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中文摘要 
 

 在很多領域，三角積分類比數位轉換器近來非常受歡迎。而三角積分類比數

位轉換器主要由類比電路(三角積分調變器)和數位電路(降頻器)所構成。然而，

數位電路部分佔據了整個三角積分類比數位轉換器的絕大多數積體電路面積。而

且對於可變超取樣率的三角積分類比數位轉換器而言，需要不同頻寬的數位濾波

器去取出所要的訊號頻段，這樣的需求也會導致額外的數位電路面積消耗。 

 

 在此，一個針對可變超取樣率三角積分類比數位轉換器的低面積降頻器被設

計與實現。而最主要的改良是在於裡頭的高階有限脈衝響應濾波器。對於調換結

構並採用多相分解的有限脈衝響應濾波器，可藉由使用摺疊和儲存元件共享技巧，

並且在此主要配合使用特別的控制電路去改變計算程序以重複使用儲存元件來

達到降低面積的目的。在此提出的電路架構，與廣泛採用的直接結構摺疊架構相

比，由於只需使用一半的儲存元件，因此可得到較小的電路面積。此外，在此提

出的架構不因節省面積而對電路的其他特性有所損傷，也就是本架構除了面積較

小外，關鍵路徑也較短，等待週期也較少並且尖峰功率消耗也較小(平均功率在

相同的水平)。 

 

 由於只需使用一半的儲存元件，本架構相對於直接結構摺疊架構而言，可使

降頻器裡的高階有限脈衝響應濾波器減少 24.6%的矽面積，進而達到整體使用四

個階段降頻器 15.8%的面積節省(對於三個階段降頻器，整體面積則可減少

20.9%)。 
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Abstract 

 

The sigma-delta modulation (SDM) has become a very popular analog to digital 

conversion technique in many fields. A sigma–delta A/D converter consists of analog 

circuits (sigma–delta modulator, SDM) and digital circuits (decimator). However, the 

silicon area of sigma-delta A/D converters is governed largely by the digital parts. 

Moreover, the distinct bandwidth digital lowpass filters are required to perform 

selecting-signal for programmable oversampling ratio SDM, which results in extra 

filters hardware consumption in digital part of SDM A/D converters.  

 

The small area decimator for programmable oversampling ratio SDM A/D 

converters is designed and implemented. The main improvement in this thesis is 

focused on the high order FIR filter of decimator. Combing the folding and the 

storage elements sharing techniques for decimation FIR filters using polyphase 

decomposition in transposed-form as well as changing the computation procedures 

mainly to reuse storage elements by using extra control circuits, the area reduction 

compared with the widely used folded FIR filter architecture in direct-form is 

obtained due to half storage elements (registers) requirement. In addition, the extra 

advantages of my proposed folded decimation FIR filter architecture based on 

transposed-form are shorter critical path, smaller peak power (average power in the 

same level), and shorter latency. 

 

As a result of half registers requirement, the 24.6% area reduction for high order 

(126
th

-order) FIR filter is obtained, which result in 15.8% area reduction for the 

4-stages decimator (20.9% area reduction for 3-stages decimator). 
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 CHAPTER 

 1     

 __________________________________ 

Introduction 

 

 
With the advance in VLSI technology, sigma-delta modulation (SDM) has 

become a very popular analog to digital conversion technique in many fields, such as 

voice, audio, telecommunication (wireless: 3G and 4G mobile terminals; wire-line: 

xDSL moderns ), etc. Since high resolution of sigma-delta A/D converters can be 

achieved by techniques, over-sampling and noise-shaping, even using 1-bit quantizer 

in the A/D converter [1]. That relieves the analog circuit design, which means that no 

accurate multi-bit quantizer is needed, like 16-bit or 24-bit quantizer, and a wide 

transition-band of anti-aliasing analog filter can be accepted due to over-sampling 

(imply that analog filter is easy to design and its cost is low). However, it needs 

digital hardware to finish the remaining A/D conversion jobs, which are removing 

out-of-band quantization noise, converting 1-bit to multi-bit (such as 16-bit) and 

down-sampling to Nyquist rate. In other words, the sigma-delta is one kind of A/D 

conversion method which moves the high resolution difficulty encountered in analog 

part to digital part. So the high resolution sigma-delta A/D converters are more 

attractive and applicable than other A/D conversion methods as the VLSI technology 

advances. 
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In addition, wireless communication devices demand multi-standard operation, 

which means that different signal bandwidth and different dynamic range 

requirements are needed. And a sigma-delta A/D converter is a best choice to perform 

baseband channel select filtering in digital domain as well as to meet these different 

bandwidth and dynamic range requirements by changing sampling rate and selecting 

over-sampling ratio (OSR), respectively. 

 

1.1 Motivation 

A sigma–delta A/D converter consists of analog circuits (sigma–delta modulator, 

SDM) and digital circuits (decimator, namely decimation filter and down-sample 

circuit). Although the resolution of the sigma-delta A/D converter is typically 

determined by the analog modulators, silicon area of the sigma-delta A/D converter is 

governed largely by the digital decimation filters. For example, the digital part of 

sigma-delta A/D converter governs 78% area in [2]. So it is more important to reduce 

the not crucial part’s silicon area, namely digital part’s silicon area. 

 

Furthermore, for a programmable OSR sigma-delta A/D converter, a decimation 

filter with programmable decimation ratios is needed. That means different low-pass 

filters are needed to obtain different spectrums for down-sampling. Therefore, digital 

hardware would increase by several times. As a result of that, digital parts of the 

sigma-delta A/D converter would govern more silicon area percentage. 

 

For cost concerns, the silicon area of the sigma-delta A/D converter must be 

minimized. Of course, the silicon area of the digital part (decimator) is main part 

needed to be improved, which dominates the silicon area of whole A/D converter. And 

typically, decimator consists of comb filter and several stages finite-impulse-response 

filters (FIR filters). The high order FIR would dominate the decimator silicon area. 

For instance, area of high order FIR filter would govern 80% decimator area in a three 

stages decimator case (comb, 18
th

-order FIR, and 126
th

-order FIR). 

 

Now, it is quite obvious that area of high order FIR filter is the main part this 

thesis wants to improve as well as to keep the programmable decimation ratio 

decimator area overhead minimum. 

 

1.2 Fundamentals 

This section would introduce the concepts of signal processing and show the 

meaning of signal processing terminologies, such as sampling theorem, aliasing, 

folding-band, etc. Also, principle of sigma-delta A/D converter would be described. 
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1.2.1 Sampling Theorem [3] 

Let xc(t) be a band-limited continuous-time signal with 

 

Xc(f)=0  for |f|≥fB  

 

 Xc(f) is continuous-time Fourier transform of xc(t). And xc(t) and Xc(f) are shown 

in Figure 1.1(a) and Figure1.1(b), respectively.  

 

t f
fB

xc(t) Xc(f)

1

-fB
0 0

(a) (b)

 

Figure 1.1 (a) Continuous-time signal xc(t) (b) its (continuous-time) Fourier transform 

Xc(f) 

 

 It is convenient to understand the continuous-time to discrete-time conversion 

mathematically in two stages depicted in Figure 1.2, namely sampling process [3].  

 

x
xs(t)

Conversion from 

impulse train to 

discrete-time 

sequence

xc(t)

s(t)

x[n]=xc(nT)

 
(a) 

t

s(t)

0 T 2T 5T3T 4T 6T 7T

…………

 

(b) 

Figure 1.2 (a) Continuous-time to discrete-time conversion system (b) periodic 

impulse train s(t) 
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s t =  δ t − nT ∞
𝑛=−∞  (1.1) 

   

  

xs t = xc t s t = xc t  δ t − nT ∞
𝑛=−∞  (1.2) 

 

xs t =  xc nT δ t − nT ∞
𝑛=−∞   (1.3) 

 

 

 And, continuous-time Fourier transform of s(t) and xs(t) are S(f) and Xs(f), 

respectively.  

 

S f = fs  δ∞
k=−∞  f − kfs    (1.4) 

where fs=1/T 

 

Xs f = Xc f ∗ S f = fs  Xc
∞
k=−∞  f − kfs   (1.5) 

 

 The time domain and continuous-time frequency domain of signal xs are shown 

in Figure 1.3. T is periodic sampling period, and its reciprocal, fs=1/T, is the sampling 

frequency. 

 

t f
fB

xs(t) Xs(f)

1/T

fs-fs -fB fs-fB

0.5fs

-fs+fB

-0.5fs

00 T 2T

xc(t)

5T3T 4T 6T 7T

(a) (b)

fs+fB-fs-fB

…… …………

 

Figure 1.3 (a) Sampled signal xs(t) (b) its (continuous-time) Fourier transform Xs(f) 

 

 Xs(f) consists of periodically repeated copies of Xc(f) ,which are shifted by 

integer multiples of sampling frequency. It is obvious that when  

fs-fB > fB 

the replicas of Xc(f) do not overlap, which means the signal xc(t) could be recovered 

from xs(t) with an ideal low-pass filter. The minimum sampling rate for non-overlap 

(no aliasing) is fs=2fB, which is called Nyquist rate. 
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 For discrete-time signal processing, discrete-time sequence, x[n], is a better 

representation for computer and digital system design (including digital filter). Also, 

the discrete-time Fourier transform would be introduce, which is suitable for 

discrete-time signal. And its relation is shown below in Figure 1.4. 

 

t fd
fB/fs

x[n] X(fd)

1/T

1-1 -fB/fs 1-fB/fs

0.5

-1+fB/fs

-0.5

00 1 2

xc(t)

53 4 6 7

(a) (b)

-1-fB/fs 1+fB/fs

………………

 

Figure 1.4 (a) Discrete-time sequence x[n] (b) its discrete-time Fourier transform 

(DTFT) X(fd) 

 

fd =
f

fs
 

  x n = xc 𝑛𝑇      − ∞ < 𝑛 < ∞   𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

 

 fd is digital frequency for discrete-time sequences, which means frequency for 

discrete-time Fourier transform. fd is frequency normalized to sampling frequency, fs. 

Because there is no time information on the discrete-time sequence x[n], there is no 

frequency information (Hz) for discrete-time Fourier transform (only normalized 

frequency between -0.5~0.5). And 1 in fd represents the sampling frequency. 

 

 For conveniences, the digital frequency fd will be used in following chapters to 

design and illustrate digital filter spectrum. And if x[n] is a real number sequence, the 

X(fd) will be even function, which means that only frequency range between 0 and 0.5 

needs to be depicted in spectrum graphs. 

 

1.2.2 Principle of Sigma-Delta A/D Converter [1] 

 Previous section introduces the continuous-time to discrete-time conversion, 

namely sampling. However, the analog to digital (A/D) conversion consists of 

sampling and quantization, which are discrete in time and amplitude respectively. 

 

 It is called a quantization process that an infinite number of input amplitude 

values are mapped into finite number of output amplitude values, which is shown in 

Figure 1.5. 
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Δ

Input

x[n]

output

y[n]

V

-V
 

Figure 1.5 Transfer Curve of a quantizer 

 

    For a N-bit quantizer with quantization levels L=2
N
, quantization error between 

output and input do not exceed half a least significant bit (LSB).  

Δ=2V/(L-1)= LSB 

−∆/2 ≤ e ≤ ∆/2 

e is quantization error, i.e., e=output-input. That implies 

y[n]=x[n]+e[n] (1.6) 

In order to simplify the analysis of quantization error, some assumptions about 

noise process due to quantization are made: 

 The error sequence, e[n], is a sample sequence of the stationary random process. 

 The error sequence, e[n], is uncorrelated with the input. 

 The probability density function of random process e[n] is uniform distributed 

over [−∆/2, ∆/2]. 

 The random variables of random process e[n] are uncorrelated, i.e., the random 

process e[n] is a white noise process, which means that the power spectrum 

density of e[n] is uniform distributed over [-0.5,0.5] in fd.   

 

These assumptions are reasonable when N is large, quantizer is not overloaded, 

and the successive signal values are not extremely correlated [1]. 

 

 Under those assumptions, the analysis of quantization error is quite simple. For 
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example, the power of e[n] is its variance σe
2  

 

σe
2 =

∆2

12
=

 
2V

L−1
 

2

12
=

 
2V

2N −1
 

2

12
≅

 
2V

2N  
2

12
  (1.7) 

 

 And then, the signal to noise ration, SNR is 

SNR = 10 log  
σx

2

σe
2   (1.8) 

where σx
2 is signal power. For sinusoidal input, amplitude is V, and then signal power 

σx
2 is V

2
/2. 

SNR = 10 log  
σx

2

σe
2 = 6.02𝑁 + 1.76  (𝑑𝐵)  (1.9) 

 The meaning of this Equation 1.9 is that SNR would increase about 6dB when 

one bit increased in N. However, when N is larger than 10-bit, the precision of 

quantizer is hard to maintain due to the very small ∆ (LSB). For example, 10-bit 

quantizer means that the quantization levels is L=2
10

, which implies that 

Δ=2V/(L-1)=2*1.8/(2
10

-1)=3.52x10
-3

 (Volt) for V=1.8 (Volt). Any component 

mismatches and process variation would cause quantization error greater than ∆, 

which means the N-bit resolution could not be obtain. 

 

 To obtain high resolution, two techniques, oversampling and noise-shaping, can 

be used to overcome the difficulties encountered in above situations. 

 

Oversampling 

 Oversampling means that signal samples are acquired from analog signal 

waveform much faster than Nyquist rate. For quantization noise assumptions, the 

noise would uniform distributed over [-0.5, 0.5] in fd. And then the technique, 

oversampling, would change the distribution of signal power spectral density in fd. 

For example, the signal power spectral density (PSD) would distributed over [-0.125, 

0.125] for over-sampling-ratio (OSR=4), which is different from signal PSD 

distributed over [-0.5, 0.5] for Nyquist rate sampling. Also the magnitude of signal 

PSD would change according to sampling frequency (see section 1.2.1, 1/T in Figure 

1.4), which makes the signal power identical with different sampling frequency or 

OSR. The PSD of signal and quantization noise with different sampling frequency are 

shown in Figure 1.6. 
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0
fB/fs1=0.5-fB/fs1=-0.5

fd fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

PSD

Px(f)

Pe(f)

Pxo(f)

Pe(f)

OSR=4

fs2= 4*fs1 

fs1= Nyquist rate

    =2fB

(a) (b)

0

SNR=(1x2)/(1x1)=2

1
2

SNR=(0.25x8)/(1x1)=28

1

 

Figure 1.6 Power spectral density of signal and quantization noise  

(a) Nyquist sampling (b) oversampling  

 

 Before further digital signal processing, the SNR of Figure 1.6(a) and Figure 

1.6(b) are the same. However, oversampling makes the distribution of signal PSD 

different. For OSR=4, the signal PSD is distributed over [-0.125, 0.125], which means 

that a digital low-pass filter could be utilized to remove the quantization noise out of 

the range [-0.125, 0.125] and higher SNR can be obtained. The improved SNR is 

illustrated in Figure 1.7. 

 

0
fB/fs1=0.5-fB/fs1=-0.5

fd fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

PSD

Px(f)

Pe(f)

Pxo(f)

Pe1(f)

OSR=4

fs2= 4*fs1 

fs1= Nyquist rate

    =2fB

(a) (b)

0

SNR=(1x2)/(1x1)=2

2

1

SNR=(0.25x8)/(0.25x1)=88

1

 

Figure 1.7 Power spectral density of signal and quantization noise  

(a) Nyquist sampling (b) oversampling and removing out-of-band quantization noise 
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The improved SNR by oversampling= the original SNR * OSR 

        or 

The improved SNR by oversampling= the original SNR + 3.01*log2OSR (dB) 

 

 

 Because no signal information on the frequency [-0.5, -0.125] and [0.125, 0.5], 

that means the lower sampling frequency, such as Nyquist rate (2*fB), can be used to 

represent the signal well. And then the PSD is changed as Figure 1.8 

 

fd

fB/fs1=0.5-fB/fs1=-0.5

PSD

Px(f)

Pe2(f)

0

SNR=(1x2)/(1x0.25)=8

2

0.25

 

Figure 1.8 Power spectral density of signal and quantization noise after 

down-sampling 

 

 Now, Figure 1.9 (from Figure 1.6(b) to Figure 1.7(b) and then to Figure 1.8) 

demonstrates the function of the decimator, which is composed of digital low-pass 

filter and downsampler (circuit of lowering the sampling rate) shown in Figure1.10. 

 

fd

fB/fs1=0.5-fB/fs1=-0.5

PSD

Px(f)

Pe2(f)

0

SNR=(1x2)/(1x0.25)=8

2

0.25
fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

Pxo(f)

Pe1(f)

0

SNR=(0.25x8)/(0.25x1)=8

8

1fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

Pxo(f)

Pe(f)

0

SNR=(0.25x8)/(1x1)=2

8

1

Digital low-pass filter Downsampler

fs1=fs2/4

Figure 1.9 Procedure to obtain Nyquist rate high SNR signal 
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Ideal Digital Low-Pass Filter
Downsampler

↓

Decimator

 

Figure 1.10 Decimator components 

 

Noise Shaping 

 In above quantization noise assumptions, the quantization noise PSD is uniform 

distributed over [-0.5, 0.5] in fd. And noise-shaping is a modulation technique to 

change the shape of the quantization noise PSD. 

  

 Now, for easily understanding, z domain representations of signal would be 

introduced. Z-transform is a best representation for discrete-time signal and systems 

as Laplace transform for continuous-time. Also z-transform has a similar relationship 

to the corresponding Fourier transform, which is z = ej2πfd . For conveniences, the 

z-transform of input (x[n]), output (y[n]), and quantization error (e[n]) would be used 

and relationship of A/D could be expressed as follows:  

 

Y(z) =X(z)+E(z) (1.10) 

 

where Y(z), X(z), and E(z) are z-transform of y[n], x[n], and e[z], respectively. 

 

 Generally, some modulation could be used during the A/D conversion, so the 

relationship between output, input, and quantization error could be rewrite as follow: 

 

Y(z) =X(z)Hx(z)+E(z)He(z) (1.11) 

 

 Noise-shaping is a technique to change the distribution of quantization noise 

PSD over [-0.5, 0.5] in fd as Figure 1.11. 
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0 fB/fs1=0.5-fB/fs1=-0.5

fd

PSD

Px(f)

Pes(f)
2

 

Figure 1.11 Power spectral density of signal and quantization noise for noise-shaping 

 

 

Sigma-Delta A/D converters 

 Sigma-delta A/D converters is based on two techniques, oversampling and 

noise-shaping. Combining oversampling and noise shaping, sigma-delta A/D 

converters could obtain a very high resolution (SNR). The general form for k
th

-order 

sigma-delta modulator could be written as: 

 

Y(z) =X(z)z
-k 

+ E(z)(1-z
-1

)
k
  (1.12) 

 

Hx(z)= z
-k

 (1.13) 

He(z)= (1-z
-1

)
k
  (1.14) 

 

 Now the peak SNR for sinusoidal signal can be derived according to 

quantization bit N, OSR, and k
th

-order SDM noise transfer function: (f represents 

normalized frequency, fd, for following analysis) 

 

z = ej2πf  , the relationship between z domain and frequency domain 

 (1.15) 

Hx(f)=e−j2πkf  (1.16) 

 

 

He(f)= 1 − e−j2πf 
k
=  e−jπf ejπf + e−jπf  

k

 

= 2k e−jkπf sink πf      (1.17) 
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For Y(f)=X(f)H(f) in frequency domain, i.e., y[n]=x[n]*h[n] in time domain, and  

then the relationship of the power spectral density (PSD) between input, output, 

transfer function is Py f = Px f  H f  2  . So,  

 

0 0.5-0.5

fd

PSD

PxSDM(f)

PeSDM(f)

-fB/fs=

-0.5/OSR

fB/fs=

0.5/OSR

In-band noise

 

Figure 1.12 Power spectral density of signal and quantization noise for oversampling 

and noise-shaping 

 

 

 

PxSDM  f = Px f  Hx f  2    

                  =  Px f  e−j2πkf  
2 

  

                  =  Px f   (1.18) 

 

PeSDM  f  = Pe f  He f  2   

                  =  Pe f   1 − e−j2πf 
k
 

2
  

                   =  Pe f   2ke−jkπf sink πf  
2
  

                   =  Pe f 22k sin2k πf    (1.19) 
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PxSDM(f): Signal PSD of SDM over [-0.5/OSR, 0.5/OSR] in f, i.e. fd. 

PeSDM(f): Quantization noise PSD of SDM over [-0.5, 0.5] in f, i.e. fd 

 

 

 

Px f =
σx

2

1
OSR 

=
V2

2
OSR  (1.20) 

Pe f  =
∆2

12

1
=

(
2V

2N −1
)2

12
≅

(
2V

2N )2

12
  (1.21) 

 

Signal power is still the same PWRsignal = σ
x

2 =  
V2

2
OSR df =

0.5

OSR
−0.5

OSR

V2

2
 

 

 As a result of that signal spectrum is distributed over [-fB/fs, fB/fs] (or [-0.5/OSR, 

0.5/OSR]). So inband quantization noise power QNin-band : 

 

QNin−band =  Pe f  He f  2 df
0.5

OSR
−0.5

OSR

  

                     =
(

2V

2N )2

12
22k  sin2k πf  df

0.5

OSR
−0.5

OSR

  

                     =
 

2V

2N  
2

12
22k   πf 2k df

0.5

OSR
−0.5

OSR

  

                     = 
 

2V

2N  
2

12
22k 1

2k+1

1

π
[(

0.5π

OSR
)2k+1 − (

−0.5π

OSR
)2k+1] 

                     =  
 

2V

2N  
2

12
22k 1

2k+1

2

π
 (

0.5π

OSR
)2k+1  

                     =  
 

2V

2N  
2

12

1

2k+1

1

π
 (

π

OSR
)2k+1  

                     =  
 

2V

2N  
2

12

π2k

2k+1
 (

1

OSR
)2k+1  

                     =  
1

3

V2

22N

π2k

2k+1
 (

1

OSR
)2k+1  (1.22) 

 

For x ≈ 0, and then sin(x) ≈ x, so for OSR>8, i.e., 0.5/OSR≈0 =>sin(πf)= πf 

 

SNRpeak   dB = 10 log  
PWR signal

QN in −band
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                           = 10 log  
V 2

2

1

3

V 2

22N
π2k

2k +1
  

1

OSR
 

2k +1    

                           = 10 log  
3

2

 22N   2k+1 

π2k   OSR 2k+1   

                     = 10 log  
3

2
 + 10 log  22N + 10 log 2𝑘 + 1  

                                    +10 log   OSR 2k+1 − 10 log π2k  

                           = 1.76 + 6.02N +  20k + 10 log OSR + 10log(
2𝑘+1

π2k )  

                            = 1.76 + 6.02N +
 20k+10 

3.32
log2 OSR + 10log(

2𝑘+1

π2k )  

                                     = 1.76 + 6.02N +  6.02k + 3.01 log2 OSR + 10 log  
2𝑘+1

π2k    

 (1.23) 

 

 From Equation 1.23, it is obvious that sigma-delta can obtain a very high SNR, 

such as SNR=167.2 (dB) for a 1-bit, OSR=128 4
th

-order SDM. And for every 

doubling of OSR, the SNR improves by (6k+3) dB. That means high order SDM 

could improve more SNR for doubling OSR. The higher order of SDM implies the 

better noise-shaping (noise attenuation in signal-band), and you can see that in 

Fiugre1.13. So, it is a good idea to combine the two techniques, noise-shaping and 

oversampling.  

 

 According to Equation 1.23, a SNR table (Table 1.1) with different OSR and 

order of SDM using one bit quantizer is shown below. Also, SNR values for other 

number of quantizer bit N is easy to obtain by Table1.1. For an N-bit quantizer, the 

new SNR values table would increase 6.02*(N-1) dB to Table1.1. For example, N=3, 

the SNR values table with different OSR and order of SDM using 3-bit quantizer is 

SNR values of Table1.1 increasing 12.04 dB. 

 

Table 1.1 Ideal Peak SNR with 1-bit quantizer (N=1) 

SNR k=1 k=2 k=3 k=4 

OSR=16 38.7318 dB 55.0897 dB 70.6904 dB 85.9212 dB 

OSR=32 47.7627 dB 70.1412 dB 91.7625 dB 113.0139 dB 

OSR=64 56.7936 dB 85.1927 dB 112.8346 dB 140.1066 dB 

OSR=128 65.8245 dB 100.2442 dB 133.9067 dB 167.1993 dB 

OSR=256 74.8554 dB 115.2957 dB 154.9788 dB 194.2920 dB 
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Figure 1.13 Ideal noise transfer function (NTF) for different order SDM 

 

 

1.2.3 Decimator 

 The decimator is a circuit used to lower the sampling rate of the oversampling 

A/D converters (the sigma-delta A/D converter is one of them), and for preventing 

aliasing, a pre-filter (low-pass filter) is needed before down-sampling. So, a decimator 

is composed of digital lowpass filter and downsampler, shown in Figure 1.14 (a). And 

the functions of decimator are removing out-of band quantization noise to obtain high 

SNR signal (such as, expanding one bit resolution to multi-bit), preventing aliasing 

(keep the aliasing power minimum), and lowering the sampling rate (from 

oversampling to Nyquist rate), which are also mentioned in above section 1.2.2 (the 

PSD differences in decimator are shown in Figure 1.9). 
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Figure 1.14 (a) Decimator components 

 

 

 The decimator behavior in time and frequency domain for the sigma-delta A/D 

converter is illustrated in Figure 1.14 (b) and Figure 1.14 (c) 

 

Figure 1.14(b) Behavior of decimator for SDM in time domain 

 

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
-4

0

0.2

0.4

0.6

0.8

1
input of decimator

x[n]

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
-4

0

0.2

0.4

0.6

0.8

1
output of filter

x
LPF

[n]

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
-4

0

0.2

0.4

0.6

0.8

1
output of downsampling

Time (sec)

y[n]



  Chapter 1: Introduction 

~ 17 ~ 
 

0 0.5-0.5

fd

PSD of x[n]

-fB/fs=

-0.5/OSR

fB/fs=

0.5/OSR

0 0.5-0.5

fd

PSD of xLPF[n]

-fB/fs=

-0.5/OSR

fB/fs=

0.5/OSR

Signal

Quantization

noise

Signal

Quantization

noise

0 0.5-0.5

fd

PSD of y[n]

Signal
Quantization

noise

 

Figure 1.14(c) Behavior of decimator for SDM in frequency domain 

 

 

  

 In this section, the terminologies related to design a decimator would be 

introduced, which include the parameters for designing low-pass filter and some 

considerations in down-sample procedure. For down-sampling D, the aliasing-band of 

signal and cut-off-band of low-pass filter designed to prevent aliasing is shown below. 
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Figure 1.15 (a) Aliasing-band of signal (b) cut-off-band of low-pass filter designed to 

prevent aliasing 

 

 

 From above Figure 1.15, it is clear that the signal in aliasing band is required to 

be removed due to the relationship between x[n] and xd[n] expressed by Equation 1.24 

and Equation1.25. xd[n] is a down-sample sequence of x[n], see Figure 1.16. 
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Downsampler

↓D
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Figure 1.16 Downsampler 

 

xd n = x[nD]  (1.24) 

 

And the relationship between x[n] and xd[n] in frequency domain (discrete-time 

Fourier transform) is  

 

Xd f =
1

D
 X(

f

D
−

i

D
)D−1

i=0   (1.25) 

 X(f) and Xd(f) are discrete-time Fourier transform of x[n] and xd[n], respectively. 

 

 Now, from Equation 1.25, it could explain why the aliasing-band is in the range 

[0.5/D, 0.5] in Figure 1.15(a) because Xd(f) is D copies of X(f) with expanding D 

times in frequency domain and shifted by integer multiples, which imply that 0.5/D in 

frequency domain would be expanded to 0.5 and thus larger than 0.5/D in frequency 

domain would overlap (expanded to >0.5) with other copies X(f/D-i/D). For example 

D=4, Xd(f) aliased by other copies of X(f/D-i/D) (i.e., i=1,2,3) is shown below. 
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Figure 1.17 (a) X(f) (b) Xd(f) aliased by other copies of X(f/D-i/D) (i.e., i=1,2,3), D=4 
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 From above Figure 1.17, it is obvious that there are D-1 copies (D=4) aliased to 

the band [-0.5, 0.5]. In a word, frequency of signal larger than 0.5/D in [0, 0.5] would 

cause aliasing. Now, considering a case OSR>D (first few stages of multi-stages 

decimator), aliasing would still exist. However, only a few bands in aliasing band 

[0.5/D, 0.5] alias to the wanted signal due to OSR>D, shown in Figure 1.18. And 

these few bands in aliasing-band aliasing to wanted signal are called folding band. 

Aliasing-band exclude folding-bands would alias to the unwanted signal (such as, 

quantization noise), which could be removed latter by remaining filters.  
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Figure 1.18 The bands in aliasing band [0.5/D, 0.5] alias to wanted signal (green 

band), called folding-band, D=4. 
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Figure 1.19 The bands over [-0.5, 0.5] overlap with wanted signal band are 

folding-bands, which are found from the trace-back process in this demonstration. 
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Figure 1.20 There are D-1 folding-bands for down-sampling D. 

 

 Signal (might be quantization noise) on folding-bands would alias to wanted 

signal (in-band signal), which could not separate and recover by remaining filter, so 

signal on folding-bands must be attenuated more. Folding-bands of signal are shown 

in Figure 1.20. Also, these bands are derived from Equation 1.25. Note that the 

frequency range in Figure 1.20 is [0, 1], which is convenient for calculating aliasing 

power by FFT in matlab and understanding from Equation 1.25. On the other hand, 

the frequency range [0, 1] makes the folding-band not split at frequency 0.5, which is 

the reason why the frequency range [-0.5, 0.5] is usually chosen to depict signal 

(make the signal-band continuity at frequency 0).  

  

 Now that the folding-bands are known, the parameters in filter design (filter 

specifications), especially for low-pass FIR filter, could be introduced. 
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Figure 1.21 Filter specifications for low-pass filter  

 

Rp: pass-band ripple (dB), maximum deviation in pass-band 

Rs: stop-band minimum attenuation (dB) 

Fp: end frequency of pass-band 

Fs: beginning frequency of stop-band 

 

 These are parameters in designing low-pass filter, and the decisions of these 

parameters influence the aliasing power of folding-bands, which are discussed further 

in Chapter 2. 

 

 

1.3 A Brief Introduction of Proposed Solution 

 As mentioned in motivation (Section1.1), the high order FIR filter, which 

comprises many multipliers, adders and registers, dominates large silicon area in 

decimator of the sigma-delta A/D converter. A technique, time-multiplexing (folding), 

could be used to reduce the number of functional units (such as multipliers and 

adders), so as to minimize the silicon area of integrated circuits. The basic idea of 

folding is to execute multiple algorithm operations on a single functional unit by 

time-multiplexing (to finish the same operations by more clock cycles using fewer 

functional units), so the number of functional units is reduced. For example, it could 

be time-multiplexed as one multiplication operation finished in each cycle using 100 

times faster clock, which only demand one multiplier, if 100 multiplication operations 

are required to finish in one clock cycle. And the technique, folding, is very suitable 



  Chapter 1: Introduction 

~ 23 ~ 
 

for decimator due to the much lower sampling-rate at the input of high order FIR filter, 

which imply that there are many clock cycles could be used by each sample and a 

faster clock is not needed. 

 

 In order to minimize the silicon area of high order FIR filter, the technique, 

folding, is used to obtain acceptable minimum multipliers and adders. Furthermore, 

the transposed-form structure has been adopted to reduce half registers, which could 

merge together in polyphase decomposition. Now, the basic idea to obtain minimum 

hardware is achieved. However, it is hard to use folding technique to transposed-form 

structure with acceptable power consumption. This thesis proposed a design 

methodology based on transposed-form folding, which change the computation 

procedure to preserve the half register benefit and maintain lower power consumption 

by using extra control circuits, for FIR filter with polyphase decomposition.  

 

 For the programmable decimation ratio requirement, IIR-FIR structure of comb 

filter is adopted in the first stage of decimator to ease the design of the different 

low-pass filter spectrums, which are different in pass-band edge. Moreover, the 

pass-band drop of designed filter spectrums by IIR-FIR comb filter could be 

compensated by the same compensation filter. These means that no extra filter 

hardware is needed to produce different low-pass filter spectrum to prevent aliasing. 

 

 This thesis focuses on comparison of different folding implementation in area, 

power, speed and etc. So, the specification of sigma-delta modulator is not a main 

issue wanted to discuss in this thesis. A case of 1-bit, OSR 128 and 64, 4
th

-order SDM 

is chosen as a specification of the sigma-delta A/D converter. And then the decimator 

would be designed to meet the requirements of that SDM specification. Usually, the 

designed decimator could be used for most SDM specifications, lower than 4
th

-order 

and OSR=128 or 64. As a result of that one bit SDM A/D converter don’t require D/A 

circuit, one bit SDM is often chosen to implement. These make designed decimator 

more useful. 

 

 

1.4 Thesis Organization 

 In Chapter 2, architecture (number of stages and decimation ratio of each stage) 

and filters specification of decimator are decided to meet the requirements of 

determined sigma-delta modulator, 1-bit 4
th

-order, OSR=128,64 SDM.  

 

 Hardware implementation methods of the decimator are discussed and compared 
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in Chapter 3. Also the advantages of this thesis proposed implementation method for 

high order FIR filter are shown in Chapter 3. Finally, it has been verified that the 

proposed implementation methodology is suitable for any order, number of quantizer 

bit, and OSR SDM as well as its advantages would still exist.  

 

 In Chapter 4, testing environment and instrument are introduced. And function 

testing results and electrical characteristic of decimator, which is fabricated in TSMC 

0.18um CMOS mixed signal RF general purpose MiM Al 1P6M process, would be 

plotted and summarized.  

 

 Finally, conclusions of this work are given in Chapter 5. 
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 __________________________________ 

 CHAPTER 

 2     

 __________________________________ 

 

Decimator Architecture and Design 

 
 

 In this chapter, decimator architecture (number of decimation stages and 

decimation ratio of each stage) and decimation filter specifications (order of each filter 

according to designed pass-band ripple, pass-band edge, stop-band attenuation, and 

stop-band edge; these definitions see Figure 1.21.) are decided so as to meet the SNR 

requirements of pre-defined sigma-delta modulator specifications (1-bit 4
th

-order, 

OSR=128, 64 SDM) with efficient decimator hardware in terms of functional units and 

power consumption. 

 

2.1 Considerations about SDM Quantization Noise 

 These in-band quantization noise power of 1-bit 4
th

-order, OSR=128, 64 SDM are 

9.5134 × 10−18  and 4.8711 × 10−15  (see section 1.2.2 and Equation 1.22, using V=1 

for convenience), respectively. And sinusoidal signal power with maximum amplitude, 

namely V=1, is 0.5. As a result of that, the ideal peak SNR are 10log(0.5/9.5134 ×

10−18 )=167.2 dB and 10log(0.5/  4.8711 × 10−15 )=140.1 dB for OSR=128 and 

OSR=64, respectively. However, the quantization noise power at SDM output (before 

decimator) is (similar to Equation 1.22): 

 

QN =  Pe f  He f  2 df
0.5

−0.5
  

                     =
(

2

2N )2

12
22k  sin2k πf  df

0.5

−0.5
  (2.1) 
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N: number of quantizer-bit 

k: order of SDM 

 

 sinnu du = −
sin n−1u cos u

n
+

n−1

n
 sinn−2u du  (2.2) 

 

The result of Equation 2.1 could be obtained by using integral formula of 

Equation 2.2 [4].   

 

 Furthermore, numerical methods could be used to solve the Equation 2.1 in 

Matlab for known N and k. In this case (N=1 and k=4), quantization noise power of 

SDM output calculated in Matlab is 5.83, which is much larger than in-band 

quantization noise power (9.5134 × 10−18  with OSR=128 and 4.8711 × 10−15  with 

OSR=64).  

 

 As a result of that, the decimator design procedure must take care of quantity of 

quantization noise power, especially in folding-bands (alias to in-band in decimation 

procedure). The target aliasing power in my decimator design procedure is ten times as 

small as in-band quantization noise power, so the SNR would not degrade more than 

0.41 dB (10 log  
signal  power

1.1∗QN in −band
 = SNR − 0.41 dB) after decimator. 

 

 Before proceeding, some concepts of spectrum in discrete-time signal or digital 

filter must be reminded. For example, shaped quantization noise power spectral density 

could be shown as Figure 2.1(a) or Figure 2.1(b) or Figure 2.1(c): 
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Figure 2.1 (a) frequency over [-0.5, 0.5] (b) frequency over [0, 1]  

(c) frequency over [0,0.5]. The signals represented by these figure are the same. 

 

 Although the graphs of Figure 2.1 are quite different, the signals shown by these 

figure are the same, which could be recognized over the range [0, 0.5]. Because 
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spectrum of discrete-time signal is periodically repeated, only one period should be 

depicted, which means that the ranges over [-0.5, 0.5] or [0, 1] could be chosen to 

depicted. For real number signal, its spectrum is even function, which means 

X(-f)=X(f), and then only half periodic spectrum is needed to depict, i.e. the range over 

[0, 0.5]. 

 

In the following design procedure, signal or filter spectrum would be depicted 

over the range [0, 1] (like Figure 2.1 (b)), which match the FFT points [0, N-1] in 

Matlab and is easy to illustrate folding-bands of signal. 

 

2.2 Decimator Architecture 

 Decimation is often performed in several stages [5], which reduces the number of 

algorithmic operations per second and the required functional units in decimator, 

especially for high OSR (OSR>4). First of all, the components of multi-stages 

decimator must be decided as well as the number of decimation stages. The most 

efficient choice for first decimation stage is comb filter (also called sinc filter), which 

don’t require multiplier and attenuates aliasing-band signal enough (especially 

attenuate more for folding-bands signal) [6]. According to analysis in [7], the 

appropriate decimation ratio of comb filter is OSR/4 for sigma-delta modulation (32 

and 16 for OSR=128 and 64, respectively), which results in most efficient algorithmic 

bit-operations per second considering word-length of comb filter and the required 

sampling rate at each components of comb filter. 

 

Furthermore, the remaining four times Nyquist rate would be decimated by FIR 

filters, which could approximate to an ideal low-pass filter that would perfectly 

preserve in-band signal and exactly remove out-of-band quantization noise due to its 

sharp roll-off if the order of FIR filter is high enough. According to analysis in [5], two 

stages FIR filters structure with each decimation ratio 2 is an efficient implementation 

for decimating four times Nyquist rate signal. 

 

Three stages decimator architecture is an efficient implementation, which is good 

enough for attenuating aliasing power to obtain required SNR. However, the pass-band 

drop due to comb filter is slightly severe, which make the in-band signal perfectly 

preserved by FIR filters worse, especially order and decimation ratio of comb filter are 

high. For example, 5
th

-order comb filter with decimation ratio 32 would cause the 

pass-band drop of OSR-128 signal more than 1 dB, which destroys the effort made by 

FIR filter in terms of suppressing pass-band ripple. Usually, the compensation filter is 

introduced and combined with low-pass filter, which means that a single FIR filter in 
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the 3
rd

-stage of decimator is used to remove quantization noise, prevent aliasing and 

compensate the pass-band drop due to comb filter. The hardware complexity is not 

increased; however, the features of compensation filter and low-pass filter slightly 

conflict with each other over the frequency [0.23, 0.25] because one (the compensation 

filter) need to go up in magnitude to compensate pass-band drop and the other (the 

low-pass filter) need to go down to prevent aliasing. As a result of that, the quantization 

noise over [0.25, 0.27] didn’t be removed very well and the pass-band drop also didn’t 

be compensated very well over entire in-band (worse near 0.23 in frequency). 

 

In this work, the compensation filter and the low-pass filter are separated to 

provide a better solution in terms of suppressing pass-band ripple and attenuating 

aliasing power.  

  

 

5th Comb Filter ↓32,16 FIR1 ↓2 FIR2 ↓2
FIR3

Compensation

5th Comb Filter ↓32,16 FIR1 ↓2 FIR2 ↓2

5th Comb Filter ↓32,16 FIR ↓4

Decimation Filter ↓128,64

[6]

[5]

(1)

(2)

(3)

(4)

Comb filter is the most efficient choice 

for first decimation stage

Two stages FIR filters structure with each 

decimation ratio 2 is an efficient implementation 

Better for suppressing aliasing power and 

compensating pass-band drop

 

Figure 2.2 Decimator architectures 

 

 

 

 

 A numerical demonstration of the different decimator architectures for 1-bit 

4
th

-order OSR-128 is shown below: 
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5th Comb Filter ↓32 FIR1 ↓2 FIR2 ↓2
FIR3
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5th Comb Filter ↓32 FIR1 ↓2 FIR2 ↓2

5th Comb Filter ↓32 FIR ↓4

Decimation Filter ↓128(1)

(2)

(3)

(4)

For 1b 4th-order SDM OSR=128

Order of FIR=10495

Obtained SNR=164.47 dB

P=fs/128*10496/128*128=82fs

P=Number of required multiplication 
operations per second

Order of FIR=260

Obtained SNR=165.9 dB

P=fs/32/4*261/4*4=2fs

Obtained SNR=166.4 dB

Order of FIR1=18 Order of FIR2=126

Rp=0.01 dB
P=fs/32/2*19/2*2+fs/64/2*127/2*2=1.29fs

Obtained SNR=167.2 dB

Rp=0.002 dB

Order of FIR1=18 Order of FIR2=126 Order of FIR3=40

P=fs/32/2*19/2*2+fs/64/2*127/2*2+fs/128*41=1.6fs

Obtained SNR=166.7 dB Rp=0.009 dB
P=fs/32/2*19/2*2+fs/64/2*201/2*2=1.87fs

Order of FIR1=18 Order of FIR2=200

 

Figure 2.3 For 1-bit 4
th

-order OSR-128 SDM, decimator architectures in terms of 

SNR, number of required multiplication operations per second and pass-band ripple 

are shown. 

 

 

2.3 First Decimation Stage 

 As mentioned in previous section, the features of comb filter, which don’t require 

multiplier, suppress folding-bands signal excellently, attenuate out-of-band signal well 

and could have large decimation ratio to lower the sampling rate for later FIR filter, 

are suitable for the first decimation stage operating in the fast sampling rate. The 

transfer function of comb filter (also called sinc filter) is: 

 

Hcomb  z =
1

Dk (
1−z−D

1−z−1 )k   (2.3) 

          =
1

Dk
 (1 + z−2i

)k(log 2D)−1
i=0   (2.4) 

          =
1

Dk
( z−i)D−1

i=0

k
  (2.5) 
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k: order of comb filter 

D: decimation ratio  

 

For k=5 and D=32, its zero-pole plot and frequency response are show below: 

 

Figure 2.4 zero-pole plot for 5
th

-order comb filter with D=32 

(5*32 zeros around unit circle, 5 poles in z=1 and the other poles in z=0)   
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Figure 2.5 Magnitude frequency response of 5
th

-order comb filter with D=32 

(half periodic spectrum have been depicted, so there are D/2=16 notches in spectrum)   

 

 Recent researches on first decimation stage filter are also based on comb filters, 

which would be introduced in following section. 

 

2.3.1 Introduction to Modified Comb Filters 

 Novel decimation schemes based on comb filter are proposed by [8]-[10]. The 

basic idea is to rotate the zeros of comb filter to obtain a better rejection around 

folding-bands. As seen in Figure 2.4, there are 5 zeros in the same position for 

5
th

-order comb filter. If the zeros could be distributed around folding-bands (not all 

zeros in the same position (middle of folding-band)), a better rejection around 

folding-bands can be achieved. 

 

 The transfer function of counterclockwise rotated 1
st
-order comb filter could be 

defined as [9]: 

 

 Hq+ z =
1

D

1−z−D ejαD

1−z−1ejα  (2.6) 
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 And the transfer function of clockwise rotated 1
st
-order comb filter could be 

defined as: 

 Hq− z =
1

D

1−z−D e−jαD

1−z−1e−jα  (2.7) 

 

 In order to obtain real number coefficient, the Equation 2.6 and Equation 2.7 

must be combine together to form the transfer function: 

 

 Hq z = Hq+ z Hq− z =
1

D2

1−2cos (αD)z−D +z−2D

1−2cos (α)z−1+z−2
 (2.8) 

 

 The transfer function of modified comb filter consists of Hcomb(z) and Hq(z). 

The k
th

-order modified comb filters (MCF) mean that there are k zeros distributed 

around the folding-band. And the transfer functions of different order MCF are 

defined as follow: 

 

 HMCF 3 z = Hcomb 1 z Hq(z) (2.9) 

 

 HMCF 4 z = Hcomb 2 z Hq(z) (2.10) 

 

 HMCF 5 z = Hcomb 1 z Hq1
(z)Hq2

(z) (2.11) 

  

 HMCF 6 z = Hcomb 2 z Hq1
(z)Hq2

(z) (2.12) 

 

 MCF3, MCF4, MCF5 and MCF6 denote 3
rd

-order, 4
th

-order, 5
th

-order and 

6
th

-order modified comb filters, respectively. Also, Hcomb1(z) and Hcomb2(z) denote the 

transfer function of 1
st
-order and 2

nd
-order comb filter, respectively. 

 

 A zero-pole plot of 3
rd

-order modified comb filter (MCF3) is shown below: 
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Figure 2.6 zero-pole plot of (a) 1
st
-order comb filter (b) counterclockwise rotated of 

1
st
-order comb filter (c) clockwise rotated of 1

st
-order comb filter (d) 3

rd
-order 

modified comb filter, with D=4. 
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Figure 2.7 Magnitude response (dB) of 3
rd

-order modified comb filter (MCF3) with 

D=4  

 

 The optimized rotated angle α to obtain maximum rejection around folding-band 

has been presented by [9]. Now, fb denotes the in-band edge. The optimized rotated 

angle α can be rewrite as follow: 

 

 α=q2πfb (2.13) 

 

then optimized q for different orders MCF are [9]: 

 

Table 2.1 Optimized rotated angle α represented by q, which is independent to fb. 

HMCFk q1 q2 Gain (dB) 

HMCF3 0.78 - 8 dB 

HMCF4 0.85 - 13 dB 

HMCF5 0.54 0.93 18 dB 

HMCF6 0.63 0.92 23 dB 
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Gain =
quantization noise of SDM in folding bands after comb filter

quantization noise of SDM in folding bands after MCF

=

  |Hcomb −k(f)|2PeSDM  f  df
i
D

+fb

i
D
−fb

D−1
i=1

  |HMCF −k(f)|2PeSDM  f  df
i
D

+fb

i
D
−fb

D−1
i=1

 

 (2.14) 
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Figure 2.8 Magnitude responses of Comb3 and MCF3 in folding-band. The MCF3 

can suppress more quantization noise power in folding-band.  

 

2.3.2 Stage1 Design 

 As mentioned in the introduction of Chapter 2, aliasing power is the main 

concern in the design procedure of decimation filter. The quantization noise are 

9.5134 × 10−18  and  4.8711 × 10−15  for 1-bit 4
th

-order, OSR=128, 64 SDM, 

respectively. The aliasing power of first decimation filters must be smaller than the 

ideal in-band quantization noise power of SDM. And four times Nyquist rate would 

be left for later FIR filters to decimate [7], i.e. D=OSR/4.  
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Table 2.2 Ideal in-band quantization noise power 

1-bit 4
th

-order SDM OSR=128 OSR=64 

ideal in-band noise power 9.5134 × 10−18  4.8711 × 10−15  

 

 

Aliasing Power1 =   |HFirst  decimation  filter (f)|2PeSDM  f  df
i

D
+fb

i

D
−fb

D−1
i=1   (2.15) 

 

Aliasing Power1 is the SDM quantization noise power in folding-bands filtered 

by first decimation filter, which would alias to in-band signal and would not be 

removed by latter filters. 

 

 

Table 2.3 Aliasing power using comb filter and MCFs with different order for 1-bit 

4
th

-order SDM, OSR=128 and OSR=64 (calculating in Matlab). 

 D=32 for OSR=128 D=16 for OSR=64 

  Comb Filter MCF Comb Filter MCF 

a
li

a
si

n
g
 

p
o
w

er
1

 order=3 1.1549e-012 1.8162e-013 7.3879e-011 1.1631e-011 

order=4 2.4977e-016 2.0120e-017 6.1846e-014 4.9951e-015 

order=5 3.3085e-019 5.7030e-021 1.6880e-016 2.9137e-018 

order=6 3.0518e-021 1.9477e-023 1.6022e-018 1.0238e-020 

 

 It is obvious that the modified comb filters have more rejection around 

folding-bands to obtain smaller aliasing power than the same order comb filter as 

[8]-[10] claimed. And the minimum required orders of MCF and comb filter are both 

5 to keep the aliasing power of first decimation stage smaller than ideal in-band SDM 

QN power. The requirement of aliasing power in this work is to keep it 10 times 

smaller than in-band QN power. 

 

Both 5
th

-order comb filter and 5
th

-order modified comb filter (MCF) meet the 

requirement of aliasing power. And modified comb filter is better in suppressing 

aliasing power. However, MCF requires multiplication operations, which make the 

hardware complexity increase much. Furthermore, 6
th

-order comb filter could 

suppress the aliasing power to the same level suppressed by 5
th

-order MCF and 

overhead of 6
th

-order comb filter compared with 5
th

-order comb filter are two adders 

(one addition and one subtraction) and two word registers, whose hardware 

complexity is much lower than MCF. Moreover, the additional suppressed aliasing 
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power by MCF is hard to maintain because the aliasing power of latter decimation 

stages are in the same level with 5
th

-order comb filter. Finally the SNR of SDM 

improved by MCF compared with comb filter is: 

 

SNRMCF − SNRcomb

= 10 log  
0.5

9.5134 × 10−18 + 5.7030 × 10−21
 

−10 log  
0.5

9.5134 × 10−18 + 3.3085 × 10−19
 

= 167.2 dB − 167.06 dB = 0.14 dB 

 (2.16) 

 

SNR = 10log(
signal  power

ideal  inband  QN +aliasing  power 1
)  (2.17) 

 

So, comb filter is still an efficient implementation for first decimation stage. 

 

 

 

 

5th Comb Filter ↓32,16
1-bit 4th-order SDM 

OSR=128 and 64

QN PSD of SDM 

(Figure 2.10)

Freq. Resp. of comb filter

(Figure 2.11)

QN PSD after first 

decimation filter

(Figure 2.12)

QN PSD after 

down-sample 1

(Figure 2.13)

 

Figure 2.9 The flow for quantization noise power spectral density of SDM in first 

decimation stage 
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Figure 2.10 Quantization noise power spectral density of 1-bit 4
th

-order sigma-delta 

modulator 

 

 

Figure 2.11 First decimation filter (comb filter with D=32 for the left graph and 

16 for the right graph, respectively). Folding-bands of these two magnitude response 

are both in the notch position, each D-1 folding-bands 

. 

 

Figure 2.12 Quantization noise PSD after first decimation filter 
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Figure 2.13 Quantization noise PSD after down-sampling 

 

 

2.4 Decimation FIR Filters 

 Although comb filter don’t require multiplication operations and provides 

excellent rejection around folding-bands, the disadvantages of comb filter are non-flat 

in-band (signal band) and gradual roll-off. So, further filters are needed to compensate 

the in-band signal and to remove the remaining quantization noise near in-band edge.   

 

 FIR low-pass filter is a sharp roll-off low-pass filter which could remove 

quantization noise near in-band edge as well as provides small pass-band ripples. 

These desired features demand many addition and multiplication operations. 

Furthermore, FIR filter can be designed to compensate the pass-band drop due to 

comb filter. The main advantage of FIR filters (finite-impulse response filters) 

compared with IIR filters (infinite-impulse response filters) is the linear phase 

characteristic, which is important to most applications. 

 

The transfer-function of N
th

-order FIR filter is: 

 

HFIR  z =  biz
−iN

i=0   (2.18) 

 

N= order of FIR filter 

So, there are (N+1) coefficients (also called N+1 taps). 

 

The following decimation FIR filters in each decimation stage (2
nd

 and 3
rd

) are 

designed to keep the aliasing power smaller than ideal in-band quantization noise 

power. And the 4
th

-stage of decimator is designed to compensate the pass-band drop 

due to comb filter. 
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2.4.1 Stage2 Design 

 The folding-band for 2
nd

 decimation stage is shown below: 

 

1/D=0.5 1

f

fb=0.5/OSR*down1=0.125
1-fb=0.875

folding bands

wanted

signal

Band

(in-band)

2fb

0

Aliasing-band

wanted

signal

Band

(in-band)

0.5/D=0.25 1-0.5/D=0.75fb

0.375 0.625

D=2
fb=0.125

 

Figure 2.14 Folding-band for 2
nd

 decimation stage 

 

For 2
nd

 decimation stage, D=2 (down-sampling=2) and 

fb=0.5/OSR*down1=0.5/128*32 or 0.5/64*16=0.125, folding-band could be plotted 

according to Figure 1.20. 

 

From the above figure, pass-band edge Fp must be chosen larger than fb (0.125) 

in the left half spectrum to preserve in-band signal and stop-band edge Fs must be 

chosen smaller than 0.375 in the left half spectrum to reject noise in folding-band. In 

order to completely remove quantization noise in folding-band, a slightly smaller Fs 

(0.365) is chosen. For releasing the hardware complexity, a possible large 

transition-band would be used, i.e. Fp=0.125 and Fs=0.365.  

 

Reminded that ideal in-band quantization noise powers of SDM in Table 2.2 are:  

 

Table 2.4 Quantization noise power which cannot be remove by latter filter 

1-bit 4
th

-order SDM OSR=128 OSR=64 

ideal in-band noise power 9.5134e-018 4.8711e-015 

Aliasing power1 3.3085e-019 1.6880e-016 
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Table 2.5 Aliasing power2 with different stop-band attenuation 

  OSR=128 OSR=64 Require FIR order 

A
li

a
si

n
g
 

P
o
w

er
2

 Rs=40 dB 4.8495e-018 2.4829e-015 14 

Rs=50 dB 8.5409e-019 4.3728e-016 16 

Rs=60 dB 1.6135e-019 8.2605e-017 17 

Rs=70 dB 2.6691e-020 1.3665e-017 18 

 Rs=80 dB 1.0944e-021 5.6031e-019 20 

 

In order to keep the total aliasing power (aliasing power1+aliasing power2) 

10-times smaller than in-band noise power, the minimum stop-band attenuation (Rs) 

is 60 dB. However, even order is required to obtained coefficient symmetric for 

polyphase decomposition. So, the minimum stop-band attenuation (Rs) 70 dB is 

chosen to obtain even FIR filter order (18) (with pass-band ripple Rp=0.0001 dB, 

which is not crucial for SNR, almost don’t affect FIR filter order and is already 

smaller than the compensated pass-band ripple due to comb filter). 

 

1st Decimation Stage

Comb filter
↓32,16

2nd Decimation Stage

FIR1
↓2

QN PSD

Figure 2.16

QN PSD

Figure 2.18

FIR1

Figure 2.17

QN PSD

Figure 2.19

 

Figure 2.15 Flow for quantization noise power spectral density in 2
nd

 decimation stage 

 

 

 

Figure 2.16 Quantization noise PSD after down-sampling1 
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Figure 2.17 Magnitude response of 2
nd

 stage decimation filter (FIR1) with quantized 

coefficients 

 

 

Figure 2.18 Quantization noise PSD after 2
nd

 decimation filter 
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Figure 2.19 Quantization noise PSD after down-sampling 2 

 

 

2.4.2 Stage3 Design 

 For finial decimation, the folding-band is equal to aliasing band shown as follow: 
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Figure 2.20 Folding-band of 3
rd

 decimation stage 

 

 In order to preserve signal, pass-band edge (Fp) must be chosen larger than 0.25 

in the left half spectrum. Also, the stop-band edge (Fs) must be chosen smaller than 

0.25 in the left half spectrum to suppress noise power around folding-band. The only 

solution is Fp=Fs for low-pass filter, which require Fp≦Fs. However, that is 

impossible because it requires infinite hardware to accomplish Fp=Fs (ideal low-pass 

filter). So, a transition band is allowed to relax the hardware with acceptable aliasing 

power.  
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 To keep the affected signal band minimum, Fp=0.25-0.5*transition-band and 

Fs=0.25+0.5*transition-band are set. Furthermore, aliasing power is affected by 

stop-band attenuation (Rs) and the width of transition-band both. 

 

 

Table 2.6 Quantization noise power in in-band after 2
nd

 decimation stage 

1-bit 4
th

-order SDM OSR=128 OSR=64 

ideal in-band noise power 9.5134e-018 4.8711e-015 

Aliasing power1 3.3085e-019 1.6880e-016 

Aliasing power2 2.6691e-020 1.3665e-017 

 

 

Table 2.7 Aliasing power3 with different stop-band attenuation (Rs) 

, given a narrow transition-band (0.02). 

  OSR=128 Require FIR order 

A
li

a
si

n
g
 

P
o
w

er
3

 Rs=30 dB 1.3474e-018 151 

Rs=40 dB 5.5301e-019 168 

Rs=50 dB 3.4788e-019 185 

Rs=60 dB 2.4815e-019 202 

 

 Stop-band attenuation of 40 dB is good enough; however, for other application 

like telecommunication, some channel signal near in-band would exist. So, the 60 dB 

stop-band attenuation is chosen to remove neighbor channel signal as well as the 

quantization noise of A/D converters. However, the order of FIR is still too high. For 

folding techniques with OSR=64, a maximum FIR even order is 126. So, a wider 

transition-band must be used to lower the FIR order with acceptable aliasing power. 

 

 

Table 2.8 FIR orders and aliasing power3 with different widths of transition-band 

 Transition-band OSR=128 Require FIR order 

A
li

a
si

n
g
 

P
o
w

er
3

 0.020 2.4815e-019 202 

0.025 3.1171e-019 162 

0.030 3.8010e-019 135 

0.035 4.4907e-019 116 

 

As a result of that, width of transition-band is fine tuned to 0.032 to obtain FIR 

order 126 and then an acceptable aliasing power, width of transition-band and FIR 

order are all achieved. 
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2nd Decimation Stage

FIR1
↓2

QN PSD

Figure 2.22

3rd Decimation Stage

FIR2
↓2

FIR2

Figure 2.23

QN PSD

Figure 2.24

QN PSD

Figure 2.25

 

Figure 2.21 Flow for quantization noise power spectral density in 3
rd

 decimation stage 

 

 

Figure 2.22 Quantization noise PSD after down-sampling 2 

 

Figure 2.23 Magnitude response of 3
rd

 stage decimation filter (FIR2) with quantized 

coefficients 
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Figure 2.24 Quantization noise PSD after 3
rd

 decimation filter 

 

  

Figure 2.25 Quantization noise PSD after down-sampling 

 

 Note that some ideal in-band quantization noise has been removed by the 3
rd

 

decimation filter due to Fp<0.25, which cause total quantization noise power smaller 

than ideal in-band quantization noise power. 

 

2.5 Compensation FIR Filter 

 The compensation filter is to compensate the pass-band drop of comb filters with 

D=32 (for OSR=128) and D=16 (for OSR=64), which are shown below (Figure 2.26 
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-16

frequency

Noise Power Spectrum Density of Decimation Filter3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

-14

frequency

Noise Power Spectrum Density of Decimation Filter3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

-17

frequency

Noise Power Spectrum Density of Decimator3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x 10
-14

frequency

Noise Power Spectrum Density of Decimator3

QN Power=3.97e-015 

QN Power=3.97e-015 

Aliasing Power3 

=2.0266e-016 

QN Power=7.74e-018 

QN Power=7.74e-018 

Aliasing Power3 

=3.9747e-019 



  Chapter 2: Decimator Architecture and Design 

~ 47 ~ 
 

 

Figure 2.26 Pass-band drop of comb filter with D=32 for OSR=128 

(fb=0.5/OSR=3.90625e-3) 

 

 

Figure 2.27 Pass-band drop of comb filter with D=16 for OSR=64 

(fb=0.5/OSR=7.8125e-3) 
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2.5.1 Stage4 Design 

 According to the pass-band drop of comb filter, the compensation filter is 

designed using Matlab function (fir2) and the compensated results are shown in Table 

2.9 and Table 2.10 for decimation ratio 128 and 64, respectively. 

 

 

Table 2.9 Pass-band ripple with different order of compensation filter for decimation 

ratio=128 

order of compensation 

FIR filter 

pass-band ripple of  

90% in-band 

pass-band ripple of  

95% in-band 

NN4=20 0.0065 dB 0.0886 dB 

NN4=40 0.0025 dB 0.0546 dB 

NN4=60 0.0020 dB 0.0520 dB 

 

 

Table 2.10 Pass-band ripple with different order of compensation filter for decimation 

ratio=64 

order of compensation 

FIR filter 

pass-band ripple of  

90% in-band 

pass-band ripple of  

95% in-band 

NN4=20 0.0074 dB 0.0867 dB 

NN4=40 0.0031 dB 0.0527 dB 

NN4=60 0.0023 dB 0.0495 dB 

 

 

Order of 40 is chosen to compensate the 90% in-band ripple to 0.0025 dB and 

0.0031 dB for decimation ratio 128 and 64, respectively. And the magnitude response 

of compensation filter in the 4
th

 stage is shown in Figure 2.28. 
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Figure 2.28 Magnitude response of compensation filter in the 4
th

 stage 

 

 

2.6 Specification Summary 

 In this section, the information about filters used in the decimator are 

summarized as below tables and figures, such as filters specification listed in Table 

2.11, magnitude frequency response shown in Figure 2.29 (the coefficients of each 

FIR filter are shown in Appendix A), aliasing-powers at each stages for decimation 

ratio 128 and 64 listed in Table 2.12 and Table 2.13, respectively. 

 

 

Table 2.11 Summary of decimation filter specifications 

Stage Filter Type Decimation 

Ratio 

Transition-band 

(frequency) 

Pass-band ripple 

Rp 

Stop-band 

attenuation 

tap 

1 5th-order Comb 32 and 16 - drop 1.12 dB 60-150 dB 0 

2 FIRpm 2 0.125~0.365 0.0001 dB 70 dB 17 

3 FIRpm 2 0.2339~0.2661 0.0006 dB 60 dB 128 

4 FIR2 0 Compensation pass-band drop to 0.0025 and 0.0031 dB 41 
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Figure 2.29 Magnitude response of each stage 

 

 

Table 2.12 Aliasing power, remaining quantization noise power and obtained SNR at 

each stage for OSR=128 

Stage Aliasing power 
Total aliasing 

power 
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QN 
Obtained SNR 

1 3.3085e-019 3.3085e-019 1.6579e-013 124.79 dB 

2 2.6691e-020 3.5754e-019 2.4506e-015 143.09 dB 

3 3.9747e-019 7.5501e-019 7.7448e-018 168.09 dB 

4 -  9.5168e-018 167.20 dB 

 

 

Table 2.13 Aliasing power, remaining quantization noise power and obtained SNR at 

each stage for OSR=64 

Stage Aliasing power 
Total aliasing 

power 

Remaining 

QN 
Obtained SNR 

1 1.6880e-016 1.6880e-016 8.4886e-011 97.70 dB 

2 1.3665e-017 1.8247e-016 1.2547e-012 116.00 dB 

3 2.0266e-016 3.8513e-016 3.9653e-015 141.01 dB 

4   4.8726e-015 140.11 dB 
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Finally, the magnitude response of the equivalent single stage low-pass 

decimation filters for decimation ratio 128 and 64 are shown in Figure 2.30 and 

Figure 2.31, respectively. The equivalent single stage decimation filters are composed 

of four decimation filters in efficient way to preserve the SNR of the SDM output. 

The quantization noise power spectral density of 1-bit 4
th

-order SDM is shown in 

Figure 2.29, where noise is increasing with the increase of frequency. Thus, the 

stop-band attenuation of the equivalent single stage decimation filters also increases 

more at high frequency. The expected SNR can be preserved by my decimator if the 

harmonic-tones near in-band edge (not in in-band) of SDM output spectrum do not 

exceed 60 dB to noise-floor due to only 60 dB stop-band attenuation for equivalent 

decimation filter near in-band edge.      

 

 

Figure 2.30 Quantization noise power spectral density (dB) of 1-bit 4
th

-order SDM 
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Figure 2.31 Magnitude response of equivalent single stage low-pass filter for 

decimation ratio 128 

 

Figure 2.32 Magnitude response of equivalent single stage low-pass filter for 

decimation ratio 64 
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 __________________________________ 

 CHAPTER 

 3     

 __________________________________ 

 

Decimator Implementation 

 
 

 The hardware implementations of each filter are discussed and decided in this 

Chapter in terms of area, power and speed (throughput). Also, the circuit of overall 

decimator with programmable decimation ratio would be described. However, the 

most important part is the high order FIR filter which dominates the silicon area, 

consumes the highest power and limits the operating frequency due to requiring many 

multiplication operations per second. So, the implementation comparisons focus on 

the high order FIR filter, which is the main part this thesis wants to improve. 

Afterward the decimator is implemented step by step to become integrated circuits 

fabricated in TSMC 0.18um CMOS mixed signal RF general purpose MiM Al 1P6M 

process. 

 

3.1 Implementation and Verification Flow 

 The implementation steps of digital IC cell-based design flow is shown in Figure 

3.1.The system level of Figure 3.1 is the behavior of decimator characterized by 

Matlab, see Chapter 2. And then the circuit of the decimator is addressed by verilog (a 

hardware description language) in RTL level, which could be further synthesized to 

gate level by a logic synthesis tool. After logic synthesis, the logic cell could be 

placed and routed (physical synthesis) by an APR tool. In addition, the function and 

behavior of the circuit is verified by simulation using SDM bit-streams at each 

implementation step.  
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System Level

(Matlab)

RTL Level

(Verilog)

Logic Synthesis

(Design Compiler)

Gate Level

(Verilog)

Auto Place & Route

(Soc Encounter)

Layout Level

(GDSII)

RTL Simulation

(NC-Verilog) 

Pre-Layout Simulation

(NC-Verilog)

Post-Layout Gate-Level 

Simulation

(NC-Verilog) 

Layout Verification

(DRC LVS with Calibre)

Tap out

Post-Layout Transistor-Level 

Simulation

(Nanosim) 

Verification

Verification

Verification

Verification

Verification OK

Verification OK

Verification OK

Verification OK

 

Figure 3.1 The cell-based implementation flow of digital IC 

 

 In my implementation flow, the logic synthesis and APR (auto place & route) 

tools used in the flow are Design Compiler of Synopsys and SOC Encounter of 

Cadence, respectively. Furthermore, the simulators used at each step are NC-Verilog 

of Cadence for circuit described by verilog (required SDF) and Nanosim of Synopsys 

for post-layout transistor-level simulation. After verifying the functions and behaviors 

of layout (decimator) are correct, further layout verifications, DRC (design rule check) 

and LVS (layout versus schematic), are required to confirm whether the chip layout 

satisfies a series of recommended design rules required by semiconductor 

manufacturers and whether the integrated circuit layout corresponds to the circuit 

simulated at post-layout simulation by using Calibre of Mentor. 
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Simulator

SDM bit-stream 

generated by Matlab

Circuit of 

decimator

Output

Standard cell library

Timing information of circuit

(standard delay format, sdf)

Analysis and Verify in Matlab

 

Figure 3.2 Simulation and verification procedures of decimator 

 

 The simulation and verification procedures are shown in Figure 3.2. Both 

time-domain and frequency-domain of decimator’s output would be verified, which 

would compare with results filtered and down-sample by designed decimator in 

Chapter 2 using Matlab (floating point calculation) to confirm that the circuit 

(decimator) behaviors are what we expected. Furthermore, the magnitude frequency 

response of decimator’s output (circuit) could directly compare with in-band 

magnitude frequency response of SDM bit-streams to determine whether the function 

of circuit (decimator) is correct or not, because the function of decimator is to 

preserve the in-band signal of SDM output with Nyquist-rate, which imply that no 

large aliasing and no big pass-band ripple distort in-band signal except signal at 

in-band edge.  

 

 No matter where the implementation step is, the logic values are the same for 

digital circuits with correct behaviors. So, only the post-layout simulation results 

would be shown and verified in this thesis to prevent repetition. 
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3.2 Previous Work Comparison  

 In this section, the previous works on implementations of comb filter and FIR 

filters are discussed in terms of silicon area, power consumption, and highest 

operating frequency. An appropriate implementation of comb filter is chosen to 

implement the first decimation stage. And the features and behaviors of previous work 

in FIR filters are described in order to compare with my proposed implementation for 

FIR filters with polyphase decomposition. 

 

3.2.1 Comb Filter 

 From the transfer function of comb filter mentioned in Section 2.3 and shown 

again in Equation 3.1-3.3, there are three structures which could be chosen to 

implement the comb filter.  

 

Hcomb  z =
1

Dk (
1−z−D

1−z−1 )k   (3.1) 

                   =
1

Dk
 (1 + z−2i

)k(log 2D)−1
i=0   (3.2) 

                   =
1

Dk ( z−i)D−1
i=0

k
  (3.3) 

 

 Furthermore, the first decimation stage is the comb filter followed by 

down-sample D. Applying the commutative rule [3] shown in Figure 3.3, the required 

delay elements (registers) and the number of addition operations per second could be 

reduced much.  

 

↓M

↓M

H(zM)

H(z)

x[n]

x[n]

y[n]

y[n]

(a)

(b)
 

Figure 3.3 Commutative rule: the system in (a) is equivalent to the system in (b). 

 

Equation 3.1 and Equation 3.2 combining down-sampling D could be derived to 

Equation 3.4 and Equation 3.5, respectively. A comparison of comb decimation filter 

based on the recursive algorithm (Equation 3.4) and the non-recursive algorithm 
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(Equation 3.5) are presented in [11]. The structure of Equation 3.3 is not an option to 

implement comb filter due to its many adders and delay elements (registers) 

requirements, which could not exploit commutative rule shown in Figure 3.3 to 

improve. 

 

Hcomb  z  ↓ D =
1

Dk (
1−z−D

1−z−1 )k   ↓ D   

                            =
1

Dk (
1

1−z−1)k  (1 − z−D)k  ↓ D  

                            =
1

Dk (
1

1−z−1)k  ↓ D  (1 − z−1)k    (3.4) 

 

Hcomb  z  ↓ D =
1

Dk
 (1 + z−2i

)k(log 2D)−1
i=0  ↓ D   

=
1

Dk (1 + z−1)k(1 + z−2)k(1 + z−4)k … (1 + z−2(log 2D )−1
)k  ↓ D  

        =
1

Dk
(1 + z−1)k ↓ 2 (1 + z−1)k ↓ 2 (1 + z−1)k ↓ 2 … (1 + z−1)k ↓ 2  

           Stage1       Stage2       Stage3    …   Stage (log2D) 

There are log2D decimation stages of (1 + z−1)k ↓ 2  (3.5) 

 

According to [6] [11], the word-length required for these two structures by 

Equation 3.4 and Equation 3.5 are shown in Table 3.1 

 

Table 3.1 required word-length for these two structures 

Word-length 

Recursive algorithm of comb filter 

in both parts (integrator and comb) 

(Equation 3.4) 

Non-recursive algorithm of comb filter 

in the i-th Stage 

(Equation 3.5)  

 

m+klog2D 

 

 

m+k*i 

 

 

m: number of input bit 

k: order of comb filter 

D: decimation ratio for comb filter 

i: denotes the i-th stage in comb filter for non-recursive algorithm, see Equation 3.5. 
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 In my decimator design, m=1, k=5, D=32 and 16. Although D=32 and D=16 are 

required in my programmable decimation ratio decimator, only the implementations 

of comb filter with D=32 need to be discussed and compared, which is crucial than 

comb filter with D=16 and determine the hardware complexity, critical path and 

power consumption in first decimation stage. 

 

So, the comparison of recursive and non-recursive structure for comb filter with 

D=32, k=5, m=1 are discussed in terms of power, area and speed using Table 3.1, 

which are shown in Figure 3.4. 

 

5

1
)

1

1
(

 z
↓32 51)1(  z

Word-length

x[n]

1 bit

1+5*log232

26 bit 26 bit 26 bit

y[n]

Sampling rate 51.2MHz 1.6MHz

Power= 51.2 MHz x 5 adders x 26 bits +1.6 MHz x 5 adders x 26 bits

 =6864 number of bit required addition operation per second

Area  =5 x 26 bits + 5  x 26 bits 

          =260 bits (number of bit for adder and registers)

Speed=1/(51.2 x 5 x 26 )=1.502e-4

Critical path

PowerAreaProduct=6864 x 260=1,784,640

1+5*log232

Recursive

 

 

↓2(1+z-1)5 ↓2 ↓2 ↓2 ↓2
x[n]

1bit

Word-length 1+5x1

Sampling rate 51.2MHz

Power= 51.2 (MHz) x 5 (adders) x 6 (bits) +25.6 x 5  x 11 +12.8 x 5 x 16 + 6.4 x 5 x 21 +  3.2 x 5 x 26

 =5056 number of bit required addition operation per second

Area  =5 x 6 bits + 5  x 11 bits + 5 x 16 bits + 5 x 21 bits + 5 x 26 bits

          =400 bits (number of bit for adder and registers)

Speed=1/(51.2 x 5 x 6 )=6.51e-4

Critical path

PowerAreaProduct=5056 x 400=2,022,400

1+5x2 1+5x3 1+5x4 1+5x5

6bit

11bit 16bit 21bit 26bit

25.6MHz 12.8MHz 6.4MHz 3.2MHz 1.6MHz

(1+z-1)5 (1+z-1)5 (1+z-1)5 (1+z-1)5

Non-recursive

 

Figure 3.4 Comparison of recursive and non-recursive algorithm of comb filter in 

terms power, area, speed, power speed product 
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 As claimed by [11], the advantage of non-recursive structure for comb filter is 

smaller power consumption and higher operating frequency especially when 

decimation ratio and order of comb filter are high. However, a factor, power-area- 

product is introduced in this thesis to judge which structure is better and a small 

power-area-product structure is a better implementation choice. So, the recursive 

structure of comb filter is adopted to implement the first decimation stage of 

decimator due to its smaller power-area-product. 

 

As regards the highest operating frequency, the longer critical path of recursive 

structure would not limit the highest operating frequency of decimator because the 

critical path of decimator is in the 3
rd

 decimation stage (high order FIR filter). 

Moreover, the critical path of recursive structure of comb filter can be improved by 

pipelining and retiming without any hardware overhead (see Section 3.53), which 

make the speed of recursive structure (speed=1.502e-4 x5=7.51e-4) faster than 

non-recursive (speed=6.51e-4). The overhead of pipelined CIC 

(cascaded-integrator-comb; i.e. recursive structure) comb filter is only 

four-clock-cycle latencies, which could be ignored in decimator because it is far 

smaller than the group delay (126/2*128=8064) of high order FIR filter. 

 

3.2.2 FIR Filter 

The transfer-function of N
th

-order FIR filter is: 

 

HFIR  z =  biz
−iN

i=0   (3.6) 

 

=b0+b1z
-1

+b2z
-2

+b3z
-3

+……+bN-2z
-(N-2)

+bN-1z
-(N-1)

+bNz 
–N

 (3.7) 

 

=b0+z
-1

(b1+z
-1

(b2+z
-1

(b3+z
-1

(……+z
-1

(bN-2+z
-1

(bN-1+z
-1

(bN))…)) (3.8) 

 

N= order of FIR filter;  

So, there are (N+1) coefficients (also called N+1 taps). 

 

 The transfer function of FIR filter can be represented by direct-form structure (as 

Equation 3.7) or transposed-form structure (as Equation 3.8), which affect the 

implementation of FIR filter. The relationship between output and input of the system 

(FIR filter) represented in z-domain is Y(z)=X(z)HFIR(z). The corresponding 

difference equation is y[n]=x[n]*h[n] (* denotes linear-convolution). So, 



  Chapter 3: Decimator Implementation 

~ 60 ~ 
 

 

 y[n]=b0x[n]+b1x[n-1]+b2x[n-2] +……+bN-1x[n-(N-1)]+bNx[n-N] (3.7a) 

 

The time-shifting property [3] is 

 x n − k 
Z
 X z  z−k     if x n 

Z
 X z   

 

Considering the decimation FIR filter in the 2
nd

 and 3
rd

 stage, the polyphase 

decomposition could be explored to eliminate the redundant algorithmic operations 

for FIR filter followed by down-sampling.  

 

Polyphase Decomposition 

Let h[n] is the impulse response of the system and the corresponding transfer 

function in z-domain is H(z). Considering a causal system (h[n]=0 for n<0) [3], 

 

H z   

=  h[n]z−n∞
n=0   

=  h[0]     +h[M]z
-M

   +h[2M]z
-2M

   +… 

   + h[1]z
-1

   +h[M+1]z
-(M+1)

 +h[2M+1]z
-(2M+1)

  +… 

+ h[2]z
-2

   +h[M+2]z
-(M+2)

 +h[2M+2]z
-(2M+2)

  +… 

+……………………………………………………………………… 

+ h[M-1]z
-(M-1)

  +h[2M-1]z
-(2M-1)

 +h[3M-1]z
-(3M-1)

  +… 

  

=                   h[kM]                (zM )−k∞
k=0  

  +z−1          h kM + 1          (zM )−k∞
k=0   

  +z−2          h kM + 2          (zM )−k∞
k=0   

 +……………………………… 

  +z−(M−1)  h[kM + M − 1](zM )−k∞
k=0   

  

=  z−iEi(zM )M−1
i=0   (3.9) 

  

Where Ei(z)=   h[kM + i]z−k∞
k=0  is called the i-th polyphase component 

 (3.10) 

Applying the commutative rule [3] shown in Figure 3.3, the computational cost of 

the system followed by downsampler is reduced.  
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As a result, the system B shown in Figure 3.5 is equivalent to system A shown in 

Figure 3.5; however, the system B (polyphase decomposition) is an efficient way to 

implement the system (FIR filter followed by down-sampling) in terms of power 

consumption and required operating speed of circuit. 

 

H(z) ↓M

E0(z)↓M

E1(z)↓M

E2(z)↓M

EM-1(z)↓M

z-1

z-1

z-1

z-1

… ……
x[n] y[n] w[n]=y[nM]

x[n] w[n]

System A

System B
 

Figure 3.5 System A is equivalent to system B (polyphase decomposition; efficient 

implementation for FIR filter followed by down-sampling). 

 

 

  

 In the 2
nd

 and 3
rd

 decimation stages, the decimation ratios are both two (M=2). 

So, the implementation of decimation FIR filters with polyphase decomposition with 

M=2 is shown in Figure 3.6. 
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E0(z)↓2

E1(z)↓2

z-1

x[n] w[n]

 

Figure 3.6 Efficient implementation of decimation FIR filter with M=2 

 

, where  E0(z)= b0+b2z
-1

+ b4z
-2

+……+bN-2z
-(N-2)/2

+bNz 
–N/2

 (3.11) 

 E1(z)= b1+b3z
-1

+ b5z
-2

+……+bN-3z
-(N-4)/2

+bN-1z 
–(N-2)/2

 (3.12) 

 , for N is even number 

 

, where  E0(z)= b0+b2z
-1

+ b4z
-2

+……+bN-3z
-(N-3)/2

+ bN-1z
-(N-1)/2

 (3.13) 

 E1(z)= b1+b3z
-1

+ b5z
-2

+……+bN-2z
-(N-3)/2

+bNz 
–(N-1)/2

 (3.14) 

 , for N is odd number 

 

  

 In my decimator design, N is assumed as a even number to make the 

coefficients of E0(z) and E1(z) are still symmetric, which implies that bk=bN-k for 

Equation 3.11 and Equation 3.12, because the coefficients are symmetric bk=bN-k for 

FIR filters with linear-phase regardless of even or odd order (N). 

 

 Generally speaking, the polyphase decomposition technique would definitely be 

exploited to reduce power consumption and relieve circuit speed for decimation FIR 

filter due to no any hardware overhead. So, the further implementation comparison for 

FIR filters will all base on polyphase decomposition except the 4
th

 stage (the 

compensation filter; no down-sampling). 

 

 The high order FIR filter requires many multiplication operations per sample, 

which limits the sample throughput and consumes large power. Besides, it consumes 

large silicon area due to requiring many multipliers, adders and registers for a 

straightforward implementation. Thus, the main object in this thesis is to reduce the 

silicon area of FIR filter. Although there are many techniques that could be used to 

reduce silicon area, the folding technique could reduce the silicon area of high order 

FIR filter more than others. So, previous works on folded FIR filter will be introduced 

and briefly compared (detail compared with my proposed folded design in latter 

section). Both direct-form and transposed-form structures will be considered. 
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 Direct-Form Structure 

 In my decimator design, the highest order of FIR linear-phase filter is 126, 

which imply that there are 127 coefficients with the symmetric feature, i.e. hk=h126-k. 

So, there are only 64 distinct coefficients for the 126
th

-order FIR linear-phase filter. 

Usually h[n] denotes the impulse response of system (FIR filter), i.e. h[n]=bn in 

Equation 3.6. The decimation FIR filter with polyphase decomposition in direct-form 

is shown in Figure 3.7. And all the following implementations would be illustrated 

using 126
th

-order FIR filter with polyphase decomposition. 

 

z-1
z-1z-1 z-1 z-1…st0 st1 st61st60z-1

z-1 z-1
z-1 z-1 z-1…st63 st64 st123st122z-1

h3

h2

h5

h4h4

h5
h3

h2 h1

h0

st62

… y

2fd3

fd3

h1
h0

st124

…

… h60 h62 h62 h60… 

… h61 h63 h61… 

 

Figure 3.7 Decimation FIR filter (126
th

-order) with polyphase decomposition in 

direct-form 

 

 The coefficients hk with k>63 will be replaced by h126-k with k>63 due to 

hk=h126-k, which implies that h125 will be shown with h1. The Figure 3.7 exhibits a 

direct implementation of Equation 3.7 modified as Figure 3.6 (combining 

down-sampling 2 and using polyphase decomposition) and the Figure 3.8 shows the 

meaning of the switched arrow at input of Figure 3.7. From these figures, it is obvious 

that the straightforward implementation for 126
th

-order FIR filter requires 127 

multipliers, 126 adders and (125+1) storage elements (126 x 27-bits registers if 

word-length of each sample is 27-bits), which consumes large silicon area.  
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↓2

↓2

z-1

x[n]

2*f

f

f

= (a)

(b)

… 8 6 4 2 0

   … 7 5 3 1   

… 8  6  4  2  0

   … 7  5  3  1 -1

 

Figure 3.8 The meaning of switched arrow where f denotes the sampling rate 

 

 

Direct-Form Folding 

Therefore, a folded architecture of FIR filter with polyphase decomposition in 

direct-form is shown in Figure 3.9. Circuits based on the direct-form folding 

architecture for FIR filters could be seen in [12] [13] [14] [15]. The folded 

architecture is an architecture where the algorithmic operations are performed by 

time-multiplexing so as to reduce the functional units. In Figure 3.9, one 

multiplication and two addition operations are performed at each clock cycle using 

one multiplier and two adders. Utilizing the symmetry of coefficients (127 

coefficients), only 64 multiplication operations needed to calculate per sample, which 

implies that an output sample is calculated using 64 clock cycles for the 126
th

-order 

FIR filter. Although the number of adder could be reduced further (i.e., using only one 

adder) for the direct-form folding FIR filter architecture, it is not an implementation 

option due to the twice power (requiring 127 clock cycles per sample because of not 

utilizing coefficients symmetry) and the negligible area reduction (one adder). 
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It is easy to understand the behavior of the direct-form folded FIR architecture. 

The even samples of x (i.e. x[even]) are stored in the shift registers D-R0 (data 

registers) in descending order (x[2(n-1)] x[2(n-2)]…… x[2(n-62)] x[2(n-63)]; the 

oldest sample at the right end of shift registers due to right-shifting and input from left) 

and the odd samples of x are stored in D-R1 as well (x[2(n-1)-1] x[2(n-2)-1]…). The 

D-R0 are composed of x0, st0, st1, …… , and st62 as well as the D-R1 are composed 

of x1, st63, st64, …… , and st124. As seen in Figure3.9, the value of x[2(n-1)] is 

stored in the registers (storage-element) st0, x[2(n-1)-1] is stored in st63, etc.  

 

A new sample of x is coming every 32 clk cycles and it must be synchronized by 

extra data registers (implicitly in Figure 3.9). The shift registers (D-R0 and D-R1) are 

clocked by clkd3, so they are shifted one-time every 64 clk cycles. The multiplication 

operations with hodd coefficients of FIR filter are computed at the first 32 clk cycles of 

one output-sample-cycle (period of 64 clk cycles) and those with heven coefficients are 

computed at the last 32 clk cycles. One output sample is produced every 64 clk cycle 

(=1 output-sample-cycle=2 input-sample-cycle). The term (x[2n-1]+x[2(n-62)-1])h1 is 

computed at the first clk cycle, (x[2(n-1)-1]+x[2(n-61)-1])h3 at the 2
nd

 clk cycle, ……, 

x[2(n-31)-1]h63 at the 32
th

 clk cycle, (x[2n]+x[2(n-63)])h0 at the 33
th

 clk cycle, ……, 

as well as the term (x[2(n-31)]+x[2(n-32)])h62 is computed at the 64
th

 clk cycle. The 

result (term described above) of each clk cycle is accumulated and then the output 

sample is produced at the end of 64
th

 clk cycle.   

 

The advantages of direct-form folding are fewer functional units (one multiplier 

and two adders in Figure 3.9) compared with direct-form structure (non-folding; 127 

multipliers and 126 adders in Figure 3.7).  
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z-1 z-1z-1 z-1 z-1z-1
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:1
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64:1 Coefficients

x1 st63 st64 … st92 0 x0 st0 st1 … st29 st30 st62 st61 st60… st31

st124 st123 st122… st93

3
2

:1

z-1 z-1z-1 z-1 z-1z-1
………st0 st1 st60 st61

st63 st64 st122 st123

st2

st65 st121

st59

x1

x0

D Q

Clk

Reset Q

accu
0

10

y[n]

2fd3

st62

st124

fd3

fd3*64=f

x

f is the operating frequency of the circuit using clk

fd3 is the output sampling rate using clkd3

clk

D-R0  clocked by clkd3

D-R1  clocked by clkd3

syn
syn

……

1 output-sample cycle

=1/fd3

64 cycles

syn

clk

clkd3 x[2n-1] x[2n]

x[2(n-1)]x[2n]

x[2n-1]

x[2(n-2)]

x[2(n-1)-1] x[2(n-2)-1]

x[2(n-62)] x[2(n-63)]

x[2(n-62)-1]x[2(n-61)-1]

 

Figure 3.9 The folded architecture of FIR filter with polyphase decomposition in 

direct-form 

 

 

 

 

Transposed-Form Structure 

 The decimation FIR filter (126
th

-order) with polyphase decomposition in 

transposed-form (Equation 3.8 modified further using polyphase-decomposition as 

Figure 3.6) is shown in Figure 3.10. 
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=
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Figure 3.10 The decimation FIR filter (126
th

-order) with polyphase decomposition in 

transposed-form 
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 The structure (a) in Figure 3.10 is equivalent to structure (b) in Figure 3.10. Note 

that the input-sequences allocated at the phase0-filter and phase1-filter (i.e., filter E0 

and filter E1 in Figure 3.6) for structure (a) and for structure (b) are different in the 

beginning; however, the sequences before the final adder are the same due to the 

delay element used in structure (b). The storage elements of phase0-filter and 

phase1-filter could be merged together to halve the usage of registers [16] [17]. For 

convenience, the value stored in storage elements would only represented by st0, st1, 

and so forth because the values stored in storage elements include many delay 

versions of input sample multiplying with FIR filter coefficients shown in Figure 3.11. 

The stored values in transposed-form are similar to the values in parentheses of 

Equation 3.8 needed to modify further for polyphase decomposition. Consequently, 

the output value y[n] in transposed-form is equivalent to output value in direct-form. 
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Figure 3.11 The values stored in storage elements 

 

The advantages of the decimation FIR filter with polyphase decomposition in 

transposed-form (structure (c) in Figure 3.10) compared with direct-form are  

1. Short critical path 

2. Half storage elements (registers) 

 

However, the amount of the function units (multipliers and adders) required by 

126
th

-order FIR filter in transposed-form (Figure 3.10) are still too large. 
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Transposed-Form Folding 

 Therefore, a folded architecture of FIR filter with polyphase decomposition in 

transposed-form is needed to reduce the functional units of the high order FIR filter. 

The structure (c) in Figure 3.10 is the folding object. However, the folded FIR filter 

architecture for transposed-form is quite different from the folded architecture for 

direct-form.  

 

Encounter problem 

 

Note that the multipliers’ output are stored to the different storage elements (st62, 

st61, …, etc.) after extra addition operations for transposed-form FIR filter seen in 

Figure 3.10, which is different from direct-form where the multipliers’ output are 

merely stored to the accumulator-registers (accu in Figure 3.9). As a result, the folded 

architecture using one multiplier for transposed-form must encounter the problem that 

the result of multiplier’s output after addition operation should be stored to diverse 

storage elements and only some (two) of them (st62, st61, …, etc.) fetch the 

calculated result (multiplication and addition operation) each cycle, which implies 

that the storage elements (registers) are hard to control using single clock due to the 

above described behavior of the registers even if the calculated result each cycle 

might use de-multiplexer to choose the destination (target storage element) (in 

addition, for using de-multiplexer, the non-destination storage elements still fetch 

zeros and then the stored value would be cleared if the registers are trigger by the 

same clock).  

 

 The 2
nd

 encounter problem for the folded FIR filter architecture in 

transposed-form (using one multiplier, i.e. one multiplication operation each cycle) is 

that the calculated result (multiplication and addition operations) could not store the 

result to the target storage element because the original value of target storage element 

must be read at latter clock cycle for another addition with the result of different 

coefficient multiplication. For example, the calculated result related to multiplication 

operation with coefficient h2 and addition with st62 and st1 are calculated first and 

then stored to the target storage elements, st61 and st0 respectively. In another clock 

cycle, however, the calculated result related to coefficients h4 or h0 are wrong 

because they required reading the original value stored in st61 and st0 respectively. 

The situation could not be solved even if the operation sequences related to 

coefficients each cycle are changed. It may be solved using extra registers to store the 

calculated result or the original value stored in storage element, but the advantage of 

half registers for FIR filter in transposed-form will disappear. 
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 These two problems, which both resulted from storing the calculated result to 

storage element, could be solved by shifting the value stored in storage elements 

every cycle and not utilizing the coefficient symmetry to calculate the multiplication 

results from the right to left end (in Figure 3.11) as the folded architecture of FIR 

filter in transposed-form mentioned in [18], seen in Figure 3.12. 
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z-1 z-1 z-1 z-1 z-1……
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syn

……
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=1/fs
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clk
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Registers to store 

coffecinetsh0h1h2... ...hk-2hk-1

 

Figure 3.12 Folded architecture of k-tap FIR filter in transposed-form without 

polyphase decomposition (i.e. no down-sampling) 

 (for linear-phase, the feature of FIR filter coefficients: hn=hk-1-n) 
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z-1
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y[n]… 
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0
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Figure 3.13 Corresponding unfolded FIR filter in transposed form 

 

 The unfolded FIR filter in transposed-form is also shown in Figure 3.13 to 

illustrate the behavior of folded architecture in transposed-form shown as Figure 3.12. 

The input sample x[n] enter the circuit at the first clock cycle (clk) and remain 

constant for the k clock (clk) cycles. The coefficients stored in registers in ascending 

order (h0 at the left end of the coefficients registers and hk-1 at the right end). So, the 
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result of x[n]h0+St(1) is computed first and stored in the St(k-1) at the end of the first 

clock cycle. The original value of St(k-1) is moved forward to St(k-2) as well as the 

other original value contained in St(n) are moved forward to St(n-1), i.e. the behavior 

of shift registers , which preserve the uncalculated (unused) value stored in St not to 

be modified. Because of the data shifting, the value stored in St(1) is the original 

value of St(2) (i.e., the value in St(2) seen in Figure 3.13) in 2
nd

 clock cycle. In 2
nd

 

clock cycle, the result x[n]h1+St(2) seen in Figure 3.13 is calculated and stored to 

St(k-1) seen in Figure 3.12 at the end of 2
nd

 clock cycle. The data are still right 

shifting so the result calculated in last clock cycle is shifting to St(k-2) and not 

modified. One tap’s computation (from right to left end in Figure 3.13, i.e. 

x[n]h0+St(1), x[n]h1+St(2),…, x[n]hk-1+0) is calculated each clock cycle. After k-1 

clock cycles, the result x[n]h0+St(1) (the value seen in Figure 3.13) is shifting to St(1) 

in Figure 3.12 and could be output (at the same time, the result x[n]h1+St(2) in Figure 

3.13 is shifting to  St(2) in Figure 3.12 and so on). After k clock cycles, the result 

x[n]h0+St(1) is shifting out, and the result x[n]h1+St(2) is shift to the St(1) as well as 

the other results are shifting to the individual destination storage elements like 

x[n]h2+St(3) is shift to the St(2). Thus, the computations required by a sample are 

finished and stored to the right destination storage element after k clock cycles. 

 

 

 

 The behavior of folded architecture of FIR filter is described as above. Now, for 

comparison, the folded architecture of FIR filter must be modified using polyphase 

decomposition (i.e. a folded architecture based on Figure 3.11 not Figure 3.13) and 

the FIR coefficients would not use the shift registers to store and output, which is 

designed for programmable FIR filter coefficients and cause large area overhead. 

 

 The behavior of the folded architecture for FIR filter using polyphase 

decomposition is almost the same as the behavior in Figure 3.12. The result of 

x[2n]h0+st0 seen in Figure 3.11 is calculated in the 1
st
 clock cycle and stored to st62. 

The result of x[2n]h2+st1, x[2n]h4+st2 and so forth are calculated in the 2
nd

 cycle ,the 

3
rd

 cycle, etc, respectively. After 63 cycles, the result of x[2n]h0+st0 is shifting to st0 

and could be output in the 64
th

 cycle. In the 64
th

 cycle, the result x[2n]h0+0 (the left 

end computation; no storage element result needed to add) is calculated by switching 

the input of multiplexer to zero for addition operation (controlled by syn). After 64 

clock cycles, the result of x[2n]h2+st1 seen in Figure 3.11 is shift to st0 seen in Figure 

3.14. So, in the 65
th

 cycle, the result of x[2n]h2+st1+x[2n+1]h1 seen in Figure 3.11 is 

calculated and stored to st62 seen in Figure 3.14 at the end of 65
th

 cycle, where the 
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x[2n]h2+st1 is read from st0 of Figure 3.14. Also the result with other odd coefficient 

is calculated one by one each cycle. At the end of the 127
th

 cycle, the result 

x[2n]h2+st1+x[2n+1]h1 is stored to st0 and the computations required by a 

output-sample are all finished and stored the data to the right storage elements.  
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Figure 3.14 Folded architecture of decimation FIR filter using polyphase 

decomposition 

 

 The drawbacks of the folded architecture [18] of decimation FIR filter with 

polyphase decomposition shown as above are shifting data every operating cycle (clk) 

and not utilizing the coefficients symmetry which implies that it requires double clock 

cycle compared with direct-form folding mentioned above to accomplish the 

computation required by a output-sample. Those will result in large power 

consumption (at least twice). 

 

 The advantages of folded architecture in transposed-form shown in Figure 3.14 

[18] are one adder and half register reduction compared with the folded architecture in 

direct-form shown in Figure 3.9 [12] [13] [14] [15]. However, the silicon area 

required by transposed-form folding [18] is not definitely smaller than silicon area 

required by direct-form folding because of the twice operating frequency requirement  
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for transposed-form folding to maintain the throughput (output sampling-rate) (∵ 

trading silicon area for speed). 

 

 The implementations of decimation FIR filter using polyphase decomposition 

have been described above; the folded architecture could obtain the smallest silicon 

area due to few functional units especially for high order FIR filters. Also the 

advantages and disadvantages of folded architecture based on direct-form shown in 

Figure 3.9 and transposed-form shown in Figure 3.14 are addressed which would be 

compared with my proposed folded architecture based on transposed-form in latter 

section. 

 

3.3 Overall Decimator System 

 The block diagram of overall decimator system and related clocks is shown in 

Figure 3.15. The 2
nd

, 3
rd

 and 4
th

 stages are FIR filters and the 2
nd

 and 3
rd

 stages are 

followed by down-sampling 2, which could be polyphase decomposed to halve the 

power consumption as mentioned in Section 3.2.2. 
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Figure 3.15 Block diagram of overall decimator system 

 

 In Figure 3.15, the sampling rate of input and output at each stage are shown for 

decimation ratio 128 and 64 as well as the clocks required by each stage. In order to 

maintain that the number of clock cycles required by a output-sample to finish the 

computations are equal at decimation ratio 128 and 64 for circuits using folded 

architecture (stage 2, 3 and 4), the operating clock for the 2
nd

, 3
rd

, and 4
th

 stages must 

be chosen according to the decimation ratio. For example, the folded architecture for 

the 3
rd

 stage, 64 clock cycles (64 multiplication operations; 127 taps using coefficients 

symmetry) are needed for an output-sample’s computations, which implies that the 

operating frequency of the circuit to output sampling-rate must fix to 64 no matter the 

decimation ratio of decimator are 128 or 64. That makes the circuit of folded 
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architecture operate correctly.  

 

3.4 Clock Divider Circuit 

 The circuit of clock divider by 2 is shown in Figure 3.16 as well as the timing 

diagram is shown in Figure 3.17. 
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Figure 3.16 Circuit of clock divider by 2 
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Reset
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Figure 3.17 Timing diagram for the circuit of clock divider by 2 

 

 In Figure 3.16, the data (logic value: 0 or 1 or unknown) in pin D (is equal to pin 

Q  which is the inverse of Q) is fetched to pin Q (i.e. port clk2) at positive edge of 

clock (clk) so the port clk2 invert when encountering the positive edge of clock (clk). 

As a result of that, the frequency divider by 2 is obtained. 
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3.5 The First Decimation Stage: Comb Filter 

 As mentioned in Section 3.2.1, the recursive (IIR-FIR) structure of comb filter is 

adopted to implement the first decimation stage due to its smaller power-area product 

compared with non-recursive structure.  

 

 The transfer functions of comb filter followed by down-sampling with 

decimation ratio 32 and 16 determined in Chapter 2 are  

 

 Hcomb 32 z =
1

325 (
1

1−z−1)5  ↓ 32  (1 − z−1)5  for decimation ratio 32 

  (3.15) 

 Hcomb 16 z =
1

165 (
1

1−z−1)5  ↓ 16  (1 − z−1)5  for decimation ratio 16 

  (3.16) 

 

 The first decimation stage is composed of gain control (
1

325  and 
1

165), integrator 

(
1

1−z−1)5 , downsampler (↓32 and↓16) and differentiator  (1 − z−1)5 . The 

programmable decimation ratio (128 and 64) of decimator is mainly controlled by the 

downsampler of first decimation stage.  

 

z-1 z-1 z-1 z-1 z-1 z-1

↓16 or 32
-

z-1

-

z-1

-

z-1

-

z-1

-Gain

Control

integrators differentiatorsdownsampler  

Figure 3.18 Components of first decimation stage 

 

3.5.1 Gain Control 

 In order to remove the DC gain (i.e. let DC gain=0 dB), the gain control is 

needed and then the data (value of sample) could be treated the same for later FIR 

filters no matter the decimation ratio are 128 or 64. Furthermore, to prevent the DC 

signal existing permanently, the data (value of input sample) would be represented by 

2’s complement (i.e. 1 of input sample is treated as +value and 0 is treated as -value). 

Moreover, the ‘enable’ signal is introduced to prevent the window effect seen [3] 

when enable=0 the data (value of input sample) is treated as zero which make the zero 

padding exist to prevent window effect.  

 

In addition, the word-length of adder and registers is 1+5*log232=26 bits [6] for 
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unsigned representation in the first decimation stage. However, for using 2’s 

complement representation, the word-length required in the first decimation stage is 

needed one more bit (27-bits). 

 

 

The output of gain control circuit is list below: 

 enable=0: output of gain control is 27-bits zeros . 

 enable=1, in=1 and df=1: output of gain control is 0.5*(1/32)
5 

=27'b0000_0000_0000_0000_0000_0000_001. 

 enable=1, in=1 and df=0: output of gain control is 0.5*(1/16)
5 

=27'b0000_0000_0000_0000_0000_0100_000. 

 enable=1, in=0 and df=1: output of gain control is -0.5*(1/32)
5
  

=27'b1111_1111_1111_1111_1111_1111_111. 

 enable=1, in=0 and df=0: output of gain control is -0.5*(1/16)
5 

=27'b1111_1111_1111_1111_1111_1100_000.  

 

 

3.5.2 Pipelined Comb Filter 

 As a result of the clock skew, the positive edges of clk32 and clk16 (seen in 

Figure 3.15; clk32 is produced by clk16 so the delay is inevitable) are not triggered at 

the same time, which make downsampler (registers clocked by clkd1 composed of 

clk32 and clk16) easily fetch the unready signal (output of integrators) due to the long 

critical path of integrators which used most of the cycle time to calculate the result (i.e. 

the cycle time governed by the signal ready time is small). 

 

 In order to make the signal (output of integrators) ready earlier, the critical path 

of integrators must be shortened. So, comb filter is pipelined to meet the requirement 

seen in Figure 3.19. The cycle time of differentiators is 16 or 32 longer than the cycle 

time of integrators. Thus, the differentiator part is unnecessary to be pipelined.   
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Figure 3.19 Pipelined comb filter (only integrators part needed to be pipelined due to 

its critical timing) 
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 The pipelined integrators part could be retiming seen in Figure 3.20 to reduce the 

registers usage. 

 

z-1

z-1 z-1

=>

 

Figure 3.20 Retiming to reduce the registers usage 

 

 

 Finally, the first decimation stage is shown as Figure 3.21. 
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Figure 3.21 Implementation of first decimation stage 

 

 

3.6 Proposed Circuit for FIR Filters 

 The basic ideas of my proposed architecture are to preserve the advantages of 

direct-form folding seen in Figure 3.9 [12] [13] [14] [15] and transposed-form folding 

seen in Figure 3.14 [18]. My proposed folded architecture is based on 

transposed-form FIR filter with polyphase decomposition to obtain half registers 

reduction compared with direct-form as well as my architecture utilizes the 

coefficients symmetry to halve the multiplication operation cycles (i.e. half power 

consumption) compared with transposed-form seen in Figure 3.14. 

 

Furthermore, my proposed folded architecture based on transposed-form solves 

the encounter problems of folding on transposed-form FIR filter seen Section 3.2.2 by 

using extra control circuits and changing the computation procedures to reuse 

registers to store data instead of shifting all data each cycle seen in Figure 3.14. As a 

result of that, the power consumption of my proposed folded architecture based on 

transposed-form FIR filter is much less than half power of folded FIR architecture in 

transposed-form seen in Figure 3.14 [18]. 

 

My proposed folded architecture of decimation FIR filter based on 

transposed-form using polyphase decomposition shown in Figure 3.22(a). For 

convenience, the unfolded decimation FIR filter with polyphase decomposition is 

shown in Figure 3.22(b) so as to explain the behavior of my folded architecture. And 



  Chapter 3: Decimator Implementation 

~ 78 ~ 
 

the timing diagram of my proposed architecture is shown in Figure 3.22(c). 

 

As usual, the folded architecture is illustrated by the 126
th

-order FIR filter (the 

3
rd

 stage with highest order FIR filter). The 126
th

-order FIR filter’s output sample 

requires 64 clock cycles to perform the 64 coefficients multiplications: the first 32 

clock cycles are associated with x[2n] and heven; the last 32 clock cycles are associated 

with x[2n+1] and hodd. 

 

Note that my folded architecture requires an extra storage element st63 (registers) 

to store result (x[2n]h0) at the end of first clock (clkf3) cycle compared with unfolded 

structure because the result (x[2n]h0) cannot store to st62 which must be read in latter 

clock cycle for my folded architecture. 

 

The result of x[2n]h0+st0 (the expected output result; right side) and x[2n]h0 (left 

side) seen in Figure 3.22(b) (x[2n]h0 seen in Figure 3.22(b) is computed by 

x[2n]h0+st63 where st63=0 seen in Figure 3.22(a)) are computed in the first clock 

cycle (the clock is clkf3; first clock cycle implies that the value of counter is zero) and 

then stored to st0 and st63 respectively seen in Figure 3.22(a) at the end of first clock 

cycle. In the 2
nd

 clock (clkf) cycle, the result of x[2n]h2+st1 and x[2n]h2+st62 seen in 

Figure 3.22(b) are computed and then stored to st1 and st62 seen in Figure 3.22(a), 

respectively. The entire computations required by an output sample are separately 

calculated at each cycle and the computation of each cycle in my proposed 

architecture seen in Figure 3.22(a) is listed in Table 3.2. After the first 32 clock cycles, 

the multiplication operations correlated with x[2n] and coefficients heven have been 

finished.  

 

And the input sample, x[2n+1], appears after the first 32 clock cycles. In the 33
rd

 

clock (clkf3) cycles (counter = 32), the results of x[2n]h0+x[2n+1]h1 and 

x[2n]h2+x[2n+1]h1+st1 seen in Figure 3.22(b) are computed by x[2n+1]h1+st63 and 

x[2n+1]h1+st1 seen in Figure 3.22(a) where the contents of st63 and st1 are x[2n]h0 

and x[2n]h2+st1 respectively. These two results are temporarily stored to the st63 and 

st1 respectively seen in Figure 3.22(a) at the end of the 33
rd

 clock cycle. At the end of 

the 64
th

 clock cycle, the results of x[2n]h0+x[2n+1]h1 and x[2n]h2+x[2n+1]h1+st1 are 

shifted to st62 and st0 so as to finish the required computations, respectively. The 

other computation correlated with x[2n+1] and hodd at each cycle could be seen from 

Table 3.2. 
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Figure 3.22 (a) Proposed folded architecture of decimation FIR filter based on 

transposed-form using polyphase decomposition (b) the unfolded one 

 

 

For the below timing diagram of the my folded architecture, the contents of 

storage elements, st0, st1, st2, ……, st61, st62 and st63, in the beginning of shown 

output sample cycle are st0, st1, st2, ……, st61, st62 and 0, respectively.  
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Figure 3.22(c) Timing diagram of my proposed architecture 
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Table 3.2 The computation of each cycle in Figure 3.22(a) 

 Left Right 

x[2n] 

counter 0 1 … 30 31 31 30 … 1 0 

heven h0 h2 … h60 h62 h62 h60 … h2 h0 

read st63 st62 … st33 st32 st31 st30 … st1 st0 

write st63 st62 … st33 st32 st31 st30 … st1 st0 

x[2n+1] 

counter 32 33 … 62 63 62 61 … 32  

hodd h1 h3 … h61 h63 h61 h59 … h1  

read st63 st62 … st33 st32 st31 st30 … st1  

write st63 st62 … st33 st31 st31 st30 … st1  

At the end of the counter=63 cycle, all data shift (behavior of shift registers), 

which means that st63>>st62>>st61>>st60>>……>>st2>>st1>>st0. 

 

For example, in the Table 3.2, the columns with counter=62 illustrate that 

x[2n+1]h61+st33 is computed in the 63
rd

 clock (clkf) cycle and then stored to st33 at 

the end of 63
rd

 clock (clkf) cycle for the left column as well as x[2n+1]h61+st31 is 

computed in the 63
rd

 cycle (clkf) cycle and then stored to st31 at the end of 63
rd

 clock 

(clkf) cycle for the right column. 

 

Note that the result of x[2n+1]h63+st32 for counter=63 (i.e. in the 64
th

 clock 

cycle) is computed and then stored to st31 (not st32) at the end of the 64
th

 clock cycle 

due to the data shifting requirement. 

 

 The entire computations listed in Table 3.2 are equivalent to the computations in 

Figure 3.22(b), which could be seen in Table 3.3. All required computations are listed 

in the left column of Table 3.3 for circuits shown in Figure 3.22(b) and the 

corresponding computations are listed in the right column of Table 3.3 for my 

proposed circuits shown in Figure 3.22(a). For example, the result of 

x[2n]*h2+x[2n+1]*h3+st62 is computed and stored to st61 in Figure 3.22(b) during a 

clkd3 cycle. The corresponding computations, x[2n]*h2+st62, 

x[2n]*h2+x[2n+1]*h3+st62, and the result of x[2n]*h2+x[2n+1]*h3+st62 stored to st61 

are finished separately in the 2
nd

, 34
th

 clock cycle and at the end of 64
th

 clock cycle 

respectively for my circuit shown in Figure 3.22(a).   
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Table 3.3 The algorithmic operations of proposed folded architecture is equivalent to 

the unfolded decimation FIR filter in transposed-form using polyphase 

decomposition. 

Non-Folding (Transposed-Form) 

(64 multipliers for Stage3)  

Proposed Folding  

(1 multiplier for Stage3) 

Clocked by clkd3  Clocked by clkf3 

x[2n]*h0+st0=>y (the output data) 

x[2n]*h2+x[2n+1]*h1+st1=>st0 

x[2n]*h4+x[2n+1]*h3+st2=>st1 

…… 

…… 

…… 

x[2n]*h4+x[2n+1]*h5+st61=>st60 

x[2n]*h2+x[2n+1]*h3+st62=>st61 

x[2n]*h0+x[2n+1]*h1=>st62  

counter= =0 (in the first clock cycle) 

    x[2n]*h0+st0=>y  

…… 

…… 

counter= =1 (in the 2
nd

 clock cylce)   

    x[2n]*h2+st62=>st62 

    (st62: x[2n]*h2+st62)  

counter= =33 (in the 34
th
 clock cycle) 

     x[2n+1]*h3+st62=>st62 

     (st62: x[2n]*h2+st62+x[2n+1]*h3)  

counter= =63 (in the 64
th
 clock cycle) 

…… 

(at the end of the 64
th
 clock cycle) 

     st62=>st61 

……  

 

 

 

These operations require complicated control circuits which only govern little 

silicon area. And parts of control circuit used to arrange which result store to registers 

are shown in Figure 3.23. 
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Figure 3.23 Parts of control circuits 

 

 The operations performed by parts of control circuits shown in Figure 3.23 are 

listed below: 

 

 

 The parts of control circuits shown in Figure 3.23 control which data will store to 

the register st62 at the end of each clock cycle and the other registers are controlled by 

its individual control circuits as well. The counter_n, a half clock cycle delay of 

counter, is used to be a control signal for multiplexers and prevent race condition 

because the value of counter and registers are both changed (or fetch value) at positive 

edge of clock (i.e., the value of counter is not constant around positive edge of clock, 

counter_n=1 

x[k]*h2+st62=>st62 

counter_n=33 

x[k+1]*h3+st62=>st62 

counter_n=63 

st63=>st62 
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which would cause race condition). In the Figure 3.23 case, addL_result would store 

to st62 when counter_n is 1 or 33, value stored in st63 would store to st62 (shifting 

operation) when counter_n is 63 and the value stored in st62 would store to st62 (i.e., 

the value stored in registers is not changed) when counter_n are other values. 

 

 

3.7 Comparisons 

 Now, my proposed folded architecture will be compared with the previous works 

on decimation FIR filters with polyphase decomposition described in Section 3.2.2. 

 

 The comparison result of overall, detail area and detail power of decimator are 

listed in Table 3.4, Table 3.5 and Table 3.7 as well as the area reduction percentage of 

my proposed folded architecture compared with other implementations architecture is 

listed in Table 3.6. 

 

 

 

 

Process: TSMC 0.18um 

Logic Synthesis Tool: Synopsys Design Compiler 

Clock Cycle Time: 17.5 ns 

Wire Load Model: tsmc18_wl10 (worst case)  

Core level power before APR OSR64@25MHz by Prime Power  

Word-length of samples: 27-bits 

Word-length of FIR filter coefficients: 20-bits 

 

Table 3.4 Comparison of decimator using the described implementations of FIR filter 

  Cell Area 

(um
2
) 

Average 

Power 

Peak 

Power 

Speed 

(throughput) 

U
n

fo
ld

ed
 

Direct-Form 2,042,184 5.526mW 0.9876W 2
nd

 

Transposed-Form 1,882,399 5.542mW 1.183W Fast 

F
o
ld

ed
 

Direct-Form  

[12] [13] [14] [15] 
693,410 16.96mW 0.2803W 4

th

 

Transposed-Form 

 (This design) 
583,466 14.95mW 0.1905W 3

rd

 

 



  Chapter 3: Decimator Implementation 

~ 85 ~ 
 

Another folded architecture of FIR filter in transposed-form mentioned in Figure 

3.14 (modified from straightforward implementation of a folded FIR filter [18]) 

doesn’t meet the timing constraint; the slack is -0.87ns, cell area is 533,350 um
2
 and 

total power is 327.5mW. Because it doesn’t meet the timing requirement, it couldn’t 

compare with other circuit architecture for justice. 

 

 

Table 3.5 Detail area comparison of decimator using the described implementations of 

FIR filters 

Area 

(um
2
) 

Order 

(FIR) 
Direct Transposed 

Direct 

Folding 

Transposed 

Folding 

(this design) 

Stage1  42,205   42,195  42,215  42,221  

Stage2 18 267,644  242,192  92,223  78,735  

Stage3 126 1,562,255  1,427,906  388,782  292,761  

Stage4 40 169,284  169,297  169,430  169,108  

Total  2,042,184  1,882,399  693,410  583,466  

 

 

 

Table 3.6 Area normalized to direct-form folding   

(27-bits word-length)  

Cell Area Direct Transposed Direct Folding This Design 

Stage2 2.90  2.63  1  0.85  

Stage3 4.01  3.67  1  0.75  

Overall Decimator 2.95  2.71  1  0.84  

 

 

 

 

 

 

 

 

 

 

 

 

[12][13][14][15] 
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Table 3.7 Detail Power Comparison 

Power (mW) Direct Transposed 
Direct 

Folding 

Transposed 

Folding 

(this design) 

Stage1 0.6428 0.6397 0.6421 0.6423 

Stage2 0.4160 0.4370 1.966 2.283 

Stage3 1.554 1.540 11.14 9.130 

Stage4 2.896 2.907 3.193 2.869 

Total 

(average) 
5.526 5.542 16.96 14.95 

Total (peak) 987.6 1183 280.3 190.5 

 

 

 

From the above comparison tables, they reveal that my proposed folded 

architecture requires the smallest silicon area and requires 24.6% less hardware 

(silicon area) compared with folded architecture in direct-form [12] [13] [14] [15] for 

the high order (126
th

-order) decimation FIR filter with polyphase decomposition. In 

addition, the other advantages of my proposed folded architecture compared with 

folded architecture in direct-form [12] [13] [14] [15] are shorter critical path (-one 

adder delay), shorter latency (-order/2 cycles) and smaller peak power (-30%). The 

average power of my design is in the same level with direct-form folding. 

 

 In order to make sure that the proposed folded architecture is still suitable for 

sample word-length with 16-bits, the comparison of detail area, area reduction 

percentage of my proposed architecture and detail power for 16-bits word-length are 

listed below in Table 3.8, Table 3.9 and Table 3.10, respectively.  

 

 

 

 

Process: TSMC 0.18um 

Logic Synthesis Tool: Synopsys Design Compiler 

Clock Cycle Time: 16.5 ns 

Wire Load Model: tsmc18_wl10 (worst case)  

Core level power before APR OSR64@25MHz by Prime Power  

Word-length of samples: 16-bits 

Word-length of FIR filter coefficients: 20-bits 

[12][13][14][15] 
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Table 3.8 Detail area comparison with 16-bits word-length  

Area 

(um
2
) 

Order 

(FIR) 
Direct Transposed 

Direct 

Folding 

Transposed 

Folding 

(this design) 

Stage1 - 41,526 41,526 41,486 41,496 

Stage2 18 218,687 206,185 55,265 48,316 

Stage3 126 1,401,173 1,319,290 224,320 180,251 

Stage4 40 101,042 101,042 101,036 101,874 

Total - 1,763,251 1,668,867 422,940 372,590 

 

 

 

Table 3.9 Area normalized to direct-form folding   

(16-bits word-length)  

Cell Area Direct Transposed Direct Folding This Design 

Stage2 3.96  3.73  1  0.87  

Stage3 6.2  5.88  1  0.80  

Overall Decimator 4.17  3.95  1  0.88  

 

 

 The area reduction percentage of my proposed architecture compared with 

direct-form folding architecture is decreased because the multiplier governs more 

percentage of silicon area in the 2
nd

 and 3
rd

 stage, which is resulted from the 

non-decreased word-length of FIR filter coefficients. The main advantage of my 

proposed folded architecture compared with folded architecture in direct-form is half 

registers usage so the decrease in the percentage of registers’ silicon area will result in 

that area reduction percentage of my proposed architecture decrease, too.  

 

 Generally speaking, the word-length of samples (bits resolution) is decreased; 

the word-length of FIR filter coefficients must be decreased, too. Because the 

resolution of sample is low, the resolution (word-length) of FIR filter coefficients 

required by the sample resolution is unnecessary so accurate (i.e. word-length of 

coefficient could be smaller even smaller than word-length of sample). 

 

Thus the area reduction percentage of my proposed architecture shown in Table 

3.6 is more reasonable than Table 3.9. 

 

[12][13][14][15] 
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Table 3.10 Detail power comparison using 16-bits word-length  

Power (mW) Direct Transposed 
Direct 

Folding 

Transposed 

Folding 

(this design) 

Stage1 0.6409  0.6391  0.6412  0.6405  

Stage2 0.4720  0.4471   0.9586  0.8928  

Stage3 1.778  1.706  4.384  3.826  

Stage4 1.593  1.614  1.775  1.651  

Total 

(average) 
4.501   4.424   7.778   7.032  

Total (peak) 988.7  1110   178.1  130.1  

 

 

 

Basically, the advantages of FIR filters in transposed-form are shorter critical 

path due to inserting the storage elements (registers) between adders and half registers 

requirements due to sharing storage elements using polyphase decomposition 

compared with FIR filters in direct-form.  

 

The FIR filters using unfolded structure require many functional units 

(multipliers and adders), which result in large silicon area no matter what the forms 

(structures) are. However, the power consumed by FIR filters using unfolded structure 

is much smaller than folded architecture because the logic gates required by a 

multiplier of unfolded structure are much less than logic gates required by the 

multiplier of folded architecture so as to obtain small power consumption. The 

reasons why the logic gates of a multiplier for unfolded structures are less than for 

folded architecture are that one input port of multiplier for unfolded structure is 

constant (fixed FIR filters coefficients) and the cycle time for each multiplier of 

unfolded structure to calculate is much longer than cycle time for the folded 

architecture’s multiplier. The trade-off between unfolded and folded FIR filters is 

shown in Figure 3.24. 

 

 

[12][13][14][15] 
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Unfolded

FIR Filter 

Folded

FIR Filter 

Larger silicon area

Smaller average power

Higher throughput

Smaller silicon area

Higher average power

Lower throughput

Trade off

 

Figure 3.24 Trade-off between unfolded and folded FIR Filter 

 

For comparison on folded architectures, the advantages of my proposed folded 

architecture are summarized below: 

 Compared with direct-form folding FIR [12][13][14][15] 

 Area reduction [half registers] (-19%@18
th

-order ~ -24%@126
th

-order) 

 Short critical path (-one adder delay). 

 Short latency (-order/2 cycles). 

 Small peak power (-30%, same level average power). 

 

 Compared with other transposed-form folding FIR [18]: 

 Much less than half power. 

 

Because my proposed folded architecture is based on transposed-form, it results 

in the advantages of shorter critical path (registers are between adders), shorter 

latency (output is produced after a multiplication and an addition operation) and 

smaller peak power (half data shift in the same time due to half registers requirement) 

compared with folded FIR filter architecture in direct-form [12][13][14][15]. In 

addition, the half register requirement is obtained by changing computation 

procedures and using extra control circuits described in Section 3.6. 

 

The differences between my folded architecture and folded architecture 

mentioned in [18] (seen in Figure 3.12 without polyphase decomposition or Figure 

3.14 with polyphase decomposition) are that my architecture doesn’t require 2-times 

fast clock to maintain throughput and doesn’t shift all data each cycle so as to obtain 

less than half power consumption compared with folded architecture mentioned in 

[18]. The requirement of 2-times fast multiplication operation also make the timing of 

folded architecture seen in Figure 3.14 more critical. However, my architecture 

overheads compared with [18] are one adder, multiplexers and control circuits.  

 

 The trade-off between these folded architectures is shown in Figure 3.25. 
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Direct-Form Folding

[12][13][14][15]

(Figure 3.9)

This Design

(Transposed Folding)

(Figure 3.22(a))

Transposed Folding

[18]

(Figure 3.14)

Trade off Trade off

Smaller Silicon Area

The same level Power with direct folding

Highest Throughput

Probably Smallest Silicon Area

Twice Power

Lowest Throughput

Largest Silicon Area

The same level Power with my design

Lower Throughput

Folded Architecture

 

Figure 3.25 Trade-off between the three folded architectures 

 

 

 

 

 

 

 

3.8 Implementation Results 

The layout of decimator is shown in Figure 3.26, which is fabricated in TSMC 

0.18um CMOS mixed signal RF general purpose MiM Al 1P6M process. In addition, 

the information about the number of pad and silicon area of decimator is listed in 

Table 3.11. In my chip, there are 5 input pads, 27 output pads, 4-pair core power pads 

and 8-pair IO power pads. The core area (active area) is 805x805=648,025 um
2
 (in 

utilization ~90%, i.e., cell area=583,466 um
2
). However, the die size is governed 

largely by IO pads and bonding pads. As a result, the die area is 

1810x1810=3,276,100 um
2
. 

 

For IO power, one set IO power pad can provide the power for 3~4 output pads 

or 6~8 input pads. As a result, eight sets IO power pads are given to provide power for 

these IO pads (27 output pads and 5 input pads) in my chip. For core power, one set 

core power pad can provide 40mA current for core cells. From the power simulation 

of APR tool (SocEncounter), the power dissipations of my chip are 17.58mW and 

34.31mW at 51.2 MHz (input sampling-rate) for decimation factor 128 and 64, 

respectively. However, four sets core power pads are given to prevent IR-drop and 

electron-migration.  
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Figure 3.26 Layout of decimator 

 

Table 3.11 Pad and silicon area of the chip (decimator) 

Input pad  5  

Output Pad  27  

Core Power  4 pairs  

IO Power  8 pairs  

Total Pad  56  

Active area =805x805    um
2
 

Die area   =1810x1810  um
2
 

 

 

 The place and route of cells are finished by APR tool (SocEncounter). And the 

finished layout is stream-in by Virtuoso and shown in above figure. The IO cells and 

logic cells are shown as black boxes because these cells are virtual cells (confidential 

to student users), which must be replaced in CIC. 
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3.8.1 Pad Assignment 

 The pad assignment of the chip is shown in Figure 3.27. 
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Figure 3.27 Pad assignment 

 

 The IO power pads and core power pads are assigned and distributed 

symmetrically around four-side of chip to obtain probably minimum IR-drop.  

 

The above figure also shows the connections between package and die, i.e. 

bonding information for chip. The chosen package type is 68LCC (68 pins) and total 

pins (pads) of my design are 56. Thus, few pins of the package near corners are not 

assigned.  
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3.9 Decimator Simulation Result 

 The simulation and verification flow is shown in Figure 3.28 below.  

 

Figure 3.28 The post-layout gate-level simulation and verification flow for decimator 

 

 After the decimator is designed (in Chapter 2) and implemented (in Chapter 3) to 

the layout level, the function of the circuit (decimator) in layout level must be verified. 

In order to verify the function of the circuit (layout-level), a SDM output bit-steam is 

used as input to stimulate the circuit (decimator). The simulated output logic values 

can be obtained and then can be fetched and analyzed further in Matlab. The 

decimator’s output in time-domain could roughly judge the function of decimator is 

incorrect or not because the expected decimator output is the sampled version of 

SDM’s input. For further and precise verification, to compare the spectra of SDM 

bit-stream and fetched output (output of decimator) can confirm the behavior of the 

circuit (decimator) is correct or not. The function of decimator is to preserve the 

in-band spectrum of decimator’s input (SDM bit-stream). Thus, if the spectrum of 

decimator’s output is equal to the in-band spectrum of decimator’s input, the behavior 

of circuit (decimator) is correct. 

 

3.9.1 OSR=128 

 The post-layout gate-level simulation result of decimator with decimation ratio 

128 is shown in Figure 3.29 below and then verified in frequency domain using 

Matlab seen in Figure 3.30. The input of SDM is a 50 kHz sinusoidal signal 

(continuous-time signal, namely, analog signal) and the output of SDM (SDM 

bit-stream, discrete-time signal, namely digital signal) is the input of decimator. Thus, 

the expected decimator’s output is a sampled-version 50 kHz sinusoidal signal. The 

sampling-rate of input and output of decimator are BW*2*OSR=51.2 MHz and 

BW*2 = 400 kHz, respectively. 
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Figure 3.29 Post-layout gate-level simulation result with decimation factor=128 at 

nWave of workstation 

 

 

 

Figure 3.30 Verification in time domain and frequency domain for decimation ratio 

128 using Matlab 

10
2

10
3

10
4

10
5

10
6

10
7

-100

-90

-80
-70

-60
-50

-40

-30
-20

-10
0

frequency (Hz)

d
B

Spectrum of SDM output 128

10
2

10
3

10
4

10
5

-100

-90
-80
-70

-60
-50
-40

-30
-20
-10

0

frequency (Hz)

d
B

ideal signal band 128

0 0.5 1 1.5

x 10
-3

-0.5

-0.4

-0.3
-0.2

-0.1
0

0.1

0.2
0.3

0.4
0.5

output of hardware

10
2

10
3

10
4

10
5

-100

-90
-80
-70

-60
-50
-40

-30
-20
-10

0

frequency (Hz)

d
B

filter in HW 128

fs=51.2MHz 

BW=200kHz, fin=50kHz 

Time domain 

Frequency domain 

Output of decimator 



  Chapter 3: Decimator Implementation 

~ 95 ~ 
 

 In Figure 3.29, the digital signals bus1[26:0], bus2[26:0] and bus3[26:0] are 

output of stage1, stage2 and stage3 of decimator, respectively. The digital signal 

out[26:0] is the decimator’s output. For convenience, these digital signals are also 

shown as analog waveform to represent the magnitude of logic values. Thus, these 

digital signals include two waveforms (digital waveform and analog waveform) in 

above post-layout-simulation figure. Note that all signals in my design are digital 

signal. When the digital signals are shown as analog waveform, the transition of 

digital signal (logic values changing) would result in glitch in analog waveform. It is a 

normal phenomenon to depict digital signals as analog waveform. 

 

 From the above simulation figure, a sampled 50kHz sinusoidal signal 

(BW=200kHz implies Nyquist rate or output sampling rate=400kHz, 400kHz / 8 

samples per period=50kHz) appears in the decimator’ output (out[26:0]). Basically, 

the function of decimator is correct because the output of decimator (digital signal) is 

a sampled-version of SDM’s input (analog signal). 

 

To verify further, the output of decimator is fetched to personal computer and 

analyzed in Matlab. The time-domain and frequency-domain of decimator’s output 

are shown in right side of Figure 3.30. The left-top of Figure 3.30 is the (entire-band) 

spectrum of decimator’s input (SDM output bit-stream). The spectrum of decimator’s 

output shown in right-bottom of Figure 3.30 is equivalent to the in-band spectrum of 

decimator’s input (SDM output bit-stream) shown in left-bottom of Figure 3.30. Thus, 

the behavior of decimator is verified as correct. (The notches of two spectrums are a 

little different due to its distinct spectrum resolution. The points of two spectrums 

shown in left-top and right-bottom of Figure 3.30 are the same 2
20

. The spectrum 

shown in left-bottom of Figure 3.30 is the part (in-band) of spectrum, so the point of 

the spectrum is 2
20

/128=2
13

. In addition, the point 2
27

 is out of memory in Matlab.) 

 

3.9.2 OSR=64 

 The post-layout gate-level simulation result of decimator with decimation ratio 

64 is shown in Figure 3.31 below and then verified in frequency domain using Matlab 

seen in Figure 3.32. As described above, the input of SDM is still a 50 kHz sinusoidal 

signal (continuous-time signal, namely, analog signal) and the output of SDM (SDM 

bit-stream, discrete-time signal, namely digital signal) is the input of decimator. Thus, 

the expected decimator’s output is a sampled-version 50 kHz sinusoidal signal. The 

sampling-rate of input and output of decimator are BW*2*OSR=25.6 MHz and 

BW*2 = 400 kHz, respectively. 
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Figure 3.31 Post-layout gate-level simulation result with decimation factor=64 at 

nWave of workstation  

 

 

Figure 3.32 Verification in time domain and frequency domain for decimation ratio 64 

using Matlab 
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 Similarly, these digital signals are also shown as analog waveform to represent 

the magnitude of logic values. Thus, these digital signals include two waveforms 

(digital waveform and analog waveform) in above post-layout-simulation figure. And 

the glitch is normal phenomenon to depict digital signals as analog waveform. The 

spectrum of decimator’s output shown in right-bottom of Figure 3.32 is equivalent to 

the in-band spectrum of decimator’s input (SDM output bit-stream) shown in 

left-bottom of Figure 3.32. Thus, the behavior of decimator is verified as correct. 

 

3.10 Specification Table 

 The specification table of chip (decimator) is summarized in Table 3.12. 

 

Table 3.12 Specification 

Process TSMC 0.18um 

Package LCC68 (68pin) 

Num of Pads 56 Pads 

Die Area 1.81 x 1.81 mm
2

 

(core size=0.8x0.8mm
2
, utilization=90% ) 

Operating Frequency 55MHz 

Power Consumption 

(By SocEncounter) 

17.58mW @51.2MHz for decimation factor=128  

34.31mW @51.2MHz for decimation factor=64  

Power Consumption 

(By Nanosim) 

 

40mW 

(1.8V x 22mA[rms])  

20mW 

(1.8V x11.1mA[avg])  
@51.2MHz,df=128  

108mW 

(1.8V x 60mA[rms])  

37.1mW 

(1.8V x 20.6mA[avg])  
@51.2MHz,df=64 

 

 The operating frequency (input sampling-rate) in my design is 51.2 MHz 

(BW*2*OSR=200 kHz *2 * 128 = 51.2 MHz) which is overdesigned to 55MHz. And 

the power dissipations simulated by SocEncounter are 17.58mW and 34.31mW at 

operating frequency 51.2 MHz for decimation factor 128 and 64, respectively. Besides, 

the power dissipations simulated by Nanosim in average mode are 20mW and 37.1 

mW at operating frequency 51.2 MHz for decimation factor 128 and 64, respectively. 

The power dissipations simulated by Nanosim in RMS mode are 40 mW and 108 mW 

at operating frequency 51.2 MHz for decimation factor 128 and 64, respectively. 
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3.11 Paper Comparison 

 Finally, paper comparison of decimator is listed in Table 3.13.   

 

Table 3.13 Paper comparison 

Ref Process 

Die 

Area 

(mm
2

) 

Operating 

Frequency 

(Signal BW) 

Bit 

Num 

of 

Stage 

Max 

Filter 

taps 

Power Year Comment 

[12] FPGA 

16MHz 

(125kHz) 

OSR=64 

16 3 127 - 2005 
Direct 

Folding 

[13] FPGA 

44.8/12.8MHz 

(700k/100kHz) 

DECT/GSM 

OSR=32/64 

 3 49 - 2002 
Direct 

Folding 

[17] 0.6um 
21 

(~10) 

32MHz 

(250kHz) 

OSR=64 

24 - 127 490mW 2000 CSD,A/D 

[15] 0.18um 1.96 

6MHz 

(47kHz) 

OSR=64 

20 3 63 - 2006 
Direct 

Folding 

This 

Design 
0.18um 

3.27 

(0.64) 

55MHz 

(200kHz) 

(400kHz only 

OSR64) 

OSR=128/64 

27 4 127 

16.7mW 

(df=128) 

30.6mW 

(df=64) 

 
Transposed 

Folding 

 

In die area column of Table 3.13, the number in parentheses is the core area.  

 

Because the process, operating frequency, the word-length of a sample, the 

number of stages, and the number of taps of FIR filters are quite distinct for these 

decimator papers, it is difficult to compare the FIR filters’ silicon area of each design 

from above information. From above table, the used folded architectures are all in 

direct-form except my design. Basically, the above table reveals that my decimator is 

good enough in each column (operating frequency and so on). And reference paper 

[13] and my decimator have two decimation ratios. 
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 __________________________________ 

 CHAPTER 

 4     

 __________________________________ 

 

Testing and Measurement Results 

 
 

 In this chapter, the testing environment and result of decimator fabricated in 

TSMC 0.18um process would be illustrated. In addition, the package type of the chip 

is LCC68. For convenience, it could be tested and measured by auto test equipment 

(ATE), the Agilent 93000 Soc Series in CIC where the device under test board (DUT) 

is provided. Thus, the time required to setup the testing environment is short since the 

printed circuit board (PCB) is unnecessary to be prepared. 

. 

4.1 Introduction to Digital IC Testing using Agilent 93000 in CIC 

The Agilent 93000 test system seen in Figure 4.1 is composed of test-head, DUT 

(device-under-test) board and DUT interface, etc [19] [20].  
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Figure 4.1 P600 test system of Agilent 93000 SoC Series 

 

 

 The specifications of Agilent 93000 are summarized in Table 4.1 below. 

 

Table 4.1 Specification of Agilent 93000 

Digital channels 320pins 

Data Rate 660Mbps 

Vector Memory (per channel) 28MVectors 

Scan Memory (per channel) 84MVectors 

DPS channels 8 pairs (7V,6A) 

High Resolution AWG 16 bits, 30Msps sampling rate 

High Speed AWG 12 bits, 500Msps sampling rate 

High Resolution Digitizer 16 bits, 3MHz bandwidth, 2Msps 

High Speed Digitizer 12 bits, 100MHz bandwidth, 41Msps 

 

In Table 4.1, the DPS and AWG denote device-power supplies and 

arbitrary-waveform-generator. Besides, the test development flow is shown in Figure 

4.2 to understand the testing steps. 
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Figure 4.2 Test development flow 

  

The meanings of testing steps are shown as follow: (1) test plan is to determine 

what kind of test will be performed; (2) according to the package type (DIP48, 

PLCC68, PLCC84, CQFP100, CQFP128, CQFP144, CQFP160, and CQFP208 

supported by CIC), choose the DUT board where the chip is put on the socket of DUT 

board; (3) pin configuration is to set the input, output and power pins of chip to the 

test channel; (4) level setup is to set the voltage and current limit of power supply, 

drive voltage (VIL, VIH) and compared voltage threshold (VOL, VOH); (5) timing setup 

is to set the clock cycle time and waveform of each symbol; (6) vector setup is to 

describe the testing waveform by vector-format according to the predefine waveform; 

(7) test-flow setup is to load and set the related file; (8) test device and the result 

shown is pass or fail. 

 

Pictures of testing environment are shown in Figure 4.3 below 

 
(a) 
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(b)                               (c) 

 

(d) 

Figure 4.3 (a) DUT board on test-head of Agilent 93000 (b) chip in socket of DUT 

board (c) the reverse-side of DUT board wired the core-power and io-power of the 

chip to power-supplies pins (d) Software (SmarTest) used to manipulate the Agilent 

93000 in workstation (unix-system)  

 

 The test-pattern for Agilent 93000 is composed of drive vector (input of DUT) 

and expected vector (expected output of DUT) shown in Figure 4.4. The drive vectors 

are used to stimulate the DUT (chip) and the expected vectors, which are the same 

logics value at post-layout simulation, are used to compare with the outputs of DUT 

(chip) measured by Agilent 93000. The detail test patterns for Agilent 93000 are 

illustrated in Appendix B. 

 



  Chapter 4: Testing and Measurement Results 

~ 103 ~ 
 

Drive Vector Expected Vector

Test Pattern for Agilent 93000

   IN   ENABLE  RESET  CLK  DF
    0          0            1         1     1
    0          0            0         1     1
    0          1            0         1     1
    1          1            0         1     1
    0          1            0         1     1
   ……………………………

   ……………………………

OUT[26:0]
000000000000000000000000000
110001100000001011111010000
111010111101000011110101001
000111000000101001011010001
001111001000010110100000000
……………………………………

……………………………………
 

Figure 4.4 Test-pattern for Agilent 93000 composed of drive vector (input of DUT) 

and expected vector (expected output of DUT) 

 

 The function test is illustrated as Figure 4.5. The drive vectors and expected 

vectors are described in the test-patterns for Agilent 93000 seen in Appendix B. The 

response of function test is pass or fail. Pass means the all measured output of DUT is 

identical to the expected vectors (post-simulation output). If any measured output is 

different from expected vector, the response of function test is fail. 

 

Drive Vector

   IN   ENABLE  RESET  CLK  DF
    0          0            1         1     1
    0          0            0         1     1
    0          1            0         1     1
    1          1            0         1     1
    0          1            0         1     1

DUT

OUT[26:0]
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110001100000001011111010000
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000111000000101001011010001
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Figure 4.5 Flow of function test 



  Chapter 4: Testing and Measurement Results 

~ 104 ~ 
 

4.2 Shmoo Plot 

 A shmoo plot is a graphical display of the response of a chip varying over a range 

of conditions and inputs. The voltage, temperature and operating frequency could be 

the conditions as well as the testing result (pass or fail) could be the response for the 

chip. 

 

 The conditions of shmoo plot in my testing are the voltage (core power, VDD) 

and the operating frequency, which are ranged from 1.62V to 1.98V (x-axis) and 

1MHz to 100MHz (y-axis), respectively. The response of chip is pass or fail. The 

shmoo plot reveals that the function of the chip is correct or not at certain voltage 

(core power, VDD) and certain operating frequency. 

 

4.2.1 OSR=128 

 The shmoo plot of the chip (decimator) using bits-stream of SDM with OSR 

128 as stimulus is shown in Figure 4.6. 

 

 

Figure 4.6 Shmoo plot (128) 

 

 From the above Shmoo plot, it is obvious that the requirement of operating 

frequency 51.2 MHz is met even at worst case (VDD=1.62V). Besides, the circuit 

could operate correctly at higher operating frequency when the core supply voltage is 

increased. In the implementation process, the circuit (decimator) is designed and 

guaranteed to operate correctly below 55MHz clock rate. It is consistent with the 

above Shmoo plot. Furthermore, the fails around core-VDD 1.62V and operating 

55MH

z 

Pass 

Fail 

Design Requirement 51.2MHz 

Overdesign to 55MHz 
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frequency 58MHz are because the logic values of few cycles of few nodes correlated 

with reset signal are uncertain and only decide to wrong logic around these VDD and 

operating frequency. The circuit could operate correctly much higher than 55MHz 

(90MHz at VDD=1.8V) at decimation ratio 128 except the above condition because 

over designed operating frequency (input sampling-rate) is 55MHz no matter the 

decimation ratio is 128 or 64. In other words, there are timing slacks for the 2
nd

, 3
rd

 

and 4
th

 stages at decimation ratio 128 because it lowers the sampling rate more 

compared with decimation ratio 64.  

 

 The response of pass means that expected vector (OUT) is equivalent to 

measured vector (OUT). The drive vector (IN) and expected vector (OUT) are already 

known and their spectrums could be depicted and shown in Figure 4.7. 

 

Drive Vector 

IN

Expected Vector

OUT

Pass
Measured Vector

OUT=

In-band

0.5 0.5

0.5/128=3.9x10-3

f=fdxfs

fs=51.2MHz fs=400kHz

200kHz 25.6MHz100Hz

f=fdxfs

200kHz100Hz

 

Figure 4.7 The spectrums for drive vector (IN) and expected vector (OUT), 

decimation factor 128 

 

 The spectrum of expected vector (output of decimator) is the in-band spectrum 

of drive vector (input of decimator). Thus, the behavior of the circuit (decimator) is 

correct. (The points of FFT for these two figures are the same; however, the spectrum 

resolutions for these two figures over the frequency range (f=fdxfs) [100 200k] in Hz 
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are different, which result in that the notches over the frequency range (f=fdxfs) [10k 

100k] in Hz are a little different.)  

  

 The spectrums of decimator input and output over the frequency range [100 

25.6M] are shown in Figure 4.8. 

fs=51.2MHz

fs=400kHz

fs/2=200kHz

25.6MHz

25.6MHz

fs/2=200kHz

fs=400kHz

fs=51.2MHz

 

Figure 4.8 Spectrums of decimator input and output over the frequency range [100Hz 

25.6MHz] (128) 
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 According to the sampling theorem, the spectrum of the signal would repeat 

every sampling-frequency (fs). Thus, the spectrum of decimator output, where the fs 

is 400 kHz (BW=200 kHz), is repeated 128-times during that frequency range [0 

25.6M] (Hz).  

 

4.2.2 OSR=64 

 The shmoo plot of the chip (decimator) using bits-stream of SDM with OSR 64 

as stimulus is shown in Figure 4.9. 

 

 

Figure 4.9 Shmoo plot (64) 

 

 Similarly, the above Shmoo plot reveals that the requirement of operating 

frequency 51.2 MHz is met. Besides, the circuit could operate correctly at higher 

operating frequency when the core supply voltage is increased. In my implementation 

process, the circuit (decimator) is designed and guaranteed to operate correctly below 

55MHz clock rate. It is consistent with the above Shmoo plot.   

 

 Likewise, the response of pass means that expected vector (OUT) is equivalent 

to measured vector (OUT). The drive vector (IN) and expected vector (OUT) are 

already known and their spectrums could be depicted and shown in Figure 4.10. 
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Drive Vector 
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Pass
Measured Vector

OUT=

In-band

0.5 0.5

0.5/64=7.8x10-3

f=fdxfs  

fs=25.6MHz fs=400kHz

200kHz 12.8MHz100Hz

f=fdxfs

200kHz100Hz

 

Figure 4.10 The spectrums for drive vector (IN) and expected vector (OUT), 

decimation factor 64 

 

 The spectrum of expected vector (output of decimator) is the in-band spectrum 

of drive vector (input of decimator). Thus, the behavior of the circuit (decimator) for 

decimation factor 64 is correct.  

 

 The spectrums of decimator input and output over the frequency range [100 

12.8M] are shown in Figure 4.11. 
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fs=25.6MHz

fs=400kHz

fs/2=200kHz

12.8MHz

fs/2=200kHz

fs=400kHz

fs=25.6MHz

12.8MHz

 

Figure 4.11 Spectrums of decimator input and output over the frequency range 

[100Hz 12.8MHz] (64) 

 

 Likewise, the spectrum of the signal would repeat every sampling-frequency 

(fs). Thus, the spectrum of decimator output, where the fs is 400 kHz (BW=200 kHz), 

is repeated 64-times during that frequency range [0 12.8M] (Hz).  
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4.3 Timing diagram 

 The timing diagram measured by Agilent 93000 for decimation ratio 128 and 64 

are shown in Figure 4.12 and Figure 4.13, respectively. Only parts of signals and 

certain periods are shown in timing-diagram because the signals are shown as 

time-domain waveforms (i.e., output signals not group into bus to represent as logic 

values) and the maximum cycles which could be shown in the timing diagram 

window is 400. 

 

 

Figure 4.12 Timing diagram (decimation ratio 128) plotted by Agilent 93000  

 

 From the above figure, the outputs remain constant for 128 clock cycles due to 

decimation ratio 128. The measured outputs are compared with expected outputs each 

cycle; however, the outputs are fetched one time every 128 clock cycles (i.e., one 

sample output every 128 clock cycles due to decimation ratio 128). 
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Figure 4.13 Timing diagram (decimation ratio 64) plotted by Agilent 93000  

 

 

 Likewise, the outputs remain constant for 64 clock cycles due to decimation 

ratio 64. The measured outputs are compared with expected outputs each cycle; 

however, the outputs are fetched one time every 64 clock cycles (i.e., one sample 

output every 64 clock cycles due to decimation ratio 64). 

 

4.4 Measured Power 

 The measured operating current and corresponding power consumption are 

summarized in Table 4.2 below. 

 

Table 4.2 Measured power consumption 

 Decimation ratio=128  Decimation ratio=64 

Operating frequency=50MHz 

Minimum operating current 

Core VDD (1.8V)  
8.71mA (15.678mW)  16.6mA (29.88mW)  

Maximum operating current 

Core VDD (1.8V)  
9.34mA (16.812mW)  17.2mA (30.96mW)  

Average operating current 

Core VDD (1.8V)  
9.28mA (16.7mW)  17.0mA (30.6mW)  

Operating current 

IO VDD (3.3V)  
924uA (3.05mW)  1.63mA (5.4mW)  
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 The average operating currents are 9.28mA and 17.0mA at operating frequency 

50MHz and core-VDD 1.8V for decimation ratio 128 and 64, respectively. Thus, the 

average power is 16.7mW and 30.6mW at operating frequency 50MHz and core-VDD 

1.8V for decimation ratio 128 and 64, respectively. The measured power 

approximates to the simulation power. (The measured power is slightly smaller than 

the simulation power because the measured operating current is instant operating 

current and the simulation current is the average instant operating current which 

includes normal operating current and peak operating current.) 

 

 From the above table, the operating currents of IO power supply are 0.924mA 

and 1.63mA at operating frequency 50MHz and IO-VDD 3.3V for decimation ratio 

128 and 64, respectively. Thus, the IO power is 3.05mW and 5.4mW for decimation 

ratio 128 and 64, respectively. 

 

 

4.5 CHIP Summary 

 The information of chip is summarized in Table 4.3 below. 

 

Table 4.3 Chip summary 

Decimator 

Process TSMC 0.18um 

Package LCC68 (only used 56 pads) 

Input pad  5  

Output Pad  27  

Core Power  4 pairs  

IO Power  8 pairs  

Die area 1810x1810 um
2
 

Core area 805x805 um
2
 

CoreVDD 1.8V 

IOVDD 3.3V 

Decimation ratio 128 and 64 

Designed operating frequency 51.2MHz 

Signal band-width 200kHz (400kHz only for df=64) 

Power consumption @50MHz (df=128) 16.7mW 

Power consumption @50MHz (df=64) 30.6mW 
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 The decimator is fabricated in TSMC 0.18um process. The package type of the 

chip (decimator) is LCC68 and only 56 pads (pins) with 4-pair core power and 8-pair 

IO power are used. The silicon area of the entire die is 1810x1810 um
2
 and only 

805x805 um
2
 is the active area (core area). The core power and IO power of the 

process are 1.8V and 3.3V, respectively. The decimator is designed to operate at 51.2 

MHz input sampling-rate with decimation ratios 128 and 64 so as to preserve the 

signal bandwidth 200 kHz. The measured power consumption is 16.7mW and 

30.6mW at input sampling-rate 50MHz for decimation ratio 128 and 64, respectively. 
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Conclusions 

 
  

The decimator for programmable oversampling ratio sigma-delta A/D converters 

is designed and implemented. The critical component of decimator is the high order 

FIR filter, which govern the most silicon area and power. The proposed folded 

architecture of decimation FIR filter based on transposed-form using polyphase 

decomposition is suitable for high order FIR filter to reduce silicon area because the 

high order folded FIR filter requires more register (the number of adders and 

multipliers are still invariant for higher order folded FIR filters).  

 

The main advantage of the proposed architecture is smaller area (half registers; 

-24% for 126
th

-order FIR filter) compared with folded architecture in direct-form 

(Figure 3.9) [12][13][14][15]. In addition, my architecture reveals the smaller peak 

power, short critical path and latency. Furthermore, the area reduction percentage of 

my folded architecture will increase compared with folded architecture in direct-form 

when the scan chain is inserted to test the circuit due to the half register requirement. 

 

 Besides, the advantage of my proposed folded architecture is much less than half 

power of folded architecture in transposed-form (Figure 3.14) [18]. My design 

overheads compared with circuit mentioned in [18] are one adder, multiplexers and 

control circuits. However the silicon area required by transposed-form folding [18] is 
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not definitely smaller than silicon area required by folded architecture in direct-form 

and my folded architecture because of the twice operating frequency requirement for 

transposed-form folding [18] to maintain the throughput (output sampling-rate) (as a 

result of trading silicon area for speed). 

 

For power concern, the implementation of FIR filters must focus on the unfolded 

structures, which is a correct direction to lower the power consumption of FIR filters; 

however, for cost (area) concern, it must focus on folded architecture, which could 

reduce the functional units most especially for high order FIR filter. In the folded 

architectures of decimation FIR filters, my folded architecture is a good choice to 

implement the decimation FIR filters and to obtain area reduction (compared with 

direct-folding [12][13][14][15]) without much power overhead (transposed-folding) 

[18]. 
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Appendix A: Filter Coefficients 

 

For the 2
nd

 and 3
rd

 stage:  

1-bit 19-bit 

 

Table A.1 Coefficients of the 2
nd

-stage FIR filter 

coefficients decimal value binary value (2’s complement) 

h0, h18 0.00035667419434 00000000000010111011 

h1, h17 0.00147438049316 00000000001100000101 

h2, h16 -0.00535202026367 11111111010100001010 

h3, h15 -0.00497627258301 11111111010111001111 

h4, h14 0.02363014221191 00000011000001100101 

h5, h13 0.01024436950684 00000001010011111011 

h6, h12 -0.07559013366699 11110110010100110001 

h7, h11 -0.01518249511719 11111110000011101000 

h8, h10 0.30679893493652 00100111010001010011 

h9 0.51721763610840 01000010001101000011 

 

Table A.2 Coefficients of the 3
rd

-stage FIR filter 

coefficients decimal value binary value 

h0, h126 0.00014495849609 00000000000001001100 

h1, h125 -0.00031471252441 11111111111101011011 

h2, h124 0.00013351440430 00000000000001000110 

h3, h123 0.00019645690918 00000000000001100111 

h4, h122 -0.00015640258789 11111111111110101110 

h5, h121 -0.00025367736816 11111111111101111011 

h6, h120 0.00020980834961 00000000000001101110 

h7, h119 0.00031471252441 00000000000010100101 

h8, h118 -0.00030517578125 11111111111101100000 

h9, h117 -0.00039291381836 11111111111100110010 

h10, h116 0.00041961669922 00000000000011011100 

h11, h115 0.00047683715820 00000000000011111010 

h12, h114 -0.00056838989258 11111111111011010110 

h13, h113 -0.00057411193848 11111111111011010011 

h14, h112 0.00074768066406 00000000000110001000 

h15, h111 0.00067710876465 00000000000101100011 

h16, h110 -0.00096511840820 11111111111000000110 

. 
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h17, h109 -0.00079154968262 11111111111001100001 

h18, h108 0.00122451782227 00000000001010000010 

h19, h107 0.00091361999512 00000000000111011111 

h20, h106 -0.00153350830078 11111111110011011100 

h21, h105 -0.00104522705078 11111111110111011100 

h22, h104 0.00189590454102 00000000001111100010 

h23, h103 0.00118446350098 00000000001001101101 

h24, h102 -0.00231933593750 11111111101101000000 

h25, h101 -0.00132942199707 11111111110101000111 

h26, h100 0.00281143188477 00000000010111000010 

h27, h99 0.00148200988770 00000000001100001001 

h28, h98 -0.00337982177734 11111111100100010100 

h29, h97 -0.00163650512695 11111111110010100110 

h30, h96 0.00403785705566 00000000100001000101 

h31, h95 0.00179672241211 00000000001110101110 

h32, h94 -0.00479698181152 11111111011000101101 

h33, h93 -0.00195884704590 11111111101111111101 

h34, h92 0.00567054748535 00000000101110011101 

h35, h91 0.00211906433105 00000000010001010111 

h36, h90 -0.00667953491211 11111111001001010010 

h37, h89 -0.00227928161621 11111111101101010101 

h38, h88 0.00785064697266 00000001000000010100 

h39, h87 0.00243759155273 00000000010011111110 

h40, h86 -0.00921440124512 11111110110100100001 

h41, h85 -0.00259017944336 11111111101010110010 

h42, h84 0.01082038879395 00000001011000101001 

h43, h83 0.00273704528809 00000000010110011011 

h44, h82 -0.01273155212402 11111110010111101101 

h45, h81 -0.00287628173828 11111111101000011100 

h46, h80 0.01504516601563 00000001111011010000 

h47, h79 0.00300407409668 00000000011000100111 

h48, h78 -0.01791000366211 11111101101101010010 

h49, h77 -0.00312232971191 11111111100110011011 

h50, h76 0.02156448364258 00000010110000101010 

h51, h75 0.00322723388672 00000000011010011100 

h52, h74 -0.02642822265625 11111100100111100000 

h53, h73 -0.00331878662109 11111111100100110100 
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h54, h72 0.03329086303711 00000100010000101110 

h55, h71 0.00339508056641 00000000011011110100 

h56, h70 -0.04384040832520 11111010011000110111 

h57, h69 -0.00345611572266 11111111100011101100 

h58, h68 0.06248664855957 00000111111111111001 

h59, h67 0.00349998474121 00000000011100101011 

h60, h66 -0.10539436340332 11110010100000100111 

h61, h65 -0.00352478027344 11111111100011001000 

h62, h64 0.31807327270508 00101000101101101010 

h63 0.50353431701660 01000000011100111101 

 

For the 4
th

 stage:  

2-bit 18-bit 

 

Table A.3 Coefficients of the 4
th

-stage compensation FIR filter 

coefficients decimal value binary value 

h0, h40 0.00000762939453 00000000000000000010 

h1, h39 -0.00000762939453 11111111111111111110 

h2, h38 0.00000762939453 00000000000000000010 

h3, h37 -0.00001144409180 11111111111111111101 

h4, h36 0.00001907348633 00000000000000000101 

h5, h35 -0.00003051757813 11111111111111111000 

h6, h34 0.00004196166992 00000000000000001011 

h7, h33 -0.00005722045898 11111111111111110001 

h8, h32 0.00008392333984 00000000000000010110 

h9, h31 -0.00011444091797 11111111111111100010 

h10, h30 0.00016021728516 00000000000000101010 

h11, h29 -0.00022506713867 11111111111111000101 

h12, h28 0.00031661987305 00000000000001010011 

h13, h27 -0.00045394897461 11111111111110001001 

h14, h26 0.00066757202148 00000000000010101111 

h15, h25 -0.00102996826172 11111111111011110010 

h16, h24 0.00168609619141 00000000000110111010 

h17, h23 -0.00311279296875 11111111110011010000 

h18, h22 0.00709533691406 00000000011101000100 

h19, h21 -0.02724456787109 11111110010000011010 

h20 1.04457473754883 01000010110110100101 

. 
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Appendix B: Test-Patterns for Agilent 93000 

 The driving signals (input of chip) generated by Agilent 93000 are defined by the 

vectors which consist of the state characters. Each state character of a signal 

corresponds to a specific waveform. For example, state character 1 of pin CLK 

represents the waveform: forces logic 0 at the beginning of the cycle, forces logic 1 at 

the 1/4 cycle delay from the beginning of the cycle and forces logic 0 at the 3/4 cycle 

delay from the beginning of the cycle. Corresponding waveforms of state characters 

of all signals in my design are shown in Figure B.1. For output pins, the time to fetch 

output could also be defined by Agilent 93000. In my case, the outputs are fetched 

and compared at the edge of 3/4 cycle. 

IN

ENABLE

RESET

CLK

DF

OUT

0 1

0

0

0

1

1

L H

1 cycle period 1 cycle period

1

1

t1 t2 t3 t1 t2 t3
 

Figure B.1 Corresponding waveforms of state characters of signals in my design 

  

The meanings of the above figure are described below: 

PINS Pin_Name 

State character  Action: Timing (delay from beginning)  ….. 

 

Drive Action in Pins 

F00  force logic 0 

F10  force logic 1 

 

Compare Action in Pins 

L  compare to low (logic 0) 

H  compare to high (logic 1) 

X  don’t care 
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Parts of test vectors for SDM with OSR 128 and corresponding 

post-layout-simulation are shown in Figure B.2 and Figure B.3.  

 

Figure B.2 Parts of test vectors for SDM with OSR 128 

L: compare to logic low 

H: compare to logic high 

X: don’t care  

 

Testing cycles=42003 

Output remain constant 

for 128 cycles 

Compared with postsim result 

Drive Vector 

Expected Vector 
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in:  0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0… 

enable:  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

reset: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

clk: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

df: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

out[26:0]: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

(i.e., out[26], out[25]...... are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period) 

 

LLH_HHHL_LLHL_HHLH_LHHH_LLHL_LLLL 

LLH_HHLH_LLLL_HHLL_HHHL_HLHL_LHLH

 

in, enable, reset, clk and df are 1, 0, 0, 1, 1 during the period. 

out[26:0] are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period shown in above figure. 

Figure B.3 Corresponding post-layout-simulation of parts’ test vectors for SDM with 

OSR 128 
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 From Figure B.2 and Figure B.3, the parts of cycles reveal that the test patterns 

for Agilent 93000 correspond to the post-layout-simulation. In this case, the expected 

vectors (OUT) are LLH_HHHL_LLHL_HHLH_LHHH_LLHL_LLLL at the 15835
th

 

cycle and LLH_HHLH_LLLL_HHLL_HHHL_HLHL_LHLH at the 15850
th

 cycle, 

which correspond to (00)1_1110_0010_1101_0111_0010_0000 and 

(00)1_1101_0000_1100_1110_1010_0101 of simulation output (out[26:0]). The 

corresponding timing diagram of the chip under test is shown in Figure B.4. Also the 

corresponding post-layout-simulation diagram is shown in Figure B.5. 

 

Figure B.4 The corresponding timing diagram measured by Agilent 93000 (128) 

  

Note that the measured outputs are equal to the simulation outputs.   

 

Figure B.5 The corresponding post-layout-simulation (128) 
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Parts of test vectors for SDM with OSR 64 and corresponding 

post-layout-simulation are shown in Figure B.6 and Figure B.7.  

 

Figure B.6 Parts of test vectors for SDM with OSR 64 

L: compare to logic low 

H: compare to logic high 

X: don’t care  

 

Testing cycles=21003 

Output remain constant 

for 64 cycles 

Compared with postsim result 

Drive Vector 

Expected Vector 
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in:  0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1… 

enable:  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

reset: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

clk: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1… 

df: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

out[26:0]: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0… 

(i.e., out[26], out[25]...... are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period) 

 

LLH_HHLH_LHLH_LLHH_LHHL_LLHL_LHLL 

LLL_HLHH_HLHL_LHHH_LHLL_HLHL_HLHL

 

in, enable, reset, clk and df are 1, 0, 0, 1, 0 during the period. 

out[26:0] are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period shown in above figure. 

Figure B.7 Corresponding post-layout-simulation of parts’ test vectors for SDM with 

OSR 64 
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From Figure B.6 and Figure B.7, the parts of cycles reveal that the test patterns 

for Agilent 93000 correspond to the post-layout-simulation. In this case, the expected 

vectors (OUT) are LLH_HHLH_LHLH_LLHH_LHHL_LLHL_LHLL at the 8490
th

 

cycle and LLL_HLHH_HLHL_LHHH_LHLL_HLHL_HLHL at the 8505
th

 cycle, 

which correspond to (00)1_1101_0101_0011_0110_0010_0100 and 

(000)_1011_1010_0111_0100_1010_1010 of simulation output (out[26:0]). The 

corresponding timing diagram of the chip under test is shown in Figure B.8. Also the 

corresponding post-layout-simulation diagram is shown in Figure B.9. 

 

Figure B.8 The corresponding timing diagram measured by Agilent 93000 (64) 

 

Note that the measured outputs are equal to the simulation outputs. 

 

Figure B.9 The corresponding post-layout-simulation (64) 
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