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應用於無背景限制下三維建模之物體萃取演算法 

 

學生：李士昌 指導教授：陳永平 

 
 

國立交通大學 

電機與控制工程學系 

 
 

摘要 

本論文提出一個可將任意背景影片中的前景物體萃取出來的演算法。由於這個演算

法是針對三維物體模型重建系統所設計，因此利用重建系統中常用到的三維資訊重建演

算法(camera tracker)做為前置處理器，先行重建出影片中的特徵點及相機位置等的三維

資訊。萃取演算法首先將特徵點分為前景及後景兩類，再利用前景的特徵點產生前景物

體的遮罩，利用遮罩即可將前景的物體萃取出來。基於這個萃取演算法，本論文同時提

出一個三維物體模型重建的原型系統，用以測試萃取演算法之效能。與現存系統的最大

差別在於，本系統原型可以處理任意背景的物體影片。由實驗結果得知，雖存在許多需

要改進之處，但可驗證本論文提出之演算法及系統原型架構具有高度的可行性，亦可預

期在進一步改良之後，本系統及演算法能發揮出之潛力。 
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Abstract 
This thesis proposed a novel algorithm for extracting foreground object in an image 

sequence of arbitrary background. The algorithm is mainly designed for the 3D object model 

reconstruction system. Hence, a camera tracker is adopted as a pre-processor to obtain the 3D 

structure information including feature point positions and camera poses of the image 

sequence. The proposed algorithm first separate the feature points into foreground and 

background, and then generates a mask from the foreground points to extract the object. 

Based on the proposed algorithm, a prototype of 3D object model reconstruction system is 

presented to verify the performance. The proposed system if capable of dealing with object 

image sequences of arbitrary background, which is not possible for the recent reconstruction 

systems. The experiment results show that, though it requires improvements in many aspects, 

the proposed algorithm and system prototype is functional in practice and should become 

more powerful after the improvements are done. 



 iii

Acknowledgment 
想當初，懵懵懂懂地上了幼稚園，一知半解地上了小學，理所當然地

上了國中，從善如流地上了高中，夙夜匪懈地進了大學，最後不可免俗地

念了研究所。首先可能要感謝台灣的高等教育制度，給我非寫論文不可的

動力，讓我得以在立功、立德、立言中先有了點小小的成就，也對十幾年

的學生生涯畫上一個具體的休止符。 

這份論文得以順利完成，首要感謝指導教授陳永平老師的悉心指導，

在研究過程中給予我許多建議和指正，加深了我思考及探討問題的深度；

老師敬業樂群的態度以及對學生的親切關懷，也在待人處事方面給了我最

好的身教。同時也感謝口試委員們提出了許多寶貴的意見及建議，讓這份

論文能夠更加完善。 

而我最要感謝的是我的家人，雖然我待在新竹的時間是待在家裡的三

四倍，但因為有這兩三個月的休息充電，讓我有面對學校各種挑戰的動力；

也因為有你們的支持、關懷及包容，我才可以無憂無慮地享受這一段求學

生活，在大學及研究所裡盡情地揮灑。 

最後但是不可或缺的，是這段時間結識的各位朋友們，包括電控系所

的學長姐學弟妹和同學、參與 Open House 及學聯會認識的大家、以及族繁

不及備載的各位。正所謂「在家靠父母，出外靠朋友」，無論是歡樂的小

團體聚餐唱歌八卦嘴炮談心，還是同甘共苦的各項活動籌辦過程，抑或是

其他因緣際會下的交集，我會努力記住這些感動。少了你們，這六年就不

會這麼多采多姿，也不會有這麼多的照片以及回憶。 

如果還要謝下去的話，那還要感謝過去六年中所有我修過課的教授、

讓交大順利運作的諸位行政人員及納稅人、餵飽我們肚子的同時也餵飽自

己荷包的餐廳和宵夜店、還有發明網路、MSN、BBS 的偉人們。 

總之，要謝的人太多了，就謝天吧！ 



 iv

Table of Contents 

Abstract (in Chinese).................................................................................................................i 

Abstract (in English) ................................................................................................................ii 

Acknowledgment .....................................................................................................................iii 

Table of Contents.....................................................................................................................iv 

List of Tables............................................................................................................................vi 

List of Figures .........................................................................................................................vii 

 

Chapter 1 Introduction ............................................................................................................1 

1.1 Motivation ....................................................................................................................1 

1.2 Related Works ..............................................................................................................2 

1.3 The proposed system ....................................................................................................6 

1.4 Organization .................................................................................................................7 

Chapter 2 Model Reconstruction Using Octree Algorithm ..................................................8 

2.1 Introduction ..................................................................................................................8 

2.2 Octree ...........................................................................................................................8 

2.3 Construction of 3D Octree..........................................................................................11 

2.4 Model Triangulation...................................................................................................13 

Chapter 3 Object Extraction Using 3D Feature Points.......................................................16 

3.1 Existing Image Segmentation Algorithms..................................................................16 

3.1.1 Graphical Partitioning Active Contours ..........................................................16 

3.1.2 Image Segmentation ........................................................................................18 

3.2 3D Foreground / Background Separation...................................................................20 

3.2.1 Problem Analysis on Separation .....................................................................20 

3.2.2 Proposed Foreground Extraction Algorithm ...................................................22 

3.3 Object Mask Generation.............................................................................................25 

3.3.1 Problem Analysis on Mask Generation...........................................................25 

3.3.2 Object Mask Generation Utilizing the Convex Hull Algorithm......................29 

Chapter 4 Experiment Results ..............................................................................................34 

4.1 Octree Reconstruction Result .....................................................................................34 

4.2 Background Removal Result ......................................................................................37 

4.2.1 The Toy-on-Table Sequence ...........................................................................37 

4.2.2 The Statue Sequence........................................................................................39 



 v

4.3 3D Model Reconstruction System Result...................................................................41 

Chapter 5 Conclusion.............................................................................................................44 

5.1 Conclusion..................................................................................................................44 

5.2 Future Work................................................................................................................44 

5.2.1 The Camera Tracker ........................................................................................44 

5.2.2 The Background Removal Algorithm .............................................................46 

5.2.3 The Texture Mapping Block ...........................................................................46 

Bibliography............................................................................................................................47 

 



 vi

List of Tables 

Table 3.2.1  Foreground Extraction Algorithm ......................................................................24 

Table 3.3.1  Object mask generation algorithm......................................................................32 

 



 vii

List of Figures 
Figure 1.2.1  Camera reconstruction system structure ............................................................3 

Figure 1.2.2  System structure for depth-map recovery algorithm..........................................4 

Figure 1.2.3  System structure for shape-from-silhouette algorithm.......................................5 

Figure 1.3.1  Structure of proposed camera reconstruction system.........................................6 

Figure 2.2.1  2D Octree diagram .............................................................................................9 

Figure 2.2.2  2D Octree structure of Figure 2.2.1....................................................................9 

Figure 2.2.3  Fail condition for octree ...................................................................................10 

Figure 2.2.4  2D octree diagram of different maximum depth R ..........................................11 

Figure 2.4.1  Reconstructing of sphere using 3D Octree of max depth 3..............................13 

Figure 2.4.2  15 patterns of transforming cube into triangles in Marching Cubes ................14 

Figure 2.4.3  indexing scheme of Marching Cubes ...............................................................15 

Figure 2.4.4  Triangulation example......................................................................................15 

Figure 3.1.1  GPAC segmentation results .............................................................................17 

Figure 3.1.2  GPAC segmentation results .............................................................................18 

Figure 3.1.3  Image segmentation results ..............................................................................19 

Figure 3.2.1  Camera motion when capturing image sequence .............................................20 

Figure 3.2.2  Top view of the distribution of reconstructed 3D feature point of a frame......21 

Figure 3.2.3  Top view of the distribution of reconstructed 3D feature point of image 

sequence...........................................................................................................................22 

Figure 3.3.1  Object extraction operation ..............................................................................25 

Figure 3.3.2  Ambiguity of determination .............................................................................26 

Figure 3.3.3  Convex hull of Figure 3.3.2 (a) ........................................................................27 

Figure 3.3.4  Ambiguity of concave hull ...............................................................................27 

Figure 3.3.5  Concave hull of Figure 3.3.2 (a) ......................................................................28 

Figure 3.3.6  Alpha shape illustration....................................................................................28 

Figure 3.3.7  Alpha shape of Figure 3.3.2 (a)........................................................................29 

Figure 3.3.8  Process of gift wrapping algorithm ..................................................................30 

Figure 3.3.9  Reduced judgment situation .............................................................................31 

Figure 3.3.10  Object extraction operation ............................................................................31 

Figure 4.1.1  Arrangement for taking object silhouette image ..............................................35 

Figure 4.1.2  Object silhouettes generated by Maya PLE 8.5 ...............................................35 

Figure 4.1.3  Reconstruction result Figure 4.1.2(a). ..............................................................36 



 viii

Figure 4.1.4  Reconstructed ON-cube model of input silhouette ..........................................36 

Figure 4.1.5  Triangulated model of Figure 4.1.4..................................................................37 

Figure 4.2.1  Frames of the Toy-on-Table sequence .............................................................38 

Figure 4.2.2  Foreground/background separation result the Toy-on-Table sequence ...........39 

Figure 4.2.3  Frames of the Statue sequence .........................................................................40 

Figure 4.2.4  Foreground/background separation result of the Statue sequence ...................41 

Figure 4.3.1  Reconstruction result of Toy-on-table sequence. .............................................42 

Figure 4.3.2  Reconstruction result of Statue sequence.........................................................42 

Figure 5.2.1  System structure for depth-map recovery algorithm........................................45 

 



 1

Chapter 1 
Introduction 

1.1 Motivation 
3D model reconstruction of an object in real world is an active researching topic because 

of its wide usage in many aspects. For example, museums can build 3D models of collections 

for virtual exhibition. The 3D model of body shape could be useful in customizing personal 

products like clothes, shoes, or furniture. It could also be an interesting application for 

reconstructing the 3D model of the player into the computer games. 

Up to now, most subjects of the reconstruction process have been well-developed such as 

camera calibration, camera tracking, object modeling and texture mapping. However, 

extracting an object appropriately from an image sequence is still a problem to solve. Most 

reconstruction processes avoid the problem by setting limitations on the reconstruction 

environments, for example a clean background for easy background removal. The limitation 

on the reconstruction environments results in a highly accurate model, but, on the other hand, 

makes the reconstruction system no only expensive but also hard to build and operate. 

Besides, it could also make the system only capable of reconstructing the object of certain 

size if the viewing area is limited by the static camera. 

Hence, this thesis proposed a reconstruction system prototype with an novel object 

extraction algorithm dealing with complex background of regular usage and tries to maintain 

the quality of reconstructed model at the same time, which makes the system more feasible 

and applicable in practice. 
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1.2 Related Works 
Currently, 3D model reconstruction can be conducted by human, or automatically 

operated by laser scanner or camera. The automatic reconstruction process contains two steps, 

the shape-modeling and the texture-mapping, to take care of the silhouette and to construct the 

surface texture of the 3D model, respectively. 

Reconstruction by human is the most common but time-consuming way. Usually, a 3D 

artist takes weeks to months to build a model by several sketches or photos. Besides, the 

quality of the constructed model depends on the ability of the artist. It is clear that the 

uncertainty of quality and the cost of time are the crucial problems of human reconstruction. 

Hence, automatic reconstruction systems are presented to overcome these problems. 

Reconstruction by laser scanners[5, 6, 10, 15, 18, 22, 26, 28] is the one that can create a 

model with shape exactly same as the object to be reconstructed due to the fact that the shape 

data is obtained by scanning the entire object in all angles. However, the scanner is too 

expensive and requires special know-how to operate in restricted environments. In addition, 

the scanning process is affected by the material of object. The system does not perform well 

on objects with surfaces absorbing light, such as fur or velvet. Finally, the scanner needs extra 

instruments such as camera to capture the texture information since it can not obtain texture 

information while scanning shape data. 

Compared with the two methods above, reconstruction using camera not only attains 

results of good quality, but also it is much cheaper than laser scanners and takes less time than 

human. This makes algorithms using cameras become the topic that has been widely 

investigated among all 3D reconstruction systems. Since 2D images captured by camera 

contain both shape and texture information of a 3D object, it is the most critical issue to find 

methods which can extract useful data for reconstruction 3D models. 

The typical architecture of camera reconstruction systems is shown in Figure 1.2.1, 

including three main steps, the camera-calibration, the shape-modeling, and the 

texture-mapping. The first step is the camera calibration to determine essential optical 

parameters and perspective characteristics. The second step performs the reconstruction of 3D 

model shape. The last step is the texture-mapping to generate the surface texture of the model. 

A preprocess of camera calibration is applied to obtain image characteristics of the camera, 

which is an important information for the precision of shape modeling step 
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Figure 1.2.1  Camera reconstruction system structure 

Most systems [3, 4, 11, 14, 20, 27, 30, 33, 35, 37] use an image sequence, at least 10 

images rather than a single image, as input, because single image can not provide sufficient 

information for the whole process. Generally, the performance of shape-modeling process is 

affected by the number of input images; in other words, the more input images, more data in 

other words, the more accurate 3D model. 

Systems for 3D model reconstruction nowadays can be classified into two types according 

to the algorithm used in the model reconstruction block. One type of algorithm is depth-map 

recovery [3, 11, 20, 27], reconstructs 3D model by estimating the 3D position of every pixel 

in the input image sequence according to the estimated camera pose. Another type is the 

shape-from-silhouette algorithm [4, 14, 30, 33, 35, 37], uses the object silhouette in each 

image to refine the outline of 3D object model according to the corresponding object pose, 

since the 2D object silhouette is the projection of 3D object shape. 

Diagrams of system structure using depth-map recovery algorithm and 

shape-from-silhouette algorithm are illustrated in Figure 1.2.2 and Figure 1.2.3, respectively. 

The shape-modeling step is subdivided into several processing block: camera tracking, model 

reconstruction, and object extraction. The former two blocks are contained in both types of 

systems, each with different functionality of recover 3D poses of camera and feature points 

for each image, and reconstruct 3D model from provided data. The object extraction block, 

which only required by the systems using shape-from-silhouette algorithm, is the most 
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significant difference between these two types of systems. 

The differences of system structure and algorithm itself make these two algorithms vary 

from each other in many aspects. First, the result of depth-map recovery is the 3D model of 

the whole scene in the image sequence, which is very useful in the whole scene reconstruction 

but not suitable for reconstruction the object model. On the contrary, the 

shape-from-silhouette algorithm is designed to reconstruct a specific object in the image 

sequence. Second, the depth-map recovery algorithm reconstructs the 3D model at pixel-wise 

precision, but the reconstruction process is very time-consuming. The reconstruction process 

of the shape-from-silhouette algorithm is much faster than depth-map recovery algorithm 

because it reconstructs the model to certain accuracy but not exactly. To increase the accuracy, 

the reconstruction environment must be controlled to obtain errorless information including 

object silhouettes and object poses. There is another weakness only existing in the 

shape-from-silhouette algorithm, that is, it can not reconstruct the concave part if the concave 

never appears in the silhouette. 

Camera

Texture Mapping

Shape
Modeling

Camera
Tracking

Object Model

Camera
Calibration

Image
Sequence

Camera
Internal

Parameters

Calibration Image

Camera Pose &
Feature Point Pose

Model
Reconstruction

Image
Sequence

Depth-map Model

 
Figure 1.2.2  System structure for depth-map recovery algorithm 



 5

Object
Extraction

Camera

Texture Mapping

Shape Modeling

Camera
Tracking

Model Reconstruction

Object Model

Camera
Calibration

Image
Sequence

Camera
Internal

Parameters

Calibration Image

Shape Silhouette Camera Pose

Triangular ModelImage
Sequence

 

Figure 1.2.3  System structure for shape-from-silhouette algorithm 
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1.3 The proposed system 

This thesis focuses on shape modeling step for the systems using the shape-from- 

silhouette algorithm and proposes a modified structure which can produce a model of 

acceptable accuracy without limiting the input image sequence. 

Object
Extraction

Camera

Shape Modeling

Camera Tracking with
Camera Self-Calibration

Model Reconstruction

Triangular Model

Image
Sequence

Shape Silhouette Camera Pose

Triangular Model

Feature Point
Pose

 

Figure 1.3.1  Structure of proposed camera reconstruction system 

Figure 1.3.1 is the proposed camera reconstruction system and the texture mapping step is 

not included because this thesis only focused on the object shape. The model reconstruction 

process of proposed system is based on the shape-from-silhouette algorithm. Different from 

other reconstruction systems, the proposed system applies camera tracking process together 

with camera self-calibration, a well developed technique, to get the information including 

camera internal parameter, camera pose, and feature point pose from the image sequence 

taken freely. Then use the camera tracking results to enforce the object extraction process. 

After that, the model reconstruction process adopts results from the object extraction process 

and camera tracking process and performs the shape-from-silhouette algorithm to produce the 

un-textured object model. 
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1.4 Organization 
This thesis is organized as follows. Chapter 1 gives an overview of the camera 

reconstruction system and a concept of proposed system. Preliminary techniques used by the 

proposed system as two system blocks, the camera tracking and the model reconstruction, is 

introduced in Chapter 2. Next in Chapter 3, the main contribution of this thesis, the 

back-ground removal using 3D feature points adopted as the object extraction process in the 

proposed system, is described in detail. The experimental results and conclusions are given in 

Chapter 4 and Chapter 5, respectively. 
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Chapter 2 
Model Reconstruction Using 

Octree Algorithm 
Octree with marching cube is the most popular 3D model reconstruction algorithm for 

computer vision or medical image processing. A detailed description of the algorithm is given 

in Chapter 2. 

2.1 Introduction 
As mentioned in Section 1.3, the proposed system is based on the shape-from-silhouette 

algorithm. Among all systems using the same algorithm, the most used model reconstruction 

method is the octree algorithm [33]. An octree is a hierarchical tree structure consisting of 

cubes of various sizes in proportion. The use of an octree to represent a 3D model results in 

several advantages due to the geometry characteristics of cubes. 

First, the cube structure is easy to divide in a sequential way, and is also convenient for 

programming and calculation. Second, any 3D model can be approximately represented by a 

set of cubes of various sizes. Last but not least, the octree structure is easy to transform into 

the triangular-mesh model using the “Marching Cubes” algorithm [23, 24] after the octree is 

built, for the fact that the triangular-mesh model is much smoother and more approximate to 

the original object because every mesh in 3D space can be separated into triangles. 

2.2 Octree 
A 2D octree is introduced for easy explanation of the octree structure. Instead of cubes, a 

2D octree can be used to represent a 2D diagram composed of rectangles of various sizes, as 

given in Figure 2.2.1, where a large rectangle could be further divided into four small 

rectangles. For example, the top rectangle ‘A’ in Figure 2.2.1 is divided into four rectangles 

‘A’, ‘B’, ‘E’, and ‘F’. Correspondingly, a 2D octree structure is depicted by a tree of depth 3 

in Figure 2.2.2, where each rectangle is called a node. For a node of depth r and index i, it is 

denoted as r
is  with r numbered top-down and i indexed sequentially. For example, the top 

node ‘A’ denoted in gray of depth 1 is denoted as 1
As  and the bottom node ‘D’ of depth 3 is 
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denoted as 3
Ds . 

A node r
is  represents a rectangle specified by its vertices ( )r

im
r
im

r
im y,xv = , 1,2,...,4=m , 

and is labeled as IN, ON, or OUT to denote whether the rectangle is in, on, or out the object 

contour. If a rectangle is ON, i.e., on the contour, then further partition it into four rectangles, 

otherwise, leave it unchanged. Viewing from Figure 2.2.1 with a curve as the object contour, 

the gray rectangle 1
As  is ON because it contains the object contour, and then further divide it 

into four green rectangles 2
As , 2

Cs , 2
Is , and 2

Ns  of depth 2, where 2
As , 2

Cs , 2
Is  are also ON. 

In a similar way, 2
As , 2

Cs , 2
Is  can be divided into red rectangles 3

As , 3
Bs , … , 3

Ms  of depth 

3. As for 2
Ns , no division is executed since it is not ON. Once again, it is clear that 

rectangles 3
Cs , 3

Ds , 3
Fs , 3

Gs , 3
Is , 3

Js , 3
Ls , 3

Ms  are ON and can be further divided in a 

sequential way. 

  
Figure 2.2.1  2D Octree diagram 

A

A

A

B E F C

C

D G H I

I
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Figure 2.2.2  2D Octree structure of Figure 2.2.1 
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A 
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The formal approach to determine whether the rectangle r
is  is IN, ON, or OUT is to find 

one of the intersections of rectangle edges and the object contour. The rectangle is ON if any 

intersection is detected. However, the formal approach is time-consuming in detecting the 

intersection by checking all points on the edges. A more efficient detecting way is instead to 

check only the vertices r
imv , 1,2,...,4=m . The rectangle r

is  can be labeled as IN or OUT 

for all vertices lay inside or outside the object contour, or as ON otherwise. Since the efficient 

way only checks the vertices, it fails for the condition as shown in Figure 2.2.3, where the 

contour is contained inside the rectangle but none of the vertices are inside the contour. The 

failure will result in defect of octree to decrease the similarity between octree and object 

contour, and the defect becomes serious for smaller depth r. A solution to the condition is to 

further check 12 −−rR  checking points, which are equally distributed on the rectangle edges, 

and apply the above efficient detecting way to all the vertices and checking points. However, 

the fail condition still can not be solved on rectangles with depth R, unless the formal 

approach is adopted. But with large R, the effect is relatively small. 

 
Figure 2.2.3  Fail condition for octree 

The accuracy of the octree model depends on the maximum depth R, so R must be chosen 

before creating an octree. From the previous example, it is obvious that during the octree 

construction process, the rectangles of ON will be divided until they are at depth R, while the 

IN and OUT rectangles are kept as large as possible. 

To demonstrate the effect related to the maximum depth R, another example is given in 

Figure 2.2.4 for R from 4 to 7, where the white region represents the original object shape. 

Besides, the blue cubes indicate the IN cubes and the green cubes indicate the ON cubes. It is 

obvious that with the increase of R, the shape of octree diagram is approximate to the original 

object shape further. 

Extending the way to a body in 3D space, a 3D octree is obtained to possess cubes as its 
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nodes, denoted as r
is  of depth r and index i. Hence, a 3D octree can be represented as 

{ } { }1,2,...,8i and R2,...,rssT r
iD3 ==∪= 1

1  

Note that each cube r
is  has 8 vertices denoted as ( )r

im
r
im

r
im

r
im z,y,xv = , 1,2,...,8=m . 

(a) 
 

(b) 

(c) 
 

(d) 

Figure 2.2.4  2D octree diagram of different maximum depth R. Green and blue rectangles 
representing the ON and IN rectangles respectively : (a) R = 4, (b) R = 5, (c) R = 6, (d) R = 7 

2.3 Construction of 3D Octree 
The first step of 3D object reconstruction is to construct its 3D octree diagram Γ. With the 

estimated object pose denoted as { }ΘΔ,  in the previous section, where ( )zyx δδδΔ ,,=  and 

( )zyx θθθΘ ,,=  represent the translation and the rotation of the object with respect to the 

camera in 3D space, an octree node r
is  with vertices ( )r

im
r
im

r
im

r
im z,y,xv = , 1,2,...,8=m , is 

then transformed to the vertices ( )'z,'y,'x'v r
im

r
im

r
im

r
im =  as 
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( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
10

1

r
im
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Here, iS  and iC  respectively denote iθsin  and iθcos a for zy,x,i = . 

After applying (2.3.1) on all vertices of the nodes of octree diagram Γ, the resulting octree 

diagram Γ’ will have the same pose of the object in the image. 

After the pose transformation, the octree diagram Γ’ is projected onto the image plane by 

applying perspective projection as (2.3.2) on each vertex of each node of octree diagram Γ’. 
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where 

cam
r
imx x'xD −=  

cam
r
im'D yyy −=  

( ) ( ) ( )( )21222
cam

r
imcam

r
imcam

r
im '''xD zzzzzeye −+−+−=  

( )camcamcam z,y,x  represents the position of camera, r
imxd2  and r

imyd2  represent the 

projected 2D position of 3D point 'vr
im . 

Same as the 2D octree, then each vertex is checked whether it is lying inside or outside the 

object mask. The octree node can be adjusted and labeled as IN or OUT for all vertices lay 
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inside or outside the object mask, or as ON otherwise. 

When processing a series of images, two addition rules are added to the octree adjustment. 

First, once a cube is labeled as OUT, the cube would never be adjusted again, since it is clear 

that it is impossible for a cube lies outside the object in one viewing angle but lies inside the 

object in another angle. Second, an ON cube may be re-labeled as OUT, but can not be 

re-labeled as IN, for the reason that 3D octree is reconstructed in 2D image plane, the OUT 

cube may be projected inside or on the object mask and the ON cube may be project inside 

the object mask. The first situation conflicts with the first rule and the cube must be labeled as 

out. On the other hand, the ON cubes in second situation become IN cubes due to the model 

motion and project, they should be kept as ON cubes. 

After applying adjustment to the octree with all input object mask and object pose, an 

approximated model of the object is obtained, as shown in Figure 4. 

2.4 Model Triangulation 
After the 3D octree construction, the ON cubes of the octree diagram O represent an 

approximation 3D model of the object and the larger depth R is, the more accurate the octree 

diagram becomes. However, the depth R is limited to about 7 due to the constrain of 

computational resources, for example the memory and computational time increase 

proportionally to the triple order of the depth R. With limitation on the depth R, triangulation 

of the octree not only increases the accuracy of the model but also makes the texture mapping 

much easier. Figure 2.4.1 shows the reconstruction result of a sphere using a 3D octree of max 

depth 3. Though max depth 3 is an extreme case which would not be chosen in the reality 

reconstruction system, it is a good example showing the difference between octree model and 

Triangulation model 

 
(a) (b) (c) 

Figure 2.4.1  Reconstructing of sphere using 3D Octree of max depth 3 : (a) original model, 
(b) octree model, (c) triangulation model of (b) 
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A typical triangulation algorithm called “Marching Cubes” , which is also adopted in this 

thesis, is often applied to the cubic-type 3D model reconstruction, such as the octree. The 

“Marching Cubes” algorithm is based on the fact that the real object surface would intersect 

with the edges of the ON cubes. By finding the intersection points cube by cube, triangles can 

be constructed by the geometry relationships of these intersection points. Figure 2.4.2 

illustrated 15 patterns of transforming cube into triangles in the Marching Cubes algorithm. 

  
Figure 2.4.2  15 patterns of transforming cube into triangles in Marching Cubes. The dotted 

corners represent corners lay inside the surface[23] 

It is difficult to represent the 256 geometry relationships for a cube in mathematical 

equation since each vertex of the cube may lie inside or outside the surface. Hence, a general 

way to implement the Marching Cubes algorithm is to encode the geometry relationships of 

cube vertices into a unique index number ranging from 0 to 255. The indexing scheme is 

shown in Figure 2.4.3. The table below the cube shows the correspondence of the eight bits to 

the vertices iv , 1...8i = , of the cube. Each bit of index number is assigned with 1 if the 

corresponding vertex lay inside the surface or 0 otherwise. As a result, a unique index number 

is generated and then used to find out the corresponding triangle structure, which is defined 

using the edge number ej, 1...12j = , in the look-up table. 
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Figure 2.4.3  indexing scheme of Marching Cubes.[23] 

From Section 2.2.4, every ON cube should have some vertices laying inside the object 

and others laying outside, making some edges of the ON cube intersect with the object surface. 

Thus these edges should have an inside vertex in one end and an outside vertex in the other 

end, which means an intersection point exists on each of these edges. The exact intersection 

points on these edges can be determined by geometry algorithms such as binary search [37]. 

After the intersection points are obtained, the marching cubes algorithm is then adopted to 

construct the triangle mesh model. Figure 2.4.4 gives an example of triangulation result of 

marching cubes algorithm. 

(a) (b) 

Figure 2.4.4  Triangulation example[37]: (a) octree model, (b) triangulation model of (a) 
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Chapter 3 
Object Extraction Using 

3D Feature Points 
Segmentation of foreground and background of an image is crucial many computer vision 

applications. Two existing and developing algorithms are introduced in Section 3.1. Based on 

structure of the proposed reconstruction system, a new algorithm is proposed to remove the 

background and extract the targeting object in the foreground, utilizing the tracking results of 

camera tracking system mentioned in Section 2.1, including camera poses and the 3D 

positions of feature points. Two steps of the Algorithms, the 3D foreground / background 

segmentation and the object mask generation, are explained in the Section 3.2 and 3.3. 

3.1 Existing Image Segmentation Algorithms 

3.1.1 Graphical Partitioning Active Contours 

“Active Contour”[19, 36] is the most used algorithm for object extraction. An active 

contour, or a snake, can be represented using (3.1.1).  

( ) ( ) ( )( ) [ ]0,1  s,sy,sxsv ∈=   (3.1.1) 

where s represents the indexing value of each points belong to the active contour, as v(s) 

represents the position of the point indexed by s. The deformation of an active contour is 

controlled by an energy function defined by the image information like color and edge, as 

shown in (3.1.2)[32]. 

( )( ) ( )( ) ( )( )( )dssvEsvEsvEE constraintimageinternalsnake ∫ ++=   (3.1.2) 

where internalE  represents the energy of smoothness defined by elasticity and stiffness 

parameter, imageE  represents the energy defined by image information including color, 

texture and edge, and intEconstra  represents the energy defined by information other than the 

image like object shape pattern, respectively. 

The position and shape of active contour is the one that makes snakeE  minimal, hence an 
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iterative process of minimization is required. Many minimization process with an 

implementation of active contour have been proposed. The most studied one among these 

algorithms is the “Level set method”[29]. Instead of deforming the contour, the level set 

method assigns a height value y)c(x,  for each point y)(x,  in image and uses the height 

value to determine the location of contour according to (3.1.3). The height value y)c(x,  is 

iteratively updated by calculating the effect of snakeE  to point y)(x,  until saturation, which 

indicates no sign changes for any y)c(x, . As the iteration process is completed, the contour of 

the targeting object is obtained. 

⎪
⎩

⎪
⎨

⎧

=
>
<

    contour   on 0
contour  inside0
contour outside0

,
,
,

y)c(x,   (3.1.3) 

The GPAC[31] algorithm is proposed recently for the sake of foreground/background 

segmentation of nature pictures, as shown in Figure 3.1.1(a) and 3.1.1(b). However, the 

segmentation result of GPAC algorithm shown in Figure 3.1.2(b) indicates a unexpected 

result in segmenting the test image as Figure 3.1.2(a). Viewing from Figure 3.1.1, the GPAC 

algorithm is well-performed under the condition that the foreground and background are 

different in color tones. When the color of foreground object is similar to the background, the 

segmentation is failed. 

(a) (b) 

Figure 3.1.1  GPAC segmentation results : (a) test image 1, (b) extracted foreground of (a) 
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(a) 

 
(b) 

Figure 3.1.2  GPAC segmentation results : (a) test image 2, (b) extracted foreground of (a) 

3.1.2 Image Segmentation 

Different from GPAC, image segmentation algorithms tend to divide the image into 

several segments according the segmentation condition, usually determined by the color and 

edge information. The objective of image segmentation algorithm is to divide the image into 

several segments such that each segment contains pixels with similar features and is mostly 

distinct to other segments. The basic image segmentation algorithm is the watershed 

algorithm, which simply calculates the boundary of every pixel with local minimum color. 

The watershed algorithm always over-cut the image and is applied as a pre-process of other 

segmentation algorithms, as shown in Figure 3.1.3(b). Improvements are applied to watershed 

algorithm including merging similar segment areas and using more information like texture 

and edge for calculation. EDISON[8, 16] is a segmentation algorithm implements the 

improved algorithm, and the segmentation result is shown in Figure 3.1.3(c). 

From the segmentation result of EDISON in Figure 3.1.3(c), it is obvious that the over-cut 

problem still exists to be solved for the algorithms based on watershed. Hence, the 

graph-based image segmentation algorithm[12, 38] is introduced. Instead of image processing 

theory, the algorithm segments image based on graph theory. The image to be segmented as a 

graph ( )EV,G = , where Vv ∈i  represents pixels in image and Eeij ∈  represents 

connecting edge of two neighboring pixels iv  and jv .  A weight value ( )jiij v,vww =  is 

calculated for every edge ije  according to the dissimilarity of pixel iv  and jv . With the 

weight value ijw , the graph-based segmentation algorithm is able to segments the image into 

several sub-graphs ( )'EV,'G kk =  with properties G'Gk ∈ , E'Ek ∈ , and Φ'G'G lk =∩ , 
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Φ'E'E lk =∩  for lk ≠ , while satisfying the objective of image segmentation algorithm 

mentioned above. A graph-based segmentation proposed in [12] has been tested and the result 

is illustrated in Figure 3.1.3(d). 

Though the image segmentation algorithm is performs well in divide image into image 

blocks, it can not determine if the image block belongs to foreground or background. It is 

impossible to piece image blocks together to form a complete object image since the 

algorithm provides nothing about the geometry of the object. Therefore, the image 

segmentation algorithm is not suitable for the reconstruction system, either. 

 
(a) (b) 

(c) (d) 

Figure 3.1.3  Image segmentation results : (a) test image, (b) result of watershed algorithm, 
(c) result of EDISON[16], (d) result of graph-based segmentation algorithm proposed in [12] 
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3.2 3D Foreground / Background Separation 

3.2.1 Problem Analysis on Separation 

To obtain an image sequence containing an object suitable for reconstruction, the image 

sequence must be taken by a camera orbiting around the target object, as shown in Figure 

3.2.1. To satisfy the above condition, the shooting environments should be arranged to keep 

the target object from the surrounding background in a certain distance. To reconstruction the 

3D information from the image sequence, the camera tracking system is adopted to 

reconstruct the camera 3D pose and 3D feature point positions. With reconstructed 3D feature 

point positions, the separation between the target object and the background will be also 

restored by the camera tracking system. As a result, the reconstructed feature points are 

distributed in two groups separated by an empty space gap. The group close to the camera is 

identified as the foreground, while the other one far away from the camera is identified as the 

background. The average distance between points of the foreground is much smaller than that 

of the background, as illustrated in Figure 3.2.2. The objective of separation is to cluster the 

reconstructed feature points into two groups of foreground and background. 

 
Figure 3.2.1  Camera motion when capturing image sequence. The camera is always aiming 

at the object. Illustration generated using Maya PLE 8.5[2] 
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Figure 3.2.2  Top view of the distribution of reconstructed 3D feature point of a frame. 
Circle and arrow at right bottom represent the position and viewing direction of the camera, 

respectively. The smaller ellipse indicates the foreground points while the larger ellipse 
indicates the background points. 

Though there is a clear separation between the two point groups, the clustering algorithm 

like K-means is not applicable for two reasons. First, most clustering algorithm attempts to 

separate 3D data using planes. However, the boundary shape of foreground and background 

group is more likely a sphere or an irregular shape, not a plane, as shown in Figure 3.2.3. 

Second, it is unnecessary to find a separation surface to extremely separate the 3D feature 

points into two groups of foreground and background. Instead, the background removal can 

be performed by an equivalent process, the foreground extraction, by picking out the 

foreground points from the feature points. 
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Figure 3.2.3  Top view of the distribution of reconstructed 3D feature point of image 
sequence. The orange arrow indicates the orbit of camera. 

3.2.2 Proposed Foreground Extraction Algorithm 

With reconstructed camera position and feature point location information, an algorithm 

performing foreground points extraction is proposed for this particular condition. Utilizing the 

distribution characteristic illustrated in Figure 3.2.2, the proposed algorithm first determines 

the initial two-point set of the foreground group by finding two closest points either or both of 

them are visible to the camera. The determination was performed by checking the included 

angle of two vectors, the camera viewing direction and the vector from camera position to the 

feature point position, by (3.2.1) . 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅

•
= −

cf

cf
ccfv DD

DD
cosD,P,Pθ 1   (3.2.1) 

where ( )fzfyfxf P,P,PP = , ( )czcycxc P,P,PP = , ( )czcycxc D,D,DD = , and 

( )czfzcyfycxfxf PP,PP,PPD −−−=  represents the position of feature point, the camera 
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position, the camera viewing direction, and the direction from camera to feature point, 

respectively. The point Pf is determined visible to camera if θv is smaller than θc , usually 

defined as the viewing angle of the camera, or can be defined as a small angle such as 10 

degrees to narrow down the range of foreground object. 

A classification process is then performed to iteratively integrate suitable unclassified 

feature points into the foreground group. An unclassified feature point is selected and 

integrated if its distance to any foreground group point is smaller than the threshold distance 

Thd, defined as (3.2.2). 

( ) ( )21
21d d,dmeand

Wd,dd,W,Th
⋅

=   (3.2.2) 

where ( )tImageHeigh,ImageWidthminW = , d1 and d2 represent the distances from the 

camera to the two points of the initial point set, d is the expected minimal number of feature 

points extracted from 2D projection of the object surface. 

From (3.2.2), Thd is proportional to the image resolution since the pixel distance between 

two feature points becomes larger for higher image resolution. Besides, Thd is inverse 

proportional to the distance from camera to the foreground object, due to the fact that the 

object size in image becomes smaller and the distance between feature points becomes closer 

when the object is farther. Thd is also inverse proportional to the expected minimal number of 

feature points for the reason that the more feature points on an object surface, the closer the 

feature points. 

The detail of proposed foreground extraction algorithm is presented in Table 3.2.1. 
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Table 3.2.1  Foreground Extraction Algorithm 
Input 
Minimal dimension of image width and height W, expected minimal number of 
feature point d, 3D camera position Pc, camera viewing direction Dc, camera 
viewing angle θc, and a set of 3D feature points position P. 

Output 
foreground points set F 

Algorithm 
1. Initialization : Determine the initial two-points set of foreground group 

 
2. Foreground Extraction : Iteratively integrate unclassified feature points 

into the foreground group 

 

 

WHILE no more points are added to F 
FOR EACH point Pi in F 

Find nearest point Pj in P to Pi with distance dij 

IF dij < Thd(W, d, F1, F2) THEN 
Add Pj into F 
Remove Pj from P 

END IF 
END FOR 

END WHILE 

dmin := A_VERY_LARGE_NUMBER 
FOR EACH point Pi in P 

Find nearest point Pj in P to Pi with distance dij 

IF θv(Pi, Pc, Dc) < θc OR θv(Pj, Pc, Dc) < θc THEN 
IF dij < dmin THEN 

dmin := dij 
F1 := Pi 
F2 := Pj 

END IF 
END IF 

END FOR 
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3.3 Object Mask Generation 

3.3.1 Problem Analysis on Mask Generation 

 To extract an object in an image, the most used approach is applying an object mask to 

the image to remove the unnecessary part. Feature points belonging to the object are extracted 

by the foreground extraction algorithm proposed in Section 3.1, as shown in Figure 3.3.1(b). 

The next step is to generate a proper object mask from these feature points. For instance, 

generate the object mask illustrated in Figure 3.3.1(c) from the feature points illustrated in 

Figure 3.3.1(b). 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 3.3.1  Object extraction operation : (a) original image, (b) extracted foreground points 
of (a), (c) ideal generated object mask of (a), (d) ideal extracted object of (a) 

A characteristic of the feature points distributed on the edge of object in image can be 

observed from Figure 3.3.2(a). This characteristic of distribution makes it extremely difficult 

to generate an object mask from the extracted foreground points in two aspects. First, the 
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distances among feature points are irregular which make the determination of the object 

contour ambiguous, as shown in Figure 3.3.2(c). Second, the density of feature points varies 

with respect to the object texture which leads to an ambiguity of distinguishing holes from 

surface, as shown in Figure 3.3.2(d). 

 
(a) 

 
(b) 

          
(c) 

          
(d) 

Figure 3.3.2  Ambiguity of determination : (a) the point set, (b) ideal contour of (a), (c) 
contour ambiguity of (a), (d) hole ambiguity of (a) 

Several algorithms have been proposed to deal with the problem of finding best shape 

fitting a set of points. The most simple and robust algorithm is the convex hull algorithm [9]. 

The convex hull algorithm generates minimal convex contour containing all points. However, 

the convex hull algorithm can not deal with holes and the concave parts of the model shape, 

as shown in Figure 3.3.3. 
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Figure 3.3.3  Convex hull of Figure 3.3.2 (a) 

To improve the performance when dealing with concave situation, the concave hull 

algorithm is proposed based on the convex hull algorithm [25]. Instead of looking for global 

concave contour containing all points, the convex hull algorithm finds only local concave 

contour in certain range. Theoretically, some convex parts can be preserved as all points are 

still contained by the contour. Hence, a new problem of determining the proper contour of the 

points is introduced since there are various possibilities of choosing the contour path. 

Generally speaking, the convex hull is smoother with larger range, as shown in Figure 3.3.4. 

Another issue besides the ambiguity is that, the generated contour is affected by the range of 

local concave contour and the distribution of the points. Concave hull algorithm performs 

well only when points are normally distributed. From Figure 3.3.3(a), the density of extracted 

points from Section 3.2 varies a lot and the result in Figure 3.3.5 illustrated a false contour by 

the affection of point distribution. 

 
(a) 

 
(b) 

Figure 3.3.4  Ambiguity of concave hull[25] 
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Figure 3.3.5  Concave hull of Figure 3.3.2 (a) 

Besides the above two algorithms, alpha shape algorithm [7, 13] is proposed with abilities 

of not only preserving concave parts but also process holes. Different from using lines to 

determine the contour, the concept of alpha shape algorithm is to use circles of some radius r 

to determine the contour shape. If no point lies inside some circle, than the circle area is 

eliminated. After the elimination process, the remaining area represents the shape of the point 

set, as shown in Figure 3.3.6. Though alpha shape algorithm seems to be capable of dealing 

with the concerning problem, same problem as concave hull exists. The radius of circle r 

plays an important role in determining the shape: a small r results in the misjudgment of holes, 

while large r leads to the neglect of concaves. Observing from Figure 3.3.2 (a), the 

distribution of points makes is almost impossible to determine a proper r for the algorithm. 

The result of best r obtained by a serious try and error is shown in Figure 3.3.7 (a). Although 

the result in 3.3.7 (a) is very close to the ideal contour shown in Figure 3.3.7 (b), the result is 

sensitive to r which can only obtained by try and error currently. 

 
Figure 3.3.6  Alpha shape illustration[7] 
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Figure 3.3.7  Alpha shape of Figure 3.3.2 (a) 

3.3.2 Object Mask Generation Utilizing the Convex Hull 

Algorithm 

Since the object mask generation is applied throughout the image sequence, the most 

critical requirement is the stability of the algorithm. In other words, the algorithm must 

generate object masks with minimum error when applied on all images, not only one image. 

Recalling the octree reconstruction process mentioned in Chapter 2, the object model is 

reconstructed by eliminating the non-object part. When reconstructing model from object 

mask, the over-definition part in one mask may be eliminated in other masks, while the 

over-eliminated part is removed from the model and can not be recovered again. Therefore, 

the major requirement for the mask generation algorithm is to generate masks rather 

over-defined than over-eliminated. 

Reviewing the three algorithms described in Section 3.3.1 according to the requirement. 

The alpha shape algorithm is inapplicable for the reason that, there is no method in defining 

proper circle radius r without human’s aid. The try and error method is not suitable when 

processing images one by one. If applying a fixed predefined circle radius r instead of 

optimizing it for each image, the generated object mask might be over-eliminated if holes are 

generated due to some misjudgments. On the other hand, the concave hull algorithm is also 

not adaptable for the fact that the algorithm might misjudge the concave and result in 

incomplete object masks. These two algorithms both have the possibility of over-eliminating 

the object mask. Thus, the two algorithms are both not suitable for the situation concerned. 

Therefore, the best and only choice for the object mask generation algorithm is the convex 

hull algorithm. 

The object mask generation step of the proposed background removal algorithm 
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implements the gift wrapping algorithm [9], one of the convex hull algorithms. The main 

concept of gift wrapping algorithm is to wrap all points with a foldable line. Starting from the 

leftmost point p0, a line segment l01 is linked to the point p1 which makes all other points lie 

right to the line segment l01. Then start from p1 and link a line segment l12 to next point p2 

which makes all other points lie right to l12, and so forth. The algorithm terminates when line 

segment is liked back to starting point p0, thus all points are wrapped inside a polygon 

composed of line segments, l01, l12, …, lm0 for some m. 

The concept and executing process of gift wrapping algorithm are simple except the step 

for determining if all points lie right to a line segment. Instead of searching all possible line 

segments, the determination process can be simplified just by utilizing the angle relationship 

of line segment sequence. By setting a vertical pseudo line passing the leftmost point for 

initial judgment, the line segment with minimum clockwise included angle to the previous 

line segment will make all points lie to its right. Hence, the gift wrapping algorithm is 

transformed into linking line segments in sequence, as shown in Figure 3.3.8(a). In fact, the 

judgment can be further simplified into an equivalent situation of finding the line segment 

having minimum included angle with the elongation of previous line segment, as shown in 

Figure 3.3.8(b). 

 
(a) 

 
(b) 

Figure 3.3.8  Process of gift wrapping algorithm. The dashed line indicates the pseudo line 
for initial judgment. [25] 

To fulfill the previous fact that the next line segment is chosen based on the minimum 

clockwise included angle, it is easier and faster to check all the cosine values instead of 

calculating the actual angles, since the larger cosine value implies the smaller actual angle. 

For the example in Figure 3.3.9, the cosine value of the included angle θ between line 

segments lij and ljk can be obtained as 
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( )
kjji

kjji

pppp

pppp
θcos

⋅
=   (3.3.1) 

where ji pp  and kj pp  are vectors formed by points (pi, pj) and points (pj, pk). 

By applying (3.3.1) to all points, the point with the maximum cos(θ) can be found. 

Following the same procedure, the convex hull is formed, and the object mask can be 

generated by filling the inside of convex hull with gray-level value 255, as shown in Figure 

3.3.10. The object mask generation algorithm is presented in Table 3.3.1. 

  

Figure 3.3.9  Reduced judgment situation 

(a) (b) 

Figure 3.3.10  Object extraction operation : (a) convex hull of Figure 3.3. 1(b), (b) object 
mask of Figure 3.3. 1(b) 

pi 

pj 
Pk

lij 

θ 

lik 
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Table 3.3.1  Object mask generation algorithm 
Input 
A set of 2D points position P. 

Output 
The object Mask M and an index array R indicates the order of points in P to 
form the convex hull 

Algorithm 
1. Initialization : Find the leftmost starting point and pseudo initial line 

 
2. Gift Wrapping : Generate the convex hull 

 
(Continued) 
 

j = 0 
DO 

cosθ = 0; 
FOR EACH point pk in P 

[ ]

[ ] kj

kj

ppL

ppL
θcos

R

R•
=′ ; 

IF cosθ < cosθ’ THEN 
R[j+1] = k; 

END IF 
END FOR 

[ ] [ ]jj ppL RR −= +1  

j = j+1; 
WHILE R[j] <> R[0] 

R[0] = 0; 
FOR EACH point pi in P 

IF pi is to the left of pR[0] THEN 
R[0] = i; 

END IF 
END FOR 
L = (0, 1); 
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(Continued) 
3. Mask Generation : Fill the inside of the convex hull 

 

Generate a mask image M at the same size of origin image 
Fill M with black 
FOR j = 1 to size(R) 

Draw white line on M from pR[j-1] to pR[j] 
END FOR 
Select a point pi where i not in R 
Apply flood fill on M start at pi to fill white 
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Chapter 4 
Experiment Results 

The experiment results of 3D model reconstruction by octree and object mask generation 

by convex hull are presented in Section 4.1 and 4.2, respectively. The reconstruction system 

prototype proposed in Figure 1.4 is implemented and the reconstruction result is shown in 

Section 4.3. 

4.1 Octree Reconstruction Result 
Experiments of octree reconstruction are based on the assumptions of ideal object mask 

image and object pose. Hence, the testing images of object silhouettes is generated by Maya 

PLE 8.5[2] instead of taking pictures in real world. The reason for generating testing image 

using 3D animation software such as Maya PLE 8.5 is that, object pose can be precisely 

controlled and the object silhouettes can be perfectly acquired through the software. 

The 3D scene for generating test object silhouette image by Maya PLE 8.5 is designed and 

shown in Figure 4.1.1. A test object is specially designed with a hole to test if the octree can 

reconstruct an object model correctly for an object with holes. A camera is fixed in front of 

the object and facing it to capture test images, as shown in the bottom-left corner of Figure 

4.1.1. Represented by five sets of brown arrows, five white lights are placed on the top, 

bottom, right, left, and in front of the test object. The object surface is set to fully reflect these 

lights. As a result, a white object in front of a black background makes an ideal object 

silhouette. 

With the 3D scene, the object silhouette image is taken for every 10 degrees rotation of 

the object respect to the y axis. The resolution of the obtained silhouette images is 640x480 in 

pixel. Some silhouette images and corresponding object poses are shown in Figure 4.1.2. 
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Figure 4.1.1  Arrangement for taking object silhouette image. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.1.2  Object silhouettes generated by Maya PLE 8.5 : (a) object silhouette with 
rotation=(0°,0°,0°) and translation=(0,0,0), (b) object silhouette with rotation=(0°,90°,0°) and 
translation=(0,0,0), (c) object silhouette with rotation=(0°,180°,0°) and translation=(0,0,0), (d) 

object silhouette with rotation=(0°,270°,0°) and translation=(0,0,0) 

Y 

Z 
X 



 36

As described in Chapter 2, the octree reconstruction process is based on shrinking of 

object model according to a set of continues images. Hence a test using only one image is 

performed first to make sure that the octree works correctly. The result of applying Figure 

4.1.2(a) to the octree with max depth of 7 is shown in Figure 4.1.3. Figure 4.1.3 shows only 

the ON cubes determined after the octree process and the hole in Figure 4.1.2(a) is also 

reconstructed. 

After making sure the octree process is functional, the experiment of applying all 

silhouette images to the octree is made. The whole process takes about 17 seconds with 36 

630x480 silhouette images, and the reconstructed ON-cube model and triangulated model are 

shown in Figure 4.1.4 and Figure 4.1.5, respectively. 

 
Figure 4.1.3  Reconstruction result of applying Figure 4.1.2(a) to the octree with max depth 

of 7. The figure shows only the ON cubes. 

 
Figure 4.1.4  Reconstructed ON-cube model of input silhouette 
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Figure 4.1.5  Triangulated model of applying triangulation process to the ON-cube model of 

Figure 4.1.4. 

4.2 Background Removal Result 
The experiment of background removal takes an image sequence of an object in 

unprepared environments as the input and generates the mask of the object. Mention that the 

proposed algorithm requires the 3D information of camera pose and feature point position, as 

described in Chapter 3. Hence, a camera tracker is required as a pre-process for the mask 

generation process. The voodoo camera tracker [21] is adopted to perform the task of 

reconstruction 3D camera poses and feature point positions of the image sequence. The result 

from voodoo camera tracker is then applied to the proposed algorithm to generate the mask of 

foreground object. The test image sequences are taken by a handheld free-motion camera, 

orbiting around and aiming at the target object. Meanwhile, the target object for each test is 

placed in an unprepared environment. The algorithm applies to two different cases for testing 

the performance. 

4.2.1 The Toy-on-Table Sequence 

The first experiment, referring to the scene of a small scale, is shooting at a toy placed on 

a table in a range about 60 degrees, called the Toy-on-Table sequence. The sequence contains 

134 frames with frame rate of 30 fps, resolution of 640x480 in pixel, and color depth of 24-bit. 

Three frame of the sequence are shown in the “Original frame” column of Figure 4.2.1, while 

the corresponding foreground feature point distribution and background removal results are 

shown in the “Separated foreground feature points” column and “Background removal result” 

column of Figure 4.2.1, respectively. For the more detailed results, result of the 
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foreground/background separation step, the first step of proposed algorithm, is shown in 

Figure 4.2.2. The whole process takes about 82 minutes to run on a laptop with Intel T2500 

2.0GHz CPU and 512MB ram of DDRII-667. However, 81 minutes, or 98.7% of the 

execution time is spend on the camera tracking process. 

 Original frame 
Separated foreground 

feature points 
Background removal result 

(a) 

 

(b) 

 

(c) 

 

Figure 4.2.1  Frames of the Toy-on-Table sequence, the background of “Background 
removal result” is changed to gray for clear view: (a) frame #0, (b) frame #67, (c) frame #134 

Observing Figure 4.2.1, the performance of background removal varies from (a) to (c). 

The background removal extracts the object precisely in Figure 4.2.1(a), but shows 

non-ignorable large error in Figure 4.2.1(c). To probe into the causes of the error, three factors 

are found besides the one of adopting convex hull algorithm mentioned in Chapter 3. The first 

factor is the error of foreground/background separation. Because the object mask is directly 

generated by the foreground points, any error in foreground point determination may directly 

interferes the object mask result, which is clearly seen in the “Separated foreground feature 

point” image of Figure 4.2.1(c). The second factor is the lost of feature points on edges due to 
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the detection algorithm adopted by the voodoo camera tracker. The above two factors mainly 

influence on the background removal result. 

The last factor is caused by the error of the camera tracker’s estimation process, including 

errors in 3D feature point positions, 3D camera positions, and 3D camera orientations. Note 

that this factor does not generate clear influence on the result when compared to the above 

two factors, for the reasons that the estimation error is small and the projection from 3D onto 

2D reduces the error. Viewing Figure 4.2.2 again, the error in 3D feature point positions can 

be judged from two parts. The first part can be seen as some yellow points around the 

foreground object points marked in green, circled by orange ellipse, which should not exist in 

the original image. The second error is the yellow points in the left part, circled by red ellipse. 

Notice that the input image sequence was taken around the object in about 60 degrees, there 

should be no such points on the left part since no information were provided. 

 
Figure 4.2.2  Foreground/background separation result the Toy-on-Table sequence. The 
green points are the foreground points and the yellow points are the background points. 

4.2.2 The Statue Sequence 

Different from the indoor condition in 4.2.1, the scale of scene of outdoor condition is 

larger than the indoor condition. The Statue sequence is the test sequence taking outdoor 

shooting at a statue in an open environment in a range about 70 degrees. The Statue sequence 

is an image sequence of 60 frames with frame rate of 15 fps, resolution of 640x480 in pixel, 

and color depth of 24-bit. Same as Section 4.2.1, Figure 4.2.3 shows the result of three frame 

of the Statue sequence and Figure 4.2.4 shows the result of the foreground/background 

separation step. Also mentioned that the whole process takes about 9 minutes to run on a 
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laptop with Intel T2500 2.0GHz CPU and 512MB ram of DDRII-667. Also the same as 

Section 4.2.1, 8 minutes, or 88.9%, of the processing time is spent on the camera tracking 

process. 

 Original frame 
Separated foreground 

feature points 
Background removal result 

(a) 

 

(b) 

 

(c) 

 

Figure 4.2.3  Frames of the Statue sequence, the background of “Background removal 
result” is changed to gray for clear view: (a) frame #0, (b) frame #30, (c) frame #60 

Comparing to Section 4.1, the most obvious difference is the background result affected 

by the shape of target object. For instance, since the object shape in Figure 4.2.1 is 

approximately a convex, the convex hull algorithm successfully generates object masks close 

to the object shape. However, when the convex hull algorithm applies to an object not solely 

composed of convex shape, as shown in Figure 4.2.3, it fails to recover the concave parts of 

the object. Even though the foreground separation result reveals the shape of the target object, 

the background removal result contains a large part of background due to the convex hull 

algorithm. Furthermore, Figure 4.2.4 also shows the serious influence of missing feature 

points on edges even though more feature points are detected than Figure 4.2.2. 
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Figure 4.2.4  Foreground/background separation result of the Statue sequence. The green 

points are the foreground points and the yellow points are the background points. 

4.3 3D Model Reconstruction System Result 
Combining camera tracker, octree and proposed background removal algorithm, a new 3D 

model reconstruction system prototype is proposed, as mentioned in Section 1.3. However, 

after testing several available camera trackers including voodoo camera tracker 0.9.1 beta[21], 

PFTrack 4.0 evalution[34], ICARUS v2.09 personal edition[17], and SynthEyes Demo[1], a 

limitation of these camera trackers has been revealed. These camera trackers can only 

reconstruct information from image sequences taken by camera with change in viewing angle 

less than about 80 degrees. The limitation comes from the assumption of camera trackers that 

most of the feature points detected must remain in sight. Camera trackers reconstruct 3D 

information based on tracking the position change of these feature points. Once the change in 

viewing angle is larger than about 80 degrees, feature points in some frame may be quite 

different from another frame. Yet the camera tracker still tries to track feature points that are 

already lost and find a best solution of the 3D camera pose and feature point positions. As a 

result, the reconstructed information is totally collapsed due to the invalid tracking. 

Observing Figure 1.3.1, the reconstructed 3D information from camera tracker is crucial 

for the proposed reconstruction system. The proposed reconstruction system can not function 

effectively without information from 360-degree object image sequences due to the camera 

tracker limitation. Instead, scale-down experiments are adopted to verify the reconstruction 

system. With the use of the Toy-on-table and Statue sequences in Section 4.2, the 

reconstruction results are shown in Figure 4.3.1 and 4.3.2 respectively. 
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(a) (b) 

Figure 4.3.1  Reconstruction result of Toy-on-table sequence. (a) octree model, (b) triangular 
model. 

 
(a) 

 
(b) 

Figure 4.3.2  Reconstruction result of Statue sequence. (a) octree model, (b) triangular 
model. 

Viewing from Figure 4.3.1 and Figure 4.3.2, shapes of reconstructed models are much 

different from the target objects. The models are hollow since the results show only ON cubes 

and the hollow parts inside the surface actually represent undetermined cubes identified as IN 

cubes. The dissimilarity between object models and target objects is caused by two factors. 

The first factor is the object mask generated by the convex hull algorithm, as mentioned in 

Section 4.2, which is adopted to preserve the largest possible shape of the object. However, 

the concave part of the object shape is ignored at the same time, so that the reconstructed 

models can not reveal the concave surfaces. The second factor is the lack of 3D information. 
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Since the image sequence provides only 80 degrees of view, the available information is 

limited in the provided viewing range. Hence, the octree algorithm can only trim the 3D 

model in the range and then leads to an incomplete model. 
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Chapter 5 
Conclusion 

5.1 Conclusion 
This thesis proposes a new prototype of 3D object reconstruction system dealing with 

more general cases. However, a 3D object reconstruction system requires knowledge and 

technologies of many aspects that can not be all mastered during the research period. Hence, 

the implementation of proposed system integrates some existing algorithm and programs, 

including the octree algorithm, the convex hull algorithm, and the voodoo camera tracker 

mentioned in Chapter 2, Section 3.3, and Section 4.2, respectively. Since the performance and 

stability of these integrated parts are verified by many researches and applications, the 

reconstruction system only focuses on the performance of background removal algorithm 

mentioned in Chapter 3. 

Section 4.1 shows that the octree algorithm functions as rebuilding the 3D model from 

silhouettes and corresponding camera poses. Next in Section 4.2 shows the proposed 

background removal algorithm is workable, yet a lot to be improved. Unfortunately, 

experimental results in Section 4.3 reveal that the performance of the proposed system is 

restricted to the background removal algorithm and the camera tracker, especially the latter. 

As mentioned above, this thesis focuses on proposing a brand new system dealing with 

problems never dealt before. This thesis proves the proposed algorithm and system structure 

are useful and many work can be done in the future to make the system better, as explained in 

the next section. 

5.2 Future Work 

5.2.1 The Camera Tracker 

The limitation and effect of the existing camera tracker is presented in Section 4.3. 

Actually, the proposed algorithm can not fully work if the camera tracker limitation is not 

removed. This makes the camera tracker becomes the most major part in the proposed system 

to be improved. The experiment on different camera trackers shows that the limitation is a 
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essential problem for all camera trackers. The problem should be a defect of the existing 

camera tracking algorithms. Hence, modifying the existing algorithm or designing a new 

algorithm for the shooting condition mentioned in this thesis is required. 

The typical structure of a camera tracker is shown in Figure 5.2.1. The problem mentioned 

is caused by the feature point tracking block in the camera tracker. To deal with the problem, 

the feature point tracking algorithm must be improved to be able to determine whether a 

tracked point is appearing or disappearing in some frame. With the improvement, a point is 

tracked only when it is visible to the camera, not through out the image sequence. To achieve 

the requirement, the feature point tracking algorithm must track feature points based on not 

only the low level information such as edge, color, and texture, but also the information of 

higher level like geometry relationship. Hence, algorithms of higher information processing 

like image interpretation and understanding might be integrated into the point tracking 

algorithm. 

Camera Tracker

Feature Point
Tracker

Image
Sequence

Camera
Calibration
Infomation3D Information

Estimation

2D Tracked
Points

3D Information
Refinement

3D Information

3D Information

  
Figure 5.2.1  System structure for depth-map recovery algorithm 

Besides the limitation of camera shooting angle, another minor improvement for the 

feature point tracker is also required for better background removal performance. As 

mentioned in Section 4.2, some important features including edges and corners of the object 

are not tracked by the feature point tracker. The lack of certain points makes the following 
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process, the object mask generation in Section 3.3, becoming more complex and difficult to 

recover the shape of the object. In other words, more feature points provided, more accuracy 

the object mask becomes. Hence, the algorithm of feature point extraction could be improved 

to obtain more feature points on the object surface to support the background removal 

algorithm. 

5.2.2 The Background Removal Algorithm 

The background removal algorithm is composed of two steps. Currently, each step 

implements simple algorithm and works as a prototype. For the foreground/background 

separation step, the current algorithm applies a modified nearest neighbor algorithm on 3D 

point positions to separate points. The algorithm is fast and simple but not accurate enough. 

The separation step should imports information, such as texture, edge, and shape segment, 

from the object image to assist the separation algorithm. These information could be useful to 

eliminate points which are near but do not belong to the object. 

On the other hand, the object mask generation step must be improved to be capable of 

dealing with concave contour and holes. From Section 4.2, it is clear that the ability is crucial 

for the quality of reconstructed model. However, it is difficult to determine the concave 

contour and holes of the object even with sufficient 2D point information. To obtain the 

accuracy object mask, information including texture and edges from object images must be 

taken into consideration to the object mask generation, same as the previous step. 

5.2.3 The Texture Mapping Block 

Though the texture mapping is a well-developed algorithm, the algorithm is much 

complex than octree algorithm and takes much time to implement. Hence, the texture 

mapping block is not implemented in the current system. However, a 3D model 

reconstruction system is incomplete without the texture mapping process, as a 3D model is 

incomplete without texture. The texture mapping block must be implemented in the future. 
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