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Abstract

Because the usage for digital imagery gets increasingly popular, to enhance the
compressed image efficiency and features, a mew still image coding standard called
JPEG2000 was proposed. It provides an excellent subjective quality at low bit rates. It also
offers fine granularity scalability in compression efficiency and transmitting compressed bit
stream. However, JPEG2000 is also. very complicated in computational complexity. In this
thesis, we implement a JPEG2000 encoder on'the TI DSP platform. We propose two speed-up
methods and use the TI DSP optimization tools to accelerate the Tier] module, which is the
most complex part in the JPEG2000 standard.

We start with the ver.1.0 OpenJPEG reference software, which has adopted the 1-D
lifting scheme to accelerate the DWT module. Thus we focus on the Tierl module, which
takes about 90% of total computing time. We study the previous methods first and examine
their effectiveness on our DSP platform. Then, we propose two improved methods, one is
called VGOSS (Variable Group Of Sample Skip), and the other is a modified VGOSS method.
We eliminate the unnecessary checking cycles by recording the NBC (Need-to-Be-Coded)
samples on a list. Furthermore, the sample index is reordered to facilitate fast execution. In
the DSP implementation of the proposed methods, we use code acceleration techniques and
DSP compiler-level optimization. We also tune the cache allocation to reduce memory access
time. The experimental results show that the best performance is up to 32 times faster than the

original program without any optimization on the DSP platform. If the original program is

il



compiled with the DSP optimization tools and proper cache assignment, our fast algorithm

can still reduce the computation by 45%.
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JPEG2000 - TI DSP ~ DSP platform acceleration ~ EBCOT
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Ghapter1
Introduction

1.1 Introduction

Digital image is an essential part of our daily information in the world today. The
standards for the efficient representation and interchange of digital images are important.
JPEG2000 is a well-known image algorithm for its excellent coding performance especially in
low bit-rate. It is the most recent addition to a family of international standards developed by
the Joint Photographic Experts Group (JPEG). This.group operates under the auspices of Joint
Technical Committee 1, Subcommittee 29, Working Group 1 (JTC 1/SC 29/WG 1), a
collaborative effort between the International Orgamization for Standardization (ISO) and
International Electro technical Commission (IEC). The JPEG committee has already released
the JPEG and JPEG-LS standards. The'JPEG standard is the most popular image compression
in recent years. However, the JPEG committee intends to create a new image coding system
for different types of still images (bi-level, gray-level, color, multi-component), with different
characteristics (natural images, scientific, medical, remote sensing, text, rendered graphics,
and etc.). The targets of the JPEG2000 coding system are expected to be the low bit-rate
operation with a rate-distortion and subjective image quality performance superior to the
existing image standards.

The JPEG2000 standard implements an entirely new way of compressing images based
on the wavelet transform, in contrast to the discrete cosine transform (DCT) used in the JPEG
standard. It also supports lossy and lossless compression of single-component (gray level)
images and multi-component (color) images. In addition to this basic compression
functionality, a number of other features are provided, including progressive recovery of an
image by fidelity or resolution, region of interest coding, random accessing and so on.

However, the complexity of JPEG2000 algorithm is the most critical issue in the



implementation on an embedded system. Typically, the Embedded Block Coding with
Optimized Truncation (EBCOT) is the major part and computationally intensive in the
JPEG2000 algorithm. The EBCOT employs a post-compression Rate-Distortion Optimization
(RDO) tool, which truncates the bit-stream at the target bit-rate providing optimal image
quality. Because of these tools, the JPEG2000 algorithm has a much higher computation than
the JPEG algorithm. In order to reduce the cost and power consumption, we analyze and

accelerate the JPEG2000 algorithm in this study.

1.2 Overview of the Thesis

In this thesis, the JPEG2000 encoder is implemented on an embedded system-a TIDSP
platform. A few speed-up methods are adopted in our encoder. In the Chapter 2, the concepts
of the JPEG2000 algorithm are introduced and all coding modules are presented in the
following sections. Chapter 3 introduces the implementation environment including the DSP
platform, coding development tools, and some typical optimization methods. In Chapter 4, the
JPEG2000 encoder is profiled- and analyzed. Some previous accelerating methods are
reviewed and modified in our DSP platform. Then, we propose our improved methods to
accelerate the JPEG2000 encoder in Chapter 5. and extensive experiments using different
methods are also presented in Chapter 5. Finally, we give a summary of this project and also

discuss the future possible work in Chapter 6.



Chapter 2
Conspectus of
JPEG2000 Algorithm

The JPEG standard has been in use for almost a decade now. It provides a valuable tool
during all these years, but it cannot fulfill the advanced requirements for image coding of
today. The JPEG2000 standard provides a set of features that are important to many high-end
and emerging applications by adopting new technologies. This chapter introduces the feature
set and provides an overview of the Partl of JPEG2000 standard Part 1. It is the core of the
JPEG2000 for image coding system,The details of JPEG2000 Part 1 can be found in [1].

2.1 Introduction to JPEG2000

Starting from March 1997, a new ‘call for contributions was launched for the
development of a new standard for the compression of still images, the JPEG2000 standard
[1], [2]. The requesting compression technologies had been submitted to an evaluation during
the November 1997 WGI1 meeting in Sydney, Australia. The JPEG2000 standard has been
achieved many desired features including different types of still image, different
characteristics, and different imaging models within a unified system. The most important

features [7] of JPEG2000 algorithm are listed as below.

Superior low bit-rate performance:

While superior performance at all bit-rates was considered desirable, improved
performance at low bit-rate (e.g. below 0.25 bpp), with respect to JPEG, was considered to be
an important requirement for JPEG2000. JPEG2000 has a compression advantage over JPEG
of roughly 20% and a subjective quality benefit.

Continuous-tone and bi-level compression:



Seamless compression of image components (e.g., R, G, or B), each from 1 to 16 bits
deep, was desired from one unified compression architecture.
Progressive transmission by pixel accuracy and resolution:

Progressive transmission that allows images to be reconstructed with increasing pixel
accuracy or spatial resolution is essential for many applications. For examples, World Wide
Web, image archival and printers, are common applications.

Lossless and lossy compression:

JPEG2000 provides both lossless and lossy compression, again from single compression
architecture. It is desired to provide lossless compression in the natural course of progressive
decoding.

Region-of-Interest Coding:

Some parts of an image are more important than others, and would like to be transmitted
with better quality and less distortion than the rest of the image. Users can define certain
ROTI’s in the image to be coded and transmitted first.

Random code-stream access and:processing:

This feature allows users=to..define certain ROI’s in the image to be coded and
transmitted with less distortion than ' the“rest. of ‘the image. Besides, rotation, filtering,
translation, scaling and feature extraction are supported.

Robustness to bit-errors:

It is desirable to consider robustness to bit-errors while designing the codestream. In the
noisy communication channels (e.g., wireless), proper design of the codestream can aid
subsequent error correction systems in alleviating catastrophic decoding failures.

Open architecture:

It is desirable to allow open architecture to optimize the system for different image types
and applications. A decoder is only to implement the core tool set and a parser that
understands the codestream. Furthermore, unknown tools could sent from the source and be
adopted by the decoder.

Content-based description:

Image archival, indexing and searching is an important in image processing.
Content-based description of images might be available as part of the compression system.
Side channel spatial information (transparency):

Side channel spatial information such as alpha planes and transparency planes are useful

5



for transmitting information for processing the image for display, printing or editing.
Protective image security:

Protection of a digital image can be achieved by means of watermarking, stamping,
encryption, and labeling. The SPIFF has implemented labeling method, and JPEG2000 must

be easy to achieve the target.

Source
Image
Data

Pre-Processing —»| Forward DWT

Coded Image Tier-2 Encoder [@—— Tier-1 Encoder [€— Unlform Sc.alar D
Quantization

A A A

Y

»| Rate Control [«

Figure 2-1 General block diagram of JPEG2000 encoder [1]

Coded Image Tier-2 Decoder —| Tier-1 Decoder —| Dequantization
Rec?::;;uecmd Post-Processing j¢&—— Inverse DWT |€&——

Figure 2-2 General block diagram of JPEG2000 decoder [1]

Due to above-mentioned attractive features, JPEG2000 has a very large potential
application base. Some possible application areas include: document imaging, digital
photography, desktop publishing, Internet, image archiving, medical imaging, remote sensing,
and web browsing. The JPEG2000 standard compression engine (Encoder and Decoder) is

illustrated in block diagrams in Figure 2-1 and Figure 2-2. It is comprised of numerous parts,



several of which are listed in Table 2-1. Part 2 [3] and Part 3 [4] describe extensions to the

baseline codec that are useful for certain specific applications such as intraframe-style video

compression. For convenience, we will refer to the codec defined in Part 1 of the standard as

the baseline codec. Before introducing the major block of the codec, we should know that the

most parts of the JPEG2000 standard are written from the point of view of the decoder.

Besides, the decoder is the reverse of the encoder. We will only describe the JPEG2000

encoding tools in the following sections.

Part Title Purpose

1 | Core coding system Specifies the core codec for the JPEG2000 family of
standard

2 | Extensions[3] Specifies additional functionalities that are useful in some
applications but need not be supported by all codec

3 | Motion JPEG2000[4] Specifiesrextensions. to JPEG2000 for intraframe-style video
compression

4 | Conformance testing[5] |'Specifies the procedure to be employed for compliance
testing

5 | Reference software[6] | Provides sample software implementations of the standard

to serve as a guide for implementations

Table 2-1 Part of the JPEG2000 standard




2.2 Pre-Processing

The Pre-Processing block includes three types of processes, which are “Image Tiling”,

“DC Level Shifting”, and “Component transformations”. We will describe these terms as

follows.
Tiling DWT in each tile
o : H H H H
I
be | | T
Image Component I— Level :‘[>1 Component
Shifting :TransformatlonI HH FH HH HH
| I
L _ I

Figure 2-3 Tiling, DC-Level shifting, and Component transformation (optional)

2.2.1 Image Tiling

The standard operations, including componeft mixing, wavelet transform, quantization
and entropy coding, works on image tiles which are the partition of the original image. The
image tiles are rectangular non-overlapping blocks which are compressed independently.
Tiling reduces memory requirements, and since they are reconstructed independently, they

can be used for decoding specific parts of the image instead of the whole image.

2.2.2 DC Level Shifting

After tiling image, all samples of the each tiles are dc level shifted by subtracting the
same quantity 2", where P is the component’s precision. DC level shifting is performed on

samples of components that are unsigned only.



2.2.3 Component Transformation

The followed stage is an optional inter-component transformation. It reduces the
correlation between components, and lead to improved coding efficiency [8]. The JPEG2000
supports multiple-component image, and different bit depths. For the reversible (i.e. lossless)
systems, the only requirement is that the bit depth of each output image component must be
identical to the bit depth of the corresponding input image component. The JPEG2000
supports two different component transforms, irreversible component transformation (ICT)
for lossy coding and reversible component transformation (RCT) for lossless or lossy coding.
All image component samples Iy(x, v), I;(x, y), I>(x, y), corresponding to the first, second, and
third components, produce transform samples Yy(x, y), Yi(x, v), Y>(x, y). The forward and
inverse RCT are achieved by means of (2.2-1) and (2.2-2). The other one, ICT, refers to (2.2-3)
and (2.2-4).

[IO +21, +12J
Y
0 4 Forward RCT
Y |=1 1, -1 2.2-1)
Yz o 11 -
| B
I, 0 4
Inverse RCT
I, |=| Y, +1
I Y +1, (2.2-2)
Y. 0.299 0.587 0.114 1
0 0 Forward ICT
Y, |=|—-0.16875 —0.33126 0.5 I,
Y, 05  —041869 —0.08131) 7 (2.2-3)
) ) . ) s
1, 1.0 0 1.402 Y,
Inverse ICT
I, |=]1.0 —0.34413 -0.71414 | Y
5,) \to 1772 o\, (2.2-4)



2.3 Discrete Wavelet Transform and Quantization

The wavelet transform is used for analysis of the tile components into different
decomposition levels. These decomposition levels contain a number of subbands, which
consist of coefficients that describe the horizontal and vertical spatial frequency
characteristics of the original tile component. Due to the statistical properties of these subband
signals, the transformed data can usually be coded more efficiently than the original
untransformed data.

In JPEG2000 system, two wavelet transform kernels are provided. The DWT can be
irreversible or reversible. The default reversible transformation is implemented by means of
the Le Gall 5-3 filter, the analysis and the corresponding synthesis filter coefficients are given
in Table 2-2. The other one, default irreversible transform, is implemented by means of the

Daubechies 9-7 filter, and the corresponding coefficients are given in Table 2-3.

Analysis Filter Coefficients Synthesis Filter Coefficients

i | Low-PassFilter (i) | High-Pass Filtethg(i) || Low-Pass Filterg,(i) | High-Pass Filter g (i)
0 6/8 1 1 6/8

t1 2/8 -1/2 1/2 -2/8

2 -1/8 -1/8

Table 2-2 Le Gall 5-3 analysis and synthesis filter coefficients

Analysis Filter Coefficients Synthesis Filter Coefficients
i Low-Pass Filter 4 ;(i) High-Pass Filter £ (i) Low-Pass Filter g, (i) High-Pass Filter g 4(i)
0 0.6029490182363579 1.115087052456994 1.115087052456994 0.6029490182363579
*1 0.2668641184428723 -0.5912717631142470 0.5912717631142470 -0.2668641184428723
12 | -0.07822326652898785 | -0.05754352622849957 | -0.05754352622849957 | -0.07822326652898785
13 | -0.01686411844287495 | 0.09127176311424948 | -0.09127176311424948 | 0.01686411844287495
T4 | 0.02674875741080976 0.02674875741080976

Table 2-3 Daubechies 9-7 analysis and synthesis filter coefficients
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Figure 2-4 2-D forward discrete wavelet transform
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Figure 2-5 2-D DWT decomposition
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Usually, the two-dimensional (2-D) discrete wavelet transform is accomplished by

cascading two one-dimensional (1-D) discrete wavelet transform. It is decomposed by

one-dimensional discrete wavelet transform with 2-channel in horizontal and vertical

directions respectively, as shown in Figure 2-4. After one-dimensional vertical discrete

wavelet, two subbands are formed. The low-pass samples represent a downsampled

low-resolution version of the original set. The high-pass samples represent a downsampled

residual version of the original set. And then the subbands pass through the other horizontal

filter. The four higher-level subbands are all composed of quarter original image size such as

Figure 2-5.
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Power of 2 decompositions is allowed in the form of dyadic decomposition (in Part I) as
shown in Figure 2-6. For a N by N image through the M-level two-dimensional discrete
wavelet transform decomposition, the size of each subband is N/2™ by N/2™. An example of a

dyadic decomposition into subbands of the image ‘Lena’ is illustrated in Figure 2-7.

Figure Z-ég‘Hier;a?réﬁﬁiEalﬁﬂmql_t}i:-level 2-D DWT

5]
* n

Figure 2-7 An example of Lena image for multi-level 2-D DWT
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After transformation, all coefficients are quantized. Sever quantization options are
provided in JPEG2000 standard. Only the uniform scalar quantization which is the default
quantization method in JPEG2000 standard Part 1 would be introduced here.

In integer mode, the quantizer step sizes are always fixed at one, effectively bypassing
quantization and forcing the quantizer indices and transform coefficients to be one and the
same. In this case, lossy coding is still possible, but rate control is achieved by other
mechanism. In the case of real mode, the quantizer step sizes are chosen in conjunction with
rate control. Each of the transform coefficients a,(u,v) of the subband b is quantized to the
value gy(u,v) according to the formula (2.3-1). Since the step size A, i1s represented relative
to the dynamic range Ry, of the subband b, it is defined in (2.3-2). The exponent/mantissa pairs

(€v, W) are either explicitly signaled in the bit stream syntax for every sub-band.

|ab(u,v)|

q,(u,v) = sign(a, (u,V)){A—J (2.3-1)

b

A, =2%7(1 +%) (2.3-2)

13



2.4 Embedded Block Coding with Optimized Truncation

Embedded block coding with optimized truncation (EBCOT) [9] is adopted for the
entropy coding of JPEG2000.The EBCOT consists of two major coding step, tier-1 and tier-2,
as shown in Figure 2-8. The tier-1 part is the embedded block coding (EBC) which is
composed of the context formation (CF) and the arithmetic encoder (AE). The tier-1 coder
divides each subband coefficient into code-blocks and all code-blocks are coded separately
into a block-based embedded bit-stream. The coding is performed using the bit-plane coder
described later in next section. For each code-block, an embedded code is produced,
comprised of numerous coding passes and the output of the tier-1, block-based embedded
bit-stream, is a collection of coding passes for the various code-blocks. After that, the tier-2
truncates the embedded bit-stream to minimize the overall distortion. We will introduce the

two tiers in following sections.

Context
DWT Context Arithmetic Rate-Distortion Full-featured
Coefficients ' Formation Decision Encoder Optimization ' bit-stream
EBC

Tier-1 Tier-2

Figure 2-8 Two tiers of EBCOT algorithm

2.4.1 Tier-1 Coding

The tier-1 coding is also a known as the embedded block coding (EBC). It includes the
context formation (CF) and the arithmetic encoder (AE) and its basic coding unit is a
code-block. The EBC is a bit-level processing algorithm, and the code-block is coded in a
bit-plane by bit-plane manner which is from the most significant bit (MSB) bit-plane to the
least significant bit (LSB) bit-plane in a code-block. Every bit-plane takes three passes and it

is scanned in a stripe-based method, as presented in Figure 2-9.
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[ ] Passt: Significance Propagation Pass

B Pass2: Magnitude Refinement Pass
[ ] Pass3: Cleanup Pass

Figure 2-9 Diagram of tile, code-block, bit-plane, stripe and coding pass

2.4.1.1 Context Formation (CF)

The embedded block coding is essentially a context-adaptive arithmetic encoder as
shown in Figure 2-8. The context formation (CF) generates context-decision pairs for the
arithmetic encoder (AE). The context is adopted to adapt the probability of the decision by the
AE. In context modeling, all code-blocks are coded a bit-plane at a time starting from the
MSB bit-plane with a non-zero element to the LSB bit-plane. For each bit-plane in a
code-block, a special scan pattern is use for each of three coding passes. The three coding
passes are coded in order as Passl (significance propagation pass), Pass2 (magnitude

refinement pass), and then Pass3 (cleanup pass). Each coefficient bit from DWT is coded in
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only one of the three coding passes, and the coding condition is shown in Table 2-4.

Coding Pass

Coding Condition

Pass1 (Significance Propagation Pass)

Insignificant sample with at least one significant
neighbor

Pass2 (Magnitude Refinement Pass)

Significant sample

Pass3 (Cleanup Pass)

Insignificant sample with all

Table 2-4 Coding Pass Classification

CJOJO)0,

—————— Ho | X | H,

D, | Vi | D;

) )|
® @ 2
(1) (@),

_____ 4 Context window

DOO®OO®OE
GIGIGISHOIOION0,

Stripe

Figure 2-10 Context window and Neighbors states

Since the context-based arithmetic coding is employed, a means to select context

selection is necessary. Figure 2-10 shows the context window and the 4-connected or

8-connected neighbors of a sample is selected that is performed by examining state

information.

The first coding pass (Passl) for each bit plane is the significance propagation pass.

During the significance propagation pass, a bit is coded if its location is not significant, but at

lease one of its 8-connected neighbors is significant. Nine context labels (Table 2-5) are

created based on how many and which ones are significant. The significance propagation pass

includes only bits of coefficients that were insignificant and have a non-zero context. All other

coefficients are skipped. If the value of this bit then the significance state is set to 1 and then

the sign coding must be performed. The sign coding is determined using another context table.
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Only four neighbors are considered, and each neighbor may have one of three states:
significant positive, significant negative, or insignificant. Both vertical and horizontal give the
different contribution for the context table. The nine permutations of the vertical and
horizontal contributions are reduced into five context labels as shown in Table 2-6. The
decision of sign coding can be obtained by performing the logic XOR operation with the

XOR bit of the sign context table.

The second coding pass (Pass2) for each bit plane is the magnitude refinement pass. This
pass signals subsequent bits after the most significant bit for each sample. If a sample was
found to be significant in a previous bit plane (except those that have just become significant
in the immediately proceeding significance propagation pass), the next most significant bit of
that sample is conveyed using a single binary symbol. The context used in magnitude
refinement coding is determined by the summation of the significance state of the horizontal,

vertical, and diagonal neighbors as shown in Table 2-7.

All the remaining coefficients in the bit-plane are insignificant and have the context
value of zero during the significance propagation pass. These are all included in the cleanup
pass (Pass3). The cleanup coding not only uses the neighbor context, like that of the
significant coding from Table 2-5; but:also a run-length coding. If the four contiguous samples

in a column and the context labels of'the-four samples are all zeros, the run-length coding is

performed.
LL and LH sub-bands HL sub-band HH sub-band Context
(vertical high-pass) (horizontal high-pass) (diagonally high-pass) Label
SH Y ¥D YH TV ¥D 3 (H+V) %D
2 X X X 2 X X =3 8
1 =1 X =1 1 X =1 2 7
1 0 =1 0 1 =1 0 2 6
1 0 0 0 1 0 =2 1 5
0 2 X 2 0 X 1 1 4
0 1 X 1 0 X 0 1 3
0 0 =2 0 0 =2 =2 0 2
0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0

Table 2-5 Contexts for the significance propagation pass and cleanup coding passes
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Horizontal contribution Vertical contribution Context Label XOR bit

1 1 13 0
1 0 12 0
1 -1 11 0
0 1 10 0
0 0 9 0
0 -1 10 1
-1 1 11 1
-1 0 12 1
-1 -1 13 1

Table 2-6 Contributions of the vertical (and the horizontal) neighbors to the sign context

YH+XV+¥D First refinement for this sample Context Label
X° False 16
=1 True 15
0 True 14

Table 2-7 Contexts for the magnitude refinement coding pass

7 Y [
A
P>

A 0 > A A
y
Q.
C
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Figure 2-11 Basic operation of the AE

>

Q.

=
LPS Renormalize

(Most Probable Symbol, Least Probable Symbol, and Renormalization)
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2.4.1.2 Arithmetic Encoder (AE)

The decision which is produced by the CF is coded during arithmetic encoder. The AE is
an adaptive, binary MQ-coder [10]. The basis of the binary arithmetic coding process is the
recursive probability interval subdivision of Elias coding. Since it is a binary AE, there are
only two sub-intervals. With each binary decision, the current probability interval is
subdivided into two sub-intervals, and the codestream is modified (if necessary) so that points
to the base (lower bound) of the probability sub-interval assigned to the symbol as shown in
Figure 2-11. Besides, a lazy coding mode is used to reduce the number of symbols that are
arithmetically coded. According to this mode, after the fourth bitplane is coded, the first and
second pass are included as raw, while only the third coding pass of each bitplane employs

arithmetic coding.

2.4.2 Tier-2 Coding

The tier-2 encoding follows the tier<1 encoding; and the input of the tier-2 encoding
process is the set of bit-plane coding passes generated during tier-1 encoding. Each coding
pass is a candidate of truncation point-of a code-block and the coding pass information is
packaged into data units called packets in tier-2 coding. For meeting a target bit-rate or
transmission time, the packaging process imposes a particular organization of coding pass
data in the output codestream. Thus rate control assures that the desired number of bytes is
used by the codestream while assuring the highest image quality possible. We will review the

RDO algorithm in following section.

In the encoder, rate control can be achieved through two distinct mechanisms, the choice
of quantization step size and the selection of the subset of coding passes to include in the
codestream. When lossless coding is employed, only the first mechanism may be used. The
quantization step sizes must be fixed to one. In lossy coding mode, both of the two
mechanisms may be employed. If the quantization step sizes are changed, the tier-1 encoding
must be performed again. Since tier-1 coding requires a lot of computation, changing step
sizes may not be practical in the encoder. The encoder can elect to discard coding passes in

order to control the rate. The contribution of each coding pass makes to rate, and calculates
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the distortion reduction. Using this information, the encoder can include the coding passes in

order of decreasing distortion reduction until the bit budget has been exhausted.

The goal of rate control is to minimize the distortion while keeping the rate smaller than

the target rate, Rr. The problem is mapped into Lagrange optimization problem [11] as

(2.4-1).

min(D + AR) = min(Q_ (D} + AR")) (2.4-1)

The D means total distortion, and R means total bit rate. The Lagrange multiplier( A ) is
used to minimize J = D+R A ,and thus the derivative of J is set to zero. The candidate

corresponding pass m of the bit-plane k in the code-block 1 (B;) is represented as Z;. Then the
optimal A ,(* A), and the slop of R-D curve can be obtained as (2.4-2).

S (2.4-2)
OR

For each code-block B, the slop of R-D €urve is corresponding to the number of Z; as
(2.4-3). The S means the reduction speed when B is truncated at Z;. The optimal solution
proved in [11] is constrained as below (2.4-4). The *Z; is the optimal truncation point of B;,

and the rate-distortion optimization can be achieved when Z; is sufficiently closed to *Z;.

. AD}/" D} —D
Si = ARZI = RZ, _RlZHl (2.4‘3)

l 1 l

—-SH>*A, Z,>2*Z,

—-SH <*A, Z,<*Z,
(2.4-4)

and
D R <R,
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In this chapter, we will briefly introduce the DSP platform environment and some
optimization methods. We use the DSP module (SMT395) made by Sundance. It houses two
important chips, TMS320C6416T DSP chip made by Texas Instrument and Xilinx Virtex II
Pro FPGA. As our implementation is software base system, we only focus on the DSP chip. In
addition, we will introduce the software development tool, the Code Composer Studio (CCS),

and bring in some efficient optimization‘methods.by using this environment.

3.1 DSP Platform Introduction

Our DSP platform includes two major medules, SMT395 and SMT310. The DSP module,
SMT395, is based on the 1GHz 64-bit TMS320C6416T DSP which is manufactured on the
90nm wafer technology. It is also supported by the T.I. Code Composer Studio and 3L
Diamond RTOS to enable full multi-DSP systems with minimum efforts by the programmers.
We use the TI’s PCI module carrier (SMT310) to communicate between SMT395 and
personal computer. Our emulation results could be passed from SMT310 PCI bus and shown
on CCS windows. Figure 3-1 shows the pictures of SMT395 and SMT310. The SMT395
module can be installed on the SMT310 carrier and SMT310 can be installed on a personal
computer. The block diagram of emulator system is shown in Figure 3-2. We will introduce

the main DSP module (SMT395) and software environment in following sections.
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SMT395 SMT310

Figure 3-1 SMT395 module and SMT310 carrier

CCS SMT395

Peripheral

Figure 3-2 Block diagram of emulator system
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3.2 Major DSP Module

In our emulator system, the DSP module (SMT395) is the most important part of this

system. First, we list some important features of SMT395 module as follows [12].

1GHz TMS320C6416T fixed point DSP

8000MIPS peak performance

Xilinx Virtex II Pro FPGA. XC2V920-6 in FF896 package

256 Mbytes of SDRAM @ 133MHz using k4s511632M

Two Sundance High-speed Bus (S0MHz, 100MHz or 200MHz) ports 32 bits wide
Eight 2 Gbit/sec Rocket Serial Links (RSL) for Inter-Module communications

Six Comports up to 20 Mbytes/sec each for Inter-DSP communication/configuration

8 Mbytes Flash ROM for configuration and booting

JTAG diagnostics port

The TMS320C6416T DSP is the highest-performance fixed-point DSP generation in the
TMS320C64X series of the TMS320C6000 DSP family. It is based on the second-generation
high-performance, advanced VelociTl very-long-instruction-word (VLIW) architecture
(Called VelociTI.2) developed by Texas" Instruments [13]. The VelociTI.2 extensions in the
eight functional units include new instruction to accelerate the performance in key
applications and extend the parallelism of the VelociTI architecture. The functional block and
DSP core diagram of TMS320C64x series is shown in Figure 3-3.

In the following sections, three major parts of TMS320C64x DSP are introduced

respectively. They are central processing unit, memory, and peripherals.
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Figure 3-3 Block diagram of the TMS320C64x DSPs [13]

3.2.1 Central Processing Unit

The DSP core of C64x series consists of eight independent functional units, 64 general
purpose registers, program fetch unit, instruction dispatch (attached with advanced instruction
packing), instruction decode unit, two data path, test unit, emulation unit, interrupt logic, and
etc. The instruction dispatch and decode units could decode and arrange the eight instructions

to eight functional units respectively. The eight functional units in the C64x architecture could
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be further divided into two data paths, data path A and B as shown in Figure 3-3. Each path
has one unit for multiplication operations (.M), another one for logical and arithmetic
operations (.L), another one for branch, bit manipulation, and arithmetic operations (.S), and
another one for loading/storing, address calculation and arithmetic operations (.D). The (.S)
and (.L) units are for arithmetic, logical, and branch instructions. All data transfers make use
of the (.D) units. Two cross-paths (1x and 2x) allow functional units from one data path to
access a 32-bit operand from the register file on the other side. There are 32 general purpose
registers, but some of them are reserved for specific addressing or used for conditional
instructions. Each functional unit has its own 32-bit bus for writing into a general-purpose
register file. All functional units which end in 1 (for example, (.L1)) write to register file A

while all functional units which end in 2 ( for example, (.L2)) write to register file B.

3.2.2 Memory and Peripherals

The C64x uses a two-level eache-based architecture and has a powerful and diverse set
of peripherals. The level 1 progran cache (L11P) 1s a-128 Kbit direct mapped cache and the
level 1 data cache (L1D) is a 128:Kbit 2-way set-associative cache. The level 2 memory/cache
(L2) consists of an 8 Mbit memory ‘space.or-.combinations of cache (up to 256 Kbytes) and
mapped memory. Besides, the TMS320C6416T uses two external memory interfaces (EMIF)
to access asynchronous memories (SRAM and EPROM) and synchronous memories
(SDRAM, SBSRAM, ZBT SRAM, and FIFO).

The C64x contains some peripherals such as enhanced direct memory access (EDMA)
controller, host-port interface (HPI), external memory interface (EMIF), PCI, and etc. The
EDMA supports up to 64 EDMA channels which service peripheral devices and external
memory. For the C64x device, the association of an event to a channel is fixed, and each of
the EDMA channels has one specific event associated with it. These specific events are
captured in the EDMA event registers even if the events are disabled by the EDMA event
enable registers. The HPI is a parallel port through which a host processor can directly access
the CPU’s memory space. The host can direct access to memory-mapped peripherals and has
ease of access. The PCI module supports connection of the C6000 device to a PCI host via the

integrated PCI master/slave bus interface.
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3.3 Coding Development Environment

In this Section, we will give a briefly introduction about the coding development
environment in this project. The code composer studio (CCS) and the coding development
flow are illustrated. The tutorial [14] introduces the key features of CCS and the
programmer’s guide [15] gives a reference for programming TMS320C6000 digital signal
processor (DSP) devices. A programmer needs to be familiar with coding development flow

and CCS for building a new project on the DSP platform efficiently.

3.3.1 Code Composer Studio

Code Composer Studio (CCS) speeds and enhances the development process for
programmers who create and test real-time, embedded signal processing applications. The
CCS extends the basic code generation tools with. a set of debugging and real-time analysis
capabilities which is described as Figure-3-4. In addition, the CCS includes the following

components which are listed below and all of these work together as shown in FIG..

TMS320C6000 code generation.tools

Code Composer Studio Integrated Development Environment (IDE)
DSP/BIOS plug-ins and API

RTDX plug-in, host interface, and API

The code generation tools provide the foundation for the development environment
provided by the CCS such as C compiler, assembler, assembler optimizer, linker, archiver and
etc. The code composer studio integrated development environment is designed for editing,
building, and debugging DSP target programs. During the analysis phase of the software
development cycle, traditional debugging features are ineffective for diagnosing subtle
problems that arise from time-dependent interactions. Therefore the DSP/BIOS plug-ins
provides real-time analysis such as program tracing, performance monitoring, and file
streaming. In addition, the real-time data exchange (RTDX) provides real-time, continuous

visibility into the way DSP applications operate in the real world. It allows system developers
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to transfer data for bi-directional real-time communications between a host computer and the

DSP devices without stopping their target application.

Design Code & build Debug Analyze
Conceptual |__p.| Create project, |y, | Syntax checking, |, | Real-time debugging,
lannin ‘Write source code, Probe points, Statistics,
p & Configuration file Logging, etc. tracing

Figure 3-4 Development cycle
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Figure 3-5 Code composer studio development

3.3.2 Code Development Flow

Traditional development flows in the DSP industry have involved validating a C model
for correctness on a host PC or UNIX workstation and then painstakingly porting that C code
to hand coded DSP assembly language. But this is both time consuming and error prone, the

recommended code development flow involves utilizing the C6000 code generation tools to
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aid in optimization rather than forcing the programmer to code by hand in assembly. These
advantages allow the compiler to do all the laborious work of instruction selection,
parallelizing, pipelining, and register allocation. The phases of recommended code
development flow are described as Figure 3-6. In phase 3, writing linear assembly code is not
adopted unless the software pipelining efficiency is hardly achieved or the unbalanced

resource allocation is hardly solved by the compiler with C code.

¥
[ Write C Code | | Refine C Code | —  Assembly Code |
v v
| Compiler | | Conipiler | | Assembler |
v
| Profiler | | Profiler | | Profiler |
No @
Yes

Phase 1 Phase 2 Phase 3
Develop C Code Refine C Code Write linear assembly

Figure 3-6 Code develop flow

3.3.3 Simulation Tools

In the code develop flow mentioned in Figure 3-6 we know that profiling is an essential
step for analyzing coding efficiency. We use the C64xx CPU cycle accurate simulator to
simulate the core of the C64xx processor with cycle accuracy. This is faster than the device
cycle accurate simulators but does not simulate peripherals and cache system (use a flat
memory system). In addition, we use another simulator called C6416 device cycle accurate
simulator to simulate the C64xx XDS510 emulator. It simulates the C6416 processor and
supports L1D, L1P, L2 cache, EDMA, QDMA, Interrupt Selector, McBSP(3), Timer(3), TCP,
VCP and EMIF. It also supports interfacing with Async, SDRAM and Generic sync RAM
Memory models. Finally, we use C64xx XDS510 emulator with the hardware board to verify
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our project. The TMS3206416T which is connected via the XDS510 that emulator sets the I/O
ports on our DSP platform. In the following sections, the profiling results of all the simulators
are presented. But we like to remind that the C64xx XDS510 emulator cannot profile the CPU

cycles.

3.4 Optimization on TI DSP Platform

As Figure 3-6 indicates, the optimization tools increase execution performance. In the
following sections, several optimization technologies using VelociTl architecture and

software technologies are introduced and adopted in this project.

3.4.1 Architecture of TI TMSC6000 Family

The TMS320C6000 series use the VelociTl architecture which is a high-performance,
advanced very-long-instruction-word.( VLIW) architecture. The architecture contains multiple
execution units running in parallel, which“allow them to perform multiple instructions in a
single clock cycle. This makes an excellent choeice for multi-channel, multi-function, and
performance-driven applications. In addition, the C6000 pipeline can dispatch eight parallel
instructions every cycle and parallel instructions proceed simultaneously through the same
pipeline phases. It eliminates traditional architectural bottlenecks in program fetch, data
access, and multiple operations. More detail features about this architecture are introduced in
[16].

The TMS320C621x, TMS320C671x, and TMS320C64x DSPs of the TMS320C6000
DSP family have the two-level memory architecture for program and data. The first-level
program cache is designated L1P, and the first-level data cache is designated L1D. Both the
program and data memory share the second-level memory, designated L2. The L2 is
configurable allowing for various amounts of cache and SRAM. Figure 3-3 shows the block
diagram of the C64x DSP. The L1P and L1D provide a fast on-chip memory. Accesses by the
CPU to these first level caches can complete without CPU pipeline stalls. If the data requested
by the CPU is not contained in cache, it is fetched from the next lower memory level.

However, over the past years the performance of processors has improved at a much faster
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pace than that of memory. As a result, there is a performance gap between CPU and memory
speed. High-speed memory is available but consumes much more size and is more expensive
compared with slow memory.

Hierarchical memory architecture is commonly adopted in the embedded system as
Figure 3-7. A fast but small memory is placed close to the CPU that can be accessed without
stalls. The next lower memory levels are increasingly larger but also slower the further away
from the CPU. Addresses are mapped from a larger memory to a smaller but faster memory
higher in the hierarchy. Typically, the higher-level memories are cache memories that are
automatically managed by a cache controller. L2 memory is configurable and can be split into
L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory
locations. The L2 cache is a 4-way set associative cache whose capacity varies between 32
Kbytes and 256 Kbytes depending on its mode. It services cache misses from both L1P and
L1D as well as DMA accesses using the EDMA controller. On a C6416T DSP for instance,
the sizes of L1D and L1P are 16 Kbytes.tespectively. The size of L2 is 1 Mbytes and external
memory can be several Mbytes large. Although the L2 memory can operate as SRAM, as
cache, or as both, the L2 SRAM-and L2 cache.act with little difference. For example, a single
L1D read miss takes 6 cycles when serviced from 2 SRAM, and 8 cycles when serviced
from L2 cache. The detailed specifications are described in [17].

In practical implementation, image ‘program usually takes lots of memory space for
instant processing. Although there is a L2 memory configured as a SRAM after a reset, it is
not enough for all the program instructions and the data. The L1 cache controller fetches most
data from external memory with lots of CPU stall. In order to exploit all of the L2 SRAM,
programmers must specify the relative data in the linker command file and modify the data
structure. This expands time and affects program structure. Because the L1 cache is not large
enough, L2 cache is a convenient way to decrease CPU stalls.

There are two ways to configure L2 cache on DSP platform. If the DSP/BIOS is used, L2
cache is enabled automatically. Otherwise, L2 cache can be enabled in the program code by
issuing the appropriate chip support library (CSL) commands. Additionally, in the linker
command file the memory to be used as L2 SRAM has to be specified. Since L2 cache cannot
be used for code or data placement by the linker, all sections must be linked into L2 SRAM or
external memory. Further, external memory addresses are optional for cacheable or

non-cacheable in the setting of program codes. The real effect on DSP platform is going to be
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presented in following chapters.
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Figure 3-7 TMS320E&64x:hierarchical memory

3.4.2 Compiler-Level Optimization

The compiler, which includes the parser and optimizer, accepts C/C++ source code and
produces C6x assembly language source code. The Figure 3-8 gives a description of the
C/C++ compiler. The optimizer can reduce code size and improve executing time by using

compiler options. There are four optimization levels which are register (-00), local (-ol),

function (-02), and file (-03).
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Figure 3-8 C/C++ compiler

The register level (-00) performs;optimizations with control-flow-graph simplification,
allocating variables to registers, loop rotation, eliminating unused code, simplifying
expressions and statements, and expanding calls to functions declared inline. Next, the local
level (-ol) performs all —00 optimizations, plus local copy/constant propagation, removing
unused assignments, and eliminating local common expressions. The function level (-02)
performs all —ol optimizations, plus software pipelining, loop optimizations, eliminating
global common sub-expressions and unused assignments, converting array references in loops
to incremented pointer form, and loop unrolling. Finally, the highest level, file level (-03),
performs all —02 optimizations, plus removing all functions never called, simplifying
functions with return values never used, inline calls, reordering function declarations,
propagates arguments into function bodies, and identifying file-level variable characteristics.
In general, using the —02 or —03 level is necessary for performance and code size. The option
is also used with the assembly optimizer. Some key optimizations such as software pipelining

and loop unrolling are specified with these options.
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3.4.3 Program-Level Optimization

Except the optimizations as mentioned in previous sections, there are several methods to
speed up the program. First, the linker command file allocates the data sections in different
memory. The data which are accessed frequently should be allocated in the higher and fast
memory level such as SRAM or cache. Programmer need to analyze the frequency of data
accessing for better performance. Although the L2 cache provides an easy way to access
external memory, exploiting the SRAM sometimes gets better performance than using the L2
cache. Besides, the missing cycles are

Second, the C6000 C/C++ compiler supports such pragmas like CODE SECTION,
DATA SECTION, MUST ITERATE, UNROLL and etc. We know that branch prediction
takes lots of cycles when it failed. Through the pragma, such as MUST ITERATE, the
information is provided to aid the compiler in choosing the best loops and loop
transformations which means software pipelining and nested loop transformations. There are
three methods to unroll the loop. First;,you can use the compiler to unroll the loop
automatically. Second, you can=suggest that the compiler unroll the loop using these DSP
pragmas. The last one is that you can lunroll 'the code yourself. Sometimes it also helps the
compiler reduce code size and sometimes unrolling by the compiler generates some redundant
loops. The detailed specifications are described in [18]. Some of these pragmas are adopted in
this project, and the test results are shown in following sections.

Third, the C64x DSPs are fixed-point processors, so they do not directly support
floating-point data types. C64x DSPs can simulate floating-point operations, but it takes lots
of extra clock. Decreasing floating-point operations is another way to speed up the system.
Table 3-1 shows the different data types supported in CCS and take note of the data type
“Long” is 40 bits width. Besides, use the short date type for fixed-point multiplication inputs
whenever possible because this data type provides the most efficient use of the 16-bit
multiplier in the C6000. It is about one cycle for “short x short” versus five cycles for “int x
int”. But use int or unsigned int data types for loop counters, rather than short or unsigned

short data type, to avoid unnecessary sign-extension instructions.
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Data Type char short int float long long long | double

Size (bits) 8 16 32 32 40 64 64

Table 3-1 Different data types

The loop unrolling is an efficient method to improve compiler performance. The
compiler tries to reschedule the assembly with a full pipeline. Mostly, more instructions
without dependence make better parallelism and decrease stalls. Compiler level optimizations
and pragmas facilitate loop unrolling. The TMS320C6416T wuses the
Very-Long-Instruction-Word (VLIW) structure called VelociTI.2. It works efficiently with the
loop unrolling to make optimal scheduling. Besides, unrolling loop by programmer is
efficacious too. Sometimes compiler level optimizations are restricted to some compiler rules
so that loop unrolling by hand is a manual work. In order to make VLIW structure efficiently,
we use loop unrolling to fill up the function unit slots. The code size expanded with number
of unrolling loops is the major shettcoming.s However, the C6000 software pipelining
mentioned before is a technique to reorganize loops:It interleaves instructions from different
iterations without unrolling the loop. Both of two techniques can be applied simultaneously
on the platform for H/'W and S/W.optimization;-and the overhead of a loop and the time issues
have eased.

Finally, there are some special functions, called intrinsics, provided by the C6000
compiler. These functions map directly to inlined C64x instructions to optimize the C/C++
code quickly. All instructions that are not easily expressed in C/C++ code are supported as
intrinsics. The trick is that intrinsics use a single load or store instruction to access multiple
data (SIMD). For example, it can combine four 8-bit data (char) or two 16-bit data (short) to a
32-bit data type, and then it executes one operation instead of four (char) or two (short)
operations. If the SIMD method is employed, the code efficiency is improved substantially.
Figure 3-9 shows an example of using SIMD method. Other intrinsics enhance the efficiency

in the similar way and are described in [19].
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Single Instruction Multiple Data
| Al(short) || A2 (short) |
+

| Bl(short) || B2(short) |

| A1+B1(short) | | A2+B2(short) |

Figure 3-9 SIMD example for using word access for adding short data
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Chapter4
Analysis of Emhedded Block Coding
and Speed-improving Methods

In this chapter, we introduce the JPEG2000 software environment and its configuration.
JPEG2000 configurations could have an impact on the performance. Some features improve
the coding performance but spend lots of memory or complexity. Then we analyze the
JPEG2000 encoder and identify the most complex elements in JPEG2000 algorithm. The goal
of this chapter is to find algorithms to reduce the JPEG2000 implementation complexity on

the DSP platform. Several speed-up methods:are presented and compared each other.

4.1 Parameters and Software Environment

4.1.1 Jasper and OpenJPEG Reference Software

In the JPEG2000 standard part 5 [6], it provides two standard reference softwares :
JasPer and JJ2000. The JJ2000 is a Java implementation of ISO/IEC 15444-1 (i.e. JPEG2000
image coding standard partl) and the JasPer software is written in the C programming
language for the codec specified in ISO/IEC 15444-1. The JasPer is an open-source initiative
to provide a free software-based reference implementation of the JPEG2000 codec. All the
related documents and software of JasPer could be downloaded from [20]. Now, the latest
version 1.701 of the JasPer software is available. We have tested the JasPer reference software
and the results are shown as Table 4-1. The main configurations are using 64 by 64
code-block size, 5 decomposition levels, and 1 tile. We use the 512 by 512 gray images,

Goldhill, Barb, Lena, and Baboon, which are shown in Figure 4-1.
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5-3 filter 9-7 filter

BPP Goldhill | Barb | Lena | Baboon | Goldhill Barb Lena Baboon
0.04 25.1 21.9 25.8 20.0 25.3 22.3 26.2 20.1
0.05 25.7 22.4 26.7 20.2 25.9 22.8 27.0 20.3
0.0625 26.2 22.7 27.4 20.4 26.4 23.1 27.9 20.6
0.125 28.1 24.6 30.2 21.3 28.4 25.2 30.9 21.6
0.25 30.1 27.3 33.2 22.8 30.5 28.3 34.1 23.2
0.5 32.7 30.9 36.3 25.1 33.2 32.1 37.3 25.5
1 35.9 35.8 39.3 28.6 36.5 37.2 40.4 29.1
2 40.7 41.3 43.4 34.1 41.9 43.1 44.6 34.8
3 44.8 45.2 47.5 39.0 46.6 46.8 47.1 40.0
4 49.2 49.5 53.7 439 46.9 47.0 47.1 45.4
5 66.5 66.5 66.7 48.2 46.9 47.0 47.1 46.6
6 66.5 66.5 66.7 58.3 46.9 47.0 47.1 46.6
7 66.5 66.5 66.7 66.9 46.9 47.0 47.1 46.6
8 66.5 66.5 66.7 66.9 46.9 47.0 47.1 46.6

Table 4-1 PSNR (dB) of different images using JasPer Ver.1.701 encoder
5-3 filter 9-7 filter

BPP Goldhill | Barb Lena* |-'Baboon | /Goldhill Barb Lena Baboon
0.04 25.3 22.1 261 20.1 254 22.3 26.5 20.2
0.05 25.8 22.5 26.9 203 26.0 22.8 27.2 20.4
0.0625 26.3 22.9 27.5 20.5 26.5 234 28.0 20.7
0.125 28.1 24.6 30.2 21.3 28.5 25.4 31.0 21.7
0.25 30.1 27.3 33.1 22.8 30.5 28.4 342 23.2
0.5 32.7 30.9 36.3 25.1 33.2 32.3 37.3 25.6
1 35.9 35.8 394 28.6 36.6 37.2 40.4 29.1
2 40.9 41.4 43.7 34.2 41.9 432 44.9 34.8
3 49.5 49.8 54.0 44.0 49.5 49.3 49.0 45.6
4 49.5 49.8 54.0 44.0 49.5 49.3 49.0 45.6
5 Infinite | Infinite | 92.3 Infinite 49.5 493 49.0 50.5
6 Infinite | Infinite | 92.3 Infinite 49.5 493 49.0 50.5
7 Infinite | Infinite | 92.3 Infinite 49.5 493 49.0 50.5
8 Infinite | Infinite | 92.3 Infinite 49.5 49.3 49.0 50.5

Table 4-2 PSNR (dB) of different images using OpenJPEG Ver.1.0 encoder
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Goldhill Barb

Lena Baboon

Figure 4-1 Gray level test images

Because the C language is now mostly convenient implementation language on many
platforms, we use the C version of JPEG2000. We have surveyed the other implementations in
C language. Our preferred package is OpenJPEG which is an open-source JPEG2000 codec
written in C language. It is developed by the Communications and Remote Sensing Lab
(TELE), in the University Catholique de Louvain (UCL). The reference software is
downloaded from [21] and tested in the same conditions as JasPer software. The test results

are presented in Table 4-2.
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Compare JasPer with OpenJPEG, and we see that the performance of the OpenJPEG is
slightly better than JasPer’s. When the decomposition tool uses 5-3 filter, the OpenJPEG
software achieves the lossless image encoding. However, the JasPer can not reach this target
in the same conditions. On the TI CCS, OpenJPEG works well, but JasPer fails in the release
mode with compiler optimization file level (-03). As a result, we choose OpenJPEG to

implement and accelerate on our DSP platform.

4.1.2 Parameter Configuration

In this section, we analyze the coding effect of various coding parameters, including the
filter type, decomposition level and tile size. The coding performance on the Rate-Distortion
(R-D) curves is measured by the Peak Signal-to-Noise Ratio (PSNR) in dB. The default
parameter settings are 1 tile, 5 decomposition levels and 64 by 64 code-block size. First,
Figure 4-2 shows the performance of two recominended filter, the 5-3 filter and the 9-7 filter.
It shows that the 9-7 filter outperforms the 5-3 filter.-This is because the 9-7 filter provides a
better capability on energy compaction. Because the 9-7 filter is a floating point transform,
the PSNR increase of the 9-7 filter terminates at about 50dB as shown in Table 4-2. In
JPEG2000, multilevel discrete wavelet transform decomposition is used to provide better
coding efficiency as well as the resolution scalability. The number of decomposition levels
affects the coding efficiency. Figure 4-3 shows the results using different decomposition
levels and the test image is “Goldhill”. Typically, two-level decomposition is sufficient for
most natural images but we use three levels as the default setting in the later chapters. We use
a larger image, bike, whose resolution is 2048 by 2056 as shown in Figure 4-4, to test
different tile sizes. The results show that a larger tile size makes better coding efficiency. In
our default setting, we choose one tile for all the test images in the following tests. Also, we
use the 64 by 64 code-block. Unlike the previous coding parameters, the impact of the
code-block size is usually not noticeable. It varies with different images and other parameters.
In general, the coding performance of the 64 by 64 code-block is better than that of the 32 by
32 code-block.
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Figure 4-5 Impact of tile size on coding performance
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4.2 JPEG2000 Encoder Complexity Analysis

We profile the JPEG2000 encoder to find which part takes the most computation time.
As mentioned in section 3.3.3 we have two methods in taking the profiles. One is using
Co64xx simulator and the other is using C6416 simulator. We will concentrate on the most
critical area and try to accelerate these modules. The profiling results using the two methods
are shown in Figure 4-6 and Figure 4-7. The test image is 512x512 “Goldhill”. The settings
are lossless, 1 tile, 64 by 64 code-block, and without any optimization. The profiling results
show that Tierl is the most critical module in the encoder. The profiling result of C64xx
means the accurate cycles of the C64xx core processor with flat memory system and the other
means the actual cycles of the C64xx XDS510 emulator. The cycles are shown in Table 4-3.
The total cycles of the C6416 simulator are approximately nine times of that of the C64xx
simulator. It means that the JPEG2000 encoder takes about 8 seconds for encoding the
“Goldhill” on the 1GHz DSP. Indeed, we run. the encoder on the hardware platform, and it
takes about 9 seconds, too. We first like to,find. the bottleneck on the C6416 emulator which

includes the memory access time:

Simulator Co4xx Co416 Ratio
DWT cycles 73,327,701 552,674,115 13 %
Tierl cycles 846,100,912 7,509,481,733 11%
Tier2 cycles 1,550,147 15,933,932 9%

Others (cycle) 9,475,720 103,399,183 9%
Total cycles 930,454,480 8,181,488,963 11%

Table 4-3 Cycles on different simulators
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Figure 4-7 Complexity profiling of the JPEG2000 encoder on the C6416 simulator
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4.3 Major Encumbrances

In last section, we identify two major bottlenecks in running JPEG2000 on a DSP system.
One is that the actual cycles on the DSP platform are more than the CPU cycles. The other is
that the Tierl is the most complexity module in the JPEG2000 encoder. We will look into the

problems and try to improve the JPEG2000 encoder on the DSP platform.

4.3.1 Memory System

The C64xx CPU cycle accurate simulator uses the flat memory system. It ignores the
locality of the instructions and data. But on the real DSP platform nine times of cycles are
required. Table 4-4 shows the cycle distributions generated by the C6416 simulator. The core
processing cycles are only 12 % of the total cycles. The stall cycles are the most critical part
in the total cycles. In the memory hietarchy of our DSP platform, the L1D is too small so that
the data miss frequently occurs. The large main memeory has a long access time although it is
cheap in cost. We know that the speed gap between CPU and memory speed is large. The
numerous stall cycles means thatthe system wastes a‘lot time in transferring data. If the most
data are in the cache, the stall cycles will.decrease.

Our DSP platform has 16 Kbytes L1D cache and 16 Kbytes L1P cache. In the section
allocation map, the small sections such as text (instructions), stack, and const occupy about
one fifth of the SRAM. Usually, the heap size is inevitable large in an image encoder and the
heap data must locate in the external memory. We can modify the data structure in the
OpenJPEG software and try to improve the SRAM utilization rate. In order to test this method,
we modify some dynamic data that are used frequently, such as code-block and flags variables,
and set them to the static variables located in the SRAM. As shown in Table 4-4, the stall
cycles decrease to 66 % of original one and the data cache hit rate arises from 77% to 84%.
This method is a common method to improve performance but it is not a convenient way. The
architecture of TI TMSC6000 family mentioned in section 3.4.1 provides two-levels of cache
memory. If we also use the L2 cache, it brings in a great improvement as shown in Table 4-4.
The data cache hit rate has turned up to 99% so that the stall cycles decrease to 3 % of

original one. The percentage of the core cycles also arises to 82 %. Because the four fifths of
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the SRAM are available, we set the L2 cache size to its maximum located in the SRAM. The

larger cache reduces the memory read misses, but it uses a large area (higher cost) and longer

hit time. In this project, the two-level cache configuration leads the most benefit than

one-level cache.

Now again, we profile the JPEG2000 encoder with the L2 cache system. Also, we adopt

the optimization methods described in section 3.4.2 . Remember that the C64xx simulator

uses the flat memory system. The results are shown in Figure 4-8 and Figure 4-9. The most

parts are 69% and 97% of total cycles respectively. In flat memory system, the cycles of DWT

module are only 6% of the reality system. It means that the DWT module takes much time in

fetching data for wavelet transform. However, we still focus on the Tier-1 which is the most

cycles of the entire system. We will discuss the code-block coding in next section.

C6416 simulator Original Common L2 cache
Event Cycles Petcentage Cyeles Percentage Cycles Percentage
Total Cycles 8,392,238,361 N/A 5.915,074:610 N/A 1,186,156,486 N/A
Core cycles(excl. stalls) | 967,163,032 12 964,032,493 16 967,163,800 82
NOP cycles 397,863,892 41 410,634,804 42 397,864,176 41
Stall Cycles 7,425,076,475 88 4,951,043.649 84 218,992,734 18
Cross Path Stalls 3,333,928 4395347 0 3,333,928 0
L1P Stall Cycles 29,706,277 27,351,604 0 26,902,533 2
L1D Stall Cycles 7,392,048,013 88 4,919,312,165 33 188,644,902 16
Instruction cache hits 212,197,536 95 211,727,096 04 213,184,547 95
Instruction cache misses 12,255,209 5 12,605,583 6 11,268,436 5
Data cache references 314,088,122 N/A 304,776,872 N/A 314,088,293 N/A
Data cache reads 209,003,568 67 199,697,704 66 209,003,658 67
Data cache writes 105,084,554 33 105,079,175 34 105,084,630 33
Data cache hits 243,394,864 77 256,297,355 84 310,833,373 99
Data cache read hits 156,975,567 75 163,526,475 82 207,879,556 99
Data cache write hits 86,419,297 82 92,770,880 88 102,953,817 98
Data cache misses 70,693,258 23 48,479,517 16 3,254,920 1
Data cache read misses 52,028,000 25 36,171,222 18 1,124,106 1
Data cache write misses 18,605,258 18 12,308,295 12 2,130,814 2

Table 4-4 The effect of using L2 cache memory
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Figure 4-8 Profile using file level optimization (-03) on C64xx simulator

Figure 4-9 Profile using L2 cache and file level optimization (-03) on C6416 simulator
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4.3.2 Analysis of Bit-Plane Coding

In this section, we will discuss another obstruction, which is the most critical module in
the JPEG2000 encoding flow. The tier-1 module is the most complex part in the encoder. In
our DSP platform, it takes 97% of total cycles in the JPEG2000 algorithm. As discussed in
section 2.4.1 , the bit-plane coding is about the main part in Tier]l module. In the bit-plane
coding, an n by n dimension image takes about nxnx(3xbn—2) clocks to complete. The
“bn” means the number of bit-planes. The procedure of the bit-plane coding is shown in
Figure 4-10. There are many branch conditions in the flowchart and the MQ arithmetic
encoder also takes a number of cycles in the bit-plane coding. However, the MQ coder is
already a mature technique. Therefore, we focus on the Pass operations.

At the beginning, all the samples are in an insignificant state. The Pass3 process must be
performed at the first most significant bit-plane. The decision of the Pass3 process loops until
all samples are checked by the Pass3 process: Because similar states of samples often cluster
in the bit-plane, the Pass3 process encodes.nearly: all samples continuously in the higher
bit-planes. That is, most samples are insignificant and the samples of their neighborhood are
also insignificant. The Run-Length coding provides an efficient way to encode these samples
and produces a better compression‘ratio.

Starting from the next bit-plane, the Pass1 process scans the states of all samples and
then the Pass2 process scans the states of all samples again after Passl. Finally, the Pass3
process ends this bit-plane. After one bit-plane process is done, the entire procedure repeats
for the next bit-plane. A bit-plane process usually includes three Pass processes as described
above except for the most significant bit-plane. In this way, the coding procedure continues

until all bit-planes are done. In pseudo code form, the passes are described as below [22]:

Algorithm 1 Significance pass algorithm

1: for each sample in code-block do

2: if sample previously insignificant and predicted to become significant during current
bit plane then

3: code significance of sample /* 1 binary symbol */

4: if sample significant then
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code sign of sample /* 1 binary symbol */
endif
endif

endfor

Algorithm 2 Refinement pass algorithm

—

for each sample in code-block do
if sample found significant in previous bit-plane then
code next most significant bit in sample /* 1 binary symbol */
endif

endfor

Algorithm 3 Cleanup pass algorithin

1: for each vertical scan in code-block do

2: if four samples in vertical'scan and-all previously insignificant and unvisited and non
have significant 8-connected neighbor then

3: code number of leading insignificant samples via aggregation

4: skip over any samples indicated as insignificant by aggregation

3: endif

6: while more samples to process in vertical scan do

7: if sample previously to process in vertical scan then

&: code significance of sample if not already implied by run /* 1 binary symbol */

9: if sample significant then

10: code sign of sample /* 1 binary symbol */

11: endif

12: endif

13:  endwhile

14: endfor
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0.21%

1.61%
7.25%
22.64%
49.01%
74.62%

Pass2
0.00%
0.12%
1.61%
6.18%
14.26%
26.21%
46.07%
71.25%

Pass2
0.00%
0.01%
0.32%
1.57%
4.77%
12.81%
34.43%

64.96%

Pass3
100.00%
99.99%
98.59%
89.76%
64.91%
21.70%
3.02%
0.06%

Pass3
100.00%
98.77%
92.57%
80.20%
62.90%
37.85%
5.69%
0.02%

Pass3
100.00%
99.87%
97.86%
92.52%
81.12%
50.41%
5.39%
0.24%
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100000
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Figure 4-11 Analysis of Pass Contribution

We collect the statistics of these Pass processes and show them in Figure 4-11. We count
the samples that are encoded in each pass. From'the most significant bit to the least significant
bit, the results are shown by curves. As Figure 4-11 shows that each coding Pass has to scan
n’ samples in a bit-plane, but notall scans are necessary. For example, in “Goldhill 512x512”,
the percentage of the samples coding by Passlis extremely low from bit-plane 7 to bit-plane
5. They are typically lower than 10 % of the total samples for most images. Then, the
maximum number of samples encoded by Passl are about half of total samples. The result
indicates that most of the checking processes are wasted. The Pass2 process handles the
samples that are significant determined by the Passl process or the Pass3 process. From the
most significant bit to the least significant bit, the samples, which should be encoded in the
Pass2 process, usually increase starting from a tiny number. This process wastes a lot of time
in checking samples too. The Pass3 process handles the samples most at the higher bit-planes.
Then, the samples that should be encoded in the Pass3 process decrease gradually. The
statistics tell us that the Pass3 process often does not encode any samples in the least
significant bit-plane or lower bit-planes. This means that the Pass3 process could be skipped
and the n® cycles of checking samples in the Pass3 process are saved. Based on these

observations, we describe several speed-improving methods in next section.
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4.4 A Few Known Speed-Improving Methods

In this section, we will describe several speed-improving methods such as the CUPS
(Clean Up Pass Skipping) and the PP (Pass Predicting) methods [23] [24], the SS (Sample
Skipping) and the GOCS (Group Of Column Skipping) methods [25], and the PPP (Pipelined
Processing of Pass) method [26] [27]. In our study, we propose a new method, which is easier

to implement, and will describe it in the next chapter.

4.4.1 CUPS and PP Methods

In a bit-plane coding process, the order is Passl, Pass2, and Pass3. The data in Figure
4-11 shows that sometimes the Pass3 process is unnecessary. The Clean Up Pass skipping
(CUPS) method is adopted to terminate the Pass3 process in a bit-plane coding process. This
method reduces 7 x nx(PassZero),«cycles of ‘¢hecking state. The “PassZero” means the
number of Pass3 that can be skipped in the bit-plane process. This is similar to the method
called “early termination” for accelerating-motion estimation in video coding. In using the
CUPS method, we count the numbers.of coded samples in the Pass1 and the Pass2 processes
in the current bit-plane. If all samples are.coded in the Passl and the Pass2 processes, we can
enable the CUPS mode to skip the following Pass3 process. The flowchart is described in
Figure 4-12. We use one flag and one accumulator to perform the CUPS method. In
simulations, we count the numbers of Pass3 calls in all bit-planes shown in Table 4-5. When
the CUPS method is adopted, the calls decrease as shown in Table 4-5. We use the C64xx
simulator to simulate the CUPS method as shown in Table 4-6. Due to additional overhead,

the DSP implementation does not save as much as those in Table 4-5.

Image Original Calls CUPS Calls CUPS/Original Calls
Goldhill 421 360 85 %

Barb 430 379 88 %

Lena 411 378 91 %
Baboon 476 350 73 %

Table 4-5 Calls of Pass3 process function
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Image Function Original Cycles CUPS Cycles CUPS/Original
Goldhill | t1 enc clnpass 132,353,060 117,463,739 89 %
Barb | tl enc clnpass 133,847,824 121,988,745 91 %
Lena |tl enc clnpass 129,077,570 121,369,189 94 %
Baboon | t1 enc clnpass 147,598,193 116,370,411 79 %
Table 4-6 Comparison with the CUPS method
e
Pass1 Process
Pass2 Process
Y
y
CUPS Counter
A y
. If CUPS
Enter Bl,t'plane Counter = Pass1 Process
Coding Bit-Plane size
N y
Pass3 Process G g‘gg%ﬂag Pass2 Process
N Y

Y

Next bit-plane?

Figure 4-12 Flowchart of the CUPS method
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The PP method is based on the significant sample inheritance. When the state of a
sample that has just been checked in the Passl process becomes significant at a certain
bit-plane, it affects its eight neighbors in all directions in the next lower bit-plane as shown in
Figure 4-13. Thus, in the significance propagation pass, the samples which should be encoded
by the Passl process can be predicted in the last bit-plane. Using a prediction table that
records the address of these samples can reduce the clock cycles for checking states. This PP
method using prediction table enables the Pass1 process to process the Pass1 samples directly

without checking their states first.

P3/P3 /P3/P3/P3/P3/ Bitplane N
P3/P3/P3/P3/P3/P3

P3 /P3 /P3 /P3/P3/P3

P3 /P3 /SG/P3/P3/P3

P3 /P3 /P3i P3/ P3/ P3

WA
TRV

P3/P3!/P3/P3/P3/P3
P3 /P1JPLP1/ P3 /P3
P3 /PI Pl P3/P3

P3 /P1/PL/P1/P3/P3

P3/P3/P3/P3/P3/P3

Figure 4-13 Significant sample inheritance

Although the significant samples can predict Pass1 samples on the next bit-plane, they
can not predict some samples that become significant when the coding process is applied to
the next bit-plane as shown in Figure 4-14. In the strip scanning step for the Pass1 process, if
a sample (P1) is checked and becomes significant state (sP1), then, its neighbors (nP1)
become the members of the Passl process in the current bit-plane. We notice that these
neighbors we mention in the above are not scanned yet and they must be coded in the current
Passl process. In other word, these samples are unpredictable in last bit-plane and can not be

found on the prediction table. For this reason, there are a few strategies to include these
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missing samples. We will give an introduction as follows.

/ Significance Propagation \
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Figure 4-14 Signifieance Propagation

There are two methods to fix the prediction table. One is the continuous-five mode and
the other is the boundary extension mode. The continuous-five mode is adopted for finding
those samples that are unpredictable. Four conditions are identified in the scanning order as
shown in Figure 4-15. All the addresses of the unpredictable samples are recorded in another
table called CM (continuous-five mode) table. If the sP1 is located in the lower boundary of a
stripe as show in Figure 4-16, the boundary extension mode must also be enabled. Three
addresses, (current address +4xcode-block width—7), (current address +4xcode-block width
—3), and (current address+4xcode-block width+1) are recorded in another table for the
boundary extension mode. According to these two strategies, a few more samples are checked
in the Pass1 process as shown in Figure 4-17. The samples (C) from continuous-five mode are
recorded in the CM table and the boundary extension samples (B) are recorded in the BM
table.

The pseudo code described in [23] is insufficient. A comparator is needed to compare the

55



contents or the same index on three tables. The smallest one is chosen, and its address is
fetched from the corresponding table. The Pass1 process must wait for the comparator to fetch
the correct sample, which has a priority higher than the others and this method is not efficient

in sequential processing software. It is easier to implement it using the hardware architecture.

SG| 4 3 2 1|5
1|5 SG| 4 3 2
2 1|5 SG| 4 3
3 2 1|5 SG| 4

Figure 4-15 Four conditions in continuous-five mode

SG Stripe i

1 2 3 Stripe i+1

Figure 4-16 Boundary extension

Bit-Plane Coding P1 Prediction Table
Address 0
0 4 8 12 | Cis | Cyo 5 6 7 9 %
1 Pls | Ply | P15 | Cyy Index 0 1 2 3 n ntl nt2 nt3
2 | Plg| 10 |Ply| Cyg CM Table
3 | p1, | P1, sP1 Cio Address e~
5
y | 16 | 17 | 18 | 19 %
32 36 B40 B44 B4g
Index 1 2 3 n n+tl n+2 nt3
\\ BM Table
\ 40 | 44 | 48 ———
\; Address 32 Index O 1 2 3 n ntl nt2 nt3

Figure 4-17 Prediction table for Pass1
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4.4.2 SS and GOCS Methods

In [25], two methods are devised to reduce the computing time of bit-plane coding. Each
sample is checked for three times, one for each pass, but it is only coded once in one of the
three passes. Coding a 64 by 64 code-block with N magnitude bit-plane costs at least 64x64x
Nx3 cycles. Many bubbles (empty operations) are generated if the bit-plane coder scans and
checks every sample in this manner. A column-based operation is proposed to remove bubble
and reuse data instead of sample-based operation, which is the original method used in the
JPEG2000 reference software.

The first method is called “Sample Skipping (SS)” method that is illustrated by Figure
4-18. The marked NBC sample is the “need-to-be-coded” sample. It means that the samples
must be coded in the current Pass process. The Sample Skipping (SS) skips no—operation
samples in a column. In a column checking, 0-4 NBC samples are necessary to be encoded.
The serial checking architecture spends: four, cycles to check no matter how many NBC
samples are included. The SS method is essentially:a parallel checking architecture. If there
are N NBC samples, N cycles are.spent on the checking process and thus the other cycles
(4-N) are saved. If there are no NBC samples in a certain column, only one cycle is spent for
the checking process. The coding flowchart is shown in Figure 4-19. The analysis and result
in the [25] are useful but the method is' more adequate for a hardware architecture design.
Checking 4 samples in parallel is the most critical concept in this method. Our DSP platform
is a sequential software-based architecture, and thus checking 4 samples in parallel is not well
supported. However the TI DSP VLIW architecture helps quite a lot to implement the SS
method in our DSP platform.

Sample skipping

Conventional Sample
way Skipping
4 clocks 2 clocks
- NBC sample No-operation
sample

Figure 4-18 Concept of SS method
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Figuré 4-19 Flowchart of SS method

Group,of column skippiﬂg

GOC1 GOC2 - GOC3 GOC4

Figure 4-20 Example of the GOCS method

The second method is called the “Group-Of-Column Skipping (GOCS)” method. The

concept is to skip a group of no-operation columns in one checking cycle. An example is
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shown in Figure 4-20, where the four columns are grouped into one group-of-column (GOC).
Only 4 bits flags are used to record these 4 GOC consisting of for 16 columns. The GOC2
contains no NBC samples and a ‘1’ bit is recorded in the GOCS table. A ‘0’ bit means that
there are some NBC samples in the GOC. The number of NBC samples in each group should
be checked and recorded before the Pass1 process and all samples should be classified to each
Pass processes as shown in Figure 4-21. Then, Pass1, Pass2 and Pass3 processes are executed,
and the flags in GOCS tables are checked. If the flag is ‘1’ for current coding GOC, all
columns of this group can be skipped. When the ‘0’ flag is found, the process should check all
4 columns one by one. Because the SS method usually is combined with the GOCS method
together, all samples in a column will be checked at the same time. When these two methods
are applied, both the processing cycles and the number of memory access can be reduced.

In [25], a run-time analysis with different number of columns as a group is presented as
shown in Figure 4-22. It is a C program simulation with the SS and GOCS techniques. The
result shows that eight columns as a_groeup, has the best run-time performance in all test
patterns. The best one which adoptsithe two methods in simulation is better than the worst one
by about 2 %. Here, we also simulate the different number of columns as a group by the

C64xx simulator and the result is‘presented below.

Is significant?

as significan
neighbor?

Belong to Passl1 Belong to Pass3 Belong to Pass2

Figure 4-21 Flowchart of sample checking
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Figure 4-22 Analysis with different number of columns as a group [25]

First, we try the SS method. Thé data dependence causes problems and decreases the
parallelism of executing instructiohs in the VEIW architecture. The SS method can finally be
applied by reducing the data dependence and parallel programming style. Although all the
instructions are scheduled by the compiler, we still have a great improvement by unrolling the
four contiguous samples. We list the result in Table 4-7. The Passl, Pass2, and Pass3
processes are the major parts in the “Tierl” operation. The improvement is about 30 % on the
average for all test patterns. Moreover, the GOCS method with different GOC sizes is
examined as shown in Table 4-8. The GOCS (4) method which means four columns as a
group is adopted. We can see that cycles of the Pass2 and Pass3 processes in GOCS (4) are
lower than the cycles of the SS method. However, the cycles of Passl process increase in
order to apply the GOCS method. The total cycles in both GOCS (4) and SS methods are less
than the cycles of SS method only. Based on the results in Figure 4-22, the cycle ratio
increases as the group size increasing except for the case of four columns as a group. But the
results on C64xx simulator are somewhat different. The cycle ratio goes up as the group size

increases on the C64xx simulator. Anyhow, we have tested the other images, and the cost is
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not worth for increasing the group size.

Image

Method

Passl

Pass2

Pass3

Tierl

Goldhill

Original

161,696,792

123,912,376

132,353,060

435,017,649

SS

118,713,423

83,794,964

93,997,011

313,560,819

SS/Ori. (%)

73 %

68 %

71 %

72 %

Barb

Original

158,478,206

129,282,989

133,847,824

438,746,356

SS

113,817,756

88,715,847

95,188,336

314,859,276

SS/Ori. (%)

72 %

69 %

71 %

72 %

Lena

Original

153,954,906

108,237,140

129,077,570

408,233,549

SS

111,328,681

67,345,255

94,722,832

290,360,701

SS/Ori. (%)

72 %

62 %

73 %

71 %

Baboon

Original

179,696,714

171,827,724

147,598,193

516,672,503

SS

129,959,350

129,811,716

98,991,484

376,312,422

SS/Ori. (%)

72 %

76 %

67 %

73 %

Table 4-7 SS method on C64xx simulator

Goldhill

Original

SS+GOCS

4

SS+GOCS

(&), | SS+GOCS

(16) | SS+GOCS (32)

SS+GOCS (64)

Passl

161,696,792

127,248,882

19%

126,376,830

78%1125,905,854

T8%(125,327,618|78%

125,218,498

T1%

Pass?2

123,912,376

82,816,908

61%

83,753|114

68%}. 84,888,984

69%| 85,792,608|69%

86,954,904

70%

Pass3

132,353,060

83,602,304

63%

85,040,094

04%| 86,672,842

65%| 88,738,925|67%

90,905,379

69%

Tierl

435,017,649

310,822,507

1%

312,244:472

12%]314,547,950

72%|316,931,613|73%

320,147,339

T4%

Barb

Original

SS+GOCS

4

SS+GOCS

(&) |88+GOCS

(16) | SS+GOCS (32)

SS+GOCS (64)

Pass1

161,696,792

85,158,426

64%

87,028,182

05%| 89,785,474

67%| 93,278,418|70%

96,634,127

2%

Pass?2

123,912,376

87,196,372

67%

88,314,371

68%| 89,902,444

70%| 91,504,222|71%

93,147,358

2%

Pass3

132,353,060

122,165,800

T1%

121,296,140

71%|120,814,604

76%|120,562,892| 76%

120,445,628

76%

Tierl

435,017,649

311,697,656

1%

313,795,391

72%|317,665,212

72%|322,500,270| 74%

327,371,875

75%

Lena

Original

SS+GOCS

4)

SS+GOCS

& | SS+GOCS

(16) | SS+GOCS (32)

SS+GOCS (64)

Pass1

161,696,792

88,197,594

68%

89,634,212

69%| 91,548,956

T1%| 94,125,925\ 73%

96,769,658

75%

Pass2

123,912,376

64,744,920

60%

65,697,045

61%| 67,063,623

62%| 68,557,606|63%

70,643,014

65%

Pass3

132,353,060

120,188,969

8%

119,307,313

T1%|118,851,473

T1%|118,613,193|77%

118,502,145

T1%

Tierl

435,017,649

290,133,598

%

291,621,136

T1%|294,452,274

72%|298,277,298| 3%

302,891,567

T4%

Baboon

Original

SS+GOCS

@

SS+GOCS

® | SS+GOCS

(16) | SS+GOCS (32)

SS+GOCS (64)

Pass1

161,696,792

80,407,186

54%

81,500,054

55%| 83,344,181

56%| 85,910,181|58%

89,095,497

60%

Pass?2

123,912,376

130,939,612

76%

131,794,101

71%|132,910,354

T1%|133,952,793| 78%

135,500,769

79%

Pass3

132,353,060

137,998,154

T1%

137,086,510

76%|136,537,038

76%|136,249,814| 76%

136,116,590

76%

Tierl

435,017,649

366,938,271

%

367,951,640

2% 2%

71%|370,369,374

373,681,901

378,277,625

3%

Table 4-8 SS + GOCS (different columns as a group) method on C64xx simulator
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4.4.3 PPP Method

A parallel processing method is proposed in [26] and [27] called Pipelined Processing of
Passes (PPP). Each bit-plane is encoded through three coding passes, called significant
propagation pass (Passl), magnitude refinement pass (Pass2) and cleanup pass (Pass3). All
passes are processed sequentially. They can be arranged to process different sets of data in
parallel. An example is shown in Figure 4-23. The parallel processing structure matches well
the pipeline architecture. In processing the 1% stripe, in order to process Pass2, the context
information of current and adjacent stripes which are updated by Passl is required. In the
meantime, the context information of the Pass3 is updated by Pass1 and Pass2. The strategy of
the PPP method is to process the three coding passes of the same bit-plane on different stripes.
First, the samples of the 1* stripe in the current bit-plane are processed for Passl. Then, the
samples of the 1% and 2™ stripes in the current bit-plane are processed for Pass2 and Passl,
respectively. Third, the samples of the 133 27¢,and 3" in the current bit-plane are processed by
Pass3, Pass2, and Passl, respectively. Similarly, all:the other stripes are processed when all
stripes in a coding block are proeessed, the parallel.processing is done. Actually, the data flow
of the context formation is not-appropriate in using sequential structure software. A lot of
work is necessary to apply this méthod by changing the bit-plane coding flowchart. Usually,
the PPP method is suitable only for the hardware design or the multithread program. The TI
CCS compiler for the VLIW architecture has already improved the performance by its

software pipeline technology.

Ist stripe Passl Pass2 Pass3

2nd stripe Passl Pass2 Pass3

3rd stripe Passl Pass2 Pass3

4th stripe Pass| Pass2 Pass3

Figure 4-23 Parallel processing of passes
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In reference [26], the PPP method is adopted to simulate on the TMS320C6416
(600MHz). Table 4-9 in [26] shows the performance improvement by using the PPP method
for Tier-1 coding. The original mode for the three passes takes about 0.96 second for the three
test images. The executing time of the Pass2 has reduced up to 41% and the reduction of the
Pass3 is up to 32%. However, the executing time of the Pass 1 process is not affected by this
method because there is no difference between the PPP method and the original method. The
result indicates that the PPP method reduces the processing time for scanning and masking in
the case of the Pass2 and Pass3 by reusing the parameter and data used in the Pass1. Although
the average improvement of the Tier-1 coding is significant, the previous methods in sections
4.4.1 and 4.4.2 still has better performance than the PPP method. It seems that our DSP
platform needs an efficient method to accelerate JPEG2000 algorithm. In this study, we
proposed a new method to accelerate and implement JPEG2000 on our DSP platform as

described in next chapter.

Image Lena PPP/Ori Babeon PPP/Ori Peppers | PPP/Ori
Passl | 297.8 ms N/A 2747.9 ms N/A 269.7 ms N/A
Original | Pass2 | 140.3 ms N/A 156.8 ms N/A 157.2 ms N/A
mode | Pass3 | 522.8 ms N/A 531.7 ms N/A 533.9 ms N/A
Total | 960.9 ms N/A 966.4 ms N/A 960.8 ms N/A

Passl | 298.6 ms 100.% 281.6'ms 101 % 272.8 ms 101 %
PPP Pass2 88.5 ms 63 % 96.3 ms 61 % 92.6 ms 59 %
method | Pass3 | 357.4 ms 68 % 369.5 ms 69 % 378.3 ms 71 %
Total | 744.5 ms 77 % 747.4 ms 77 % 743.7 ms 77 %

Table 4-9 Comparison of processing time using PPP method [26]
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Chapterd
Acceleration of JPEG2000 Encoder
on DSP Platform

In order to accelerate the JPEG2000 encoder on the DSP platform in a simple and
efficient way, a new method called “Variable Group Of Samples Skipping” (VGOSS) is
proposed. This method provides an easy way to implement the JPEG2000 encoder on any
DSP platform. Comparing with the methods we mentioned before, this method is more
suitable for the DSP platform. We will present the concept and discuss the advantages in this
chapter. Besides, a modified PP method'is proposed, too. Based on the procedure of the
VGOSS method, we modify the: PP method for our DSP platform. Then, a performance

comparison between the VGOSS-method and the known methods is presented in section 5.2

5.1 Proposed Acceleration Method

In this section, we describe the concept of our VGOSS method. A detail coding
procedure is presented. Then, we integrate the PP method and the VGOSS method together
and discuss the effects. Finally the advantages are explained as well. In addition, some other

accelerating methods which are tested in our study are presented.

5.1.1 Coding Procedure of VGOSS method

We first need to rearrange the block before the pass coding. In Figure 5-1, all the pass
processes in the block-coding must comply with the stripe style scanning. Four vertical
continuous columns are grouped in a stripe. The stripe scanning follows the index 0, 1, 2, 3, 4,

5, and so on in order. But the addresses of the stripe data are not continuously stored in a
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Figure 5-2 Flag-block and code-block
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We first describe the flag-block and the code-block. For example, an 8 by 8 code-block
has 64 samples and each sample has its associated state. The state records the context
orientations (defined below) and the significance information in each bit-plane and all states
are stored in a flag-block. The states in a bit-plane are covered with the new context
orientations in the next bit-plane. The context orientations include North, East, South, West,
North-East, South-East, South-West, and North-West. A sample can include all the context
orientations and record them in its associated flag in the flag-block. The significance
information describes the visited and the significant samples. The visited sample is the coded
sample in other pass in the current bit-plane. The significant sample means that a sample has
the significant state recorded in its flag. The eight context orientations are specified to indicate
the significant neighbors. Any of the three pass processes decide to code this sample by
checking its own state. In this case, an 8 by 8 flag-block is necessary to record the sates of all
samples. But the flag-block is padded to 10 by 10 for the boundary blocks.

An example of the flag-block and, thecode-block is shown in Figure 5-2. The shaded
samples are significant ones. The!coordinate«(3,3) sample in the flag-block records the
context orientations (West, North-West, South-East).- This means that the coordinate (2, 2)
sample of the code-block is next'to three'significant samples. In this example, the coordinate
(x, y) of the code-block sample “‘corresponds to the coordinate (x+1, y+1) sample due to
padding. However, in implementation, we ‘convert the 2-D index into 1-D index. The 1-D (33)
sample in the flag-block records the states that associate with the 1-D index 18 sample in the
code-block. The 1-D index 18 is calculated by the equation, yx(code-block width)+x, and (x,
y) = (2,2). All samples and flags are accessed by the one-dimensional index for using the
VGOSS method.

Because stored samples of the code-block are rearranged, the flag-block samples are also
rearranged. We first describe the rearrangement of the code-block. For example, an eight by
eight code-block is shown in Figure 5-3. The stripe scanning addresses are 0, 8, 16, 24, 1, 9,
17, 25, 2, 10, 18, 26, and so on. The shaded samples (9, 17, 27, 4, 41, 51, and 38) have to be
encoded in the current pass process. In the JPEG2000 standard, all samples are scanned and
coded in the bit-plane but the VGOSS method can encode only the samples that are going to
be encoded in the current pass. In order to use the VGOSS method, the order of all addresses
must be a continuous sequence. In other words, the code-block should be rearranged in the

bit-plane coding. For an N by N code-block, we arrange it to an N/4 by 4N code-block as
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shown in Figure 5-3.
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Figure 5-3 Address order of the stripe in the rearranged code-block
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Figure 5-4 Rearranged flag-block with paddings
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Also, the flag-block is similarly rearranged. The padded flag-block records the context
orientation. The rearranged flag-block shown in Figure 5-4 corresponds to the rearranged
code-block shown in Figure 5-3. The padded flag-block has a size of (N/4+2) by (4N+8) as
shown in Figure 5-4. The shaded samples (0, 10, 20, 30, 1, 11, 21, 31, and ....) are the
padding samples. They are used for the boundary extensions. The rearranged code-block
index and the rearranged flag-block index are calculated by equation (5.1.1-1). For example,
the index 44 shown in Figure 5-4 corresponds to the index O of the rearranged code-block

shown in Figure 5-3.

If rearranged codeblock coordinate =(x',y")
codeblock width = (original codeblock width) << 2

rearranged codeblock index (5.1.1-1)
= y'xcodeblock width + x'

rearranged flagblock index

= (y'+1) x (codeblock swidth +8)+x'+4

The rearrangement does not change“the coding performance of on the JPEG2000. The
samples of a code-block are fetched from the tile data image and all cycles needed for this
new ordering are included in our test results. The cycles of arranging a code-block do not
increase on the C64xx simulator (flat memory system) or the C6416 simulator when the
compiler-level optimization is not used. Table 5-1 shows the percentages of the increased
cycles under different conditions in real tests. In the following experiments, the increase

cycles for the rearrangement are included for fair comparison.

C64xx simulator C6416 simulator with L2 cache
Goldhill
Tierl Increase Tierl Increase
Non-opt. 846,100,895 33 878,528,763 400
03 (file level) 435,017,649 265,828 441,174,161 271,149

Table 5-1 Effect of the data rearrangement
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index 18 in the
original code-block

Then, the updating flag procedure needs to be modified. We describe the original

updating flag procedure in the OpenJPEG reference software first. The flag-block in Figure

5-5 is transferred from the rearranged flag-block in Figure 5-4 and the shaded samples are

significant. Typically, a significant sample affects its neighbor eight samples. The context

orientations and the significant information are recorded in the flag-block. Each sample has its
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own flag to record the context orientations and the significant information. A new significant
sample may lead to a change of eight flags (of its neighbors). In general, the updating flag

procedure updates eight neighbor flags. The pseudo code is shown below.

Original flag updating procedure algorithm: [OpenJPEG ver.1.0]

*fp = current flag pointer

s = current significance

*np = fp - (code-block width + 2)
*sp = fp + (code-block width + 2)

np[-1] |= significant South-East
np[1] |= significant South-West
*np |= significant North
sp[-1] |= significant North-East
sp[1] |= significant North-West
*sp |= significant South
if (s = TRUE) then

*np |= sign North

*sp |= sign South

fp[-1] |= sign East

fp[1] |= sign West
endif

Typically, each sample in the strip affects the eight neighbor flags. The first sample in a
stripe affects the same bit-plane flags in the previous stripe but these samples may not be
coded depending on the visited information. The last sample in a stripe affects the sample
bit-plane flags in the next stripe and the next stripe is not visited as shown in Figure 5-5. For
example, the index ‘74’ flag in the ‘n’ stripe is significant. It affects three flags (83, 84, and 85)
in the ‘n+1’ stripe. The sample with index ‘84’ in the ‘n+1’ stripe affects the three flags (76,
77, and 78) in the ‘n’ stripe. The middle two in the four continuous samples affect their

corresponding eight neighbor flags. However, the rearranged flag-block has new set 1-D
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indices. We have to modify the updating flag procedure to update the correct neighbor flags as

below:

Modified flag updating procedure algorithm:

hint = 0x3&(current coordinate x)
*fp = current flag pointer

s = current significance

*np = fp - (code-block width + 5)
*sp = fp + (code-block width + 5)

switch (hint)
case 0x01:
case 0x02:
*(fp-5) |= significant South-East
*(fp-3) |= significant North-East
*(fp+3) |= significant South- West
*(fp+5) |= significant North-West
*(fp-4) |= significant East
*(fp-1) |= significant South
*(fp+1) |= significant North
*(fp+4) |= significant West
if (s is TRUE) then
*(fp-4) |= sign East
*(fp-1) |= sign South
*(fpt1) |= sign North
*(fpt4) |= sign West
endif
case 0x00:
*(np-4) |= significant South-East
*(np+4) |= significant South-West
*(fp-3) |= significant North-East
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*(fp+5) |= significant North-West
*np |= significant South
*(fp-4) |= significant East
*(fpt1) |= significant North
*(fp+4) |= significant West
if (s = TRUE) then

*np |= sign South

*(fp-1) |= sign East

*(fpt+1) |= sign North

*(fpt+4) |= sign West
endif

case 0x03

*(sp-4) |= significant North-East
*(spt+4) |= significant North-West
*(fp-5) |= significant South-East
*(fp+3) |= significant South-West
*sp |= significant North
*(fp-4) |- significant East
*(fp-1) |= significant South
*(fp+4) |= significant West
if (s =TRUE) then

*sp |= sign North

*(fp-4) |= sign East

*(fp-1) |= sign South

*(fpt4) |= sign West
endif

endswitch

In practice, the flag updating procedure is decoupled into three sub-procedures by the
three cases and the total cycles of the flag updating procedure are reduced. We test the flag
updating procedures on the C6416 simulator when the L2 cache is enabled. The results are

shown in the Table 5-2. For these test images, the modified flag updating procedure takes
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about 62 % in calculation of the original one. Our proposed method does not increase

processor cycles in the flag updating procedure.

Goldhill Barb Lena Baboon
Original updating
28,994,661 28,365,064 27,499,705 30,648,603
flag procedure
Modified updating
17,951,047 17,420,942 16,972,554 19,142,144
flag procedure
Ratio 62% 61% 62% 62%

Table 5-2 Comparison between original and modified updating flag procedures
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Figure 5-6 Flowchart of the bit-plane coding
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After rearranging a code-block, the bit-plane coding is performed. The flowchart of the
bit-plane coding is shown in Figure 5-6. The rearrangement of the code-block is first executed.
The flag-block is also rearranged and ready. At the beginning, the Pass3 VGOSS table is
initialized and the Pass3 process is executed in the first bit-plane coding. There are some
significant samples in the Pass3 process because the bit-plane coding is started from the first
nonzero most-significant-bit plane. Then, the Pass1 process is executed, and each sample can
be classified according to its state which is recorded in the flag-block. The Pass2 and the
Pass3 VGOSS tables are completed in this process. Then, all flags of the samples are checked
in the Passl process and some insignificant samples which have significant neighbors are
coded. The following step is the Pass2 process and then the Pass3 process. If the Pass3
VGOSS table is empty, the Pass3 process is skipped. The next bit-plane coding is executed
until all bit-planes are done.

The flowcharts of the three pass processes are shown in Figure 5-7, Figure 5-8, and
Figure 5-9. There are two VGOSS tables, for the Pass2 and the Pass3 processes, respectively.
In Figure 5-7, the Pass3 process’is deseribed. At the beginning, all samples are in the
insignificant state and the Pass3- process 1s performed at the most significant bit-plan. The
VGOSS table of Pass3 process is set to all'NBC samples. It means that each offset is 1 in the
Pass3 VGOSS table and all samples. must be scannied in the first Pass3 process. The offset
means the distance between the current index and the next index. After the next index is
obtained, the run-length condition is checked each time. The run-length coding is executed if
the four continuous samples are insignificant and do not have any significant neighbors. If the
run-length coding is performed, the VGOSS table skips the number of the run-length in the
following offsets. These offsets must equal one because they represent continuous samples
that are coded in the run-length coding. Otherwise, the zero coding is executed. The sign
coding is also executed when the sample becomes significant in the current bit-plane. Then,
the next offset is read to calculate the next index. The first Pass3 process is completed until all
offsets are used in the Pass3 VGOSS table. Otherwise, if the Pass3 process is not first-time
running, the Pass3 process uses the Pass3 VGOSS table that is updated in the Passl process.
If the VGOSS table is empty, it means that all samples are coded in the Pass1 and the Pass2

processes in the current bit-plane. The Pass3 coding is skipped in the current bit-plane.
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Figure 5-7 Flowchart of the Pass3 process
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Figure 5-8 Flowchart of the Pass1 process

After the Pass3 is completed in the current bit-plane, the next bit-plane is coded. The
Pass1 process checks every flag and encodes the NBC samples in the current bit-plane. The
Pass1 process is described in Figure 5-8. All the samples are distinguished from two branches.
The samples that should be coded in the Pass2 process are significant. If the current sample is
in the significant state, the offset is recorded in the Pass2 VGOSS table. The Pass2 VGOSS
counter is reset to zero and then updated for the next counting. But the Pass3 counter is
updated only. If the sample is insignificant and does not have any significant neighbors, the
offset is recorded in the Pass3 VGOSS table. The Pass3 counter is reset to zero and then

updated for the next counting. But the Pass2 counter is updated only. Otherwise, the sample
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belongs to the Pass1 coding. Then, the zero coding is executed. If the sample is significant in
the current bit-plane, the sign coding is also executed. Also, the Pass2 and Pass3 counters are
updated, if the sample belongs to the Passl coding. When all samples are scanned, the Pass1
process is completed in the current bit-plane. These VGOSS tables are completed for the

Pass2 and the Pass3 processes in the current bit-plane.

Enter Pass2
process

l

Load Pass2
VGOSS table

Pass2 VGO
table empty?

Enter Pass3 proc§

Next index

l

Magnitude coding

Figure 5-9 Flowchart of the Pass2 process

The Pass2 process is executed after the Passl process and the Pass2 table is updated in
the Passl process in the current bit-plane. The flowchart of the Pass2 process is shown in
Figure 5-9. If all the offset are used in the Pass2 VGOSS, the Pass2 process is completed. The
following step is executing the Pass3 process and the pass processes is done in the current
bit-plane coding. Afterward the Passl, Pass2, and the Pass3 processes are executed until all

the bit-planes are coded.
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In practice, the modified flag updating procedure is split into three procedures. Under
three different conditions, three updating flag procedure are executed separately and also the
bit-plane scanning is modified. According to the VGOSS method, the pseudo code is listed

below.

Appendix A: Pseudo code of the VGOSS method

Algorithm 1 Significance pass algorithm
1: for (k=0; k<rearranged code-block height; k++) do

2. for (i=0; i<rearranged code-block width; i+4) do

3 fp0 (flag pointer) = (k+1)*(rearranged code-block width) + 1+ 4
4 if fp0 is insignificant then

5 if fp0 has significant neighbor then

6: code significance of the sample

7 if sample is a new significance.then

8 code sign of the sample

9 updating flag procedure ¢ase 0x00

10: else

11: count the Pass2 and Pass3 offsets

12: endif

13: else

14: Record the Pass3 offsets in the Pass3 VGOSS table
15: count the Pass2 and Pass3 offsets

16: endif

17:  else

18: Record the Pass2 offsets in the Pass2 VGOSS table
19: count the Pass2 and Pass3 offsets

20:  endif

21:  fpl (flag pointer) = (k+1)*(rearranged code-block width) + 1+ 5
22: if fp1 is insignificant then
23: if fp1 has significant neighbor then

24: code significance of the sample

78



25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:

if sample is a new significance then
code sign of the sample
updating flag procedure case 0x01
else
count the Pass2 and Pass3 offsets
endif
else
Record the Pass3 offsets in the Pass3 VGOSS table
count the Pass2 and Pass3 offsets
endif
else
Record the Pass2 offsets in the Pass2 VGOSS table
count the Pass2 and Pass3 offsets
endif
fp2 (current flag pointer) ={(k+1)*(earrangéd code-block width) +1+ 6
if fp2 is insignificant then
if fp2 has significant neighbor-then
code significance of the sample
if sample is a new significance thén
code sign of the sample
updating flag procedure case 0x01
else
count the Pass2 and Pass3 offsets
endif
else
Record the Pass3 offsets in the Pass3 VGOSS table
count the Pass2 and Pass3 offsets
endif
else
Record the Pass2 offsets in the Pass2 VGOSS table
count the Pass2 and Pass3 offsets

endif
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57: fp3 (current flag pointer) = (k+1)*(rearranged code-block width) + i+ 7
58: if fp3 is insignificant then

59: if fp3 has significant neighbor then

60: code significance of the sample

o1: if sample is a new significance then

62: code sign of the sample

63: updating flag procedure case 0x01

64: else

65: count the Pass2 and Pass3 offsets

66: endif

67: else

68: Record the Pass3 offsets in the Pass3 VGOSS table
69: count the Pass2 and Pass3 offsets

70: endif

71:  else

72: Record the Pass2 offsets.in the Pass2 V(GOSS table
73: count the Pass2 and Pass3, offsets

74:  endif

75:  endfor

76: endfor

Algorithm 2 Refinement pass algorithm
1:  while Pass2 VGOSS table is not empty do
2: code magnitude of the sample

3: endwhile

Algorithm 3 Cleanup pass algorithm
1:  while Pass3 VGOSS table is not empty do
2: if ((current address & 0x03)==0 and run-length is not zero) then

/*first sample in a stripe*/
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3: if (run-length = 4) then

4: skip the following 4 offset in the Pass3 VGOSS table
5: continue

6: else

7 code significant sample

8: skip the following number of run-length offset in the Pass3 VGOSS table
9: continue

10: endif

11: else

12: run-length = 0

13: endif

14: cleanup coding

15: if sample significant then

16: code sign of sample

17: updating flag procedure:¢ase (Ox03&current data point)
18: endif

19: endwhile

5.1.2 Modified VGOSS method

According to the PP method, the absolute coordinates are recorded in the prediction table.
It seems more efficient if the missing samples and the sorting problems can be solved. We
modify the VGOSS method to record the absolute address in the code-block. Basically, all the
pass procedures are similar to the original VGOSS pass procedure. Only the Passl procedure
1s modified, and all pass processes use the absolute index in the VGOSS tables. The modified
Passl procedure is described in Figure 5-10. The difference is that the VGOSS method
records the offset and the modified VGOSS method records the absolute index. The counters
are not necessary, and the Passl process seems to be more efficient. However, the
experimental results show that the VGOSS method is slightly better than the modified

VGOSS method. The experimental results will be shown in section 5.2 and we will compare
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these methods in the next section.
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If significant
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Figure 5-10 Flowchart of the Pass1 process

The VGOSS tables are now recording the address information instead of the address
offsets. The flowchart of the modified VGOSS method is almost the same as that of the
VGOSS method except that the absolute address is recorded. Although the flowchart is the
same, there are some differences in the Pass1 process and the Pass3 process. In the traditional
PP method, all tables are prepared in the previous bit-plane. All addresses which are to be
encoded in a certain bit-plane are recorded in the previous bit-plane. In the VGOSS method,

all the offsets are recorded when the Pass1 process is performed in the current bit-plane. This
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method avoids the missing sample problem and the comparator of three tables. Recording
address is also efficient to accelerate the bit-plane coding and it records those samples that are
need-to-be-coded in the Pass1 process.

Before coding a code-block, address rearrangement is performed in advance. Because the
original address arrangement cannot be used in the new method easily and updating flag
procedure is also complicated. The flag table records the state of the samples and each flag
must associate with relative samples. The updating flag procedure should be modified as
described in section 5.1.1 It seems that the Passl process simply records the NBC samples
but there are some problems using this method. Because the code-block size in the higher
decomposition level may be smaller than the specified code-block size. It affect the loop
branches. It should be noticed in the Pass3 process. Typically, we think the performance of the

modified VGOSS method is fast than the one of the VGOSS but the experimental results
show that the VGOSS method is faster.

5.1.3 Advantages of the Proposed Methods

The methods we describe in the previous sections are efficient in accelerating the
JPEG2000 algorithm. Each has its own advantages in reducing the cycles. In this sub-section,

we will discuss the major advantages using our proposed methods.

Encoded samples in | Encoded samples in | Encoded samples in
Image
Pass1 process Pass2 process Pass3 process
Goldhill 24 % 22 % 54 %
Barb 22 % 24 % 54 %
Lena 22 % 17 % 61 %
Baboon 26 % 36 % 38 %

Table 5-3 Percentage of encoding samples in each pass process

Each pass process encodes about one-fourth of samples in coding a block except for the

Pass3 process. Table 5-3 shows that the Passl process encodes about 24% of total checked
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samples from the most significant bit-plane to the least significant bit-plane. The PP method
uses the prediction table to record those NBC (need-to-be-coded) samples in the next
bit-plane. Reducing to check the samples saves lots of processing cycles. Our proposed

method saves the checking cycles in the Pass2 and Pass3 processes as well.

The VGOSS method is different from the PP method. The PP method predicts the NBC
samples in the last bit-plane, and some missing samples are fixed by the continuous-five and
boundary extension modes, which have been described in section 4.4.1 . The PP method has
to predict the NBC samples in the Pass3 process or after the Pass3 process. Typically, the
prediction tables are completed in the Pass3 process. If the prediction tables are completed
after the Pass3 process, the extra N* checking cycles are required. In our approach, the
VGOSS tables include all NBC samples. The VGOSS method records the NBC samples in
the current bit-plane and it avoids the missing samples in the significant propagation as
described in Figure 4-14. No samples miss and no sorting repair list or comparison index
problems are produced in the VGOSS method. The checking loop of each pass process
depends on the number of the offset in the VGOSS table. The number of the NBC samples is
obtained before the Tier2 coding. 'We can calculate the distortion before coding the entire
code-block. Besides, the PP method records-the-coordinates of the sample because the stripe
scanning is not a sequential order.“The VGOSS method only records the offsets, and most
offsets are small numbers. The table size is smaller than the one of the PP method.

The CUPS is a known speed-improving method. We know that the scanning hierarchy
for a code-block is ordered from the lower to the upper level, which is pixel, column, stripe,
pass, and bit-plane. To skip from the upper levels represents to save more operation cycles.
The CUPS method is to skip all samples which are not necessarily checked in the clean-up
pass process. Usually, the CUPS method is applied to the Pass3 process with the PP method.
When the CUPS method is applied, it skips the Pass3 process in the bit-plane coding. The
prediction tables in the PP method are affected by the CUPS method. The N checking cycles
is still required to complete the prediction tables. However, the VGOSS method can skip the
Pass3 process without extra N cycles and the Passl and the Pass3 processes are the
candidates to skip all samples in the checking process. If all samples become significant, they
are coded in the Pass2 process in all following bit-planes. Thus, the Passl and the Pass3

process can be skipped entirely. In our proposed method, the skipping pass method is already
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adopted without additional effort. If the Passl or the Pass3 VGOSS table is empty, the

corresponding pass process will be skipped, similar to the CUPS method.

NBC sample Group of column skipping
GOCl GOC2 GOC3 GOC4

0100:>

GOCS table

gk k ik k uk

Flag-block 16 Flag-block 0 Flag-block 16 Flag-block 16
Code-block 3 Code-block 0 Code-block 3 Code-block 4

Checking cycles 4

Total Checking cycles = 62

Figure 5-11 Checking cycles of the GOCS method

NBC Sample Group of column skipping
/ GOCI GocC2 GOC3 GOC4

2o ]s]n|7]2]7]5]

=)

VGOCS table

4 4 4 a a

Flag-block 0 Flag-block 0 Flag-block 0 Flag-block 0
Code-block 3 Code-block 0 Code-block 3 Code-block 4

Checking cycles 10

Total Checking cycles =20

Figure 5-12 Checking cycles of the VGOSS method

The SS method and the GOSS methods described in section 4.4.2 are often used in
accelerating the JPEG2000 encoder but it is not convenient to implement on a sequential
processing platform. Based on the bit-plane coding statistics, most checking cycles are wasted
in the three pass processes. The significant samples usually propagate on a bit-plane. The
GOCS method makes use of this property but the most appropriate column size of a group

varies for different test images. In the experimental results of using different column sizes on
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the C64xx simulator, we find that the GOSS method with a fixed group size is not efficient in
skipping the un-coded samples. The variable column size is a better way to handle all
different test images. The GOSS method results show that skipping a group of samples is still
a good idea to accelerate the block coding. In practice, skipping a variable-size group of

samples that are not necessarily coded is achieved already by our proposed method.

Figure 5-11 shows the total checking cycles when applying the GOCS method. The
group size is set to 4 columns. The 96 samples are grouped into 4 groups called GOC1, GOC?2,
GOC3, and GOC4. The checking step includes checking the flag-block and the code-block.
We assume that checking the GOCS table takes 4 cycles. In this example, the GOCS table
skips GOC2 and uses 0 cycles. The GOC1, GOC3 and GOC4 are checked because there are
NBC samples in each group. Each flag in the flag-block is checked in the GOC, and the state
of the NBC sample is decided. If the sample is need-to-be-coded, its value recorded in the
code-block is checked. If the value of the current sample is 1, the state of the current sample
becomes significant. The sign codingiis also executed. For example, the GOCI1 takes 16
cycles in checking the state that is recorded i the flag-block. There are three NBC samples,
and 3 cycles is taken in checking the sample values."The total checking cycles is 62 of the

example in Figure 5-11.

In Figure 5-12, the VGOSS table takes 10 cycles to identify the NBC samples. The
VGOSS method takes zero cycles in checking the state of each sample. The value of each

NBC sample has to be checked. The total checking cycles in a code-block are same as that of
the GOCSS method.

The SS method is also a fast process for the hardware implementation but it is not
suitable for the sequential program. In our DSP system, the VLIW architecture provides the
parallel executing equivalence to take the advantage of the SS method. To a certain extent, the
compiler level can use its parallelism. The other way to improve utility of the DSP functional

units is to modify the assembly code.

Finally, we compare the modified VGOSS method with the original one. The modified
VGOSS method records the absolutely index only, so the counters are unnecessary. However,
the counters are necessary when using the offset in the pass process. Consequently, the
computation of using the absolute address is less than using the offset. Theoretically, the

modified VGOSS method is more efficient than the VGOSS method. But the experimental
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results show that the original VGOSS method is slightly more efficient than the modified one.

We will give the comparison results in section 5.2 .
5.1.4 Software Speed-up Techniques

The arithmetic coding algorithm contains sequential processing steps, nested conditional
operations, and inner while loops. They decrease the efficiency of the software pipelined
scheduling. The JPEG2000 binary arithmetic encoder is characterized by four functions, Code
MPS, Code LPS, RENORME, and BYTEOUT. These functions are executed based on the
context state of the arithmetic encoder, its interval width (A), and codeword value (C). The
encoder must decide if a Most Probable Symbol (MPS) or Least Probable Symbol (LPS) is
encoded, whether to renormalize (RENORME) the interval width and codeword, and

determine if a compressed byte needs to be sent to the bit-stream (BYTEOUT).

Modified
RENORME RENORME
l
y y
aza= I shift = LMBD(1,A) — 16
C”lj*CT . 1" shift = MIN(L_shift , CT)
i CT =CT - L_shift

A = A << L_shift
C =C <<L_shift

'
T Byteout

Byteout

Figure 5-13 RENORME and modified procedure
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In [28], several optimizing techniques for the JPEG2000 binary arithmetic encoder on a
VLIW architecture are proposed. The first technique is decoupling the coefficient bit modeler
from the arithmetic encoder. To rewrite the arithmetic encoder in an efficient loop form, the
bit modeling and the arithmetic encoding processes are decoupled. The decoupling probably
provides the better compiler scheduling. Thus, the compiled code may be more efficiently.
The second technique is eliminating the loops in the RENORME function. An intrinsic
function of the C64x is used to eliminate the loop condition as shown in Figure 5-13. We
revise the modified RENORME function in [28]. The third technique is decoupling the
BYTEOUT function from the MQ encoder. Due to the average 5% of the total encoding
number is called by BYTEOUT function, the decoupling may have the additional benefit of
making the encoding loop more efficient. Finally, we modified the MQ coder according to the
concept that is described in [28]. We enable the L2 cache on the C6416 simulator but do not
use the compiler-level optimization. The experimental results are obtained and shown in Table

5-4.

Goldhill Barb Lena Baboon

Original method | 254 471,438 253,084,608 228.484.653 317,505,663

Modified method | 222 464,585 220,992,114 200,095,451 276,482,317

Ratio 87% 87% 88% 87%

Table 5-4 Cycles of the MQ coder on the C6416 simulator

Goldhill Barb Lena Baboon
DWT encode 552,674,115 552,674,115 552,674,110 552,674,110
Speed-up 196,657,558 196,657,558 196,657,558 196,657,558
Ratio 36% 36% 36% 36%

Table 5-5 DWT module on C6416 simulator

In addition, a few well known techniques such as unrolling, packeted data processing and

pragma instructions could be used for accelerating the program as described in section 3.4.3 .
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But some techniques are not suitable for this program. For example, the packet date
processing is suitable for the 8-bit or the 16-bit data type. However, the most data types in the
JPEG2000 software are 32-bit data type. The pragma directives tell the compiler how to treat
a certain function, object, or section of code. This method improves the performance slightly
on the C6416 simulator. The L2 cache is an efficient way to reduce the accessing time of the
external memory, and the pragma directives provide the SRAM to store the data that are often
used. Although the L2 cache occupies a portion of the SRAM, the two methods are different
in the produced missing cycles. The DATA SECTION pragma decides the memory allocation
without setting DSP BIOS. It is useful to define the use of memory. The MUST ITERATE
pragma instruction helps that the loop call executes a certain number of times. These speed-up
techniques are useful for the DWT module. We apply the compiler-level optimization and the
software speed-up methods. The reduction is about 64% as shown in Table 5-5. The modified
procedure shown in Figure 5-13 also uses the LMBD intrinsic function. All of them may help
the running speed on the DSP platform,and they are the program level optimization. The

experimental results are presented in the next section.

5.2 Experimental Results

In this section, we are going to present the experimental results using the test images
described in section 4.1 The notation “M1” means the scheme uses the SS and GOSS
methods described in section 4.4.2 . “M2” represents the proposed VGOSS method described
in section 5.1.1 and “M3” represents the modified VGOSS method described in section 5.1.2 .
The “Or1” means the original program and the Tierl module includes the Passl module, the
Pass2 module, and the Pass3 module. The proposed M2+ and M3+ methods are accelerated
with program level optimization described in section 3.4.3 and 5.1.4 . Otherwise, the
compiler-level optimization uses the file level optimization and the non-level optimization.
All the ratios in these tables are the cycles of the proposed method divided by the original
cycles and are expressed in percentage.

On Table 5-6, we compare different methods using the C64xx simulator. The programs
do not use compiler-level optimization. The Tierl function takes the most cycles of the

JPEG2000 encoder. We can see that our proposed methods have achieved about 30%
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reduction. In other words, our proposed method has a better performance without enabling
any hardware or software optimizations. The comparison of the M2 and M3 will be discussed

later.

Passl ratio Pass2 ratio Pass3 ratio Tierl ratio

Goldhill Ori | 305,253,023 | N/A | 230,409,367 | N/A | 226,859,815 | N/A 846,100,895 | N/A

M1 | 282,191,607 | 92% | 161,154,959 | 69% | 153,603,555 | 67% 691,653,125 | 81%

M2 | 293,537,043 | 96% | 147,094,303 | 64% | 140,270,753 | 62% 617,477,074 | 73%

M3 | 268,073,463 | 87% | 146,687,443 | 63% | 154,029,099 | 67% 610,316,669 | 72%

Barb Ori | 298,583,742 | N/A | 242,601,594 | N/A | 229,189,368 | N/A 854,930,539 | N/A

M1 | 271,438,557 | 91% | 171,781,735 | 71% | 155,859,497 | 68% 686,567,790 | 80%

M2 | 285,719,070 | 96% | 157,152,430 | 65% | 142,649,768 | 62% 622,141,054 | 73%

M3 | 260,057,725 | 87% | 156,718,367 | 65% | 156,544,656 | 68% 614,892,043 | 72%

Lena Ori | 290,392,605 | N/A | 199,107,794 | N/A | 221,486,542 | N/A 793,191,469 | N/A

M1 | 266,220,518 | 92%sx|" 126,029,839 |.63%: | 160,976,617 | 73% 638,251,568 | 80%

M2 | 278,136,726 | 96% |' 111,841,674| 56% [|* 148,145,016 | 67% 574,660,595 | 72%

M3 | 253,699,774 | 87% | . 1115530:410--56% | 162,578,666 | 73% 569,297,918 | 72%

Baboon Ori | 340,504,870 | N/A [4329,348,990 |«N/A | 251,280,448 | N/A | 1,011,860,852 | N/A

M1 | 307,918,629 | 90% | 260,281,541 | 79% | 148,146,791 | 59% 810,277,071 | 80%

M2 | 325,038,946 | 95% | 242,780,578 | 74% | 135,044,067 | 54% 739,661,816 | 73%

M3 | 295,676,364 | 87% | 242,114,405 | 74% | 148,261,575 | 59% 727,801,158 | 72%

Table 5-6 Comparison using C64xx simulator without compiler-level optimization

Then, we use the compiler-level optimization to accelerate the encoder. The exact cycles
are shown in Table 5-7 and we can see that the cycles are reduced to half of their counterpart
in Table 5-6. This means the encoder has been accelerated about two times faster. The original
encoder takes about 0.8 sec to encode a 512 by 512 image on the C64xx simulator. The
running time is estimated based on 1GHz DSP processor. The encoding cycles are thus
divided by the 10°. The compiler level optimization can reduce the encoding time to about 0.4
sec. However, the C64xx simulator uses the flat memory system, and the real time on the

C6416 emulator is related to the result of the C6416 simulator. On this table, our proposed M2
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method has a reduction of up to 37% in the Tierl module. The proposed M2 method seems to

have a better performance than the proposed M3 method and the additional program level

optimization helps the M2 method to achieve about 46% reduction of computation cycles as

shown in the M2+ results. And, the M2+ results are still slightly better than the M3+ results.

Passl ratio Pass2 ratio Pass3 ratio Tierl ratio

Goldhill Ori | 161,696,792 | N/A | 123,912,376 | N/A | 132,353,060 | N/A | 435,017,649 | N/A
M1 | 127,578,760 | 78% 81,792,398 | 66% 83,544,436 | 63% | 310,108,162 | 71%

M2 | 125,231,272 | 77% 65,696,264 | 53% 71,670,151 | 54% | 278,049,520 | 63%

M2+ | 111,479,250 | 69% 52,262,769 | 42% 64,940,416 | 49% | 236,919,268 | 54%

M3 | 134,596,715 | 83% 64,882,190 | 52% 72,759,624 | 54% | 287,959,889 | 66%

M3+ | 120,941,561 | 75% 51,041,835 | 41% 68,490,347 | 52% | 246,919,263 | 57%

Barb Ori | 158,478,206 | N/A | 129,282,989 | N/A | 133,847,824 | N/A | 438,746,356 | N/A
M1 | 122,166,076 | 77% 87:196,3724|. 67% 85,158,426 | 64% | 311,697,932 | 71%

M2 | 120,764,739 | 76% 70,177,352 | 54% 72,977,347 | 55% | 279,411,207 | 64%

M2+ | 107,855,946 | 68% 55,856,088 | 43% 66,049,340 | 49% | 238,014,402 | 54%

M3 | 130,671,579 | 82% 69,308,863 54% 74,122,298 | 55% | 289,863,349 | 66%

M3+ | 117,796,112 | 74% 54,551,358 42% 75,907,089 | 57% | 248,421,913 | 57%

Lena Ori | 153,954,906 | N/A | 108,237,140 | N/A | 129,077,570 | N/A | 408,233,549 | N/A
M1 | 120,130,825 | 78% 64,744,920 | 60% 88,197,594 | 68% | 290,075,454 | 71%

M2 | 118,381,074 | 77% 49,993,868 | 46% 75,995,528 | 59% | 259,792,581 | 64%

M2+ | 105,516,600 | 69% 39,695,355 | 37% 68,746,351 | 53% | 222,169,225 | 54%

M3 | 126,991,911 | 82% 49,370,996 | 46% 77,238,351 | 60% | 269,292,266 | 66%

M3+ | 114,192,081 | 74% 38,759,155 | 36% 78,765,768 | 61% | 231,705,425 | 57%

Baboon Ori | 179,696,714 | N/A | 171,827,724 | N/A | 147,598,193 | N/A | 516,672,503 | N/A
M1 | 138,079,206 | 77% | 130,939,612 | 76% 80,407,186 | 54% | 367,019,323 | 71%

M2 | 136,630,164 | 76% | 108,313,813 | 63% 68,628,442 | 46% | 329,208,921 | 64%

M2+ | 122,000,811 | 68% 86,310,345 | 50% 62,199,750 | 42% | 278,849,859 | 54%

M3 | 149,193,658 | 83% | 106,981,058 | 62% 69,600,789 | 47% | 341,680,709 | 66%

M3+ | 134,442,629 | 75% 84,308,963 | 49% 78,911,706 | 53% | 291,039,854 | 56%

Table 5-7 Comparison using C64xx simulator with file level optimization
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In order to analyze the actual performance on the DSP emulator, we take profiling of the

encoder on the C6416 simulator. First, we compare all the methods on the C6416 simulator

without any compiler level optimization or program level optimization. The results are

presented in Table 5-8. It shows that all methods have little improvement on the C6416

simulator. The Passl process checks all samples in the code-block but the other processes

encode the NBC samples only. It seems the Pass1 process does not gain any acceleration as

compared with Table 5-6.

Passl

ratio

Pass2

ratio

Pass3

ratio

Tierl

ratio

Goldhill

Ori

3,017,620,410

N/A

2,042,494,971

N/A

1,878,381,119

N/A

7,509,481,733

N/A

M1

3,025,667,367

100%

1,741,809,460

85%

1,421,319,656

75%

6,770,907,062

90%

M2

3,136,395,302

103%

1,705,536,220

83%

1,401,228,658

74%

6,559,372,183

87%

M3

3,109,291,411

103%

1,705,523,470

83%

1,413,508,168

75%

6,549,455,756

87%

Barb

Ori

2,896,173,480

N/A

2,1584293,928

N/A

1,893,826,534

N/A

7,524,305,067

N/A

Ml

2,878,730,141

99%

1,876,066,087

87%

1,452,988,453

T7%

6,786,729,765

90%

M2

2,997,467,962

103%

1,822,898,565

84%

1,418,383,687

75%

6,555,043,830

87%

M3

2,970,457,703

103%

1,822:891,700

84%

1,430,763,867

76%

6,545,326,635

87%

Lena

Ori

2,836,766,126

N/A

1,664,108,463

N/A

1,858,239,288

N/A

6,922,931,525

N/A

M1

2,839,909,398

100%

1,353,038,108

81%

1,494,062,471

80%

6,253,649,422

90%

M2

2,954,013,613

104%

1,295,049,729

78%

1,461,410,941

79%

6,026,615,579

87%

M3

2,928,402,594

103%

1,295,042,543

78%

1,474,297,106

79%

6,018,804,632

87%

Baboon

Ori

3,307,931,711

N/A

3,113,296,427

N/A

2,018,577,407

N/A

9,047,999,627

N/A

Ml

3,264,497,611

99%

2,875,062,110

92%

1,401,263,282

69%

8,152,221,728

90%

M2

3,395,751,005

103%

2,819,811,057

91%

1,365,494,753

68%

7,897,700,868

87%

M3

3,363,909,744

102%

2,819,796,302

91%

1,377,280,810

68%

7,882,548,295

87%

Table 5-8 Comparison using C6416 simulator without compiler-level optimization

Then we use the file level optimization which has been described in section 3.4.2 and the

results are shown in Table 5-9. We can see that the cycle of the Tiel has about 30% reduction

as compared to Table 5-8. The encoder still needs 5,896,744,104 (including all modules)

cycles to encode a Goldhill image. All the accelerating methods are encumbered by the
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memory system as discussed in section 4.3.1 . Until now, the memory system dominates the
performance on the C6416 simulator. Although we have a great performance on the C64xx
simulator as shown in Table 5-7, the final judgments on the performance is on the real time
system, i.e., the C6416 emulator. Because the C6416 emulator cannot profile the cycle
information of the encoder on the board, we assume that the experimental results of the

C6416 simulator can approximately represent the results of the C6416 emulator.

Pass1 ratio Pass2 ratio Pass3 ratio Tierl ratio

Goldhill | Ori | 2,112,041,634 | N/A | 1,378,876,280 | N/A | 1,247,956,850 | N/A | 5,249,595,284 | N/A

M1 | 1,909,390,616 | 90% | 1,170,834,214 | 84% | 1,017,962,461 | 81% | 4,609,052,664 | 87%

M2 | 2,117,760,455 | 100% | 1,219,529,873 | 88% | 1,008,254,857 | 80% | 4,613,282,518 | 87%

M3 | 2,107,525,133 | 99% | 1,220,058,177 | 88% | 999,638,429 | 80% | 4,595,193,586 | 87%

Barb Ori | 2,039,284,465 | N/A | 1,452,630,437 | N/A | 1,262,285,138 | N/A | 5,269,580,191 | N/A

M1 | 1,823,491,911 | 89% | 1,265:470,505, 87% | 1,039,524,522 | 82% | 4,643,920,352 | 88%

M2 | 2,024,787,896 | 99%.+1,301,723]052"|. 90%. | 1,023,242,623 | 81% | 4,617,566,683 | 88%

M3 | 2,016,239,162 | 99% |:'1,302,308,385 90% + 1,014,583,518 | 80% | 4,601,177,484 | 87%

Lena Ori | 1,988,997,365 | N/A-| 1,138;002,909- | N/A+ 1,247,101,515 | N/A | 4,878,183,463 | N/A

M1 | 1,788,189,759 | 90% 922,499,516 {81% | 1,069,658,356 | 86% | 4,284,479,896 | 88%

M2 | 1,985,936,734 | 100% 929,742,870 | 82% | 1,054,472,108 | 85% | 4,237,821,331 | 87%

M3 | 1,976,123,575 | 99% 930,163,782 | 82% | 1,045,640,767 | 84% | 4,219,831,865 | 87%

Baboon | Ori | 2,319,243,443 | N/A | 2,064,641,254 | N/A | 1,324,106,786 | N/A | 6,253,178,570 | N/A

M1 | 2,073,048,478 | 89% | 1,925,065,285 | 93% 996,385,327 | 75% | 5,539,745,533 | 89%

M2 | 2,297,572,925 | 99% | 2,005,493,307 | 97% 979,527,354 | 74% | 5,550,726,038 | 89%

M3 | 2,289,349,786 | 99% | 2,006,364,071 | 97% 970,994,914 | 73% | 5,535,075,645 | 89%

Table 5-9 Comparison using C6416 simulator with file level optimization

We know that enabling the L2 cache system can improve the total encoding time on the
C6416 emulator. We compare Table 5-8 with Table 5-10. The encoding time of the encoder
using the L2 cache system is eight times faster than the former one. As for these speed-up
methods, the M1 method could just have about 20 % reduction of the computation cycles in

the Tierl module and our proposed methods have better performance at about 30 % reduction
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in the same module.

Passl ratio Pass2 ratio Pass3 ratio Tierl ratio

Goldhill | Ori | 308,284,632 N/A | 251,097,478 | N/A | 232,841,458 | N/A 878,528,789 | N/A
M1 | 283,514,595 | 91% | 164,102,018 | 65% | 170,341,982 | 73% 715,481,512 | 81%

M2 | 310,759,475 | 100% | 150,799,659 | 60% | 142,705,474 | 61% 643,385,635 | 73%

M3 | 286,373,249 | 92% | 151,103,318 | 60% | 156,405,272 | 67% 637,677,407 | 72%

Barb Ori | 301,567,183 N/A | 262,931,785 | N/A | 235,251,179 | N/A 887,081,291 | N/A
M1 | 272,633,925 | 90% | 174,226,431 | 66% | 172,958,920 | 74% 710,121,902 | 80%

M2 | 301,927,080 | 100% | 161,098,804 | 61% | 145,148,671 | 62% 647,343,159 | 73%

M3 | 277,311,304 | 92% | 161,388,576 | 61% | 158,987,469 | 68% 641,531,078 | 72%

Lena Ori | 293,270,703 N/A | 213,746,035 | N/A | 227,449,758 | N/A 819,425,979 | N/A
M1 | 267,314,454 | 91% | 127,929,966 | 60% | 178,827,591 | 79% 661,884,222 | 81%

M2 | 293,726,038 | 100% | 114,665,9497.54% | 150,681,664 | 66% 598,149,363 | 73%

M3 | 270,410,167 | 92%+% 114,862,234 |.54%*| 165,059,091 | 73% 594,083,833 | 72%

Baboon | Ori | 344,015,246 | N/A |7360,498,318 N/A| " 257,274,679 | N/A | 1,055,301,462 | N/A
M1 | 309,308,487 | 90%. | .263,822;00671773% | 164,094,852 | 64% 834,062,055 | 79%

M2 | 344,603,091 | 100% | “248,835,280.:4769% | 137,393,177 | 53% 770,203,559 | 73%

M3 | 316,054,573 | 92% | 249,336,149 | 69% | 150,554,300 | 59% 759,984,175 | 72%

Table 5-10 Comparison by C6416 simulator using L2 cache

without compiler-level optimization

At the end, we enable the file level optimization and all results are shown in Table 5-11.

Our proposed methods, M2 and M3, have a reduction of up to 35 % of computation cycles

and, furthermore, the M2+ and M3+ use the program level optimization. It helps our proposed
methods (M2+ and M3+) to reduce up to 45 % of computation cycles in the Tierl module.
These results now can achieve approximately those results of Table 5-7, which are generated

by the C64xx simulator (using the flat memory system).
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Passl ratio Pass2 ratio Pass3 ratio Tierl ratio

Goldhill Ori | 163,080,554 | N/A | 124,821,177 | N/A | 133,472,282 | N/A | 441,174,161 | N/A
M1 | 128,930,478 | 79% 83,076,184 | 66% | 101,499,569 | 76% | 333,581,675 | 75%

M2 | 128,567,039 | 78% 67,302,409 | 53% 73,328,088 | 54% | 287,411,966 | 65%

M2+ | 112,848,128 | 69% 53,775,561 | 43% 66,497,047 | 49% | 243,772,802 | 55%

M3 | 135,518,273 | 83% 66,348,752 | 53% 77,189,981 | 57% | 297,154,656 | 67%

M3+ | 122,246,007 | 75% 52,620,095 | 42% 67,810,545 | 51% | 253,842,164 | 58%

Barb Ori | 159,898,842 | N/A | 130,222,929 | N/A | 135,022,022 | N/A | 445,058,085 | N/A
M1 | 125,607,586 | 79% 88,384,942 | 68% | 100,587,687 | 74% | 334,635,666 | 75%

M2 | 123,971,510 | 78% 71,805,581 | 55% 74,693,375 | 55% | 288,726,161 | 65%

M2+ | 109,214,696 | 68% 57,459,450 | 44% 67,696,874 | 50% | 245,428,000 | 55%

M3 | 131,593,386 | 82% 70,838,058 | 54% 78,625,116 | 58% | 299,196,088 | 67%

M3+ | 119,108,218 | 74% 56,192,138 | 43% 69,091,530 | 51% | 255,512,543 | 57%

Lena Ori | 155,250,384 | N/A | _109,054,998#: N/A | 130,199,119 | N/A | 414,230,692 | N/A
M1 | 123,411,310 | 79% 65,712,808 |. 60% | 104,118,479 | 80% | 313,098,474 | 76%

M2 | 121,457,646 | 78% 51,269,739 | 47% 77,789,117 | 60% | 268,694,555 | 65%

M2+ | 106,797,331 | 69% 40,955:16871 38% 70,440,728 | 54% | 229,200,081 | 55%

M3 | 127,855,746 | 82% 50,567,223 46% 81,937,980 | 63% | 278,421,068 | 67%

M3+ | 115,431,429 | 74% 40,045,260 | 37% 71,836,295 | 55% | 238,400,634 | 58%

Baboon Ori | 181,379,029 | N/A | 172,997,973 | N/A | 148,789,097 | N/A | 523,492,124 | N/A
M1 | 141,906,202 | 78% | 132,573,813 | 77% 95,167,853 | 64% | 390,208,533 | 75%

M2 | 140,240,468 | 77% | 110,727,881 | 64% 70,188,995 | 47% | 339,579,061 | 65%

M2+ | 123,588,182 | 68% 88,581,223 | 51% 63,678,663 | 43% | 287,012,673 | 55%

M3 | 150,294,582 | 83% | 109,189,994 | 63% 73,777,013 | 50% | 351,565,266 | 67%

M3+ | 135,935,289 | 75% 86,669,837 | 50% 64,985,784 | 44% | 298,879,302 | 57%

Table 5-11 Comparison using C6416 simulator with L2 cache and file level optimization

Comparing the proposed M2 and M3 methods, the M2 method records the offset but it

has a better performance than the M3 method on the DSP simulators or emulator. In general,

the M3 method records the address without counting the offset which is adopted in the M2

method and thus it should have better performance than the M2 method. However, all results
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show that the M2 method is more efficient than the M3 method. This is because the
computation cycles of the M3 method in the Passl process are tinier than that of the M2
method. According to the assembly code, the M2 method use more counters to compute the
offset, but those counters could lead to better parallelism instead.

Now, we summarize the best performance as shown in Table 5-12 and Table 5-13. When
the bottleneck of the memory system is ignored, the results (Ori+), which are profiled using
the file level optimization on the C64xx simulator, can achieve 1.9 times faster than the
original one (Ori) as shown in Table 5-12. Furthermore, our best solution (M2+) can
accelerate up to 3.6 times faster than the original one. On the C6416 simulator, the results
(Ori+) are measured with the L2 cache and file level optimization and the proposed method
(M2+) can accelerate the Tierl module nearly 2 times faster than (Ori) as the results of the

C6416 simulator.

Passl Mul. Pass2 Muk Pass3 Mul. Tierl Mul.

Goldhill Ori | 305,253,023 | N/A |230,409,367# N/A + 226,859,815 | N/A 846,100,895 | N/A

Orit+ | 161,696,792 | 1.9x| 123,912376 |- 1.9x | 132,353,060 | 1.7x | 435,017,649 | 1.9x

M2+ | 111,479,250 | 2.7x 52,262,769 | 4.4x 64,940,416 | 3.5x 236,919,268 | 3.6x

Barb Ori | 298,583,742 | N/A | 242,601,594 | N/A | 229,189,368 | N/A 854,930,539 | N/A

Orit+ | 158,478,206 | 1.9x | 129,282,989 | 1.9x | 133,847,824 | 1.7x 438,746,356 | 1.9x

M2+ | 107,855,946 | 2.8x 55,856,088 | 4.3x 66,049,340 | 3.5x 238,014,402 | 3.6x

Lena Ori | 290,392,605 | N/A | 199,107,794 | N/A | 221,486,542 | N/A 793,191,469 | N/A

Orit+ | 153,954,906 | 1.9x | 108,237,140 | 1.8x | 129,077,570 | 1.7x 408,233,549 | 1.9x

M2+ | 105,516,600 | 2.8x 39,695,355 | 5.0x 68,746,351 | 3.2x 222,169,225 | 3.6x

Baboon Ori | 340,504,870 | N/A | 329,348,990 | N/A | 251,280,448 | N/A | 1,011,860,852 | N/A

Orit+ | 179,696,714 | 1.9x | 171,827,724 | 1.9x | 147,598,193 | 1.7x 516,672,503 | 2.0x

M2+ | 122,000,811 | 2.8x 86,310,345 | 3.8x | 62,199,750 | 4.0x 278,849,859 | 3.6x

Table 5-12 Comparison using C64xx simulator (Best solution) with file level optimization
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Passl Mul. Pass2 Mul. Pass3 Mul. Tierl Mul.

Goldhill | Ori | 3,017,620,410 | N/A | 2,042,494,971 | N/A | 1,878,381,119 | N/A | 7,509,481,733 | N/A

Ori+ | 163,080,554 | 19x | 124,821,177 | 16x | 133,472,282 | 14x | 441,174,161 | 17x

M2+ 112,848,128 | 27x 53,775,561 | 38x 66,497,047 | 28x 243,772,802 | 31x

Barb Ori | 2,896,173,480 | N/A | 2,158,293,928 | N/A | 1,893,826,534 | N/A | 7,524,305,067 | N/A

Ori+ 159,898,842 | 18x 130,222,929 | 17x 135,022,022 | 14x | 445,058,085 | 17x

M2+ 109,214,696 | 27x 57,459,450 | 38x 67,696,874 | 28x 245,428,000 | 31x

Lena Ori | 2,836,766,126 | N/A | 1,664,108,463 | N/A | 1,858,239,288 | N/A | 6,922,931,525 | N/A

Ori+ 155,250,384 | 18x 109,054,998 | 15x 130,199,119 | 14x 414,230,692 | 17x

M2+ 106,797,331 | 27x 40,955,168 | 41x 70,440,728 | 26x | 229,200,081 | 30x

Baboon Ori | 3,307,931,711 | N/A | 3,113,296,427 | N/A | 2,018,577,407 | N/A | 9,047,999,627 | N/A

Ori+ 181,379,029 | 18x 172,997,973 | 18x 148,789,097 | 14x 523,492,124 | 17x

M2+ 123,588,182 | 27x 88,581,223 | 35x 63,678,663 | 32x | 287,012,673 | 32x

Table 5-13 Comparison using C6416 simulator (Best solution) with file level optimization

Afterward, we record the real time execution on'the C6416 emulator, i.e. the hardware
platform. We use the timer on the'DSP platform to‘count the executing time. We compare the
‘ori’, ‘M1’°, ‘M2+’, and ‘M3+’ and all resultsiare shown in Table 5-14. The ‘M2+’ result can
achieve about 45% reduction of the computation time. It is similar to the result of the C6416
simulator. Comparing these reduction ratios in Table 5-11 and Table 5-14, all results are
consistent. The simulation results on the C64xx simulator also achieve approximately those
results on the hardware platform or the C6416 simulator.

Finally, we compare the difference in executing time between the C6416 simulator and
the C6416 emulator (i.e. the hardware platform) shown in Table 5-15. We convert the cycles
of the C6416 simulator to seconds by dividing 10° (1GHz DSP). The results show that the
original executing time on the C6416 emulator is slower than the one on the C6416 simulator
by about 11~14 %. When the L2 cache is adopted, the results show that the executing time on
the hardware platform (C6416 emulator) is similar to that on the C6416 simulator. In
summary, our proposed method can achieve an better performance and can implement on the
DSP platform in an efficient and simple manner. The experimental results on different

simulators or emulator show consistent results. It means that our proposed method can
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achieve about half reduction on the real system.

Non compiler-level

L2 cache without

L2 cache with file

Tierl optimization | Ratio compiler-level Ratio | level optimization | Ratio
(sec) optimization (sec) (sec)
Ori 8.741983 | N/A 0.898467 | N/A 0.447415 | N/A
M1 7.666878 | 88% 0.717021 | 80% 0.346838 | 78%
Goldhill

M2+ 7.646112 | 87% 0.579569 | 65% 0.250016 | 56%

M3+ 7.643923 | 87% 0.580308 | 65% 0.259049 | 58%

Ori 8.752465 | N/A 0.904697 | N/A 0.451394 | N/A

M1 7.654667 | 87% 0.719655 | 80% 0.347562 | 77%

part M2+ 7.711458 | 88% 0.584394 | 65% 0.251254 | 56%
M3+ 7.701879 |.88% 0.584885 | 65% 0.260636 | 58%

Ori 7.786148 4 N/A 0.835078 | N/A 0.420186 | N/A

M1 7.052966 1 91% 0.670789 | 80% 0.325005 | 77%

bene M2+ 7.067648 | 91% 0.54088 | 65% 0.23467 | 56%
M3+ 7.056214 | 91% 0.542619 | 65% 0.2434 | 58%

Ori 10.2021 | N/A 1.077518 | N/A 0.53121 | N/A

M1 9.19398 | 90% 0.84524 | 78% 0.405664 | 76%

Baboon

M2+ 9.306895 | 91% 0.69134 | 64% 0.294029 | 55%

M3+ 9.328353 |1 91% 0.689299 | 64% 0.304899 | 57%

Table 5-14 Comparison of the executing time on the C6416 emulator

98




C6416 simulator | Conversion | C6416 emulator Ratio

(cycles) (sec) (sec) (simulator/emulator)
Goldhill | Ori 7,509,481,733 7.509482 8.741983 86%
Ori+ 441,174,161 0.441174 0.447415 99%
M2+ 243,772,802 0.243773 0.250016 98%
Barb Ori 7,524,305,067 7.524305 8.752465 86%
Ori+ 445,058,085 0.445058 0.451394 99%
M2+ 245,428,000 0.245428 0.251254 98%
Lena | Ori 6,922,931,525 6.922932 7.786148 89%
Ori+ 414,230,692 0.414231 0.420186 99%
M2+ 229,200,081 0.2292 0.23467 98%
Baboon | Ori 9,047,999,627 9.048 10.2021 89%
Ori+ 523,492,124 0.523492 0.53121 99%
M2+ 287,012,673 0.287013 0.294029 98%

Table 5-15 Comparison between the €64 16 simulator and the C6416 emulator

(The executing time of the Tierl module)
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6.1 Conclusion

The main target of this thesis is to accelerate the JPEG2000 encoder and implement the
encoder on the TI C6416T DSP platform. We have presented three known methods and
proposed two improved methods to accelerate the Tierl module, which is the major part in the
JPEG2000 encoder. We first presented the previous speed-up methods and discussed their
advantages and drawbacks. The advantages of these methods may not match the sequential
processing environment. Therefore; we proposed-the VGOSS and the modified VGOSS
methods. Also, the codes are modified toallow program level optimizations as discussed in
Section 3.4.3 and 5.1.4 .

. The proposed VGOSS method is-¢onstructed on the re-ordered code-block samples and
the extension of the GOSS and PP methods. It encodes only the NBC (need-to-be-coded)
samples but reduces the checking cycles in the original three pass processes. It is easy and
simple to implement and has a good performance on the DSP platform. It can run about 3.6
times faster than the original software on the C64xx simulator, which uses the flat memory
system. It means a reduction of the computation cycles up to 72 %. However, the real DSP
system may spend extra cycles on accessing external memory. It is profiled by the C6416
simulator explained in Section 3.3.3 . And our best performance is up to 32 times faster than
the original one without DSP optimization. If the DSP compiler-level optimization technique
is applied to the original codes, the speed-up is about 45%. The improvement is due to two
factors, (1) our proposed VGOSS method and (2) the program level optimizations. Finally, we
compare the results between the simulator and the emulator (i.e. hardware platform). The
modified VGOSS method has about the same execution performance as VGOSS method on
DSP although we expect it would be faster. All the results are consistent.

In summary, our proposed acceleration methods have improved the JPEG2000 encoder
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quite significantly. However, the JPEG2000 algorithm is still complicated in hardware
implementation. The memory bottleneck is still a challenge to the embedded system. Because
our DSP platform supports the L2 cache memory system, we have a great improvement by
using this feature. There is still room for improvement to accelerate the JPEG2000 algorithm

on different types of the embedded systems.

6.2 Future Works

The block coding takes the major part of the computational cycles in the JPEG2000
encoding process. The experimental results given in this thesis are the lossless image
encoding and our proposed methods reduce checking cycles of the Pass2 and Pass3 processes.
The acceleration methods can be used for encoding a lossy image also. It takes some effort to
improve the rate control module using our proposed method in lossy image coding. In each
bit-plane coding, our proposed methods have couinted the number of NBC samples in the first
pass process. Also, it means that we can obtain the distortion information before the Pass2 and
Pass3 processes in the current bit-plane. Also, our proposed method match DSP hardware well
and can be more efficient than the other known methods. In the reference software, the DWT
module has been accelerated by a lifting.scheme and is about 2 times faster than the previous
vision of the reference software. We did not focus on accelerating the DWT module yet, but it
becomes an important part in the JPEG2000 encoder after our acceleration. The speed-up of

the DWT module can be another topic for research.
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