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 JPEG2000 編碼器之加速 

和 TI DSP 系統平台上之實現 

研究生: 劉建志 指導教授: 杭學鳴 博士

 

國立交通大學 

電機學院 碩士班 

 

摘要 

由於數位影像應用的逐漸普及，為了提供更有壓縮效率以及支援更多功能的影像處

理，一個新一代的靜態影像壓縮標準 JPEG2000 於是產生。它在高壓縮率下也能夠提供

相當好的主觀品質，此外，它在壓縮效能和傳送位元流時提供了更細緻的調整功能。然

而，JPEG2000 在計算上的複雜度相當的高，在本論文中，我們將 JPEG200 編碼器實現

在 TI DSP 平台上。我們根據 JPEG2000 中最複雜的 Tier 部份，提出兩種改善方法，並

且加上 TI DSP 最佳化的各種相關工具來進行加速。 

我們的參考軟體採用了 openJPEG ver.1.0，因為這套軟體的小波轉換模組已經使用

一維補嘗式結構(lifting scheme)來進行加速，所以針對佔了整個編碼器九成運算量的

Tier1 模組，我們先探討常見的改善方式，並實際在我們所使用的平台上做測試，然後

我們提出了兩種改進方法，一種稱為 VGOSS(Variable group of sample skip)，另外一種則

是修改 VGOSS 的方式，來達成減少運算量的目的。這個方式是將需要編碼的資料紀錄

起來，減少對不需要的編碼的資料所浪費的檢查時間。另外，我們改變了原來編碼的順

序，提供更快的運算架構。當我們對影像使用無失真編碼時，除了採用所提供的加速方

法，還有使用 DSP 的編譯程序最佳化、及程式碼的加速技術、還有快取記憶體的重新

配置等功能，在最後的在 DSP 系統上的實驗數據顯示，我們使用以上所有技術後，可

以比最原始的效能還要快 32 倍，如果比較在同樣的 DSP 最佳化設定還有記憶體配置

下，我們的快速演算法仍然可以減少 45%的運算量。 

關鍵字：  

JPEG2000、TI DSP、DSP 系統加速、EBCOT 
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Student: Chien-Chih Liu Advisor: Dr. Hsueh-Ming Hang
 

College of Electrical and Computer Engineering 
 

National Chiao Tung University 
 

Abstract 

Because the usage for digital imagery gets increasingly popular, to enhance the 

compressed image efficiency and features, a new still image coding standard called 

JPEG2000 was proposed. It provides an excellent subjective quality at low bit rates. It also 

offers fine granularity scalability in compression efficiency and transmitting compressed bit 

stream. However, JPEG2000 is also very complicated in computational complexity. In this 

thesis, we implement a JPEG2000 encoder on the TI DSP platform. We propose two speed-up 

methods and use the TI DSP optimization tools to accelerate the Tier1 module, which is the 

most complex part in the JPEG2000 standard. 

We start with the ver.1.0 OpenJPEG reference software, which has adopted the 1-D 

lifting scheme to accelerate the DWT module. Thus we focus on the Tier1 module, which 

takes about 90% of total computing time. We study the previous methods first and examine 

their effectiveness on our DSP platform. Then, we propose two improved methods, one is 

called VGOSS (Variable Group Of Sample Skip), and the other is a modified VGOSS method. 

We eliminate the unnecessary checking cycles by recording the NBC (Need-to-Be-Coded) 

samples on a list. Furthermore, the sample index is reordered to facilitate fast execution. In 

the DSP implementation of the proposed methods, we use code acceleration techniques and 

DSP compiler-level optimization. We also tune the cache allocation to reduce memory access 

time. The experimental results show that the best performance is up to 32 times faster than the 

original program without any optimization on the DSP platform. If the original program is 
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compiled with the DSP optimization tools and proper cache assignment, our fast algorithm 

can still reduce the computation by 45%. 

 

Key words: 

JPEG2000、TI DSP、DSP platform acceleration、EBCOT 
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Chapter 1  

Introduction 

 

 

1.1 Introduction 

Digital image is an essential part of our daily information in the world today. The 

standards for the efficient representation and interchange of digital images are important. 

JPEG2000 is a well-known image algorithm for its excellent coding performance especially in 

low bit-rate. It is the most recent addition to a family of international standards developed by 

the Joint Photographic Experts Group (JPEG). This group operates under the auspices of Joint 

Technical Committee 1, Subcommittee 29, Working Group 1 (JTC 1/SC 29/WG 1), a 

collaborative effort between the International Organization for Standardization (ISO) and 

International Electro technical Commission (IEC). The JPEG committee has already released 

the JPEG and JPEG-LS standards. The JPEG standard is the most popular image compression 

in recent years. However, the JPEG committee intends to create a new image coding system 

for different types of still images (bi-level, gray-level, color, multi-component), with different 

characteristics (natural images, scientific, medical, remote sensing, text, rendered graphics, 

and etc.). The targets of the JPEG2000 coding system are expected to be the low bit-rate 

operation with a rate-distortion and subjective image quality performance superior to the 

existing image standards. 

The JPEG2000 standard implements an entirely new way of compressing images based 

on the wavelet transform, in contrast to the discrete cosine transform (DCT) used in the JPEG 

standard. It also supports lossy and lossless compression of single-component (gray level) 

images and multi-component (color) images. In addition to this basic compression 

functionality, a number of other features are provided, including progressive recovery of an 

image by fidelity or resolution, region of interest coding, random accessing and so on. 

However, the complexity of JPEG2000 algorithm is the most critical issue in the 
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implementation on an embedded system. Typically, the Embedded Block Coding with 

Optimized Truncation (EBCOT) is the major part and computationally intensive in the 

JPEG2000 algorithm. The EBCOT employs a post-compression Rate-Distortion Optimization 

(RDO) tool, which truncates the bit-stream at the target bit-rate providing optimal image 

quality. Because of these tools, the JPEG2000 algorithm has a much higher computation than 

the JPEG algorithm. In order to reduce the cost and power consumption, we analyze and 

accelerate the JPEG2000 algorithm in this study. 

 

1.2 Overview of the Thesis 

In this thesis, the JPEG2000 encoder is implemented on an embedded system-a TIDSP 

platform. A few speed-up methods are adopted in our encoder. In the Chapter 2, the concepts 

of the JPEG2000 algorithm are introduced and all coding modules are presented in the 

following sections. Chapter 3 introduces the implementation environment including the DSP 

platform, coding development tools, and some typical optimization methods. In Chapter 4, the 

JPEG2000 encoder is profiled and analyzed. Some previous accelerating methods are 

reviewed and modified in our DSP platform. Then, we propose our improved methods to 

accelerate the JPEG2000 encoder in Chapter 5 and extensive experiments using different 

methods are also presented in Chapter 5. Finally, we give a summary of this project and also 

discuss the future possible work in Chapter 6. 
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Chapter 2  

Conspectus of 

JPEG2000 Algorithm 

 

The JPEG standard has been in use for almost a decade now. It provides a valuable tool 

during all these years, but it cannot fulfill the advanced requirements for image coding of 

today. The JPEG2000 standard provides a set of features that are important to many high-end 

and emerging applications by adopting new technologies. This chapter introduces the feature 

set and provides an overview of the Part1 of JPEG2000 standard Part 1. It is the core of the 

JPEG2000 for image coding system. The details of JPEG2000 Part 1 can be found in [1]. 

 

2.1 Introduction to JPEG2000 

Starting from March 1997, a new call for contributions was launched for the 

development of a new standard for the compression of still images, the JPEG2000 standard 

[1], [2]. The requesting compression technologies had been submitted to an evaluation during 

the November 1997 WG1 meeting in Sydney, Australia. The JPEG2000 standard has been 

achieved many desired features including different types of still image, different 

characteristics, and different imaging models within a unified system. The most important 

features [7] of JPEG2000 algorithm are listed as below.  

 

Superior low bit-rate performance: 

While superior performance at all bit-rates was considered desirable, improved 

performance at low bit-rate (e.g. below 0.25 bpp), with respect to JPEG, was considered to be 

an important requirement for JPEG2000. JPEG2000 has a compression advantage over JPEG 

of roughly 20% and a subjective quality benefit. 

Continuous-tone and bi-level compression: 
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Seamless compression of image components (e.g., R, G, or B), each from 1 to 16 bits 

deep, was desired from one unified compression architecture. 

Progressive transmission by pixel accuracy and resolution: 

Progressive transmission that allows images to be reconstructed with increasing pixel 

accuracy or spatial resolution is essential for many applications. For examples, World Wide 

Web, image archival and printers, are common applications. 

Lossless and lossy compression: 

JPEG2000 provides both lossless and lossy compression, again from single compression 

architecture. It is desired to provide lossless compression in the natural course of progressive 

decoding. 

Region-of-Interest Coding: 

Some parts of an image are more important than others, and would like to be transmitted 

with better quality and less distortion than the rest of the image. Users can define certain 

ROI’s in the image to be coded and transmitted first. 

Random code-stream access and processing: 

This feature allows users to define certain ROI’s in the image to be coded and 

transmitted with less distortion than the rest of the image. Besides, rotation, filtering, 

translation, scaling and feature extraction are supported. 

Robustness to bit-errors: 

It is desirable to consider robustness to bit-errors while designing the codestream. In the 

noisy communication channels (e.g., wireless), proper design of the codestream can aid 

subsequent error correction systems in alleviating catastrophic decoding failures. 

Open architecture: 

It is desirable to allow open architecture to optimize the system for different image types 

and applications. A decoder is only to implement the core tool set and a parser that 

understands the codestream. Furthermore, unknown tools could sent from the source and be 

adopted by the decoder. 

Content-based description: 

Image archival, indexing and searching is an important in image processing. 

Content-based description of images might be available as part of the compression system. 

Side channel spatial information (transparency): 

Side channel spatial information such as alpha planes and transparency planes are useful 
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for transmitting information for processing the image for display, printing or editing. 

Protective image security: 

Protection of a digital image can be achieved by means of watermarking, stamping, 

encryption, and labeling. The SPIFF has implemented labeling method, and JPEG2000 must 

be easy to achieve the target. 

 

Source 
Image 
Data

Pre-Processing Forward DWT

Uniform Scalar 
QuantizationTier-1 EncoderTier-2 Encoder

Rate Control

Coded Image

 

Figure 2-1 General block diagram of JPEG2000 encoder [1] 

 

Post-Processing Inverse DWT

DequantizationTier-1 DecoderTier-2 DecoderCoded Image

Reconstructed 
Image

 

Figure 2-2 General block diagram of JPEG2000 decoder [1] 

 

Due to above-mentioned attractive features, JPEG2000 has a very large potential 

application base. Some possible application areas include: document imaging, digital 

photography, desktop publishing, Internet, image archiving, medical imaging, remote sensing, 

and web browsing. The JPEG2000 standard compression engine (Encoder and Decoder) is 

illustrated in block diagrams in Figure 2-1 and Figure 2-2. It is comprised of numerous parts, 
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several of which are listed in Table 2-1. Part 2 [3] and Part 3 [4] describe extensions to the 

baseline codec that are useful for certain specific applications such as intraframe-style video 

compression. For convenience, we will refer to the codec defined in Part 1 of the standard as 

the baseline codec. Before introducing the major block of the codec, we should know that the 

most parts of the JPEG2000 standard are written from the point of view of the decoder. 

Besides, the decoder is the reverse of the encoder. We will only describe the JPEG2000 

encoding tools in the following sections. 

 

 

Part Title Purpose 

1 Core coding system Specifies the core codec for the JPEG2000 family of 

standard 

2 Extensions[3] Specifies additional functionalities that are useful in some 

applications but need not be supported by all codec 

3 Motion JPEG2000[4] Specifies extensions to JPEG2000 for intraframe-style video 

compression 

4 Conformance testing[5] Specifies the procedure to be employed for compliance 

testing 

5 Reference software[6] Provides sample software implementations of the standard 

to serve as a guide for implementations 

Table 2-1 Part of the JPEG2000 standard 
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2.2 Pre-Processing 

The Pre-Processing block includes three types of processes, which are “Image Tiling”, 

“DC Level Shifting”, and “Component transformations”. We will describe these terms as 

follows. 

 

 
Figure 2-3 Tiling, DC-Level shifting, and Component transformation (optional) 

 

 

2.2.1 Image Tiling 

The standard operations, including component mixing, wavelet transform, quantization 

and entropy coding, works on image tiles which are the partition of the original image. The 

image tiles are rectangular non-overlapping blocks which are compressed independently. 

Tiling reduces memory requirements, and since they are reconstructed independently, they 

can be used for decoding specific parts of the image instead of the whole image. 

 

2.2.2 DC Level Shifting 

After tiling image, all samples of the each tiles are dc level shifted by subtracting the 

same quantity 2P-1, where P is the component’s precision. DC level shifting is performed on 

samples of components that are unsigned only. 
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2.2.3 Component Transformation 

The followed stage is an optional inter-component transformation. It reduces the 

correlation between components, and lead to improved coding efficiency [8]. The JPEG2000 

supports multiple-component image, and different bit depths. For the reversible (i.e. lossless) 

systems, the only requirement is that the bit depth of each output image component must be 

identical to the bit depth of the corresponding input image component. The JPEG2000 

supports two different component transforms, irreversible component transformation (ICT) 

for lossy coding and reversible component transformation (RCT) for lossless or lossy coding. 

All image component samples I0(x, y), I1(x, y), I2(x, y), corresponding to the first, second, and 

third components, produce transform samples Y0(x, y), Y1(x, y), Y2(x, y). The forward and 

inverse RCT are achieved by means of (2.2-1) and (2.2-2). The other one, ICT, refers to (2.2-3) 

and (2.2-4). 
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2.3 Discrete Wavelet Transform and Quantization 

 

The wavelet transform is used for analysis of the tile components into different 

decomposition levels. These decomposition levels contain a number of subbands, which 

consist of coefficients that describe the horizontal and vertical spatial frequency 

characteristics of the original tile component. Due to the statistical properties of these subband 

signals, the transformed data can usually be coded more efficiently than the original 

untransformed data. 

In JPEG2000 system, two wavelet transform kernels are provided. The DWT can be 

irreversible or reversible. The default reversible transformation is implemented by means of 

the Le Gall 5-3 filter, the analysis and the corresponding synthesis filter coefficients are given 

in Table 2-2. The other one, default irreversible transform, is implemented by means of the 

Daubechies 9-7 filter, and the corresponding coefficients are given in Table 2-3. 

 

 Analysis Filter Coefficients Synthesis Filter Coefficients 

i Low-Pass Filter h L(i) High-Pass Filter h H(i) Low-Pass Filter g L(i) High-Pass Filter g H(i) 

0 6/8 1 1 6/8 

±1 2/8 -1/2 1/2 -2/8 

±2 -1/8   -1/8 

Table 2-2 Le Gall 5-3 analysis and synthesis filter coefficients 

 Analysis Filter Coefficients Synthesis Filter Coefficients 

i Low-Pass Filter h L(i) High-Pass Filter h H(i) Low-Pass Filter g L(i) High-Pass Filter g H(i) 

0 0.6029490182363579 1.115087052456994 1.115087052456994 0.6029490182363579 

±1 0.2668641184428723 -0.5912717631142470 0.5912717631142470 -0.2668641184428723 

±2 -0.07822326652898785 -0.05754352622849957 -0.05754352622849957 -0.07822326652898785

±3 -0.01686411844287495 0.09127176311424948 -0.09127176311424948 0.01686411844287495

±4 0.02674875741080976   0.02674875741080976

Table 2-3 Daubechies 9-7 analysis and synthesis filter coefficients 
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Figure 2-4 2-D forward discrete wavelet transform 

 

 

 

Figure 2-5 2-D DWT decomposition 

 

Usually, the two-dimensional (2-D) discrete wavelet transform is accomplished by 

cascading two one-dimensional (1-D) discrete wavelet transform. It is decomposed by 

one-dimensional discrete wavelet transform with 2-channel in horizontal and vertical 

directions respectively, as shown in Figure 2-4. After one-dimensional vertical discrete 

wavelet, two subbands are formed. The low-pass samples represent a downsampled 

low-resolution version of the original set. The high-pass samples represent a downsampled 

residual version of the original set. And then the subbands pass through the other horizontal 

filter. The four higher-level subbands are all composed of quarter original image size such as 

Figure 2-5. 
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Power of 2 decompositions is allowed in the form of dyadic decomposition (in Part I) as 

shown in Figure 2-6. For a N by N image through the M-level two-dimensional discrete 

wavelet transform decomposition, the size of each subband is N/2M by N/2M. An example of a 

dyadic decomposition into subbands of the image ‘Lena’ is illustrated in Figure 2-7. 

 

 

 

Figure 2-6 Hierarchical of multi-level 2-D DWT 
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N/2 N/4
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Figure 2-7 An example of Lena image for multi-level 2-D DWT 
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After transformation, all coefficients are quantized. Sever quantization options are 

provided in JPEG2000 standard. Only the uniform scalar quantization which is the default 

quantization method in JPEG2000 standard Part 1 would be introduced here.  

In integer mode, the quantizer step sizes are always fixed at one, effectively bypassing 

quantization and forcing the quantizer indices and transform coefficients to be one and the 

same. In this case, lossy coding is still possible, but rate control is achieved by other 

mechanism. In the case of real mode, the quantizer step sizes are chosen in conjunction with 

rate control. Each of the transform coefficients ab(u,v) of the subband b is quantized to the 

value qb(u,v) according to the formula (2.3-1). Since the step size bΔ  is represented relative 

to the dynamic range Rb of the subband b, it is defined in (2.3-2). The exponent/mantissa pairs 

(εb, μb) are either explicitly signaled in the bit stream syntax for every sub-band.  
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2.4 Embedded Block Coding with Optimized Truncation 

Embedded block coding with optimized truncation (EBCOT) [9] is adopted for the 

entropy coding of JPEG2000.The EBCOT consists of two major coding step, tier-1 and tier-2, 

as shown in Figure 2-8. The tier-1 part is the embedded block coding (EBC) which is 

composed of the context formation (CF) and the arithmetic encoder (AE). The tier-1 coder 

divides each subband coefficient into code-blocks and all code-blocks are coded separately 

into a block-based embedded bit-stream. The coding is performed using the bit-plane coder 

described later in next section. For each code-block, an embedded code is produced, 

comprised of numerous coding passes and the output of the tier-1, block-based embedded 

bit-stream, is a collection of coding passes for the various code-blocks. After that, the tier-2 

truncates the embedded bit-stream to minimize the overall distortion. We will introduce the 

two tiers in following sections. 

 

Context
Formation

Arithmetic
Encoder

Rate-Distortion
Optimization

Full-featured
bit-stream

Context

Decision
DWT

Coefficients

EBC

Tier-1 Tier-2
 

Figure 2-8 Two tiers of EBCOT algorithm 

 

2.4.1 Tier-1 Coding 

The tier-1 coding is also a known as the embedded block coding (EBC). It includes the 

context formation (CF) and the arithmetic encoder (AE) and its basic coding unit is a 

code-block. The EBC is a bit-level processing algorithm, and the code-block is coded in a 

bit-plane by bit-plane manner which is from the most significant bit (MSB) bit-plane to the 

least significant bit (LSB) bit-plane in a code-block. Every bit-plane takes three passes and it 

is scanned in a stripe-based method, as presented in Figure 2-9. 
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Figure 2-9 Diagram of tile, code-block, bit-plane, stripe and coding pass 

 

2.4.1.1 Context Formation (CF) 

The embedded block coding is essentially a context-adaptive arithmetic encoder as 

shown in Figure 2-8. The context formation (CF) generates context-decision pairs for the 

arithmetic encoder (AE). The context is adopted to adapt the probability of the decision by the 

AE. In context modeling, all code-blocks are coded a bit-plane at a time starting from the 

MSB bit-plane with a non-zero element to the LSB bit-plane. For each bit-plane in a 

code-block, a special scan pattern is use for each of three coding passes. The three coding 

passes are coded in order as Pass1 (significance propagation pass), Pass2 (magnitude 

refinement pass), and then Pass3 (cleanup pass). Each coefficient bit from DWT is coded in 
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only one of the three coding passes, and the coding condition is shown in Table 2-4. 

 

Coding Pass Coding Condition 
Pass1 (Significance Propagation Pass) Insignificant sample with at least one significant 

neighbor 
Pass2 (Magnitude Refinement Pass) Significant sample 
Pass3 (Cleanup Pass) Insignificant sample with all 

Table 2-4 Coding Pass Classification 
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Figure 2-10 Context window and Neighbors states 

 

Since the context-based arithmetic coding is employed, a means to select context 

selection is necessary. Figure 2-10 shows the context window and the 4-connected or 

8-connected neighbors of a sample is selected that is performed by examining state 

information. 

 The first coding pass (Pass1) for each bit plane is the significance propagation pass. 

During the significance propagation pass, a bit is coded if its location is not significant, but at 

lease one of its 8-connected neighbors is significant. Nine context labels (Table 2-5) are 

created based on how many and which ones are significant. The significance propagation pass 

includes only bits of coefficients that were insignificant and have a non-zero context. All other 

coefficients are skipped. If the value of this bit then the significance state is set to 1 and then 

the sign coding must be performed. The sign coding is determined using another context table. 
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Only four neighbors are considered, and each neighbor may have one of three states: 

significant positive, significant negative, or insignificant. Both vertical and horizontal give the 

different contribution for the context table. The nine permutations of the vertical and 

horizontal contributions are reduced into five context labels as shown in Table 2-6. The 

decision of sign coding can be obtained by performing the logic XOR operation with the 

XOR bit of the sign context table. 

 The second coding pass (Pass2) for each bit plane is the magnitude refinement pass. This 

pass signals subsequent bits after the most significant bit for each sample. If a sample was 

found to be significant in a previous bit plane (except those that have just become significant 

in the immediately proceeding significance propagation pass), the next most significant bit of 

that sample is conveyed using a single binary symbol. The context used in magnitude 

refinement coding is determined by the summation of the significance state of the horizontal, 

vertical, and diagonal neighbors as shown in Table 2-7. 

 All the remaining coefficients in the bit-plane are insignificant and have the context 

value of zero during the significance propagation pass. These are all included in the cleanup 

pass (Pass3). The cleanup coding not only uses the neighbor context, like that of the 

significant coding from Table 2-5, but also a run-length coding. If the four contiguous samples 

in a column and the context labels of the four samples are all zeros, the run-length coding is 

performed.  

 

LL and LH sub-bands     
(vertical high-pass) 

HL sub-band          
(horizontal high-pass) 

HH sub-band 
(diagonally high-pass) 

Context 
Label 

ΣH ΣV ΣD ΣH ΣV ΣD Σ(H+V) ΣD  

2 Xb X X 2 X X ≧3 8 
1 ≧1 X ≧1 1 X ≧1 2 7 
1 0 ≧1 0 1 ≧1 0 2 6 
1 0 0 0 1 0 ≧2 1 5 
0 2 X 2 0 X 1 1 4 
0 1 X 1 0 X 0 1 3 
0 0 ≧2 0 0 ≧2 ≧2 0 2 
0 0 1 0 0 1 1 0 1 
0 0 0 0 0 0 0 0 0 

Table 2-5 Contexts for the significance propagation pass and cleanup coding passes 
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Horizontal contribution Vertical  contribution Context Label XOR bit 

1 1 13 0 
1 0 12 0 
1 -1 11 0 
0 1 10 0 
0 0 9 0 
0 -1 10 1 
-1 1 11 1 
-1 0 12 1 
-1 -1 13 1 

Table 2-6 Contributions of the vertical (and the horizontal) neighbors to the sign context 

 
ΣH+ΣV+ΣD First refinement for this sample Context Label 

Xb False 16 
≧1 True 15 

0 True 14 

Table 2-7 Contexts for the magnitude refinement coding pass 

 

 

Figure 2-11 Basic operation of the AE  

(Most Probable Symbol, Least Probable Symbol, and Renormalization) 
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2.4.1.2 Arithmetic Encoder (AE) 

The decision which is produced by the CF is coded during arithmetic encoder. The AE is 

an adaptive, binary MQ-coder [10]. The basis of the binary arithmetic coding process is the 

recursive probability interval subdivision of Elias coding. Since it is a binary AE, there are 

only two sub-intervals. With each binary decision, the current probability interval is 

subdivided into two sub-intervals, and the codestream is modified (if necessary) so that points 

to the base (lower bound) of the probability sub-interval assigned to the symbol as shown in 

Figure 2-11. Besides, a lazy coding mode is used to reduce the number of symbols that are 

arithmetically coded. According to this mode, after the fourth bitplane is coded, the first and 

second pass are included as raw, while only the third coding pass of each bitplane employs 

arithmetic coding. 

 

2.4.2 Tier-2 Coding 

The tier-2 encoding follows the tier-1 encoding, and the input of the tier-2 encoding 

process is the set of bit-plane coding passes generated during tier-1 encoding. Each coding 

pass is a candidate of truncation point of a code-block and the coding pass information is 

packaged into data units called packets in tier-2 coding. For meeting a target bit-rate or 

transmission time, the packaging process imposes a particular organization of coding pass 

data in the output codestream. Thus rate control assures that the desired number of bytes is 

used by the codestream while assuring the highest image quality possible. We will review the 

RDO algorithm in following section. 

In the encoder, rate control can be achieved through two distinct mechanisms, the choice 

of quantization step size and the selection of the subset of coding passes to include in the 

codestream. When lossless coding is employed, only the first mechanism may be used. The 

quantization step sizes must be fixed to one. In lossy coding mode, both of the two 

mechanisms may be employed. If the quantization step sizes are changed, the tier-1 encoding 

must be performed again. Since tier-1 coding requires a lot of computation, changing step 

sizes may not be practical in the encoder. The encoder can elect to discard coding passes in 

order to control the rate. The contribution of each coding pass makes to rate, and calculates 
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the distortion reduction. Using this information, the encoder can include the coding passes in 

order of decreasing distortion reduction until the bit budget has been exhausted. 

 The goal of rate control is to minimize the distortion while keeping the rate smaller than 

the target rate, RT. The problem is mapped into Lagrange optimization problem [11] as 

(2.4-1). 
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The D means total distortion, and R means total bit rate. The Lagrange multiplier(λ) is 

used to minimize J = D+Rλ,and thus the derivative of J is set to zero. The candidate 

corresponding pass m of the bit-plane k in the code-block i (Bi) is represented as Zi. Then the 

optimalλ,(*λ), and the slop of R-D curve can be obtained as (2.4-2). 
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For each code-block Bi, the slop of R-D curve is corresponding to the number of Zi as 

(2.4-3). The Si
Zi means the reduction speed when Bi is truncated at Zi. The optimal solution 

proved in [11] is constrained as below (2.4-4). The *Zi is the optimal truncation point of Bi, 

and the rate-distortion optimization can be achieved when Zi is sufficiently closed to *Zi. 
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Chapter 3  

DSP Implementation 

Environment 

 

In this chapter, we will briefly introduce the DSP platform environment and some 

optimization methods. We use the DSP module (SMT395) made by Sundance. It houses two 

important chips, TMS320C6416T DSP chip made by Texas Instrument and Xilinx Virtex II 

Pro FPGA. As our implementation is software base system, we only focus on the DSP chip. In 

addition, we will introduce the software development tool, the Code Composer Studio (CCS), 

and bring in some efficient optimization methods by using this environment. 

 

3.1 DSP Platform Introduction 

Our DSP platform includes two major modules, SMT395 and SMT310. The DSP module, 

SMT395, is based on the 1GHz 64-bit TMS320C6416T DSP which is manufactured on the 

90nm wafer technology. It is also supported by the T.I. Code Composer Studio and 3L 

Diamond RTOS to enable full multi-DSP systems with minimum efforts by the programmers. 

We use the TI’s PCI module carrier (SMT310) to communicate between SMT395 and 

personal computer. Our emulation results could be passed from SMT310 PCI bus and shown 

on CCS windows. Figure 3-1 shows the pictures of SMT395 and SMT310. The SMT395 

module can be installed on the SMT310 carrier and SMT310 can be installed on a personal 

computer. The block diagram of emulator system is shown in Figure 3-2. We will introduce 

the main DSP module (SMT395) and software environment in following sections. 
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SMT395 SMT310 

Figure 3-1 SMT395 module and SMT310 carrier 

 

 

 

Figure 3-2 Block diagram of emulator system 
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3.2 Major DSP Module 

In our emulator system, the DSP module (SMT395) is the most important part of this 

system. First, we list some important features of SMT395 module as follows [12]. 

 

 1GHz TMS320C6416T fixed point DSP 

 8000MIPS peak performance 

 Xilinx Virtex II Pro FPGA. XC2V920-6 in FF896 package 

 256 Mbytes of SDRAM @ 133MHz using k4s511632M 

 Two Sundance High-speed Bus (50MHz, 100MHz or 200MHz) ports 32 bits wide 

 Eight 2 Gbit/sec Rocket Serial Links (RSL) for Inter-Module communications 

 Six Comports up to 20 Mbytes/sec each for Inter-DSP communication/configuration 

 8 Mbytes Flash ROM for configuration and booting 

 JTAG diagnostics port 

 

The TMS320C6416T DSP is the highest-performance fixed-point DSP generation in the 

TMS320C64X series of the TMS320C6000 DSP family. It is based on the second-generation 

high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture 

(Called VelociTI.2) developed by Texas Instruments [13]. The VelociTI.2 extensions in the 

eight functional units include new instruction to accelerate the performance in key 

applications and extend the parallelism of the VelociTI architecture. The functional block and 

DSP core diagram of TMS320C64x series is shown in Figure 3-3. 

 In the following sections, three major parts of TMS320C64x DSP are introduced 

respectively. They are central processing unit, memory, and peripherals. 
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Figure 3-3 Block diagram of the TMS320C64x DSPs [13] 

 

3.2.1 Central Processing Unit 

The DSP core of C64x series consists of eight independent functional units, 64 general 

purpose registers, program fetch unit, instruction dispatch (attached with advanced instruction 

packing), instruction decode unit, two data path, test unit, emulation unit, interrupt logic, and 

etc. The instruction dispatch and decode units could decode and arrange the eight instructions 

to eight functional units respectively. The eight functional units in the C64x architecture could 
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be further divided into two data paths, data path A and B as shown in Figure 3-3. Each path 

has one unit for multiplication operations (.M), another one for logical and arithmetic 

operations (.L), another one for branch, bit manipulation, and arithmetic operations (.S), and 

another one for loading/storing, address calculation and arithmetic operations (.D). The (.S) 

and (.L) units are for arithmetic, logical, and branch instructions. All data transfers make use 

of the (.D) units. Two cross-paths (1x and 2x) allow functional units from one data path to 

access a 32-bit operand from the register file on the other side. There are 32 general purpose 

registers, but some of them are reserved for specific addressing or used for conditional 

instructions. Each functional unit has its own 32-bit bus for writing into a general-purpose 

register file. All functional units which end in 1 (for example, (.L1)) write to register file A 

while all functional units which end in 2 ( for example, (.L2)) write to register file B. 

 

3.2.2 Memory and Peripherals 

The C64x uses a two-level cache-based architecture and has a powerful and diverse set 

of peripherals. The level 1 program cache (L1P) is a 128 Kbit direct mapped cache and the 

level 1 data cache (L1D) is a 128 Kbit 2-way set-associative cache. The level 2 memory/cache 

(L2) consists of an 8 Mbit memory space or combinations of cache (up to 256 Kbytes) and 

mapped memory. Besides, the TMS320C6416T uses two external memory interfaces (EMIF) 

to access asynchronous memories (SRAM and EPROM) and synchronous memories 

(SDRAM, SBSRAM, ZBT SRAM, and FIFO). 

The C64x contains some peripherals such as enhanced direct memory access (EDMA) 

controller, host-port interface (HPI), external memory interface (EMIF), PCI, and etc. The 

EDMA supports up to 64 EDMA channels which service peripheral devices and external 

memory. For the C64x device, the association of an event to a channel is fixed, and each of 

the EDMA channels has one specific event associated with it. These specific events are 

captured in the EDMA event registers even if the events are disabled by the EDMA event 

enable registers. The HPI is a parallel port through which a host processor can directly access 

the CPU’s memory space. The host can direct access to memory-mapped peripherals and has 

ease of access. The PCI module supports connection of the C6000 device to a PCI host via the 

integrated PCI master/slave bus interface. 
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3.3 Coding Development Environment 

In this Section, we will give a briefly introduction about the coding development 

environment in this project. The code composer studio (CCS) and the coding development 

flow are illustrated. The tutorial [14] introduces the key features of CCS and the 

programmer’s guide [15] gives a reference for programming TMS320C6000 digital signal 

processor (DSP) devices. A programmer needs to be familiar with coding development flow 

and CCS for building a new project on the DSP platform efficiently. 

 

3.3.1 Code Composer Studio 

Code Composer Studio (CCS) speeds and enhances the development process for 

programmers who create and test real-time, embedded signal processing applications. The 

CCS extends the basic code generation tools with a set of debugging and real-time analysis 

capabilities which is described as Figure 3-4. In addition, the CCS includes the following 

components which are listed below and all of these work together as shown in FIG.. 

 

 TMS320C6000 code generation tools 

 Code Composer Studio Integrated Development Environment (IDE) 

 DSP/BIOS plug-ins and API 

 RTDX plug-in, host interface, and API 

 

The code generation tools provide the foundation for the development environment 

provided by the CCS such as C compiler, assembler, assembler optimizer, linker, archiver and 

etc. The code composer studio integrated development environment is designed for editing, 

building, and debugging DSP target programs. During the analysis phase of the software 

development cycle, traditional debugging features are ineffective for diagnosing subtle 

problems that arise from time-dependent interactions. Therefore the DSP/BIOS plug-ins 

provides real-time analysis such as program tracing, performance monitoring, and file 

streaming. In addition, the real-time data exchange (RTDX) provides real-time, continuous 

visibility into the way DSP applications operate in the real world. It allows system developers 
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to transfer data for bi-directional real-time communications between a host computer and the 

DSP devices without stopping their target application. 

 

 

Figure 3-4 Development cycle 

 

 

Figure 3-5 Code composer studio development 

 

3.3.2 Code Development Flow 

Traditional development flows in the DSP industry have involved validating a C model 

for correctness on a host PC or UNIX workstation and then painstakingly porting that C code 

to hand coded DSP assembly language. But this is both time consuming and error prone, the 

recommended code development flow involves utilizing the C6000 code generation tools to 
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aid in optimization rather than forcing the programmer to code by hand in assembly. These 

advantages allow the compiler to do all the laborious work of instruction selection, 

parallelizing, pipelining, and register allocation. The phases of recommended code 

development flow are described as Figure 3-6. In phase 3, writing linear assembly code is not 

adopted unless the software pipelining efficiency is hardly achieved or the unbalanced 

resource allocation is hardly solved by the compiler with C code. 
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Figure 3-6 Code develop flow 

 

3.3.3 Simulation Tools 

In the code develop flow mentioned in Figure 3-6 we know that profiling is an essential 

step for analyzing coding efficiency. We use the C64xx CPU cycle accurate simulator to 

simulate the core of the C64xx processor with cycle accuracy. This is faster than the device 

cycle accurate simulators but does not simulate peripherals and cache system (use a flat 

memory system). In addition, we use another simulator called C6416 device cycle accurate 

simulator to simulate the C64xx XDS510 emulator. It simulates the C6416 processor and 

supports L1D, L1P, L2 cache, EDMA, QDMA, Interrupt Selector, McBSP(3), Timer(3), TCP, 

VCP and EMIF. It also supports interfacing with Async, SDRAM and Generic sync RAM 

Memory models. Finally, we use C64xx XDS510 emulator with the hardware board to verify 
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our project. The TMS3206416T which is connected via the XDS510 that emulator sets the I/O 

ports on our DSP platform. In the following sections, the profiling results of all the simulators 

are presented. But we like to remind that the C64xx XDS510 emulator cannot profile the CPU 

cycles. 

 

3.4 Optimization on TI DSP Platform 

As Figure 3-6 indicates, the optimization tools increase execution performance. In the 

following sections, several optimization technologies using VelociTI architecture and 

software technologies are introduced and adopted in this project. 

 

3.4.1 Architecture of TI TMSC6000 Family 

The TMS320C6000 series use the VelociTI architecture which is a high-performance, 

advanced very-long-instruction-word (VLIW) architecture. The architecture contains multiple 

execution units running in parallel, which allow them to perform multiple instructions in a 

single clock cycle. This makes an excellent choice for multi-channel, multi-function, and 

performance-driven applications. In addition, the C6000 pipeline can dispatch eight parallel 

instructions every cycle and parallel instructions proceed simultaneously through the same 

pipeline phases. It eliminates traditional architectural bottlenecks in program fetch, data 

access, and multiple operations. More detail features about this architecture are introduced in 

[16]. 

The TMS320C621x, TMS320C671x, and TMS320C64x DSPs of the TMS320C6000 

DSP family have the two-level memory architecture for program and data. The first-level 

program cache is designated L1P, and the first-level data cache is designated L1D. Both the 

program and data memory share the second-level memory, designated L2. The L2 is 

configurable allowing for various amounts of cache and SRAM. Figure 3-3 shows the block 

diagram of the C64x DSP. The L1P and L1D provide a fast on-chip memory. Accesses by the 

CPU to these first level caches can complete without CPU pipeline stalls. If the data requested 

by the CPU is not contained in cache, it is fetched from the next lower memory level. 

However, over the past years the performance of processors has improved at a much faster 
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pace than that of memory. As a result, there is a performance gap between CPU and memory 

speed. High-speed memory is available but consumes much more size and is more expensive 

compared with slow memory. 

Hierarchical memory architecture is commonly adopted in the embedded system as 

Figure 3-7. A fast but small memory is placed close to the CPU that can be accessed without 

stalls. The next lower memory levels are increasingly larger but also slower the further away 

from the CPU. Addresses are mapped from a larger memory to a smaller but faster memory 

higher in the hierarchy. Typically, the higher-level memories are cache memories that are 

automatically managed by a cache controller. L2 memory is configurable and can be split into 

L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory 

locations. The L2 cache is a 4-way set associative cache whose capacity varies between 32 

Kbytes and 256 Kbytes depending on its mode. It services cache misses from both L1P and 

L1D as well as DMA accesses using the EDMA controller. On a C6416T DSP for instance, 

the sizes of L1D and L1P are 16 Kbytes respectively. The size of L2 is 1 Mbytes and external 

memory can be several Mbytes large. Although the L2 memory can operate as SRAM, as 

cache, or as both, the L2 SRAM and L2 cache act with little difference. For example, a single 

L1D read miss takes 6 cycles when serviced from L2 SRAM, and 8 cycles when serviced 

from L2 cache. The detailed specifications are described in [17]. 

In practical implementation, image program usually takes lots of memory space for 

instant processing. Although there is a L2 memory configured as a SRAM after a reset, it is 

not enough for all the program instructions and the data. The L1 cache controller fetches most 

data from external memory with lots of CPU stall. In order to exploit all of the L2 SRAM, 

programmers must specify the relative data in the linker command file and modify the data 

structure. This expands time and affects program structure. Because the L1 cache is not large 

enough, L2 cache is a convenient way to decrease CPU stalls. 

There are two ways to configure L2 cache on DSP platform. If the DSP/BIOS is used, L2 

cache is enabled automatically. Otherwise, L2 cache can be enabled in the program code by 

issuing the appropriate chip support library (CSL) commands. Additionally, in the linker 

command file the memory to be used as L2 SRAM has to be specified. Since L2 cache cannot 

be used for code or data placement by the linker, all sections must be linked into L2 SRAM or 

external memory. Further, external memory addresses are optional for cacheable or 

non-cacheable in the setting of program codes. The real effect on DSP platform is going to be 
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presented in following chapters. 

 

 

 

Figure 3-7 TMS320C64x hierarchical memory 

 

 

3.4.2 Compiler-Level Optimization 

The compiler, which includes the parser and optimizer, accepts C/C++ source code and 

produces C6x assembly language source code. The Figure 3-8 gives a description of the 

C/C++ compiler. The optimizer can reduce code size and improve executing time by using 

compiler options. There are four optimization levels which are register (-o0), local (-o1), 

function (-o2), and file (-o3). 
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Figure 3-8 C/C++ compiler 

 

The register level (-o0) performs optimizations with control-flow-graph simplification, 

allocating variables to registers, loop rotation, eliminating unused code, simplifying 

expressions and statements, and expanding calls to functions declared inline. Next, the local 

level (-o1) performs all –o0 optimizations, plus local copy/constant propagation, removing 

unused assignments, and eliminating local common expressions. The function level (-o2) 

performs all –o1 optimizations, plus software pipelining, loop optimizations, eliminating 

global common sub-expressions and unused assignments, converting array references in loops 

to incremented pointer form, and loop unrolling. Finally, the highest level, file level (-o3), 

performs all –o2 optimizations, plus removing all functions never called, simplifying 

functions with return values never used, inline calls, reordering function declarations, 

propagates arguments into function bodies, and identifying file-level variable characteristics. 

In general, using the –o2 or –o3 level is necessary for performance and code size. The option 

is also used with the assembly optimizer. Some key optimizations such as software pipelining 

and loop unrolling are specified with these options. 
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3.4.3 Program-Level Optimization 

Except the optimizations as mentioned in previous sections, there are several methods to 

speed up the program. First, the linker command file allocates the data sections in different 

memory. The data which are accessed frequently should be allocated in the higher and fast 

memory level such as SRAM or cache. Programmer need to analyze the frequency of data 

accessing for better performance. Although the L2 cache provides an easy way to access 

external memory, exploiting the SRAM sometimes gets better performance than using the L2 

cache. Besides, the missing cycles are 

 Second, the C6000 C/C++ compiler supports such pragmas like CODE_SECTION, 

DATA_SECTION, MUST_ITERATE, UNROLL and etc. We know that branch prediction 

takes lots of cycles when it failed. Through the pragma, such as MUST_ITERATE, the 

information is provided to aid the compiler in choosing the best loops and loop 

transformations which means software pipelining and nested loop transformations. There are 

three methods to unroll the loop. First, you can use the compiler to unroll the loop 

automatically. Second, you can suggest that the compiler unroll the loop using these DSP 

pragmas. The last one is that you can unroll the code yourself. Sometimes it also helps the 

compiler reduce code size and sometimes unrolling by the compiler generates some redundant 

loops. The detailed specifications are described in [18]. Some of these pragmas are adopted in 

this project, and the test results are shown in following sections. 

 Third, the C64x DSPs are fixed-point processors, so they do not directly support 

floating-point data types. C64x DSPs can simulate floating-point operations, but it takes lots 

of extra clock. Decreasing floating-point operations is another way to speed up the system. 

Table 3-1 shows the different data types supported in CCS and take note of the data type 

“Long” is 40 bits width. Besides, use the short date type for fixed-point multiplication inputs 

whenever possible because this data type provides the most efficient use of the 16-bit 

multiplier in the C6000. It is about one cycle for “short × short” versus five cycles for “int × 

int”. But use int or unsigned int data types for loop counters, rather than short or unsigned 

short data type, to avoid unnecessary sign-extension instructions. 
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Data Type char short int float long long long double

Size (bits) 8 16 32 32 40 64 64 

Table 3-1 Different data types 

 

The loop unrolling is an efficient method to improve compiler performance. The 

compiler tries to reschedule the assembly with a full pipeline. Mostly, more instructions 

without dependence make better parallelism and decrease stalls. Compiler level optimizations 

and pragmas facilitate loop unrolling. The TMS320C6416T uses the 

Very-Long-Instruction-Word (VLIW) structure called VelociTI.2. It works efficiently with the 

loop unrolling to make optimal scheduling. Besides, unrolling loop by programmer is 

efficacious too. Sometimes compiler level optimizations are restricted to some compiler rules 

so that loop unrolling by hand is a manual work. In order to make VLIW structure efficiently, 

we use loop unrolling to fill up the function unit slots. The code size expanded with number 

of unrolling loops is the major shortcoming. However, the C6000 software pipelining 

mentioned before is a technique to reorganize loops. It interleaves instructions from different 

iterations without unrolling the loop. Both of two techniques can be applied simultaneously 

on the platform for H/W and S/W optimization, and the overhead of a loop and the time issues 

have eased. 

Finally, there are some special functions, called intrinsics, provided by the C6000 

compiler. These functions map directly to inlined C64x instructions to optimize the C/C++ 

code quickly. All instructions that are not easily expressed in C/C++ code are supported as 

intrinsics. The trick is that intrinsics use a single load or store instruction to access multiple 

data (SIMD). For example, it can combine four 8-bit data (char) or two 16-bit data (short) to a 

32-bit data type, and then it executes one operation instead of four (char) or two (short) 

operations. If the SIMD method is employed, the code efficiency is improved substantially. 

Figure 3-9 shows an example of using SIMD method. Other intrinsics enhance the efficiency 

in the similar way and are described in [19]. 
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A1 (short) A2 (short)

B1 (short) B2 (short)

+

=
A1+B1(short) A2+B2(short)

Single Instruction Multiple Data

 

Figure 3-9 SIMD example for using word access for adding short data 
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Chapter 4  

Analysis of Embedded Block Coding 

and Speed-Improving Methods 

 

In this chapter, we introduce the JPEG2000 software environment and its configuration. 

JPEG2000 configurations could have an impact on the performance. Some features improve 

the coding performance but spend lots of memory or complexity. Then we analyze the 

JPEG2000 encoder and identify the most complex elements in JPEG2000 algorithm. The goal 

of this chapter is to find algorithms to reduce the JPEG2000 implementation complexity on 

the DSP platform. Several speed-up methods are presented and compared each other. 

 

4.1 Parameters and Software Environment 

4.1.1 Jasper and OpenJPEG Reference Software 

In the JPEG2000 standard part 5 [6], it provides two standard reference softwares : 

JasPer and JJ2000. The JJ2000 is a Java implementation of ISO/IEC 15444-1 (i.e. JPEG2000 

image coding standard part1) and the JasPer software is written in the C programming 

language for the codec specified in ISO/IEC 15444-1. The JasPer is an open-source initiative 

to provide a free software-based reference implementation of the JPEG2000 codec. All the 

related documents and software of JasPer could be downloaded from [20]. Now, the latest 

version 1.701 of the JasPer software is available. We have tested the JasPer reference software 

and the results are shown as Table 4-1. The main configurations are using 64 by 64 

code-block size, 5 decomposition levels, and 1 tile. We use the 512 by 512 gray images, 

Goldhill, Barb, Lena, and Baboon, which are shown in Figure 4-1. 

 

 



 37

 

 
 5-3 filter 9-7 filter 

BPP Goldhill Barb Lena Baboon Goldhill Barb Lena Baboon
0.04 25.1 21.9 25.8 20.0 25.3 22.3 26.2 20.1 
0.05 25.7 22.4 26.7 20.2 25.9 22.8 27.0 20.3 

0.0625 26.2 22.7 27.4 20.4 26.4 23.1 27.9 20.6 
0.125 28.1 24.6 30.2 21.3 28.4 25.2 30.9 21.6 
0.25 30.1 27.3 33.2 22.8 30.5 28.3 34.1 23.2 
0.5 32.7 30.9 36.3 25.1 33.2 32.1 37.3 25.5 
1 35.9 35.8 39.3 28.6 36.5 37.2 40.4 29.1 
2 40.7 41.3 43.4 34.1 41.9 43.1 44.6 34.8 
3 44.8 45.2 47.5 39.0 46.6 46.8 47.1 40.0 
4 49.2 49.5 53.7 43.9 46.9 47.0 47.1 45.4 
5 66.5 66.5 66.7 48.2 46.9 47.0 47.1 46.6 
6 66.5 66.5 66.7 58.3 46.9 47.0 47.1 46.6 
7 66.5 66.5 66.7 66.9 46.9 47.0 47.1 46.6 
8 66.5 66.5 66.7 66.9 46.9 47.0 47.1 46.6 

Table 4-1 PSNR (dB) of different images using JasPer Ver.1.701 encoder 

 

 
 5-3 filter 9-7 filter 

BPP Goldhill Barb Lena Baboon Goldhill Barb Lena Baboon
0.04 25.3 22.1 26.1 20.1 25.4 22.3 26.5 20.2 
0.05 25.8 22.5 26.9 20.3 26.0 22.8 27.2 20.4 

0.0625 26.3 22.9 27.5 20.5 26.5 23.4 28.0 20.7 
0.125 28.1 24.6 30.2 21.3 28.5 25.4 31.0 21.7 
0.25 30.1 27.3 33.1 22.8 30.5 28.4 34.2 23.2 
0.5 32.7 30.9 36.3 25.1 33.2 32.3 37.3 25.6 
1 35.9 35.8 39.4 28.6 36.6 37.2 40.4 29.1 
2 40.9 41.4 43.7 34.2 41.9 43.2 44.9 34.8 
3 49.5 49.8 54.0 44.0 49.5 49.3 49.0 45.6 
4 49.5 49.8 54.0 44.0 49.5 49.3 49.0 45.6 
5 Infinite Infinite 92.3 Infinite 49.5 49.3 49.0 50.5 
6 Infinite Infinite 92.3 Infinite 49.5 49.3 49.0 50.5 
7 Infinite Infinite 92.3 Infinite 49.5 49.3 49.0 50.5 
8 Infinite Infinite 92.3 Infinite 49.5 49.3 49.0 50.5 

Table 4-2 PSNR (dB) of different images using OpenJPEG Ver.1.0 encoder 
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Goldhill Barb 

  

Lena Baboon 

Figure 4-1 Gray level test images 

 

Because the C language is now mostly convenient implementation language on many 

platforms, we use the C version of JPEG2000. We have surveyed the other implementations in 

C language. Our preferred package is OpenJPEG which is an open-source JPEG2000 codec 

written in C language. It is developed by the Communications and Remote Sensing Lab 

(TELE), in the University Catholique de Louvain (UCL). The reference software is 

downloaded from [21] and tested in the same conditions as JasPer software. The test results 

are presented in Table 4-2. 
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Compare JasPer with OpenJPEG, and we see that the performance of the OpenJPEG is 

slightly better than JasPer’s. When the decomposition tool uses 5-3 filter, the OpenJPEG 

software achieves the lossless image encoding. However, the JasPer can not reach this target 

in the same conditions. On the TI CCS, OpenJPEG works well, but JasPer fails in the release 

mode with compiler optimization file level (-o3). As a result, we choose OpenJPEG to 

implement and accelerate on our DSP platform. 

 

4.1.2 Parameter Configuration 

In this section, we analyze the coding effect of various coding parameters, including the 

filter type, decomposition level and tile size. The coding performance on the Rate-Distortion 

(R-D) curves is measured by the Peak Signal-to-Noise Ratio (PSNR) in dB. The default 

parameter settings are 1 tile, 5 decomposition levels and 64 by 64 code-block size. First, 

Figure 4-2 shows the performance of two recommended filter, the 5-3 filter and the 9-7 filter. 

It shows that the 9-7 filter outperforms the 5-3 filter. This is because the 9-7 filter provides a 

better capability on energy compaction. Because the 9-7 filter is a floating point transform, 

the PSNR increase of the 9-7 filter terminates at about 50dB as shown in Table 4-2. In 

JPEG2000, multilevel discrete wavelet transform decomposition is used to provide better 

coding efficiency as well as the resolution scalability. The number of decomposition levels 

affects the coding efficiency. Figure 4-3 shows the results using different decomposition 

levels and the test image is “Goldhill”. Typically, two-level decomposition is sufficient for 

most natural images but we use three levels as the default setting in the later chapters. We use 

a larger image, bike, whose resolution is 2048 by 2056 as shown in Figure 4-4, to test 

different tile sizes. The results show that a larger tile size makes better coding efficiency. In 

our default setting, we choose one tile for all the test images in the following tests. Also, we 

use the 64 by 64 code-block. Unlike the previous coding parameters, the impact of the 

code-block size is usually not noticeable. It varies with different images and other parameters. 

In general, the coding performance of the 64 by 64 code-block is better than that of the 32 by 

32 code-block. 
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Figure 4-2 Comparison of the 5-3 filter and the 9-7 filter 
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Figure 4-3 Comparison of different decomposition levels (Goldhill) 
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Figure 4-4 Bike 2048x2560 
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Figure 4-5 Impact of tile size on coding performance 
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4.2 JPEG2000 Encoder Complexity Analysis 

We profile the JPEG2000 encoder to find which part takes the most computation time. 

As mentioned in section 3.3.3 we have two methods in taking the profiles. One is using 

C64xx simulator and the other is using C6416 simulator. We will concentrate on the most 

critical area and try to accelerate these modules. The profiling results using the two methods 

are shown in Figure 4-6 and Figure 4-7. The test image is 512x512 “Goldhill”. The settings 

are lossless, 1 tile, 64 by 64 code-block, and without any optimization. The profiling results 

show that Tier1 is the most critical module in the encoder. The profiling result of C64xx 

means the accurate cycles of the C64xx core processor with flat memory system and the other 

means the actual cycles of the C64xx XDS510 emulator. The cycles are shown in Table 4-3. 

The total cycles of the C6416 simulator are approximately nine times of that of the C64xx 

simulator. It means that the JPEG2000 encoder takes about 8 seconds for encoding the 

“Goldhill” on the 1GHz DSP. Indeed, we run the encoder on the hardware platform, and it 

takes about 9 seconds, too. We first like to find the bottleneck on the C6416 emulator which 

includes the memory access time. 

 

 

Simulator C64xx C6416 Ratio 

DWT cycles 73,327,701 552,674,115 13 % 

Tier1 cycles 846,100,912 7,509,481,733 11% 

Tier2 cycles 1,550,147 15,933,932 9% 

Others (cycle) 9,475,720 103,399,183 9% 

Total cycles 930,454,480 8,181,488,963 11% 

Table 4-3 Cycles on different simulators 
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J2K encoder profile using C64xx simulator
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Figure 4-6 Complexity profiling of the JPEG2000 encoder on the C64xx simulator 
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Figure 4-7 Complexity profiling of the JPEG2000 encoder on the C6416 simulator 
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4.3 Major Encumbrances 

In last section, we identify two major bottlenecks in running JPEG2000 on a DSP system. 

One is that the actual cycles on the DSP platform are more than the CPU cycles. The other is 

that the Tier1 is the most complexity module in the JPEG2000 encoder. We will look into the 

problems and try to improve the JPEG2000 encoder on the DSP platform. 

 

4.3.1 Memory System 

The C64xx CPU cycle accurate simulator uses the flat memory system. It ignores the 

locality of the instructions and data. But on the real DSP platform nine times of cycles are 

required. Table 4-4 shows the cycle distributions generated by the C6416 simulator. The core 

processing cycles are only 12 % of the total cycles. The stall cycles are the most critical part 

in the total cycles. In the memory hierarchy of our DSP platform, the L1D is too small so that 

the data miss frequently occurs. The large main memory has a long access time although it is 

cheap in cost. We know that the speed gap between CPU and memory speed is large. The 

numerous stall cycles means that the system wastes a lot time in transferring data. If the most 

data are in the cache, the stall cycles will decrease. 

Our DSP platform has 16 Kbytes L1D cache and 16 Kbytes L1P cache. In the section 

allocation map, the small sections such as text (instructions), stack, and const occupy about 

one fifth of the SRAM. Usually, the heap size is inevitable large in an image encoder and the 

heap data must locate in the external memory. We can modify the data structure in the 

OpenJPEG software and try to improve the SRAM utilization rate. In order to test this method, 

we modify some dynamic data that are used frequently, such as code-block and flags variables, 

and set them to the static variables located in the SRAM. As shown in Table 4-4, the stall 

cycles decrease to 66 % of original one and the data cache hit rate arises from 77% to 84%. 

This method is a common method to improve performance but it is not a convenient way. The 

architecture of TI TMSC6000 family mentioned in section 3.4.1 provides two-levels of cache 

memory. If we also use the L2 cache, it brings in a great improvement as shown in Table 4-4. 

The data cache hit rate has turned up to 99% so that the stall cycles decrease to 3 % of 

original one. The percentage of the core cycles also arises to 82 %. Because the four fifths of 
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the SRAM are available, we set the L2 cache size to its maximum located in the SRAM. The 

larger cache reduces the memory read misses, but it uses a large area (higher cost) and longer 

hit time. In this project, the two-level cache configuration leads the most benefit than 

one-level cache. 

Now again, we profile the JPEG2000 encoder with the L2 cache system. Also, we adopt 

the optimization methods described in section 3.4.2 . Remember that the C64xx simulator 

uses the flat memory system. The results are shown in Figure 4-8 and Figure 4-9. The most 

parts are 69% and 97% of total cycles respectively. In flat memory system, the cycles of DWT 

module are only 6% of the reality system. It means that the DWT module takes much time in 

fetching data for wavelet transform. However, we still focus on the Tier-1 which is the most 

cycles of the entire system. We will discuss the code-block coding in next section. 

 

 
C6416 simulator Original Common L2 cache 

Event Cycles Percentage Cycles Percentage Cycles Percentage

Total Cycles 8,392,238,361 N/A 5,915,074,610 N/A 1,186,156,486 N/A 

Core cycles(excl. stalls) 967,163,032 12 964,032,493 16 967,163,800 82 

NOP cycles 397,863,892 41 410,684,804 42 397,864,176 41 

Stall Cycles 7,425,076,475 88 4,951,043,649 84 218,992,734 18 

Cross Path Stalls 3,333,928 0 4,395,347 0 3,333,928 0 

L1P Stall Cycles 29,706,277 0 27,351,604 0 26,902,533 2 

L1D Stall Cycles 7,392,048,013 88 4,919,312,165 83 188,644,902 16 

Instruction cache hits 212,197,536 95 211,727,096 94 213,184,547 95 

Instruction cache misses 12,255,209 5 12,605,583 6 11,268,436 5 

Data cache references 314,088,122 N/A 304,776,872 N/A 314,088,293 N/A 

Data cache reads 209,003,568 67 199,697,704 66 209,003,658 67 

Data cache writes 105,084,554 33 105,079,175 34 105,084,630 33 

Data cache hits 243,394,864 77 256,297,355 84 310,833,373 99 

Data cache read hits 156,975,567 75 163,526,475 82 207,879,556 99 

Data cache write hits 86,419,297 82 92,770,880 88 102,953,817 98 

Data cache misses 70,693,258 23 48,479,517 16 3,254,920 1 

Data cache read misses 52,028,000 25 36,171,222 18 1,124,106 1 

Data cache write misses 18,665,258 18 12,308,295 12 2,130,814 2 

Table 4-4 The effect of using L2 cache memory 
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J2K encoder profile using C64xx simulator
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Figure 4-8 Profile using file level optimization (-o3) on C64xx simulator 
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Figure 4-9 Profile using L2 cache and file level optimization (-o3) on C6416 simulator 
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4.3.2 Analysis of Bit-Plane Coding 

In this section, we will discuss another obstruction, which is the most critical module in 

the JPEG2000 encoding flow. The tier-1 module is the most complex part in the encoder. In 

our DSP platform, it takes 97% of total cycles in the JPEG2000 algorithm. As discussed in 

section 2.4.1 , the bit-plane coding is about the main part in Tier1 module. In the bit-plane 

coding, an n by n dimension image takes about ( )23 −××× bnnn  clocks to complete. The 

“bn” means the number of bit-planes. The procedure of the bit-plane coding is shown in 

Figure 4-10. There are many branch conditions in the flowchart and the MQ arithmetic 

encoder also takes a number of cycles in the bit-plane coding. However, the MQ coder is 

already a mature technique. Therefore, we focus on the Pass operations.  

At the beginning, all the samples are in an insignificant state. The Pass3 process must be 

performed at the first most significant bit-plane. The decision of the Pass3 process loops until 

all samples are checked by the Pass3 process. Because similar states of samples often cluster 

in the bit-plane, the Pass3 process encodes nearly all samples continuously in the higher 

bit-planes. That is, most samples are insignificant and the samples of their neighborhood are 

also insignificant. The Run-Length coding provides an efficient way to encode these samples 

and produces a better compression ratio. 

Starting from the next bit-plane, the Pass1 process scans the states of all samples and 

then the Pass2 process scans the states of all samples again after Pass1. Finally, the Pass3 

process ends this bit-plane. After one bit-plane process is done, the entire procedure repeats 

for the next bit-plane. A bit-plane process usually includes three Pass processes as described 

above except for the most significant bit-plane. In this way, the coding procedure continues 

until all bit-planes are done. In pseudo code form, the passes are described as below [22]:  

 

 

Algorithm 1 Significance pass algorithm 

1:  for each sample in code-block do 

2:    if sample previously insignificant and predicted to become significant during current 

bit plane then 

3:      code significance of sample /* 1 binary symbol */ 

4:      if sample significant then 
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5:        code sign of sample /* 1 binary symbol */ 

6:      endif 

7:    endif 

8:  endfor 

 

 

Algorithm 2 Refinement pass algorithm 

1:  for each sample in code-block do 

2:    if sample found significant in previous bit-plane then 

3:      code next most significant bit in sample /* 1 binary symbol */ 

4:    endif 

5:  endfor 

 

 

Algorithm 3 Cleanup pass algorithm 

1:  for each vertical scan in code-block do 

2:    if four samples in vertical scan and all previously insignificant and unvisited and non 

have significant 8-connected neighbor then 

3:      code number of leading insignificant samples via aggregation 

4:      skip over any samples indicated as insignificant by aggregation 

5:    endif 

6:    while more samples to process in vertical scan do 

7:      if sample previously to process in vertical scan then 

8:        code significance of sample if not already implied by run /* 1 binary symbol */ 

9:        if sample significant then 

10:         code sign of sample /* 1 binary symbol */ 

11:       endif 

12:     endif 

13:   endwhile 

14: endfor 
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Figure 4-10 Flowchart of bit-plane coding 

 

 



 50

Bit-plane Pass1 Pass2 Pass3 

7 0.00% 0.00% 100.00%

6 0.01% 0.00% 99.99%

5 1.20% 0.21% 98.59%

4 8.63% 1.61% 89.76%

3 27.85% 7.25% 64.91%

2 55.65% 22.64% 21.70%

1 47.97% 49.01% 3.02% 
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Bit-plane Pass1 Pass2 Pass3 

7 0.00% 0.00% 100.00%

6 1.10% 0.12% 98.77%

5 5.82% 1.61% 92.57%

4 13.62% 6.18% 80.20%

3 22.84% 14.26% 62.90%

2 35.94% 26.21% 37.85%

1 48.23% 46.07% 5.69% 
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Bit-plane Pass1 Pass2 Pass3 

7 0.00% 0.00% 100.00%

6 0.12% 0.01% 99.87%

5 1.82% 0.32% 97.86%

4 5.91% 1.57% 92.52%

3 14.11% 4.77% 81.12%

2 36.79% 12.81% 50.41%

1 60.18% 34.43% 5.39% 
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Bit-plane Pass1 Pass2 Pass3 

7 0.00% 0.00% 100.00%

6 0.63% 0.09% 99.27%

5 13.41% 1.94% 84.66%

4 34.08% 10.88% 55.04%

3 47.17% 28.40% 24.43%

2 45.74% 51.43% 2.83% 

1 26.55% 73.43% 0.02% 
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Figure 4-11 Analysis of Pass Contribution 

 

We collect the statistics of these Pass processes and show them in Figure 4-11. We count 

the samples that are encoded in each pass. From the most significant bit to the least significant 

bit, the results are shown by curves. As Figure 4-11 shows that each coding Pass has to scan 

n2 samples in a bit-plane, but not all scans are necessary. For example, in “Goldhill 512x512”, 

the percentage of the samples coding by Pass1 is extremely low from bit-plane 7 to bit-plane 

5. They are typically lower than 10 % of the total samples for most images. Then, the 

maximum number of samples encoded by Pass1 are about half of total samples. The result 

indicates that most of the checking processes are wasted. The Pass2 process handles the 

samples that are significant determined by the Pass1 process or the Pass3 process. From the 

most significant bit to the least significant bit, the samples, which should be encoded in the 

Pass2 process, usually increase starting from a tiny number. This process wastes a lot of time 

in checking samples too. The Pass3 process handles the samples most at the higher bit-planes. 

Then, the samples that should be encoded in the Pass3 process decrease gradually. The 

statistics tell us that the Pass3 process often does not encode any samples in the least 

significant bit-plane or lower bit-planes. This means that the Pass3 process could be skipped 

and the n2 cycles of checking samples in the Pass3 process are saved. Based on these 

observations, we describe several speed-improving methods in next section. 
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4.4 A Few Known Speed-Improving Methods 

In this section, we will describe several speed-improving methods such as the CUPS 

(Clean Up Pass Skipping) and the PP (Pass Predicting) methods [23] [24], the SS (Sample 

Skipping) and the GOCS (Group Of Column Skipping) methods [25], and the PPP (Pipelined 

Processing of Pass) method [26] [27]. In our study, we propose a new method, which is easier 

to implement, and will describe it in the next chapter. 

 

4.4.1 CUPS and PP Methods 

In a bit-plane coding process, the order is Pass1, Pass2, and Pass3. The data in Figure 

4-11 shows that sometimes the Pass3 process is unnecessary. The Clean Up Pass skipping 

(CUPS) method is adopted to terminate the Pass3 process in a bit-plane coding process. This 

method reduces ( )PassZeronn ××  cycles of checking state. The “PassZero” means the 

number of Pass3 that can be skipped in the bit-plane process. This is similar to the method 

called “early termination” for accelerating motion estimation in video coding. In using the 

CUPS method, we count the numbers of coded samples in the Pass1 and the Pass2 processes 

in the current bit-plane. If all samples are coded in the Pass1 and the Pass2 processes, we can 

enable the CUPS mode to skip the following Pass3 process. The flowchart is described in 

Figure 4-12. We use one flag and one accumulator to perform the CUPS method. In 

simulations, we count the numbers of Pass3 calls in all bit-planes shown in Table 4-5. When 

the CUPS method is adopted, the calls decrease as shown in Table 4-5. We use the C64xx 

simulator to simulate the CUPS method as shown in Table 4-6. Due to additional overhead, 

the DSP implementation does not save as much as those in Table 4-5. 

 
Image Original Calls CUPS Calls CUPS/Original Calls 

Goldhill 421 360 85 % 
Barb 430 379 88 % 
Lena 411 378 91 % 

Baboon 476 350 73 % 

Table 4-5 Calls of Pass3 process function 
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Image Function Original Cycles CUPS Cycles CUPS/Original  

Goldhill t1_enc_clnpass 132,353,060 117,463,739 89 % 
Barb t1_enc_clnpass 133,847,824 121,988,745 91 % 
Lena t1_enc_clnpass 129,077,570 121,369,189 94 % 

Baboon t1_enc_clnpass 147,598,193 116,370,411 79 % 

Table 4-6 Comparison with the CUPS method 

 

 

Figure 4-12 Flowchart of the CUPS method 
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The PP method is based on the significant sample inheritance. When the state of a 

sample that has just been checked in the Pass1 process becomes significant at a certain 

bit-plane, it affects its eight neighbors in all directions in the next lower bit-plane as shown in 

Figure 4-13. Thus, in the significance propagation pass, the samples which should be encoded 

by the Pass1 process can be predicted in the last bit-plane. Using a prediction table that 

records the address of these samples can reduce the clock cycles for checking states. This PP 

method using prediction table enables the Pass1 process to process the Pass1 samples directly 

without checking their states first. 

 

P3
P3

P3

P3
P3

P3

P3
P3

P3

P3
P3

P3
P3

P3
P3

P3
P3

P3

SG
P3

P3

P3
P3

P3

P3
P3

P3

P3
P3

P3
P3

P3
P3

P3
P3

P3

P3
P3

P1

P3
P3

P1

P3
P3

P3

P3
P3

P1
P3

P3
P3

P1
P1

P3

P2
P1

P3

P1
P1

P3

P3
P3

P3

P3
P3

P3
P3

P3
P3

P3
P3

P3

Bit-plane N

Bit-plane N+1

 

Figure 4-13 Significant sample inheritance 

 

Although the significant samples can predict Pass1 samples on the next bit-plane, they 

can not predict some samples that become significant when the coding process is applied to 

the next bit-plane as shown in Figure 4-14. In the strip scanning step for the Pass1 process, if 

a sample (P1) is checked and becomes significant state (sP1), then, its neighbors (nP1) 

become the members of the Pass1 process in the current bit-plane. We notice that these 

neighbors we mention in the above are not scanned yet and they must be coded in the current 

Pass1 process. In other word, these samples are unpredictable in last bit-plane and can not be 

found on the prediction table. For this reason, there are a few strategies to include these 
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missing samples. We will give an introduction as follows. 

 

 

Figure 4-14 Significance Propagation 

 

There are two methods to fix the prediction table. One is the continuous-five mode and 

the other is the boundary extension mode. The continuous-five mode is adopted for finding 

those samples that are unpredictable. Four conditions are identified in the scanning order as 

shown in Figure 4-15. All the addresses of the unpredictable samples are recorded in another 

table called CM (continuous-five mode) table. If the sP1 is located in the lower boundary of a 

stripe as show in Figure 4-16, the boundary extension mode must also be enabled. Three 

addresses, (current address＋4×code-block width－7), (current address＋4×code-block width

－3), and (current address＋4×code-block width＋1) are recorded in another table for the 

boundary extension mode. According to these two strategies, a few more samples are checked 

in the Pass1 process as shown in Figure 4-17. The samples (C) from continuous-five mode are 

recorded in the CM table and the boundary extension samples (B) are recorded in the BM 

table. 

The pseudo code described in [23] is insufficient. A comparator is needed to compare the 
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contents or the same index on three tables. The smallest one is chosen, and its address is 

fetched from the corresponding table. The Pass1 process must wait for the comparator to fetch 

the correct sample, which has a priority higher than the others and this method is not efficient 

in sequential processing software. It is easier to implement it using the hardware architecture. 

 

 

 

Figure 4-15 Four conditions in continuous-five mode 

 

 

Figure 4-16 Boundary extension 

 

 

Figure 4-17 Prediction table for Pass1 
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4.4.2 SS and GOCS Methods 

In [25], two methods are devised to reduce the computing time of bit-plane coding. Each 

sample is checked for three times, one for each pass, but it is only coded once in one of the 

three passes. Coding a 64 by 64 code-block with N magnitude bit-plane costs at least 64×64×

N×3 cycles. Many bubbles (empty operations) are generated if the bit-plane coder scans and 

checks every sample in this manner. A column-based operation is proposed to remove bubble 

and reuse data instead of sample-based operation, which is the original method used in the 

JPEG2000 reference software. 

The first method is called “Sample Skipping (SS)” method that is illustrated by Figure 

4-18. The marked NBC sample is the “need-to-be-coded” sample. It means that the samples 

must be coded in the current Pass process. The Sample Skipping (SS) skips no–operation 

samples in a column. In a column checking, 0-4 NBC samples are necessary to be encoded. 

The serial checking architecture spends four cycles to check no matter how many NBC 

samples are included. The SS method is essentially a parallel checking architecture. If there 

are N NBC samples, N cycles are spent on the checking process and thus the other cycles 

(4-N) are saved. If there are no NBC samples in a certain column, only one cycle is spent for 

the checking process. The coding flowchart is shown in Figure 4-19. The analysis and result 

in the [25] are useful but the method is more adequate for a hardware architecture design. 

Checking 4 samples in parallel is the most critical concept in this method. Our DSP platform 

is a sequential software-based architecture, and thus checking 4 samples in parallel is not well 

supported. However the TI DSP VLIW architecture helps quite a lot to implement the SS 

method in our DSP platform. 

 

Figure 4-18 Concept of SS method 
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Figure 4-19 Flowchart of SS method 

 

010 0

GOC1 GOC2 GOC3 GOC4

Group of column skipping

 

Figure 4-20 Example of the GOCS method 

 

The second method is called the “Group-Of-Column Skipping (GOCS)” method. The 

concept is to skip a group of no-operation columns in one checking cycle. An example is 
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shown in Figure 4-20, where the four columns are grouped into one group-of-column (GOC). 

Only 4 bits flags are used to record these 4 GOC consisting of for 16 columns. The GOC2 

contains no NBC samples and a ‘1’ bit is recorded in the GOCS table. A ‘0’ bit means that 

there are some NBC samples in the GOC. The number of NBC samples in each group should 

be checked and recorded before the Pass1 process and all samples should be classified to each 

Pass processes as shown in Figure 4-21. Then, Pass1, Pass2 and Pass3 processes are executed, 

and the flags in GOCS tables are checked. If the flag is ‘1’ for current coding GOC, all 

columns of this group can be skipped. When the ‘0’ flag is found, the process should check all 

4 columns one by one. Because the SS method usually is combined with the GOCS method 

together, all samples in a column will be checked at the same time. When these two methods 

are applied, both the processing cycles and the number of memory access can be reduced.  

In [25], a run-time analysis with different number of columns as a group is presented as 

shown in Figure 4-22. It is a C program simulation with the SS and GOCS techniques. The 

result shows that eight columns as a group has the best run-time performance in all test 

patterns. The best one which adopts the two methods in simulation is better than the worst one 

by about 2 %. Here, we also simulate the different number of columns as a group by the 

C64xx simulator and the result is presented below. 

 

 

Figure 4-21 Flowchart of sample checking 
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Figure 4-22 Analysis with different number of columns as a group [25] 

 

First, we try the SS method. The data dependence causes problems and decreases the 

parallelism of executing instructions in the VLIW architecture. The SS method can finally be 

applied by reducing the data dependence and parallel programming style. Although all the 

instructions are scheduled by the compiler, we still have a great improvement by unrolling the 

four contiguous samples. We list the result in Table 4-7. The Pass1, Pass2, and Pass3 

processes are the major parts in the “Tier1” operation. The improvement is about 30 % on the 

average for all test patterns. Moreover, the GOCS method with different GOC sizes is 

examined as shown in Table 4-8. The GOCS (4) method which means four columns as a 

group is adopted. We can see that cycles of the Pass2 and Pass3 processes in GOCS (4) are 

lower than the cycles of the SS method. However, the cycles of Pass1 process increase in 

order to apply the GOCS method. The total cycles in both GOCS (4) and SS methods are less 

than the cycles of SS method only. Based on the results in Figure 4-22, the cycle ratio 

increases as the group size increasing except for the case of four columns as a group. But the 

results on C64xx simulator are somewhat different. The cycle ratio goes up as the group size 

increases on the C64xx simulator. Anyhow, we have tested the other images, and the cost is 
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not worth for increasing the group size. 

 
Image Method Pass1 Pass2 Pass3 Tier1 

Original 161,696,792 123,912,376 132,353,060 435,017,649
SS 118,713,423 83,794,964 93,997,011 313,560,819Goldhill 

SS/Ori. (%) 73 % 68 % 71 % 72 % 
Original 158,478,206 129,282,989 133,847,824 438,746,356

SS 113,817,756 88,715,847 95,188,336 314,859,276Barb 
SS/Ori. (%) 72 % 69 % 71 % 72 % 

Original 153,954,906 108,237,140 129,077,570 408,233,549
SS 111,328,681 67,345,255 94,722,832 290,360,701Lena 

SS/Ori. (%) 72 % 62 % 73 % 71 % 
Original 179,696,714 171,827,724 147,598,193 516,672,503

SS 129,959,350 129,811,716 98,991,484 376,312,422Baboon 
SS/Ori. (%) 72 % 76 % 67 % 73 % 

Table 4-7 SS method on C64xx simulator 

 
Goldhill Original SS+GOCS (4) SS+GOCS (8) SS+GOCS (16) SS+GOCS (32) SS+GOCS (64)

Pass1 161,696,792 127,248,882 79% 126,376,830 78% 125,905,854 78% 125,327,618 78% 125,218,498 77%

Pass2 123,912,376 82,816,908 67% 83,753,114 68% 84,888,984 69% 85,792,608 69% 86,954,904 70%

Pass3 132,353,060 83,662,304 63% 85,040,094 64% 86,672,842 65% 88,738,925 67% 90,905,379 69%

Tier1 435,017,649 310,822,507 71% 312,244,472 72% 314,547,950 72% 316,931,613 73% 320,147,339 74%

Barb Original SS+GOCS (4) SS+GOCS (8) SS+GOCS (16) SS+GOCS (32) SS+GOCS (64)

Pass1 161,696,792 85,158,426 64% 87,028,182 65% 89,785,474 67% 93,278,418 70% 96,634,127 72%

Pass2 123,912,376 87,196,372 67% 88,314,377 68% 89,902,444 70% 91,504,222 71% 93,147,358 72%

Pass3 132,353,060 122,165,800 77% 121,296,140 77% 120,814,604 76% 120,562,892 76% 120,445,628 76%

Tier1 435,017,649 311,697,656 71% 313,795,391 72% 317,665,212 72% 322,500,270 74% 327,377,875 75%

Lena Original SS+GOCS (4) SS+GOCS (8) SS+GOCS (16) SS+GOCS (32) SS+GOCS (64)

Pass1 161,696,792 88,197,594 68% 89,634,212 69% 91,548,956 71% 94,125,925 73% 96,769,658 75%

Pass2 123,912,376 64,744,920 60% 65,697,045 61% 67,063,623 62% 68,557,606 63% 70,643,014 65%

Pass3 132,353,060 120,188,969 78% 119,307,313 77% 118,851,473 77% 118,613,193 77% 118,502,145 77%

Tier1 435,017,649 290,133,598 71% 291,621,136 71% 294,452,274 72% 298,277,298 73% 302,891,567 74%

Baboon Original SS+GOCS (4) SS+GOCS (8) SS+GOCS (16) SS+GOCS (32) SS+GOCS (64)

Pass1 161,696,792 80,407,186 54% 81,500,054 55% 83,344,181 56% 85,910,181 58% 89,095,497 60%

Pass2 123,912,376 130,939,612 76% 131,794,101 77% 132,910,354 77% 133,952,793 78% 135,500,769 79%

Pass3 132,353,060 137,998,154 77% 137,086,510 76% 136,537,038 76% 136,249,814 76% 136,116,590 76%

Tier1 435,017,649 366,938,271 71% 367,951,640 71% 370,369,374 72% 373,681,901 72% 378,277,625 73%

Table 4-8 SS + GOCS (different columns as a group) method on C64xx simulator 
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4.4.3 PPP Method 

A parallel processing method is proposed in [26] and [27] called Pipelined Processing of 

Passes (PPP). Each bit-plane is encoded through three coding passes, called significant 

propagation pass (Pass1), magnitude refinement pass (Pass2) and cleanup pass (Pass3). All 

passes are processed sequentially. They can be arranged to process different sets of data in 

parallel. An example is shown in Figure 4-23. The parallel processing structure matches well 

the pipeline architecture. In processing the 1st stripe, in order to process Pass2, the context 

information of current and adjacent stripes which are updated by Pass1 is required. In the 

meantime, the context information of the Pass3 is updated by Pass1 and Pass2. The strategy of 

the PPP method is to process the three coding passes of the same bit-plane on different stripes. 

First, the samples of the 1st stripe in the current bit-plane are processed for Pass1. Then, the 

samples of the 1st and 2nd stripes in the current bit-plane are processed for Pass2 and Pass1, 

respectively. Third, the samples of the 1st, 2nd, and 3rd in the current bit-plane are processed by 

Pass3, Pass2, and Pass1, respectively. Similarly, all the other stripes are processed when all 

stripes in a coding block are processed, the parallel processing is done. Actually, the data flow 

of the context formation is not appropriate in using sequential structure software. A lot of 

work is necessary to apply this method by changing the bit-plane coding flowchart. Usually, 

the PPP method is suitable only for the hardware design or the multithread program. The TI 

CCS compiler for the VLIW architecture has already improved the performance by its 

software pipeline technology. 

 

 

 

Figure 4-23 Parallel processing of passes 
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In reference [26], the PPP method is adopted to simulate on the TMS320C6416 

(600MHz). Table 4-9 in [26] shows the performance improvement by using the PPP method 

for Tier-1 coding. The original mode for the three passes takes about 0.96 second for the three 

test images. The executing time of the Pass2 has reduced up to 41% and the reduction of the 

Pass3 is up to 32%. However, the executing time of the Pass 1 process is not affected by this 

method because there is no difference between the PPP method and the original method. The 

result indicates that the PPP method reduces the processing time for scanning and masking in 

the case of the Pass2 and Pass3 by reusing the parameter and data used in the Pass1. Although 

the average improvement of the Tier-1 coding is significant, the previous methods in sections 

4.4.1 and 4.4.2 still has better performance than the PPP method. It seems that our DSP 

platform needs an efficient method to accelerate JPEG2000 algorithm. In this study, we 

proposed a new method to accelerate and implement JPEG2000 on our DSP platform as 

described in next chapter. 

 
Image Lena PPP/Ori Baboon PPP/Ori Peppers PPP/Ori

Pass1 297.8 ms N/A 277.9 ms N/A 269.7 ms N/A 
Pass2 140.3 ms N/A 156.8 ms N/A 157.2 ms N/A 
Pass3 522.8 ms N/A 531.7 ms N/A 533.9 ms N/A 

Original 
mode 

Total 960.9 ms N/A 966.4 ms N/A 960.8 ms N/A 
Pass1 298.6 ms 100 % 281.6 ms 101 % 272.8 ms 101 % 
Pass2 88.5 ms 63 % 96.3 ms 61 % 92.6 ms 59 % 
Pass3 357.4 ms 68 % 369.5 ms 69 % 378.3 ms 71 % 

PPP 
method 

Total 744.5 ms 77 % 747.4 ms 77 % 743.7 ms 77 % 

Table 4-9 Comparison of processing time using PPP method [26] 
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Chapter 5  

Acceleration of JPEG2000 Encoder 

on DSP Platform 

 

In order to accelerate the JPEG2000 encoder on the DSP platform in a simple and 

efficient way, a new method called “Variable Group Of Samples Skipping” (VGOSS) is 

proposed. This method provides an easy way to implement the JPEG2000 encoder on any 

DSP platform. Comparing with the methods we mentioned before, this method is more 

suitable for the DSP platform. We will present the concept and discuss the advantages in this 

chapter. Besides, a modified PP method is proposed, too. Based on the procedure of the 

VGOSS method, we modify the PP method for our DSP platform. Then, a performance 

comparison between the VGOSS method and the known methods is presented in section 5.2  

 

5.1 Proposed Acceleration Method 

In this section, we describe the concept of our VGOSS method. A detail coding 

procedure is presented. Then, we integrate the PP method and the VGOSS method together 

and discuss the effects. Finally the advantages are explained as well. In addition, some other 

accelerating methods which are tested in our study are presented. 

 

5.1.1 Coding Procedure of VGOSS method 

We first need to rearrange the block before the pass coding. In Figure 5-1, all the pass 

processes in the block-coding must comply with the stripe style scanning. Four vertical 

continuous columns are grouped in a stripe. The stripe scanning follows the index 0, 1, 2, 3, 4, 

5, and so on in order. But the addresses of the stripe data are not continuously stored in a 
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memory. 

 

 

Figure 5-1 Diagram of the stripe and coding pass 
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Figure 5-2 Flag-block and code-block 

 



 66

We first describe the flag-block and the code-block. For example, an 8 by 8 code-block 

has 64 samples and each sample has its associated state. The state records the context 

orientations (defined below) and the significance information in each bit-plane and all states 

are stored in a flag-block. The states in a bit-plane are covered with the new context 

orientations in the next bit-plane. The context orientations include North, East, South, West, 

North-East, South-East, South-West, and North-West. A sample can include all the context 

orientations and record them in its associated flag in the flag-block. The significance 

information describes the visited and the significant samples. The visited sample is the coded 

sample in other pass in the current bit-plane. The significant sample means that a sample has 

the significant state recorded in its flag. The eight context orientations are specified to indicate 

the significant neighbors. Any of the three pass processes decide to code this sample by 

checking its own state. In this case, an 8 by 8 flag-block is necessary to record the sates of all 

samples. But the flag-block is padded to 10 by 10 for the boundary blocks. 

An example of the flag-block and the code-block is shown in Figure 5-2. The shaded 

samples are significant ones. The coordinate (3, 3) sample in the flag-block records the 

context orientations (West, North-West, South-East). This means that the coordinate (2, 2) 

sample of the code-block is next to three significant samples. In this example, the coordinate 

(x, y) of the code-block sample corresponds to the coordinate (x+1, y+1) sample due to 

padding. However, in implementation, we convert the 2-D index into 1-D index. The 1-D (33) 

sample in the flag-block records the states that associate with the 1-D index 18 sample in the 

code-block. The 1-D index 18 is calculated by the equation, y×(code-block width)+x, and (x, 

y) = (2,2). All samples and flags are accessed by the one-dimensional index for using the 

VGOSS method. 

Because stored samples of the code-block are rearranged, the flag-block samples are also 

rearranged. We first describe the rearrangement of the code-block. For example, an eight by 

eight code-block is shown in Figure 5-3. The stripe scanning addresses are 0, 8, 16, 24, 1, 9, 

17, 25, 2, 10, 18, 26, and so on. The shaded samples (9, 17, 27, 4, 41, 51, and 38) have to be 

encoded in the current pass process. In the JPEG2000 standard, all samples are scanned and 

coded in the bit-plane but the VGOSS method can encode only the samples that are going to 

be encoded in the current pass. In order to use the VGOSS method, the order of all addresses 

must be a continuous sequence. In other words, the code-block should be rearranged in the 

bit-plane coding. For an N by N code-block, we arrange it to an N/4 by 4N code-block as 
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shown in Figure 5-3. 
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Figure 5-3 Address order of the stripe in the rearranged code-block 

 

 

Figure 5-4 Rearranged flag-block with paddings 
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Also, the flag-block is similarly rearranged. The padded flag-block records the context 

orientation. The rearranged flag-block shown in Figure 5-4 corresponds to the rearranged 

code-block shown in Figure 5-3. The padded flag-block has a size of (N/4+2) by (4N+8) as 

shown in Figure 5-4. The shaded samples (0, 10, 20, 30, 1, 11, 21, 31, and ….) are the 

padding samples. They are used for the boundary extensions. The rearranged code-block 

index and the rearranged flag-block index are calculated by equation (5.1.1-1). For example, 

the index 44 shown in Figure 5-4 corresponds to the index 0 of the rearranged code-block 

shown in Figure 5-3. 
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 (5.1.1-1) 

 

The rearrangement does not change the coding performance of on the JPEG2000. The 

samples of a code-block are fetched from the tile data image and all cycles needed for this 

new ordering are included in our test results. The cycles of arranging a code-block do not 

increase on the C64xx simulator (flat memory system) or the C6416 simulator when the 

compiler-level optimization is not used. Table 5-1 shows the percentages of the increased 

cycles under different conditions in real tests. In the following experiments, the increase 

cycles for the rearrangement are included for fair comparison. 

 

 

C64xx simulator C6416 simulator with L2 cache 
Goldhill 

Tier1 Increase Tier1 Increase 

Non-opt. 846,100,895  33 878,528,763 400 

O3 (file level) 435,017,649  265,828 441,174,161 271,149 

Table 5-1 Effect of the data rearrangement 
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Figure 5-5 Restored flag-block with paddings 

 

Then, the updating flag procedure needs to be modified. We describe the original 

updating flag procedure in the OpenJPEG reference software first. The flag-block in Figure 

5-5 is transferred from the rearranged flag-block in Figure 5-4 and the shaded samples are 

significant. Typically, a significant sample affects its neighbor eight samples. The context 

orientations and the significant information are recorded in the flag-block. Each sample has its 
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own flag to record the context orientations and the significant information. A new significant 

sample may lead to a change of eight flags (of its neighbors). In general, the updating flag 

procedure updates eight neighbor flags. The pseudo code is shown below. 

 

Original flag updating procedure algorithm: [OpenJPEG ver.1.0] 

 

*fp = current flag pointer 

s = current significance 

*np = fp - (code-block width + 2) 

*sp = fp + (code-block width + 2) 

 

np[-1] |= significant South-East 

np[1] |= significant South-West 

*np |= significant North 

sp[-1] |= significant North-East 

sp[1] |= significant North-West 

*sp |= significant South 

if (s = TRUE) then 

  *np |= sign North 

  *sp |= sign South 

  fp[-1] |= sign East 

  fp[1] |= sign West 

endif 

 

Typically, each sample in the strip affects the eight neighbor flags. The first sample in a 

stripe affects the same bit-plane flags in the previous stripe but these samples may not be 

coded depending on the visited information. The last sample in a stripe affects the sample 

bit-plane flags in the next stripe and the next stripe is not visited as shown in Figure 5-5. For 

example, the index ‘74’ flag in the ‘n’ stripe is significant. It affects three flags (83, 84, and 85) 

in the ‘n+1’ stripe. The sample with index ‘84’ in the ‘n+1’ stripe affects the three flags (76, 

77, and 78) in the ‘n’ stripe. The middle two in the four continuous samples affect their 

corresponding eight neighbor flags. However, the rearranged flag-block has new set 1-D 
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indices. We have to modify the updating flag procedure to update the correct neighbor flags as 

below: 

 

Modified flag updating procedure algorithm: 

 

hint = 0x3&(current coordinate x) 

*fp = current flag pointer 

s = current significance 

*np = fp - (code-block width + 5) 

*sp = fp + (code-block width + 5) 

 

switch (hint) 

case 0x01: 

case 0x02: 

*(fp-5) |= significant South-East 

*(fp-3) |= significant North-East 

*(fp+3) |= significant South-West 

*(fp+5) |= significant North-West 

*(fp-4) |= significant East 

*(fp-1) |= significant South 

*(fp+1) |= significant North 

*(fp+4) |= significant West 

  if (s is TRUE) then 

*(fp-4) |= sign East 

*(fp-1) |= sign South 

*(fp+1) |= sign North 

*(fp+4) |= sign West 

  endif 

 case 0x00: 

*(np-4) |= significant South-East 

*(np+4) |= significant South-West 

*(fp-3) |= significant North-East 
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*(fp+5) |= significant North-West 

*np |= significant South 

*(fp-4) |= significant East 

*(fp+1) |= significant North 

*(fp+4) |= significant West 

  if (s = TRUE) then 

*np |= sign South 

*(fp-1) |= sign East 

*(fp+1) |= sign North 

*(fp+4) |= sign West 

  endif 

case 0x03 

*(sp-4) |= significant North-East 

*(sp+4) |= significant North-West 

*(fp-5) |= significant South-East 

*(fp+3) |= significant South-West 

*sp |= significant North 

*(fp-4) |= significant East 

*(fp-1) |= significant South 

*(fp+4) |= significant West 

  if (s = TRUE) then 

*sp |= sign North 

*(fp-4) |= sign East 

*(fp-1) |= sign South 

*(fp+4) |= sign West 

  endif 

endswitch 

 

In practice, the flag updating procedure is decoupled into three sub-procedures by the 

three cases and the total cycles of the flag updating procedure are reduced. We test the flag 

updating procedures on the C6416 simulator when the L2 cache is enabled. The results are 

shown in the Table 5-2. For these test images, the modified flag updating procedure takes 
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about 62 % in calculation of the original one. Our proposed method does not increase 

processor cycles in the flag updating procedure. 

 

 Goldhill Barb Lena Baboon 

Original updating 

flag procedure 
28,994,661 28,365,064 27,499,705 30,648,603 

Modified updating 

flag procedure 
17,951,047 17,420,942 16,972,554 19,142,144 

Ratio 62% 61% 62% 62% 

Table 5-2 Comparison between original and modified updating flag procedures 

 

 

Figure 5-6 Flowchart of the bit-plane coding 
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After rearranging a code-block, the bit-plane coding is performed. The flowchart of the 

bit-plane coding is shown in Figure 5-6. The rearrangement of the code-block is first executed. 

The flag-block is also rearranged and ready. At the beginning, the Pass3 VGOSS table is 

initialized and the Pass3 process is executed in the first bit-plane coding. There are some 

significant samples in the Pass3 process because the bit-plane coding is started from the first 

nonzero most-significant-bit plane. Then, the Pass1 process is executed, and each sample can 

be classified according to its state which is recorded in the flag-block. The Pass2 and the 

Pass3 VGOSS tables are completed in this process. Then, all flags of the samples are checked 

in the Pass1 process and some insignificant samples which have significant neighbors are 

coded. The following step is the Pass2 process and then the Pass3 process. If the Pass3 

VGOSS table is empty, the Pass3 process is skipped. The next bit-plane coding is executed 

until all bit-planes are done. 

The flowcharts of the three pass processes are shown in Figure 5-7, Figure 5-8, and 

Figure 5-9. There are two VGOSS tables for the Pass2 and the Pass3 processes, respectively. 

In Figure 5-7, the Pass3 process is described. At the beginning, all samples are in the 

insignificant state and the Pass3 process is performed at the most significant bit-plan. The 

VGOSS table of Pass3 process is set to all NBC samples. It means that each offset is 1 in the 

Pass3 VGOSS table and all samples must be scanned in the first Pass3 process. The offset 

means the distance between the current index and the next index. After the next index is 

obtained, the run-length condition is checked each time. The run-length coding is executed if 

the four continuous samples are insignificant and do not have any significant neighbors. If the 

run-length coding is performed, the VGOSS table skips the number of the run-length in the 

following offsets. These offsets must equal one because they represent continuous samples 

that are coded in the run-length coding. Otherwise, the zero coding is executed. The sign 

coding is also executed when the sample becomes significant in the current bit-plane. Then, 

the next offset is read to calculate the next index. The first Pass3 process is completed until all 

offsets are used in the Pass3 VGOSS table. Otherwise, if the Pass3 process is not first-time 

running, the Pass3 process uses the Pass3 VGOSS table that is updated in the Pass1 process. 

If the VGOSS table is empty, it means that all samples are coded in the Pass1 and the Pass2 

processes in the current bit-plane. The Pass3 coding is skipped in the current bit-plane. 
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Figure 5-7 Flowchart of the Pass3 process 
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Figure 5-8 Flowchart of the Pass1 process 

 

After the Pass3 is completed in the current bit-plane, the next bit-plane is coded. The 

Pass1 process checks every flag and encodes the NBC samples in the current bit-plane. The 

Pass1 process is described in Figure 5-8. All the samples are distinguished from two branches. 

The samples that should be coded in the Pass2 process are significant. If the current sample is 

in the significant state, the offset is recorded in the Pass2 VGOSS table. The Pass2 VGOSS 

counter is reset to zero and then updated for the next counting. But the Pass3 counter is 

updated only. If the sample is insignificant and does not have any significant neighbors, the 

offset is recorded in the Pass3 VGOSS table. The Pass3 counter is reset to zero and then 

updated for the next counting. But the Pass2 counter is updated only. Otherwise, the sample 
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belongs to the Pass1 coding. Then, the zero coding is executed. If the sample is significant in 

the current bit-plane, the sign coding is also executed. Also, the Pass2 and Pass3 counters are 

updated, if the sample belongs to the Pass1 coding. When all samples are scanned, the Pass1 

process is completed in the current bit-plane. These VGOSS tables are completed for the 

Pass2 and the Pass3 processes in the current bit-plane. 

 

 

Figure 5-9 Flowchart of the Pass2 process 

 

 The Pass2 process is executed after the Pass1 process and the Pass2 table is updated in 

the Pass1 process in the current bit-plane. The flowchart of the Pass2 process is shown in 

Figure 5-9. If all the offset are used in the Pass2 VGOSS, the Pass2 process is completed. The 

following step is executing the Pass3 process and the pass processes is done in the current 

bit-plane coding. Afterward the Pass1, Pass2, and the Pass3 processes are executed until all 

the bit-planes are coded. 
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In practice, the modified flag updating procedure is split into three procedures. Under 

three different conditions, three updating flag procedure are executed separately and also the 

bit-plane scanning is modified. According to the VGOSS method, the pseudo code is listed 

below. 

 

Appendix A: Pseudo code of the VGOSS method 

 

Algorithm 1 Significance pass algorithm 

1: for (k=0; k<rearranged code-block height; k++) do 

2:  for (i=0; i<rearranged code-block width; i+4) do 

3:    fp0 (flag pointer) = (k+1)*(rearranged code-block width) + i + 4 

4:    if fp0 is insignificant then 

5:      if fp0 has significant neighbor then 

6:        code significance of the sample 

7:        if sample is a new significance then 

8:          code sign of the sample 

9:          updating flag procedure case 0x00 

10:       else 

11:         count the Pass2 and Pass3 offsets 

12:       endif 

13:     else 

14:       Record the Pass3 offsets in the Pass3 VGOSS table 

15:       count the Pass2 and Pass3 offsets 

16:     endif 

17:   else 

18:       Record the Pass2 offsets in the Pass2 VGOSS table 

19:       count the Pass2 and Pass3 offsets 

20:   endif 

21:   fp1 (flag pointer) = (k+1)*(rearranged code-block width) + i + 5 

22:    if fp1 is insignificant then 

23:      if fp1 has significant neighbor then 

24:       code significance of the sample 
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25:       if sample is a new significance then 

26:         code sign of the sample 

27:         updating flag procedure case 0x01 

28:       else 

29:         count the Pass2 and Pass3 offsets 

30:       endif 

31:     else 

32:       Record the Pass3 offsets in the Pass3 VGOSS table 

33:       count the Pass2 and Pass3 offsets 

34:     endif 

35:    else 

36:       Record the Pass2 offsets in the Pass2 VGOSS table 

37:       count the Pass2 and Pass3 offsets 

38:    endif 

39:    fp2 (current flag pointer) = (k+1)*(rearranged code-block width) + i + 6 

40:    if fp2 is insignificant then 

41:      if fp2 has significant neighbor then 

42:       code significance of the sample 

43:       if sample is a new significance then 

44:         code sign of the sample 

45:         updating flag procedure case 0x01 

46:       else 

47:         count the Pass2 and Pass3 offsets 

48:       endif 

49:     else 

50:       Record the Pass3 offsets in the Pass3 VGOSS table 

51:       count the Pass2 and Pass3 offsets 

52:     endif 

53:    else 

54:       Record the Pass2 offsets in the Pass2 VGOSS table 

55:       count the Pass2 and Pass3 offsets 

56:    endif 
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57:    fp3 (current flag pointer) = (k+1)*(rearranged code-block width) + i + 7 

58:    if fp3 is insignificant then 

59:      if fp3 has significant neighbor then 

60:       code significance of the sample 

61:       if sample is a new significance then 

62:         code sign of the sample 

63:         updating flag procedure case 0x01 

64:       else 

65:         count the Pass2 and Pass3 offsets 

66:       endif 

67:     else 

68:       Record the Pass3 offsets in the Pass3 VGOSS table 

69:       count the Pass2 and Pass3 offsets 

70:     endif 

71:   else 

72:       Record the Pass2 offsets in the Pass2 VGOSS table 

73:       count the Pass2 and Pass3 offsets 

74:   endif 

75:  endfor 

76: endfor 

 

 

Algorithm 2 Refinement pass algorithm 

1:  while Pass2 VGOSS table is not empty do 

2:    code magnitude of the sample 

3:  endwhile 

 

 

Algorithm 3 Cleanup pass algorithm 

1:  while Pass3 VGOSS table is not empty do 

2:    if ((current address & 0x03)==0 and run-length is not zero) then 

/*first sample in a stripe*/ 
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3:      if (run-length = 4) then 

4:        skip the following 4 offset in the Pass3 VGOSS table 

5:        continue 

6:      else 

7:        code significant sample 

8:        skip the following number of run-length offset in the Pass3 VGOSS table 

9:        continue 

10:     endif 

11:    else 

12:      run-length = 0 

13:    endif 

14:    cleanup coding 

15:    if sample significant then 

16:      code sign of sample 

17:      updating flag procedure case (0x03&current data point) 

18:    endif 

19:  endwhile 

 

 

5.1.2 Modified VGOSS method 

According to the PP method, the absolute coordinates are recorded in the prediction table. 

It seems more efficient if the missing samples and the sorting problems can be solved. We 

modify the VGOSS method to record the absolute address in the code-block. Basically, all the 

pass procedures are similar to the original VGOSS pass procedure. Only the Pass1 procedure 

is modified, and all pass processes use the absolute index in the VGOSS tables. The modified 

Pass1 procedure is described in Figure 5-10. The difference is that the VGOSS method 

records the offset and the modified VGOSS method records the absolute index. The counters 

are not necessary, and the Pass1 process seems to be more efficient. However, the 

experimental results show that the VGOSS method is slightly better than the modified 

VGOSS method. The experimental results will be shown in section 5.2 and we will compare 
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these methods in the next section. 

 

 

Figure 5-10 Flowchart of the Pass1 process 

 

The VGOSS tables are now recording the address information instead of the address 

offsets. The flowchart of the modified VGOSS method is almost the same as that of the 

VGOSS method except that the absolute address is recorded. Although the flowchart is the 

same, there are some differences in the Pass1 process and the Pass3 process. In the traditional 

PP method, all tables are prepared in the previous bit-plane. All addresses which are to be 

encoded in a certain bit-plane are recorded in the previous bit-plane. In the VGOSS method, 

all the offsets are recorded when the Pass1 process is performed in the current bit-plane. This 
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method avoids the missing sample problem and the comparator of three tables. Recording 

address is also efficient to accelerate the bit-plane coding and it records those samples that are 

need-to-be-coded in the Pass1 process.  

Before coding a code-block, address rearrangement is performed in advance. Because the 

original address arrangement cannot be used in the new method easily and updating flag 

procedure is also complicated. The flag table records the state of the samples and each flag 

must associate with relative samples. The updating flag procedure should be modified as 

described in section 5.1.1  It seems that the Pass1 process simply records the NBC samples 

but there are some problems using this method. Because the code-block size in the higher 

decomposition level may be smaller than the specified code-block size. It affect the loop 

branches. It should be noticed in the Pass3 process. Typically, we think the performance of the 

modified VGOSS method is fast than the one of the VGOSS but the experimental results 

show that the VGOSS method is faster. 

 

 

5.1.3 Advantages of the Proposed Methods 

The methods we describe in the previous sections are efficient in accelerating the 

JPEG2000 algorithm. Each has its own advantages in reducing the cycles. In this sub-section, 

we will discuss the major advantages using our proposed methods. 

 

 

Image Encoded samples in 
Pass1 process 

Encoded samples in 
Pass2 process 

Encoded samples in 
Pass3 process 

Goldhill 24 % 22 % 54 % 
Barb 22 % 24 % 54 % 
Lena 22 % 17 % 61 % 

Baboon 26 % 36 % 38 % 

Table 5-3 Percentage of encoding samples in each pass process 

 

Each pass process encodes about one-fourth of samples in coding a block except for the 

Pass3 process. Table 5-3 shows that the Pass1 process encodes about 24% of total checked 
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samples from the most significant bit-plane to the least significant bit-plane. The PP method 

uses the prediction table to record those NBC (need-to-be-coded) samples in the next 

bit-plane. Reducing to check the samples saves lots of processing cycles. Our proposed 

method saves the checking cycles in the Pass2 and Pass3 processes as well. 

The VGOSS method is different from the PP method. The PP method predicts the NBC 

samples in the last bit-plane, and some missing samples are fixed by the continuous-five and 

boundary extension modes, which have been described in section 4.4.1 . The PP method has 

to predict the NBC samples in the Pass3 process or after the Pass3 process. Typically, the 

prediction tables are completed in the Pass3 process. If the prediction tables are completed 

after the Pass3 process, the extra N2 checking cycles are required. In our approach, the 

VGOSS tables include all NBC samples. The VGOSS method records the NBC samples in 

the current bit-plane and it avoids the missing samples in the significant propagation as 

described in Figure 4-14. No samples miss and no sorting repair list or comparison index 

problems are produced in the VGOSS method. The checking loop of each pass process 

depends on the number of the offset in the VGOSS table. The number of the NBC samples is 

obtained before the Tier2 coding. We can calculate the distortion before coding the entire 

code-block. Besides, the PP method records the coordinates of the sample because the stripe 

scanning is not a sequential order. The VGOSS method only records the offsets, and most 

offsets are small numbers. The table size is smaller than the one of the PP method. 

The CUPS is a known speed-improving method. We know that the scanning hierarchy 

for a code-block is ordered from the lower to the upper level, which is pixel, column, stripe, 

pass, and bit-plane. To skip from the upper levels represents to save more operation cycles. 

The CUPS method is to skip all samples which are not necessarily checked in the clean-up 

pass process. Usually, the CUPS method is applied to the Pass3 process with the PP method. 

When the CUPS method is applied, it skips the Pass3 process in the bit-plane coding. The 

prediction tables in the PP method are affected by the CUPS method. The N2 checking cycles 

is still required to complete the prediction tables. However, the VGOSS method can skip the 

Pass3 process without extra N2 cycles and the Pass1 and the Pass3 processes are the 

candidates to skip all samples in the checking process. If all samples become significant, they 

are coded in the Pass2 process in all following bit-planes. Thus, the Pass1 and the Pass3 

process can be skipped entirely. In our proposed method, the skipping pass method is already 
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adopted without additional effort. If the Pass1 or the Pass3 VGOSS table is empty, the 

corresponding pass process will be skipped, similar to the CUPS method. 

 

 

010 0

GOC1 GOC2 GOC3 GOC4

Group of column skipping

GOCS table

NBC sample

Checking cycles 4

Total Checking cycles = 62

Flag-block 16
Code-block 3

Flag-block 0
Code-block 0

Flag-block 16
Code-block 3

Flag-block 16
Code-block 4

 

Figure 5-11 Checking cycles of the GOCS method 
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Figure 5-12 Checking cycles of the VGOSS method 

 

The SS method and the GOSS methods described in section 4.4.2 are often used in 

accelerating the JPEG2000 encoder but it is not convenient to implement on a sequential 

processing platform. Based on the bit-plane coding statistics, most checking cycles are wasted 

in the three pass processes. The significant samples usually propagate on a bit-plane. The 

GOCS method makes use of this property but the most appropriate column size of a group 

varies for different test images. In the experimental results of using different column sizes on 
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the C64xx simulator, we find that the GOSS method with a fixed group size is not efficient in 

skipping the un-coded samples. The variable column size is a better way to handle all 

different test images. The GOSS method results show that skipping a group of samples is still 

a good idea to accelerate the block coding. In practice, skipping a variable-size group of 

samples that are not necessarily coded is achieved already by our proposed method. 

Figure 5-11 shows the total checking cycles when applying the GOCS method. The 

group size is set to 4 columns. The 96 samples are grouped into 4 groups called GOC1, GOC2, 

GOC3, and GOC4. The checking step includes checking the flag-block and the code-block. 

We assume that checking the GOCS table takes 4 cycles. In this example, the GOCS table 

skips GOC2 and uses 0 cycles. The GOC1, GOC3 and GOC4 are checked because there are 

NBC samples in each group. Each flag in the flag-block is checked in the GOC, and the state 

of the NBC sample is decided. If the sample is need-to-be-coded, its value recorded in the 

code-block is checked. If the value of the current sample is 1, the state of the current sample 

becomes significant. The sign coding is also executed. For example, the GOC1 takes 16 

cycles in checking the state that is recorded in the flag-block. There are three NBC samples, 

and 3 cycles is taken in checking the sample values. The total checking cycles is 62 of the 

example in Figure 5-11. 

In Figure 5-12, the VGOSS table takes 10 cycles to identify the NBC samples. The 

VGOSS method takes zero cycles in checking the state of each sample. The value of each 

NBC sample has to be checked. The total checking cycles in a code-block are same as that of 

the GOCSS method. 

The SS method is also a fast process for the hardware implementation but it is not 

suitable for the sequential program. In our DSP system, the VLIW architecture provides the 

parallel executing equivalence to take the advantage of the SS method. To a certain extent, the 

compiler level can use its parallelism. The other way to improve utility of the DSP functional 

units is to modify the assembly code. 

Finally, we compare the modified VGOSS method with the original one. The modified 

VGOSS method records the absolutely index only, so the counters are unnecessary. However, 

the counters are necessary when using the offset in the pass process. Consequently, the 

computation of using the absolute address is less than using the offset. Theoretically, the 

modified VGOSS method is more efficient than the VGOSS method. But the experimental 
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results show that the original VGOSS method is slightly more efficient than the modified one. 

We will give the comparison results in section 5.2 . 

5.1.4 Software Speed-up Techniques 

The arithmetic coding algorithm contains sequential processing steps, nested conditional 

operations, and inner while loops. They decrease the efficiency of the software pipelined 

scheduling. The JPEG2000 binary arithmetic encoder is characterized by four functions, Code 

MPS, Code LPS, RENORME, and BYTEOUT. These functions are executed based on the 

context state of the arithmetic encoder, its interval width (A), and codeword value (C). The 

encoder must decide if a Most Probable Symbol (MPS) or Least Probable Symbol (LPS) is 

encoded, whether to renormalize (RENORME) the interval width and codeword, and 

determine if a compressed byte needs to be sent to the bit-stream (BYTEOUT). 

 

 

Figure 5-13 RENORME and modified procedure 
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In [28], several optimizing techniques for the JPEG2000 binary arithmetic encoder on a 

VLIW architecture are proposed. The first technique is decoupling the coefficient bit modeler 

from the arithmetic encoder. To rewrite the arithmetic encoder in an efficient loop form, the 

bit modeling and the arithmetic encoding processes are decoupled. The decoupling probably 

provides the better compiler scheduling. Thus, the compiled code may be more efficiently. 

The second technique is eliminating the loops in the RENORME function. An intrinsic 

function of the C64x is used to eliminate the loop condition as shown in Figure 5-13. We 

revise the modified RENORME function in [28]. The third technique is decoupling the 

BYTEOUT function from the MQ encoder. Due to the average 5% of the total encoding 

number is called by BYTEOUT function, the decoupling may have the additional benefit of 

making the encoding loop more efficient. Finally, we modified the MQ coder according to the 

concept that is described in [28]. We enable the L2 cache on the C6416 simulator but do not 

use the compiler-level optimization. The experimental results are obtained and shown in Table 

5-4. 

 

 Goldhill Barb Lena Baboon 

Original method 254,471,438 253,084,608 228,484,653 317,505,663 

Modified method 222,464,585 220,992,114 200,095,451 276,482,317 

Ratio 87% 87% 88% 87% 

Table 5-4 Cycles of the MQ coder on the C6416 simulator 

 Goldhill Barb Lena Baboon 

DWT encode 552,674,115 552,674,115 552,674,110 552,674,110 

Speed-up 196,657,558 196,657,558 196,657,558 196,657,558 

Ratio 36% 36% 36% 36% 

Table 5-5 DWT module on C6416 simulator 

 

In addition, a few well known techniques such as unrolling, packeted data processing and 

pragma instructions could be used for accelerating the program as described in section 3.4.3 . 
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But some techniques are not suitable for this program. For example, the packet date 

processing is suitable for the 8-bit or the 16-bit data type. However, the most data types in the 

JPEG2000 software are 32-bit data type. The pragma directives tell the compiler how to treat 

a certain function, object, or section of code. This method improves the performance slightly 

on the C6416 simulator. The L2 cache is an efficient way to reduce the accessing time of the 

external memory, and the pragma directives provide the SRAM to store the data that are often 

used. Although the L2 cache occupies a portion of the SRAM, the two methods are different 

in the produced missing cycles. The DATA_SECTION pragma decides the memory allocation 

without setting DSP BIOS. It is useful to define the use of memory. The MUST_ITERATE 

pragma instruction helps that the loop call executes a certain number of times. These speed-up 

techniques are useful for the DWT module. We apply the compiler-level optimization and the 

software speed-up methods. The reduction is about 64% as shown in Table 5-5. The modified 

procedure shown in Figure 5-13 also uses the LMBD intrinsic function. All of them may help 

the running speed on the DSP platform, and they are the program level optimization. The 

experimental results are presented in the next section. 

 

5.2 Experimental Results 

In this section, we are going to present the experimental results using the test images 

described in section 4.1  The notation “M1” means the scheme uses the SS and GOSS 

methods described in section 4.4.2 . “M2” represents the proposed VGOSS method described 

in section 5.1.1 and “M3” represents the modified VGOSS method described in section 5.1.2 . 

The “Ori” means the original program and the Tier1 module includes the Pass1 module, the 

Pass2 module, and the Pass3 module. The proposed M2+ and M3+ methods are accelerated 

with program level optimization described in section 3.4.3 and 5.1.4 . Otherwise, the 

compiler-level optimization uses the file level optimization and the non-level optimization. 

All the ratios in these tables are the cycles of the proposed method divided by the original 

cycles and are expressed in percentage. 

On Table 5-6, we compare different methods using the C64xx simulator. The programs 

do not use compiler-level optimization. The Tier1 function takes the most cycles of the 

JPEG2000 encoder. We can see that our proposed methods have achieved about 30% 
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reduction. In other words, our proposed method has a better performance without enabling 

any hardware or software optimizations. The comparison of the M2 and M3 will be discussed 

later. 

 

  Pass1 ratio Pass2 ratio Pass3 ratio Tier1 ratio

Ori 305,253,023 N/A 230,409,367 N/A 226,859,815 N/A 846,100,895 N/A

M1 282,191,607 92% 161,154,959 69% 153,603,555 67% 691,653,125 81%

M2 293,537,043 96% 147,094,303 64% 140,270,753 62% 617,477,074 73%

Goldhill 

M3 268,073,463 87% 146,687,443 63% 154,029,099 67% 610,316,669 72%

Ori 298,583,742 N/A 242,601,594 N/A 229,189,368 N/A 854,930,539 N/A

M1 271,438,557 91% 171,781,735 71% 155,859,497 68% 686,567,790 80%

M2 285,719,070 96% 157,152,430 65% 142,649,768 62% 622,141,054 73%

Barb 

M3 260,057,725 87% 156,718,367 65% 156,544,656 68% 614,892,043 72%

Ori 290,392,605 N/A 199,107,794 N/A 221,486,542 N/A 793,191,469 N/A

M1 266,220,518 92% 126,029,839 63% 160,976,617 73% 638,251,568 80%

M2 278,136,726 96% 111,841,674 56% 148,145,016 67% 574,660,595 72%

Lena 

M3 253,699,774 87% 111,530,410 56% 162,578,666 73% 569,297,918 72%

Ori 340,504,870 N/A 329,348,990 N/A 251,280,448 N/A 1,011,860,852 N/A

M1 307,918,629 90% 260,281,541 79% 148,146,791 59% 810,277,071 80%

M2 325,038,946 95% 242,780,578 74% 135,044,067 54% 739,661,816 73%

Baboon 

M3 295,676,364 87% 242,114,405 74% 148,261,575 59% 727,801,158 72%

Table 5-6 Comparison using C64xx simulator without compiler-level optimization 

 

Then, we use the compiler-level optimization to accelerate the encoder. The exact cycles 

are shown in Table 5-7 and we can see that the cycles are reduced to half of their counterpart 

in Table 5-6. This means the encoder has been accelerated about two times faster. The original 

encoder takes about 0.8 sec to encode a 512 by 512 image on the C64xx simulator. The 

running time is estimated based on 1GHz DSP processor. The encoding cycles are thus 

divided by the 109. The compiler level optimization can reduce the encoding time to about 0.4 

sec. However, the C64xx simulator uses the flat memory system, and the real time on the 

C6416 emulator is related to the result of the C6416 simulator. On this table, our proposed M2 
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method has a reduction of up to 37% in the Tier1 module. The proposed M2 method seems to 

have a better performance than the proposed M3 method and the additional program level 

optimization helps the M2 method to achieve about 46% reduction of computation cycles as 

shown in the M2+ results. And, the M2+ results are still slightly better than the M3+ results. 

 

  Pass1 ratio Pass2 ratio Pass3 ratio Tier1 ratio

Ori 161,696,792 N/A 123,912,376 N/A 132,353,060 N/A 435,017,649 N/A

M1 127,578,760 78% 81,792,398 66% 83,544,436 63% 310,108,162 71%

M2 125,231,272 77% 65,696,264 53% 71,670,151 54% 278,049,520 63%

M2+ 111,479,250 69% 52,262,769 42% 64,940,416 49% 236,919,268 54%

M3 134,596,715 83% 64,882,190 52% 72,759,624 54% 287,959,889 66%

Goldhill 

M3+ 120,941,561 75% 51,041,835 41% 68,490,347 52% 246,919,263 57%

Ori 158,478,206 N/A 129,282,989 N/A 133,847,824 N/A 438,746,356 N/A

M1 122,166,076 77% 87,196,372 67% 85,158,426 64% 311,697,932 71%

M2 120,764,739 76% 70,177,352 54% 72,977,347 55% 279,411,207 64%

M2+ 107,855,946 68% 55,856,088 43% 66,049,340 49% 238,014,402 54%

M3 130,671,579 82% 69,308,863 54% 74,122,298 55% 289,863,349 66%

Barb 

M3+ 117,796,112 74% 54,551,358 42% 75,907,089 57% 248,421,913 57%

Ori 153,954,906 N/A 108,237,140 N/A 129,077,570 N/A 408,233,549 N/A

M1 120,130,825 78% 64,744,920 60% 88,197,594 68% 290,075,454 71%

M2 118,381,074 77% 49,993,868 46% 75,995,528 59% 259,792,581 64%

M2+ 105,516,600 69% 39,695,355 37% 68,746,351 53% 222,169,225 54%

M3 126,991,911 82% 49,370,996 46% 77,238,351 60% 269,292,266 66%

Lena 

M3+ 114,192,081 74% 38,759,155 36% 78,765,768 61% 231,705,425 57%

Ori 179,696,714 N/A 171,827,724 N/A 147,598,193 N/A 516,672,503 N/A

M1 138,079,206 77% 130,939,612 76% 80,407,186 54% 367,019,323 71%

M2 136,630,164 76% 108,313,813 63% 68,628,442 46% 329,208,921 64%

M2+ 122,000,811 68% 86,310,345 50% 62,199,750 42% 278,849,859 54%

M3 149,193,658 83% 106,981,058 62% 69,600,789 47% 341,680,709 66%

Baboon 

M3+ 134,442,629 75% 84,308,963 49% 78,911,706 53% 291,039,854 56%

Table 5-7 Comparison using C64xx simulator with file level optimization 



 92

In order to analyze the actual performance on the DSP emulator, we take profiling of the 

encoder on the C6416 simulator. First, we compare all the methods on the C6416 simulator 

without any compiler level optimization or program level optimization. The results are 

presented in Table 5-8. It shows that all methods have little improvement on the C6416 

simulator. The Pass1 process checks all samples in the code-block but the other processes 

encode the NBC samples only. It seems the Pass1 process does not gain any acceleration as 

compared with Table 5-6. 

 

  Pass1 ratio Pass2 ratio Pass3 ratio Tier1 ratio

Ori 3,017,620,410 N/A 2,042,494,971 N/A 1,878,381,119 N/A 7,509,481,733 N/A

M1 3,025,667,367 100% 1,741,809,460 85% 1,421,319,656 75% 6,770,907,062 90%

M2 3,136,395,302 103% 1,705,536,220 83% 1,401,228,658 74% 6,559,372,183 87%

Goldhill 

M3 3,109,291,411 103% 1,705,523,470 83% 1,413,508,168 75% 6,549,455,756 87%

Ori 2,896,173,480 N/A 2,158,293,928 N/A 1,893,826,534 N/A 7,524,305,067 N/A

M1 2,878,730,141 99% 1,876,066,087 87% 1,452,988,453 77% 6,786,729,765 90%

M2 2,997,467,962 103% 1,822,898,565 84% 1,418,383,687 75% 6,555,043,830 87%

Barb 

M3 2,970,457,703 103% 1,822,891,700 84% 1,430,763,867 76% 6,545,326,635 87%

Ori 2,836,766,126 N/A 1,664,108,463 N/A 1,858,239,288 N/A 6,922,931,525 N/A

M1 2,839,909,398 100% 1,353,038,108 81% 1,494,062,471 80% 6,253,649,422 90%

M2 2,954,013,613 104% 1,295,049,729 78% 1,461,410,941 79% 6,026,615,579 87%

Lena 

M3 2,928,402,594 103% 1,295,042,543 78% 1,474,297,106 79% 6,018,804,632 87%

Ori 3,307,931,711 N/A 3,113,296,427 N/A 2,018,577,407 N/A 9,047,999,627 N/A

M1 3,264,497,611 99% 2,875,062,110 92% 1,401,263,282 69% 8,152,221,728 90%

M2 3,395,751,005 103% 2,819,811,057 91% 1,365,494,753 68% 7,897,700,868 87%

Baboon 

M3 3,363,909,744 102% 2,819,796,302 91% 1,377,280,810 68% 7,882,548,295 87%

Table 5-8 Comparison using C6416 simulator without compiler-level optimization 

 

Then we use the file level optimization which has been described in section 3.4.2 and the 

results are shown in Table 5-9. We can see that the cycle of the Tie1 has about 30% reduction 

as compared to Table 5-8. The encoder still needs 5,896,744,104 (including all modules) 

cycles to encode a Goldhill image. All the accelerating methods are encumbered by the 
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memory system as discussed in section 4.3.1 . Until now, the memory system dominates the 

performance on the C6416 simulator. Although we have a great performance on the C64xx 

simulator as shown in Table 5-7, the final judgments on the performance is on the real time 

system, i.e., the C6416 emulator. Because the C6416 emulator cannot profile the cycle 

information of the encoder on the board, we assume that the experimental results of the 

C6416 simulator can approximately represent the results of the C6416 emulator. 

 

  Pass1 ratio Pass2 ratio Pass3 ratio Tier1 ratio

Ori 2,112,041,634 N/A 1,378,876,280 N/A 1,247,956,850 N/A 5,249,595,284 N/A

M1 1,909,390,616 90% 1,170,834,214 84% 1,017,962,461 81% 4,609,052,664 87%

M2 2,117,760,455 100% 1,219,529,873 88% 1,008,254,857 80% 4,613,282,518 87%

Goldhill 

M3 2,107,525,133 99% 1,220,058,177 88% 999,638,429 80% 4,595,193,586 87%

Ori 2,039,284,465 N/A 1,452,630,437 N/A 1,262,285,138 N/A 5,269,580,191 N/A

M1 1,823,491,911 89% 1,265,470,505 87% 1,039,524,522 82% 4,643,920,352 88%

M2 2,024,787,896 99% 1,301,723,052 90% 1,023,242,623 81% 4,617,566,683 88%

Barb 

M3 2,016,239,162 99% 1,302,308,385 90% 1,014,583,518 80% 4,601,177,484 87%

Ori 1,988,997,365 N/A 1,138,002,909 N/A 1,247,101,515 N/A 4,878,183,463 N/A

M1 1,788,189,759 90% 922,499,516 81% 1,069,658,356 86% 4,284,479,896 88%

M2 1,985,936,734 100% 929,742,870 82% 1,054,472,108 85% 4,237,821,331 87%

Lena 

M3 1,976,123,575 99% 930,163,782 82% 1,045,640,767 84% 4,219,831,865 87%

Ori 2,319,243,443 N/A 2,064,641,254 N/A 1,324,106,786 N/A 6,253,178,570 N/A

M1 2,073,048,478 89% 1,925,065,285 93% 996,385,327 75% 5,539,745,533 89%

M2 2,297,572,925 99% 2,005,493,307 97% 979,527,354 74% 5,550,726,038 89%

Baboon 

M3 2,289,349,786 99% 2,006,364,071 97% 970,994,914 73% 5,535,075,645 89%

Table 5-9 Comparison using C6416 simulator with file level optimization 

 

We know that enabling the L2 cache system can improve the total encoding time on the 

C6416 emulator. We compare Table 5-8 with Table 5-10. The encoding time of the encoder 

using the L2 cache system is eight times faster than the former one. As for these speed-up 

methods, the M1 method could just have about 20 % reduction of the computation cycles in 

the Tier1 module and our proposed methods have better performance at about 30 % reduction 
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in the same module. 

 

  Pass1 ratio Pass2 ratio Pass3 ratio Tier1 ratio

Ori 308,284,632 N/A 251,097,478 N/A 232,841,458 N/A 878,528,789 N/A

M1 283,514,595 91% 164,102,018 65% 170,341,982 73% 715,481,512 81%

M2 310,759,475 100% 150,799,659 60% 142,705,474 61% 643,385,635 73%

Goldhill 

M3 286,373,249 92% 151,103,318 60% 156,405,272 67% 637,677,407 72%

Ori 301,567,183 N/A 262,931,785 N/A 235,251,179 N/A 887,081,291 N/A

M1 272,633,925 90% 174,226,431 66% 172,958,920 74% 710,121,902 80%

M2 301,927,080 100% 161,098,804 61% 145,148,671 62% 647,343,159 73%

Barb 

M3 277,311,304 92% 161,388,576 61% 158,987,469 68% 641,531,078 72%

Ori 293,270,703 N/A 213,746,035 N/A 227,449,758 N/A 819,425,979 N/A

M1 267,314,454 91% 127,929,966 60% 178,827,591 79% 661,884,222 81%

M2 293,726,038 100% 114,665,949 54% 150,681,664 66% 598,149,363 73%

Lena 

M3 270,410,167 92% 114,862,234 54% 165,059,091 73% 594,083,833 72%

Ori 344,015,246 N/A 360,498,318 N/A 257,274,679 N/A 1,055,301,462 N/A

M1 309,308,487 90% 263,822,006 73% 164,094,852 64% 834,062,055 79%

M2 344,603,091 100% 248,835,280 69% 137,393,177 53% 770,203,559 73%

Baboon 

M3 316,054,573 92% 249,336,149 69% 150,554,300 59% 759,984,175 72%

Table 5-10 Comparison by C6416 simulator using L2 cache 

without compiler-level optimization 

 

At the end, we enable the file level optimization and all results are shown in Table 5-11. 

Our proposed methods, M2 and M3, have a reduction of up to 35 % of computation cycles 

and, furthermore, the M2+ and M3+ use the program level optimization. It helps our proposed 

methods (M2+ and M3+) to reduce up to 45 % of computation cycles in the Tier1 module. 

These results now can achieve approximately those results of Table 5-7, which are generated 

by the C64xx simulator (using the flat memory system). 
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  Pass1 ratio Pass2 ratio Pass3 ratio Tier1 ratio

Ori 163,080,554 N/A 124,821,177 N/A 133,472,282 N/A 441,174,161 N/A

M1 128,930,478 79% 83,076,184 66% 101,499,569 76% 333,581,675 75%

M2 128,567,039 78% 67,302,409 53% 73,328,088 54% 287,411,966 65%

M2+ 112,848,128 69% 53,775,561 43% 66,497,047 49% 243,772,802 55%

M3 135,518,273 83% 66,348,752 53% 77,189,981 57% 297,154,656 67%

Goldhill 

M3+ 122,246,007 75% 52,620,095 42% 67,810,545 51% 253,842,164 58%

Ori 159,898,842 N/A 130,222,929 N/A 135,022,022 N/A 445,058,085 N/A

M1 125,607,586 79% 88,384,942 68% 100,587,687 74% 334,635,666 75%

M2 123,971,510 78% 71,805,581 55% 74,693,375 55% 288,726,161 65%

M2+ 109,214,696 68% 57,459,450 44% 67,696,874 50% 245,428,000 55%

M3 131,593,386 82% 70,838,058 54% 78,625,116 58% 299,196,088 67%

Barb 

M3+ 119,108,218 74% 56,192,138 43% 69,091,530 51% 255,512,543 57%

Ori 155,250,384 N/A 109,054,998 N/A 130,199,119 N/A 414,230,692 N/A

M1 123,411,310 79% 65,712,808 60% 104,118,479 80% 313,098,474 76%

M2 121,457,646 78% 51,269,739 47% 77,789,117 60% 268,694,555 65%

M2+ 106,797,331 69% 40,955,168 38% 70,440,728 54% 229,200,081 55%

M3 127,855,746 82% 50,567,223 46% 81,937,980 63% 278,421,068 67%

Lena 

M3+ 115,431,429 74% 40,045,260 37% 71,836,295 55% 238,400,634 58%

Ori 181,379,029 N/A 172,997,973 N/A 148,789,097 N/A 523,492,124 N/A

M1 141,906,202 78% 132,573,813 77% 95,167,853 64% 390,208,533 75%

M2 140,240,468 77% 110,727,881 64% 70,188,995 47% 339,579,061 65%

M2+ 123,588,182 68% 88,581,223 51% 63,678,663 43% 287,012,673 55%

M3 150,294,582 83% 109,189,994 63% 73,777,013 50% 351,565,266 67%

Baboon 

M3+ 135,935,289 75% 86,669,837 50% 64,985,784 44% 298,879,302 57%

Table 5-11 Comparison using C6416 simulator with L2 cache and file level optimization 

 

Comparing the proposed M2 and M3 methods, the M2 method records the offset but it 

has a better performance than the M3 method on the DSP simulators or emulator. In general, 

the M3 method records the address without counting the offset which is adopted in the M2 

method and thus it should have better performance than the M2 method. However, all results 
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show that the M2 method is more efficient than the M3 method. This is because the 

computation cycles of the M3 method in the Pass1 process are tinier than that of the M2 

method. According to the assembly code, the M2 method use more counters to compute the 

offset, but those counters could lead to better parallelism instead. 

Now, we summarize the best performance as shown in Table 5-12 and Table 5-13. When 

the bottleneck of the memory system is ignored, the results (Ori+), which are profiled using 

the file level optimization on the C64xx simulator, can achieve 1.9 times faster than the 

original one (Ori) as shown in Table 5-12. Furthermore, our best solution (M2+) can 

accelerate up to 3.6 times faster than the original one. On the C6416 simulator, the results 

(Ori+) are measured with the L2 cache and file level optimization and the proposed method 

(M2+) can accelerate the Tier1 module nearly 2 times faster than (Ori) as the results of the 

C6416 simulator. 

 

 

  Pass1 Mul. Pass2 Mul. Pass3 Mul. Tier1 Mul.

Ori 305,253,023 N/A 230,409,367 N/A 226,859,815 N/A 846,100,895 N/A

Ori+ 161,696,792 1.9x 123,912,376 1.9x 132,353,060 1.7x 435,017,649 1.9x

Goldhill 

M2+ 111,479,250 2.7x 52,262,769 4.4x 64,940,416 3.5x 236,919,268 3.6x

Ori 298,583,742 N/A 242,601,594 N/A 229,189,368 N/A 854,930,539 N/A

Ori+ 158,478,206 1.9x 129,282,989 1.9x 133,847,824 1.7x 438,746,356 1.9x

Barb 

M2+ 107,855,946 2.8x 55,856,088 4.3x 66,049,340 3.5x 238,014,402 3.6x

Ori 290,392,605 N/A 199,107,794 N/A 221,486,542 N/A 793,191,469 N/A

Ori+ 153,954,906 1.9x 108,237,140 1.8x 129,077,570 1.7x 408,233,549 1.9x

Lena 

M2+ 105,516,600 2.8x 39,695,355 5.0x 68,746,351 3.2x 222,169,225 3.6x

Ori 340,504,870 N/A 329,348,990 N/A 251,280,448 N/A 1,011,860,852 N/A

Ori+ 179,696,714 1.9x 171,827,724 1.9x 147,598,193 1.7x 516,672,503 2.0x

Baboon 

M2+ 122,000,811 2.8x 86,310,345 3.8x 62,199,750 4.0x 278,849,859 3.6x

Table 5-12 Comparison using C64xx simulator (Best solution) with file level optimization 
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  Pass1 Mul. Pass2 Mul. Pass3 Mul. Tier1 Mul.

Ori 3,017,620,410 N/A 2,042,494,971 N/A 1,878,381,119 N/A 7,509,481,733 N/A

Ori+ 163,080,554 19x 124,821,177 16x 133,472,282 14x 441,174,161 17x

Goldhill 

M2+ 112,848,128 27x 53,775,561 38x 66,497,047 28x 243,772,802 31x

Ori 2,896,173,480 N/A 2,158,293,928 N/A 1,893,826,534 N/A 7,524,305,067 N/A

Ori+ 159,898,842 18x 130,222,929 17x 135,022,022 14x 445,058,085 17x

Barb 

M2+ 109,214,696 27x 57,459,450 38x 67,696,874 28x 245,428,000 31x

Ori 2,836,766,126 N/A 1,664,108,463 N/A 1,858,239,288 N/A 6,922,931,525 N/A

Ori+ 155,250,384 18x 109,054,998 15x 130,199,119 14x 414,230,692 17x

Lena 

M2+ 106,797,331 27x 40,955,168 41x 70,440,728 26x 229,200,081 30x

Ori 3,307,931,711 N/A 3,113,296,427 N/A 2,018,577,407 N/A 9,047,999,627 N/A

Ori+ 181,379,029 18x 172,997,973 18x 148,789,097 14x 523,492,124 17x

Baboon 

M2+ 123,588,182 27x 88,581,223 35x 63,678,663 32x 287,012,673 32x

Table 5-13 Comparison using C6416 simulator (Best solution) with file level optimization 

 

 Afterward, we record the real time execution on the C6416 emulator, i.e. the hardware 

platform. We use the timer on the DSP platform to count the executing time. We compare the 

‘ori’, ‘M1’, ‘M2+’, and ‘M3+’ and all results are shown in Table 5-14. The ‘M2+’ result can 

achieve about 45% reduction of the computation time. It is similar to the result of the C6416 

simulator. Comparing these reduction ratios in Table 5-11 and Table 5-14, all results are 

consistent. The simulation results on the C64xx simulator also achieve approximately those 

results on the hardware platform or the C6416 simulator.  

Finally, we compare the difference in executing time between the C6416 simulator and 

the C6416 emulator (i.e. the hardware platform) shown in Table 5-15. We convert the cycles 

of the C6416 simulator to seconds by dividing 109 (1GHz DSP). The results show that the 

original executing time on the C6416 emulator is slower than the one on the C6416 simulator 

by about 11~14 %. When the L2 cache is adopted, the results show that the executing time on 

the hardware platform (C6416 emulator) is similar to that on the C6416 simulator. In 

summary, our proposed method can achieve an better performance and can implement on the 

DSP platform in an efficient and simple manner. The experimental results on different 

simulators or emulator show consistent results. It means that our proposed method can 
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achieve about half reduction on the real system. 

 

 

 

Tier1  

Non compiler-level 

optimization 

(sec) 

Ratio

L2 cache without 

compiler-level 

optimization (sec) 

Ratio

L2 cache with file 

level optimization 

(sec) 

Ratio

Ori 8.741983 N/A 0.898467 N/A 0.447415 N/A

M1 7.666878 88% 0.717021 80% 0.346838 78%

M2+ 7.646112 87% 0.579569 65% 0.250016 56%
Goldhill 

M3+ 7.643923 87% 0.580308 65% 0.259049 58%

Ori 8.752465 N/A 0.904697 N/A 0.451394 N/A

M1 7.654667 87% 0.719655 80% 0.347562 77%

M2+ 7.711458 88% 0.584394 65% 0.251254 56%
Barb 

M3+ 7.701879 88% 0.584885 65% 0.260636 58%

Ori 7.786148 N/A 0.835078 N/A 0.420186 N/A

M1 7.052966 91% 0.670789 80% 0.325005 77%

M2+ 7.067648 91% 0.54088 65% 0.23467 56%
Lena 

M3+ 7.056214 91% 0.542619 65% 0.2434 58%

Ori 10.2021 N/A 1.077518 N/A 0.53121 N/A

M1 9.19398 90% 0.84524 78% 0.405664 76%

M2+ 9.306895 91% 0.69134 64% 0.294029 55%
Baboon 

M3+ 9.328353 91% 0.689299 64% 0.304899 57%

Table 5-14 Comparison of the executing time on the C6416 emulator 
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  C6416 simulator 

(cycles) 

Conversion  

(sec) 

C6416 emulator 

(sec) 

Ratio 

(simulator/emulator)

Ori 7,509,481,733 7.509482 8.741983 86% 

Ori+ 441,174,161 0.441174 0.447415 99% 

Goldhill 

M2+ 243,772,802 0.243773 0.250016 98% 

Ori 7,524,305,067 7.524305 8.752465 86% 

Ori+ 445,058,085 0.445058 0.451394 99% 

Barb 

M2+ 245,428,000 0.245428 0.251254 98% 

Ori 6,922,931,525 6.922932 7.786148 89% 

Ori+ 414,230,692 0.414231 0.420186 99% 

Lena 

M2+ 229,200,081 0.2292 0.23467 98% 

Ori 9,047,999,627 9.048 10.2021 89% 

Ori+ 523,492,124 0.523492 0.53121 99% 

Baboon 

M2+ 287,012,673 0.287013 0.294029 98% 

Table 5-15 Comparison between the C6416 simulator and the C6416 emulator 

(The executing time of the Tier1 module) 
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Chapter 6  

Conclusions and Future Work 

 

6.1 Conclusion 

The main target of this thesis is to accelerate the JPEG2000 encoder and implement the 

encoder on the TI C6416T DSP platform. We have presented three known methods and 

proposed two improved methods to accelerate the Tier1 module, which is the major part in the 

JPEG2000 encoder. We first presented the previous speed-up methods and discussed their 

advantages and drawbacks. The advantages of these methods may not match the sequential 

processing environment. Therefore, we proposed the VGOSS and the modified VGOSS 

methods. Also, the codes are modified to allow program level optimizations as discussed in 

Section 3.4.3 and 5.1.4 . 

. The proposed VGOSS method is constructed on the re-ordered code-block samples and 

the extension of the GOSS and PP methods. It encodes only the NBC (need-to-be-coded) 

samples but reduces the checking cycles in the original three pass processes. It is easy and 

simple to implement and has a good performance on the DSP platform. It can run about 3.6 

times faster than the original software on the C64xx simulator, which uses the flat memory 

system. It means a reduction of the computation cycles up to 72 %. However, the real DSP 

system may spend extra cycles on accessing external memory. It is profiled by the C6416 

simulator explained in Section 3.3.3 . And our best performance is up to 32 times faster than 

the original one without DSP optimization. If the DSP compiler-level optimization technique 

is applied to the original codes, the speed-up is about 45%. The improvement is due to two 

factors, (1) our proposed VGOSS method and (2) the program level optimizations. Finally, we 

compare the results between the simulator and the emulator (i.e. hardware platform). The 

modified VGOSS method has about the same execution performance as VGOSS method on 

DSP although we expect it would be faster. All the results are consistent. 

In summary, our proposed acceleration methods have improved the JPEG2000 encoder 
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quite significantly. However, the JPEG2000 algorithm is still complicated in hardware 

implementation. The memory bottleneck is still a challenge to the embedded system. Because 

our DSP platform supports the L2 cache memory system, we have a great improvement by 

using this feature. There is still room for improvement to accelerate the JPEG2000 algorithm 

on different types of the embedded systems. 

 

6.2 Future Works 

The block coding takes the major part of the computational cycles in the JPEG2000 

encoding process. The experimental results given in this thesis are the lossless image 

encoding and our proposed methods reduce checking cycles of the Pass2 and Pass3 processes. 

The acceleration methods can be used for encoding a lossy image also. It takes some effort to 

improve the rate control module using our proposed method in lossy image coding. In each 

bit-plane coding, our proposed methods have counted the number of NBC samples in the first 

pass process. Also, it means that we can obtain the distortion information before the Pass2 and 

Pass3 processes in the current bit-plane. Also, our proposed method match DSP hardware well 

and can be more efficient than the other known methods. In the reference software, the DWT 

module has been accelerated by a lifting scheme and is about 2 times faster than the previous 

vision of the reference software. We did not focus on accelerating the DWT module yet, but it 

becomes an important part in the JPEG2000 encoder after our acceleration. The speed-up of 

the DWT module can be another topic for research. 
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