
國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

具結構性且低錯誤地板的

CP-PEG 低密度同位元檢查碼之設計

Design of Structured CP-PEG LDPC Codes with

Low Error Floor

學生：林義凱

 指導教授：張錫嘉 博士

中華民國 九十六年十一月

具結構性且低錯誤地板的

CP-PEG 低密度同位元檢查碼之設計

Design of Structured CP-PEG LDPC Codes with

Low Error Floor

研 究 生：林義凱 Student：Yi-Kai Lin

指導教授：張錫嘉 博士 Advisor：Dr. Hsie-Chia Chang

國 立 交 通 大 學

電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics Engineering & Institute Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

in
Electronics Engineering

November 2007
Hsinchu, Taiwan, Republic of China

中華民國九十六年十一月

具結構性且低錯誤地板的

CP-PEG 低密度同位元檢查碼之設計

學生：林義凱 指導教授：張錫嘉 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

PEG 演算法已被證明是一種簡單且有效率的方法，可用以設計出好的低密度

同位元檢查碼。然而，以 PEG 演算法建構出來的 Tanner 圖並無結構性，所對應

的同位檢查矩陣裡 1 的位置完全沒有規則性。在這篇論文裡，我們提出一個以

PEG 演算法為基礎的通用型方法，可用來建構有結構性的 Tanner 圖。如同 PEG

演算法，我們提出的 CP-PEG 演算法可彈性地選擇參數來建構規則和不規則的

Tanner 圖。此種硬體導向的低密度同位元檢查碼可減少超大型積體電路實現的

複雜度。為了編碼複雜度及錯誤地板的考量，我們所提出的演算法的變型也會被

討論到。就位元錯誤率和封包錯誤率而論，模擬結果顯示我們的低密度同位元檢

查碼勝過其他以 PEG 為基礎的低密度同位元檢查碼，而且也優於 IEEE 802.16e

標準裡所採用的低密度同位元檢查碼。

Design of Structured CP-PEG LDPC Codes with

Low Error Floor

Student：Yi-Kai Lin Advisor：Dr. Hsie-Chia Chang

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

 Progressive edge-growth (PEG) algorithm was proven to be a simple and

effective approach to design good LDPC codes. However, the Tanner graph

constructed by PEG algorithm is non-structured, leading to the positions of 1's of the

corresponding parity check matrix being fully random. In this thesis, a general method

based on PEG algorithm is proposed to construct structured Tanner graphs. These

hardware-oriented LDPC codes can not only reduce the VLSI implementation

complexity but also provide comparable performance. Similar to PEG method, our

CP-PEG approach can construct both regular and irregular Tanner graphs with

flexible parameters. For considering the encoding complexity and error floor,

modifications of proposed algorithm are discussed. Simulation results show that our

CP-PEG approach, in terms of bit error rate (BER) or packet error rate (PER),

outperforms other PEG-based and IEEE 802.16e LDPC codes.

誌 謝

 時光匆匆，轉眼間已到了畢業的時節。在這短短兩年多的碩士生涯

裡，承蒙了許多人的照顧與指教，讓我能順順利利的完成碩士論文裡

的研究。首先我要感謝 TWT 實驗室的溫瓌岸教授。謝謝您曾給過的指

導與鼓勵，讓我學習到了作研究的態度，也培養出一些作研究的能

力。另外，TWT 的所有學長姐及同學們，感謝你們給我的討論與關懷，

還有我們一同擁有的歡笑時光，這都將成為我碩士生涯中美好的回

憶。

再者我要感謝我的指導教授張錫嘉老師。謝謝您在研究上所給予的

指導與意見，讓我能順利的完成整個研究工作。也謝謝 Ocean group

裡的所有成員，因為你們的幫助與指教，使我能在研究這條路上走的

更加的穩健。特別是建青學長、彥欽學姐和胖達學長，感謝你們在我

迷惘時所給予的關懷及協助。此外，我也要感謝阿龍學長在模擬上提

供的協助，讓我能及時的看到結果，並做進一步的改進。

最後我謹以此論文獻給我摯愛的父母及家人。謝謝你們的支持與體

諒，讓我能無後顧之憂的完成此研究工作。謝謝你們!

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Organization . 2

2 Low-Density Parity-Check Codes 3

2.1 LDPC Codes . 3

2.2 Encoding of LDPC Codes . 4

2.2.1 Conventional Method . 5

2.2.2 Dual Diagonal Form . 5

2.2.3 Lower Triangular Form . 6

2.2.4 Approximate Lower Triangular Form 6

2.3 Decoding of LDPC Codes . 8

2.3.1 Message Passing on Graph . 8

2.3.2 Sum-Product Algorithm . 10

2.3.3 Min-Sum Algorithm . 17

2.3.4 Layered Belief Propagation Algorithm 18

3 Tanner Graph Construction 21

3.1 Performance-Related Code Parameters . 21

3.1.1 Degree Distribution Pairs . 21

3.1.2 Cycles in Tanner Graph . 24

3.1.3 Stopping Sets in Tanner Graph . 25

3.2 PEG Tanner Graphs . 26

3.3 PEG-QC LDPC Codes . 29

i

4 Design of PEG-Based Structured LDPC Codes 35

4.1 Proposed Structured LDPC Codes . 36

4.2 ALT Form for Encoding Consideration . 40

4.3 EMD Criterion for Lowering Error Floor 42

4.4 Simulation Results and Comparison . 43

5 Conclusion 52

ii

List of Figures

2.1 Example of the parity check matrix of an LDPC code 4

2.2 Tanner graph corresponds to H given in Fig.2.1 4

2.3 Example of the 6 × 6 matrix with dual-diagonal form 5

2.4 A matrix with lower triangular form . 6

2.5 The parity check matrix in approximate lower triangular form 7

2.6 Message passing on a node with d edges 9

2.7 Message passing on a check node with d edges 11

2.8 Message passing on a bit node with d edges 12

2.9 Graph representation for decoding a (10, 5) LDPC code 15

2.10 Plot of the Ψ(x) function . 17

2.11 Rows of Hlayered are grouped into three layers 19

3.1 A (3, 6)-regular Tanner graph . 22

3.2 Parity check matrix H corresponds to the graph given in Fig.3.1 22

3.3 A Tanner graph with length-6 cycles . 25

3.4 Parity check matrix H corresponds to the graph given in Fig.3.3 25

3.5 Illustration of a S3 stopping set . 26

3.6 (a) Current graph setting by using PEG-QC algorithm, (b) and its corre-

sponding parity check matrix . 32

3.7 Tree spreading from variable node v8 . 33

3.8 The Tanner graph constructed by PEG-QC algorithm, and its correspond-

ing parity check matrix. There are 4-cycles in this graph. 34

4.1 (a) The Tanner graph constructed by CP-PEG algorithm, (b) and its cor-

responding parity check matrix . 39

iii

4.2 The parity check matrix in approximate lower triangular form 40

4.3 A simple example of ACE criterion . 42

4.4 A simple example of EMD criterion . 43

4.5 Performance comparison of the regular codes with rate 8/9 constructed by

the proposed and PEG-QC algorithms . 45

4.6 Performance comparison of the irregular codes with rate 7/8 constructed

by the proposed and PEG-QC algorithms 46

4.7 Performance comparison of the irregular codes with rate 1/2 constructed

by the proposed and PEG-QC algorithms 46

4.8 Performance comparison of the irregular codes with rate 3/4 constructed

by the proposed and PEG-QC algorithms 47

4.9 Iterative decoding with various maximum number of iteration for (2560,

1280) ALT-CP-PEG LDPC code with rate 1/2 47

4.10 Iterative decoding with various maximum number of iteration for (2560,

1920) ALT-CP-PEG LDPC code with rate 3/4 48

4.11 Iterative decoding with various maximum number of iteration for (2560,

2240) ALT-CP-PEG LDPC code with rate 7/8 48

4.12 Performance of (2560, 1280) ALT-CP-PEG LDPC code with rate 1/2 by

using layered decoding algorithm . 49

4.13 Performance of (2560, 1920) ALT-CP-PEG LDPC code with rate 3/4 by

using layered decoding algorithm . 49

4.14 Performance of (2560, 1280) ALT-CP-PEG LDPC code with rate 1/2 by

using min-sum and modified min-sum algorithms 50

4.15 Performance of (2560, 1920) ALT-CP-PEG LDPC code with rate 3/4 by

using min-sum and modified min-sum algorithms 50

4.16 Performance of (2560, 2240) ALT-CP-PEG LDPC code with rate 7/8 by

using min-sum and modified min-sum algorithms 51

4.17 Performance comparison of the irregular codes with rate 1/2 constructed

by the proposed algorithm and of IEEE 802.16e 51

iv

List of Tables

3.1 Sets of code parameters which will be used hereafter 31

3.2 Occurrence probabilities of codes with various girth constructed by PEG-

QC algorithm . 31

4.1 Occurrence probabilities of codes with various girth constructed by the

proposed CP-PEG and PEG-QC algorithms 38

v

Chapter 1

Introduction

1.1 Motivation

Low-density parity-check (LDPC) code, a linear block code defined by a very sparse parity

check matrix, was first invented by Gallager in 1960’s [1]. Owing to the difficulty of VLSI

implementation, it has been ignored for about thirty years excepts for the papers by

Zyablov and Pinsker [2], Margulis [3], and Tanner [4]. The rediscovery of LDPC code was

done by Spielman et al. [5] and MacKay et al. [6,7]. LDPC codes with long block length

show good capacity-approached capability under iterative decoding algorithm [8], so they

attract much research interests in recent years. In practical applications, construction of

good LDPC codes at short and intermediate block length is of great importance.

Among the existing methods, one of the most successful approaches to construct finite-

length LDPC codes is so-called progressive edge-growth (PEG) algorithm proposed by Hu

et al. [9, 10]. The code parameters specified in the PEG method are highly flexible and

can be chosen for the practical applications. However, the positions of 1’s of the resulting

parity check matrix constructed by PEG algorithm are fully random. This makes it incur

higher complexity for VLSI design.

A structured LDPC code decreases both the encoder and decoder complexity and is

suitable for the hardware implementation. The recently proposed communication stan-

dards, IEEE 802.16e [11] and IEEE 802.11n [12], all adopt structured LDPC codes as

error-correcting codes. Z. Li et al. [13] added a circulant constraint into original PEG al-

gorithm to construct a class of structured LDPC codes, named PEG-QC LDPC codes. It

1

had shown performance comparable to several existing methods at high code rate. How-

ever, through simulation, we find that PEG-QC algorithm is much easier to construct a

Tanner graph with small girth which degrades the error-correcting performance.

In this thesis, we propose a general method based on PEG algorithm to construct

structured Tanner graphs. Simulation results show that the proposed algorithm can

suppress the probability to generate a graph with short cycles. Moreover, we present

that code performance of our LDPC codes outperforms that of codes based on PEG-QC

algorithm. For the consideration of encoding complexity and error floor, the modifications

of the proposed algorithm are also discussed.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the basic concepts

of the LDPC codes including characteristics, encoding, and decoding algorithms. Chapter

3 reviews the Progressive edge-growth (PEG) and PEG-QC algorithms and introduces

some factors that affect the performance of LDPC codes. The proposed algorithm with

its modifications and simulation results will be given in Chapter 4. Finally, we conclude

this thesis in Chapter 5.

2

Chapter 2

Low-Density Parity-Check Codes

A binary low-density parity-check (LDPC) code is a linear block code specified by a sparse

parity check matrix with fewer 1’s relates to the entries 0’s. Non-binary LDPC codes over

GF (q) are discussed in [14]. LDPC codes mentioned in this thesis are all binary codes,

they will be called LDPC codes for short hereafter. In this chapter, an introduction to

LDPC codes will be given, including the code characteristics, encoding, and decoding

algorithms.

2.1 LDPC Codes

A parity check matrix H which has N columns and M rows defines a (N,K) LDPC code

with codeword length N and contains K information bits. Assuming the matrix is of

full rank, the number of information bits is K = N − M , and the code rate R equals to

1−M/N . The parity check matrix with dimension M ×N can correspond to a bipartite

graph with N variable nodes and M check nodes. This was first suggested by Tanner [4],

so this bipartite graph is also called Tanner graph. On the one side of the graph is the

set of variable (bit) nodes corresponds to the N columns of the matrix H, on the other

side of the graph is the set of check nodes which corresponds to the M rows of H. If we

label the variable and check nodes from 1 to N and 1 to M , respectively, an edge e(ci, vj)

which connects the variable node vj with check node ci corresponds to the 1 in the entry

(i, j) of H. Fig. 2.1 shows the parity check matrix H of an LDPC code and Fig. 2.2 is

the corresponding Tanner graph relates to H specified in Fig.2.1.

3

0 1 0 1 1 0 1 0 1 1

0 1 1 0 1 0 1 1 0 1

1 0 1 0 1 1 0 1 0 1

1 0 1 1 0 1 0 1 1 0

1 1 0 1 0 1 1 0 1 0

H

 
 
 
 =
 
 
  

Figure 2.1: Example of the parity check matrix of an LDPC code

1 432 87 10965

1 5432

Figure 2.2: Tanner graph corresponds to H given in Fig.2.1

2.2 Encoding of LDPC Codes

Since an LDPC code is a linear block code, we can encode the message u through its

generator matrix G. The parity check matrix of an LDPC code is sparse, however, the

generator matrix of it often contains many 1’s. The above encoding complexity is pro-

portional to N2, where N is the block length. Previous works suggested us to force the

parity check matrix into some special forms and directly encode the message through H.

Here we introduce conventional method and several well-known ones.

4

2.2.1 Conventional Method

Assuming the matrix H is of full rank, for systematic encoding, we can use Gauss-Jordan

elimination to put H into systematic form Hsys = [P |IM], where P is an M×K matrix and

IM is the M×M identity matrix. The systematic generator matrix is then Gsys =
[
IK |P T

]

and the encoding can be accomplished as codeword X = u · G.

2.2.2 Dual Diagonal Form

For a linear block code, G · HT = 0. A legal codeword X of a linear block code satisfies

XHT = uGHT

= 0. (2.1)

If the parity check matrix can be divided into two parts H =
[
Hd|Hp

]
, where Hd is an

M × K matrix and Hp is an M × M square matrix with dual-diagonal form. Fig. 2.3

shows a 6 × 6 matrix with the dual-diagonal form. Corresponding to the parity check

1 1 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 0 0 1

P
H

 
 
 
 

=  
 
 
 
 

Figure 2.3: Example of the 6 × 6 matrix with dual-diagonal form

matrix H, we partitions the codeword vector X into two parts X =
[
Xd|Xp

]
, where Xd

is the information part of the codeword vector and Xp is the parity part of it. From

X · HT = 0, we get

Hd(Xd)T = Hp(Xp)T . (2.2)

For an given H =
[
Hd|Hp

]
and a deterministic information vector Xd, we can derive the

parity part of the codeword vector by a projection vector defined as

v = Hd(Xd)T

= Hp(Xp)T . (2.3)

5

We note that (Hp)−1 = Up, where Up is a upper triangular matrix, and thus

Xp = (Hp)−1v

= Upv. (2.4)

We can derive the Xp by a back-substitution procedure [15].

2.2.3 Lower Triangular Form

If the parity check matrix satisfies H =
[
Hd|Hp

]
, where Hd is an M ×K matrix and Hp

is an M × M square matrix with lower triangular form as shown in Fig. 2.4. We can get

2,1

,1 ,2

1 0 0

1 0

1

p

p

p p

M M

h
H

h h

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

Figure 2.4: A matrix with lower triangular form

the parity part of the codeword vector through the following equation.

xp
i = (

i−1∑

j=1

hp
i,jx

p
j +

N−M∑

j=1

hd
i,jx

d
j) (mod 2) (2.5)

2.2.4 Approximate Lower Triangular Form

T. Richardson et al. [16] brought a parity check matrix into approximate lower triangular

form indicated in Fig. 2.5 by performing row and column permutations only. Since this

transformation involved with permutations only, the matrix is still sparse. More precisely,

assume that the parity check matrix H is full rank and we transform the matrix in the

form

H =




A B T

C D E



 (2.6)

where A is (M−g)×(N−M), B is (M−g)×g, T is (M−g)×(M−g), C is g×(N−M),

D is g × g, and, finally, E is g × (M − g). Further, these matrices are all sparse and T is

6

 (m-γ)pi

1
1
1
1
1
1
1
1
1
1

Figure 2.5: The parity check matrix in approximate lower triangular form

lower triangular matrix with ones along the diagonal. Multiplying



I 0

−ET−1 I



 (2.7)

on the left side of equation (2.6) and we get



A B T

−ET−1A + C −ET−1B + D 0



 . (2.8)

Let the codeword X = (u, p1, p2) where u denotes the systematic part, p1 and p2 combined

denote the parity part, p1 has length g, and p2 has length (M − g). The check equation

HXT = 0T can split naturally into two equations, namely

AuT + BpT
1 + TpT

2 = 0 (2.9)

and

(−ET−1A + C)uT + (−ET−1B + D)pT
1 = 0. (2.10)

Define Φ ≡ −ET−1B + D and assume that Φ is nonsigular. Then from equation (2.10)

we derive that

pT
1 = −Φ−1(−ET−1A + C)uT . (2.11)

Hence, once the g × (N − M) matrix −Φ−1(−ET−1A + C) has been precomputed, the

determination of p1 can be accomplished in complexity O(g × (N − M)) simply by per-

forming a multiplication with this (generically dense) matrix. In a similar manner, we

can calculate p2 from equation (2.9) and derive that

pT
2 = −T−1(AuT + BpT

1). (2.12)

7

Following the steps listed in table I and II of [16], we can derive p1 and p2 step by

step, where the complexity of p1 and p2 are O(N + g2) and O(N), respectively. In fact,

Φ ≡ −ET−1B+D may be a singular matrix. If the resulting Φ is seen to be singular after

clearing the matrix E, we can simply perform further column permutations to remove this

singularity. This is always possible when H is of full rank, as assumed.

2.3 Decoding of LDPC Codes

In this section, the message passing algorithm which is used to perform probabilistic de-

coding will be introduced. Then we apply it to decode an LDPC code and derive the

well-known iterative decoding algorithm. To reduce the complexity of decoding algo-

rithm, min-sum approach will be discussed further. For the consideration of decoding

convergence rate, we study the layered belief propagation decoding algorithm to speed up

the convergence rate.

2.3.1 Message Passing on Graph

The soft iterative decoding algorithm relies on message passing or so-called belief propa-

gation (BP) algorithm [17,18]. Considering the following conditional probability

P (x = a|C) (2.13)

which denotes the a posteriori probability based on the knowledge of constraint C.

According to Bayes’ theorem, we can rewrite (2.13) as

P (x = a|C) =
P (C|x = a)P (x = a)

P (C)
. (2.14)

The term P (x = a) is the priori probability which refers to the probability that variable x

chooses the value a. The priori probability is also called intrinsic probability, denoted

by Pint(x = a). The term P (C|x = a) is proportional to the extrinsic probability which

is used to provide a new information for x according to the constraint C. The extrinsic

probability is defined by

Pext(x = a) = ρeP (C|x = a), (2.15)

8

where the normalization factor

ρe =
1

∑

a
′
∈A

P (C|x = a′)
(2.16)

is necessary so that
∑

a′∈A
Pext(x = a

′

) = 1, assuming a take values from the alphabet

set A. Then, the a posteriori probability in (2.14) can be expressed as

Ppost(x = a) = P (x = a|C) = ρpPext(x = a)Pint(x = a), (2.17)

where ρp = (ρeP (C))−1. If A = GF (2), A contains only two values 0 and 1, the log-

likelihood ratio for (2.17) will become

Lpost(x) = ln
Ppost(x = 0)

Ppost(x = 1)
= ln

Pext(x = 0)

Pext(x = 1)
+ ln

Pint(x = 0)

Pint(x = 1)
= Lext(x) + Lint(x). (2.18)

Fig. 2.6 illustrates a graph consisting of one node with d edges. There are d variables,

Pint(xd)

Pint(x1)

Pint(x2)

Pext(xi)

.
.
.

.
.
.

.
.

.
.
.

.
.
.

x1

x2
xd

xi

Figure 2.6: Message passing on a node with d edges

x1, x2,. . ., and xd, which correspond to the constraint C. A set SC is a subspace of the

d-dimensional vector space Ad, and for any d-tuple x = (x1, x2, · · · , xd) ∈ SC will satisfy

the constraint C. Assuming that each edge has the intrinsic probability Pint(xj) associated

with the variable xj for j = 1 ∼ d, the a posteriori probability of each variable xi with

respect to C can be derived through the combination of the intrinsic probability Pint(xi)

and the extrinsic probability Pext(xi). Therefore, we need to evaluate Pext(xi) based on the

constraint C and the other intrinsic probabilities Pint(xi), j 6= i. The extrinsic probability

9

is

Pext(xi) = ρcP (C|xi)

= ρc

∑

xj ,∀j 6=i,x∈SC

P (x1, · · · , xi−1, xi+1, · · · , xd)

= ρc

∑

xj ,∀j 6=i,x∈SC

d∏

j=1,j 6=i

Pint(xj), (2.19)

where we assume the symbol variables x1, x2,. . ., and xd are independent, and ρc is a

normalization factor.

2.3.2 Sum-Product Algorithm

Since for a codeword X of an LDPC code, it follows that HXT = 0T which can be

regarded as a set of constraints. Take the parity check matrix in (2.20) for example, a

codeword X = (x0, x1, · · · , x9) of this LDPC code satisfies the constraints in (2.21).

H =














1 1 0 0 1 0 1 0 0 0

0 0 1 0 0 0 1 1 1 0

1 0 0 1 0 1 0 0 1 0

0 1 1 1 0 0 0 0 0 1

0 0 0 0 1 1 0 1 0 1














(2.20)







c0 : x0 + x1 + x4 + x6 = 0

c1 : x2 + x6 + x7 + x8 = 0

c2 : x0 + x3 + x5 + x8 = 0

c3 : x1 + x2 + x3 + x9 = 0

c4 : x4 + x5 + x7 + x9 = 0

(2.21)

The decoding of an LDPC code is based on sum-product algorithm or message passing

algorithm, which exchanges the check-to-bit messages and bit-to-check messages itera-

tively. After finishing the current iteration, the a posteriori probabilities of the bit nodes

will be updated. This above process can be conveniently viewed on a bipartite graph.

We first consider the message passing for the check nodes. A check node receives bit-to-

check messages from bit nodes connecting to itself and updates the check-to-bit messages.

After updating the check-to-bit messages, it transmits those messages back to the bit

10

nodes involved with it. Fig. 2.7 shows a check node containing d edges with each edge

corresponding to a variable in GF (2). The constraint set for the node is

1 2 3 i d

j

Figure 2.7: Message passing on a check node with d edges

Scj
= {(x1, x2, · · · , xd)|x1 + x2 + · · · + xd = 0} . (2.22)

So the output message on the edge xi should be

µcj→xi
(xi) = Pext(xi) = P (x1 + · · · + xi−1 + xi+1 + · · · + xd = xi). (2.23)

Before deriving (2.23), we simplify the question to the two variables condition:

P (x1 + x2 = 0) = Pint(x1 = 0)Pint(x2 = 0) + Pint(x1 = 1)Pint(x2 = 1)

= (1 − p1)(1 − p2) + p1p2, (2.24)

where pi = Pint(xi = 1). Moreover, the above equation can be expressed as

2P (x1 + x2 = 0) − 1 = (1 − 2p1)(1 − 2p2). (2.25)

If we assume

2P (x1 + x2 + · · · + xj = 0) − 1 = 2Πj − 1

= (1 − 2p1)(1 − 2p2) · · · (1 − 2pj)

=

j
∏

l=1

(1 − 2pl), (2.26)

the following probability will become

Πj+1 = P (x1 + x2 + · · · + xj+1 = 0)

= P (x1 + x2 + · · · + xj = 0)(1 − pj+1) + P (x1 + x2 + · · · + xj = 1)pj+1

= Πj(1 − pj+1) + (1 − Πj)pj+1. (2.27)

11

As a result, we can obtain

2Πj+1 − 1 = (2Πj − 1)(1 − 2pj+1)

=

j+1
∏

l=1

(1 − 2pl) (2.28)

from (2.26). By induction, we derive that

Πk = P (x1 + x2 + · · · + xd = 0)

=
1

2

[

1 +
d∏

i=1

(1 − 2pi)

]

(2.29)

for any d ≥ 1. Then the probability in (2.23) can be written as

µcj→xi
(xi = 0) =

1

2

[

1 +
d∏

l=1,l 6=i

(1 − 2µxi→cj
(xl = 1))

]

(2.30)

µcj→xi
(xi = 1) =

1

2

[

1 −
d∏

l=1,l 6=i

(1 − 2µxi→cj
(xl = 1))

]

, (2.31)

where pl = µxi→cj
(xl = 1) is the message from xl. For the message passing at the bit node

as shown in Fig. 2.8, the node xi will receive messages from check nodes connecting to

itself and from communication channel (the received symbol ri). Since the constraint set

... . . .

xi

Pint(xi)=P(ri|xi)

c1 c2 cj cd

Figure 2.8: Message passing on a bit node with d edges

for xi is

Sxi
= {xi = a | a ∈ GF (2)} , (2.32)

12

the output message from xi to cj will be

µxi→cj
(xi = 0) = ρb · Pint(xi = 0)

d∏

l=1,l 6=j

µcl→xi
(xi = 0) (2.33)

µxi→cj
(xi = 1) = ρb · Pint(xi = 1)

d∏

l=1,l 6=j

µcl→xi
(xi = 1), (2.34)

where

ρb =
∑

xi

Pint(xi)
d∏

l=1,l 6=j

µcl→xi
(xi). (2.35)

The intrinsic probability Pint(xi) = P (ri | xi), and the ri is received symbol comes from

communication channel. For the simplicity, we can transform the messages from proba-

bility domain to logarithmic domain by using log-likelihood ratio. The ratio is defined to

be

L(x) = ln
P (x = 0)

P (x = 1)
, (2.36)

and

P (x = 1) =
1

eL(x) + 1
. (2.37)

Alternatively, we can write

1 − 2P (x = 1) =
eL(x) − 1

eL(x) + 1
= tanh(

L(x)

2
), (2.38)

where the hyperbolic tangent is defined as

tanh(
x

2
) =

ex − 1

ex + 1
. (2.39)

According to the definition of (2.36), the messages from check node cj to bit node xi can

be

Lcj→xi
(xi) = ln

1 +
∏d

l=1,l 6=i(1 − 2µxl→cj
(xl = 1))

1 − ∏d
l=1,l 6=i(1 − 2µxl→cj

(xl = 1))

= ln
1 +

∏d
l=1,l 6=i tanh(

Lxl→cj
(xl)

2
)

1 − ∏d
l=1,l 6=i tanh(

Lxl→cj
(xl)

2
)

= 2 tanh−1

(
d∏

l=1,l 6=i

tanh(
Lxl→cj

(xl)

2
)

)

. (2.40)

We further define a function Ψ(x) as follows for x > 0,

Ψ(x) = Ψ−1(x) = ln
1 + e−x

1 − e−x
= − ln(tanh(

x

2
)) (2.41)

13

and note that the inverse hyperbolic tangent is

tanh−1(y) =
1

2
ln

1 + y

1 − y
. (2.42)

We decompose the term in the parentheses of (2.40) and use the property that the sign

of Al = tanh(
Lxl→cj

(xl)

2
) is consistent with Lxl→cj

(xl). The result is as (2.43) shows.

d∏

l=1,l 6=i

tanh(
Lxl→cj

(xl)

2
) =

d∏

l=1,l 6=i

Al

=

(
d∏

l=1,l 6=i

sgn(Al)

)

exp

(
d∑

l=1,l 6=i

ln |Al|
)

=

(
d∏

l=1,l 6=i

sgn(Lxl→cj
(xl))

)

exp

(
d∑

l=1,l 6=i

ln(tanh(

∣
∣Lxl→cj

(xl)
∣
∣

2
))

)

(2.43)

Moreover, it is true that for any integer s

(−1)sΨ−1(x) = ln
1 + (−1)se−x

1 − (−1)se−x
. (2.44)

If we let

x = −
(

d∑

l=1,l 6=i

ln

(

tanh(

∣
∣Lxl→cj

(xl)
∣
∣

2
)

))

(2.45)

in (2.44), (2.40)can be then rewritten as

Lcj→xi
(xi) =

(
d∏

l=1,l 6=i

sgn(Lxl→cj
(xl))

)

Ψ−1

(

−
d∑

l=1,l 6=i

ln

(

tanh(

∣
∣Lxl→cj

(xl)
∣
∣

2
)

))

=

(
d∏

l=1,l 6=i

sgn(Lxl→cj
(xl))

)

Ψ−1

(
d∑

l=1,l 6=i

Ψ(
∣
∣Lxl→cj

(xl)
∣
∣)

)

, (2.46)

where the function Ψ(x) is previously defined in (2.41). As compared with (2.40), the

multiplications has been converted to the additions in (2.46). The message from bit node

xi to check node cj can also be expressed as

Lxi→cj
(xi) = ln

ρb · Pint(xi = 0)
∏d

l=1,l 6=j µcj→xi
(xi = 0)

ρb · Pint(xi = 1)
∏d

l=1,l 6=j µcj→xi
(xi = 1)

= Lint(xi) +
d∑

l=1,l 6=j

Lcl→xi
(xi). (2.47)

14

In the AWGN channel with variance σ2 and zero mean, we derive

P (ri | xi = +1) =
1√

2πσ2
e−

(ri−1)2

2σ2 (2.48)

and

P (ri | xi = −1) =
1√

2πσ2
e−

(ri+1)2

2σ2 . (2.49)

Therefore, the value Lint(xi) which is also termed channel value can be obtained by

Lint(xi) = ln
P (ri | xi = +1)

P (ri | xi = −1)

= ln e−
1

2σ2 [(ri−1)2−(ri+1)2]

=
2

σ2
ri, (2.50)

assuming 1 is mapped to (-1), and 0 to (+1). Fig. 2.9 shows a bipartite graph as example

for decoding a (10, 5) LDPC code, and the number of check nodes is five. We summarize

0 321 76 9854

0 4321

bit nodes

check nodes

Lint(x0) Lint(x1) Lint(x2) Lint(x3) Lint(x4) Lint(x5) Lint(x6) Lint(x7) Lint(x8) Lint(x9)

Lext(x0) Lext(x1) Lext(x2) Lext(x3) Lext(x4) Lext(x5) Lext(x6) Lext(x7) Lext(x8) Lext(x9)

0 321 76 9854

0 2 0()
x c
L x→

2 9 9()
c x
L x→

Figure 2.9: Graph representation for decoding a (10, 5) LDPC code

the overall iterative decoding flow as follows:

Step 1. (Initialization): Set the current iteration number nite = 1. For each edge

existing in the corresponding Tanner graph, the message sent from bit node xi to

check node cj is initialized to Lint(xi),

15

Step 2. (Horizontal step): For each check node, we calculate the messages conveyed

to the bit nodes with

Lcj→xi
(xi) =




∏

l∈N(j)\{i}

sgn(Lxl→cj
(xl))



 Ψ−1




∑

l∈N(j)\{i}

Ψ(
∣
∣Lxl→cj

(xl)
∣
∣)



 . (2.51)

The set N(j) comprises all the indexes of the bit nodes that involve the check node

cj. (2.51) can be accomplished through a check-node processing element (CNPE).

Step 3. (Vertical step): For each bit node xi, the message from xi to check node cj

which is connecting to this bit node can be updated by

Lxi→cj
(xi) = Lint(xi) +

∑

l∈M(i)\{j}

Lcl→xi
(xi), (2.52)

where the set M(i) denotes the indexes of all the check nodes connecting to xi.

Moreover, the a posterior information for codeword symbol xi is obtained by

Lpost(xi) = Lint(xi) + Lext(xi)

= Lint(xi) +
∑

l∈M(i)

Lcl→xi
(xi). (2.53)

A bit-node processing element (BNPE) can carry out the functions depicted in (2.52)

and (2.53).

Step 4. (Hard decision and syndrome check): We estimate the codeword

X̃ = (x̃0, x̃1, · · · , x̃N−1) by

x̃i =







1, if Lpost(xi) < 0

0, if Lpost(xi) ≥ 0
. (2.54)

If the parity check

H · X̃T = 0T (2.55)

is satisfied or the current iteration number nite reaches the predefined maximum

iteration number Nite, the decoding process halts, and the estimated codeword

X̃ = (x̃0, x̃1, · · · , x̃N−1) is outputted. Otherwise, the decoder repeats the step 2 ∼ 4

for the next decoding iteration, and nite is increased by one.

16

2.3.3 Min-Sum Algorithm

For the sum-product algorithm in logarithmic domain, the horizontal step is the most

computationally complex part because of the nonlinear function Ψ(x) = − ln(tanh(x
2
)).

Noting that the function Ψ(x) is equal to its own inverse Ψ−1(x) over the range x > 0.

This function is depicted in Fig. 2.10. In (2.51), it is the large values that dominate the

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

Ψ
(x
)

Ψ(x) = -ln(tanh(x/2))

Figure 2.10: Plot of the Ψ(x) function

summation. In fact, if there is a single large value Ψ(
∣
∣Lxl→cj

(xl)
∣
∣), the summation will

be a large positive number, and the other terms do not matter. Since the function Ψ(x)

is monotonically decreasing for x > 0, a large value of Ψ(
∣
∣Lxl→cj

(xl)
∣
∣) corresponds to a

small value of
∣
∣Lxl→cj

(xl)
∣
∣. Hence, as an approximation it is possible to replace the term

Ψ−1
(
∑

l∈N(j)\{i} Ψ(
∣
∣Lxl→cj

(xl)
∣
∣)

)

by the minimum value of
∣
∣Lxl→cj

(xl)
∣
∣ over all l in the

relevant range (l ∈ N(j) \ {i}), using the fact that Ψ−1(Ψ(x)) = x. In other words, the

expression (2.51) can be approximated by

Lcj→xi
(xi) ≈




∏

l∈N(j)\{i}

sgn(Lxl→cj
(xl))



 min
l∈N(j)\{i}

(
∣
∣Lxl→cj

(xl)
∣
∣). (2.56)

The decoding procedure based on (2.56) and (2.52) is referred to min-sum algorithm.

It is more practical for implementation due to its simplicity, however, it has a degradation

in performance. Comparing the magnitude parts of (2.56) and (2.51), it is true that the

former is no less than the latter. To decrease the difference between them, (2.56) can be

modified as

Lcj→xi
(xi) ≈ β ·




∏

l∈N(j)\{i}

sgn(Lxl→cj
(xl))



 min
l∈N(j)\{i}

(
∣
∣Lxl→cj

(xl)
∣
∣), (2.57)

17

where β is the normalization factor with 0 < β ≤ 1 and usually to be 0.6 ∼ 0.8. The

decoding procedure based on (2.57) and (2.52) is called modify min-sum algorithm.

A further improvement using dynamic normalization technique is reported in [19].

2.3.4 Layered Belief Propagation Algorithm

An iteration for the decoding algorithm mentioned in Section 2.3.2 can mainly be de-

composed into two phases, horizontal and vertical phases. At the first phase, the LDPC

decoder operates the horizontal step for each row. Then, the decoder executes the ver-

tical step for each column during the second phase. The horizontal operation for each

row at the first phase can be carried out simultaneously, so as the vertical operations for

columns at the second phase. Assume there is a parity check matrix with N columns

and M rows, it corresponds to a Tanner graph with N bit nodes and M check nodes.

According to different decoding scheduling, the implementation of LDPC decoders can be

partitioned into two categories, fully parallel decoders and partially parallel decoders. A

fully parallel decoder directly maps the corresponding Tanner graph into hardware and

all the processing units are hard-wired according to the connectivity of the graph [20].

Thus it can achieve very high decoding throughput but suffer a large hardware cost. The

partially parallel architecture groups several nodes of the graph into a subset and maps

these nodes to a single processing unit by using time-division multiplexing [21]. It trades

the decoding throughput for the reduction of hardware complexity. The parity check

matrix of an LDPC code can be viewed as a collection of horizontal layers. Each layer

represents a component code and is a subset of rows. The intersection of all these com-

ponent codes forms the full LDPC code. A soft-input soft-output (SISO) decoder can be

applied to each layer in sequence. As a layer starts to decode, it uses the latest messages

as inputs which updated by the recently processed layers. In addition, a SISO decoder

spends a sub-iteration to process a component code. After processing all the layers one

time, we call it a iteration. Assume that the rows of the parity check matrix are grouped

into non-overlapping subsets (layers) where each subset has the following property: the

column weight in each layer is at most one as shown in Fig. 2.11. The layered approach

to the log-BP algorithm is described as follows, and assuming that the AWGN channel

and BPSK mapping are used.

18

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

layeredH =

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 2.11: Rows of Hlayered are grouped into three layers

Step 1. (Initialization): Set the current iteration number nite = 1. For each edge

existing in the corresponding Tanner graph, the message sent from check node cj

to bit node xi is initialized to 0. Moreover, for i = 0 ∼ (N − 1), the a posteriori

information Lpost(xi) is initialized to Lint(xi).

Step 2. (Messages updating): We apply step 2 to layers of the parity check matrix

in a layer-by-layer manner. For each layer, the decoder executes the following three

sub-step.

2.1 : For each bit node xi participates in the current horizontal layer, message

Lxi→cj
(xi) that corresponds to a particular check equation cj is computed ac-

cording to

Lxi→cj
(xi) = Lpost(xi) − Lcj→xi

(xi)
︸ ︷︷ ︸

old

. (2.58)

2.2 : For each check node cj, message Lcj→xi
(xi) corresponding to variable node

xi which involved with the particular parity check equation cj is computed

according to

Lcj→xi
(xi) =




∏

l∈N(j)\{i}

sgn(Lxl→cj
(xl))



 Ψ−1




∑

l∈N(j)\{i}

Ψ(
∣
∣Lxl→cj

(xl)
∣
∣)



 .

(2.59)

This is the same as (2.51) in conventional log-BP algorithm.

19

2.3 : The a posteriori information Lpost(xi) for the current horizontal layer is up-

dated according to

Lpost(xi) = Lxi→cj
(xi) + Lcj→xi

(xi)
︸ ︷︷ ︸

new

, (2.60)

where the term Lcj→xi
is recently updated in step 2.2.

Step 3. (Hard decision and syndrome check): The codeword

X̃ = (x̃0, x̃1, · · · , x̃N−1) is estimated by

x̃i =







1, if Lpost(xi) < 0

0, if Lpost(xi) ≥ 0
(2.61)

If the parity check

H · X̃T = 0T (2.62)

is satisfied or the current iteration number nite reaches the predefined maximum

iteration number Nite, the decoding process halts, and the estimated codeword

X̃ = (x̃0, x̃1, · · · , x̃N−1) is outputted. Otherwise, the decoder repeats the step 2 and

3 for the next decoding iteration, and nite is increased by one.

This layered decoding algorithm is a variation of the conventional BP algorithm, and

could speed up the decoding convergence rate around two times. This is due to the

optimized scheduling of reliability messages [22, 23]. In addition, the layered approach

is suitable for the LDPC decoder with partially parallel architecture, and can lead to

memory reduction in VLSI implementation.

20

Chapter 3

Tanner Graph Construction

Since an LDPC code can be specified by a parity check matrix or equivalently a Tanner

graph, it is great important to construct a Tanner graph with good properties. In this

chapter, we review two existing methods for constructing Tanner graphs, called progressive

edge-growth (PEG) and PEG-QC algorithms, and introduce some factors that will affect

the performance of LDPC codes.

3.1 Performance-Related Code Parameters

Before discussing construction of Tanner graphs, several factors that affect error-correcting

performance of LDPC codes will be introduced. First is the degree distribution pair for

a Tanner graph, we describe it in 3.1.1. Furthermore, the Tanner graph of a practical

LDPC code usually contains cycles. Cycles in a Tanner graph will degrade the code

performance, this will be depicted in 3.1.2. An LDPC code whose Tanner graph contains

small stopping sets will suffer higher error floor. 3.1.3 discusses this phenomenon and

gives two parameters to the set of variable nodes.

3.1.1 Degree Distribution Pairs

An LDPC code can be well represented by a Tanner graph, in which one set of nodes

forms variable node set and the other becomes check node set. A Tanner graph is called a

(dv, dc)-regular one if every variable node participates in dv check nodes and every check

node involves dc variable nodes; otherwise, it is called irregular. For a (dv, dc)-regular

21

Tanner graph, the corresponding parity check matrix will contain dv 1’s for each column

and dc 1’s for each row. The following figures show a (3, 6)-regular Tanner graph and its

corresponding parity check matrix. For a given codeword length N and a given degree

1 432 87 10965

1 5432

Figure 3.1: A (3, 6)-regular Tanner graph

0 1 0 1 1 0 1 0 1 1

0 1 1 0 1 0 1 1 0 1

1 0 1 0 1 1 0 1 0 1

1 0 1 1 0 1 0 1 1 0

1 1 0 1 0 1 1 0 1 0

H

 
 
 
 =
 
 
  

Figure 3.2: Parity check matrix H corresponds to the graph given in Fig.3.1

distribution pair (λ, ρ) [24], it forms an ensemble of codes by choosing edge, i.e., the

connections between variable and check nodes, randomly. More precisely, we enumerate

the edges emanating from the variable nodes in some arbitrary order and proceed in the

same way with the edges emanating from the check nodes. Assume that the total number

of edges is E. Then a code (a particular instance of this ensemble) can be specified by a

permutation on E edges. By definition, all instances in this ensemble are equiprobable.

However, in practice, the edges are not chosen entirely randomly since certain potentially

ill events in the graph construction can be easily avoided. We say that a polynomial γ(x)

22

of the form

γ(x) =
∑

i≥2

γix
i−1 (3.1)

is a degree distribution if γ(x) has nonnegative coefficients and γ(1) = 1. Note that we

associate the coefficient γi to xi−1 rather than xi. We will see that this notation leads to

very elegant and compact descriptions of the main results. Given a degree distribution

pair (λ, ρ) associate to it a sequence of code ensembles CN(λ, ρ), where N is the length

of the code,

λ(x) =
dv∑

i=2

λix
i−1, (3.2)

and

ρ(x) =
dc∑

i=2

ρix
i−1. (3.3)

λ(x) and ρ(x) specifies the variable and check node degree distribution, respectively. More

precisely, λi (ρi) represents the fraction of edges emanating from variable (check) node of

degree i. For example, for the (3, 6)-regular code we have λ(x) = x2 and ρ(x) = x5. The

maximum variable degree and check degree is denoted by dv and dc, respectively. Assume

that the code has N variable nodes. The number of variable nodes of degree i is then

N
λi/i

∑

j≥2 λj/j
= N

λi/i
∫ 1

0
λ(x)dx

(3.4)

and so the total number of edges emanating from all variable nodes E is equal to

E = N
∑

i≥2

λi/i
∫ 1

0
λ(x)dx

i = N
1

∫ 1

0
λ(x)dx

. (3.5)

In the same manner, assuming that the code has M check nodes, E can also be expresses

as

E = M
1

∫ 1

0
ρ(x)dx

. (3.6)

Equating these two expressions, (3.5) and (3.6), for E, we derive that

M = N

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

. (3.7)

Generically, assuming that all these check equations are linearly independent, we see that

the code rate is equal to

r(λ, ρ) =
N − M

N
= 1 −

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

. (3.8)

23

It was proven that degree distribution pairs affect performance of LDPC codes. Degree

distribution pairs of infinite long LDPC codes can be optimized by using density evolution

which determines the performance threshold of these codes.

For parity check matrices with the same dimension M × N , an irregular LDPC code

with proper degree distribution pair usually outperforms a regular one. However, a finite

length and irregular LDPC code with optimized degree distribution pair usually contains

a large portion of degree-2 variable nodes, which degrades the code performance in high-

SNR region. To partially overcome this problem, we can suppress the number of degree-2

variable nodes not more than the number of check nodes and assign the degree-2 variable

nodes to parity-check bits of the codeword. In [25], it also provides two approaches. One

is to convert part (or all) of these variable nodes to nodes of the next higher degree, say

degree-3. Another is to increase every degree in the degree distribution of variable nodes

by 1, i.e., degree-2 is converted to degree-3, degree-3 is converted to degree-4, and so on.

This degree +1 adjustment is confirmed to be very effective for high-rate code. Moreover,

a variable node with higher degree can provide better protection and show faster decoding

convegence rate for the corresponding code bit. A strictly concentrated check node degree

distribution

ρ(x) = ρix
i−1 + ρi+1x

i (3.9)

maximizes the convergence speed of the code [26].

3.1.2 Cycles in Tanner Graph

If a graph satisfies that 1) doesn’t contain self-loops, 2) is at most one edge between a

pair of vertices, and 3) all edges of it are nondirected, it is called a simple graph [10]. For

a simple graph, a closed path with l edges starting from a vertex vj and ending at vj is

called a length-l cycle. Girth g refers to the length of the shortest cycle in a graph. If

there is a Tanner graph without cycles, belief propagation algorithm can provide optimum

decoding. However, for the practical LDPC codes, graphs often contain cycles. It is proven

that cycles make iterative decoding algorithm become sub-optimal, which degrades error-

correcting performance of LDPC codes. The following figures illustrate a Tanner graph

with length-6 cycles and its corresponding parity check matrix.

For Tanner graphs with length-4 cycles, they show serious degradation in code per-

24

V1 V4V3V2 V8V7 V10V9V6V5

C1 C5C4C3C2

Figure 3.3: A Tanner graph with length-6 cycles

1

1 1

0 1 0 1 1 0 1 0 1 1

0 1 1 0 1 0 1 1 0 1

0 0 1 1 0 1 0 1

1 0 0 1 0 1 1 0

1 0 0 1 1 0 1 011

1H

 
 
 
 =
 
 
  

Figure 3.4: Parity check matrix H corresponds to the graph given in Fig.3.3

formance. In practice, we avoid constructing graphs with length-4 cycles and make girth

of graphs as larger as possible. Local girth of variable node vj is defined as the length of

the shortest cycle passing through the node vj. In [27], it confirmed not only the girth

but also the average of local girth, belong to the Tanner graphs, affecting performance

of LDPC codes. When designing Tanner graphs, we can take both girth and average of

local girth into account and make lower-degree variable nodes have larger local girth to

ensure better error-correcting performance of the resulting LDPC codes.

3.1.3 Stopping Sets in Tanner Graph

Stopping sets in Tanner graphs are defined as follows [28].

Definition 1: (Sd Stopping set) A variable node set is called an Sd set if it has d

elements and all its neighbors are connected to it at least twice.

Fig. 3.5 gives a Tanner graph containing an S3 stopping set and this S3 set is composed

of variable nodes {v0, v1, v2}. In binary erasure channel (BEC), a set of variable nodes is

called a erasure set if the corresponding code-bits of all these variable nodes are erasure.

If there is a stopping set Sd contained in the erasure set, all these variable nodes in Sd can

25

V0 V1 V2 V3 V4 V5

C0 C1 C2 C3

Figure 3.5: Illustration of a S3 stopping set

not be determined through an iterative decoder [29]. It is also proven that every stopping

set contains cycles if there are no degree-1 variable nodes in the Tanner graphs. This can

be seen in Fig. 3.5. Moreover, it is proven that preventing small stopping sets can avoid

small minimum distance which will incur performance loss in error-floor region. In order

to avoid small stopping sets, we have to make the subsets of variable nodes have as many

extrinsic check nodes as possible. An extrinsic check node of a variable node set is a check

node that singly connects to this set. There are two quantities to evaluate the number

of extrinsic check nodes, namely extrinsic message degree (EMD) and approximate cycle

EMD (ACE).

Definition 2: The EMD of a variable node set is the number of extrinsic check nodes

of this variable node set.

A variable node set with larger EMD has the better degree of connectivity to the rest

of the graph. An approximate approach to calculate EMD for cycles is using approximate

cycle EMD (ACE) and given as follows.

Definition 3: The ACE of a length 2d cycle is
∑

i(di − 2), where di is the degree of

the ith variable in this cycle.

3.2 PEG Tanner Graphs

Progressive edge-growth (PEG) method has been shown to be an effective and simple

one to construct Tanner graphs in an edge-by-edge manner [9,10]. It maximizes the local

girth of the proceeding variable node when adding an edge into the current graph. Code

parameters specified in PEG method are highly flexible, so they can be chosen for the

26

practical applications.

Before describing the PEG algorithm, we introduce some necessary definitions and

notations on graph. The parity check matrix H with dimension M ×N of an LDPC code

can be represented by a (V,E) Tanner graph with N variable nodes and M check nodes.

On the one side of the graph is the set of variable (bit) nodes Vv = {v0, v1, · · · , vN−1}
corresponds to the N columns of the matrix; on the other side of the graph is the set of

check nodes Vc = {c0, c1, · · · , cM−1} corresponds to the M rows of H. An edge denoted

by e(ci, vj) connects the variable node vj with check node ci, which corresponds to the

1 in the entry (i, j) of H. The nodes in Vc and Vv form the set V = Vc ∪ Vv, and the

collection of edges in the graph forms the set E ⊆ Vc × Vv. Denote the variable degree

sequence by

Dv = {dv0 , dv1 , · · · , dvN−1
} (3.10)

in which dvj
is the degree of variable node vj, 0 ≤ j ≤ N − 1, in nondecreasing order, i.e.,

dv0 ≤ dv1 ≤ · · · ≤ dvN−1
, and the parity-check degree sequence by

Dc = {dc0 , dc1 , · · · , dcM−1
} (3.11)

in which dci
is the degree of parity-check node ci, 0 ≤ i ≤ M − 1, and dc0 ≤ dc1 ≤

· · · ≤ dcM−1
. Let’s also partition the set of edges E as E = Ev0 ∪ Ev1 ∪ · · · ∪ EvN−1

in terms of Vv, where Evj
contains all edges incident on variable node vj. Moreover,

denote the k-th edge incident on vj by Ek
vj

, 0 ≤ k ≤ dvj
− 1. A subgraph of a graph

G = (V,E) is a graph whose node and edge set are subsets of those of G. For a given

variable node vj, define its neighborhood within depth l, N l
vj

, as the set consisting of all

check nodes reached by a subgraph (or a tree) spreading from variable node vj within

depth l. Its complementary set, N
l

vj
, is defined as Vc \ N l

vj
, i.e. Vc excludes N l

vj
.

The subgraph rooted from vj is generated by means of unfolding the Tanner graph in

a breadth-first way; we start from vj, and traverse all edges incident on vj; let these edges

be (vj, ci0), (vj, ci1), · · · , (vj, cidvj
−1

). Then we traverse all other edges incident on nodes

ci0 , ci1 , · · · , cidvj
−1

, excluding (vj, ci0), (vj, ci1), · · · , (vj, cidvj
−1

). This process continues un-

til the desired depth is reached.

Here, we describe how to construct a Tanner graph using PEG algorithm as shown in

Algorithm 1. First, we specify the graph parameters, i.e., the number of variable nodes N ,

27

the number of check nodes M , and the variable degree sequence Dv. Then, the following

pseudo-code in Algorithm 1 can be used to construct the Tanner graph edge-by-edge.

Algorithm 1 PEG algorithm

for j = 0 to N − 1 do

for k = 0 to dvj
− 1 do

if k = 0 then

E0
vj

← e(ci, vj), where E0
vj

is the first edge incident to vj and ci is a check node

such that it has the lowest check-node degree under the current graph setting

Ev0 ∪ Ev1 ∪ · · · ∪ Evj−1
.

else

expand a subgraph from variable node vj up to depth l under the current graph

setting such that the cardinality of N l
vj

stops increasing but is less than M , or

N
l

vj
6= ∅ but N

l+1

vj
= ∅, then Ek

vj
← e(ci, vj), where Ek

vj
is the k-th edge incident

to vj and ci is a check node picked from the set N
l

vj
having the lowest check-node

degree.

end if

end for

end for

Whenever a subgraph from variable node vj is expanded before adding an edge to the

current graph, two situations can occur: 1) the cardinality of N l
vj

stops increasing but is

smaller than M ; (2) N
l

vj
6= ∅ but N

l+1

vj
= ∅. In the first case, not all check nodes are

reachable from vj, so the PEG algorithm chooses the one that is not reachable (in N
l

vj
),

thus not creating any additional cycle. This often occurs in the initial phase of graph

construction. In the second case, all check nodes are reachable from vj, and the algorithm

chooses the one that is at the largest distance from vj, at depth l + 1, so that the cycle

created by establishing an edge is of the largest possible length 2(l + 2).

However, during going through the procedure in Algorithm 1, we may still face a

situation in which multiple choices exist because multiple check node in N
l

vj
might have

the same lowest degree, particularly in the initial phase of PEG construction. There

are two main approaches to solve this problem. One is to randomly select one of these

check nodes. The other is to always select one according to its position in the order of

28

c0, c1, · · · , cM−1. For example, we can first sort the check node in N
l

vj
that have the same

lowest degree according to their subscripts, and then always pick the first one. There

are other versions of PEG algorithm, nongreedy and look-ahead-enhanced versions, have

also been discussed in [10], but none of them provides any nonnegligible performance

improvement over the standard PEG.

3.3 PEG-QC LDPC Codes

The parity check matrices consists of submatrices are attractive due to their hardware-

friendly properties. They reduce the hardware complexity and show performance compa-

rable to random LDPC codes at the short to medium length. The codes constructed by

PEG method are proven to be good enough, however, the positions of 1’s of the corre-

sponding H are random. Z. Li et al. [13] proposed one kind of structured LDPC codes

based on PEG construction. They added a circulant constraint into original PEG algo-

rithm. The parity check matrix generated by this PEG-QC method can be put in the

form below

H =











H0,0 H0,1 · · · H0,n−1

H1,0 H1,1 · · · H1,n−1

...
...

. . .
...

Hm−1,0 Hm−1,1 · · · Hm−1,n−1











, (3.12)

where Hi,j is a p × p circulant or all-zero matrix, and m and n are two positive integer

with m < n. The circulant matrix is a square matrix, where each row vector is rotated

one element to the right relative to the preceding row vector. Equation (3.13) illustrates

a circulant matrix with dimension 4 × 4.

Hi,j =











0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 0











(3.13)

The null space of H gives an LDPC code over GF (2) of length N = np. The rank of H

is at most mp. Hence the code rate is at least 1− m
n
. Assume that the Tanner graph has

to be designed has N = np variable nodes and M = mp check nodes.

29

To generate a structured LDPC code with circulant size p × p by this PEG-QC algo-

rithm, first it needs to divide all variable nodes and check nodes into small subgroups with

each group has p nodes. Then it adds edges to the Tanner graph group by group instead

of node by node compared to the original PEG algorithm. For each variable node group,

it only has to expand trees for the first variable node in the group to find its optimized

edges. The edges of other variable nodes in the same group can be determined by the cir-

culant constraint automatically. Here we give the pseudo-code of PEG-QC algorithm as

follows. It had been shown that the codes constructed by this PEG-QC method exhibited

performance comparable to other kinds of QC-LDPC codes.

Algorithm 2 PEG-QC algorithm

for j = 0 to n − 1 do

for k = 0 to dvjp
− 1 do

if k = 0 then

E0
vjp

← e(ci, vjp), where E0
vjp

is the first edge incident to vjp and ci is a check

node such that it has the lowest check-node degree under the current sub-graph

setting (randomly pick one if there are more than one such check nodes).

else

Expand a tree from variable node vjp up to depth l under the current graph

setting such that the cardinality of N l
vjp

stops increasing but is less than M ,

or N
l

vjp
6= ∅ but N

l+1

vjp
= ∅, then Ek

vjp
← e(ci, vjp), where Ek

vjp
is the k-th edge

incident to vjp and ci is a check node picked from the set N
l

vjp
having the lowest

check-node degree (randomly pick one if there are more than one such check

nodes).

end if

for r = 1 to p − 1 do

Ek
vjp+r

← e(c⌊i/p⌋·p+mod(i+r,p), vjp+r), where Ek
vjp+r

is the k-th edge incident to

vjp+r, and c⌊i/p⌋·p+mod(i+r,p) is the check node which cyclic shifts r positions of ci

in the circulant H⌊i/p⌋,j.

end for

end for

end for

30

Table 3.1: Sets of code parameters which will be used hereafter

Index Type Rate Dimension of H Size of Hi,j

I irregular 1/2 1280 × 2560 32 × 32

II irregular 3/4 640 × 2560 32 × 32

III irregular 7/8 320 × 2560 32 × 32

IV (3, 27)-regular 8/9 512 × 4608 128 × 128

Table 3.2: Occurrence probabilities of codes with various girth constructed by PEG-QC

algorithm

Index Algorithm Prob. of girth=4 Prob. of girth=6

I PEG-QC 36% 64%

II PEG-QC 55% 45%

III PEG-QC 73% 27%

IV PEG-QC 100% 0%

However, through simulation, we find that PEG-QC algorithm is much easier to

construct a Tanner graph with short cycles which degrade the error-correcting

performance of an LDPC code. Moreover, it is sometimes impossible to con-

struct a graph without 4-cycles. Table 3.1 gives four sets of code parameters whose

degree distribution are optimized from density evolution [24]. For irregular ones, the

maximum variable-node degree dv are 12 for both rate 1/2 and 3/4 and 9 for rate 7/8.

We construct code ensembles, with parameters specified in Table 3.1, by above-mentioned

PEG-QC algorithm. Each code ensemble contains one hundred LDPC codes. Table 3.2

shows the occurrence probabilities of codes with various girth constructed by PEG-QC

algorithm. We observe that Tanner graphs constructed by PEG-QC algorithm are much

easier to contain short cycles. This is due to the improper circulant constraint.

Here, we take a small graph for example. Assume there is a Tanner graph with 3

variable node subgroups and 3 check node subgroups, with each group has 4 nodes. We

31

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

(a) Graph setting before adding 3rd edge to v8

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

current
H

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

11 10 9 8 7 6 5 4 3 2 1 0

0

1

2

3

4

5

6

7

8

9

10

11

(b) The corresponding parity check matrix of Fig. 3.6(a)

Figure 3.6: (a) Current graph setting by using PEG-QC algorithm, (b) and its corre-

sponding parity check matrix

32

specify the variable degree sequence as

Dv = {{dv0 , dv1 , dv2 , dv3}, {dv4 , dv5 , dv6 , dv7}, {dv8 , dv9 , dv10 , dv11}}

= {{2, 2, 2, 2}, {2, 2, 2, 2}, {3, 3, 3, 3}} (3.14)

in a non-decreasing order. Before adding the 3rd edge of variable node v8 into the graph, by

using PEG-QC algorithm, the graph is set as shown in Fig. 3.6(a). In this case, we always

choose the check node with smallest index when there are more than one candidates. We

119

8

7

6

5

4 3

2

1

0

0 1

23

4

5

6

7

8

9

10

11

Depth-0

Depth-1

Depth-2

Depth-3

Depth-4

Depth-5

Figure 3.7: Tree spreading from variable node v8

continue to add the 3rd edge of variable node v8 to this graph through operating tree

spreading from v8 as shown in Fig. 3.7. According to the PEG-QC algorithm, N
4

v8
6= ∅

but N
4+1

v8
= ∅, we will add an edge e(c6, v8) to this graph. The resulting graph and parity

check matrix are showed in Fig. 3.8, in which the dash lines are generated from the

circulant constraint. It is obvious that the new edge accompanies length-4 cycles.

33

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

(a) Tanner graph constructed by PEG-QC algorithm

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

(b) The 4-cycle contained in the above figure

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0

1

1

0 0 1 0 0 0 0 0

1

1

1

1
PEG QC

H −

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

(c) The resulting parity check matrix H

Figure 3.8: The Tanner graph constructed by PEG-QC algorithm, and its corresponding

parity check matrix. There are 4-cycles in this graph.

34

Chapter 4

Design of PEG-Based Structured

LDPC Codes

As shown in Section 3.3, the circulant constraint of PEG-QC algorithm makes it much

easier to construct Tanner graphs with short cycles. In other words, because there are

more than one 1 in a row of a circulant submatrix, the corresponding Tanner graph is

easier to contain short cycles. In this chapter, we add a more strict constraint, compared

with PEG-QC algorithm, to original PEG algorithm and propose a general method to

construct structured Tanner graphs. For the consideration of encoding complexity and

error floor, the modifications of the proposed algorithm are also discussed. Simulation

results show that the proposed algorithm can suppress the probability to generate a graph

with short cycles. Moreover, it confirms that our codes, in terms of bit error rate (BER)

or packet error rate (PER), outperform PEG-QC LDPC codes and are better than the

codes in IEEE 802.16e.

The remainder of this chapter is organized as follows. Section 4.1 gives several def-

initions and notations will be used and describes the proposed CP-PEG algorithm. In

Section 4.2 and 4.3, we depict the modifications of CP-PEG algorithm. Finally, the code

performance will be presented in Section 4.4.

35

4.1 Proposed Structured LDPC Codes

Here, we add a more strict constraint, called circulant permutation (CP) constraint, to

original PEG algorithm. The parity check matrix H generated by the proposed CP-PEG

algorithm is also structured as shown in equation (3.12). We write it again in equation

(4.1). However, the submatrix Hi,j of the proposed parity check matrices is either a p× p

circulant permutation or all-zero matrix. A circulant permutation matrix is a special

case of the circulant matrix, it contains exactly one 1 for each row vector, i.e. it is a right

cyclic version of a p × p identity matrix Ip×p. Thus, we can denote each submatrix Hi,j

of the proposed parity check matrices more concise as it in IEEE 802.11n.

H =











H0,0 H0,1 · · · H0,n−1

H1,0 H1,1 · · · H1,n−1

...
...

. . .
...

Hm−1,0 Hm−1,1 · · · Hm−1,n−1











(4.1)

Using the same notations and definitions as in Section 3.2, we further give several

definitions and notations. Assume there are N variable nodes and M check nodes in the

Tanner graph. We partition the N variable nodes and M check nodes into subgroups

where each group has p nodes. After partition, it forms n variable node subgroups and

m check node subgroups. We also partition edges E, in term of variable node subgroup

vsg, as E = Evsg0 ∪ Evsg1 ∪ · · · ∪ Evsgn−1 , with Evsgj
containing all edges emanate from

jth variable node subgroup vsgj. Check node subgroup csgi is said to be connected to

variable node subgroup vsgj if there is an edge e(cip+r, vjp+r) ∈ Evsgj
, where cip+r ∈ csgi,

vjp+r ∈ vsgj, 0 ≤ i ≤ (m−1), 0 ≤ j ≤ (n−1), and 0 ≤ r ≤ (p−1). Moreover, if check node

subgroup csgi is connected to variable node subgroup vsgj under current graph setting,

check nodes contained in csgi form the set Nvsgj
. In the proposed algorithm, we won’t

connect the proceeding variable node to the check nodes in Nvsgj
. The complementary set

of Nvsgj
, N vsgj

, is defined as the check-node set Vc \Nvsgj
, i.e. Vc excludes Nvsgj

. N
l

vjp+r
is

the complement of N l
vjp+r

which is set of all check nodes reached by a tree spreading from

variable node vjp+r within depth l. A complementary set R
l

vjp+r
is defined as R

l

vjp+r
=

N vsgj
∩N

l

vjp+r
, where vjp+r ∈ vsgj. Finally, a variable-subgroup degree sequence is defined

as Dvsg = {dvsg0 , dvsg1 , · · · , dvsgn−1}, where dvsg0 ≤ dvsg1 ≤ · · · ≤ dvsgn−1 . In a variable-

subgroup degree sequence, dvsgj
denotes the degree of vjp+r, where vjp+r ∈ vsgj and

36

0 ≤ r ≤ (p − 1).

Then, we describe how to design a Tanner graph using the proposed CP-PEG algo-

rithm. First, we specify the number of variable node subgroups n and the number of check

node subgroups m, with each subgroup has p nodes. For the specified variable-subgroup

degree sequence Dvsg, construction of the Tanner graph is described by the following Al-

gorithm 3 which adds edges to Tanner graph group by group instead of node by node.

Algorithm 3 CP-PEG Algorithm

for j = 0 to n − 1 do

for k = 0 to dvsgj
− 1 do

if k = 0 then

E0
vjp

← e(ci, vjp), where ci is a check node with lowest check-node degree under

the current sub-graph setting Evsg0 ∪ Evsg1 ∪ · · · ∪ Evsgj−1
(randomly pick one if

such check nodes are more than one).

else

Expand a tree from variable node vjp up to depth l under the current graph

setting such that the cardinality of N l
vjp

stops increasing but is less than M , or

R
l

vjp
6= ∅ but R

l+1

vjp
= ∅, then Ek

vjp
← e(ci, vjp), where ci is a check node picked

from R
l

vjp
having the lowest check-node degree (randomly pick one if such check

nodes are more than one).

end if

for r = 1 to p − 1 do

Ek
vjp+r

← e(c⌊i/p⌋·p+mod(i+r,p), vjp+r), where Ek
vjp+r

is the k-th edge incident to

vjp+r, and c⌊i/p⌋·p+mod(i+r,p) is the check node which cyclic shifts r positions of ci

in H⌊i/p⌋,j.

end for

end for

end for

In Algorithm 3, Ek
vjp

is the k-th edge incident on vjp and we call this depicted else-

statement as tree spreading procedure for convenience. Due to the circulant permu-

tation form of Hi,j, the proposed LDPC codes are suitable for layered decoding mentioned

37

Table 4.1: Occurrence probabilities of codes with various girth constructed by the pro-

posed CP-PEG and PEG-QC algorithms

Index Algorithm Prob. of girth=4 Prob. of girth=6

I
PEG-QC 36% 64%

CP-PEG 0% 100%

II
PEG-QC 55% 45%

CP-PEG 0% 100%

III
PEG-QC 73% 27%

CP-PEG 16% 84%

IV
PEG-QC 100% 0%

CP-PEG 0% 100%

in Section 2.3.4.

We construct a small graph, as previously done in Section 3.3, by the proposed CP-

PEG algorithm. It contains 3 variable node subgroups and 3 check node subgroups with

Dvsg = {dvsg0 , dvsg1 , dvsg2} = {2, 2, 3}. Before adding the 3rd edge of variable node v8 into

graph, the graph is the same as shown in Fig. 3.6(a), in which we always choose the check

node with smallest index when there are more than one candidate. For the 3rd edge of

variable node v8, by using CP-PEG algorithm, we expand a tree from v8 as shown in

Fig. 3.7. Instead of selecting the check node c6, we pick up the node c2. It is because of

R
4

v8
6= ∅ but R

4+1

v8
= ∅. The resulting Tanner graph and parity check matrix are given in

Fig. 4.1. It doesn’t contain 4-cycles anymore.

We further use the sets of code parameters specified in Table 3.1 to construct 100

codes for each ensemble by the proposed CP-PEG algorithm. The resulting occurrence

probabilities of codes with various girth are presented in Table 4.1. For the purpose of

comparison, the results had been shown in Table 3.2 are also listed in Table 4.1. It is

obvious that Tanner graphs constructed by the proposed CP-PEG algorithm have lower

probabilities to contain short cycles than those by PEG-QC algorithm.

38

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

(a) Tanner graph constructed by CP-PEG algorithm

0 0 0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

1

1

1

0 0

1

CP PEG
H −

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
  

(b) The resulting parity check matrix H

Figure 4.1: (a) The Tanner graph constructed by CP-PEG algorithm, (b) and its corre-

sponding parity check matrix

39

4.2 ALT Form for Encoding Consideration

Assume that the parity check matrix H is in approximate lower triangular (ALT) form

as previously mentioned in Section 2.2.4. Let X = (u, p1, p2) is a codeword of H where

u denotes the systematic part, p1 and p2 combined denote the parity part, p1 has length

g = γ · p, and p2 has length (m − γ) · p. Given a message u, the systematic encoding can

be achieved by

pT
1 = −Φ−1(−ET−1A + C)uT (4.2)

and

pT
2 = −T−1(AuT + BpT

1), (4.3)

where Φ = −ET−1B + D is assumed to be nonsingular.

 (m-γ)pi

M= m pi

N= n pi

(n-m) pi

g = γ pi

 γ pi (m-γ) pi

 (m-γ) pi

Figure 4.2: The parity check matrix in approximate lower triangular form

For the encoding consideration, we can restrict the structured parity check matrix

generated by the proposed CP-PEG algorithm in ALT form [30] as shown in Fig. 4.2 and

assign the variable nodes with higher degree to be the systematic part to get better pro-

tection from noises. This can be accomplished by the following ALT-CP-PEG algorithm.

In the encoding procedure for codes with ALT form, the overall complexity to deter-

mine p1 and p2 are O(N + g2) and O(N), respectively. To reduce the complexity, we

choose g (or γ) as small as possible under degree distribution setting Dvsg. Then, after

constructing a parity check matrix H, we perform block-column permutation to make

40

Algorithm 4 ALT-CP-PEG Algorithm

for j = 0 to n − 1 do

for k = 0 to dvsgj
− 1 do

if k = 0 then

if (0 ≤ j ≤ m − γ − 1) then

E0
vjp

← e(c(m−γ−j)·p−1, vjp), where E0
vjp

is the first edge incident to vjp. This

edge corresponds to the 1 in the diagonal line of submatrix T of matrix H.

else

E0
vjp

← e(ci, vjp), where ci is a check node with lowest check-node degree under

the current sub-graph setting Evsg0 ∪Evsg1 ∪ · · · ∪Evsgj−1
(randomly pick one

if such check nodes are more than one).

end if

else

if (0 ≤ j ≤ m − γ − 1) then

Setup that csg0, csg1, · · · , csgm−γ−2−j are connected to vsgj. This can ensure

that submatrix T is in lower triangular form.

end if

Expand a tree from variable node vjp up to depth l under the current graph

setting such that the cardinality of N l
vjp

stops increasing but is less than M , or

R
l

vjp
6= ∅ but R

l+1

vjp
= ∅, then Ek

vjp
← e(ci, vjp), where ci is a check node picked

from R
l

vjp
having the lowest check-node degree (randomly pick one if such check

nodes are more than one).

end if

for r = 1 to p − 1 do

Ek
vjp+r

← e(c⌊i/p⌋·p+mod(i+r,p), vjp+r), where Ek
vjp+r

is the k-th edge incident to

vjp+r, and c⌊i/p⌋·p+mod(i+r,p) is the check node which cyclic shifts r positions of ci

in H⌊i/p⌋,j.

end for

end for

end for

41

Φ nonsingular and keep the resulting H ′ structured. This is usually possible when H is

not rank deficient. By the way, when operating the block-column permutation, Φ is made

to be an identity matrix I if possible. This can further reduce the complexity because of

Φ−1 = I−1 = I.

4.3 EMD Criterion for Lowering Error Floor

Comparing with regular codes, irregular codes with optimized degree distribution often

suffer higher error floor. In the tree spreading procedure of the proposed CP-PEG and

ALT-CP-PEG algorithms, among all check-node candidates with the same check-node

degree, we choose one at random. For irregular PEG Tanner graph, similar to above

situation, [31] suggests us to choose the check node that maximizes the minimum ACE for

the new cycles (ACE criterion). This causes the performance improvement in error floor

region. For example, in Fig. 4.3, it suggests us to choose the check node with ACE = 3.

Degree = 1

ACE = 3

Degree = 1

ACE = 2

Figure 4.3: A simple example of ACE criterion

However, it may be still more than one candidate after adopting this criterion. In [32], it

further gives an EMD criterion, to choose the check node that induces a subgraph with

highest EMD, which improves the performance in error floor region further. Take Fig.

4.4 for example, the check node with EMD = 3 is more proper than the other to be

connected. We adopt the EMD criterion into our code construction procedure to choose a

proper check node from R
l

vjp
, and confirm that it also lowers the error floor of our codes.

42

Degree = 1

ACE = 3

EMD = 3

Degree = 1

ACE = 3

EMD = 1

Figure 4.4: A simple example of EMD criterion

4.4 Simulation Results and Comparison

In this section, we study the performance of codes constructed by the proposed algo-

rithm and give some comparisons. Randomly generated data with binary phase-shift key-

ing (BPSK) mapping are simulated through a zero-mean additive white Gaussian noise

(AWGN) channel. First, we construct codes by the proposed algorithm, with parameters

specified in Table 3.1, and compare the code performance with those constructed by pre-

viously mentioned PEG-QC algorithm. Except for the (3,27)-regular LDPC code, all the

other codes constructed by the proposed algorithm are in approximate lower triangular

form. Moreover, we choose the codes with girth 6 for simulation except for the (3,27)-

regular LDPC code based on PEG-QC algorithm. This is because that it doesn’t report

codes with girth larger than 4 even then it has constructed more than 10000 codes.

The performance comparison of (4608, 4096) and (2560, 2240) LDPC codes are given

in Fig. 4.5 and Fig. 4.6, respectively, with maximum 80 iterations. As these two figures

show, our codes have performance not worse than that of the codes constructed by PEG-

QC algorithm. In Fig. 4.7, the 2560-bit rate 1/2 code constructed by the proposed

ALT-CP-PEG algorithm shows much better performance. Lower bit error rate (BER)

and packet error rate (PER) are perceived as compared to PEG-QC LDPC codes. Fig.

4.8 consists of three codes, all of them are of length 2560 and rate 3/4. As the figure

shows, our codes outperform PEG-QC LDPC codes, especially a PER improvement of

43

one order in magnitude in high-SNR region. Moreover, we compare the ALT-CP-PEG

LDPC code with EMD criterion to that without EMD criterion. The former has lower

error floor, which is lower than BER of 10−7, and it shows better performance than the

latter in high-SNR region. This confirms that the EMD criterion is also suitable for our

algorithms.

To further compare the performance of above-mentioned ALT-CP-PEG LDPC codes,

the following figures are presented. Fig. 4.9 ∼ 4.11 focus on the convergence rate of

iterative decoding, and codes with various maximum numbers of iteration are simulated.

Comparing performance under 80 iterations to those under 10 iterations, we can see that

the high-code-rate code (rate = 7/8) converges faster than the code with lower code-rate

(rate = 1/2). Moreover, because our codes contain at most one 1 in each column of

submatrix Hi,j, we can use layered decoding algorithm referred in Section 2.3.4 to speed

up the convergence rate. Fig. 4.12 and Fig. 4.13 show that they can achieve performance

similar to a traditional log-BP decoder, but only half of the iterations are required.

To trade off the complexity with error-correcting performance, we can use the min-

sum algorithm introduced in Section 2.3.3 instead of log-BP to decode LDPC codes. Fig.

4.14 shows that min-sum algorithm introduces about 0.7 dB SNR loss at BER = 10−5

when both decoders perform 15 decoding iterations. However, we can compensate the

loss by modified min-sum algorithm. The result is also shown in Fig. 4.14, where β

is the normalization factor as referred in equation (2.57). Fig. 4.15 shows the same

trend but less performance loss compared to Fig. 4.14. In Fig. 4.16, we can see that

the performance by using modified min-sum algorithm outperforms that by using log-BP

under BER = 10−6. This may result from cycles in the corresponding Tanner graph of

this LDPC code. Log-BP algorithm is not an optimum solution for an cyclic graph, so

the modified min-sum algorithm may perform better.

At the end of this section, we compare performance of codes constructed based on the

proposed method to that of the irregular LDPC code adopted in IEEE 802.16e. Here,

these two codes have the same degree distribution pair and the same submatrices size.

Both codes have length as 2304 and rate as 1/2, and their parity check matrices are both

in ALT form. Girth of the code constructed by our algorithm is 8, however, that of the

code in IEEE 802.16e is 6. As shown in Fig. 4.17, we can see that our code slightly

44

outperforms the IEEE 802.16e LDPC code. Moreover, because of the ALT form, our

code remains encoding complexity similar to that of IEEE 802.16e.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

E
rr
o
r
ra
te

80 iterations

BER(4608,4096) PEG-QC, girth = 4

BER(4608,4096) CP-PEG, girth = 6

PER(4608,4096) PEG-QC, girth = 4

PER(4608,4096) CP-PEG, girth = 6

Figure 4.5: Performance comparison of the regular codes with rate 8/9 constructed by

the proposed and PEG-QC algorithms

45

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

E
rr
o
r
ra
te

80 iterations

BER(2560,2240) PEG-QC

BER(2560,2240) ALT-CP-PEG

PER(2560,2240) PEG-QC

PER(2560,2240) ALT-CP-PEG

Figure 4.6: Performance comparison of the irregular codes with rate 7/8 constructed by

the proposed and PEG-QC algorithms

0 0.5 1 1.5 2 2.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

E
rr
o
r
ra
te

80 iterations

BER(2560,1280) PEG-QC

BER(2560,1280) ALT-CP-PEG

PER(2560,1280) PEG-QC

PER(2560,1280) ALT-CP-PEG

Figure 4.7: Performance comparison of the irregular codes with rate 1/2 constructed by

the proposed and PEG-QC algorithms

46

0 0.5 1 1.5 2 2.5 3 3.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

E
rr
o
r
ra
te

80 iterations

BER(2560,1920) PEG-QC

BER(2560,1920) ALT-CP-PEG w/o_EMD

BER(2560,1920) ALT-CP-PEG w_EMD

PER(2560,1920) PEG-QC

PER(2560,1920) ALT-CP-PEG w/o_EMD

PER(2560,1920) ALT-CP-PEG w_EMD

Figure 4.8: Performance comparison of the irregular codes with rate 3/4 constructed by

the proposed and PEG-QC algorithms

0 0.5 1 1.5 2 2.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E
R

Log-BP, (2560,1280) ALT-CP-PEG-LDPC Code

80 iterations

20 iterations

15 iterations

10 iterations

Figure 4.9: Iterative decoding with various maximum number of iteration for (2560, 1280)

ALT-CP-PEG LDPC code with rate 1/2

47

0 0.5 1 1.5 2 2.5 3 3.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

B
E
R

Log-BP, (2560,1920) ALT-CP-PEG-LDPC Code

80 iterations

20 iterations

10 iterations

Figure 4.10: Iterative decoding with various maximum number of iteration for (2560,

1920) ALT-CP-PEG LDPC code with rate 3/4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

E
b
/N

0
 (dB)

B
E
R

Log-BP, (2560,2240) ALT-CP-PEG-LDPC Code

80 iterations

20 iterations

10 iterations

Figure 4.11: Iterative decoding with various maximum number of iteration for (2560,

2240) ALT-CP-PEG LDPC code with rate 7/8

48

0 0.5 1 1.5 2 2.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E
R

(2560,1280) ALT-CP-PEG-LDPC Code

Log-BP, 80 iterations

Log-BP, 20 iterations

Log-BP, 10 iterations

Layered decoding, 10 iterations

Figure 4.12: Performance of (2560, 1280) ALT-CP-PEG LDPC code with rate 1/2 by

using layered decoding algorithm

0 0.5 1 1.5 2 2.5 3 3.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

B
E
R

(2560,1920) ALT-CP-PEG-LDPC Code

Log-BP, 80 iterations

Log-BP, 20 iterations

Log-BP, 10 iterations

Layered decoding, 10 iterations

Figure 4.13: Performance of (2560, 1920) ALT-CP-PEG LDPC code with rate 3/4 by

using layered decoding algorithm

49

0 0.5 1 1.5 2 2.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E
R

(2560,1280) ALT-CP-PEG-LDPC Code

Log-BP, 15 iterations

Modified minsum, Beta=0.75, 15 iterations

Minsum, 15 iterations

Figure 4.14: Performance of (2560, 1280) ALT-CP-PEG LDPC code with rate 1/2 by

using min-sum and modified min-sum algorithms

0 0.5 1 1.5 2 2.5 3 3.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N
0
 (dB)

B
E
R

(2560,1920) ALT-CP-PEG-LDPC Code

Log-BP, 10 iterations

Modified minsum, Beta=0.75, 10 iterations

MinSum, 10 iterations

Figure 4.15: Performance of (2560, 1920) ALT-CP-PEG LDPC code with rate 3/4 by

using min-sum and modified min-sum algorithms

50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

B
E
R

(2560,2240) ALT-CP-PEG-LDPC Code

Log-BP, 10 iterations

Modified minsum, Beta=0.75, 10 iterations

MinSum, 10 iterations

Figure 4.16: Performance of (2560, 2240) ALT-CP-PEG LDPC code with rate 7/8 by

using min-sum and modified min-sum algorithms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

E
rr
o
r
ra
te

80 iterations

BER of proposed (2304,1152), girth = 8

BER of IEEE 802.16e (2304,1152), girth = 6

PER of proposed (2304,1152), girth = 8

PER of IEEE 802.16e (2304,1152), girth = 6

Figure 4.17: Performance comparison of the irregular codes with rate 1/2 constructed by

the proposed algorithm and of IEEE 802.16e

51

Chapter 5

Conclusion

In this thesis, we propose a general method, called CP-PEG algorithm, to construct

hardware-oriented LDPC codes for reducing VLSI design complexity. As compared to

other algebraic methods, our algorithm is practical due to code parameters such as rate,

block length, and degree distribution more flexible. In order to reduce encoding com-

plexity, the parity check matrices in ALT form are also presented. Moreover, we can

combine EMD criterion into CP-PEG or ALT-CP-PEG algorithm to enhance the error

floor performance. With our approach, the resulting LDPC codes don’t suffer error floor

even though at BER = 10−7.

Simulation results confirm that proposed algorithms are much better than traditional

PEG-QC algorithm in terms of BER or PER. Comparing with the LDPC code adopted in

IEEE 802.16e standard, our code performance outperforms that of IEEE 802.16e LDPC

codes. Finally, for the convergence rate consideration, our structured codes are much

suitable for layered decoding algorithm which can provide around two times faster de-

coding convergence. Because of the abovementioned advantages, the proposed CP-PEG

algorithm can be a good candidate for designing practical LDPC codes.

52

Bibliography

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

[2] V. Zyablov and M. Pinsker, “Estimation of the error-correction complexity of Gal-

lager low-density codes,” Probl. Pered. Inform., vol. 11, pp. 23–26, Jan. 1975.

[3] G. A. Margulis, “Explicit construction of graphs without short cycles and low density

codes,” Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.

[4] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf.

Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

[5] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform. Theory,

vol. 42, pp. 1710–1722, Nov. 1996.

[6] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1996.

[7] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,” IEEE

Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[8] S.-Y. Chung, J. G. D. Forney, T. Richardson, and R. Urbanke, “On the design of low-

density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun.

Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[9] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth Tanner

graphs,” in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), San An-

tonio, TX, Nov. 2001, pp. 995–1001.

53

[10] ——, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans.

Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

[11] Air interface for fixed and mobile broadband wireless access systems, IEEE Std.

P802.16e/D12 Draft, Oct. 2005.

[12] IEEE 802.11n Wireless LANsWWiSE Proposal: High Throughput extension to the

802.11 Standard, IEEE Std. 11-04-0886-00-000n.

[13] Z. Li and B. V. K. V. Kumar, “A class of good quasi-cyclic low-density parity check

codes based on progressive edge growth graph,” in Proc. 38th Asilomar Conf. Signals,

Syst. Comput., 2004, pp. 1990–1994.

[14] M. C. Davey and D. J. C. MacKay, “Low density parity check codes over GF (q),”

IEEE Commun. Lett., vol. 2, pp. 165–167, June 1998.

[15] L. Ping, W. K. Leung, and N. Phamdo, “Low density parity check codes with semi-

random parity check matrix,” Electron. Lett., vol. 35, no. 1, pp. 38–39, Jan. 1999.

[16] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check

codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–656, Feb. 2001.

[17] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[18] J. F. Fan, Constrained Coding and Soft Iterative Decoding. Kluwer Academic Pub-

lishers, 2001.

[19] Y. C. Liao, C. C. Lin, C. W. Liu, and H. C. Chang, “A dynamic normalization

technique for decoding LDPC codes,” in IEEE Workshop Signal Processing Syst.,

Nov. 2005, pp. 768–772.

[20] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density

parity-check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp.

404–412, Mar. 2002.

54

[21] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “VLSI architectures for iterative

decoders in magnetic recording channels,” IEEE Trans. on Magnetics, vol. 37, no. 2,

pp. 748–755, Mar. 2001.

[22] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoders,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 6, pp. 976–996, Dec. 2003.

[23] D. E. Hocevar, “A reduced complexity decoder architecture via layered decoding of

LDPC codes,” in Proc. IEEE Workshop on Signal Processing Systems (SiPS’04),

Oct. 2004, pp. 107–112.

[24] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, pp. 619–

637, Feb. 2001.

[25] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construction of regular

and irregular LDPC codes: Geometry decomposition and masking,” IEEE Trans. Inf.

Theory, vol. 53, no. 1, pp. 121–134, Jan. 2007.

[26] S.-Y. Chung, T. J. Richardson, and R. Urbanke, “Analysis of sum-product decoding

of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf.

Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.

[27] Y. Mao and A. H. Banihashemi, “A heuristic search for good low-density parity-check

codes at short block lengths,” in Proc. IEEE Int. Conf. Commun., Helsinki, Finland,

June 2001.

[28] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of irregular

LDPC codes with low error floors,” in Proc. IEEE Int. Conf. Communications, May

2003, pp. 3125–3129.

[29] C. Di, D. Proietti, E. Telatar, T. J. Richardson, and R. Urbanke, “Finite-length

analysis of low-density parity-check codes on the binary erasure channel,” IEEE

Trans. Inf. Theory, vol. 48, no. 6, pp. 1570–1579, June 2002.

[30] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design

approach,” IEEE Trans. Circuits Syst. I, vol. 52, no. 4, pp. 766–775, Apr. 2005.

55

[31] H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth (PEG) construc-

tion of irregular LDPC codes,” IEEE Commun. Lett., vol. 8, no. 12, pp. 715–717,

Dec. 2004.

[32] S. H. Kim, J. S. Kim, D. S. Kim, and H. Y. Song, “LDPC code construction with

low error floor based on the IPEG algorithm,” IEEE Commun. Lett., vol. 11, no. 7,

pp. 607–609, July 2007.

56

 作者簡歷

姓名：林義凱

出生地：台灣省高雄市

出生日期：1983 年 10 月 5 日

學歷： 1989.9 ~ 1995.6 高雄縣立林園國民小學

 1995.9 ~ 1998.6 高雄縣立林園國民中學

 1998.9 ~ 2001.6 高雄市立小港高級中學

 2001.9 ~ 2005.6 國立中央大學 電機工程學系 學士

 2005.9 ~ 2007.11 國立交通大學 電子研究所 系統組 碩士

	00_義凱的封面.pdf
	00_義凱的書名頁.pdf
	00_義凱的中文摘要_v2.pdf
	00_義凱的英文摘要_v3.pdf
	00_義凱的誌謝.pdf
	tt.pdf
	00_義凱的作者簡歷.pdf

