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Experimental Study of Pool Boiling Heat Transfer of Dielectric Fluid FC-72

on Enhanced Surfaces

Student: Chih-Kuang Yu Advisor: Dr. Ding-Chong Lu
Dr. Wu-Shung Fu
Institute of Mechanical Engineering

National Chiao Tung University

ABSTRACT

Measurements have been conducted to investigate the saturated pool boiling heat transfer
of dielectric fluid FC-72 on thermal enhanced surfaces. Besides, the geometric parameters
(including fin spacing, fin length, cavity density, cavity diameter, and cavity depth),
orientations, and associated flow pattern.'observation of bubbles on tested surfaces are also
examined in present study.

There are three kinds of thermal enhanced surfaces studied in present study including mini
finned surfaces, micro finned surfaces, and artificial micro-cavity surfaces. The mini finned
surfaces are manufactured on a 10mmx10mm base area copper block with three fin spacing
(0.5mm, 1.0mm and 2.0mm) and four fin lengths (0.5mm, 1.0mm, 2.0mm and 4.0mm). The
micro finned surfaces are designed that 10x10 micro fins with one fin spacing (0.5mm) and
three fin lengths (0.5mm, 1.0mm and 2.0mm) on a 10mmx10mm base area. Finally, the
artificial micro-cavity surfaces are respectively manufactured on a 625um thick and
10mmx10mm square silicon plate. The treated cavities are all cylinders with three diameters
200, 100 and 50um and two depth 200 and 110um. All experiments are performed test surfaces
immersing in FC-72 with saturated state and 1 atmospheric condition.

In the first part of present study, the characteristics of saturated pool boiling heat transfer

for dielectric fluid FC-72 on a plain surface are investigated experimentally. Specially, the data



for the boiling incipience temperature, CHF value, saturated boiling heat transfer coefficient
affected by the numbers of the test run and orientation are to be examined in detail. Moreover,
the test results are compared with the empirical correlations of reference literatures to verify
the accuracy of present pool boiling experiment. The test results indicate the higher boiling
incipience and lower CHF value for a new plain surface at first test run and slightly
improvement at last two test runs. The nucleate boiling curves base on horizontal and vertical
orientation can be subdivided into the different regions: low heat flux (up to 9.7 Wem™) and
high heat flux (greater than 9.7 Wcm™) regions which are consistent with the results of
literature. In low heat flux region, the nucleate boiling heat transfer performance of plain
surface on vertical orientation is found better than horizontal orientation due to the facilitating
convective heat transfer by the movement of bubbles drift along the vertical surface. However,
in low heat flux region, vapor bubble departure behaviors obstruct the heat transfer and result
worse boiling and CHF performance.

In second part of this study, the flow:patterns-and pool boiling heat transfer performance
of copper rectangular finned surfaces that-.immersed in saturated FC-72 are experimental
investigated. The effects of geometric parameters (fin spacing and fin length) are also
examined. The photographic images show that different boiling flow patterns among the test
surfaces with varied heat flux. The photographic images also indicate that closer fin spacing or
longer fin length yield a greater flow resistance to obstruct the bubble/vapor lift off in adjacent
fins. Moreover, as the heat flux approach to CHF, numerous vapor mushrooms periodically
extruded from the perimeter of fin array are observed. This mechanism will cause the dry-out
situation in the central part of fin array. The closer fin spacing and longer fin length can
provide larger heat transfer. However, the results also demonstrate that early decay on overall
heat transfer coefficient as the fin spacing is closer or fin length is longer. The maximum value
of CHF on base area is 9.8x10° Wm™ for the test surface with 0.5mm fin spacing and 4.0mm

fin length which is 5 times that of the plain surface.
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In third part of this study, the experimental study are conducted to investigate the flow
patterns and pool boiling phenomena of copper rectangular finned surfaces in vertical
orientation, which is simulate the heat sink immersed in saturated dielectric fluid FC-72. The
effects of fin length and fin spacing are also examined. The photography observations show
that initial boiling generally occurred at the downward-facing surfaces of fins and fin spacing
will induce the flow resistance to vapor in lift-off process. The results also indicate that,
decreasing the fin spacing or increasing the fin length substantially raise the critical heat flux.
Moreover, the closer fin spacing and longer fin length also show that the significant decay on
overall heat transfer coefficient in nucleate boiling region. The maximum value of CHF on
base area is 89.6Wcm™ for the test surface with fin spacing 0.5mm and fin length 4.0mm,
which was 4 times greater than that of plain surface.

In fourth part of this study, the flow'pattern and peol boiling heat transfer performance for
rectangular micro-fin array heat sinks are.investigated. The effects of the variables such as fin
length, orientation are also examined: The.measurement data show that the boiling incipience
superheat of micro-finned surfaces is relatively low for both orientations and the temperature
excursions of boiling curves are quite unclear. Moreover, the incipience superheat and
temperature excursion of micro-finned surfaces are significantly lower than those of mini-
finned arrangements. The heat transfer rate of micro-finned surfaces is similar to that of mini-
surfaces which having the same overall heat transfer area. Furthermore, the boiling curves are
affected by the orientation arrangements. For low profile finned surfaces, there is a negligible
difference of nucleate boiling at high heat flux region. However, for high profile finned
surfaces at low heat flux region, the boiling heat transfer performance is comparable. The
decline behavior in heat transfer coefficients for present test surfaces are shift to lower heat
flux region than that of mini finned surfaces due to the larger flow resistance to the re-wetting
liquid and departure bubbles.

In fifth part of this study, the artificial micro-cavity surfaces with different geometric
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parameters and orientations are tested for investigating the boiling characteristics. The results
indicate that boiling incipience superheat and temperature excursions of silicon based surfaces
are more significant and higher than those of metal based surfaces. The effects of cavity
density are stronger at high heat flux region than that in low heat flux region because of the
bubble/vapor coalescence in adjacent cavities. The critical heat flux is dependence on the
cavities density and the CHF enhancement is almost proportional to the area enhancement of
the cavity surfaces. The influence of the cavity diameter in heat transfer coefficients during low
heat flux region that below 8x10% Wm™ can be ignored. In moderate and high heat flux region,
larger cavity diameter surface show that earlier decay and lower peak value in boiling heat
transfer coefficients. Increasing the depth of cavities will result premature rapid decline of
overall heat transfer coefficients due to the larger flow resistance of deeper cavities obstruct the
re-wetting liquid entering the these cavities. Comparison between boiling characteristics on
two orientations shows significant decrease in CHFE with: the vertical orientation due to the
vapor coalescence along the heating surface,-\vapor- trapped inside the cavities and dry-out
situation inside the cavity on vertical heating surface:
Keywords: Saturated pooling boiling, Flow pattern observation, Mini-finned surface,
Micro-finned surface, Micro-cavity surface, Boiling hysteresis, Boiling incipience

superheat, Temperature excursion, Critical heat flux.
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NOMENCLATURE

A - area (md)
Bo - Bond number
CHF - critical heat flux (W m?)
C, - specific heat (W kg™ K™
Cy - constant of the modified Rohsenow’s correlation
D, - bubble departure diameter (mm)
d. - diameter of the artificial cavity (um)
f - bubble departure frequency (s™)
g - gravitational acceleration (m 5'2)
H. - depth of the artificial cavity (jum)
I - current (A)
i, - latent heat of vaporization (J'’kg™)
Ja - Jacob number
k - thermal conductivity (W m™ K™)
L - fin length (mm)
h - heat transfer coefficient (W m K™
M - molecular weight of liuid
m - exponent of the cooper’s correlation
n - numbers of fins
Pr - Prandtl number
P - pressure (Pa)
o) - heat transfer rate (W)
q” - heat flux (W m?)
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R, - surface roughness (um)

r - exponent of the modified Rohesnow’s correlation
S - fin spacing (mm)
S - exponent of the modified Rohesnow’s correlation
T - temperature (K)

T, - temperature (K)

AT - wall superheat (K)
\ - voltage (V)

W - fin width (mm)

Greek Symbols
o - aspect ratio of the fin (L/S)
B - coefficient of thermal-expansion (K™)
N - dimensionless surface‘roughness parameter
0 - surface inclination angle from horizontal upward position (°)
p - density (kg m™)
o - surface tension (N m™)
Subscripts

b - base surface area
c - cavity surface

CHF - critical heat flux

crit - critical condition

ext - base on extended surface
f - finned surface
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mc

nc

sat

sub

Sys

saturated liquid

micro convection

natural convection

plane surface

base on saturation condition
subcooled condition

system or total

overall finned surface area
saturated vapor

wall

Zuber’s critical heat flux correlation
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