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A Novel Object Extraction Algorithm in 3D Model

Reconstruction for Objects in Arbitrary Background

Student: Shih-Chang Li Advisor: Prof. Yon-Ping Chen

Department of Electrical and Control Engineering

National Chiao Tung University

Abstract

This thesis proposed a novel algorithim for €xtracting foreground object in an image
sequence of arbitrary background; The algorithm is mainly designed for the 3D object model
reconstruction system. Hence, a camera tracker is adopted as a pre-processor to obtain the 3D
structure information including feature point positions and camera poses of the image
sequence. The proposed algorithm first separate the feature points into foreground and
background, and then generates a mask from the foreground points to extract the object.
Based on the proposed algorithm, a prototype of 3D object model reconstruction system is
presented to verify the performance. The proposed system if capable of dealing with object
image sequences of arbitrary background, which is not possible for the recent reconstruction
systems. The experiment results show that, though it requires improvements in many aspects,
the proposed algorithm and system prototype is functional in practice and should become

more powerful after the improvements are done.
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Chapter 1
Introduction

1.1 Motivation

3D model reconstruction of an object in real world is an active researching topic because
of its wide usage in many aspects. For example, museums can build 3D models of collections
for virtual exhibition. The 3D model of body shape could be useful in customizing personal
products like clothes, shoes, or furniture. It could also be an interesting application for

reconstructing the 3D model of the player into the computer games.

Up to now, most subjects of the reconstruction process have been well-developed such as
camera calibration, camera tracking, object modeling and texture mapping. However,
extracting an object appropriately from an image sequence is still a problem to solve. Most
reconstruction processes avoid the problem by setting limitations on the reconstruction
environments, for example a clean background for.easy background removal. The limitation
on the reconstruction environmets results-in a highly accurate model, but, on the other hand,
makes the reconstruction system no only expensive but also hard to build and operate.
Besides, it could also make the system only capable of reconstructing the object of certain

size if the viewing area is limited by the static camera.

Hence, this thesis proposed a reconstruction system prototype with an novel object
extraction algorithm dealing with complex background of regular usage and tries to maintain
the quality of reconstructed model at the same time, which makes the system more feasible

and applicable in practice.



1.2 Related Works

Currently, 3D model reconstruction can be conducted by human, or automatically
operated by laser scanner or camera. The automatic reconstruction process contains two steps,
the shape-modeling and the texture-mapping, to take care of the silhouette and to construct the

surface texture of the 3D model, respectively.

Reconstruction by human is the most common but time-consuming way. Usually, a 3D
artist takes weeks to months to build a model by several sketches or photos. Besides, the
quality of the constructed model depends on the ability of the artist. It is clear that the
uncertainty of quality and the cost of time are the crucial problems of human reconstruction.

Hence, automatic reconstruction systems are presented to overcome these problems.

Reconstruction by laser scanners[5, 6, 10, 15, 18, 22, 26, 28] is the one that can create a
model with shape exactly same as the object to be reconstructed due to the fact that the shape
data is obtained by scanning the entire object in all angles. However, the scanner is too
expensive and requires special know-=how to opetate in restricted environments. In addition,
the scanning process is affected by the material of object. The system does not perform well
on objects with surfaces absorbing light, such as fur or;velvet. Finally, the scanner needs extra
instruments such as camera to capture the texture information since it can not obtain texture

information while scanning shape data:

Compared with the two methods above, reconstruction using camera not only attains
results of good quality, but also it is much cheaper than laser scanners and takes less time than
human. This makes algorithms using cameras become the topic that has been widely
investigated among all 3D reconstruction systems. Since 2D images captured by camera
contain both shape and texture information of a 3D object, it is the most critical issue to find

methods which can extract useful data for reconstruction 3D models.

The typical architecture of camera reconstruction systems is shown in Figure 1.2.1,
including three main steps, the camera-calibration, the shape-modeling, and the
texture-mapping. The first step is the camera calibration to determine essential optical
parameters and perspective characteristics. The second step performs the reconstruction of 3D
model shape. The last step is the texture-mapping to generate the surface texture of the model.
A preprocess of camera calibration is applied to obtain image characteristics of the camera,

which is an important information for the precision of shape modeling step



Calibration Image

Camera
Image Camera
Sequence Calibration
Shape Modeling Camera Internal
3D Model Parameters
Texture Mapping
Object Model

Figure 1.2.1 Camera reconstruction system structure

Most systems [3, 4, 11, 14, 20, 27, 30,:33, 35, 37] use an image sequence, at least 10
images rather than a single image,“as input, because single image can not provide sufficient
information for the whole process. Generally, the'petformance of shape-modeling process is
affected by the number of inputimages; in other words, the more input images, more data in

other words, the more accurate 3D.model.

Systems for 3D model reconstruction nowadays can be classified into two types according
to the algorithm used in the model reconstruction block. One type of algorithm is depth-map
recovery [3, 11, 20, 27], reconstructs 3D model by estimating the 3D position of every pixel
in the input image sequence according to the estimated camera pose. Another type is the
shape-from-silhouette algorithm [4, 14, 30, 33, 35, 37], uses the object silhouette in each
image to refine the outline of 3D object model according to the corresponding object pose,

since the 2D object silhouette is the projection of 3D object shape.

Diagrams of system structure using depth-map recovery algorithm and
shape-from-silhouette algorithm are illustrated in Figure 1.2.2 and Figure 1.2.3, respectively.
The shape-modeling step is subdivided into several processing block: camera tracking, model
reconstruction, and object extraction. The former two blocks are contained in both types of
systems, each with different functionality of recover 3D poses of camera and feature points
for each image, and reconstruct 3D model from provided data. The object extraction block,

which only required by the systems using shape-from-silhouette algorithm, is the most

3



significant difference between these two types of systems.

The differences of system structure and algorithm itself make these two algorithms vary
from each other in many aspects. First, the result of depth-map recovery is the 3D model of
the whole scene in the image sequence, which is very useful in the whole scene reconstruction
but not suitable for reconstruction the object model. On the contrary, the
shape-from-silhouette algorithm is designed to reconstruct a specific object in the image
sequence. Second, the depth-map recovery algorithm reconstructs the 3D model at pixel-wise
precision, but the reconstruction process is very time-consuming. The reconstruction process
of the shape-from-silhouette algorithm is much faster than depth-map recovery algorithm
because it reconstructs the model to certain accuracy but not exactly. To increase the accuracy,
the reconstruction environment must be controlled to obtain errorless information including
object silhouettes and object poses. There is another weakness only existing in the
shape-from-silhouette algorithm, that is, it can not reconstruct the concave part if the concave

never appears in the silhouette.

Calibration Image

Camera
Shape Image Camera
Modeling Sequence Calibration
Camera
Internal
Camera
. Parameters
Tracking
Image Camera Pose &
Sequence Feature Point Pose
Model
Reconstruction

Depth-map Model

Texture Mapping

Object Model

Figure 1.2.2 System structure for depth-map recovery algorithm
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Image
Shape Modeling Sequence Camera
Calibration
Camera
Internal
Object Camera Parameters

Extraction Tracking
Shape Silhouette Camera Pose

Model Reconstruction

Image Triangular Model

Sequence
Texture Mapping

Object Model

Figure 1.2.3  System'structure for. shape-from-silhouette algorithm



1.3 The proposed system

This thesis focuses on shape modeling step for the systems using the shape-from-
silhouette algorithm and proposes a modified structure which can produce a model of

acceptable accuracy without limiting the input image sequence.

Camera

Image
Shape Modeling Sequence

Feature Point

Object Pose Camera Tracking with
Extraction Camera Self-Calibration
Shape Silhouette Camera Pose

Model Reconstruction

Triangular Model

Triangular Model
Figure 1.3.1 Structure of proposed camera reconstruction system

Figure 1.3.1 is the proposed camera reconstruction system and the texture mapping step is
not included because this thesis only focused on the object shape. The model reconstruction
process of proposed system is based on the shape-from-silhouette algorithm. Different from
other reconstruction systems, the proposed system applies camera tracking process together
with camera self-calibration, a well developed technique, to get the information including
camera internal parameter, camera pose, and feature point pose from the image sequence
taken freely. Then use the camera tracking results to enforce the object extraction process.
After that, the model reconstruction process adopts results from the object extraction process
and camera tracking process and performs the shape-from-silhouette algorithm to produce the

un-textured object model.



1.4 Organization

This thesis is organized as follows. Chapter 1 gives an overview of the camera
reconstruction system and a concept of proposed system. Preliminary techniques used by the
proposed system as two system blocks, the camera tracking and the model reconstruction, is
introduced in Chapter 2. Next in Chapter 3, the main contribution of this thesis, the
back-ground removal using 3D feature points adopted as the object extraction process in the
proposed system, is described in detail. The experimental results and conclusions are given in

Chapter 4 and Chapter 5, respectively.



Chapter 2
Model Reconstruction Using
Octree Algorithm

Octree with marching cube is the most popular 3D model reconstruction algorithm for
computer vision or medical image processing. A detailed description of the algorithm is given

in Chapter 2.

2.1 Introduction

As mentioned in Section 1.3, the proposed system is based on the shape-from-silhouette
algorithm. Among all systems using the same algorithm, the most used model reconstruction
method is the octree algorithm [33]. An octree is a hierarchical tree structure consisting of
cubes of various sizes in proportion., The‘use 6f.an octree to represent a 3D model results in

several advantages due to the geometry characteristics of cubes.

First, the cube structure is easy to divide in a sequential way, and is also convenient for
programming and calculation. Second, any'3D-model can be approximately represented by a
set of cubes of various sizes. Last but not least; the octree structure is easy to transform into
the triangular-mesh model using the “Marching Cubes” algorithm [23, 24] after the octree is
built, for the fact that the triangular-mesh model is much smoother and more approximate to

the original object because every mesh in 3D space can be separated into triangles.

2.2 Octree

A 2D octree is introduced for easy explanation of the octree structure. Instead of cubes, a
2D octree can be used to represent a 2D diagram composed of rectangles of various sizes, as
given in Figure 2.2.1, where a large rectangle could be further divided into four small
rectangles. For example, the top rectangle ‘A’ in Figure 2.2.1 is divided into four rectangles
‘A’, ‘B’, ‘E’, and ‘F’. Correspondingly, a 2D octree structure is depicted by a tree of depth 3

in Figure 2.2.2, where each rectangle is called a node. For a node of depth » and index i, it is

denoted as s; with » numbered top-down and i indexed sequentially. For example, the top

node ‘A’ denoted in gray of depth 1 is denoted as s, and the bottom node ‘D’ of depth 3 is



denoted as sy .

A node s; represents a rectangle specified by its vertices v, = (xl’m yl.rm), m=12,..4,

and is labeled as IN, ON, or OUT to denote whether the rectangle is in, on, or out the object
contour. If a rectangle is ON, i.e., on the contour, then further partition it into four rectangles,

otherwise, leave it unchanged. Viewing from Figure 2.2.1 with a curve as the object contour,

the gray rectangle s, is ON because it contains the object contour, and then further divide it
into four green rectangles s, sZ, s;,and sy of depth 2, where s;, s¢, s; are also ON.
In a similar way, s,, s&, s; can be divided into red rectangles s, s3, ..., s, of depth
3. As forsy, no division is executed since it is not ON. Once again, it is clear that
rectangles sé , S3D, sf: , sé , s,3, sj , si, s,3\,I are ON and can be further divided in a

sequential way.

Figure 2.2.1 2D Octree diagram

Figure 2.2.2 2D Octree structure of Figure 2.2.1

9



The formal approach to determine whether the rectangle s; is IN, ON, or OUT is to find

one of the intersections of rectangle edges and the object contour. The rectangle is ON if any
intersection is detected. However, the formal approach is time-consuming in detecting the

intersection by checking all points on the edges. A more efficient detecting way is instead to

check only the vertices v, , m=1,2,...,4. The rectangle s, can be labeled as IN or OUT

for all vertices lay inside or outside the object contour, or as ON otherwise. Since the efficient
way only checks the vertices, it fails for the condition as shown in Figure 2.2.3, where the
contour is contained inside the rectangle but none of the vertices are inside the contour. The
failure will result in defect of octree to decrease the similarity between octree and object
contour, and the defect becomes serious for smaller depth . A solution to the condition is to
further check 2% —1 checking points, which are equally distributed on the rectangle edges,
and apply the above efficient detecting way to all the vertices and checking points. However,
the fail condition still can not be solved on rectangles with depth R, unless the formal

approach is adopted. But with large R, the effect is relatively small.

Figure 2.2.3  Fail condition for octree

The accuracy of the octree model depends on the maximum depth R, so R must be chosen
before creating an octree. From the previous example, it is obvious that during the octree
construction process, the rectangles of ON will be divided until they are at depth R, while the
IN and OUT rectangles are kept as large as possible.

To demonstrate the effect related to the maximum depth R, another example is given in
Figure 2.2.4 for R from 4 to 7, where the white region represents the original object shape.
Besides, the blue cubes indicate the IN cubes and the green cubes indicate the ON cubes. It is
obvious that with the increase of R, the shape of octree diagram is approximate to the original

object shape further.
Extending the way to a body in 3D space, a 3D octree is obtained to possess cubes as its

10



nodes, denoted as s; of depth  and index i. Hence, a 3D octree can be represented as
T, ={solsi|r=2..Randi=12...8]

Note that each cube s; has 8 vertices denoted as v, = (xl’m Vi Zo ), m=12,..8.

Figure 2.2.4 2D octree diagram of different maximum depth R. Green and blue rectangles
representing the ON and IN rectangles respectively : (a) R=4, (b) R=5,(c)R=6,(d)R=7

2.3 Construction of 3D Octree

The first step of 3D object reconstruction is to construct its 3D octree diagram I'. With the

estimated object pose denoted as {4,0} in the previous section, where A= (5x,5y,5z) and

@:(QX,HV,HZ) represent the translation and the rotation of the object with respect to the

camera in 3D space, an octree node s; with vertices v :(xfm, Vi Zr ), m=1,2,..,8, is

im

r

then transformed to the vertices v, '= (xl.m , y;n',z;n') as

11



ro r

Vi :{R(@) T(A)} Vin 2.3.1)
zp,! 0 Lz,
1 1

where

T(A): [5x 5y 52]T

C,C, -S,C, S,
R@)=|C,s,S,+S,C, C,C,-S,8,S, -C,S,
s,s,-¢C,s,Cc, S,5,C,+C,S, C,C,

Here, S, and C; respectively denote sin@, and cos6 afor i=xy,z.

After applying (2.3.1) on all vertices of the nodes of octree diagram I', the resulting octree

diagram I'’ will have the same pose of the object in the image.

After the pose transformation,'the octféediagram I is projected onto the image plane by

applying perspective projection ds (2:3.2) on each vertex of each node of octree diagram I'.

D

— X ror

”
2d Xim = Xim r_p im
Zim eye

For P
Zdyim _yim Zr ' yim

im eye

2.3.2)

where

D =x"-x

X m cam

— rr
Dy - yim _ycam

1
_ r r r v
Deye - ((xim _anm)z + (Zim _anm)2 + (Zim _anm)

(X,s Voun» Zowy ) Tepresents the position of camera, ,,x! and , Y/ represent the

projected 2D position of 3D point v; '.

Same as the 2D octree, then each vertex is checked whether it is lying inside or outside the
object mask. The octree node can be adjusted and labeled as IN or OUT for all vertices lay

12



inside or outside the object mask, or as ON otherwise.

When processing a series of images, two addition rules are added to the octree adjustment.
First, once a cube is labeled as OUT, the cube would never be adjusted again, since it is clear
that it is impossible for a cube lies outside the object in one viewing angle but lies inside the
object in another angle. Second, an ON cube may be re-labeled as OUT, but can not be
re-labeled as IN, for the reason that 3D octree is reconstructed in 2D image plane, the OUT
cube may be projected inside or on the object mask and the ON cube may be project inside
the object mask. The first situation conflicts with the first rule and the cube must be labeled as
out. On the other hand, the ON cubes in second situation become IN cubes due to the model

motion and project, they should be kept as ON cubes.

After applying adjustment to the octree with all input object mask and object pose, an

approximated model of the object is obtained, as shown in Figure 4.

2.4 Model Triangulation

After the 3D octree construetion, the-ON cubes: of the octree diagram O represent an
approximation 3D model of the Object and the larger depth R is, the more accurate the octree
diagram becomes. However, the depth-R-1srlimited to about 7 due to the constrain of
computational resources, for example the imemory and computational time increase
proportionally to the triple order of the depth R. With limitation on the depth R, triangulation
of the octree not only increases the accuracy of the model but also makes the texture mapping
much easier. Figure 2.4.1 shows the reconstruction result of a sphere using a 3D octree of max
depth 3. Though max depth 3 is an extreme case which would not be chosen in the reality
reconstruction system, it is a good example showing the difference between octree model and

Triangulation model

(@) (b)

Figure 2.4.1 Reconstructing of sphere using 3D Octree of max depth 3 : (a) original model,
(b) octree model, (¢) triangulation model of (b)
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A typical triangulation algorithm called “Marching Cubes” , which is also adopted in this
thesis, is often applied to the cubic-type 3D model reconstruction, such as the octree. The
“Marching Cubes” algorithm is based on the fact that the real object surface would intersect
with the edges of the ON cubes. By finding the intersection points cube by cube, triangles can
be constructed by the geometry relationships of these intersection points. Figure 2.4.2

illustrated 15 patterns of transforming cube into triangles in the Marching Cubes algorithm.

0 i 2 3 4
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Figure 2.4.2 15 patterns of transforming cube into triangles in Marching Cubes. The dotted

corners represent corners lay inside the surface[23]

It is difficult to represent the 256 geometry relationships for a cube in mathematical
equation since each vertex of the cube may lie inside or outside the surface. Hence, a general
way to implement the Marching Cubes algorithm is to encode the geometry relationships of
cube vertices into a unique index number ranging from 0 to 255. The indexing scheme is
shown in Figure 2.4.3. The table below the cube shows the correspondence of the eight bits to

the vertices v,, i=1...8, of the cube. Each bit of index number is assigned with 1 if the

corresponding vertex lay inside the surface or 0 otherwise. As a result, a unique index number
is generated and then used to find out the corresponding triangle structure, which is defined

using the edge number e¢;, j=1...12, in the look-up table.
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Figure 2.4.3 indexing scheme of Marching Cubes.[23]

From Section 2.2.4, every ON cube should have some vertices laying inside the object
and others laying outside, making some edges of the ON cube intersect with the object surface.
Thus these edges should have an inside ventex«in one end and an outside vertex in the other
end, which means an intersection point exists.on each of these edges. The exact intersection
points on these edges can be determined by geometry- algorithms such as binary search [37].
After the intersection points are obtained, the ‘rnarching cubes algorithm is then adopted to
construct the triangle mesh model. Figure 2.4:4 gives an example of triangulation result of

marching cubes algorithm.
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Figure 2.4.4 Triangulation example[37]: (a) octree model, (b) triangulation model of (a)
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Chapter 3
Object Extraction Using
3D Feature Points

Segmentation of foreground and background of an image is crucial many computer vision
applications. Two existing and developing algorithms are introduced in Section 3.1. Based on
structure of the proposed reconstruction system, a new algorithm is proposed to remove the
background and extract the targeting object in the foreground, utilizing the tracking results of
camera tracking system mentioned in Section 2.1, including camera poses and the 3D
positions of feature points. Two steps of the Algorithms, the 3D foreground / background

segmentation and the object mask generation, are explained in the Section 3.2 and 3.3.

3.1 Existing Image Segmentation Algorithms

3.1.1 Graphical Partitioning ‘Active Contours

“Active Contour”’[19, 36] is.the mostiused: algorithm for object extraction. An active

contour, or a snake, can be represented:using (3.1:1).

v(s) = (x(s),y(s)), S [0, 1] (3.1.1)

where s represents the indexing value of each points belong to the active contour, as v(s)
represents the position of the point indexed by s. The deformation of an active contour is
controlled by an energy function defined by the image information like color and edge, as

shown in (3.1.2)[32].

Esnake = J‘ (Eim‘ernal (V(S )) + Eimage (V(S )) + Ecanstraint (V(S )))ds (3 . 1 2)

where E represents the energy of smoothness defined by elasticity and stiffness

internal

parameter, F.

image

represents the energy defined by image information including color,

texture and edge, and E represents the energy defined by information other than the

constra int

image like object shape pattern, respectively.

The position and shape of active contour is the one that makes FE minimal, hence an

snake
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iterative process of minimization is required. Many minimization process with an
implementation of active contour have been proposed. The most studied one among these
algorithms is the “Level set method”[29]. Instead of deforming the contour, the level set

method assigns a height value c(x,y) for each point (x,y) in image and uses the height
value to determine the location of contour according to (3.1.3). The height value c(x,y) is
iteratively updated by calculating the effect of E_ . to point (x,y) until saturation, which
indicates no sign changes for any c(x, ). As the iteration process is completed, the contour of

the targeting object is obtained.

<0, outside contour
c(x,y):>0, inside contour (3.1.3)
=0, on contour

The GPAC][31] algorithm is proposed recently for the sake of foreground/background
segmentation of nature pictures, as shown in Figure 3.1.1(a) and 3.1.1(b). However, the
segmentation result of GPAC algo,ntﬁm 'showg 11n Figure 3.1.2(b) indicates a unexpected
result in segmenting the test 1mage, a% Flgﬁﬁ- 1@(&} Viewing from Figure 3.1.1, the GPAC
algorithm is well-performed utiden the cpng;ﬁtlon t]ha’.t the foreground and background are

‘ uﬁd object is similar to the background, the

3 o e:
segmentation is failed. *ﬁ'.i;;_-} -

different in color tones. When the qolQr*‘

{'I A N A

Figure 3.1.1 GPAC segmentation results : (a) test image 1, (b) extracted foreground of (a)
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(2) (b)

Figure 3.1.2 GPAC segmentation results : (a) test image 2, (b) extracted foreground of (a)

3.1.2 Image Segmentation

Different from GPAC, image segmentation algorithms tend to divide the image into
several segments according the segmentation condition, usually determined by the color and
edge information. The objective of image'segmg:ntation algorithm is to divide the image into
several segments such that each segmentrcontams p1xels with similar features and is mostly
distinct to other segments. The bas1c 1mage Segmentatmn algorithm is the watershed
algorithm, which simply calculates the; bpundary of évery pixel with local minimum color.
The watershed algorithm always over “cut the i 1rnage ‘and is applied as a pre-process of other
segmentation algorithms, as shown in FLgure 3..1.3(b). Improvements are applied to watershed
algorithm including merging similar segment areas and using more information like texture
and edge for calculation. EDISONJ[8, 16] is a segmentation algorithm implements the

improved algorithm, and the segmentation result is shown in Figure 3.1.3(c).

From the segmentation result of EDISON in Figure 3.1.3(c), it is obvious that the over-cut
problem still exists to be solved for the algorithms based on watershed. Hence, the
graph-based image segmentation algorithm[12, 38] is introduced. Instead of image processing
theory, the algorithm segments image based on graph theory. The image to be segmented as a

graph G = (V, E ) , Where v, eV represents pixels in image and e, €E represents
connecting edge of two neighboring pixels v; and v;. A weight value w, = w(vi,v j) is
calculated for every edge e; according to the dissimilarity of pixel v; and v;. With the
weight value w;, the graph-based segmentation algorithm is able to segments the image into

several sub-graphs G,'=(V,E,’) with properties G,'e G, E,'eE, and G,'nG/'=®,
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E,'NE'=® for k=1, while satisfying the objective of image segmentation algorithm

mentioned above. A graph-based segmentation proposed in [12] has been tested and the result

is illustrated in Figure 3.1.3(d).

Though the image segmentation algorithm is performs well in divide image into image
blocks, it can not determine if the image block belongs to foreground or background. It is
impossible to piece image blocks together to form a complete object image since the
algorithm provides nothing about the geometry of the object. Therefore, the image

segmentation algorithm is not suitable for the reconstruction system, either.

(©) (d)

Figure 3.1.3 Image segmentation results : (a) test image, (b) result of watershed algorithm,
(c) result of EDISON][16], (d) result of graph-based segmentation algorithm proposed in [12]
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3.2 3D Foreground / Background Separation

3.2.1 Problem Analysis on Separation

To obtain an image sequence containing an object suitable for reconstruction, the image
sequence must be taken by a camera orbiting around the target object, as shown in Figure
3.2.1. To satisfy the above condition, the shooting environments should be arranged to keep
the target object from the surrounding background in a certain distance. To reconstruction the
3D information from the image sequence, the camera tracking system is adopted to
reconstruct the camera 3D pose and 3D feature point positions. With reconstructed 3D feature
point positions, the separation between the target object and the background will be also
restored by the camera tracking system. As a result, the reconstructed feature points are
distributed in two groups separated by an empty space gap. The group close to the camera is
identified as the foreground, while the other one far away from the camera is identified as the
background. The average distance between pomts of the foreground is much smaller than that
of the background, as illustrated i in F1gurq~B 2 2 The _objective of separation is to cluster the

reconstructed feature points into two groups of foreground and background.

S

\
/ / \

Figure 3.2.1 Camera motion when capturing image sequence. The camera is always aiming

at the object. Illustration generated using Maya PLE 8.5[2]
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Figure 3.2.2 Top view of the distribution of reconstructed 3D feature point of a frame.
Circle and arrow at right bottom represent the position and viewing direction of the camera,
respectively. The smaller ellipse indicates the foreground points while the larger ellipse

indicates the background points.

Though there is a clear separation between the twe point groups, the clustering algorithm
like K-means is not applicable for. two reasons: First, most clustering algorithm attempts to
separate 3D data using planes. However, the beundary shape of foreground and background
group is more likely a sphere or an irregular shape, not a plane, as shown in Figure 3.2.3.
Second, it is unnecessary to find a separation surface to extremely separate the 3D feature
points into two groups of foreground and background. Instead, the background removal can
be performed by an equivalent process, the foreground extraction, by picking out the

foreground points from the feature points.
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Figure 3.2.3 Top view of the distribution of reconstructed 3D feature point of image

sequence. The ‘orange arrew-indicates the orbit of camera.

3.2.2 Proposed Foreground Extraction Algorithm

With reconstructed camera position and feature point location information, an algorithm
performing foreground points extraction is proposed for this particular condition. Utilizing the
distribution characteristic illustrated in Figure 3.2.2, the proposed algorithm first determines
the initial two-point set of the foreground group by finding two closest points either or both of
them are visible to the camera. The determination was performed by checking the included
angle of two vectors, the camera viewing direction and the vector from camera position to the

feature point position, by (3.2.1) .

D J
(3.2.1)

QV(Pf,Pc,D =cos 1[

where P =(P., P, P) . R=. P, R). D=0, D, D). and

& cx cy cz

D, :(Qx—ﬂx, PP, sz—ﬁz) represents the position of feature point, the camera
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position, the camera viewing direction, and the direction from camera to feature point,
respectively. The point Py is determined visible to camera if 0, is smaller than 0. , usually
defined as the viewing angle of the camera, or can be defined as a small angle such as 10

degrees to narrow down the range of foreground object.

A classification process is then performed to iteratively integrate suitable unclassified
feature points into the foreground group. An unclassified feature point is selected and
integrated if its distance to any foreground group point is smaller than the threshold distance

Thy, defined as (3.2.2).

/4
d-mean(d,.d, )

Th,(W,dd,,d,)= (3.2.2)

where W=min(]mageWidth,ImageHeight), d; and d; represent the distances from the

camera to the two points of the initial point set, d is the expected minimal number of feature

points extracted from 2D projection of the object surface.

From (3.2.2), Thy, is proportional to the image resolution since the pixel distance between
two feature points becomes larger for higher' image resolution. Besides, Th, is inverse
proportional to the distance from camera-to the foreground object, due to the fact that the
object size in image becomes smallerand the distance between feature points becomes closer
when the object is farther. 74, is also 1nverse proportional to the expected minimal number of
feature points for the reason that the more feature points on an object surface, the closer the

feature points.

The detail of proposed foreground extraction algorithm is presented in Table 3.2.1.
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Table 3.2.1 Foreground Extraction Algorithm

Input
Minimal dimension of image width and height 7, expected minimal number of

feature point d, 3D camera position P., camera viewing direction D,, camera

viewing angle 6., and a set of 3D feature points position P.

Output
foreground points set F

Algorithm
1. Inmitialization : Determine the initial two-points set of foreground group

dmin := A_VERY_LARGE_NUMBER
FOR EACH point P; in P
Find nearest point P; in P to P; with distance dj;
IF 0.(P;, P., D.) < 6. OR 0,(P), P., D.) < 6. THEN
IF d; < d,;, THEN
dyin = djj
Fi =P
F,=P
END IF
END IF
END FOR

2. Foreground Extraction : Iteratively integrate unclassified feature points

into the foreground group

WHILE no more points are added to F
FOR EACH point P; in F
Find nearest point P; in P to P; with distance dj;
IF djj < Tha(W, d, F1, Fz) THEN
Add P; into F
Remove P; from P
END IF
END FOR
END WHILE

24




3.3 Object Mask Generation

3.3.1 Problem Analysis on Mask Generation

To extract an object in an image, the most used approach is applying an object mask to
the image to remove the unnecessary part. Feature points belonging to the object are extracted
by the foreground extraction algorithm proposed in Section 3.1, as shown in Figure 3.3.1(b).
The next step is to generate a proper object mask from these feature points. For instance,
generate the object mask illustrated in Figure 3.3.1(c) from the feature points illustrated in

Figure 3.3.1(b).

(2) (b)

(©) (d)

Figure 3.3.1 Object extraction operation : (a) original image, (b) extracted foreground points
of (a), (c) ideal generated object mask of (a), (d) ideal extracted object of (a)

A characteristic of the feature points distributed on the edge of object in image can be
observed from Figure 3.3.2(a). This characteristic of distribution makes it extremely difficult

to generate an object mask from the extracted foreground points in two aspects. First, the
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distances among feature points are irregular which make the determination of the object
contour ambiguous, as shown in Figure 3.3.2(c). Second, the density of feature points varies
with respect to the object texture which leads to an ambiguity of distinguishing holes from

surface, as shown in Figure 3.3.2(d).
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Figure 3.3.2 Ambiguity of determination : (a) the point set, (b) ideal contour of (a), (c)
contour ambiguity of (a), (d) hole ambiguity of (a)

Several algorithms have been proposed to deal with the problem of finding best shape
fitting a set of points. The most simple and robust algorithm is the convex hull algorithm [9].
The convex hull algorithm generates minimal convex contour containing all points. However,
the convex hull algorithm can not deal with holes and the concave parts of the model shape,

as shown in Figure 3.3.3.
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Figure 3.3.3 Convex hull of Figure 3.3.2 (a)

To improve the performance when dealing with concave situation, the concave hull
algorithm is proposed based on the convex hull algorithm [25]. Instead of looking for global
concave contour containing all points, the convex hull algorithm finds only local concave
contour in certain range. Theoretically, some convex parts can be preserved as all points are
still contained by the contour. Hence, a new problem of determining the proper contour of the
points is introduced since there are various possibilities of choosing the contour path.
Generally speaking, the convex hull is smoother with larger range, as shown in Figure 3.3.4.
Another issue besides the ambiguity is_ that; the generated contour is affected by the range of
local concave contour and the distributionof .the points. Concave hull algorithm performs
well only when points are normally_distributed. From Figure 3.3.3(a), the density of extracted
points from Section 3.2 varies a lot and the result in Figure 3.3.5 illustrated a false contour by

the affection of point distribution.
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Figure 3.3.4 Ambiguity of concave hull[25]
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Figure 3.3.5 Concave hull of Figure 3.3.2 (a)

Besides the above two algorithms, alpha shape algorithm [7, 13] is proposed with abilities
of not only preserving concave parts but also process holes. Different from using lines to
determine the contour, the concept of alpha shape algorithm is to use circles of some radius r
to determine the contour shape. If no point lies inside some circle, than the circle area is
eliminated. After the elimination process, the remaining area represents the shape of the point
set, as shown in Figure 3.3.6. Though alpha shape algorithm seems to be capable of dealing
with the concerning problem, same problem as concave hull exists. The radius of circle r
plays an important role in determining the shape: a small 7 results in the misjudgment of holes,
while large r leads to the neglect! of concaves. Observing from Figure 3.3.2 (a), the
distribution of points makes is almost impossible to determine a proper r for the algorithm.
The result of best 7 obtained by a-serious try-and ertor is shown in Figure 3.3.7 (a). Although
the result in 3.3.7 (a) is very close to the ideal contour shown in Figure 3.3.7 (b), the result is

sensitive to » which can only obtained by try and error currently.

Figure 3.3.6  Alpha shape illustration|7]
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Figure 3.3.7 Alpha shape of Figure 3.3.2 (a)

3.3.2 Object Mask Generation Utilizing the Convex Hull

Algorithm

Since the object mask generation is applied throughout the image sequence, the most
critical requirement is the stability of the algorithm. In other words, the algorithm must

generate object masks with minimum error when applied on all images, not only one image.

Recalling the octree reconstruction process mentioned in Chapter 2, the object model is
reconstructed by eliminating th& non-object-part.- When reconstructing model from object
mask, the over-definition part in: one’mask may be eliminated in other masks, while the
over-eliminated part is removed ffom the model and can not be recovered again. Therefore,
the major requirement for the mask" generation algorithm is to generate masks rather

over-defined than over-eliminated.

Reviewing the three algorithms described in Section 3.3.1 according to the requirement.
The alpha shape algorithm is inapplicable for the reason that, there is no method in defining
proper circle radius » without human’s aid. The try and error method is not suitable when
processing images one by one. If applying a fixed predefined circle radius » instead of
optimizing it for each image, the generated object mask might be over-eliminated if holes are
generated due to some misjudgments. On the other hand, the concave hull algorithm is also
not adaptable for the fact that the algorithm might misjudge the concave and result in
incomplete object masks. These two algorithms both have the possibility of over-eliminating
the object mask. Thus, the two algorithms are both not suitable for the situation concerned.
Therefore, the best and only choice for the object mask generation algorithm is the convex

hull algorithm.

The object mask generation step of the proposed background removal algorithm
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implements the gift wrapping algorithm [9], one of the convex hull algorithms. The main
concept of gift wrapping algorithm is to wrap all points with a foldable line. Starting from the
leftmost point py, a line segment /y; is linked to the point p; which makes all other points lie
right to the line segment /y;. Then start from p; and link a line segment /;, to next point p,
which makes all other points lie right to /;,, and so forth. The algorithm terminates when line
segment is liked back to starting point py, thus all points are wrapped inside a polygon

composed of line segments, /y;, 12, ..., [y for some m.

The concept and executing process of gift wrapping algorithm are simple except the step
for determining if all points lie right to a line segment. Instead of searching all possible line
segments, the determination process can be simplified just by utilizing the angle relationship
of line segment sequence. By setting a vertical pseudo line passing the leftmost point for
initial judgment, the line segment with minimum clockwise included angle to the previous
line segment will make all points lie to its right. Hence, the gift wrapping algorithm is
transformed into linking line segments in sequence, as shown in Figure 3.3.8(a). In fact, the
judgment can be further simplified. ifito an equivalent situation of finding the line segment
having minimum included angle-with the-elongatiofi. of previous line segment, as shown in

Figure 3.3.8(b).

(a) (b)

Figure 3.3.8 Process of gift wrapping algorithm. The dashed line indicates the pseudo line
for initial judgment. [25]

To fulfill the previous fact that the next line segment is chosen based on the minimum
clockwise included angle, it is easier and faster to check all the cosine values instead of
calculating the actual angles, since the larger cosine value implies the smaller actual angle.
For the example in Figure 3.3.9, the cosine value of the included angle 6 between line

segments /;; and /;; can be obtained as
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cos(0) = ZE1LiPy (3.3.1)

PiP;|P;Prk

where p,p, and p,p, are vectors formed by points (p;, p;) and points (p;, pi).

By applying (3.3.1) to all points, the point with the maximum cos(f) can be found.
Following the same procedure, the convex hull is formed, and the object mask can be
generated by filling the inside of convex hull with gray-level value 255, as shown in Figure

3.3.10. The object mask generation algorithm is presented in Table 3.3.1.
Y "
Pi L

bi*

Figure3.3:.9 Reduced judgiment situation

(a) (b)

Figure 3.3.10 Object extraction operation : (a) convex hull of Figure 3.3. 1(b), (b) object
mask of Figure 3.3. 1(b)
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Table 3.3.1 Object mask generation algorithm

Input
A set of 2D points position P.

Output
The object Mask M and an index array R indicates the order of points in P to

form the convex hull

Algorithm
1. Initialization : Find the leftmost starting point and pseudo initial line

R[0] = 0;
FOR EACH point p; in P
IF p; is to the left of prjo THEN
R[0] =1i;
END IF
END FOR
L=(0, 1);

2. Gift Wrapping : Generate the'convex hull

j=0
DO
cost = 0;
FOR EACH point p; in P
cosl' = —L_,. PrjIPE ;
‘L‘ Prj1Px

IF cos0 < cos@’ THEN
R[j+1]1=k;
END IF
END FOR

—

L= Prjo)= Prij)

J=JtL
WHILE R[j] < R[0]

(Continued)
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(Continued)
3. Mask Generation : Fill the inside of the convex hull

Generate a mask image M at the same size of origin image
Fill M with black
FOR =1 to size(R)
Draw white line on M from pgy;-1] to prpj
END FOR
Select a point p; where i not in R
Apply flood fill on M start at p; to fill white

33




Chapter 4
Experiment Results

The experiment results of 3D model reconstruction by octree and object mask generation
by convex hull are presented in Section 4.1 and 4.2, respectively. The reconstruction system
prototype proposed in Figure 1.4 is implemented and the reconstruction result is shown in

Section 4.3.

4.1 Octree Reconstruction Result

Experiments of octree reconstruction are based on the assumptions of ideal object mask
image and object pose. Hence, the testing images of object silhouettes is generated by Maya
PLE 8.5[2] instead of taking pictures in real world. The reason for generating testing image
using 3D animation software such as Maya PLE 8.5 is that, object pose can be precisely

controlled and the object silhouettes can be perfectly acquired through the software.

The 3D scene for generating tést objeet silhouette’image by Maya PLE 8.5 is designed and
shown in Figure 4.1.1. A test object is specially designhed with a hole to test if the octree can
reconstruct an object model correctly for-an-ebject with holes. A camera is fixed in front of
the object and facing it to capture‘test images, as shown in the bottom-left corner of Figure
4.1.1. Represented by five sets of brown arrows, five white lights are placed on the top,
bottom, right, left, and in front of the test object. The object surface is set to fully reflect these
lights. As a result, a white object in front of a black background makes an ideal object

silhouette.

With the 3D scene, the object silhouette image is taken for every 10 degrees rotation of
the object respect to the y axis. The resolution of the obtained silhouette images is 640x480 in

pixel. Some silhouette images and corresponding object poses are shown in Figure 4.1.2.
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Figure 4.1.1 Arrangement for taking object silhouette image.

(a) (b)
(c) (d)

Figure 4.1.2  Object silhouettes generated by Maya PLE 8.5 : (a) object silhouette with
rotation=(0°,0°,0°) and translation=(0,0,0), (b) object silhouette with rotation=(0°,90°,0°) and
translation=(0,0,0), (c) object silhouette with rotation=(0°,180°,0°) and translation=(0,0,0), (d)

object silhouette with rotation=(0°,270°,0°) and translation=(0,0,0)
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As described in Chapter 2, the octree reconstruction process is based on shrinking of
object model according to a set of continues images. Hence a test using only one image is
performed first to make sure that the octree works correctly. The result of applying Figure
4.1.2(a) to the octree with max depth of 7 is shown in Figure 4.1.3. Figure 4.1.3 shows only
the ON cubes determined after the octree process and the hole in Figure 4.1.2(a) is also

reconstructed.

After making sure the octree process is functional, the experiment of applying all
silhouette images to the octree is made. The whole process takes about 17 seconds with 36
630x480 silhouette images, and the reconstructed ON-cube model and triangulated model are

shown in Figure 4.1.4 and Figure 4.1.5, respectively.

it
T

Figure 4.1.3 Reconstruction result’of applying Figure 4.1.2(a) to the octree with max depth
of 7. The figure shows only the ON cubes.

Figure 4.1.4 Reconstructed ON-cube model of input silhouette
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Figure 4.1.5 Triangulated model of applying triangulation process to the ON-cube model of
Figure 4.1.4.

4.2 Background Removal Result

The experiment of background removal takes an image sequence of an object in
unprepared environments as the input and generates the mask of the object. Mention that the
proposed algorithm requires the 3D-information of camera pose and feature point position, as
described in Chapter 3. Hence, a camera-tracker 1S required as a pre-process for the mask
generation process. The voodoo camera tracker [21] is adopted to perform the task of
reconstruction 3D camera poses and feature point positions of the image sequence. The result
from voodoo camera tracker is then‘applied to the proposed algorithm to generate the mask of
foreground object. The test image sequences are taken by a handheld free-motion camera,
orbiting around and aiming at the target object. Meanwhile, the target object for each test is
placed in an unprepared environment. The algorithm applies to two different cases for testing

the performance.

4.2.1 The Toy-on-Table Sequence

The first experiment, referring to the scene of a small scale, is shooting at a toy placed on
a table in a range about 60 degrees, called the Toy-on-Table sequence. The sequence contains
134 frames with frame rate of 30 fps, resolution of 640x480 in pixel, and color depth of 24-bit.
Three frame of the sequence are shown in the “Original frame” column of Figure 4.2.1, while
the corresponding foreground feature point distribution and background removal results are
shown in the “Separated foreground feature points” column and “Background removal result”

column of Figure 4.2.1, respectively. For the more detailed results, result of the
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foreground/background separation step, the first step of proposed algorithm, is shown in
Figure 4.2.2. The whole process takes about 82 minutes to run on a laptop with Intel T2500
2.0GHz CPU and 512MB ram of DDRII-667. However, 81 minutes, or 98.7% of the
execution time is spend on the camera tracking process.

Separated foreground

Original frame . Background removal result
feature points

(a)

(b)

Figure 4.2.1 Frames of the Toy-on-Table sequence, the background of “Background

removal result” is changed to gray for clear view: (a) frame #0, (b) frame #67, (c) frame #134

Observing Figure 4.2.1, the performance of background removal varies from (a) to (c).
The background removal extracts the object precisely in Figure 4.2.1(a), but shows
non-ignorable large error in Figure 4.2.1(c). To probe into the causes of the error, three factors
are found besides the one of adopting convex hull algorithm mentioned in Chapter 3. The first
factor is the error of foreground/background separation. Because the object mask is directly
generated by the foreground points, any error in foreground point determination may directly
interferes the object mask result, which is clearly seen in the “Separated foreground feature

point” image of Figure 4.2.1(c). The second factor is the lost of feature points on edges due to
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the detection algorithm adopted by the voodoo camera tracker. The above two factors mainly

influence on the background removal result.

The last factor is caused by the error of the camera tracker’s estimation process, including
errors in 3D feature point positions, 3D camera positions, and 3D camera orientations. Note
that this factor does not generate clear influence on the result when compared to the above
two factors, for the reasons that the estimation error is small and the projection from 3D onto
2D reduces the error. Viewing Figure 4.2.2 again, the error in 3D feature point positions can
be judged from two parts. The first part can be seen as some yellow points around the
foreground object points marked in green, circled by orange ellipse, which should not exist in
the original image. The second error is the yellow points in the left part, circled by red ellipse.
Notice that the input image sequence was taken around the object in about 60 degrees, there

should be no such points on the left part since no information were provided.

Figure 4.2.2 Foreground/background separation result the Toy-on-Table sequence. The

green points are the foreground points and the yellow points are the background points.

4.2.2 The Statue Sequence

Different from the indoor condition in 4.2.1, the scale of scene of outdoor condition is
larger than the indoor condition. The Statue sequence is the test sequence taking outdoor
shooting at a statue in an open environment in a range about 70 degrees. The Statue sequence
is an image sequence of 60 frames with frame rate of 15 fps, resolution of 640x480 in pixel,
and color depth of 24-bit. Same as Section 4.2.1, Figure 4.2.3 shows the result of three frame
of the Statue sequence and Figure 4.2.4 shows the result of the foreground/background

separation step. Also mentioned that the whole process takes about 9 minutes to run on a
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laptop with Intel T2500 2.0GHz CPU and 512MB ram of DDRII-667. Also the same as
Section 4.2.1, 8 minutes, or 88.9%, of the processing time is spent on the camera tracking
process.

Separated foreground

Original frame . Background removal result
feature points

(b)

Figure 4.2.3 Frames of the Statue sequence, the background of “Background removal

result” is changed to gray for clear view: (a) frame #0, (b) frame #30, (c) frame #60

Comparing to Section 4.1, the most obvious difference is the background result affected
by the shape of target object. For instance, since the object shape in Figure 4.2.1 is
approximately a convex, the convex hull algorithm successfully generates object masks close
to the object shape. However, when the convex hull algorithm applies to an object not solely
composed of convex shape, as shown in Figure 4.2.3, it fails to recover the concave parts of
the object. Even though the foreground separation result reveals the shape of the target object,
the background removal result contains a large part of background due to the convex hull
algorithm. Furthermore, Figure 4.2.4 also shows the serious influence of missing feature

points on edges even though more feature points are detected than Figure 4.2.2.
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Figure 4.2.4 Foreground/background separation result of the Statue sequence. The green

points are the foreground points and the yellow points are the background points.

4.3 3D Model Reconstruction System Result

Combining camera tracker, octreeand proposed background removal algorithm, a new 3D
model reconstruction system prototype is proposed;‘as mentioned in Section 1.3. However,
after testing several available camera trackers including voodoo camera tracker 0.9.1 beta[21],
PFTrack 4.0 evalution[34], ICARUS 2.09-personal edition[17], and SynthEyes Demol[1], a
limitation of these camera trackets-has been revealed. These camera trackers can only
reconstruct information from image sequences taken by camera with change in viewing angle
less than about 80 degrees. The limitation comes from the assumption of camera trackers that
most of the feature points detected must remain in sight. Camera trackers reconstruct 3D
information based on tracking the position change of these feature points. Once the change in
viewing angle is larger than about 80 degrees, feature points in some frame may be quite
different from another frame. Yet the camera tracker still tries to track feature points that are
already lost and find a best solution of the 3D camera pose and feature point positions. As a

result, the reconstructed information is totally collapsed due to the invalid tracking.

Observing Figure 1.3.1, the reconstructed 3D information from camera tracker is crucial
for the proposed reconstruction system. The proposed reconstruction system can not function
effectively without information from 360-degree object image sequences due to the camera
tracker limitation. Instead, scale-down experiments are adopted to verify the reconstruction
system. With the use of the Toy-on-table and Statue sequences in Section 4.2, the

reconstruction results are shown in Figure 4.3.1 and 4.3.2 respectively.
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as mentioned in

9

is caused by two factors.
so that the reconstructed

9

Reconstruction result of Toy-on-table sequence. (a) octree model, (b) triangular

Figure 4.3.1

model.

Figure 4.3.2 Reconstruction result of Statue sequence. (a) octree model, (b) triangular

model.

Viewing from Figure 4.3.1 and Figure 4.3.2, shapes of reconstructed models are much

different from the target objects. The models are hollow since the results show only ON cubes

and the hollow parts inside the surface actually represent undetermined cubes identified as IN

cubes. The dissimilarity between object models and target objects

The first factor is the object mask generated by the convex hull algorithm

Section 4.2, which is adopted to preserve the largest possible shape of the object. However,

the concave part of the object shape is ignored at the same time

models can not reveal the concave surfaces. The second factor is the lack of 3D information.
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Since the image sequence provides only 80 degrees of view, the available information is
limited in the provided viewing range. Hence, the octree algorithm can only trim the 3D

model in the range and then leads to an incomplete model.
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Chapter 5
Conclusion

5.1 Conclusion

This thesis proposes a new prototype of 3D object reconstruction system dealing with
more general cases. However, a 3D object reconstruction system requires knowledge and
technologies of many aspects that can not be all mastered during the research period. Hence,
the implementation of proposed system integrates some existing algorithm and programs,
including the octree algorithm, the convex hull algorithm, and the voodoo camera tracker
mentioned in Chapter 2, Section 3.3, and Section 4.2, respectively. Since the performance and
stability of these integrated parts are verified by many researches and applications, the
reconstruction system only focuses on the performance of background removal algorithm

mentioned in Chapter 3.

Section 4.1 shows that the octree algorithm funetions as rebuilding the 3D model from
silhouettes and corresponding -camera poses. Next-in Section 4.2 shows the proposed
background removal algorithm-is workablejyet' a lot to be improved. Unfortunately,
experimental results in Section 4.3 reveal that the performance of the proposed system is

restricted to the background removal algorithm and the camera tracker, especially the latter.

As mentioned above, this thesis focuses on proposing a brand new system dealing with
problems never dealt before. This thesis proves the proposed algorithm and system structure
are useful and many work can be done in the future to make the system better, as explained in

the next section.

5.2 Future Work

5.2.1 The Camera Tracker

The limitation and effect of the existing camera tracker is presented in Section 4.3.
Actually, the proposed algorithm can not fully work if the camera tracker limitation is not
removed. This makes the camera tracker becomes the most major part in the proposed system

to be improved. The experiment on different camera trackers shows that the limitation is a
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essential problem for all camera trackers. The problem should be a defect of the existing
camera tracking algorithms. Hence, modifying the existing algorithm or designing a new

algorithm for the shooting condition mentioned in this thesis is required.

The typical structure of a camera tracker is shown in Figure 5.2.1. The problem mentioned
is caused by the feature point tracking block in the camera tracker. To deal with the problem,
the feature point tracking algorithm must be improved to be able to determine whether a
tracked point is appearing or disappearing in some frame. With the improvement, a point is
tracked only when it is visible to the camera, not through out the image sequence. To achieve
the requirement, the feature point tracking algorithm must track feature points based on not
only the low level information such as edge, color, and texture, but also the information of
higher level like geometry relationship. Hence, algorithms of higher information processing
like image interpretation and understanding might be integrated into the point tracking

algorithm.

Image

Sequence
Camera Tracker

Feature Point

Tracker
2D Tracked Camera
Points Calibration
3D Information Infomation
Estimation

3D Information

3D Information
Refinement

3D Information

Figure 5.2.1 System structure for depth-map recovery algorithm

Besides the limitation of camera shooting angle, another minor improvement for the
feature point tracker is also required for better background removal performance. As
mentioned in Section 4.2, some important features including edges and corners of the object

are not tracked by the feature point tracker. The lack of certain points makes the following
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process, the object mask generation in Section 3.3, becoming more complex and difficult to
recover the shape of the object. In other words, more feature points provided, more accuracy
the object mask becomes. Hence, the algorithm of feature point extraction could be improved
to obtain more feature points on the object surface to support the background removal

algorithm.

5.2.2 The Background Removal Algorithm

The background removal algorithm is composed of two steps. Currently, each step
implements simple algorithm and works as a prototype. For the foreground/background
separation step, the current algorithm applies a modified nearest neighbor algorithm on 3D
point positions to separate points. The algorithm is fast and simple but not accurate enough.
The separation step should imports information, such as texture, edge, and shape segment,
from the object image to assist the separation algorithm. These information could be useful to

eliminate points which are near but do not belong to the object.

On the other hand, the object:mask generation step must be improved to be capable of
dealing with concave contour and holes. From.Section 4.2, it is clear that the ability is crucial
for the quality of reconstructed- model.-However, it-is difficult to determine the concave
contour and holes of the object ‘even “with sufficient 2D point information. To obtain the
accuracy object mask, information includingitexture and edges from object images must be

taken into consideration to the object mask generation, same as the previous step.

5.2.3 The Texture Mapping Block

Though the texture mapping is a well-developed algorithm, the algorithm is much
complex than octree algorithm and takes much time to implement. Hence, the texture
mapping block is not implemented in the current system. However, a 3D model
reconstruction system is incomplete without the texture mapping process, as a 3D model is

incomplete without texture. The texture mapping block must be implemented in the future.
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