12 0.14 0.16 0.18 0.20 0.22 0.70 0.26 0.28
10 0.10 0.12 0.14 0.16 0.18 0.20 0.22 024 0.70 0.28
11 0.14 0.12 0.14 0.16 0.70 0.20 0.22 024 0.26 0.10
12 045 0.10 0.14 0.16 0.10 0.10 0.22 0.70 0.26 0.10
13 020 0.12 0.14 0.10 0.18 0.10 0.70 0.24 0.70 0.10
14 050 0.10 0.14 0.16 0.18 0.20 0.70 0.70 0.26 0.10
15 030 0.12 0.10 0.16 0.18 0.20 0.22 024 0.70 0.10

O 1 O U W

with various values of N. It can be seen obviously that IGA is superior to SPXGA,
especially when N is large. Table 5:10 shows the t-test results of the six target networks.
It can be found that the mean fitness values and variances of IGA are much smaller than
those of SPXGA where their p value isnear to zero. From these results, it reveals that
IGA is significantly better than SPXGA in solvingthe individual subproblems in a limited

amount of computation time.

5.3.3 Experiment 3-iTEA for noisy gene expression profiles

In this experiment, we will evaluate the proposed iTEA using noisy gene expression pro-
files. We adopted the Gaussian noise which is commonly used for the simulated experiment
[80]. Three target genetic networks with N = 5, 10, and 15 are used where the networks
with N =5 and 10 are the same with those in Experiment 5.3.1. The target network of
N = 15 has also 15 sets of gene expression profiles with I = 3 and T" = 11. First, we
added k% Gaussian noise to all gene expression level points of N genes. The mean of the
Gaussian noise is zero and the standard deviation equals to Xy, : X k%.

We applied iTEA to estimate the parameters of S-system model. The function value
of Eq. 5.6 reflecting the fitting quality of time-series data is used to evaluate the ability

of the used optimization algorithm. However, the major concern is to obtain a correct
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Table 5.8. The obtained S-system parameters with NV = 10. The nine highlighted numbers
indicated false-positive interqaction. No false-negative interaction is found.

i 8% gi1 gi2 gi3 gi4 Gi5 Gi6 git gis gi9 gdi1o
1 500 0O 0 0 100 0 -200 0 0 0 0

2 994 0 0 100 O 0 0 0 -1.00 0 0

3 802 -100 0 0 -1.00 O 0 0 0 0 0
4999 0 0 0 0 200 0 0 0 1.00 0

5 1000 0 200 0 0 0 -1.00 0 0 0 0

6 501 0 0 0 0 0 0 0 0 2.00  -1.99
7 1006 0 0 0 0 0  1.00 0 0 0 -1.00
8 498 1.00 -1.99 0 0 0 0 1.00 0 0 0

9 941 0 0 1.02 0 0 0 0 -2.02 0
10 800 200 0 0 0 0 0 -1.00 0 0 0

0 ﬁz hil hi2 hi3 hi4 hiS hi6 hi? hi8 hi9 hilO
1 1000 200 0 0 0 0 0 0 0 0 0

2 922 0 205 0 0 0 0 0 0
3 1007 0 0 200 O 0 0 0 0 0 0

4 1000 0 0 0 200 O 0 0 0 0 0

5 998 0 0 0 0 200 0 0 0 0 0

6 939 0 0 0 0 0. 202 0 0 0 0

7 1009 0 0 0 0 0#-0.05] 2.04 0 0.03 0

8§ 1159 0 [0.30] o 0 0 0 0 1.96 [-0.28 0

9 9.09 [0.04 0 0 0 0 0 0 0.13] 2.13 0
10 1001 0 0 0 0 0 0 0 0 0 2.00

Table 5.9. The fitness values in Eq. 5.4 {er all subproblems with N = 10.

l 1 2 3 4 5
fi 0.000001 0.000416 0.000019 0.000001 0.000004
{ 6 7 8 9 10

fi0.003180 0.000547 0.000020 0.001786 0.000000

network structure with accurate parameter values. We define the true positive rate as
sensitivity SN = TP/(TP + FN) where TP is true positive and F'N is false negative;
and the true negative rate as specificity SP = TN/(T'N + F P) where T'N is true negative
and F'P is false positive.

In the above-mentioned experiments, IGA is shown to be efficient enough for solving
subproblems. To illustrate the effectiveness of R > 1 runs in stage 1 and refinement
of OSA in stage 2, we take the target model of N = 10 with 5% Gaussian noise as an
example. At first, IGA is performed one run (R = 1) to solve each individual subproblem

and then all the N = 10 solutions to the 10 subproblems are combined as a final solution

66



(a) (b)

Fitness
Fitness

T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 0 10000 20000 30000 40000 50000
Fitness Evaluation Fitness Evaluation

(© (d)

Fitness

Fitness

T T T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 0 20000 40000 60000 80000 100000
Fitness Evaluatuin Fitness Evaluation

(® ®

Fitness
Fitness

r T T T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000 140000
Fitness Evaluation Fitness Evaluation

Figure 5.3. The convergence comparison between IGA and SPXGA using 30 independent
runs. (a) N=5(b) N =10 (¢) N =15 (d) N =20 (e) N =25 (f) N = 30.

to the inference problem. On the other hand, a combined solution S is also obtained from
stage 1 using IGA with R = 10. Figure 5.4 shows the distribution of the S and 30 final
solutions. From Figure 5.4, it can be found that the best solution Sp.s; of R = 1 has values
F =6.42, SN = 98%, and SP = 82.7%. The solution S has F' = 6.17, SN = 100%, and
SP = 82.25%, which is slightly better than Sj.. Therefore, it is effective to combine
the best one of R > 1 solutions for all individual subproblems. After performing OSA
30 independent runs to refine the solution S, the obtained model has values F' = 4.70,
SN = 100%, and SP = 82.52% averagely. It reveals that OSA can effectively improve

the model in terms of fitness value (referred to Table 5.11).

67



Table 5.10. T-test results for comparisons between IGA and SPXGA with various values

of N.
N 5 10 15
Nevar 25000 50000 75000
Algorithm  IGA SPXGA IGA SPXGA IGA SPXGA
Best 0.01578 4.65101 2.84 x 10~* 9.42883  0.02343 13.30884
Worst 2.65831 26.24824 0.72764 21.09678 1.64378 20.64385
Mean 0.53829 11.41142 0.24137 15.24435 0.49844 16.3107
Variance  0.4979 29.68118 0.06484 10.13658 0.18244 2.97019
t value -11.25817 -25.56804 -47.24382
pvalue  4.20046 x 10712 1.92315 x 10~2 5.45875 x 102
N 20 25 30
Neval 100000 125000 150000
Algorithm  IGA SPXGA IGA SPXGA IGA SPXGA
Best 0.01155 18.86678 0.01924 25.71603 0.06302 32.38494
Worst 1.00323 27.30871 0.76638 34.00673  1.1908  44.98229
Mean 0.30912 22.65516 0.32504 30.39126 0.58418 38.86353
Variance 0.05177 3.27567 0.05363 6.44214 0.11128  7.25008
t value -64.91653 -65.25943 -76.31632
p value 5.91115 x 10733 5.07875 x 10733 5.56666 x 1073

Table 5.11 shows the results of iTEA using artificial data with N = 5, 10, and 15
where 3% and 5% Gaussian neises are added. Thestopping condition of OSA is to use
3000 iterations. OSA performed 30 independent runs using the same initial solution S
obtained from the best solutions of all'individual subproblems using IGA with R = 10.
The simulation results show that IGA is good at solving subproblems and OSA can further
refine the combined solution S having a relatively small value F'(S). Furthermore, iTEA
can effectively solve the inference problems with the value of N as large as 15. For N =5
and 10, the average sensitivity performances are near or equal to 100%. For N = 15,
SN > 93%. The specificity performances ranged from 54.05% to 87.13% seem not as
good as the sensitivity performance from the aspect of SP value. By carefully examining
the results and analyzing the inference performance, iTEA can often obtain a satisfactory

S-system model, discussed below.

1) Because the Gaussian noise is added into the gene expression profiles, the original
(true) values of S-system parameters may be not the best solution to fit the noisy
gene expression profiles. Note that iTEA aims to find the S-system model which

can best fit the noisy gene expression profiles. As a result, some small false-positive
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interactions may be additionally occurred.

2) The specificity performance highly depends on the threshold value in using the
structure skeletalizing technique (65 = 0.03 in this study and d; = 0.1 in [26]).
When interpreting the interaction from the estimated values of S-system parameters
for noisy data, it is better to filter the small interactions using a larger threshold
value. If an additional threshold 6, = 0.1 is used to filter the small interactions
that their absolute values are smaller than 0.1 by assigning a value of zero to them,
the sensitivity performance is unchanged and the specificity performance would be

obviously enhanced, ranged from 79.10% to 92.33%.

5.4 Conclusions for iTEA

S-system model has been considered suitable to characterize biochemical network sys-
tems and capable to analyze the regulatory system dynamics. Essentially, the inference
of S-system models of genetic networks is: & _large-scale optimization problem consisting
of 2N (N + 1) parameters to bé optimizéd where N-is the number of genes in the genetic
network. In this thesis, we propose an intelligenttwo-stage algorithm iTEA to search for
an optimal solution to the reverse engineering problem for inference of genetic network
architectures running on a single-processor PC. iTEA solves the optimization problem
using a divide-and-conquer approach in each of two stages. At first, the original problem
is decomposed into N individual 2(/NV + 1) dimensional subproblems. In the first stage, an
intelligent genetic algorithm (IGA) is used to solve the individual subproblems indepen-
dently without further estimating gene expression levels of other genes. Our simulation
demonstrated that the proposed IGA-based method is effective in solving the subproblems
of inferring S-system models of genetic networks.

To compensate the disregard of estimating accurate gene expression levels of other
genes from noisy data of gene expression, all the solutions to NV subproblems are combined
and then refined using an orthogonal simulated annealing algorithm (OSA) from the
aspect of global optimization. In stage 2, OSA can effectively refine the combined solution

quality where 3% and 5% Gaussian noises were added to gene expression profiles. From
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simulation results, it has shown that the proposed algorithm iTEA performs well from
noise-free and small-noise gene expression profiles. Our future work is to use iTEA to
identify the dynamic pathway from actual gene expression profiles with measurement

noise where biological knowledge is incorporated to improve solution quality.
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Figure 5.4. The distribution of 30 solutions with R = 1 and one solution with R = 10
using IGA only without refinement of OSA from gene expression profiles of N = 10 and
5% Gaussian noise. (a) Fitness value vs. Sensitivity (b) Fitness value vs. Specificity.
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Chapter 6

Conclusions

Microarray gene expression profiling technology is one of the most important research
topics in cancer research or clinical diagnosis of disease. One goal in analyzing expression
data is to determine how genes are expressed as a result of certain cellular conditions (e.g.,
how genes are expressed in diseased and healthy cells) [1]. Another goal is to determine
how the expression of any particular, gene might affect the expression of other genes in
the same genetic network [2, 3, 4'5].

To achieve the two objectives 'of microarray data analysis mentioned above, the most
important issues in microarray.data amalysisare the gene expression data classification
problem and the genetic networks inference problem. In this thesis, we proposed two
IGA-based optimization algorithms to cope with these two major problems of microarray
data analysis. Following are the introductions about the results and future works of our

two proposed optimization methods for the two topics mentioned above.

6.1 iGEC for the gene expression classification prob-
lems

For microarray gene expression classification problem, the important issue is that how
to design an accurate, compact, and human-interpretable classifier is the major concern
in this study. We proposed an interpretable gene expression classifier, named iGEC,
for microarray data analysis. The design of iGEC includes almost all aspects related
to the design of compact fuzzy rule-based classification systems: gene selection, rule

selection, membership function tuning, consequent class determination, and certainty
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grade tuning. Consequently, an efficient optimization algorithm IGA is used to solve the
resultant optimization problem with a large number of parameters.

The superiority of the proposed iGEC was evaluated by computer simulation on eight
data sets of gene expression. The experimental results reveal that: 1) the proposed method
can obtain interpretable classifiers with an accurate and compact fuzzy rule base, com-
pared with the existing fuzzy classifier [13]; 2) iGEC using few genes is worse than SVM
but superior to k-NN, BNN, and PNN using thousands of genes in terms of accuracy; and
3) iGEC has high interpretabilities using 1.13 fuzzy rules of short length for representing
one class averagely. Moreover, we extended the proposed iGEC to an interpretable scoring
fuzzy classifier, named iSFC, which is able to effectively quantify the certainty grades of

samples belonging to each class.

6.2 iTEA for the genetic networks inference prob-
lems

S-system model has been considered suitable to characterize biochemical network systems
and capable to analyze the regulatory systemndynamics. Essentially, the inference of S-
system models of genetic networks is.a large-scale optimization problem consisting of
2N (N + 1) parameters to be optimized where N is the number of genes in the genetic
network. This thesis proposes an intelligent two-stage evolutionary algorithm (iTEA)
to solve the optimization problem using a divide-and-conquer strategy in each of two
stages. The original problem can be decomposed into N individual 2(/N + 1) dimensional
subproblems if the measurement noise is small. In stage 1, an intelligent genetic algorithm
is used to solve the individual subproblems independently without further estimating gene
expression levels of other genes. Our simulations demonstrated that the proposed IGA-
based method is effective in solving the subproblem of inferring S-system models of genetic
networks. In stage 2, OSA can refine the combined solution quality in terms of fitness
value where 3% and 5% Gaussian noises were added. From simulation results, it has
shown that the proposed algorithm iTEA performs well from noise-free and small-noise

gene expression profiles. Our future work is to use iTEA to identify the dynamic pathway
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from actual gene expression profiles with measurement noise where biological knowledge

is incorporated to improve solution quality.
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