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Abstract

Progressive edge-growth (PEG)-‘algorithm was proven to be a simple and
effective approach to design goed - LDPC- codes. However, the Tanner graph
constructed by PEG algorithm is non-structured, leading to the positions of 1's of the
corresponding parity check matrix being fully random. In this thesis, a general method
based on PEG algorithm is proposed to construct structured Tanner graphs. These
hardware-oriented LDPC codes can not only reduce the VLSI implementation
complexity but also provide comparable performance. Similar to PEG method, our
CP-PEG approach can construct both regular and irregular Tanner graphs with
flexible parameters. For considering the encoding complexity and error floor,
modifications of proposed algorithm are discussed. Simulation results show that our
CP-PEG approach, in terms of bit error rate (BER) or packet error rate (PER),

outperforms other PEG-based and IEEE 802.16e LDPC codes.
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Chapter 1

Introduction

1.1 Motivation

Low-density parity-check (LDPC) code, a linear block code defined by a very sparse parity
check matrix, was first invented by Gallager in 1960’s [1]. Owing to the difficulty of VLSI
implementation, it has been 1gnored for about thlrty years excepts for the papers by
Zyablov and Pinsker [2], Margulis [3] and Tanner [4] The rediscovery of LDPC code was
done by Spielman et al. [5] and MacKay et él [6 7] LDPC codes with long block length
show good capacity-approached capablhty under 1terat1ve decoding algorithm [8], so they
attract much research interests in recent years Tu practlcal applications, construction of
good LDPC codes at short and 1ntermed1ate block length is of great importance.

Among the existing methods, one of the most successful approaches to construct finite-
length LDPC codes is so-called progressive edge-growth (PEG) algorithm proposed by Hu
et al. [9,10]. The code parameters specified in the PEG method are highly flexible and
can be chosen for the practical applications. However, the positions of 1’s of the resulting
parity check matrix constructed by PEG algorithm are fully random. This makes it incur
higher complexity for VLSI design.

A structured LDPC code decreases both the encoder and decoder complexity and is
suitable for the hardware implementation. The recently proposed communication stan-
dards, IEEE 802.16e [11] and IEEE 802.11n [12], all adopt structured LDPC codes as
error-correcting codes. Z. Li et al. [13] added a circulant constraint into original PEG al-

gorithm to construct a class of structured LDPC codes, named PEG-QC LDPC codes. It



had shown performance comparable to several existing methods at high code rate. How-
ever, through simulation, we find that PEG-QC algorithm is much easier to construct a
Tanner graph with small girth which degrades the error-correcting performance.

In this thesis, we propose a general method based on PEG algorithm to construct
structured Tanner graphs. Simulation results show that the proposed algorithm can
suppress the probability to generate a graph with short cycles. Moreover, we present
that code performance of our LDPC codes outperforms that of codes based on PEG-QC
algorithm. For the consideration of encoding complexity and error floor, the modifications

of the proposed algorithm are also discussed.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the basic concepts
of the LDPC codes including characteristics, encoding, and decoding algorithms. Chapter
3 reviews the Progressive edge-growth (PEG) and PEG-QC algorithms and introduces

some factors that affect the performat:ﬂée of Lﬁﬁ@-,podes. The proposed algorithm with

its modifications and simulation resulfs Wm1 be- giveﬂ in Chapter 4. Finally, we conclude
this thesis in Chapter 5. - | 2 4 -

s =]



Chapter 2

Low-Density Parity-Check Codes

A binary low-density parity-check (LDPC) code is a linear block code specified by a sparse
parity check matrix with fewer 1’s relates to the entries 0’s. Non-binary LDPC codes over
GF(q) are discussed in [14]. LDPC codes mentioned in this thesis are all binary codes,
they will be called LDPC codes for short hereafter. In this chapter, an introduction to
LDPC codes will be given, including"phe code “.characteristics, encoding, and decoding

algorithms.
-

!
|8 %
E(S

2.1 LDPC Codes = w@rry =

A parity check matrix H which has N ‘colimisand M rows defines a (N, K) LDPC code
with codeword length N and contains K information bits. Assuming the matrix is of
full rank, the number of information bits is K = N — M, and the code rate R equals to
1 — M/N. The parity check matrix with dimension M x N can correspond to a bipartite
graph with N variable nodes and M check nodes. This was first suggested by Tanner [4],
so this bipartite graph is also called Tanner graph. On the one side of the graph is the
set of variable (bit) nodes corresponds to the N columns of the matrix H, on the other
side of the graph is the set of check nodes which corresponds to the M rows of H. If we
label the variable and check nodes from 1 to NV and 1 to M, respectively, an edge e(c;, v;)
which connects the variable node v; with check node ¢; corresponds to the 1 in the entry
(7,7) of H. Fig. 2.1 shows the parity check matrix H of an LDPC code and Fig. 2.2 is

the corresponding Tanner graph relates to H specified in Fig.2.1.
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Figure 2.1: Example of the parity check matrix of an LDPC code

variable nodes

check nodes

Figure 2.2: Tanner graphscorresponds to H given in Fig.2.1
2.2 Encoding of LDPC Codes

Since an LDPC code is a linear block code, we can encode the message u through its
generator matrix G. The parity check matrix of an LDPC code is sparse, however, the
generator matrix of it often contains many 1’s. The above encoding complexity is pro-
portional to N2, where N is the block length. Previous works suggested us to force the
parity check matrix into some special forms and directly encode the message through H.

Here we introduce conventional method and several well-known ones.



2.2.1 Conventional Method

Assuming the matrix H is of full rank, for systematic encoding, we can use Gauss-Jordan
elimination to put H into systematic form Hy,s = [P|l)], where P is an M x K matrix and
Iy is the M x M identity matrix. The systematic generator matrix is then G5 = [I K|PT}

and the encoding can be accomplished as codeword X = u - G.

2.2.2 Dual Diagonal Form

For a linear block code, G - HT = 0. A legal codeword X of a linear block code satisfies

XH" = uwGHT

~ 0. (2.1)

If the parity check matrix can be divided into two parts H = [H d|Hp}, where H? is an
M x K matrix and H? is an M x M square matrix with dual-diagonal form. Fig. 2.3

shows a 6 x 6 matrix with the dual- dlagonal form Corresponding to the parity check

1 0 0.0 0

0 1“1 0.0 0
szoro_;l I 00
100070 1 0
10300401 1
00000 1]

Figure 2.3: Example of the 6 x 6 matrix with dual-diagonal form

matrix H, we partitions the codeword vector X into two parts X = [X d|Xp}, where X¢
is the information part of the codeword vector and X? is the parity part of it. From
X -HT =0, we get

HYXNT = gr(xP)T, (2.2)
For an given H = [H?/H”] and a deterministic information vector X?, we can derive the

parity part of the codeword vector by a projection vector defined as
v = Hd(Xd)T
= HP(XP), (2.3)

5



We note that (H?)~! = UP, where U? is a upper triangular matrix, and thus

X? = (H")

= U (2.4)

We can derive the X? by a back-substitution procedure [15].

2.2.3 Lower Triangular Form

If the parity check matrix satisfies H = [H d|Hp}, where H¢ is an M x K matrix and H?

is an M x M square matrix with lower triangular form as shown in Fig. 2.4. We can get

1 0 - 0]

P TR B

_hﬁ,l hAij,z e 1

Figure 2.4: A ‘.Iﬁ‘atrix‘ with leér triangular form
= ' | %

the parity part of the codeword vector thro‘uéh the foﬂlowing equation.
o = (O Wk 4 > hfrd) (mod 2) (2.5)
j=1 TIpEY

2.2.4 Approximate Lower Triangular Form

T. Richardson et al. [16] brought a parity check matrix into approximate lower triangular
form indicated in Fig. 2.5 by performing row and column permutations only. Since this
transformation involved with permutations only, the matrix is still sparse. More precisely,
assume that the parity check matrix H is full rank and we transform the matrix in the

form
A B T
H= (2.6)
C D FE
where Ais (M —g)x(N—M), Bis (M —g)xg,Tis (M —g)x (M —g), C'is gx (N —M),

D is g x g, and, finally, E is g x (M — g). Further, these matrices are all sparse and T is
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C |D| E
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A

Figure 2.5: The parity check matrix in approximate lower triangular form

lower triangular matrix with ones along the diagonal. Multiplying

I 0
(2.7)
—ET Y T
on the left side of equation (2.6) and we get
A _stasas. B T
(2.8)

~ET'A%C —ETYB+D 0
o HALIRA &
Let the codeword X = (u, p1, p2) where u deﬁqtes the systematic part, p; and ps combined

denote the parity part, p; has length ¢, and P> has leﬁgth (M — g). The check equation

HXT = 0T can split naturally intoﬂ-'two\ '"e.‘qua'ti(')ns, “rllamely
Au” + Bpl +Tpl =0 (2.9)
and
(=ET'A+C)u” + (-ET'B+ D)p =0. (2.10)
Define ® = —ET !B + D and assume that ® is nonsigular. Then from equation ( 2.10)
we derive that
pl = -0 Y (—ET'A+ C)u”. (2.11)
Hence, once the g x (N — M) matrix —®~}(—=ET~'A + C) has been precomputed, the
determination of p; can be accomplished in complexity O(g x (N — M)) simply by per-
forming a multiplication with this (generically dense) matrix. In a similar manner, we

can calculate p, from equation (2.9) and derive that
pr = —T7'(Au" + Bp?). (2.12)

7



Following the steps listed in table I and II of [16], we can derive p; and py step by
step, where the complexity of p; and py are O(N + g*) and O(N), respectively. In fact,

= —ET !B+ D may be a singular matrix. If the resulting ® is seen to be singular after
clearing the matrix E, we can simply perform further column permutations to remove this

singularity. This is always possible when H is of full rank, as assumed.

2.3 Decoding of LDPC Codes

In this section, the message passing algorithm which is used to perform probabilistic de-
coding will be introduced. Then we apply it to decode an LDPC code and derive the
well-known iterative decoding algorithm. To reduce the complexity of decoding algo-
rithm, min-sum approach will be discussed further. For the consideration of decoding
convergence rate, we study the layered belief propagation decoding algorithm to speed up

the convergence rate.

2.3.1 Message Passing on':G.l"aphwf‘" ke,

HAIN,

The soft iterative decoding algorithm. relies ”Qh .‘.iﬁe‘SSég‘le passing or so-called belief propa-

gation (BP) algorithm [17,18]. Cemsidering thefollowing conditional probability
Rw=al®) (2.13)

which denotes the a posteriori probability based on the knowledge of constraint C'.
According to Bayes’ theorem, we can rewrite (2.13) as

Clz = a)P(x = a)
P(C)

P(z =a|C) = il (2.14)

The term P(z = a) is the priori probability which refers to the probability that variable x
chooses the value a. The priori probability is also called intrinsic probability, denoted
by Pi(z = a). The term P(C|z = a) is proportional to the extrinsic probability which
is used to provide a new information for x according to the constraint C'. The extrinsic
probability is defined by

P..i(x =a) = p.P(C|z = a), (2.15)



where the normalization factor

1
pe - /
2 a'en P(Clz = d’)

is necessary so that ) /. Pext(z = a') = 1, assuming a take values from the alphabet

(2.16)

set A. Then, the a posteriori probability in (2.14) can be expressed as
Ppost(z = a) = P(x = a|C) = pyPext(v = a) Pine(z = a), (2.17)

where p, = (p.P(C))~'. If A = GF(2), A contains only two values 0 and 1, the log-

likelihood ratio for 7) will become

(2.1
Lyost(x) = In pOStE 0 _ lnpemt@ =0) + lant(x =0)

Ppost(z =1) P.(z=1) Pz =1) = Leat(7) + Ling(z). (2.18)

Fig. 2.6 illustrates a graph consisting of one node with d edges. There are d variables,

Pin(x1)

Pin(x2) Pind(Xa)

Pext(xi)

Figure 2.6: Message passing on a node with d edges

T1, Ta,..., and x4, which correspond to the constraint C'. A set Sc is a subspace of the
d-dimensional vector space A4, and for any d-tuple # = (21, 2y, ,74) € Sc will satisfy
the constraint C'. Assuming that each edge has the intrinsic probability P, (z;) associated
with the variable x; for j = 1 ~ d, the a posteriori probability of each variable x; with
respect to C' can be derived through the combination of the intrinsic probability Pj.(x;)
and the extrinsic probability P.,;(z;). Therefore, we need to evaluate P,.,;(z;) based on the

constraint C' and the other intrinsic probabilities Py, (x;), j # i. The extrinsic probability



18
Peat(25) = pP(Clz;)

= pec E P(ﬂfl,"' s Lj—1, Tig1,y " * >$d)

.’L']‘,Vj;éi,XESC
d
where we assume the symbol variables z;, xs,..., and x4 are independent, and p. is a

normalization factor.

2.3.2 Sum-Product Algorithm

Since for a codeword X of an LDPC code, it follows that HXT = 07 which can be
regarded as a set of constraints. Take the parity check matrix in (2.20) for example, a

codeword X = (xg, 1, ,x9) of this LDPC code satisfies the constraints in (2.21).

(11 0,044,010 00
0071 0,00 110
H=| 1300 5,905 1 0 (2.20)
A1 I A0-0 0D 0 1
079,00 1T LA 1 0 1|
( co:xo+ a1+ x4 +26 =0
¢1 : @y + g+ 7+ w5 =0
Cy X+ w3+ x5+ 128 =0 (2.21)
C3:x1 + T2+ 23+ 129 =0
Cy:iTy+T5+T7+ 29 =0

\

The decoding of an LDPC code is based on sum-product algorithm or message passing
algorithm, which exchanges the check-to-bit messages and bit-to-check messages itera-
tively. After finishing the current iteration, the a posteriori probabilities of the bit nodes
will be updated. This above process can be conveniently viewed on a bipartite graph.
We first consider the message passing for the check nodes. A check node receives bit-to-
check messages from bit nodes connecting to itself and updates the check-to-bit messages.

After updating the check-to-bit messages, it transmits those messages back to the bit

10



nodes involved with it. Fig. 2.7 shows a check node containing d edges with each edge
corresponding to a variable in GF'(2). The constraint set for the node is

Xd

Figure 2.7: Message passing on a check node with d edges

Scj Z{($1,I2,"' a$d)|$1+$2+"'+$d:0}- (2'22>
So the output message on the edge x; should be
:uc]-—wi(mi) = Pext(xi) = P(:El + o T Tic1 + T + 0+ Tg = xZ) (22?))

Before deriving (2.23), we simplify £he questions to the two variables condition:

P(xy+23=0) = Piuf@=0)Prlies =0)%% Piy(x) = 1)Poy(z0 = 1)

= (-9 (WD (2.21)

where p; = Py (2; = 1). Moreover, thé ‘above equétion can be expressed as
2P(z1 + 129 =0) — 1 = (1 —2py)(1 — 2ps). (2.25)
If we assume
2P(xy+ 2o+ +2;=0)—1 = 2II; -1
= (1=2p1)(1 = 2py)--- (1 — 2p))

= H(l — 2pl)7 (2.26)

=1

the following probability will become
Hj-i—l = P($1+l’2+"'+l’j+1:0)
= P(ZE1+JZ2++ZE] :O)(l—p]+1)+P($1+ZL‘2++I'] = 1)pj+1
= 11 = pjsa) + (1 = I)pjpa. (2.27)

11



As a result, we can obtain

20— 1 = (200 = 1)(1 — 2pj44)
it

= H(1 —2p) (2.28)

=1

from (2.26). By induction, we derive that

I, = Play+axs+--+x4=0)

% 1+ 11(1 — 2190] (2.29)

for any d > 1. Then the probability in (2.23) can be written as

d
1
I=1,1i
1 d
=1 == |1 1= 2 o (1= 1)) | 2.31
o on i = 1) = [ DUEEE >>] 231

where p; = fiz,—.c; (7, = 1) is the messdge from xl Eor the message passing at the bit node

as shown in Fig. 2.8, the node x;nwill recbﬂv;e rriessa;ges from check nodes connecting to

itself and from communication channel (theteceived sqymbol r;). Since the constraint set

l Pint(xi):P(ri|Xi)

Figure 2.8: Message passing on a bit node with d edges

for z; is

S:, ={ri=alacGF(2)}, (2.32)

12



the output message from z; to ¢; will be

Hai—c; (xl = O) = Pb Pmt(xl = 0) H :ucl—mi(xi = 0) (233)

I=1,1#]

d

Ha;—c; (xz = 1) = Pb - Pint<xi = 1) H ,ucl—mci(xi = 1)7 (234>

I=1,1#j

where
ZRnt mz H ,ucl—mzz lﬁ (235)
I=1,l#j

The intrinsic probability Py, (z;) = P(r; | z;), and the r; is received symbol comes from

communication channel. For the simplicity, we can transform the messages from proba-
bility domain to logarithmic domain by using log-likelihood ratio. The ratio is defined to
be

Pz =0)
Moy =In g =1y (2.36)
and
1
Pl S + 1 (2.37)
Alternatively, we can write ' | r|_—;
éuz)li & L(z)
1 - 2Pz | 1) o tanh (=), (2.39)
where the hyperbolic tangent is déﬁned"'és
tanh(y) = ' 2.

According to the definition of (2.36), the messages from check node ¢; to bit node z; can
be
1+ [Ty (1 = 2ty (10 = 1))
Hl 11;&1( = 2y (11 =1))
L4 T (2
Hz 117&1 tanh(M)

= 2tanh™! < H tanh(%'(mo. (2.40)

=113

LC]'—MCB,L'('I?:) = ]~

:ln

We further define a function ¥(x) as follows for x > 0,

1—1—6_””_
1—e=

U(r) =0 ' (z) =1In

- ln(tanh(g)) (2.41)
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and note that the inverse hyperbolic tangent is

1.1
tanh ™ (y) = = In i v
2 1—y

(2.42)

We decompose the term in the parentheses of (2.40) and use the property that the sign
of A; = tanh(M) is consistent with L, . (2;). The result is as (2.43) shows.

H tanh( l_)cj(xl)) = H A

1=1,l#i I=1,1#i
d d
= ( H sgn(Al)> exp( Z ln|Al|)
I=1,l#i I=1,l#i
d
L, . (x
— ( sgn( xl—mj(iﬁz))> exp( Z In tanh(’ e l)‘)))
I=1,1#1 1=1,l#4
(2.43)
Moreover, it is true that for any integer s
_ 1+ (=1)%"
—1)°U () =l 2.44
U g (2.44)

If we let d i i ] %
T=- (Z n "Ct"éﬁh(m%";(ﬂO) (2.45)

n (2.44), (2.40)can be then rewritfém_"e_is.."

Loy (i) = ( H sgn( Ly, —c; (1) ) < Z In <tanh lﬁg(mlﬂ)))
I=1,1£i I=1,1£i
— ( H sg0( Loy e, (71) ) < Z V(| Ly, $z)|)>, (2.46)

I=1,l#1 =1,l#i

where the function W(z) is previously defined in (2.41). As compared with (2.40), the
multiplications has been converted to the additions in (2.46). The message from bit node

x; to check node ¢; can also be expressed as

Lmiﬂcj (33'2) = In P Pmt( ) Hl LI#j MCJ_“U@( i = O>
pb'Pmt( )Hl 1,145 “cg—m( i = 1)
d
Lint(x:) + Y Loy, (). (2.47)
1=1,1#]
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In the AWGN channel with variance o and zero mean, we derive

Plr|a=+1) = — ¢ 52" (2.48)
| Ty = = e 207 .
V2mo?
and
1 7(Ti+1)2
P(?“i ‘ T; = —1) = e 202 (249)

V2mo?

Therefore, the value L;,;(z;) which is also termed channel value can be obtained by

) = e T =)
— Ine w1’
2

assuming 1 is mapped to (-1), and 0 to (+1). Fig. 2.9 shows a bipartite graph as example
for decoding a (10, 5) LDPC code, and the number of check nodes is five. We summarize

Co Ci C2 C3 Cy4
+ + + + + check nodes

on e (V 1 SN ch . ()C9)

bit nodes
XoT X117 X277 X37 X477 X577 X6 X77 X887 Xo

int(X0) int(X1) in(X2) int(X3) in(X4) int(Xs) int(X6) ini(X7) in(Xs) int(X9)
Lext(XO Lex((xl Lext(XZ Lext(XS Lexﬁ(x4 Lext(XS Lext(xé Lex((x7 Lext(xx Lext(x‘)

Ip I, I I3 Iy TIs Tg Iy Ig I'g
Figure 2.9: Graph representation for decoding a (10, 5) LDPC code

the overall iterative decoding flow as follows:

Step 1. (Initialization): Set the current iteration number n;. = 1. For each edge
existing in the corresponding Tanner graph, the message sent from bit node x; to

check node ¢; is initialized to L (z;),
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Step 2. (Horizontal step): For each check node, we calculate the messages conveyed

to the bit nodes with

Leju, (1) = H sgN(Lyy—c; (71)) Pl Z \IJ(‘LIWCJ.(:L’Z)D . (2.51)
leN(H\{i} leN(\{i}

The set N(j) comprises all the indexes of the bit nodes that involve the check node
¢;. (2.51) can be accomplished through a check-node processing element (CNPE).

Step 3. (Vertical step): For each bit node z;, the message from z; to check node ¢;
which is connecting to this bit node can be updated by

in‘)Cj (xl> = Lmt(xl) + Z chﬂl‘i (*731)7 (2'52)
leM(i)\{5}
where the set M (i) denotes the indexes of all the check nodes connecting to z;.

Moreover, the a posterior information for codeword symbol z; is obtained by

Lpost(-ri) - Lint(xi)+Lext(xi)
= L Z Loy, (). (2.53)

: lEM

Z

n

E|

=
A bit-node processing element (BNPE) can carry- “out the functions depicted in (2.52)
and (2.53).

Step 4. (Hard decision and syndrome check): We estimate the codeword

X = (%o, &1, -+ ,Tn-1) by

1, if Lyost(z:) < 0
= post(2) <0 (2.54)
0, if Lyowt(zs) >0

If the parity check
H-XT"=0" (2.55)

is satisfied or the current iteration number n;. reaches the predefined maximum

iteration number N;;., the decoding process halts, and the estimated codeword

X = (%o, T1,- -+ ,&n_1) is outputted. Otherwise, the decoder repeats the step 2 ~ 4

for the next decoding iteration, and n;. is increased by one.
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2.3.3 Min-Sum Algorithm

For the sum-product algorithm in logarithmic domain, the horizontal step is the most
computationally complex part because of the nonlinear function ¥(z) = —In(tanh(s)).
Noting that the function ¥(z) is equal to its own inverse W~!(z) over the range = > 0.

This function is depicted in Fig. 2.10. In (2.51), it is the large values that dominate the

Y(x) = -In(tanh(x/2))
T T T

Figure 2.10: Plot of the U(z) function

summation. In fact, if there is a Smgle laxge Value \I/ (| Ly, (21)]), the summation will
be a large positive number, and the other utérms do nqt matter. Since the function V(z)
is monotonically decreasing for 2= = 0,8/ lar _gu@lue of ( |Lxﬁcj (wl)’) corresponds to a
small value of ‘Lxﬁcj(:cl)‘ Hence as an approxunatlon it is possible to replace the term
y-! (ZleN(j)\{i} ‘I/(’Lxl—wj xl)‘)> by the minimum value of |L$l_,cj (xl)’ over all [ in the
relevant range (I € N(j) \ {i}), using the fact that =1 (¥(x)) = z. In other words, the
expression (2.51) can be approximated by

Lc]-—nvi(-ri) ~ H Sgn(Lml—wJ- (xl)) min . (‘Lzl—wj (:L‘l)|> (256>
NG\ D

The decoding procedure based on (2.56) and (2.52) is referred to min-sum algorithm.
It is more practical for implementation due to its simplicity, however, it has a degradation
in performance. Comparing the magnitude parts of (2.56) and (2.51), it is true that the
former is no less than the latter. To decrease the difference between them, (2.56) can be

modified as

Lejwi(w5) = 3 - [T sen(La—c (z)) lejg(u)r\l{}(\Lxﬁcj(xz)}), (2.57)
ENG)\{i} ’
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where [ is the normalization factor with 0 < # < 1 and usually to be 0.6 ~ 0.8. The
decoding procedure based on (2.57) and (2.52) is called modify min-sum algorithm.

A further improvement using dynamic normalization technique is reported in [19].

2.3.4 Layered Belief Propagation Algorithm

An iteration for the decoding algorithm mentioned in Section 2.3.2 can mainly be de-
composed into two phases, horizontal and vertical phases. At the first phase, the LDPC
decoder operates the horizontal step for each row. Then, the decoder executes the ver-
tical step for each column during the second phase. The horizontal operation for each
row at the first phase can be carried out simultaneously, so as the vertical operations for
columns at the second phase. Assume there is a parity check matrix with N columns
and M rows, it corresponds to a Tanner graph with N bit nodes and M check nodes.
According to different decoding scheduling, the implementation of LDPC decoders can be
partitioned into two categories, fully parallel decoders and partially parallel decoders. A
fully parallel decoder directly maps the worresponding Tanner graph into hardware and
all the processing units are hard—}zvife'd acu(_:?)rdmg }c"‘o". .the connectivity of the graph [20].
Thus it can achieve very high deCOding thfohglhput f)UZt suffer a large hardware cost. The
partially parallel architecture groups severﬂmies of the graph into a subset and maps
these nodes to a single processing umt by usmg t1me—d1v181on multiplexing [21]. It trades
the decoding throughput for the reductlon of hardware complexity. The parity check
matrix of an LDPC code can be viewed as a collection of horizontal layers. Each layer
represents a component code and is a subset of rows. The intersection of all these com-
ponent codes forms the full LDPC code. A soft-input soft-output (SISO) decoder can be
applied to each layer in sequence. As a layer starts to decode, it uses the latest messages
as inputs which updated by the recently processed layers. In addition, a SISO decoder
spends a sub-iteration to process a component code. After processing all the layers one
time, we call it a iteration. Assume that the rows of the parity check matrix are grouped
into non-overlapping subsets (layers) where each subset has the following property: the
column weight in each layer is at most one as shown in Fig. 2.11. The layered approach
to the log-BP algorithm is described as follows, and assuming that the AWGN channel

and BPSK mapping are used.
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Figure 2.11: Rows of Hjgyereq are grouped into three layers
Step 1. (Initialization): Set the current iteration number n;. = 1. For each edge

existing in the corresponding Tanner graph, the message sent from check node ¢;

to bit node x; is initialized to 0. Moreover, for i = 0 ~ (N — 1), the a posteriori

information L, (z;) is initializedstd Linga;).

Step 2. (Messages updating):‘"We apﬁlﬁf lstep 2‘t“o‘ layers of the parity check matrix

in a layer-by-layer manner. FFor each layer, the decoder executes the following three

sub-step.

2.1

2.2 :

: For each bit node x; participateés in the current horizontal layer, message

Ly, —c;(7;) that corresponds to a particular check equation ¢; is computed ac-
cording to
in_’cj ((I)l) = Lpost(xi) — Lcj—>ﬂ’3i (ZL’Z) . (258)
ld

For each check node c;, message L., .., (7;) corresponding to variable node
x; which involved with the particular parity check equation c; is computed

according to

LCj—>J,’i(xi> - H Sgn(L$l—>Cj(l‘l)) \11_1 Z \Ij(‘sz—w](Il)D
LEN()\{i} leN(G)\{i}
(2.59)

This is the same as (2.51) in conventional log-BP algorithm.
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2.3 : The a posteriori information Ly, (z;) for the current horizontal layer is up-

dated according to

Lpost (xz) - inﬂcj' (xz) + LCjHIi (.1'1), (260>
—_———

new

where the term L., .., is recently updated in step 2.2.

Step 3. (Hard decision and syndrome check): The codeword

X = (%o, %1, -+ ,Tny_1) is estimated by

1, if L ost(Xi) <0
7= post () (2.61)
0, if Lpost(2;) >0

If the parity check
H-XT =0T (2.62)

is satisfied or the current iteration number n;, reaches the predefined maximum

iteration number N, the decoding process halts, and the estimated codeword

X = (o, Ty, ,Tn_1) 18 ouj;nntt"ed.'u‘“_(;)’gh‘ejrwi:ée,. the decoder repeats the step 2 and
3 for the next decoding iteration, anain;te is Linciﬂ:eased by one.

This layered decoding algorltn‘rn is é;, Vamn of tlne conventional BP algorithm, and
could speed up the decoding convergence rate around two times. This is due to the
optimized scheduling of reliability messages [22,23]. In addition, the layered approach
is suitable for the LDPC decoder with partially parallel architecture, and can lead to

memory reduction in VLSI implementation.
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Chapter 3

Tanner Graph Construction

Since an LDPC code can be specified by a parity check matrix or equivalently a Tanner
graph, it is great important to construct a Tanner graph with good properties. In this
chapter, we review two existing methods for constructing Tanner graphs, called progressive
edge-growth (PEG) and PEG-QC algorithms, and introduce some factors that will affect
the performance of LDPC codes.

\ Bl v
3.1 Performance-Related Code -Parameters

Before discussing construction of Tannergraphs, sévé}ral factors that affect error-correcting
performance of LDPC codes will be introdiéed. First is the degree distribution pair for
a Tanner graph, we describe it in 3.1.1. Furthermore, the Tanner graph of a practical
LDPC code usually contains cycles. Cycles in a Tanner graph will degrade the code
performance, this will be depicted in 3.1.2. An LDPC code whose Tanner graph contains
small stopping sets will suffer higher error floor. 3.1.3 discusses this phenomenon and

gives two parameters to the set of variable nodes.

3.1.1 Degree Distribution Pairs

An LDPC code can be well represented by a Tanner graph, in which one set of nodes
forms variable node set and the other becomes check node set. A Tanner graph is called a
(dy,d.)-regular one if every variable node participates in d, check nodes and every check

node involves d,. variable nodes; otherwise, it is called irregular. For a (d,,d.)-regular
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Tanner graph, the corresponding parity check matrix will contain d, 1’s for each column
and d. 1’s for each row. The following figures show a (3, 6)-regular Tanner graph and its

corresponding parity check matrix. For a given codeword length N and a given degree

variable nodes

check nodes

Figure 3.1: A (3, 6)-regular Tanner graph
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Figure 3.2: Parity check matrix H corresponds to the graph given in Fig.3.1

distribution pair (A, p) [24], it forms an ensemble of codes by choosing edge, i.e., the
connections between variable and check nodes, randomly. More precisely, we enumerate
the edges emanating from the variable nodes in some arbitrary order and proceed in the
same way with the edges emanating from the check nodes. Assume that the total number
of edges is . Then a code (a particular instance of this ensemble) can be specified by a
permutation on F edges. By definition, all instances in this ensemble are equiprobable.
However, in practice, the edges are not chosen entirely randomly since certain potentially

ill events in the graph construction can be easily avoided. We say that a polynomial ~(x)
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of the form

i>2
is a degree distribution if vy(x) has nonnegative coefficients and (1) = 1. Note that we
associate the coefficient 7; to =1 rather than z°. We will see that this notation leads to
very elegant and compact descriptions of the main results. Given a degree distribution

pair (A, p) associate to it a sequence of code ensembles C™ (), p), where N is the length

of the code,
dv
Az) =) Nz’ (3.2)
i=2
and

de
= Z pir' ™t (3.3)
=2
A(z) and p(z) specifies the variable and check node degree distribution, respectively. More
precisely, A; (p;) represents the fraction of edges emanating from variable (check) node of
degree i. For example, for the (3, 6)-regular code we have \(z) = 22 and p(z) = 2°. The
maximum variable degree and check degree is denoted by d, and d., respectively. Assume
that the code has N variable nodes The mimber of variable nodes of degree ¢ is then
| ‘ 5
)\ s i
N i/t e MR /Z (3.4)
g>2 Nj /] _Tf )\
and so the total number of edges emanatmg from aﬂ variable nodes FE is equal to
N 1
E:NZ#@:N%. (3.5)
= Jo Mz)dz Jo Ma)dz
In the same manner, assuming that the code has M check nodes, I/ can also be expresses

as

BeM—t (3.6)

fol p(x)dz

Equating these two expressions, (3.5) and (3.6), for E, we derive that

fo
f A( >dx D

Generically, assuming that all these check equations are linearly independent, we see that

the code rate is equal to

N-M folp(x)dx
r(A\p) = — = 1 7f01 No)dr (3.8)



It was proven that degree distribution pairs affect performance of LDPC codes. Degree
distribution pairs of infinite long LDPC codes can be optimized by using density evolution
which determines the performance threshold of these codes.

For parity check matrices with the same dimension M x N, an irregular LDPC code
with proper degree distribution pair usually outperforms a regular one. However, a finite
length and irregular LDPC code with optimized degree distribution pair usually contains
a large portion of degree-2 variable nodes, which degrades the code performance in high-
SNR region. To partially overcome this problem, we can suppress the number of degree-2
variable nodes not more than the number of check nodes and assign the degree-2 variable
nodes to parity-check bits of the codeword. In [25], it also provides two approaches. One
is to convert part (or all) of these variable nodes to nodes of the next higher degree, say
degree-3. Another is to increase every degree in the degree distribution of variable nodes
by 1, i.e., degree-2 is converted to degree-3, degree-3 is converted to degree-4, and so on.
This degree +1 adjustment is confirmed to be very effective for high-rate code. Moreover,
a variable node with higher degree can prov1de better protection and show faster decoding
convegence rate for the Correspondmg code blt A strlctly concentrated check node degree
distribution = ‘"'“4 ] iy

o) S p o e’ (3.9)

maximizes the convergence speed of j;hé"."(:odé [26]

3.1.2 Cycles in Tanner Graph

If a graph satisfies that 1) doesn’t contain self-loops, 2) is at most one edge between a
pair of vertices, and 3) all edges of it are nondirected, it is called a simple graph [10]. For
a simple graph, a closed path with [ edges starting from a vertex v; and ending at v; is
called a length-I cycle. Girth g refers to the length of the shortest cycle in a graph. If
there is a Tanner graph without cycles, belief propagation algorithm can provide optimum
decoding. However, for the practical LDPC codes, graphs often contain cycles. It is proven
that cycles make iterative decoding algorithm become sub-optimal, which degrades error-
correcting performance of LDPC codes. The following figures illustrate a Tanner graph
with length-6 cycles and its corresponding parity check matrix.

For Tanner graphs with length-4 cycles, they show serious degradation in code per-
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Figure 3.3: A Tanner graph with length-6 cycles

0101101011
01 10101101
H=F-6-1 0110101
for1010110
F-1-0-1 0 1 1 0 1 0

Figure 3.4: Parity check matrix H corresponds to the graph given in Fig.3.3

formance. In practice, we avoid COlﬂl:Sfll“lnlein graphs with length-4 cycles and make girth
of graphs as larger as possible. Lo¢dl girthl“nofl‘jl-vn‘m“"iébxle‘-‘:node v; is defined as the length of
the shortest cycle passing througi_fthe h@de—qrhln [2’17], it confirmed not only the girth
but also the average of local girtﬁ,’nb‘"e_l“(l)llnlg to the_ Tanner graphs, affecting performance
of LDPC codes. When designing Tanner graﬁhs, we can take both girth and average of
local girth into account and make lower-degree variable nodes have larger local girth to

ensure better error-correcting performance of the resulting LDPC codes.

3.1.3 Stopping Sets in Tanner Graph

Stopping sets in Tanner graphs are defined as follows [28].

Definition 1: (S Stopping set) A variable node set is called an S; set if it has d
elements and all its neighbors are connected to it at least twice.

Fig. 3.5 gives a Tanner graph containing an S5 stopping set and this S5 set is composed
of variable nodes {vg, v1,v2}. In binary erasure channel (BEC), a set of variable nodes is
called a erasure set if the corresponding code-bits of all these variable nodes are erasure.

If there is a stopping set Sy contained in the erasure set, all these variable nodes in S; can
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Figure 3.5: Illustration of a S3 stopping set

not be determined through an iterative decoder [29]. It is also proven that every stopping
set contains cycles if there are no degree-1 variable nodes in the Tanner graphs. This can
be seen in Fig. 3.5. Moreover, it is proven that preventing small stopping sets can avoid
small minimum distance which will incur performance loss in error-floor region. In order
to avoid small stopping sets, we have to make the subsets of variable nodes have as many
extrinsic check nodes as possible. An extrinsic check node of a variable node set is a check
node that singly connects to this set. There are two quantities to evaluate the number
of extrinsic check nodes, namely extr'z':;i;sicrmesé‘éiqéidegree (EMD) and approzimate cycle
EMD (ACE). J HiEH\ e

Definition 2: The EMD of a i(d_riablp node set ‘is t}]"le number of extrinsic check nodes

of this variable node set. A

A variable node set with larger EMD.has the ”rb';;tter degree of connectivity to the rest
of the graph. An approximate approach to calculate EMD for cycles is using approximate
cycle EMD (ACE) and given as follows.

Definition 3: The ACE of a length 2d cycle is ) .(d; — 2), where d; is the degree of
the ¢th variable in this cycle.

3.2 PEG Tanner Graphs

Progressive edge-growth (PEG) method has been shown to be an effective and simple
one to construct Tanner graphs in an edge-by-edge manner [9,10]. It maximizes the local
girth of the proceeding variable node when adding an edge into the current graph. Code
parameters specified in PEG method are highly flexible, so they can be chosen for the
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practical applications.

Before describing the PEG algorithm, we introduce some necessary definitions and
notations on graph. The parity check matrix H with dimension M x N of an LDPC code
can be represented by a (V) E') Tanner graph with N variable nodes and M check nodes.
On the one side of the graph is the set of variable (bit) nodes V,, = {vg, vy, -+ ,on_1}
corresponds to the N columns of the matrix; on the other side of the graph is the set of
check nodes V. = {cp,c1, -+ ,car—1} corresponds to the M rows of H. An edge denoted
by e(c;,v;) connects the variable node v; with check node ¢;, which corresponds to the
1 in the entry (i,j) of H. The nodes in V, and V,, form the set V' = V. U V,, and the
collection of edges in the graph forms the set £ C V. x V,. Denote the variable degree
sequence by

D, = {dvoa Ay, ava,l} (3.10)

in which d,; is the degree of variable node v;, 0 < 7 < N — 1, in nondecreasing order, i.e.,

dy, <dp, <---<d and the parity-check degree sequence by

UN—1)

D, ?"_{dCoadCl?"‘"' cn— 1} (3'11>

- ’ I‘i TLh
in which d., is the degree of pamty-check node cz, (I. <1< M-1, and d., < d., <
Let’s also partltlon ‘the SeLQLedges E’ as E = FE,UE, U---UE

UN-1

< ey,
in terms of V,, where E,, contams all edges 1n01dent on variable node v;. Moreover,
denote the k-th edge incident on v; by Eﬁj, 0 § k < d,, — 1. A subgraph of a graph
G = (V,E) is a graph whose node and edge set are subsets of those of GG. For a given
variable node v;, define its neighborhood within depth [, Nf)j, as the set consisting of all
check nodes reached by a subgraph (or a tree) spreading from variable node v; within

depth . Its complementary set, N, , is defined as V, \ N, , ie. V. excludes N.

v;0
The subgraph rooted from v; is generated by means of unfolding the Tanner graph in
a breadth-first way; we start from v;, and traverse all edges incident on v;; let these edges
be (v, ¢iy), (vj,¢y), -+, (V) Cidvfl)- Then we traverse all other edges incident on nodes
Cigy Cir» ™" * s Cig, 1 excluding (vj, ¢, ), (v4,¢), -+, (v), cidvj_l). This process continues un-
til the desired depth is reached.

Here, we describe how to construct a Tanner graph using PEG algorithm as shown in

Algorithm 1. First, we specify the graph parameters, i.e., the number of variable nodes N,
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the number of check nodes M, and the variable degree sequence D,. Then, the following

pseudo-code in Algorithm 1 can be used to construct the Tanner graph edge-by-edge.

Algorithm 1 PEG algorithm
for j=0to N —1do

for k=0tod, —1do
if £ =0 then

By« e(ci,v;), where E}is the first edge incident to v; and ¢; is a check node
such that it has the lowest check-node degree under the current graph setting
E,UE,U---UE,, ,.

else
expand a subgraph from variable node v; up to depth [ under the current graph
setting such that the cardinality of qu}j stops increasing but is less than M, or
Nij # () but Nﬁ:l =0, then B « e(c;,v;), where Ey is the k-th edge incident
to vj and ¢; is a check node picked from the set Nij having the lowest check-node
degree.

end if

end for j ip

end for = | v 3

Whenever a subgraph from variablginode v is é}éioanded before adding an edge to the
current graph, two situations can occur:“ 1) thé cardinality of Nf)j stops increasing but is
smaller than M; (2) Wij # () but Nﬁ:l = (). In the first case, not all check nodes are
reachable from v;, so the PEG algorithm chooses the one that is not reachable (in Nij),
thus not creating any additional cycle. This often occurs in the initial phase of graph
construction. In the second case, all check nodes are reachable from v;, and the algorithm
chooses the one that is at the largest distance from v;, at depth [ + 1, so that the cycle
created by establishing an edge is of the largest possible length 2(1 + 2).

However, during going through the procedure in Algorithm 1, we may still face a
situation in which multiple choices exist because multiple check node in Nij might have
the same lowest degree, particularly in the initial phase of PEG construction. There
are two main approaches to solve this problem. One is to randomly select one of these

check nodes. The other is to always select one according to its position in the order of
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Co,C1, -+ ,Cp—1. For example, we can first sort the check node in Nij_ that have the same
lowest degree according to their subscripts, and then always pick the first one. There
are other versions of PEG algorithm, nongreedy and look-ahead-enhanced versions, have
also been discussed in [10], but none of them provides any nonnegligible performance

improvement over the standard PEG.

3.3 PEG-QC LDPC Codes

The parity check matrices consists of submatrices are attractive due to their hardware-
friendly properties. They reduce the hardware complexity and show performance compa-
rable to random LDPC codes at the short to medium length. The codes constructed by
PEG method are proven to be good enough, however, the positions of 1’s of the corre-
sponding H are random. Z. Li et al. [13] proposed one kind of structured LDPC codes
based on PEG construction. They added a circulant constraint into original PEG algo-

rithm. The parity check matrix generated by this PEG-QC method can be put in the

form below

Hegy Hi)il;l 5 Hopn1
= e,
H=| & T (3.12)
| 1 00 i Ho1no1 |

where H;; is a p X p circulant or all-zero matrix, and m and n are two positive integer
with m < n. The circulant matrix is a square matrix, where each row vector is rotated
one element to the right relative to the preceding row vector. Equation (3.13) illustrates

a circulant matrix with dimension 4 x 4.

0110
0011
H;; = (3.13)
1 00 1
1 1 00

The null space of H gives an LDPC code over GF'(2) of length N = np. The rank of H

m
ok

is at most mp. Hence the code rate is at least 1 — ™. Assume that the Tanner graph has

to be designed has N = np variable nodes and M = mp check nodes.
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To generate a structured LDPC code with circulant size p x p by this PEG-QC algo-
rithm, first it needs to divide all variable nodes and check nodes into small subgroups with
each group has p nodes. Then it adds edges to the Tanner graph group by group instead
of node by node compared to the original PEG algorithm. For each variable node group,
it only has to expand trees for the first variable node in the group to find its optimized
edges. The edges of other variable nodes in the same group can be determined by the cir-
culant constraint automatically. Here we give the pseudo-code of PEG-QC algorithm as
follows. It had been shown that the codes constructed by this PEG-QC method exhibited

performance comparable to other kinds of QC-LDPC codes.

Algorithm 2 PEG-QC algorithm
for j=0ton—1do

for k=0tod,, —1do
if £ =0 then

By« e(ci,vjp), where E is the first edge incident to vj, and ¢; is a check
node such that it has the lowest check-node degree under the current sub-graph
setting (randomly pick one ‘i:fr""‘therre arq‘:rr'ionye than one such check nodes).

+ :‘H R . i

else

Expand a tree from Valfiéjble podev]p up tq: depth [ under the current graph
setting such that the céﬁiqalitifﬁﬁzp '?ﬁops increasing but is less than M,
or Ni)jp # () but Nij: = (Z),."‘thre_n Effjb" é'-“e.(cl-,vjp), where Efjp is the k-th edge
incident to vj, and ¢; is a check node picked from the set Nijp having the lowest
check-node degree (randomly pick one if there are more than one such check
nodes).

end if

forr=1top—1do

k

e e(Cli/p|-p+mod(itrp)s Vip+r), Where Effjp“ is the k-th edge incident to

Vjptrs a0d Ci/p|p+mod(i+rp) 18 the check node which cyclic shifts 7 positions of ¢;
in the circulant H\;/p) ;.
end for
end for

end for
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Table 3.1: Sets of code parameters which will be used hereafter
Index Type Rate | Dimension of H | Size of H; ;
I irregular 1/2 1280 x 2560 32 x 32
IT irregular 3/4 640 x 2560 32 x 32
111 irregular 7/8 320 x 2560 32 x 32
IV | (3, 27)-regular | 8/9 512 x 4608 128 x 128

Table 3.2: Occurrence probabilities of codes with various girth constructed by PEG-QC

algorithm
Index || Algorithm | Prob. of girth=4 | Prob. of girth==6
I PEG-QC 36% 64%
I1 PEG-QC 55% 45%
111 PEG-QC 73% 27%
IV || PEG-QC |42 rloo%f‘” 0%

However, through smlulatmn We find- thaI_REG QC algorithm is much easier to
construct a Tanner graph w1th short cycles whlch degrade the error-correcting
performance of an LDPC code. Moreover, it is sometimes impossible to con-
struct a graph without 4-cycles. Table 3.1 gives four sets of code parameters whose
degree distribution are optimized from density evolution [24]. For irregular ones, the
maximum variable-node degree d, are 12 for both rate 1/2 and 3/4 and 9 for rate 7/8.
We construct code ensembles, with parameters specified in Table 3.1, by above-mentioned
PEG-QC algorithm. Each code ensemble contains one hundred LDPC codes. Table 3.2
shows the occurrence probabilities of codes with various girth constructed by PEG-QC
algorithm. We observe that Tanner graphs constructed by PEG-QC algorithm are much
easier to contain short cycles. This is due to the improper circulant constraint.
Assume there is a Tanner graph with 3

Here, we take a small graph for example.

variable node subgroups and 3 check node subgroups, with each group has 4 nodes. We
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(a) Graph setting before adding 3rd edge to vg
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(b) The corresponding parity check matrix of Fig. 3.6(a)

Figure 3.6: (a) Current graph setting by using PEG-QC algorithm, (b) and its corre-

sponding parity check matrix
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specify the variable degree sequence as

Dv = {{dvoydvpdvgadv:;}v {dv47dv5ad’u67dv7}7 {dvgad’ugadvmadvn}}
= {{2,2.2,2}.{2.2,2,2},{3,3.3,3}} (3.14)

in a non-decreasing order. Before adding the 3rd edge of variable node vg into the graph, by
using PEG-QC algorithm, the graph is set as shown in Fig. 3.6(a). In this case, we always

choose the check node with smallest index when there are more than one candidates. We

Depth-0

Figure 3.7: Tree spreading from variable node vg

continue to add the 3rd edge of variable node vg to this graph through operating tree
spreading from vg as shown in Fig. 3.7. According to the PEG-QC algorithm, Nﬁs # ()
but N:rl = (), we will add an edge e(cg, vg) to this graph. The resulting graph and parity
check matrix are showed in Fig. 3.8, in which the dash lines are generated from the

circulant constraint. It is obvious that the new edge accompanies length-4 cycles.
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(a) Tanner graph constructed by PEG-QC algorithm
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(b) The 4:zcycle contained.in the above figure
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(¢) The resulting parity check matrix H

Figure 3.8: The Tanner graph constructed by PEG-QC algorithm, and its corresponding

parity check matrix. There are 4-cycles in this graph.
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Chapter 4

Design of PEG-Based Structured
LDPC Codes

As shown in Section 3.3, the circulant constraint of PEG-QC algorithm makes it much
easier to construct Tanner graphs with short cycles. In other words, because there are
more than one 1 in a row of a circulanb submatrix the corresponding Tanner graph is
easier to contain short cycles. In thls chapter We add a more strict constraint, compared

with PEG-QC algorithm, to orlgmal PEG ‘algorlthm and propose a general method to

construct structured Tanner graphs. For‘the con81derat10n of encoding complexity and
error floor, the modifications of tv—h-‘e‘pfc"jnfﬁ)o‘sen(‘i-ruélg‘oﬁthm are also discussed. Simulation
results show that the proposed algorit“h‘m‘can suppi"ess the probability to generate a graph
with short cycles. Moreover, it confirms that our codes, in terms of bit error rate (BER)
or packet error rate (PER), outperform PEG-QC LDPC codes and are better than the
codes in IEEE 802.16e.

The remainder of this chapter is organized as follows. Section 4.1 gives several def-
initions and notations will be used and describes the proposed CP-PEG algorithm. In
Section 4.2 and 4.3, we depict the modifications of CP-PEG algorithm. Finally, the code

performance will be presented in Section 4.4.
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4.1 Proposed Structured LDPC Codes

Here, we add a more strict constraint, called circulant permutation (CP) constraint, to
original PEG algorithm. The parity check matrix H generated by the proposed CP-PEG
algorithm is also structured as shown in equation (3.12). We write it again in equation
(4.1). However, the submatrix H, ; of the proposed parity check matrices is either a p x p
circulant permutation or all-zero matrix. A circulant permutation matrix is a special
case of the circulant matrix, it contains exactly one 1 for each row vector, i.e. it is a right
cyclic version of a p x p identity matrix I,.,. Thus, we can denote each submatrix H, ;

of the proposed parity check matrices more concise as it in IEEE 802.11n.

HO,O HO,I e HO,n—l
H H e Hy, -
H= e e b (4.1)
L Hm—l,(] Hm—l,l e Hm—l,n—l |

Using the same notations and definitions as in Section 3.2, we further give several
definitions and notations. Assume théfé..are N .“{;é'riable nodes and M check nodes in the
Tanner graph. We partition the N varlab]?e nodes and M check nodes into subgroups
where each group has p nodes. After partfblon it forms n variable node subgroups and
m check node subgroups. We also partlmon n-edges E in term of variable node subgroup
vsg, as B = By, U Bygg, U -+ U Evsgn_‘l, w1t“.h" Evsgj containing all edges emanate from
Jth variable node subgroup vsg;. Check node subgroup csg; is said to be connected to
variable node subgroup vsg; if there is an edge e(Cip+r, Vjpir) € Eysg;, where ¢y € C59;,
Vjprr € 059;,0 <7 < (m—1),0<j < (n—1),and 0 <r < (p—1). Moreover, if check node
subgroup csg; is connected to variable node subgroup vsg; under current graph setting,
check nodes contained in csg; form the set Nys, . In the proposed algorithm, we won’t
connect the proceeding variable node to the check nodes in N,4,.. The complementary set

of Nysg,, stgj, is defined as the check-node set V, \ Nysg,, 1.e. Ve excludes Ny, . Nl is

Ujp+r

the complement of N ! which is set of all check nodes reached by a tree spreading from

+
variable node vj,, Wlthln depth [. A complementary set R is defined as Rijp+T =

Vjptr
— —l
Ny, NN

Uippe? where v;,4, € vsg;. Finally, a variable-subgroup degree sequence is defined
as Dysg = {duvsgy, Avsgrs - » dusg,_1 > Where dysgy < dysgy < -+ < dysg, .. In a variable-

subgroup degree sequence, d,s,, denotes the degree of vj,y,, where v;,y, € vsg; and
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0<r<(p-—-1).

Then, we describe how to design a Tanner graph using the proposed CP-PEG algo-
rithm. First, we specify the number of variable node subgroups n and the number of check
node subgroups m, with each subgroup has p nodes. For the specified variable-subgroup
degree sequence D, , construction of the Tanner graph is described by the following Al-

gorithm 3 which adds edges to Tanner graph group by group instead of node by node.

Algorithm 3 CP-PEG Algorithm
for j=0ton—1do

for k=0 to dysg; — 1 do
if £ =0 then

Egjp — e(ci,vjp), where ¢; is a check node with lowest check-node degree under
the current sub-graph setting Eysg, U Eysg, U -+ U Epgg, (randomly pick one if
such check nodes are more than one).

else
Expand a tree from Varlable node vjp up to depth [ under the current graph
setting such that the cardlnahty bf N 1) stops increasing but is less than M, or
R , 7 0 but R =0, then E’c 1<'— e(c,,vﬂi,l), where ¢; is a check node picked
from Rvjp havmg the lowest Ch_e,ck—node degree (randomly pick one if such check
nodes are more than one).rﬂ o

end if

forr=1top—1do
Efjjpﬂ — e(Cli/p|ptmod(itrp)s Vip+r), Where Efjjpﬂ is the k-th edge incident to
Vjptr, a0d C€|j/p|.prmod(i+rp) 18 the check node which cyclic shifts r positions of ¢;
in Hiifp),j-

end for

end for

end for

In Algorithm 3, Effjp is the k-th edge incident on v;, and we call this depicted else-
statement as tree spreading procedure for convenience. Due to the circulant permu-

tation form of H; ;, the proposed LDPC codes are suitable for layered decoding mentioned

INE
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Table 4.1: Occurrence probabilities of codes with various girth constructed by the pro-

posed CP-PEG and PEG-QC algorithms

Index || Algorithm | Prob. of girth=4 | Prob. of girth=6

PEG-QC 36% 64%

: CP-PEG 0% 100%
PEG-QC 55% 45%

! CP-PEG 0% 100%
PEG-QC 73% 27%

- CP-PEG 16% 84%
PEG-QC 100% 0%

v CP-PEG 0% 100%

in Section 2.3.4.

We construct a small graph, as pré{/i‘oluélf. .'dBne in Section 3.3, by the proposed CP-
PEG algorithm. It contains 3 Varrable nodei Spbgroups and 3 check node subgroups with
Dysg = {duvsgy> vsgr > dvsgs } = {2, 2 3} Before addmg the 3rd edge of variable node vg into
graph, the graph is the same as shewn m Fig_Wa) m which we always choose the check
node with smallest index when theren are more than one candidate. For the 3rd edge of
variable node vg, by using CP-PEG algorithr.n, we expand a tree from wvg as shown in
Fig. 3.7. Instead of selecting the check node cg, we pick up the node c,. It is because of
Ejg # () but Fi:l = (). The resulting Tanner graph and parity check matrix are given in
Fig. 4.1. It doesn’t contain 4-cycles anymore.

We further use the sets of code parameters specified in Table 3.1 to construct 100
codes for each ensemble by the proposed CP-PEG algorithm. The resulting occurrence
probabilities of codes with various girth are presented in Table 4.1. For the purpose of
comparison, the results had been shown in Table 3.2 are also listed in Table 4.1. It is
obvious that Tanner graphs constructed by the proposed CP-PEG algorithm have lower
probabilities to contain short cycles than those by PEG-QC algorithm.
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Figure 4.1: (a) The Tanner graph constructed by CP-PEG algorithm,

sponding parity check matrix
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4.2 ALT Form for Encoding Consideration

Assume that the parity check matrix H is in approzimate lower triangular (ALT) form
as previously mentioned in Section 2.2.4. Let X = (u,p1,p2) is a codeword of H where
u denotes the systematic part, p; and p, combined denote the parity part, p; has length
g =7 -p, and p has length (m — 7) - p. Given a message u, the systematic encoding can
be achieved by

pl = - Y (—ET'A+ C)u” (4.2)

and

py = =T~ '(Au” + Bpy), (4.3)
where ® = —ET'B + D is assumed to be nonsingular.

<+— (n-m)ep —><Y*P—><—— (M-y)sp —>

A I T
A B lr 0 (m=y)«p

M= mep : l

C |D| E |}

N= n-“‘p

 J

A

Figure 4.2: The parity check matrix in approximate lower triangular form

For the encoding consideration, we can restrict the structured parity check matrix
generated by the proposed CP-PEG algorithm in ALT form [30] as shown in Fig. 4.2 and
assign the variable nodes with higher degree to be the systematic part to get better pro-
tection from noises. This can be accomplished by the following ALT-CP-PEG algorithm.

In the encoding procedure for codes with ALT form, the overall complexity to deter-
mine p; and py are O(N + ¢?) and O(N), respectively. To reduce the complexity, we
choose g (or 7) as small as possible under degree distribution setting D,s,. Then, after

constructing a parity check matrix H, we perform block-column permutation to make
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Algorithm 4 ALT-CP-PEG Algorithm
for j=0ton—1do

for £ =0 to dysy; — 1 do
if £ =0 then
if (0<j<m—~—1)then

B e(Cm——j)p-1,Vjp), Where E is the first edge incident to v;,. This
edge corresponds to the 1 in the diagonal line of submatrix 7" of matrix H.
else
Egjp — e(c;,v5p), where ¢; is a check node with lowest check-node degree under
the current sub-graph setting Fysg, U Eysg, U+ U By (randomly pick one
if such check nodes are more than one).
end if
else
if 0<j<m-—~v—1)then
Setup that csgg, csgy, - - ,csgm_7_2_] are connected to vsg;. This can ensure
that submatrix 7' is in."lév&er tr!reingular form
end if - | ~£"_":. £ :
Expand a tree from Vafiéble‘"“illmcnjamj?up, tbl depth [ under the current graph
setting such that the card&n“éxlify of Nf)jp' ngps increasing but is less than M, or
Fim # () but }_BZ: = (), then Efjp o ne(ci, vjp), where ¢; is a check node picked
from Ei)jp having the lowest check-node degree (randomly pick one if such check
nodes are more than one).
end if
forr=1top—1do
Efjjpﬂ — e(Clip|ptmod(itrp)s Vip+r), Where Efjjpﬂ is the k-th edge incident to
Vjptr, and €|i/p|.prmod(i+rp) 18 the check node which cyclic shifts r positions of ¢;
in Hiifp),j-
end for

end for

end for
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® nonsingular and keep the resulting H’ structured. This is usually possible when H is
not rank deficient. By the way, when operating the block-column permutation, ® is made
to be an identity matrix [ if possible. This can further reduce the complexity because of

P l=1"1=1.

4.3 EMD Criterion for Lowering Error Floor

Comparing with regular codes, irregular codes with optimized degree distribution often
suffer higher error floor. In the tree spreading procedure of the proposed CP-PEG and
ALT-CP-PEG algorithms, among all check-node candidates with the same check-node
degree, we choose one at random. For irregular PEG Tanner graph, similar to above
situation, [31] suggests us to choose the check node that maximizes the minimum ACE for
the new cycles (ACE criterion). This causes the performance improvement in error floor

region. For example, in Fig. 4.3, it suggests us to choose the check node with ACE = 3.

Degree = 1
ACE =2

Figure 4.3: A simple example of ACE criterion

However, it may be still more than one candidate after adopting this criterion. In [32], it
further gives an EMD criterion, to choose the check node that induces a subgraph with
highest EMD, which improves the performance in error floor region further. Take Fig.
4.4 for example, the check node with EM D = 3 is more proper than the other to be
connected. We adopt the EMD criterion into our code construction procedure to choose a

_l .
proper check node from Rvjp, and confirm that it also lowers the error floor of our codes.
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Figure 4.4: A simple example of EMD criterion
4.4 Simulation Results and Comparison

In this section, we study the performance of codes constructed by the proposed algo-
rithm and give some comparisons. Randomly generated data with binary phase-shift key-
ing (BPSK) mapping are simulated t"hreugh ar‘nz‘ei‘q—rmean additive white Gaussian noise
(AWGN) channel. First, we constiuct codéaqj by‘t‘he pfeposed algorithm, with parameters
specified in Table 3.1, and compafe the code berforma;lce with those constructed by pre-
viously mentioned PEG-QC algorithms "‘E>7<Cep’d for the (3,27)-regular LDPC code, all the
other codes constructed by the propesed a,lgo‘r‘ith‘r‘nﬂ are in approximate lower triangular
form. Moreover, we choose the codes with girth 6 for simulation except for the (3,27)-
regular LDPC code based on PEG-QC algorithm. This is because that it doesn’t report
codes with girth larger than 4 even then it has constructed more than 10000 codes.

The performance comparison of (4608,4096) and (2560,2240) LDPC codes are given
in Fig. 4.5 and Fig. 4.6, respectively, with maximum 80 iterations. As these two figures
show, our codes have performance not worse than that of the codes constructed by PEG-
QC algorithm. In Fig. 4.7, the 2560-bit rate 1/2 code constructed by the proposed
ALT-CP-PEG algorithm shows much better performance. Lower bit error rate (BER)
and packet error rate (PER) are perceived as compared to PEG-QC LDPC codes. Fig.
4.8 consists of three codes, all of them are of length 2560 and rate 3/4. As the figure

shows, our codes outperform PEG-QC LDPC codes, especially a PER improvement of
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one order in magnitude in high-SNR region. Moreover, we compare the ALT-CP-PEG
LDPC code with EMD criterion to that without EMD criterion. The former has lower
error floor, which is lower than BER of 1077, and it shows better performance than the
latter in high-SNR region. This confirms that the EMD criterion is also suitable for our
algorithms.

To further compare the performance of above-mentioned ALT-CP-PEG LDPC codes,
the following figures are presented. Fig. 4.9 ~ 4.11 focus on the convergence rate of
iterative decoding, and codes with various maximum numbers of iteration are simulated.
Comparing performance under 80 iterations to those under 10 iterations, we can see that
the high-code-rate code (rate = 7/8) converges faster than the code with lower code-rate
(rate = 1/2). Moreover, because our codes contain at most one 1 in each column of
submatrix H, j, we can use layered decoding algorithm referred in Section 2.3.4 to speed
up the convergence rate. Fig. 4.12 and Fig. 4.13 show that they can achieve performance
similar to a traditional log-BP decoder, but only half of the iterations are required.

To trade off the complexity with error-correcting performance, we can use the min-
sum algorithm introduced in Section?rn.?.).?)rirﬂlst(;.z;ﬁclil“ofl log-BP to decode LDPC codes. Fig.
4.14 shows that min-sum algorithj;.n' iIltI‘C:‘)"(Hljldﬁﬁ""AbOﬁ.t‘ 0.7 dB SNR loss at BER = 107°
when both decoders perform 15 id}_acoditnng_‘fiﬂté.ratio'ns.,-]5 However, we can compensate the

loss by modified min-sum algorit-]fl_m.n‘"‘f["‘hé result is' also shown in Fig. 4.14, where 3

is the normalization factor as refen:éd"in equaﬁéﬁ (2.57). Fig. 4.15 shows the same
trend but less performance loss compared to Fig. 4.14. In Fig. 4.16, we can see that
the performance by using modified min-sum algorithm outperforms that by using log-BP
under BER = 107%. This may result from cycles in the corresponding Tanner graph of
this LDPC code. Log-BP algorithm is not an optimum solution for an cyclic graph, so
the modified min-sum algorithm may perform better.

At the end of this section, we compare performance of codes constructed based on the
proposed method to that of the irregular LDPC code adopted in IEEE 802.16e. Here,
these two codes have the same degree distribution pair and the same submatrices size.
Both codes have length as 2304 and rate as 1/2, and their parity check matrices are both
in ALT form. Girth of the code constructed by our algorithm is 8, however, that of the
code in IEEE 802.16e is 6. As shown in Fig. 4.17, we can see that our code slightly
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outperforms the IEEE 802.16e LDPC code. Moreover, because of the ALT form, our
code remains encoding complexity similar to that of IEEE 802.16e.

80 iterations

Error rate
N
o

== BER(4608,4096) PEG-QC, girth = 4 |
m=fe BER(4608,4096) CP-PEG, girth = 6

PER(4608,4096) PEG-QC, girth = 4
PER(4608,4096) CP-PEG, girth = 6

m

J/N, (dB)

Figure 4.5: Performance comparisonsof-the regular codes with rate 8/9 constructed by

the proposed and PEG-QC algorithms
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Figure 4.6: Performance comparison of the irregular codes with rate 7/8 constructed by

the proposed and PEG-QC algorithms
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Figure 4.7: Performance comparison of the irregular codes with rate 1/2 constructed by

the proposed and PEG-QC algorithms
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Figure 4.8: Performance comparison of the irregular codes with rate 3/4 constructed by

the proposed and PEG-QC algorithms
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Figure 4.13: Performance of (2560, 1920) ALT-CP-PEG LDPC code with rate 3/4 by

using layered decoding algorithm
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Figure 4.15: Performance of (2560, 1920) ALT-CP-PEG LDPC code with rate 3/4 by

using min-sum and modified min-sum algorithms
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Figure 4.16: Performance of (2560, 2240) ALT-CP-PEG LDPC code with rate 7/8 by

using min-sum and modified min-sum algorithms
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Figure 4.17: Performance comparison of the irregular codes with rate 1/2 constructed by

the proposed algorithm and of IEEE 802.16e
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Chapter 5

Conclusion

In this thesis, we propose a general method, called CP-PEG algorithm, to construct
hardware-oriented LDPC codes for reducing VLSI design complexity. As compared to
other algebraic methods, our algorithm is practical due to code parameters such as rate,
block length, and degree distribution more flexible. In order to reduce encoding com-
plexity, the parity check matrices in ‘AnLT‘forp“l‘. are also presented. Moreover, we can
combine EMD criterion into CP—EEé“or‘ ALT—CP-PEG algorithm to enhance the error
floor performance. With our appr‘o.a:ch, thé ‘ire'sultlng LIDPC codes don’t suffer error floor
even though at BER = 107", % | * 1 3

Simulation results confirm tha%".pnrdp't;ée‘cl‘.z;l";g'orintr];lms are much better than traditional
PEG-QC algorithm in terms of BER or PER. @om.paring with the LDPC code adopted in
[EEE 802.16e standard, our code performance outperforms that of IEEE 802.16e LDPC
codes. Finally, for the convergence rate consideration, our structured codes are much
suitable for layered decoding algorithm which can provide around two times faster de-

coding convergence. Because of the abovementioned advantages, the proposed CP-PEG

algorithm can be a good candidate for designing practical LDPC codes.
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