
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

可變超取樣率三角積分類比數位轉換器之低面

積降頻器電路設計與實現

Design and implementation of a small area decimator for

programmable oversampling ratio sigma-delta A/D converters

研 究 生：唐 江 俊

 指導教授：闕 河 鳴 博士

西元二ΟΟ八年九月

可變超取樣率三角積分類比數位轉換器之低面積降頻器電路設計與實現

Design and implementation of a small area decimator for programmable

oversampling ratio sigma-delta A/D converters

研 究 生：唐江俊 Student: Chiang-Chun Tang

指導教授：闕河鳴 博士 Advisor: Dr. Herming Chiueh

國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis

Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

in

Communication Engineering

September 2008

Hsinchu Taiwan

西元二ΟΟ八年九月

I

可變超取樣率三角積分類比數位轉換器之低面

積降頻器電路設計與實現

研究生: 唐江俊 指導教授:闕河鳴 博士

國立交通大學

電信工程學系碩士班

中文摘要

 在很多領域，三角積分類比數位轉換器近來非常受歡迎。而三角積分類比數

位轉換器主要由類比電路(三角積分調變器)和數位電路(降頻器)所構成。然而，

數位電路部分佔據了整個三角積分類比數位轉換器的絕大多數積體電路面積。而

且對於可變超取樣率的三角積分類比數位轉換器而言，需要不同頻寬的數位濾波

器去取出所要的訊號頻段，這樣的需求也會導致額外的數位電路面積消耗。

 在此，一個針對可變超取樣率三角積分類比數位轉換器的低面積降頻器被設

計與實現。而最主要的改良是在於裡頭的高階有限脈衝響應濾波器。對於調換結

構並採用多相分解的有限脈衝響應濾波器，可藉由使用摺疊和儲存元件共享技巧，

並且在此主要配合使用特別的控制電路去改變計算程序以重複使用儲存元件來

達到降低面積的目的。在此提出的電路架構，與廣泛採用的直接結構摺疊架構相

比，由於只需使用一半的儲存元件，因此可得到較小的電路面積。此外，在此提

出的架構不因節省面積而對電路的其他特性有所損傷，也就是本架構除了面積較

小外，關鍵路徑也較短，等待週期也較少並且尖峰功率消耗也較小(平均功率在

相同的水平)。

 由於只需使用一半的儲存元件，本架構相對於直接結構摺疊架構而言，可使

降頻器裡的高階有限脈衝響應濾波器減少 24.6%的矽面積，進而達到整體使用四

個階段降頻器 15.8%的面積節省(對於三個階段降頻器，整體面積則可減少

20.9%)。

II

Design and implementation of a small area decimator for

programmable oversampling ratio sigma-delta A/D converters

Student: Chiang-Chun Tang Advisor: Dr. Herming Chiueh

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract

The sigma-delta modulation (SDM) has become a very popular analog to digital

conversion technique in many fields. A sigma–delta A/D converter consists of analog

circuits (sigma–delta modulator, SDM) and digital circuits (decimator). However, the

silicon area of sigma-delta A/D converters is governed largely by the digital parts.

Moreover, the distinct bandwidth digital lowpass filters are required to perform

selecting-signal for programmable oversampling ratio SDM, which results in extra

filters hardware consumption in digital part of SDM A/D converters.

The small area decimator for programmable oversampling ratio SDM A/D

converters is designed and implemented. The main improvement in this thesis is

focused on the high order FIR filter of decimator. Combing the folding and the

storage elements sharing techniques for decimation FIR filters using polyphase

decomposition in transposed-form as well as changing the computation procedures

mainly to reuse storage elements by using extra control circuits, the area reduction

compared with the widely used folded FIR filter architecture in direct-form is

obtained due to half storage elements (registers) requirement. In addition, the extra

advantages of my proposed folded decimation FIR filter architecture based on

transposed-form are shorter critical path, smaller peak power (average power in the

same level), and shorter latency.

As a result of half registers requirement, the 24.6% area reduction for high order

(126
th

-order) FIR filter is obtained, which result in 15.8% area reduction for the

4-stages decimator (20.9% area reduction for 3-stages decimator).

III

Acknowledgments

 首先，得感謝我的指導教授闕河鳴博士，在進實驗室之初，傳授 VLSI 相關

方面的知識，使得學生可以銜接上研究所課程，也因此最後能夠完成在 CIC的下

線。另外，平日報告與開會時，老師也會竭力給予指導與建議以彌補學生此方面

能力的不足。除此之外，在論文撰寫期間，老師也花了很多時間精力在協助學生

修改論文並提供許多寶貴意見與硬體設備上的支援，使得此論文得以順利的完成，

在此由衷感謝。

 其次，非常感謝蘇韋力學長、張紹宣學長、蔡佐昇學長，平日在學業上的解

惑，幫助本人克服此不熟悉的領域(晶片設計)。

 另外，在此枯燥煩悶的研究生活裡，幸虧有呂秉勳、蘇品翰、游凱迪、賴明

君、吳春慧、林信太、吳俊誼、劉嘉儀、林順華學長還有玄奘朋友們的陪伴，使

得我三年的研究生活不感到孤單，謝謝你們。

 最後，我得感謝我的父母，無論是精神上或是經濟上都給予最大的支持，使

得我無後顧之憂得以盡心完成學業，也由於父母的支持，才讓我能有動力完成這

份論文。

 唐江俊

 Sep. 2008

IV

Contents

中文摘要 I

English Abstract II

Acknowledgments III

Contents IV

List of Tables VI

List of Figures VIII

List of Abbreviations and Symbols XIII

Chapter1 Introduction 1

 1.1 Motivation 2

 1.2 Fundamentals 2

 1.2.1 Sampling Theorem 3

 1.2.2 Principle of Sigma-Delta A/D Converter 5

 1.2.3 Decimator 15

 1.3 A Brief Introduction of Proposed Solution 22

 1.4 Thesis Organization 23

Chapter2 Decimator Architecture and Design 25

 2.1 Considerations about SDM Quantization Noise 25

 2.2 Decimator Architecture 27

 2.3 First Decimation Stage 29

 2.3.1 Introduction to Modified Comb Filters 31

 2.3.2 Stage1 Design 35

 2.4 Decimation FIR Filters 39

 2.4.1 Stage2 Design 40

 2.4.2 Stage3 Design 43

 2.5 Compensation FIR Filter 46

 2.5.1 Stage4 Design 48

 2.6 Specification Summary 49

Chapter3 Decimator Implementation 53

 3.1 Implementation and Verification Flow 53

 3.2 Previous Work Comparison 56

 3.2.1 Comb Filter 56

V

 3.2.2 FIR Filter 59

 3.3 Overall Decimator System 73

 3.4 Clock Divider Circuit 74

 3.5 The First Decimation Stage: Comb Filter 75

 3.5.1 Gain Control 75

 3.5.2 Pipelined Comb Filter 76

 3.6 Proposed Circuit for FIR Filters 77

 3.7 Comparisons 84

 3.8 Implementation Results 90

 3.8.1 Pad Assignment 92

 3.9 Decimator Simulation Result 93

 3.9.1 OSR=128 93

 3.9.2 OSR=64 95

 3.10 Specification Table 97

 3.11 Paper Comparison 98

Chapter4 Testing and Measurement Results 99

 4.1 Introduction to Digital IC Testing using Agilent 93000 in CIC 99

 4.2 Shmoo Plot 104

 4.2.1 OSR=128 104

 4.2.2 OSR=64 107

 4.3 Timing Diagram 110

 4.4 Measured Power 111

 4.5 CHIP Summary 112

Chapter5 Conclusions 114

Appendix A: Filter Coefficients 116

Appendix B: Test-Patterns for Agilent 93000 119

References 126

VI

List of Tables

Table 1.1 Ideal Peak SNR with 1-bit quantizer (N=1) 14

Table 2.1 Optimized rotated angle α represented by q, which is independent to fb 34

Table 2.2 Ideal in-band quantization noise power 36

Table 2.3 Aliasing power using comb filter and MCFs with different order for 1-bit

4
th

-order SDM, OSR=128 and OSR=64 (calculating in Matlab) 36

Table 2.4 Quantization noise power which cannot be remove by latter filter 40

Table 2.5 Aliasing power2 with different stop-band attenuation 41

Table 2.6 Quantization noise power in in-band after 2nd decimation stage 44

Table 2.7 Aliasing power3 with different stop-band attenuation (Rs)

, given a narrow transition-band (0.02). 44

Table 2.8 FIR orders and aliasing power3 with different widths of transition-band 44

Table 2.9 Pass-band ripple with different order of compensation filter for

decimation ratio=128 48

Table 2.10 Pass-band ripple with different order of compensation filter for

decimation ratio=64 48

Table 2.11 Summary of decimation filter specifications 49

Table 2.12 Aliasing power, remaining quantization noise power and obtained SNR

at each stage for OSR=128 50

Table 2.13 Aliasing power, remaining quantization noise power and obtained SNR

at each stage for OSR=64 50

Table 3.1 required word-length for these two structures 57

Table 3.2 The computation of each cycle in Figure 3.22(a) 81

Table 3.3 The algorithmic operations of proposed folded architecture is equivalent

to the unfolded decimation FIR filter in transposed-form using polyphase 82

Table 3.4 Comparison of decimator

using the described implementations of FIR filter 84

Table 3.5 Detail area comparison of decimator

using the described implementations of FIR filters 85

Table 3.6 Area normalized to direct-form folding (27-bits word-length) 85

Table 3.7 Detail Power Comparison 86

Table 3.8 Detail area comparison with 16-bits word-length 87

Table 3.9 Area normalized to direct-form folding (16-bits word-length) 87

Table 3.10 Detail power comparison using 16-bits word-length 88

Table 3.11 Pad and silicon area of the chip (decimator) 91

Table 3.12 Specification 97

VII

Table 3.13 Paper comparison 98

Table 4.1 Specification of Agilent 93000 100

Table 4.2 Measured power consumption 111

Table 4.3 Chip summary 112

Table A.1 Coefficients of the 2nd-stage FIR filter 116

Table A.2 Coefficients of the 3rd-stage FIR filter 116

Table A.3 Coefficients of the 4th-stage compensation FIR filter 118

VIII

List of Figures

Figure 1.1 (a) Continuous-time signal xc(t)

(b) its (continuous-time) Fourier transform Xc(f) 3

Figure 1.2 (a) Continuous-time to discrete-time conversion system

(b) periodic impulse train s(t) 3

Figure 1.3 (a) Sampled signal xs(t)

(b) its (continuous-time) Fourier transform Xs(f) 4

Figure 1.4 (a) Discrete-time sequence x[n]

(b) its discrete-time Fourier transform (DTFT) X(fd) 5

Figure 1.5 Transfer Curve of a quantizer 6

Figure 1.6 Power spectral density of signal and quantization noise

(a) Nyquist sampling (b) oversampling 8

Figure 1.7 Power spectral density of signal and quantization noise

 (a) Nyquist sampling

(b) oversampling and removing out-of-band quantization noise 8

Figure 1.8 Power spectral density of signal and quantization noise

after down-sampling 9

Figure 1.9 Procedure to obtain Nyquist rate high SNR signal 9

Figure 1.10 Decimator components 10

Figure 1.11 Power spectral density of signal and quantization noise

for noise-shaping 11

Figure 1.12 Power spectral density of signal and quantization noise

for oversampling and noise-shaping 12

Figure 1.13 Ideal noise transfer function (NTF) for different order SDM 15

Figure 1.14 (a) Decimator components

(b) Behavior of decimator for SDM in time domain 16

 (c) Behavior of decimator for SDM in frequency domain 17

Figure 1.15 (a) Aliasing-band of signal

(b) cut-off-band of low-pass filter designed to prevent aliasing 18

Figure 1.16 Downsampler 19

Figure 1.17 (a) X(f)

(b) Xd(f) aliased by other copies of X(f/D-i/D) (i.e., i=1,2,3), D=4 19

Figure 1.18 The bands in aliasing band [0.5/D, 0.5]

alias to wanted signal (green band), called folding-band, D=4. 20

IX

Figure 1.19 The bands over [-0.5, 0.5] overlap with wanted signal band are

folding-bands, which are found from

the trace-back process in this demonstration. 20

Figure 1.20 There are D-1 folding-bands for down-sampling D. 21

Figure 1.21 Filter specifications for low-pass filter 22

Figure 2.1 (a) frequency over [-0.5, 0.5] (b) frequency over [0, 1]

(c) frequency over [0,0.5].

The signals represented by these figure are the same. 26

Figure 2.2 Decimator architectures 28

Figure 2.3 For 1-bit 4th-order OSR-128 SDM, decimator architectures in terms of

SNR, number of required multiplication operations per second and

pass-band ripple are shown. 29

Figure 2.4 zero-pole plot for 5th-order comb filter with D=32

(5*32 zeros around unit circle, 5 poles in z=1 and the other poles in z=0) 30

Figure 2.5 Magnitude frequency response of 5th-order comb filter with D=32

(half periodic spectrum have been depicted,

so there are D/2=16 notches in spectrum) 31

Figure 2.6 zero-pole plot of (a) 1st-order comb filter

(b) counterclockwise rotated of 1st-order comb filter

(c) clockwise rotated of 1st-order comb filter

(d) 3rd-order modified comb filter, with D=4. 33

Figure 2.7 Magnitude response (dB) of 3rd-order modified comb filter (MCF3)

with D=4 34

Figure 2.8 Magnitude responses of Comb3 and MCF3 in folding-band

The MCF3 can suppress more quantization noise power in folding-band. 35

Figure 2.9 The flow for quantization noise power spectral density of SDM

in first decimation stage 37

Figure 2.10 Quantization noise power spectral density of 1-bit 4th-order

sigma-delta modulator 38

Figure 2.11 First decimation filter (comb filter with D=32 for the left graph and 16

for the right graph, respectively). Folding-bands of these two

magnitude response are both in the notch position, each D-1

folding-bands 38

Figure 2.12 Quantization noise PSD after first decimation filter 38

Figure 2.13 Quantization noise PSD after down-sampling 39

Figure 2.14 Folding-band for 2nd decimation stage 40

Figure 2.15 Flow for quantization noise power spectral density

in 2
nd

 decimation stage 41

X

Figure 2.16 Quantization noise PSD after down-sampling1 41

Figure 2.17 Magnitude response of 2nd stage decimation filter (FIR1)

with quantized coefficients 42

Figure 2.18 Quantization noise PSD after 2nd decimation filter 42

Figure 2.19 Quantization noise PSD after down-sampling 2 43

Figure 2.20 Folding-band of 3rd decimation stage 43

Figure 2.21 Flow for quantization noise power spectral density

in 3rd decimation stage 45

Figure 2.22 Quantization noise PSD after down-sampling 2 45

Figure 2.23 Magnitude response of 3rd stage decimation filter (FIR2)

with quantized coefficients 45

Figure 2.24 Quantization noise PSD after 3rd decimation filter 46

Figure 2.25 Quantization noise PSD after down-sampling 46

Figure 2.26 Pass-band drop of comb filter with D=32 for OSR=128

(fb=0.5/OSR=3.90625e-3) 47

Figure 2.27 Pass-band drop of comb filter with D=16 for OSR=64

(fb=0.5/OSR=7.8125e-3) 47

Figure 2.28 Magnitude response of compensation filter in the 4th stage 49

Figure 2.29 Magnitude response of each stage 50

Figure 2.30 Quantization noise power spectral density (dB) of

1-bit 4th-order SDM 51

Figure 2.31 Magnitude response of equivalent single stage low-pass filter

for decimation ratio 128 52

Figure 2.32 Magnitude response of equivalent single stage low-pass filter

for decimation ratio 64 52

Figure 3.1 The cell-based implementation flow of digital IC 54

Figure 3.2 Simulation and verification procedures of decimator 55

Figure 3.3 Commutative rule: the system in (a) is equivalent to the system in (b). 56

Figure 3.4 Comparison of recursive and non-recursive algorithm of comb filter in

terms power, area, speed, power speed product 58

Figure 3.5 System A is equivalent to system B (polyphase decomposition;

efficient implementation for FIR filter followed by down-sampling). 61

Figure 3.6 Efficient implementation of decimation FIR filter with M=2 62

Figure 3.7 Decimation FIR filter (126th-order) with polyphase decomposition

in direct-form 63

Figure 3.8 The meaning of switched arrow where f denotes the sampling rate 64

Figure 3.9 The folded architecture of FIR filter with polyphase decomposition

in direct-form 66

XI

Figure 3.10 The decimation FIR filter (126th-order) with polyphase decomposition

in transposed-form 67

Figure 3.11 The values stored in storage elements 68

Figure 3.12 Folded architecture of k-tap FIR filter in transposed-form without

polyphase decomposition (i.e. no down-sampling)

 (for linear-phase, the feature of FIR filter coefficients: hn=hk-1-n) 70

Figure 3.13 Corresponding unfolded FIR filter in transposed form 70

Figure 3.14 Folded architecture of decimation FIR filter

using polyphase decomposition 72

Figure 3.15 Block diagram of overall decimator system 73

Figure 3.16 Circuit of clock divider by 2 74

Figure 3.17 Timing diagram for the circuit of clock divider by 2 74

Figure 3.18 Components of first decimation stage 75

Figure 3.19 Pipelined comb filter

(only integrators part needed to be pipelined due to its critical timing) 76

Figure 3.20 Retiming to reduce the registers usage 77

Figure 3.21 Implementation of first decimation stage 77

Figure 3.22 (a) Proposed folded architecture of decimation FIR filter based on

transposed-form using polyphase decomposition

(b) the unfolded one 79

(c) Timing diagram of my proposed architecture 80

Figure 3.23 Parts of control circuits 83

Figure 3.24 Trade-off between unfolded and folded FIR Filter 89

Figure 3.25 Trade-off between the three folded architectures 90

Figure 3.26 Layout of decimator 91

Figure 3.27 Pad assignment 92

Figure 3.28 The post-layout gate-level simulation and verification flow

for decimator 93

Figure 3.29 Post-layout gate-level simulation result with decimation factor=128

at nWave of workstation 94

Figure 3.30 Verification in time domain and frequency domain

for decimation ratio 128 using Matlab 94

Figure 3.31 Post-layout gate-level simulation result with decimation factor=64

at nWave of workstation 96

Figure 3.32 Verification in time domain and frequency domain

for decimation ratio 64 using Matlab 96

Figure 4.1 P600 test system of Agilent 93000 SoC Series 100

Figure 4.2 Test development flow 101

XII

Figure 4.3 (a) DUT board on test-head of Agilent 93000 101

(b) chip in socket of DUT board

(c) the reverse-side of DUT board wired the core-power and io-power

of the chip to power-supplies pins

(d) Software (SmarTest) used to manipulate the Agilent 93000

in workstation (unix-system) 102

Figure 4.4 Test-pattern for Agilent 93000 composed of drive vector (input of DUT)

and expected vector (expected output of DUT) 103

Figure 4.5 Flow of function test 103

Figure 4.6 Shmoo plot (128) 104

Figure 4.7 The spectrums for drive vector (IN) and expected vector (OUT),

decimation factor 128 105

Figure 4.8 Spectrums of decimator input and output over the frequency range

[100Hz 25.6MHz] (128) 106

Figure 4.9 Shmoo plot (64) 107

Figure 4.10 The spectrums for drive vector (IN) and expected vector (OUT),

decimation factor 64 108

Figure 4.11 Spectrums of decimator input and output over the frequency range

[100Hz 12.8MHz] (64) 109

Figure 4.12 Timing diagram (decimation ratio 128) plotted by Agilent 93000 110

Figure 4.13 Timing diagram (decimation ratio 64) plotted by Agilent 93000 111

Figure B.1 Corresponding waveforms of state characters of signals in my design 119

Figure B.2 Parts of test vectors for SDM with OSR 128 120

Figure B.3 Corresponding post-layout-simulation of parts’ test vectors

for SDM with OSR 128 121

Figure B.4 The corresponding timing diagram measured by Agilent 93000 (128) 122

Figure B.5 The corresponding post-layout-simulation (128) 122

Figure B.6 Parts of test vectors for SDM with OSR 64 123

Figure B.7 Corresponding post-layout-simulation of parts’ test vectors

for SDM with OSR 64 124

Figure B.8 The corresponding timing diagram measured by Agilent 93000 (64) 125

Figure B.9 The corresponding post-layout-simulation (64) 125

XIII

List of Abbreviations and Symbols
ADC Analog-to-Digital Converter

APR Auto Place&Route

AWG Arbitrary-Waveform-Generator

BW Band-Width

CIC Chip Implementation Center

CMOS Complementary Metal-Oxide Semiconductor

CTFT Continuous Time Fourier Transform

DAC Digital-to-Analog Converter

DFT Discrete Fourier Transform

DPS Device-Power Supplies

DSP Discrete-time Signal Processing

DTFT Discrete-time Fourier Transform

DUT Device Under Test

ENOB Effective Number Of Bits

FFT Fast Fourier Transform

FIR Finite Impulse Response

Fp End Frequency of Pass-band

Fs Beginning Frequency of Stop-band

fs Sampling frequency

IIR Infinite Impulse Response

LSB Least Significant Bit

OSR Over-Sampling Ratio

PCB Printed Circuit Board

PSD Power Spectral Density

Rp Maximum Pass-band Ripple

Rs Minimum Stop-band Attenuation

SDM Sigma-Delta Modulator

SNR Signal-to-Noise Ratio

VLSI Very Large Scale Integrated

 Chapter 1: Introduction

~ 1 ~

 CHAPTER

 1

Introduction

With the advance in VLSI technology, sigma-delta modulation (SDM) has

become a very popular analog to digital conversion technique in many fields, such as

voice, audio, telecommunication (wireless: 3G and 4G mobile terminals; wire-line:

xDSL moderns), etc. Since high resolution of sigma-delta A/D converters can be

achieved by techniques, over-sampling and noise-shaping, even using 1-bit quantizer

in the A/D converter [1]. That relieves the analog circuit design, which means that no

accurate multi-bit quantizer is needed, like 16-bit or 24-bit quantizer, and a wide

transition-band of anti-aliasing analog filter can be accepted due to over-sampling

(imply that analog filter is easy to design and its cost is low). However, it needs

digital hardware to finish the remaining A/D conversion jobs, which are removing

out-of-band quantization noise, converting 1-bit to multi-bit (such as 16-bit) and

down-sampling to Nyquist rate. In other words, the sigma-delta is one kind of A/D

conversion method which moves the high resolution difficulty encountered in analog

part to digital part. So the high resolution sigma-delta A/D converters are more

attractive and applicable than other A/D conversion methods as the VLSI technology

advances.

 Chapter 1: Introduction

~ 2 ~

In addition, wireless communication devices demand multi-standard operation,

which means that different signal bandwidth and different dynamic range

requirements are needed. And a sigma-delta A/D converter is a best choice to perform

baseband channel select filtering in digital domain as well as to meet these different

bandwidth and dynamic range requirements by changing sampling rate and selecting

over-sampling ratio (OSR), respectively.

1.1 Motivation

A sigma–delta A/D converter consists of analog circuits (sigma–delta modulator,

SDM) and digital circuits (decimator, namely decimation filter and down-sample

circuit). Although the resolution of the sigma-delta A/D converter is typically

determined by the analog modulators, silicon area of the sigma-delta A/D converter is

governed largely by the digital decimation filters. For example, the digital part of

sigma-delta A/D converter governs 78% area in [2]. So it is more important to reduce

the not crucial part’s silicon area, namely digital part’s silicon area.

Furthermore, for a programmable OSR sigma-delta A/D converter, a decimation

filter with programmable decimation ratios is needed. That means different low-pass

filters are needed to obtain different spectrums for down-sampling. Therefore, digital

hardware would increase by several times. As a result of that, digital parts of the

sigma-delta A/D converter would govern more silicon area percentage.

For cost concerns, the silicon area of the sigma-delta A/D converter must be

minimized. Of course, the silicon area of the digital part (decimator) is main part

needed to be improved, which dominates the silicon area of whole A/D converter. And

typically, decimator consists of comb filter and several stages finite-impulse-response

filters (FIR filters). The high order FIR would dominate the decimator silicon area.

For instance, area of high order FIR filter would govern 80% decimator area in a three

stages decimator case (comb, 18
th

-order FIR, and 126
th

-order FIR).

Now, it is quite obvious that area of high order FIR filter is the main part this

thesis wants to improve as well as to keep the programmable decimation ratio

decimator area overhead minimum.

1.2 Fundamentals

This section would introduce the concepts of signal processing and show the

meaning of signal processing terminologies, such as sampling theorem, aliasing,

folding-band, etc. Also, principle of sigma-delta A/D converter would be described.

 Chapter 1: Introduction

~ 3 ~

1.2.1 Sampling Theorem [3]

Let xc(t) be a band-limited continuous-time signal with

Xc(f)=0 for |f|≥fB

 Xc(f) is continuous-time Fourier transform of xc(t). And xc(t) and Xc(f) are shown

in Figure 1.1(a) and Figure1.1(b), respectively.

t f
fB

xc(t) Xc(f)

1

-fB
0 0

(a) (b)

Figure 1.1 (a) Continuous-time signal xc(t) (b) its (continuous-time) Fourier transform

Xc(f)

 It is convenient to understand the continuous-time to discrete-time conversion

mathematically in two stages depicted in Figure 1.2, namely sampling process [3].

x
xs(t)

Conversion from

impulse train to

discrete-time

sequence

xc(t)

s(t)

x[n]=xc(nT)

(a)

t

s(t)

0 T 2T 5T3T 4T 6T 7T

…………

(b)

Figure 1.2 (a) Continuous-time to discrete-time conversion system (b) periodic

impulse train s(t)

 Chapter 1: Introduction

~ 4 ~

s t = δ t − nT ∞
𝑛=−∞ (1.1)

xs t = xc t s t = xc t δ t − nT ∞
𝑛=−∞ (1.2)

xs t = xc nT δ t − nT ∞
𝑛=−∞ (1.3)

 And, continuous-time Fourier transform of s(t) and xs(t) are S(f) and Xs(f),

respectively.

S f = fs δ∞
k=−∞ f − kfs (1.4)

where fs=1/T

Xs f = Xc f ∗ S f = fs Xc
∞
k=−∞ f − kfs (1.5)

 The time domain and continuous-time frequency domain of signal xs are shown

in Figure 1.3. T is periodic sampling period, and its reciprocal, fs=1/T, is the sampling

frequency.

t f
fB

xs(t) Xs(f)

1/T

fs-fs -fB fs-fB

0.5fs

-fs+fB

-0.5fs

00 T 2T

xc(t)

5T3T 4T 6T 7T

(a) (b)

fs+fB-fs-fB

…… …………

Figure 1.3 (a) Sampled signal xs(t) (b) its (continuous-time) Fourier transform Xs(f)

 Xs(f) consists of periodically repeated copies of Xc(f) ,which are shifted by

integer multiples of sampling frequency. It is obvious that when

fs-fB > fB

the replicas of Xc(f) do not overlap, which means the signal xc(t) could be recovered

from xs(t) with an ideal low-pass filter. The minimum sampling rate for non-overlap

(no aliasing) is fs=2fB, which is called Nyquist rate.

 Chapter 1: Introduction

~ 5 ~

 For discrete-time signal processing, discrete-time sequence, x[n], is a better

representation for computer and digital system design (including digital filter). Also,

the discrete-time Fourier transform would be introduce, which is suitable for

discrete-time signal. And its relation is shown below in Figure 1.4.

t fd
fB/fs

x[n] X(fd)

1/T

1-1 -fB/fs 1-fB/fs

0.5

-1+fB/fs

-0.5

00 1 2

xc(t)

53 4 6 7

(a) (b)

-1-fB/fs 1+fB/fs

………………

Figure 1.4 (a) Discrete-time sequence x[n] (b) its discrete-time Fourier transform

(DTFT) X(fd)

fd =
f

fs

 x n = xc 𝑛𝑇 − ∞ < 𝑛 < ∞ 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.

 fd is digital frequency for discrete-time sequences, which means frequency for

discrete-time Fourier transform. fd is frequency normalized to sampling frequency, fs.

Because there is no time information on the discrete-time sequence x[n], there is no

frequency information (Hz) for discrete-time Fourier transform (only normalized

frequency between -0.5~0.5). And 1 in fd represents the sampling frequency.

 For conveniences, the digital frequency fd will be used in following chapters to

design and illustrate digital filter spectrum. And if x[n] is a real number sequence, the

X(fd) will be even function, which means that only frequency range between 0 and 0.5

needs to be depicted in spectrum graphs.

1.2.2 Principle of Sigma-Delta A/D Converter [1]

 Previous section introduces the continuous-time to discrete-time conversion,

namely sampling. However, the analog to digital (A/D) conversion consists of

sampling and quantization, which are discrete in time and amplitude respectively.

 It is called a quantization process that an infinite number of input amplitude

values are mapped into finite number of output amplitude values, which is shown in

Figure 1.5.

 Chapter 1: Introduction

~ 6 ~

Δ

Input

x[n]

output

y[n]

V

-V

Figure 1.5 Transfer Curve of a quantizer

 For a N-bit quantizer with quantization levels L=2
N
, quantization error between

output and input do not exceed half a least significant bit (LSB).

Δ=2V/(L-1)= LSB

−∆/2 ≤ e ≤ ∆/2

e is quantization error, i.e., e=output-input. That implies

y[n]=x[n]+e[n] (1.6)

In order to simplify the analysis of quantization error, some assumptions about

noise process due to quantization are made:

 The error sequence, e[n], is a sample sequence of the stationary random process.

 The error sequence, e[n], is uncorrelated with the input.

 The probability density function of random process e[n] is uniform distributed

over [−∆/2, ∆/2].

 The random variables of random process e[n] are uncorrelated, i.e., the random

process e[n] is a white noise process, which means that the power spectrum

density of e[n] is uniform distributed over [-0.5,0.5] in fd.

These assumptions are reasonable when N is large, quantizer is not overloaded,

and the successive signal values are not extremely correlated [1].

 Under those assumptions, the analysis of quantization error is quite simple. For

 Chapter 1: Introduction

~ 7 ~

example, the power of e[n] is its variance σe
2

σe
2 =

∆2

12
=

2V

L−1

2

12
=

2V

2N −1

2

12
≅

2V

2N
2

12
 (1.7)

 And then, the signal to noise ration, SNR is

SNR = 10 log
σx

2

σe
2 (1.8)

where σx
2 is signal power. For sinusoidal input, amplitude is V, and then signal power

σx
2 is V

2
/2.

SNR = 10 log
σx

2

σe
2 = 6.02𝑁 + 1.76 (𝑑𝐵) (1.9)

 The meaning of this Equation 1.9 is that SNR would increase about 6dB when

one bit increased in N. However, when N is larger than 10-bit, the precision of

quantizer is hard to maintain due to the very small ∆ (LSB). For example, 10-bit

quantizer means that the quantization levels is L=2
10

, which implies that

Δ=2V/(L-1)=2*1.8/(2
10

-1)=3.52x10
-3

 (Volt) for V=1.8 (Volt). Any component

mismatches and process variation would cause quantization error greater than ∆,

which means the N-bit resolution could not be obtain.

 To obtain high resolution, two techniques, oversampling and noise-shaping, can

be used to overcome the difficulties encountered in above situations.

Oversampling

 Oversampling means that signal samples are acquired from analog signal

waveform much faster than Nyquist rate. For quantization noise assumptions, the

noise would uniform distributed over [-0.5, 0.5] in fd. And then the technique,

oversampling, would change the distribution of signal power spectral density in fd.

For example, the signal power spectral density (PSD) would distributed over [-0.125,

0.125] for over-sampling-ratio (OSR=4), which is different from signal PSD

distributed over [-0.5, 0.5] for Nyquist rate sampling. Also the magnitude of signal

PSD would change according to sampling frequency (see section 1.2.1, 1/T in Figure

1.4), which makes the signal power identical with different sampling frequency or

OSR. The PSD of signal and quantization noise with different sampling frequency are

shown in Figure 1.6.

 Chapter 1: Introduction

~ 8 ~

0
fB/fs1=0.5-fB/fs1=-0.5

fd fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

PSD

Px(f)

Pe(f)

Pxo(f)

Pe(f)

OSR=4

fs2= 4*fs1

fs1= Nyquist rate

 =2fB

(a) (b)

0

SNR=(1x2)/(1x1)=2

1
2

SNR=(0.25x8)/(1x1)=28

1

Figure 1.6 Power spectral density of signal and quantization noise

(a) Nyquist sampling (b) oversampling

 Before further digital signal processing, the SNR of Figure 1.6(a) and Figure

1.6(b) are the same. However, oversampling makes the distribution of signal PSD

different. For OSR=4, the signal PSD is distributed over [-0.125, 0.125], which means

that a digital low-pass filter could be utilized to remove the quantization noise out of

the range [-0.125, 0.125] and higher SNR can be obtained. The improved SNR is

illustrated in Figure 1.7.

0
fB/fs1=0.5-fB/fs1=-0.5

fd fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

PSD

Px(f)

Pe(f)

Pxo(f)

Pe1(f)

OSR=4

fs2= 4*fs1

fs1= Nyquist rate

 =2fB

(a) (b)

0

SNR=(1x2)/(1x1)=2

2

1

SNR=(0.25x8)/(0.25x1)=88

1

Figure 1.7 Power spectral density of signal and quantization noise

(a) Nyquist sampling (b) oversampling and removing out-of-band quantization noise

 Chapter 1: Introduction

~ 9 ~

The improved SNR by oversampling= the original SNR * OSR

 or

The improved SNR by oversampling= the original SNR + 3.01*log2OSR (dB)

 Because no signal information on the frequency [-0.5, -0.125] and [0.125, 0.5],

that means the lower sampling frequency, such as Nyquist rate (2*fB), can be used to

represent the signal well. And then the PSD is changed as Figure 1.8

fd

fB/fs1=0.5-fB/fs1=-0.5

PSD

Px(f)

Pe2(f)

0

SNR=(1x2)/(1x0.25)=8

2

0.25

Figure 1.8 Power spectral density of signal and quantization noise after

down-sampling

 Now, Figure 1.9 (from Figure 1.6(b) to Figure 1.7(b) and then to Figure 1.8)

demonstrates the function of the decimator, which is composed of digital low-pass

filter and downsampler (circuit of lowering the sampling rate) shown in Figure1.10.

fd

fB/fs1=0.5-fB/fs1=-0.5

PSD

Px(f)

Pe2(f)

0

SNR=(1x2)/(1x0.25)=8

2

0.25
fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

Pxo(f)

Pe1(f)

0

SNR=(0.25x8)/(0.25x1)=8

8

1fd

fB/fs2=0.125-fB/fs2=-0.125 0.5-0.5

PSD

Pxo(f)

Pe(f)

0

SNR=(0.25x8)/(1x1)=2

8

1

Digital low-pass filter Downsampler

fs1=fs2/4

Figure 1.9 Procedure to obtain Nyquist rate high SNR signal

 Chapter 1: Introduction

~ 10 ~

Ideal Digital Low-Pass Filter
Downsampler

↓

Decimator

Figure 1.10 Decimator components

Noise Shaping

 In above quantization noise assumptions, the quantization noise PSD is uniform

distributed over [-0.5, 0.5] in fd. And noise-shaping is a modulation technique to

change the shape of the quantization noise PSD.

 Now, for easily understanding, z domain representations of signal would be

introduced. Z-transform is a best representation for discrete-time signal and systems

as Laplace transform for continuous-time. Also z-transform has a similar relationship

to the corresponding Fourier transform, which is z = ej2πfd . For conveniences, the

z-transform of input (x[n]), output (y[n]), and quantization error (e[n]) would be used

and relationship of A/D could be expressed as follows:

Y(z) =X(z)+E(z) (1.10)

where Y(z), X(z), and E(z) are z-transform of y[n], x[n], and e[z], respectively.

 Generally, some modulation could be used during the A/D conversion, so the

relationship between output, input, and quantization error could be rewrite as follow:

Y(z) =X(z)Hx(z)+E(z)He(z) (1.11)

 Noise-shaping is a technique to change the distribution of quantization noise

PSD over [-0.5, 0.5] in fd as Figure 1.11.

 Chapter 1: Introduction

~ 11 ~

0 fB/fs1=0.5-fB/fs1=-0.5

fd

PSD

Px(f)

Pes(f)
2

Figure 1.11 Power spectral density of signal and quantization noise for noise-shaping

Sigma-Delta A/D converters

 Sigma-delta A/D converters is based on two techniques, oversampling and

noise-shaping. Combining oversampling and noise shaping, sigma-delta A/D

converters could obtain a very high resolution (SNR). The general form for k
th

-order

sigma-delta modulator could be written as:

Y(z) =X(z)z
-k

+ E(z)(1-z
-1

)
k
 (1.12)

Hx(z)= z
-k

 (1.13)

He(z)= (1-z
-1

)
k
 (1.14)

 Now the peak SNR for sinusoidal signal can be derived according to

quantization bit N, OSR, and k
th

-order SDM noise transfer function: (f represents

normalized frequency, fd, for following analysis)

z = ej2πf , the relationship between z domain and frequency domain

 (1.15)

Hx(f)=e−j2πkf (1.16)

He(f)= 1 − e−j2πf
k
= e−jπf ejπf + e−jπf

k

= 2k e−jkπf sink πf (1.17)

 Chapter 1: Introduction

~ 12 ~

For Y(f)=X(f)H(f) in frequency domain, i.e., y[n]=x[n]*h[n] in time domain, and

then the relationship of the power spectral density (PSD) between input, output,

transfer function is Py f = Px f H f 2 . So,

0 0.5-0.5

fd

PSD

PxSDM(f)

PeSDM(f)

-fB/fs=

-0.5/OSR

fB/fs=

0.5/OSR

In-band noise

Figure 1.12 Power spectral density of signal and quantization noise for oversampling

and noise-shaping

PxSDM f = Px f Hx f 2

 = Px f e−j2πkf
2

 = Px f (1.18)

PeSDM f = Pe f He f 2

 = Pe f 1 − e−j2πf
k

2

 = Pe f 2ke−jkπf sink πf
2

 = Pe f 22k sin2k πf (1.19)

 Chapter 1: Introduction

~ 13 ~

PxSDM(f): Signal PSD of SDM over [-0.5/OSR, 0.5/OSR] in f, i.e. fd.

PeSDM(f): Quantization noise PSD of SDM over [-0.5, 0.5] in f, i.e. fd

Px f =
σx

2

1
OSR

=
V2

2
OSR (1.20)

Pe f =
∆2

12

1
=

(
2V

2N −1
)2

12
≅

(
2V

2N)2

12
 (1.21)

Signal power is still the same PWRsignal = σ
x

2 =
V2

2
OSR df =

0.5

OSR
−0.5

OSR

V2

2

 As a result of that signal spectrum is distributed over [-fB/fs, fB/fs] (or [-0.5/OSR,

0.5/OSR]). So inband quantization noise power QNin-band :

QNin−band = Pe f He f 2 df
0.5

OSR
−0.5

OSR

 =
(

2V

2N)2

12
22k sin2k πf df

0.5

OSR
−0.5

OSR

 =

2V

2N
2

12
22k πf 2k df

0.5

OSR
−0.5

OSR

 =

2V

2N
2

12
22k 1

2k+1

1

π
[(

0.5π

OSR
)2k+1 − (

−0.5π

OSR
)2k+1]

 =

2V

2N
2

12
22k 1

2k+1

2

π
 (

0.5π

OSR
)2k+1

 =

2V

2N
2

12

1

2k+1

1

π
 (

π

OSR
)2k+1

 =

2V

2N
2

12

π2k

2k+1
 (

1

OSR
)2k+1

 =
1

3

V2

22N

π2k

2k+1
 (

1

OSR
)2k+1 (1.22)

For x ≈ 0, and then sin(x) ≈ x, so for OSR>8, i.e., 0.5/OSR≈0 =>sin(πf)= πf

SNRpeak dB = 10 log
PWR signal

QN in −band

 Chapter 1: Introduction

~ 14 ~

 = 10 log
V 2

2

1

3

V 2

22N
π2k

2k +1

1

OSR

2k +1

 = 10 log
3

2

 22N 2k+1

π2k OSR 2k+1

 = 10 log
3

2
 + 10 log 22N + 10 log 2𝑘 + 1

 +10 log OSR 2k+1 − 10 log π2k

 = 1.76 + 6.02N + 20k + 10 log OSR + 10log(
2𝑘+1

π2k)

 = 1.76 + 6.02N +
 20k+10

3.32
log2 OSR + 10log(

2𝑘+1

π2k)

 = 1.76 + 6.02N + 6.02k + 3.01 log2 OSR + 10 log
2𝑘+1

π2k

 (1.23)

 From Equation 1.23, it is obvious that sigma-delta can obtain a very high SNR,

such as SNR=167.2 (dB) for a 1-bit, OSR=128 4
th

-order SDM. And for every

doubling of OSR, the SNR improves by (6k+3) dB. That means high order SDM

could improve more SNR for doubling OSR. The higher order of SDM implies the

better noise-shaping (noise attenuation in signal-band), and you can see that in

Fiugre1.13. So, it is a good idea to combine the two techniques, noise-shaping and

oversampling.

 According to Equation 1.23, a SNR table (Table 1.1) with different OSR and

order of SDM using one bit quantizer is shown below. Also, SNR values for other

number of quantizer bit N is easy to obtain by Table1.1. For an N-bit quantizer, the

new SNR values table would increase 6.02*(N-1) dB to Table1.1. For example, N=3,

the SNR values table with different OSR and order of SDM using 3-bit quantizer is

SNR values of Table1.1 increasing 12.04 dB.

Table 1.1 Ideal Peak SNR with 1-bit quantizer (N=1)

SNR k=1 k=2 k=3 k=4

OSR=16 38.7318 dB 55.0897 dB 70.6904 dB 85.9212 dB

OSR=32 47.7627 dB 70.1412 dB 91.7625 dB 113.0139 dB

OSR=64 56.7936 dB 85.1927 dB 112.8346 dB 140.1066 dB

OSR=128 65.8245 dB 100.2442 dB 133.9067 dB 167.1993 dB

OSR=256 74.8554 dB 115.2957 dB 154.9788 dB 194.2920 dB

 Chapter 1: Introduction

~ 15 ~

Figure 1.13 Ideal noise transfer function (NTF) for different order SDM

1.2.3 Decimator

 The decimator is a circuit used to lower the sampling rate of the oversampling

A/D converters (the sigma-delta A/D converter is one of them), and for preventing

aliasing, a pre-filter (low-pass filter) is needed before down-sampling. So, a decimator

is composed of digital lowpass filter and downsampler, shown in Figure 1.14 (a). And

the functions of decimator are removing out-of band quantization noise to obtain high

SNR signal (such as, expanding one bit resolution to multi-bit), preventing aliasing

(keep the aliasing power minimum), and lowering the sampling rate (from

oversampling to Nyquist rate), which are also mentioned in above section 1.2.2 (the

PSD differences in decimator are shown in Figure 1.9).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

normalized frequency

m
a
g
n
it
u
d
e

Ideal NTF

No shaping

1st order

2nd order

3rd order

4th order

 Chapter 1: Introduction

~ 16 ~

Digital Low-Pass Filter
Downsampler

↓D

Decimator

1/2D
f

0.5

x[n]

|HLPF(f)|
y[n]

xLPF[n]

Figure 1.14 (a) Decimator components

 The decimator behavior in time and frequency domain for the sigma-delta A/D

converter is illustrated in Figure 1.14 (b) and Figure 1.14 (c)

Figure 1.14(b) Behavior of decimator for SDM in time domain

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
-4

0

0.2

0.4

0.6

0.8

1
input of decimator

x[n]

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
-4

0

0.2

0.4

0.6

0.8

1
output of filter

x
LPF

[n]

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

x 10
-4

0

0.2

0.4

0.6

0.8

1
output of downsampling

Time (sec)

y[n]

 Chapter 1: Introduction

~ 17 ~

0 0.5-0.5

fd

PSD of x[n]

-fB/fs=

-0.5/OSR

fB/fs=

0.5/OSR

0 0.5-0.5

fd

PSD of xLPF[n]

-fB/fs=

-0.5/OSR

fB/fs=

0.5/OSR

Signal

Quantization

noise

Signal

Quantization

noise

0 0.5-0.5

fd

PSD of y[n]

Signal
Quantization

noise

Figure 1.14(c) Behavior of decimator for SDM in frequency domain

 In this section, the terminologies related to design a decimator would be

introduced, which include the parameters for designing low-pass filter and some

considerations in down-sample procedure. For down-sampling D, the aliasing-band of

signal and cut-off-band of low-pass filter designed to prevent aliasing is shown below.

 Chapter 1: Introduction

~ 18 ~

f

0.5

Preserved

Signal

(may

contain QN)

0.5/D

Aliasing band

0

f

0.50.5/D

Cut-off band

0

|X(f)|

|HLPF(f)|

(a)

(b)

Figure 1.15 (a) Aliasing-band of signal (b) cut-off-band of low-pass filter designed to

prevent aliasing

 From above Figure 1.15, it is clear that the signal in aliasing band is required to

be removed due to the relationship between x[n] and xd[n] expressed by Equation 1.24

and Equation1.25. xd[n] is a down-sample sequence of x[n], see Figure 1.16.

 Chapter 1: Introduction

~ 19 ~

Downsampler

↓D
xd[n]x[n]

Figure 1.16 Downsampler

xd n = x[nD] (1.24)

And the relationship between x[n] and xd[n] in frequency domain (discrete-time

Fourier transform) is

Xd f =
1

D
 X(

f

D
−

i

D
)D−1

i=0 (1.25)

 X(f) and Xd(f) are discrete-time Fourier transform of x[n] and xd[n], respectively.

 Now, from Equation 1.25, it could explain why the aliasing-band is in the range

[0.5/D, 0.5] in Figure 1.15(a) because Xd(f) is D copies of X(f) with expanding D

times in frequency domain and shifted by integer multiples, which imply that 0.5/D in

frequency domain would be expanded to 0.5 and thus larger than 0.5/D in frequency

domain would overlap (expanded to >0.5) with other copies X(f/D-i/D). For example

D=4, Xd(f) aliased by other copies of X(f/D-i/D) (i.e., i=1,2,3) is shown below.

0.5-0.5 1 2 30 4-1-2-3-4

…………

0.5-0.5 1 2 30 4-1-2-3-4

~
~

~
~

~
~

~
~

i=1 i=2 i=3
i=0

blue

f

f

X(f)

Xd(f)

(a)

(b)

i=1 i=2 i=3

i=0

blue

i=0

blue

D=4

Figure 1.17 (a) X(f) (b) Xd(f) aliased by other copies of X(f/D-i/D) (i.e., i=1,2,3), D=4

 Chapter 1: Introduction

~ 20 ~

 From above Figure 1.17, it is obvious that there are D-1 copies (D=4) aliased to

the band [-0.5, 0.5]. In a word, frequency of signal larger than 0.5/D in [0, 0.5] would

cause aliasing. Now, considering a case OSR>D (first few stages of multi-stages

decimator), aliasing would still exist. However, only a few bands in aliasing band

[0.5/D, 0.5] alias to the wanted signal due to OSR>D, shown in Figure 1.18. And

these few bands in aliasing-band aliasing to wanted signal are called folding band.

Aliasing-band exclude folding-bands would alias to the unwanted signal (such as,

quantization noise), which could be removed latter by remaining filters.

0.5-0.5 1 2 30 4-1-2-3-4

~
~

~
~

~
~

~
~

i=1 i=2 i=3
i=0

blue

f

i=1 i=2 i=3

i=0

blue

i=0

blue

Xd(f) wanted signal

(green)

D*fb

D=4

Figure 1.18 The bands in aliasing band [0.5/D, 0.5] alias to wanted signal (green

band), called folding-band, D=4.

Xd(f)

i=1

-0.5 0.5

0.5-0.5 1 2 3

0

4-1-2-3-4 f

i=2i=2

i=3

fb

fb

fb

1

D=4

i=3i=1 i=2i=2

0.5-0.5

fb 1/D+fb

1/D-fb

-fb

-1/D+fb
-1/D-fb

0.5-fb-0.5+fb

f

f

f

D=4

Figure 1.19 The bands over [-0.5, 0.5] overlap with wanted signal band are

folding-bands, which are found from the trace-back process in this demonstration.

 Chapter 1: Introduction

~ 21 ~

0.5 1

f

fb 1-fb

……

1/D 2/D

(D-1)/D
1/D+fb1/D-fb

(D-2)/D

2fb

folding bands

wanted

signal

Band

(in-band)

2fb 2fb2fb

0

Aliasing-band

0.5/D

wanted

signal

Band

(in-band)

Figure 1.20 There are D-1 folding-bands for down-sampling D.

 Signal (might be quantization noise) on folding-bands would alias to wanted

signal (in-band signal), which could not separate and recover by remaining filter, so

signal on folding-bands must be attenuated more. Folding-bands of signal are shown

in Figure 1.20. Also, these bands are derived from Equation 1.25. Note that the

frequency range in Figure 1.20 is [0, 1], which is convenient for calculating aliasing

power by FFT in matlab and understanding from Equation 1.25. On the other hand,

the frequency range [0, 1] makes the folding-band not split at frequency 0.5, which is

the reason why the frequency range [-0.5, 0.5] is usually chosen to depict signal

(make the signal-band continuity at frequency 0).

 Now that the folding-bands are known, the parameters in filter design (filter

specifications), especially for low-pass FIR filter, could be introduced.

 Chapter 1: Introduction

~ 22 ~

FsFp

Rs

+Rp

-Rp

Passband Transition

band
Stopband

Magnitude (dB)

Rp

0.50

0

f

Rp
0 dB

Figure 1.21 Filter specifications for low-pass filter

Rp: pass-band ripple (dB), maximum deviation in pass-band

Rs: stop-band minimum attenuation (dB)

Fp: end frequency of pass-band

Fs: beginning frequency of stop-band

 These are parameters in designing low-pass filter, and the decisions of these

parameters influence the aliasing power of folding-bands, which are discussed further

in Chapter 2.

1.3 A Brief Introduction of Proposed Solution

 As mentioned in motivation (Section1.1), the high order FIR filter, which

comprises many multipliers, adders and registers, dominates large silicon area in

decimator of the sigma-delta A/D converter. A technique, time-multiplexing (folding),

could be used to reduce the number of functional units (such as multipliers and

adders), so as to minimize the silicon area of integrated circuits. The basic idea of

folding is to execute multiple algorithm operations on a single functional unit by

time-multiplexing (to finish the same operations by more clock cycles using fewer

functional units), so the number of functional units is reduced. For example, it could

be time-multiplexed as one multiplication operation finished in each cycle using 100

times faster clock, which only demand one multiplier, if 100 multiplication operations

are required to finish in one clock cycle. And the technique, folding, is very suitable

 Chapter 1: Introduction

~ 23 ~

for decimator due to the much lower sampling-rate at the input of high order FIR filter,

which imply that there are many clock cycles could be used by each sample and a

faster clock is not needed.

 In order to minimize the silicon area of high order FIR filter, the technique,

folding, is used to obtain acceptable minimum multipliers and adders. Furthermore,

the transposed-form structure has been adopted to reduce half registers, which could

merge together in polyphase decomposition. Now, the basic idea to obtain minimum

hardware is achieved. However, it is hard to use folding technique to transposed-form

structure with acceptable power consumption. This thesis proposed a design

methodology based on transposed-form folding, which change the computation

procedure to preserve the half register benefit and maintain lower power consumption

by using extra control circuits, for FIR filter with polyphase decomposition.

 For the programmable decimation ratio requirement, IIR-FIR structure of comb

filter is adopted in the first stage of decimator to ease the design of the different

low-pass filter spectrums, which are different in pass-band edge. Moreover, the

pass-band drop of designed filter spectrums by IIR-FIR comb filter could be

compensated by the same compensation filter. These means that no extra filter

hardware is needed to produce different low-pass filter spectrum to prevent aliasing.

 This thesis focuses on comparison of different folding implementation in area,

power, speed and etc. So, the specification of sigma-delta modulator is not a main

issue wanted to discuss in this thesis. A case of 1-bit, OSR 128 and 64, 4
th

-order SDM

is chosen as a specification of the sigma-delta A/D converter. And then the decimator

would be designed to meet the requirements of that SDM specification. Usually, the

designed decimator could be used for most SDM specifications, lower than 4
th

-order

and OSR=128 or 64. As a result of that one bit SDM A/D converter don’t require D/A

circuit, one bit SDM is often chosen to implement. These make designed decimator

more useful.

1.4 Thesis Organization

 In Chapter 2, architecture (number of stages and decimation ratio of each stage)

and filters specification of decimator are decided to meet the requirements of

determined sigma-delta modulator, 1-bit 4
th

-order, OSR=128,64 SDM.

 Hardware implementation methods of the decimator are discussed and compared

 Chapter 1: Introduction

~ 24 ~

in Chapter 3. Also the advantages of this thesis proposed implementation method for

high order FIR filter are shown in Chapter 3. Finally, it has been verified that the

proposed implementation methodology is suitable for any order, number of quantizer

bit, and OSR SDM as well as its advantages would still exist.

 In Chapter 4, testing environment and instrument are introduced. And function

testing results and electrical characteristic of decimator, which is fabricated in TSMC

0.18um CMOS mixed signal RF general purpose MiM Al 1P6M process, would be

plotted and summarized.

 Finally, conclusions of this work are given in Chapter 5.

 Chapter 2: Decimator Architecture and Design

~ 25 ~

 CHAPTER

 2

Decimator Architecture and Design

 In this chapter, decimator architecture (number of decimation stages and

decimation ratio of each stage) and decimation filter specifications (order of each filter

according to designed pass-band ripple, pass-band edge, stop-band attenuation, and

stop-band edge; these definitions see Figure 1.21.) are decided so as to meet the SNR

requirements of pre-defined sigma-delta modulator specifications (1-bit 4
th

-order,

OSR=128, 64 SDM) with efficient decimator hardware in terms of functional units and

power consumption.

2.1 Considerations about SDM Quantization Noise

 These in-band quantization noise power of 1-bit 4
th

-order, OSR=128, 64 SDM are

9.5134 × 10−18 and 4.8711 × 10−15 (see section 1.2.2 and Equation 1.22, using V=1

for convenience), respectively. And sinusoidal signal power with maximum amplitude,

namely V=1, is 0.5. As a result of that, the ideal peak SNR are 10log(0.5/9.5134 ×

10−18)=167.2 dB and 10log(0.5/ 4.8711 × 10−15)=140.1 dB for OSR=128 and

OSR=64, respectively. However, the quantization noise power at SDM output (before

decimator) is (similar to Equation 1.22):

QN = Pe f He f 2 df
0.5

−0.5

 =
(

2

2N)2

12
22k sin2k πf df

0.5

−0.5
 (2.1)

 Chapter 2: Decimator Architecture and Design

~ 26 ~

N: number of quantizer-bit

k: order of SDM

 sinnu du = −
sin n−1u cos u

n
+

n−1

n
 sinn−2u du (2.2)

The result of Equation 2.1 could be obtained by using integral formula of

Equation 2.2 [4].

 Furthermore, numerical methods could be used to solve the Equation 2.1 in

Matlab for known N and k. In this case (N=1 and k=4), quantization noise power of

SDM output calculated in Matlab is 5.83, which is much larger than in-band

quantization noise power (9.5134 × 10−18 with OSR=128 and 4.8711 × 10−15 with

OSR=64).

 As a result of that, the decimator design procedure must take care of quantity of

quantization noise power, especially in folding-bands (alias to in-band in decimation

procedure). The target aliasing power in my decimator design procedure is ten times as

small as in-band quantization noise power, so the SNR would not degrade more than

0.41 dB (10 log
signal power

1.1∗QN in −band
 = SNR − 0.41 dB) after decimator.

 Before proceeding, some concepts of spectrum in discrete-time signal or digital

filter must be reminded. For example, shaped quantization noise power spectral density

could be shown as Figure 2.1(a) or Figure 2.1(b) or Figure 2.1(c):

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

frequency

P
S

D

Quantization Noise of SDM

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

frequency

P
S

D

Quantization Noise of SDM

-0.5 0 0.5
0

5

10

15

20

25

frequency

P
S

D

Quantization Noise of SDM

= =

(a) (b) (c)

Figure 2.1 (a) frequency over [-0.5, 0.5] (b) frequency over [0, 1]

(c) frequency over [0,0.5]. The signals represented by these figure are the same.

 Although the graphs of Figure 2.1 are quite different, the signals shown by these

figure are the same, which could be recognized over the range [0, 0.5]. Because

 Chapter 2: Decimator Architecture and Design

~ 27 ~

spectrum of discrete-time signal is periodically repeated, only one period should be

depicted, which means that the ranges over [-0.5, 0.5] or [0, 1] could be chosen to

depicted. For real number signal, its spectrum is even function, which means

X(-f)=X(f), and then only half periodic spectrum is needed to depict, i.e. the range over

[0, 0.5].

In the following design procedure, signal or filter spectrum would be depicted

over the range [0, 1] (like Figure 2.1 (b)), which match the FFT points [0, N-1] in

Matlab and is easy to illustrate folding-bands of signal.

2.2 Decimator Architecture

 Decimation is often performed in several stages [5], which reduces the number of

algorithmic operations per second and the required functional units in decimator,

especially for high OSR (OSR>4). First of all, the components of multi-stages

decimator must be decided as well as the number of decimation stages. The most

efficient choice for first decimation stage is comb filter (also called sinc filter), which

don’t require multiplier and attenuates aliasing-band signal enough (especially

attenuate more for folding-bands signal) [6]. According to analysis in [7], the

appropriate decimation ratio of comb filter is OSR/4 for sigma-delta modulation (32

and 16 for OSR=128 and 64, respectively), which results in most efficient algorithmic

bit-operations per second considering word-length of comb filter and the required

sampling rate at each components of comb filter.

Furthermore, the remaining four times Nyquist rate would be decimated by FIR

filters, which could approximate to an ideal low-pass filter that would perfectly

preserve in-band signal and exactly remove out-of-band quantization noise due to its

sharp roll-off if the order of FIR filter is high enough. According to analysis in [5], two

stages FIR filters structure with each decimation ratio 2 is an efficient implementation

for decimating four times Nyquist rate signal.

Three stages decimator architecture is an efficient implementation, which is good

enough for attenuating aliasing power to obtain required SNR. However, the pass-band

drop due to comb filter is slightly severe, which make the in-band signal perfectly

preserved by FIR filters worse, especially order and decimation ratio of comb filter are

high. For example, 5
th

-order comb filter with decimation ratio 32 would cause the

pass-band drop of OSR-128 signal more than 1 dB, which destroys the effort made by

FIR filter in terms of suppressing pass-band ripple. Usually, the compensation filter is

introduced and combined with low-pass filter, which means that a single FIR filter in

 Chapter 2: Decimator Architecture and Design

~ 28 ~

the 3
rd

-stage of decimator is used to remove quantization noise, prevent aliasing and

compensate the pass-band drop due to comb filter. The hardware complexity is not

increased; however, the features of compensation filter and low-pass filter slightly

conflict with each other over the frequency [0.23, 0.25] because one (the compensation

filter) need to go up in magnitude to compensate pass-band drop and the other (the

low-pass filter) need to go down to prevent aliasing. As a result of that, the quantization

noise over [0.25, 0.27] didn’t be removed very well and the pass-band drop also didn’t

be compensated very well over entire in-band (worse near 0.23 in frequency).

In this work, the compensation filter and the low-pass filter are separated to

provide a better solution in terms of suppressing pass-band ripple and attenuating

aliasing power.

5th Comb Filter ↓32,16 FIR1 ↓2 FIR2 ↓2
FIR3

Compensation

5th Comb Filter ↓32,16 FIR1 ↓2 FIR2 ↓2

5th Comb Filter ↓32,16 FIR ↓4

Decimation Filter ↓128,64

[6]

[5]

(1)

(2)

(3)

(4)

Comb filter is the most efficient choice

for first decimation stage

Two stages FIR filters structure with each

decimation ratio 2 is an efficient implementation

Better for suppressing aliasing power and

compensating pass-band drop

Figure 2.2 Decimator architectures

 A numerical demonstration of the different decimator architectures for 1-bit

4
th

-order OSR-128 is shown below:

 Chapter 2: Decimator Architecture and Design

~ 29 ~

5th Comb Filter ↓32 FIR1 ↓2 FIR2 ↓2
FIR3

Compensation

5th Comb Filter ↓32 FIR1 ↓2 FIR2 ↓2

5th Comb Filter ↓32 FIR ↓4

Decimation Filter ↓128(1)

(2)

(3)

(4)

For 1b 4th-order SDM OSR=128

Order of FIR=10495

Obtained SNR=164.47 dB

P=fs/128*10496/128*128=82fs

P=Number of required multiplication
operations per second

Order of FIR=260

Obtained SNR=165.9 dB

P=fs/32/4*261/4*4=2fs

Obtained SNR=166.4 dB

Order of FIR1=18 Order of FIR2=126

Rp=0.01 dB
P=fs/32/2*19/2*2+fs/64/2*127/2*2=1.29fs

Obtained SNR=167.2 dB

Rp=0.002 dB

Order of FIR1=18 Order of FIR2=126 Order of FIR3=40

P=fs/32/2*19/2*2+fs/64/2*127/2*2+fs/128*41=1.6fs

Obtained SNR=166.7 dB Rp=0.009 dB
P=fs/32/2*19/2*2+fs/64/2*201/2*2=1.87fs

Order of FIR1=18 Order of FIR2=200

Figure 2.3 For 1-bit 4
th

-order OSR-128 SDM, decimator architectures in terms of

SNR, number of required multiplication operations per second and pass-band ripple

are shown.

2.3 First Decimation Stage

 As mentioned in previous section, the features of comb filter, which don’t require

multiplier, suppress folding-bands signal excellently, attenuate out-of-band signal well

and could have large decimation ratio to lower the sampling rate for later FIR filter,

are suitable for the first decimation stage operating in the fast sampling rate. The

transfer function of comb filter (also called sinc filter) is:

Hcomb z =
1

Dk (
1−z−D

1−z−1)k (2.3)

 =
1

Dk
 (1 + z−2i

)k(log 2D)−1
i=0 (2.4)

 =
1

Dk
(z−i)D−1

i=0

k
 (2.5)

 Chapter 2: Decimator Architecture and Design

~ 30 ~

k: order of comb filter

D: decimation ratio

For k=5 and D=32, its zero-pole plot and frequency response are show below:

Figure 2.4 zero-pole plot for 5
th

-order comb filter with D=32

(5*32 zeros around unit circle, 5 poles in z=1 and the other poles in z=0)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

155

Real Part

Im
a
g
in

a
ry

 P
a
rt

 Chapter 2: Decimator Architecture and Design

~ 31 ~

Figure 2.5 Magnitude frequency response of 5
th

-order comb filter with D=32

(half periodic spectrum have been depicted, so there are D/2=16 notches in spectrum)

 Recent researches on first decimation stage filter are also based on comb filters,

which would be introduced in following section.

2.3.1 Introduction to Modified Comb Filters

 Novel decimation schemes based on comb filter are proposed by [8]-[10]. The

basic idea is to rotate the zeros of comb filter to obtain a better rejection around

folding-bands. As seen in Figure 2.4, there are 5 zeros in the same position for

5
th

-order comb filter. If the zeros could be distributed around folding-bands (not all

zeros in the same position (middle of folding-band)), a better rejection around

folding-bands can be achieved.

 The transfer function of counterclockwise rotated 1
st
-order comb filter could be

defined as [9]:

 Hq+ z =
1

D

1−z−D ejαD

1−z−1ejα (2.6)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-450

-400

-350

-300

-250

-200

-150

-100

-50

0
Freq. Response of Comb5 (D=32)

frequency

m
a
g
n
it
u
d
e
 (

d
B

)

 Chapter 2: Decimator Architecture and Design

~ 32 ~

 And the transfer function of clockwise rotated 1
st
-order comb filter could be

defined as:

 Hq− z =
1

D

1−z−D e−jαD

1−z−1e−jα (2.7)

 In order to obtain real number coefficient, the Equation 2.6 and Equation 2.7

must be combine together to form the transfer function:

 Hq z = Hq+ z Hq− z =
1

D2

1−2cos (αD)z−D +z−2D

1−2cos (α)z−1+z−2
 (2.8)

 The transfer function of modified comb filter consists of Hcomb(z) and Hq(z).

The k
th

-order modified comb filters (MCF) mean that there are k zeros distributed

around the folding-band. And the transfer functions of different order MCF are

defined as follow:

 HMCF 3 z = Hcomb 1 z Hq(z) (2.9)

 HMCF 4 z = Hcomb 2 z Hq(z) (2.10)

 HMCF 5 z = Hcomb 1 z Hq1
(z)Hq2

(z) (2.11)

 HMCF 6 z = Hcomb 2 z Hq1
(z)Hq2

(z) (2.12)

 MCF3, MCF4, MCF5 and MCF6 denote 3
rd

-order, 4
th

-order, 5
th

-order and

6
th

-order modified comb filters, respectively. Also, Hcomb1(z) and Hcomb2(z) denote the

transfer function of 1
st
-order and 2

nd
-order comb filter, respectively.

 A zero-pole plot of 3
rd

-order modified comb filter (MCF3) is shown below:

 Chapter 2: Decimator Architecture and Design

~ 33 ~

α

α

α

α

α

α

D=4

=>

D=4
k=3

+

+

(a) Hcomb1

(b)
Hq+

(c)
Hq-

(d)
HMCF3

In-band

folding-band

ej2πfb

e-j2πfb

Figure 2.6 zero-pole plot of (a) 1
st
-order comb filter (b) counterclockwise rotated of

1
st
-order comb filter (c) clockwise rotated of 1

st
-order comb filter (d) 3

rd
-order

modified comb filter, with D=4.

 Chapter 2: Decimator Architecture and Design

~ 34 ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

frequency

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e

MCF3 with D=4

folding-band
folding-band folding-band

Figure 2.7 Magnitude response (dB) of 3
rd

-order modified comb filter (MCF3) with

D=4

 The optimized rotated angle α to obtain maximum rejection around folding-band

has been presented by [9]. Now, fb denotes the in-band edge. The optimized rotated

angle α can be rewrite as follow:

 α=q2πfb (2.13)

then optimized q for different orders MCF are [9]:

Table 2.1 Optimized rotated angle α represented by q, which is independent to fb.

HMCFk q1 q2 Gain (dB)

HMCF3 0.78 - 8 dB

HMCF4 0.85 - 13 dB

HMCF5 0.54 0.93 18 dB

HMCF6 0.63 0.92 23 dB

 Chapter 2: Decimator Architecture and Design

~ 35 ~

Gain =
quantization noise of SDM in folding bands after comb filter

quantization noise of SDM in folding bands after MCF

=

 |Hcomb −k(f)|2PeSDM f df
i
D

+fb

i
D
−fb

D−1
i=1

 |HMCF −k(f)|2PeSDM f df
i
D

+fb

i
D
−fb

D−1
i=1

 (2.14)

0.23 0.235 0.24 0.245 0.25 0.255 0.26 0.265 0.27
-300

-250

-200

-150

-100

-50

0
Comb3 and MCF3 with D=4

frequency

M
a
g
n
tu

d
e
 R

e
s
p
o
n
s
e
 (

d
B

)

Comb3

MCF3

Figure 2.8 Magnitude responses of Comb3 and MCF3 in folding-band. The MCF3

can suppress more quantization noise power in folding-band.

2.3.2 Stage1 Design

 As mentioned in the introduction of Chapter 2, aliasing power is the main

concern in the design procedure of decimation filter. The quantization noise are

9.5134 × 10−18 and 4.8711 × 10−15 for 1-bit 4
th

-order, OSR=128, 64 SDM,

respectively. The aliasing power of first decimation filters must be smaller than the

ideal in-band quantization noise power of SDM. And four times Nyquist rate would

be left for later FIR filters to decimate [7], i.e. D=OSR/4.

 Chapter 2: Decimator Architecture and Design

~ 36 ~

Table 2.2 Ideal in-band quantization noise power

1-bit 4
th

-order SDM OSR=128 OSR=64

ideal in-band noise power 9.5134 × 10−18 4.8711 × 10−15

Aliasing Power1 = |HFirst decimation filter (f)|2PeSDM f df
i

D
+fb

i

D
−fb

D−1
i=1 (2.15)

Aliasing Power1 is the SDM quantization noise power in folding-bands filtered

by first decimation filter, which would alias to in-band signal and would not be

removed by latter filters.

Table 2.3 Aliasing power using comb filter and MCFs with different order for 1-bit

4
th

-order SDM, OSR=128 and OSR=64 (calculating in Matlab).

 D=32 for OSR=128 D=16 for OSR=64

 Comb Filter MCF Comb Filter MCF

a
li

a
si

n
g

p
o
w

er
1

 order=3 1.1549e-012 1.8162e-013 7.3879e-011 1.1631e-011

order=4 2.4977e-016 2.0120e-017 6.1846e-014 4.9951e-015

order=5 3.3085e-019 5.7030e-021 1.6880e-016 2.9137e-018

order=6 3.0518e-021 1.9477e-023 1.6022e-018 1.0238e-020

 It is obvious that the modified comb filters have more rejection around

folding-bands to obtain smaller aliasing power than the same order comb filter as

[8]-[10] claimed. And the minimum required orders of MCF and comb filter are both

5 to keep the aliasing power of first decimation stage smaller than ideal in-band SDM

QN power. The requirement of aliasing power in this work is to keep it 10 times

smaller than in-band QN power.

Both 5
th

-order comb filter and 5
th

-order modified comb filter (MCF) meet the

requirement of aliasing power. And modified comb filter is better in suppressing

aliasing power. However, MCF requires multiplication operations, which make the

hardware complexity increase much. Furthermore, 6
th

-order comb filter could

suppress the aliasing power to the same level suppressed by 5
th

-order MCF and

overhead of 6
th

-order comb filter compared with 5
th

-order comb filter are two adders

(one addition and one subtraction) and two word registers, whose hardware

complexity is much lower than MCF. Moreover, the additional suppressed aliasing

 Chapter 2: Decimator Architecture and Design

~ 37 ~

power by MCF is hard to maintain because the aliasing power of latter decimation

stages are in the same level with 5
th

-order comb filter. Finally the SNR of SDM

improved by MCF compared with comb filter is:

SNRMCF − SNRcomb

= 10 log
0.5

9.5134 × 10−18 + 5.7030 × 10−21

−10 log
0.5

9.5134 × 10−18 + 3.3085 × 10−19

= 167.2 dB − 167.06 dB = 0.14 dB

 (2.16)

SNR = 10log(
signal power

ideal inband QN +aliasing power 1
) (2.17)

So, comb filter is still an efficient implementation for first decimation stage.

5th Comb Filter ↓32,16
1-bit 4th-order SDM

OSR=128 and 64

QN PSD of SDM

(Figure 2.10)

Freq. Resp. of comb filter

(Figure 2.11)

QN PSD after first

decimation filter

(Figure 2.12)

QN PSD after

down-sample 1

(Figure 2.13)

Figure 2.9 The flow for quantization noise power spectral density of SDM in first

decimation stage

 Chapter 2: Decimator Architecture and Design

~ 38 ~

Figure 2.10 Quantization noise power spectral density of 1-bit 4
th

-order sigma-delta

modulator

Figure 2.11 First decimation filter (comb filter with D=32 for the left graph and

16 for the right graph, respectively). Folding-bands of these two magnitude response

are both in the notch position, each D-1 folding-bands

.

Figure 2.12 Quantization noise PSD after first decimation filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

frequency

P
S

D

Quantization Noise of SDM

0 0.2 0.4 0.6 0.8 1
-450

-400

-350

-300

-250

-200

-150

-100

-50

0
Freq. Response of Comb5 (D=32)

frequency

m
a
g
n
it
u
d
e
 (

d
B

)

0 0.2 0.4 0.6 0.8 1
-450

-400

-350

-300

-250

-200

-150

-100

-50

0
Freq. Response of Comb5 (D=16)

frequency

m
a
g
n
it
u
d
e
 (

d
B

)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

-12 Noise Power Spectrum Density of Decimation Filter1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

-9Noise Power Spectrum Density of Decimation Filter1

QN Power=5.833

QN Power=1.66e-013 QN Power=8.49e-011

frequency frequency

 Chapter 2: Decimator Architecture and Design

~ 39 ~

Figure 2.13 Quantization noise PSD after down-sampling

2.4 Decimation FIR Filters

 Although comb filter don’t require multiplication operations and provides

excellent rejection around folding-bands, the disadvantages of comb filter are non-flat

in-band (signal band) and gradual roll-off. So, further filters are needed to compensate

the in-band signal and to remove the remaining quantization noise near in-band edge.

 FIR low-pass filter is a sharp roll-off low-pass filter which could remove

quantization noise near in-band edge as well as provides small pass-band ripples.

These desired features demand many addition and multiplication operations.

Furthermore, FIR filter can be designed to compensate the pass-band drop due to

comb filter. The main advantage of FIR filters (finite-impulse response filters)

compared with IIR filters (infinite-impulse response filters) is the linear phase

characteristic, which is important to most applications.

The transfer-function of N
th

-order FIR filter is:

HFIR z = biz
−iN

i=0 (2.18)

N= order of FIR filter

So, there are (N+1) coefficients (also called N+1 taps).

The following decimation FIR filters in each decimation stage (2
nd

 and 3
rd

) are

designed to keep the aliasing power smaller than ideal in-band quantization noise

power. And the 4
th

-stage of decimator is designed to compensate the pass-band drop

due to comb filter.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

-13 Noise Power Spectrum Density of Decimator1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-10 Noise Power Spectrum Density of Decimator1

QN Power=1.66e-013

Aliasing Power1

=3.31e-019

QN Power=8.49e-011

Aliasing Power1

=1.69e-16

frequency frequency

 Chapter 2: Decimator Architecture and Design

~ 40 ~

2.4.1 Stage2 Design

 The folding-band for 2
nd

 decimation stage is shown below:

1/D=0.5 1

f

fb=0.5/OSR*down1=0.125
1-fb=0.875

folding bands

wanted

signal

Band

(in-band)

2fb

0

Aliasing-band

wanted

signal

Band

(in-band)

0.5/D=0.25 1-0.5/D=0.75fb

0.375 0.625

D=2
fb=0.125

Figure 2.14 Folding-band for 2
nd

 decimation stage

For 2
nd

 decimation stage, D=2 (down-sampling=2) and

fb=0.5/OSR*down1=0.5/128*32 or 0.5/64*16=0.125, folding-band could be plotted

according to Figure 1.20.

From the above figure, pass-band edge Fp must be chosen larger than fb (0.125)

in the left half spectrum to preserve in-band signal and stop-band edge Fs must be

chosen smaller than 0.375 in the left half spectrum to reject noise in folding-band. In

order to completely remove quantization noise in folding-band, a slightly smaller Fs

(0.365) is chosen. For releasing the hardware complexity, a possible large

transition-band would be used, i.e. Fp=0.125 and Fs=0.365.

Reminded that ideal in-band quantization noise powers of SDM in Table 2.2 are:

Table 2.4 Quantization noise power which cannot be remove by latter filter

1-bit 4
th

-order SDM OSR=128 OSR=64

ideal in-band noise power 9.5134e-018 4.8711e-015

Aliasing power1 3.3085e-019 1.6880e-016

 Chapter 2: Decimator Architecture and Design

~ 41 ~

Table 2.5 Aliasing power2 with different stop-band attenuation

 OSR=128 OSR=64 Require FIR order

A
li

a
si

n
g

P
o
w

er
2

 Rs=40 dB 4.8495e-018 2.4829e-015 14

Rs=50 dB 8.5409e-019 4.3728e-016 16

Rs=60 dB 1.6135e-019 8.2605e-017 17

Rs=70 dB 2.6691e-020 1.3665e-017 18

 Rs=80 dB 1.0944e-021 5.6031e-019 20

In order to keep the total aliasing power (aliasing power1+aliasing power2)

10-times smaller than in-band noise power, the minimum stop-band attenuation (Rs)

is 60 dB. However, even order is required to obtained coefficient symmetric for

polyphase decomposition. So, the minimum stop-band attenuation (Rs) 70 dB is

chosen to obtain even FIR filter order (18) (with pass-band ripple Rp=0.0001 dB,

which is not crucial for SNR, almost don’t affect FIR filter order and is already

smaller than the compensated pass-band ripple due to comb filter).

1st Decimation Stage

Comb filter
↓32,16

2nd Decimation Stage

FIR1
↓2

QN PSD

Figure 2.16

QN PSD

Figure 2.18

FIR1

Figure 2.17

QN PSD

Figure 2.19

Figure 2.15 Flow for quantization noise power spectral density in 2
nd

 decimation stage

Figure 2.16 Quantization noise PSD after down-sampling1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

-13 Noise Power Spectrum Density of Decimator1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-10 Noise Power Spectrum Density of Decimator1

QN Power=1.66e-013

Aliasing Power1

=3.31e-019

QN Power=8.49e-011

Aliasing Power1

=1.69e-16

frequency frequency

 Chapter 2: Decimator Architecture and Design

~ 42 ~

Figure 2.17 Magnitude response of 2
nd

 stage decimation filter (FIR1) with quantized

coefficients

Figure 2.18 Quantization noise PSD after 2
nd

 decimation filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

frequency

m
a

g
n

it
u

d
e

(d
B

)
Decimation Filter 2(Quant Coeff)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-14

frequency

Noise Power Spectrum Density of Decimation Filter2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

-12

frequency

Noise Power Spectrum Density of Decimation Filter2

QN Power=2.45e-015 QN Power=1.25e-012

 Chapter 2: Decimator Architecture and Design

~ 43 ~

Figure 2.19 Quantization noise PSD after down-sampling 2

2.4.2 Stage3 Design

 For finial decimation, the folding-band is equal to aliasing band shown as follow:

1/D=0.5 1

f

fb=0.5/OSR*down1*down2=0.25

folding bands

wanted

signal

Band

(in-band)

0

Aliasing-band
wanted

signal

Band

(in-band)

0.5/D=0.25 1-0.5/D=0.75

fb

D=2
fb=0.25

Figure 2.20 Folding-band of 3
rd

 decimation stage

 In order to preserve signal, pass-band edge (Fp) must be chosen larger than 0.25

in the left half spectrum. Also, the stop-band edge (Fs) must be chosen smaller than

0.25 in the left half spectrum to suppress noise power around folding-band. The only

solution is Fp=Fs for low-pass filter, which require Fp≦Fs. However, that is

impossible because it requires infinite hardware to accomplish Fp=Fs (ideal low-pass

filter). So, a transition band is allowed to relax the hardware with acceptable aliasing

power.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-14

frequency

Noise Power Spectrum Density of Decimator2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

-12

frequency

Noise Power Spectrum Density of Decimator2

Aliasing Power2

=1.3665e-017

Aliasing Power2

=2.6691e-020

QN Power=1.25e-012 QN Power=2.45e-015

 Chapter 2: Decimator Architecture and Design

~ 44 ~

 To keep the affected signal band minimum, Fp=0.25-0.5*transition-band and

Fs=0.25+0.5*transition-band are set. Furthermore, aliasing power is affected by

stop-band attenuation (Rs) and the width of transition-band both.

Table 2.6 Quantization noise power in in-band after 2
nd

 decimation stage

1-bit 4
th

-order SDM OSR=128 OSR=64

ideal in-band noise power 9.5134e-018 4.8711e-015

Aliasing power1 3.3085e-019 1.6880e-016

Aliasing power2 2.6691e-020 1.3665e-017

Table 2.7 Aliasing power3 with different stop-band attenuation (Rs)

, given a narrow transition-band (0.02).

 OSR=128 Require FIR order

A
li

a
si

n
g

P
o
w

er
3

 Rs=30 dB 1.3474e-018 151

Rs=40 dB 5.5301e-019 168

Rs=50 dB 3.4788e-019 185

Rs=60 dB 2.4815e-019 202

 Stop-band attenuation of 40 dB is good enough; however, for other application

like telecommunication, some channel signal near in-band would exist. So, the 60 dB

stop-band attenuation is chosen to remove neighbor channel signal as well as the

quantization noise of A/D converters. However, the order of FIR is still too high. For

folding techniques with OSR=64, a maximum FIR even order is 126. So, a wider

transition-band must be used to lower the FIR order with acceptable aliasing power.

Table 2.8 FIR orders and aliasing power3 with different widths of transition-band

 Transition-band OSR=128 Require FIR order

A
li

a
si

n
g

P
o
w

er
3

 0.020 2.4815e-019 202

0.025 3.1171e-019 162

0.030 3.8010e-019 135

0.035 4.4907e-019 116

As a result of that, width of transition-band is fine tuned to 0.032 to obtain FIR

order 126 and then an acceptable aliasing power, width of transition-band and FIR

order are all achieved.

 Chapter 2: Decimator Architecture and Design

~ 45 ~

2nd Decimation Stage

FIR1
↓2

QN PSD

Figure 2.22

3rd Decimation Stage

FIR2
↓2

FIR2

Figure 2.23

QN PSD

Figure 2.24

QN PSD

Figure 2.25

Figure 2.21 Flow for quantization noise power spectral density in 3
rd

 decimation stage

Figure 2.22 Quantization noise PSD after down-sampling 2

Figure 2.23 Magnitude response of 3
rd

 stage decimation filter (FIR2) with quantized

coefficients

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-14

frequency

Noise Power Spectrum Density of Decimator2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

-12

frequency

Noise Power Spectrum Density of Decimator2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

frequency

m
a

g
n

it
u

d
e

(d
B

)

Decimation Filter 3(Quant Coeff)

Aliasing Power2

=1.3665e-017

Aliasing Power2

=2.6691e-020

QN Power=1.25e-012 QN Power=2.45e-015

 Chapter 2: Decimator Architecture and Design

~ 46 ~

Figure 2.24 Quantization noise PSD after 3
rd

 decimation filter

Figure 2.25 Quantization noise PSD after down-sampling

 Note that some ideal in-band quantization noise has been removed by the 3
rd

decimation filter due to Fp<0.25, which cause total quantization noise power smaller

than ideal in-band quantization noise power.

2.5 Compensation FIR Filter

 The compensation filter is to compensate the pass-band drop of comb filters with

D=32 (for OSR=128) and D=16 (for OSR=64), which are shown below (Figure 2.26

and Figure 2.27):

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-16

frequency

Noise Power Spectrum Density of Decimation Filter3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

-14

frequency

Noise Power Spectrum Density of Decimation Filter3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

-17

frequency

Noise Power Spectrum Density of Decimator3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x 10
-14

frequency

Noise Power Spectrum Density of Decimator3

QN Power=3.97e-015

QN Power=3.97e-015

Aliasing Power3

=2.0266e-016

QN Power=7.74e-018

QN Power=7.74e-018

Aliasing Power3

=3.9747e-019

 Chapter 2: Decimator Architecture and Design

~ 47 ~

Figure 2.26 Pass-band drop of comb filter with D=32 for OSR=128

(fb=0.5/OSR=3.90625e-3)

Figure 2.27 Pass-band drop of comb filter with D=16 for OSR=64

(fb=0.5/OSR=7.8125e-3)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
-3

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

X: 0.003906

Y: -1.121

Freq. Response of Comb5 (D=32)

frequency

m
a
g
n
it
u
d
e
 (

d
B

)

0 1 2 3 4 5 6 7 8

x 10
-3

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

X: 0.0078

Y: -1.114

Freq. Response of Comb5 (D=16)

frequency

m
a
g
n
it
u
d
e
 (

d
B

)

 Chapter 2: Decimator Architecture and Design

~ 48 ~

2.5.1 Stage4 Design

 According to the pass-band drop of comb filter, the compensation filter is

designed using Matlab function (fir2) and the compensated results are shown in Table

2.9 and Table 2.10 for decimation ratio 128 and 64, respectively.

Table 2.9 Pass-band ripple with different order of compensation filter for decimation

ratio=128

order of compensation

FIR filter

pass-band ripple of

90% in-band

pass-band ripple of

95% in-band

NN4=20 0.0065 dB 0.0886 dB

NN4=40 0.0025 dB 0.0546 dB

NN4=60 0.0020 dB 0.0520 dB

Table 2.10 Pass-band ripple with different order of compensation filter for decimation

ratio=64

order of compensation

FIR filter

pass-band ripple of

90% in-band

pass-band ripple of

95% in-band

NN4=20 0.0074 dB 0.0867 dB

NN4=40 0.0031 dB 0.0527 dB

NN4=60 0.0023 dB 0.0495 dB

Order of 40 is chosen to compensate the 90% in-band ripple to 0.0025 dB and

0.0031 dB for decimation ratio 128 and 64, respectively. And the magnitude response

of compensation filter in the 4
th

 stage is shown in Figure 2.28.

 Chapter 2: Decimator Architecture and Design

~ 49 ~

Figure 2.28 Magnitude response of compensation filter in the 4
th

 stage

2.6 Specification Summary

 In this section, the information about filters used in the decimator are

summarized as below tables and figures, such as filters specification listed in Table

2.11, magnitude frequency response shown in Figure 2.29 (the coefficients of each

FIR filter are shown in Appendix A), aliasing-powers at each stages for decimation

ratio 128 and 64 listed in Table 2.12 and Table 2.13, respectively.

Table 2.11 Summary of decimation filter specifications

Stage Filter Type Decimation

Ratio

Transition-band

(frequency)

Pass-band ripple

Rp

Stop-band

attenuation

tap

1 5th-order Comb 32 and 16 - drop 1.12 dB 60-150 dB 0

2 FIRpm 2 0.125~0.365 0.0001 dB 70 dB 17

3 FIRpm 2 0.2339~0.2661 0.0006 dB 60 dB 128

4 FIR2 0 Compensation pass-band drop to 0.0025 and 0.0031 dB 41

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

frequency

M
a

g
n

it
u

d
e

 (
d

B
)

Stage4 (compensation filter)

 Chapter 2: Decimator Architecture and Design

~ 50 ~

Figure 2.29 Magnitude response of each stage

Table 2.12 Aliasing power, remaining quantization noise power and obtained SNR at

each stage for OSR=128

Stage Aliasing power
Total aliasing

power

Remaining

QN
Obtained SNR

1 3.3085e-019 3.3085e-019 1.6579e-013 124.79 dB

2 2.6691e-020 3.5754e-019 2.4506e-015 143.09 dB

3 3.9747e-019 7.5501e-019 7.7448e-018 168.09 dB

4 - 9.5168e-018 167.20 dB

Table 2.13 Aliasing power, remaining quantization noise power and obtained SNR at

each stage for OSR=64

Stage Aliasing power
Total aliasing

power

Remaining

QN
Obtained SNR

1 1.6880e-016 1.6880e-016 8.4886e-011 97.70 dB

2 1.3665e-017 1.8247e-016 1.2547e-012 116.00 dB

3 2.0266e-016 3.8513e-016 3.9653e-015 141.01 dB

4 4.8726e-015 140.11 dB

0 0.1 0.2 0.3 0.4 0.5
-300

-200

-100

0

frequency

m
a
g
n
it
u
d
e
(d

B
)

5th-order Comb Filter, 32

0 0.1 0.2 0.3 0.4 0.5
-300

-200

-100

0

frequency

m
a
g
n
it
u
d
e
(d

B
)

5th-order Comb Filter, 16

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

frequency

m
a
g
n
it
u
d
e
(d

B
)

Decimation Filter 2

0 0.1 0.2 0.3 0.4 0.5
-100

-50

0

frequency

m
a
g
n
it
u
d
e
(d

B
)

Decimation Filter 3

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

frequency

m
a
g
n
it
u
d
e
(d

B
)

Decimation Filter 4

 Chapter 2: Decimator Architecture and Design

~ 51 ~

Finally, the magnitude response of the equivalent single stage low-pass

decimation filters for decimation ratio 128 and 64 are shown in Figure 2.30 and

Figure 2.31, respectively. The equivalent single stage decimation filters are composed

of four decimation filters in efficient way to preserve the SNR of the SDM output.

The quantization noise power spectral density of 1-bit 4
th

-order SDM is shown in

Figure 2.29, where noise is increasing with the increase of frequency. Thus, the

stop-band attenuation of the equivalent single stage decimation filters also increases

more at high frequency. The expected SNR can be preserved by my decimator if the

harmonic-tones near in-band edge (not in in-band) of SDM output spectrum do not

exceed 60 dB to noise-floor due to only 60 dB stop-band attenuation for equivalent

decimation filter near in-band edge.

Figure 2.30 Quantization noise power spectral density (dB) of 1-bit 4
th

-order SDM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-350

-300

-250

-200

-150

-100

-50

0

50

frequency

P
S

D
(d

B
)

Quantization Noise of SDM

 Chapter 2: Decimator Architecture and Design

~ 52 ~

Figure 2.31 Magnitude response of equivalent single stage low-pass filter for

decimation ratio 128

Figure 2.32 Magnitude response of equivalent single stage low-pass filter for

decimation ratio 64

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

frequency

M
a
g
n
it
u
d
e
 r

e
s
p
o
n
s
e
 (

d
B

)

Equivalent Single Stage Low-pass Filter (Decimation ratio=128)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

frequency

M
a
g
n
it
u
d
e
 r

e
s
p
o
n
s
e
 (

d
B

)

Equivalent Single Stage Low-pass Filter (Decimation ratio=64)

Pass-band ripple of 90%BW<0.0025dB

Stop-band attenuation= 60~190dB

Pass-band ripple of 90%BW<0.0031dB

Stop-band attenuation= 60~160dB

 Chapter 3: Decimator Implementation

~ 53 ~

 CHAPTER

 3

Decimator Implementation

 The hardware implementations of each filter are discussed and decided in this

Chapter in terms of area, power and speed (throughput). Also, the circuit of overall

decimator with programmable decimation ratio would be described. However, the

most important part is the high order FIR filter which dominates the silicon area,

consumes the highest power and limits the operating frequency due to requiring many

multiplication operations per second. So, the implementation comparisons focus on

the high order FIR filter, which is the main part this thesis wants to improve.

Afterward the decimator is implemented step by step to become integrated circuits

fabricated in TSMC 0.18um CMOS mixed signal RF general purpose MiM Al 1P6M

process.

3.1 Implementation and Verification Flow

 The implementation steps of digital IC cell-based design flow is shown in Figure

3.1.The system level of Figure 3.1 is the behavior of decimator characterized by

Matlab, see Chapter 2. And then the circuit of the decimator is addressed by verilog (a

hardware description language) in RTL level, which could be further synthesized to

gate level by a logic synthesis tool. After logic synthesis, the logic cell could be

placed and routed (physical synthesis) by an APR tool. In addition, the function and

behavior of the circuit is verified by simulation using SDM bit-streams at each

implementation step.

 Chapter 3: Decimator Implementation

~ 54 ~

System Level

(Matlab)

RTL Level

(Verilog)

Logic Synthesis

(Design Compiler)

Gate Level

(Verilog)

Auto Place & Route

(Soc Encounter)

Layout Level

(GDSII)

RTL Simulation

(NC-Verilog)

Pre-Layout Simulation

(NC-Verilog)

Post-Layout Gate-Level

Simulation

(NC-Verilog)

Layout Verification

(DRC LVS with Calibre)

Tap out

Post-Layout Transistor-Level

Simulation

(Nanosim)

Verification

Verification

Verification

Verification

Verification OK

Verification OK

Verification OK

Verification OK

Figure 3.1 The cell-based implementation flow of digital IC

 In my implementation flow, the logic synthesis and APR (auto place & route)

tools used in the flow are Design Compiler of Synopsys and SOC Encounter of

Cadence, respectively. Furthermore, the simulators used at each step are NC-Verilog

of Cadence for circuit described by verilog (required SDF) and Nanosim of Synopsys

for post-layout transistor-level simulation. After verifying the functions and behaviors

of layout (decimator) are correct, further layout verifications, DRC (design rule check)

and LVS (layout versus schematic), are required to confirm whether the chip layout

satisfies a series of recommended design rules required by semiconductor

manufacturers and whether the integrated circuit layout corresponds to the circuit

simulated at post-layout simulation by using Calibre of Mentor.

 Chapter 3: Decimator Implementation

~ 55 ~

Simulator

SDM bit-stream

generated by Matlab

Circuit of

decimator

Output

Standard cell library

Timing information of circuit

(standard delay format, sdf)

Analysis and Verify in Matlab

Figure 3.2 Simulation and verification procedures of decimator

 The simulation and verification procedures are shown in Figure 3.2. Both

time-domain and frequency-domain of decimator’s output would be verified, which

would compare with results filtered and down-sample by designed decimator in

Chapter 2 using Matlab (floating point calculation) to confirm that the circuit

(decimator) behaviors are what we expected. Furthermore, the magnitude frequency

response of decimator’s output (circuit) could directly compare with in-band

magnitude frequency response of SDM bit-streams to determine whether the function

of circuit (decimator) is correct or not, because the function of decimator is to

preserve the in-band signal of SDM output with Nyquist-rate, which imply that no

large aliasing and no big pass-band ripple distort in-band signal except signal at

in-band edge.

 No matter where the implementation step is, the logic values are the same for

digital circuits with correct behaviors. So, only the post-layout simulation results

would be shown and verified in this thesis to prevent repetition.

 Chapter 3: Decimator Implementation

~ 56 ~

3.2 Previous Work Comparison

 In this section, the previous works on implementations of comb filter and FIR

filters are discussed in terms of silicon area, power consumption, and highest

operating frequency. An appropriate implementation of comb filter is chosen to

implement the first decimation stage. And the features and behaviors of previous work

in FIR filters are described in order to compare with my proposed implementation for

FIR filters with polyphase decomposition.

3.2.1 Comb Filter

 From the transfer function of comb filter mentioned in Section 2.3 and shown

again in Equation 3.1-3.3, there are three structures which could be chosen to

implement the comb filter.

Hcomb z =
1

Dk (
1−z−D

1−z−1)k (3.1)

 =
1

Dk
 (1 + z−2i

)k(log 2D)−1
i=0 (3.2)

 =
1

Dk (z−i)D−1
i=0

k
 (3.3)

 Furthermore, the first decimation stage is the comb filter followed by

down-sample D. Applying the commutative rule [3] shown in Figure 3.3, the required

delay elements (registers) and the number of addition operations per second could be

reduced much.

↓M

↓M

H(zM)

H(z)

x[n]

x[n]

y[n]

y[n]

(a)

(b)

Figure 3.3 Commutative rule: the system in (a) is equivalent to the system in (b).

Equation 3.1 and Equation 3.2 combining down-sampling D could be derived to

Equation 3.4 and Equation 3.5, respectively. A comparison of comb decimation filter

based on the recursive algorithm (Equation 3.4) and the non-recursive algorithm

 Chapter 3: Decimator Implementation

~ 57 ~

(Equation 3.5) are presented in [11]. The structure of Equation 3.3 is not an option to

implement comb filter due to its many adders and delay elements (registers)

requirements, which could not exploit commutative rule shown in Figure 3.3 to

improve.

Hcomb z ↓ D =
1

Dk (
1−z−D

1−z−1)k ↓ D

 =
1

Dk (
1

1−z−1)k (1 − z−D)k ↓ D

 =
1

Dk (
1

1−z−1)k ↓ D (1 − z−1)k (3.4)

Hcomb z ↓ D =
1

Dk
 (1 + z−2i

)k(log 2D)−1
i=0 ↓ D

=
1

Dk (1 + z−1)k(1 + z−2)k(1 + z−4)k … (1 + z−2(log 2D)−1
)k ↓ D

 =
1

Dk
(1 + z−1)k ↓ 2 (1 + z−1)k ↓ 2 (1 + z−1)k ↓ 2 … (1 + z−1)k ↓ 2

 Stage1 Stage2 Stage3 … Stage (log2D)

There are log2D decimation stages of (1 + z−1)k ↓ 2 (3.5)

According to [6] [11], the word-length required for these two structures by

Equation 3.4 and Equation 3.5 are shown in Table 3.1

Table 3.1 required word-length for these two structures

Word-length

Recursive algorithm of comb filter

in both parts (integrator and comb)

(Equation 3.4)

Non-recursive algorithm of comb filter

in the i-th Stage

(Equation 3.5)

m+klog2D

m+k*i

m: number of input bit

k: order of comb filter

D: decimation ratio for comb filter

i: denotes the i-th stage in comb filter for non-recursive algorithm, see Equation 3.5.

 Chapter 3: Decimator Implementation

~ 58 ~

 In my decimator design, m=1, k=5, D=32 and 16. Although D=32 and D=16 are

required in my programmable decimation ratio decimator, only the implementations

of comb filter with D=32 need to be discussed and compared, which is crucial than

comb filter with D=16 and determine the hardware complexity, critical path and

power consumption in first decimation stage.

So, the comparison of recursive and non-recursive structure for comb filter with

D=32, k=5, m=1 are discussed in terms of power, area and speed using Table 3.1,

which are shown in Figure 3.4.

5

1
)

1

1
(

 z
↓32 51)1(z

Word-length

x[n]

1 bit

1+5*log232

26 bit 26 bit 26 bit

y[n]

Sampling rate 51.2MHz 1.6MHz

Power= 51.2 MHz x 5 adders x 26 bits +1.6 MHz x 5 adders x 26 bits

 =6864 number of bit required addition operation per second

Area =5 x 26 bits + 5 x 26 bits

 =260 bits (number of bit for adder and registers)

Speed=1/(51.2 x 5 x 26)=1.502e-4

Critical path

PowerAreaProduct=6864 x 260=1,784,640

1+5*log232

Recursive

↓2(1+z-1)5 ↓2 ↓2 ↓2 ↓2
x[n]

1bit

Word-length 1+5x1

Sampling rate 51.2MHz

Power= 51.2 (MHz) x 5 (adders) x 6 (bits) +25.6 x 5 x 11 +12.8 x 5 x 16 + 6.4 x 5 x 21 + 3.2 x 5 x 26

 =5056 number of bit required addition operation per second

Area =5 x 6 bits + 5 x 11 bits + 5 x 16 bits + 5 x 21 bits + 5 x 26 bits

 =400 bits (number of bit for adder and registers)

Speed=1/(51.2 x 5 x 6)=6.51e-4

Critical path

PowerAreaProduct=5056 x 400=2,022,400

1+5x2 1+5x3 1+5x4 1+5x5

6bit

11bit 16bit 21bit 26bit

25.6MHz 12.8MHz 6.4MHz 3.2MHz 1.6MHz

(1+z-1)5 (1+z-1)5 (1+z-1)5 (1+z-1)5

Non-recursive

Figure 3.4 Comparison of recursive and non-recursive algorithm of comb filter in

terms power, area, speed, power speed product

 Chapter 3: Decimator Implementation

~ 59 ~

 As claimed by [11], the advantage of non-recursive structure for comb filter is

smaller power consumption and higher operating frequency especially when

decimation ratio and order of comb filter are high. However, a factor, power-area-

product is introduced in this thesis to judge which structure is better and a small

power-area-product structure is a better implementation choice. So, the recursive

structure of comb filter is adopted to implement the first decimation stage of

decimator due to its smaller power-area-product.

As regards the highest operating frequency, the longer critical path of recursive

structure would not limit the highest operating frequency of decimator because the

critical path of decimator is in the 3
rd

 decimation stage (high order FIR filter).

Moreover, the critical path of recursive structure of comb filter can be improved by

pipelining and retiming without any hardware overhead (see Section 3.53), which

make the speed of recursive structure (speed=1.502e-4 x5=7.51e-4) faster than

non-recursive (speed=6.51e-4). The overhead of pipelined CIC

(cascaded-integrator-comb; i.e. recursive structure) comb filter is only

four-clock-cycle latencies, which could be ignored in decimator because it is far

smaller than the group delay (126/2*128=8064) of high order FIR filter.

3.2.2 FIR Filter

The transfer-function of N
th

-order FIR filter is:

HFIR z = biz
−iN

i=0 (3.6)

=b0+b1z
-1

+b2z
-2

+b3z
-3

+……+bN-2z
-(N-2)

+bN-1z
-(N-1)

+bNz
–N

 (3.7)

=b0+z
-1

(b1+z
-1

(b2+z
-1

(b3+z
-1

(……+z
-1

(bN-2+z
-1

(bN-1+z
-1

(bN))…)) (3.8)

N= order of FIR filter;

So, there are (N+1) coefficients (also called N+1 taps).

 The transfer function of FIR filter can be represented by direct-form structure (as

Equation 3.7) or transposed-form structure (as Equation 3.8), which affect the

implementation of FIR filter. The relationship between output and input of the system

(FIR filter) represented in z-domain is Y(z)=X(z)HFIR(z). The corresponding

difference equation is y[n]=x[n]*h[n] (* denotes linear-convolution). So,

 Chapter 3: Decimator Implementation

~ 60 ~

 y[n]=b0x[n]+b1x[n-1]+b2x[n-2] +……+bN-1x[n-(N-1)]+bNx[n-N] (3.7a)

The time-shifting property [3] is

 x n − k
Z
 X z z−k if x n

Z
 X z

Considering the decimation FIR filter in the 2
nd

 and 3
rd

 stage, the polyphase

decomposition could be explored to eliminate the redundant algorithmic operations

for FIR filter followed by down-sampling.

Polyphase Decomposition

Let h[n] is the impulse response of the system and the corresponding transfer

function in z-domain is H(z). Considering a causal system (h[n]=0 for n<0) [3],

H z

= h[n]z−n∞
n=0

= h[0] +h[M]z
-M

 +h[2M]z
-2M

 +…

 + h[1]z
-1

 +h[M+1]z
-(M+1)

 +h[2M+1]z
-(2M+1)

 +…

+ h[2]z
-2

 +h[M+2]z
-(M+2)

 +h[2M+2]z
-(2M+2)

 +…

+………………………………………………………………………

+ h[M-1]z
-(M-1)

 +h[2M-1]z
-(2M-1)

 +h[3M-1]z
-(3M-1)

 +…

= h[kM] (zM)−k∞
k=0

 +z−1 h kM + 1 (zM)−k∞
k=0

 +z−2 h kM + 2 (zM)−k∞
k=0

 +………………………………

 +z−(M−1) h[kM + M − 1](zM)−k∞
k=0

= z−iEi(zM)M−1
i=0 (3.9)

Where Ei(z)= h[kM + i]z−k∞
k=0 is called the i-th polyphase component

 (3.10)

Applying the commutative rule [3] shown in Figure 3.3, the computational cost of

the system followed by downsampler is reduced.

 Chapter 3: Decimator Implementation

~ 61 ~

As a result, the system B shown in Figure 3.5 is equivalent to system A shown in

Figure 3.5; however, the system B (polyphase decomposition) is an efficient way to

implement the system (FIR filter followed by down-sampling) in terms of power

consumption and required operating speed of circuit.

H(z) ↓M

E0(z)↓M

E1(z)↓M

E2(z)↓M

EM-1(z)↓M

z-1

z-1

z-1

z-1

… ……
x[n] y[n] w[n]=y[nM]

x[n] w[n]

System A

System B

Figure 3.5 System A is equivalent to system B (polyphase decomposition; efficient

implementation for FIR filter followed by down-sampling).

 In the 2
nd

 and 3
rd

 decimation stages, the decimation ratios are both two (M=2).

So, the implementation of decimation FIR filters with polyphase decomposition with

M=2 is shown in Figure 3.6.

 Chapter 3: Decimator Implementation

~ 62 ~

E0(z)↓2

E1(z)↓2

z-1

x[n] w[n]

Figure 3.6 Efficient implementation of decimation FIR filter with M=2

, where E0(z)= b0+b2z
-1

+ b4z
-2

+……+bN-2z
-(N-2)/2

+bNz
–N/2

 (3.11)

 E1(z)= b1+b3z
-1

+ b5z
-2

+……+bN-3z
-(N-4)/2

+bN-1z
–(N-2)/2

 (3.12)

 , for N is even number

, where E0(z)= b0+b2z
-1

+ b4z
-2

+……+bN-3z
-(N-3)/2

+ bN-1z
-(N-1)/2

 (3.13)

 E1(z)= b1+b3z
-1

+ b5z
-2

+……+bN-2z
-(N-3)/2

+bNz
–(N-1)/2

 (3.14)

 , for N is odd number

 In my decimator design, N is assumed as a even number to make the

coefficients of E0(z) and E1(z) are still symmetric, which implies that bk=bN-k for

Equation 3.11 and Equation 3.12, because the coefficients are symmetric bk=bN-k for

FIR filters with linear-phase regardless of even or odd order (N).

 Generally speaking, the polyphase decomposition technique would definitely be

exploited to reduce power consumption and relieve circuit speed for decimation FIR

filter due to no any hardware overhead. So, the further implementation comparison for

FIR filters will all base on polyphase decomposition except the 4
th

 stage (the

compensation filter; no down-sampling).

 The high order FIR filter requires many multiplication operations per sample,

which limits the sample throughput and consumes large power. Besides, it consumes

large silicon area due to requiring many multipliers, adders and registers for a

straightforward implementation. Thus, the main object in this thesis is to reduce the

silicon area of FIR filter. Although there are many techniques that could be used to

reduce silicon area, the folding technique could reduce the silicon area of high order

FIR filter more than others. So, previous works on folded FIR filter will be introduced

and briefly compared (detail compared with my proposed folded design in latter

section). Both direct-form and transposed-form structures will be considered.

 Chapter 3: Decimator Implementation

~ 63 ~

 Direct-Form Structure

 In my decimator design, the highest order of FIR linear-phase filter is 126,

which imply that there are 127 coefficients with the symmetric feature, i.e. hk=h126-k.

So, there are only 64 distinct coefficients for the 126
th

-order FIR linear-phase filter.

Usually h[n] denotes the impulse response of system (FIR filter), i.e. h[n]=bn in

Equation 3.6. The decimation FIR filter with polyphase decomposition in direct-form

is shown in Figure 3.7. And all the following implementations would be illustrated

using 126
th

-order FIR filter with polyphase decomposition.

z-1
z-1z-1 z-1 z-1…st0 st1 st61st60z-1

z-1 z-1
z-1 z-1 z-1…st63 st64 st123st122z-1

h3

h2

h5

h4h4

h5
h3

h2 h1

h0

st62

… y

2fd3

fd3

h1
h0

st124

…

… h60 h62 h62 h60…

… h61 h63 h61…

Figure 3.7 Decimation FIR filter (126
th

-order) with polyphase decomposition in

direct-form

 The coefficients hk with k>63 will be replaced by h126-k with k>63 due to

hk=h126-k, which implies that h125 will be shown with h1. The Figure 3.7 exhibits a

direct implementation of Equation 3.7 modified as Figure 3.6 (combining

down-sampling 2 and using polyphase decomposition) and the Figure 3.8 shows the

meaning of the switched arrow at input of Figure 3.7. From these figures, it is obvious

that the straightforward implementation for 126
th

-order FIR filter requires 127

multipliers, 126 adders and (125+1) storage elements (126 x 27-bits registers if

word-length of each sample is 27-bits), which consumes large silicon area.

 Chapter 3: Decimator Implementation

~ 64 ~

↓2

↓2

z-1

x[n]

2*f

f

f

= (a)

(b)

… 8 6 4 2 0

 … 7 5 3 1

… 8 6 4 2 0

 … 7 5 3 1 -1

Figure 3.8 The meaning of switched arrow where f denotes the sampling rate

Direct-Form Folding

Therefore, a folded architecture of FIR filter with polyphase decomposition in

direct-form is shown in Figure 3.9. Circuits based on the direct-form folding

architecture for FIR filters could be seen in [12] [13] [14] [15]. The folded

architecture is an architecture where the algorithmic operations are performed by

time-multiplexing so as to reduce the functional units. In Figure 3.9, one

multiplication and two addition operations are performed at each clock cycle using

one multiplier and two adders. Utilizing the symmetry of coefficients (127

coefficients), only 64 multiplication operations needed to calculate per sample, which

implies that an output sample is calculated using 64 clock cycles for the 126
th

-order

FIR filter. Although the number of adder could be reduced further (i.e., using only one

adder) for the direct-form folding FIR filter architecture, it is not an implementation

option due to the twice power (requiring 127 clock cycles per sample because of not

utilizing coefficients symmetry) and the negligible area reduction (one adder).

 Chapter 3: Decimator Implementation

~ 65 ~

It is easy to understand the behavior of the direct-form folded FIR architecture.

The even samples of x (i.e. x[even]) are stored in the shift registers D-R0 (data

registers) in descending order (x[2(n-1)] x[2(n-2)]…… x[2(n-62)] x[2(n-63)]; the

oldest sample at the right end of shift registers due to right-shifting and input from left)

and the odd samples of x are stored in D-R1 as well (x[2(n-1)-1] x[2(n-2)-1]…). The

D-R0 are composed of x0, st0, st1, …… , and st62 as well as the D-R1 are composed

of x1, st63, st64, …… , and st124. As seen in Figure3.9, the value of x[2(n-1)] is

stored in the registers (storage-element) st0, x[2(n-1)-1] is stored in st63, etc.

A new sample of x is coming every 32 clk cycles and it must be synchronized by

extra data registers (implicitly in Figure 3.9). The shift registers (D-R0 and D-R1) are

clocked by clkd3, so they are shifted one-time every 64 clk cycles. The multiplication

operations with hodd coefficients of FIR filter are computed at the first 32 clk cycles of

one output-sample-cycle (period of 64 clk cycles) and those with heven coefficients are

computed at the last 32 clk cycles. One output sample is produced every 64 clk cycle

(=1 output-sample-cycle=2 input-sample-cycle). The term (x[2n-1]+x[2(n-62)-1])h1 is

computed at the first clk cycle, (x[2(n-1)-1]+x[2(n-61)-1])h3 at the 2
nd

 clk cycle, ……,

x[2(n-31)-1]h63 at the 32
th

 clk cycle, (x[2n]+x[2(n-63)])h0 at the 33
th

 clk cycle, ……,

as well as the term (x[2(n-31)]+x[2(n-32)])h62 is computed at the 64
th

 clk cycle. The

result (term described above) of each clk cycle is accumulated and then the output

sample is produced at the end of 64
th

 clk cycle.

The advantages of direct-form folding are fewer functional units (one multiplier

and two adders in Figure 3.9) compared with direct-form structure (non-folding; 127

multipliers and 126 adders in Figure 3.7).

 Chapter 3: Decimator Implementation

~ 66 ~

z-1 z-1z-1 z-1 z-1z-1

3
2

:1

3
2

:1

3
2

:1

………

h0,h2,h4... h0,h2,h4...h1,h3,h5... h1,h3,h5...

64:1 Coefficients

x1 st63 st64 … st92 0 x0 st0 st1 … st29 st30 st62 st61 st60… st31

st124 st123 st122… st93

3
2

:1

z-1 z-1z-1 z-1 z-1z-1
………st0 st1 st60 st61

st63 st64 st122 st123

st2

st65 st121

st59

x1

x0

D Q

Clk

Reset Q

accu
0

10

y[n]

2fd3

st62

st124

fd3

fd3*64=f

x

f is the operating frequency of the circuit using clk

fd3 is the output sampling rate using clkd3

clk

D-R0 clocked by clkd3

D-R1 clocked by clkd3

syn
syn

……

1 output-sample cycle

=1/fd3

64 cycles

syn

clk

clkd3 x[2n-1] x[2n]

x[2(n-1)]x[2n]

x[2n-1]

x[2(n-2)]

x[2(n-1)-1] x[2(n-2)-1]

x[2(n-62)] x[2(n-63)]

x[2(n-62)-1]x[2(n-61)-1]

Figure 3.9 The folded architecture of FIR filter with polyphase decomposition in

direct-form

Transposed-Form Structure

 The decimation FIR filter (126
th

-order) with polyphase decomposition in

transposed-form (Equation 3.8 modified further using polyphase-decomposition as

Figure 3.6) is shown in Figure 3.10.

 Chapter 3: Decimator Implementation

~ 67 ~

z-1 z-1

h0 h2 h4

h1
h3 h5

z-1 z-1

h0

z-1

h62 h62

h63 h61

h2h4

h3

…

…

…

… h1

2fd3

y

fd3

… …

z-1 z-1

h126=h0 h124=h2 h122=h4

z-1 z-1

h0

z-1

h64=h62 h62 h2h4…
…

2fd3

y

fd3

… …

z-1 z-1

h125=h1 h123=h3 h121=h5

z-1

z-1

z-1

h63 h61 h1h3…
…

… …

st62 st61 st0st1

xeven[n]

xodd[n]

x[n]

(b)

(c)

Share storage elements

x[n]

… 6 4 2 0

 … 5 3 1 -1

 … 7 5 3 1

… 6 4 2 0

 … 7 5 3 1

… 6 4 2 0

 … 7 5 3 1

z-1 z-1

h126=h0 h124=h2 h122=h4

z-1 z-1

h0

z-1

h64=h62 h62 h2h4…
…

2fd3

y

fd3

… …

z-1 z-1

h125=h1 h123=h3 h121=h5

z-1z-1

h63 h61 h1h3…
…

… …

(a)

x[n]

… 6 4 2 0

 … 5 3 1 -1

… 6 4 2 0

 … 5 3 1 -1

=

st31

Figure 3.10 The decimation FIR filter (126
th

-order) with polyphase decomposition in

transposed-form

 Chapter 3: Decimator Implementation

~ 68 ~

 The structure (a) in Figure 3.10 is equivalent to structure (b) in Figure 3.10. Note

that the input-sequences allocated at the phase0-filter and phase1-filter (i.e., filter E0

and filter E1 in Figure 3.6) for structure (a) and for structure (b) are different in the

beginning; however, the sequences before the final adder are the same due to the

delay element used in structure (b). The storage elements of phase0-filter and

phase1-filter could be merged together to halve the usage of registers [16] [17]. For

convenience, the value stored in storage elements would only represented by st0, st1,

and so forth because the values stored in storage elements include many delay

versions of input sample multiplying with FIR filter coefficients shown in Figure 3.11.

The stored values in transposed-form are similar to the values in parentheses of

Equation 3.8 needed to modify further for polyphase decomposition. Consequently,

the output value y[n] in transposed-form is equivalent to output value in direct-form.

z-1 z-1

h0 h2 h4

h1
h3 h5

z-1 z-1

h0

z-1

h62 h62

h63 h61

h2h4

h3

…

…

…

… h1

2fd3

y[n]

fd3

… …

st62 st61 st0st1

x[2n]

x[2n+1]

x[n]

… 6 4 2 0

 … 7 5 3 1

st31

x[2n]h0+x[2n+1]h1

x[2(n-1)]h0+x[2(n-1)+1]h1

x[2(n-1)]h0+x[2(n-1)+1]h1+x[2n]h2+x[2n+1]h3

x[2(n-2)]h0+x[2(n-2)+1]h1+x[2(n-1)]h2+x[2(n-1)+1]h3

………

Figure 3.11 The values stored in storage elements

The advantages of the decimation FIR filter with polyphase decomposition in

transposed-form (structure (c) in Figure 3.10) compared with direct-form are

1. Short critical path

2. Half storage elements (registers)

However, the amount of the function units (multipliers and adders) required by

126
th

-order FIR filter in transposed-form (Figure 3.10) are still too large.

 Chapter 3: Decimator Implementation

~ 69 ~

Transposed-Form Folding

 Therefore, a folded architecture of FIR filter with polyphase decomposition in

transposed-form is needed to reduce the functional units of the high order FIR filter.

The structure (c) in Figure 3.10 is the folding object. However, the folded FIR filter

architecture for transposed-form is quite different from the folded architecture for

direct-form.

Encounter problem

Note that the multipliers’ output are stored to the different storage elements (st62,

st61, …, etc.) after extra addition operations for transposed-form FIR filter seen in

Figure 3.10, which is different from direct-form where the multipliers’ output are

merely stored to the accumulator-registers (accu in Figure 3.9). As a result, the folded

architecture using one multiplier for transposed-form must encounter the problem that

the result of multiplier’s output after addition operation should be stored to diverse

storage elements and only some (two) of them (st62, st61, …, etc.) fetch the

calculated result (multiplication and addition operation) each cycle, which implies

that the storage elements (registers) are hard to control using single clock due to the

above described behavior of the registers even if the calculated result each cycle

might use de-multiplexer to choose the destination (target storage element) (in

addition, for using de-multiplexer, the non-destination storage elements still fetch

zeros and then the stored value would be cleared if the registers are trigger by the

same clock).

 The 2
nd

 encounter problem for the folded FIR filter architecture in

transposed-form (using one multiplier, i.e. one multiplication operation each cycle) is

that the calculated result (multiplication and addition operations) could not store the

result to the target storage element because the original value of target storage element

must be read at latter clock cycle for another addition with the result of different

coefficient multiplication. For example, the calculated result related to multiplication

operation with coefficient h2 and addition with st62 and st1 are calculated first and

then stored to the target storage elements, st61 and st0 respectively. In another clock

cycle, however, the calculated result related to coefficients h4 or h0 are wrong

because they required reading the original value stored in st61 and st0 respectively.

The situation could not be solved even if the operation sequences related to

coefficients each cycle are changed. It may be solved using extra registers to store the

calculated result or the original value stored in storage element, but the advantage of

half registers for FIR filter in transposed-form will disappear.

 Chapter 3: Decimator Implementation

~ 70 ~

 These two problems, which both resulted from storing the calculated result to

storage element, could be solved by shifting the value stored in storage elements

every cycle and not utilizing the coefficient symmetry to calculate the multiplication

results from the right to left end (in Figure 3.11) as the folded architecture of FIR

filter in transposed-form mentioned in [18], seen in Figure 3.12.

z-1

1

0

z-1 z-1 z-1 z-1 z-1……

x[n]

0

fs

fs

k*fs

y

St(k-1) St(k-2) St(1)St(2)St(k-3) St(3)

syn

……

1 sample cycle

=1/fs

k cycles

syn

clk

……

Registers to store

coffecinetsh0h1h2... ...hk-2hk-1

Figure 3.12 Folded architecture of k-tap FIR filter in transposed-form without

polyphase decomposition (i.e. no down-sampling)

 (for linear-phase, the feature of FIR filter coefficients: hn=hk-1-n)

z-1 z-1

h0

z-1

hk-1 hk-2 h1h2…

y[n]…

St(1)St(2)St(k-1)

0

x[n]

Figure 3.13 Corresponding unfolded FIR filter in transposed form

 The unfolded FIR filter in transposed-form is also shown in Figure 3.13 to

illustrate the behavior of folded architecture in transposed-form shown as Figure 3.12.

The input sample x[n] enter the circuit at the first clock cycle (clk) and remain

constant for the k clock (clk) cycles. The coefficients stored in registers in ascending

order (h0 at the left end of the coefficients registers and hk-1 at the right end). So, the

 Chapter 3: Decimator Implementation

~ 71 ~

result of x[n]h0+St(1) is computed first and stored in the St(k-1) at the end of the first

clock cycle. The original value of St(k-1) is moved forward to St(k-2) as well as the

other original value contained in St(n) are moved forward to St(n-1), i.e. the behavior

of shift registers , which preserve the uncalculated (unused) value stored in St not to

be modified. Because of the data shifting, the value stored in St(1) is the original

value of St(2) (i.e., the value in St(2) seen in Figure 3.13) in 2
nd

 clock cycle. In 2
nd

clock cycle, the result x[n]h1+St(2) seen in Figure 3.13 is calculated and stored to

St(k-1) seen in Figure 3.12 at the end of 2
nd

 clock cycle. The data are still right

shifting so the result calculated in last clock cycle is shifting to St(k-2) and not

modified. One tap’s computation (from right to left end in Figure 3.13, i.e.

x[n]h0+St(1), x[n]h1+St(2),…, x[n]hk-1+0) is calculated each clock cycle. After k-1

clock cycles, the result x[n]h0+St(1) (the value seen in Figure 3.13) is shifting to St(1)

in Figure 3.12 and could be output (at the same time, the result x[n]h1+St(2) in Figure

3.13 is shifting to St(2) in Figure 3.12 and so on). After k clock cycles, the result

x[n]h0+St(1) is shifting out, and the result x[n]h1+St(2) is shift to the St(1) as well as

the other results are shifting to the individual destination storage elements like

x[n]h2+St(3) is shift to the St(2). Thus, the computations required by a sample are

finished and stored to the right destination storage element after k clock cycles.

 The behavior of folded architecture of FIR filter is described as above. Now, for

comparison, the folded architecture of FIR filter must be modified using polyphase

decomposition (i.e. a folded architecture based on Figure 3.11 not Figure 3.13) and

the FIR coefficients would not use the shift registers to store and output, which is

designed for programmable FIR filter coefficients and cause large area overhead.

 The behavior of the folded architecture for FIR filter using polyphase

decomposition is almost the same as the behavior in Figure 3.12. The result of

x[2n]h0+st0 seen in Figure 3.11 is calculated in the 1
st
 clock cycle and stored to st62.

The result of x[2n]h2+st1, x[2n]h4+st2 and so forth are calculated in the 2
nd

 cycle ,the

3
rd

 cycle, etc, respectively. After 63 cycles, the result of x[2n]h0+st0 is shifting to st0

and could be output in the 64
th

 cycle. In the 64
th

 cycle, the result x[2n]h0+0 (the left

end computation; no storage element result needed to add) is calculated by switching

the input of multiplexer to zero for addition operation (controlled by syn). After 64

clock cycles, the result of x[2n]h2+st1 seen in Figure 3.11 is shift to st0 seen in Figure

3.14. So, in the 65
th

 cycle, the result of x[2n]h2+st1+x[2n+1]h1 seen in Figure 3.11 is

calculated and stored to st62 seen in Figure 3.14 at the end of 65
th

 cycle, where the

 Chapter 3: Decimator Implementation

~ 72 ~

x[2n]h2+st1 is read from st0 of Figure 3.14. Also the result with other odd coefficient

is calculated one by one each cycle. At the end of the 127
th

 cycle, the result

x[2n]h2+st1+x[2n+1]h1 is stored to st0 and the computations required by a

output-sample are all finished and stored the data to the right storage elements.

z-1

127:1 Coefficients

1

0

z-1 z-1 z-1 z-1 z-1……

x[n]

0

2fd3

fd3

fd3*127

y

st62 st61 st0st1st60 st2

syn

……

half sample cycle

=0.5/fd3

127 cycles

syn

clk

1 sample cycle
syn2

syn2

128 cycles

Figure 3.14 Folded architecture of decimation FIR filter using polyphase

decomposition

 The drawbacks of the folded architecture [18] of decimation FIR filter with

polyphase decomposition shown as above are shifting data every operating cycle (clk)

and not utilizing the coefficients symmetry which implies that it requires double clock

cycle compared with direct-form folding mentioned above to accomplish the

computation required by a output-sample. Those will result in large power

consumption (at least twice).

 The advantages of folded architecture in transposed-form shown in Figure 3.14

[18] are one adder and half register reduction compared with the folded architecture in

direct-form shown in Figure 3.9 [12] [13] [14] [15]. However, the silicon area

required by transposed-form folding [18] is not definitely smaller than silicon area

required by direct-form folding because of the twice operating frequency requirement

 Chapter 3: Decimator Implementation

~ 73 ~

for transposed-form folding to maintain the throughput (output sampling-rate) (∵

trading silicon area for speed).

 The implementations of decimation FIR filter using polyphase decomposition

have been described above; the folded architecture could obtain the smallest silicon

area due to few functional units especially for high order FIR filters. Also the

advantages and disadvantages of folded architecture based on direct-form shown in

Figure 3.9 and transposed-form shown in Figure 3.14 are addressed which would be

compared with my proposed folded architecture based on transposed-form in latter

section.

3.3 Overall Decimator System

 The block diagram of overall decimator system and related clocks is shown in

Figure 3.15. The 2
nd

, 3
rd

 and 4
th

 stages are FIR filters and the 2
nd

 and 3
rd

 stages are

followed by down-sampling 2, which could be polyphase decomposed to halve the

power consumption as mentioned in Section 3.2.2.

Stage1 (Comb) ↓32,16
Stage2

(FIR)
↓2

Stage3

(FIR)
↓2

Stage4

(Compensation)

clk16

3.2MHz

clk32

1.6MHz

clkd1

clk2

25.6MHz
clk4

12.8MHz

clkf2

clk

51.2MHz

clk2

25.6MHz

clkf3

clkd2

800/1600kHz

clkd3

400/800kHz
clkd1

1.6/3.2 MHz

clkf4
clk4

12.8MHz

clk

51.2MHz

clkd3

400/800kHz

clk2

25.6MHz

df df df df

df=1/df=0

 df=1 : decimation factor=128

df=0 : decimation factor=64

0 0 0 0

1 1 1 1

x[n]
1 bit

y[n]
27 bit

clk ÷2 clk2 ÷2 clk4 ÷2 clk8 ÷2 clk16 ÷2 clk32

clkd1 ÷2 clkd2 ÷2 clkd3 ÷2 denotes the frequency divider by 2

Figure 3.15 Block diagram of overall decimator system

 In Figure 3.15, the sampling rate of input and output at each stage are shown for

decimation ratio 128 and 64 as well as the clocks required by each stage. In order to

maintain that the number of clock cycles required by a output-sample to finish the

computations are equal at decimation ratio 128 and 64 for circuits using folded

architecture (stage 2, 3 and 4), the operating clock for the 2
nd

, 3
rd

, and 4
th

 stages must

be chosen according to the decimation ratio. For example, the folded architecture for

the 3
rd

 stage, 64 clock cycles (64 multiplication operations; 127 taps using coefficients

symmetry) are needed for an output-sample’s computations, which implies that the

operating frequency of the circuit to output sampling-rate must fix to 64 no matter the

decimation ratio of decimator are 128 or 64. That makes the circuit of folded

 Chapter 3: Decimator Implementation

~ 74 ~

architecture operate correctly.

3.4 Clock Divider Circuit

 The circuit of clock divider by 2 is shown in Figure 3.16 as well as the timing

diagram is shown in Figure 3.17.

D Q

Clk

Reset QReset

clk

clk2

Figure 3.16 Circuit of clock divider by 2

clk

clk2

Reset

t

t

t

Figure 3.17 Timing diagram for the circuit of clock divider by 2

 In Figure 3.16, the data (logic value: 0 or 1 or unknown) in pin D (is equal to pin

Q which is the inverse of Q) is fetched to pin Q (i.e. port clk2) at positive edge of

clock (clk) so the port clk2 invert when encountering the positive edge of clock (clk).

As a result of that, the frequency divider by 2 is obtained.

 Chapter 3: Decimator Implementation

~ 75 ~

3.5 The First Decimation Stage: Comb Filter

 As mentioned in Section 3.2.1, the recursive (IIR-FIR) structure of comb filter is

adopted to implement the first decimation stage due to its smaller power-area product

compared with non-recursive structure.

 The transfer functions of comb filter followed by down-sampling with

decimation ratio 32 and 16 determined in Chapter 2 are

 Hcomb 32 z =
1

325 (
1

1−z−1)5 ↓ 32 (1 − z−1)5 for decimation ratio 32

 (3.15)

 Hcomb 16 z =
1

165 (
1

1−z−1)5 ↓ 16 (1 − z−1)5 for decimation ratio 16

 (3.16)

 The first decimation stage is composed of gain control (
1

325 and
1

165), integrator

(
1

1−z−1)5 , downsampler (↓32 and↓16) and differentiator (1 − z−1)5 . The

programmable decimation ratio (128 and 64) of decimator is mainly controlled by the

downsampler of first decimation stage.

z-1 z-1 z-1 z-1 z-1 z-1

↓16 or 32
-

z-1

-

z-1

-

z-1

-

z-1

-Gain

Control

integrators differentiatorsdownsampler

Figure 3.18 Components of first decimation stage

3.5.1 Gain Control

 In order to remove the DC gain (i.e. let DC gain=0 dB), the gain control is

needed and then the data (value of sample) could be treated the same for later FIR

filters no matter the decimation ratio are 128 or 64. Furthermore, to prevent the DC

signal existing permanently, the data (value of input sample) would be represented by

2’s complement (i.e. 1 of input sample is treated as +value and 0 is treated as -value).

Moreover, the ‘enable’ signal is introduced to prevent the window effect seen [3]

when enable=0 the data (value of input sample) is treated as zero which make the zero

padding exist to prevent window effect.

In addition, the word-length of adder and registers is 1+5*log232=26 bits [6] for

 Chapter 3: Decimator Implementation

~ 76 ~

unsigned representation in the first decimation stage. However, for using 2’s

complement representation, the word-length required in the first decimation stage is

needed one more bit (27-bits).

The output of gain control circuit is list below:

 enable=0: output of gain control is 27-bits zeros .

 enable=1, in=1 and df=1: output of gain control is 0.5*(1/32)
5

=27'b0000_0000_0000_0000_0000_0000_001.

 enable=1, in=1 and df=0: output of gain control is 0.5*(1/16)
5

=27'b0000_0000_0000_0000_0000_0100_000.

 enable=1, in=0 and df=1: output of gain control is -0.5*(1/32)
5

=27'b1111_1111_1111_1111_1111_1111_111.

 enable=1, in=0 and df=0: output of gain control is -0.5*(1/16)
5

=27'b1111_1111_1111_1111_1111_1100_000.

3.5.2 Pipelined Comb Filter

 As a result of the clock skew, the positive edges of clk32 and clk16 (seen in

Figure 3.15; clk32 is produced by clk16 so the delay is inevitable) are not triggered at

the same time, which make downsampler (registers clocked by clkd1 composed of

clk32 and clk16) easily fetch the unready signal (output of integrators) due to the long

critical path of integrators which used most of the cycle time to calculate the result (i.e.

the cycle time governed by the signal ready time is small).

 In order to make the signal (output of integrators) ready earlier, the critical path

of integrators must be shortened. So, comb filter is pipelined to meet the requirement

seen in Figure 3.19. The cycle time of differentiators is 16 or 32 longer than the cycle

time of integrators. Thus, the differentiator part is unnecessary to be pipelined.

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1

z-1 z-1

↓16 or 32
-

z-1

-

z-1

-

z-1

-

z-1

-Gain

Control

integrators downsampler differentiators

Figure 3.19 Pipelined comb filter (only integrators part needed to be pipelined due to

its critical timing)

 Chapter 3: Decimator Implementation

~ 77 ~

 The pipelined integrators part could be retiming seen in Figure 3.20 to reduce the

registers usage.

z-1

z-1 z-1

=>

Figure 3.20 Retiming to reduce the registers usage

 Finally, the first decimation stage is shown as Figure 3.21.

z-1 z-1 z-1 z-1 z-1

z-1

↓16 or 32
-

z-1

-

z-1

-

z-1

-

z-1

-Gain

Control

Figure 3.21 Implementation of first decimation stage

3.6 Proposed Circuit for FIR Filters

 The basic ideas of my proposed architecture are to preserve the advantages of

direct-form folding seen in Figure 3.9 [12] [13] [14] [15] and transposed-form folding

seen in Figure 3.14 [18]. My proposed folded architecture is based on

transposed-form FIR filter with polyphase decomposition to obtain half registers

reduction compared with direct-form as well as my architecture utilizes the

coefficients symmetry to halve the multiplication operation cycles (i.e. half power

consumption) compared with transposed-form seen in Figure 3.14.

Furthermore, my proposed folded architecture based on transposed-form solves

the encounter problems of folding on transposed-form FIR filter seen Section 3.2.2 by

using extra control circuits and changing the computation procedures to reuse

registers to store data instead of shifting all data each cycle seen in Figure 3.14. As a

result of that, the power consumption of my proposed folded architecture based on

transposed-form FIR filter is much less than half power of folded FIR architecture in

transposed-form seen in Figure 3.14 [18].

My proposed folded architecture of decimation FIR filter based on

transposed-form using polyphase decomposition shown in Figure 3.22(a). For

convenience, the unfolded decimation FIR filter with polyphase decomposition is

shown in Figure 3.22(b) so as to explain the behavior of my folded architecture. And

 Chapter 3: Decimator Implementation

~ 78 ~

the timing diagram of my proposed architecture is shown in Figure 3.22(c).

As usual, the folded architecture is illustrated by the 126
th

-order FIR filter (the

3
rd

 stage with highest order FIR filter). The 126
th

-order FIR filter’s output sample

requires 64 clock cycles to perform the 64 coefficients multiplications: the first 32

clock cycles are associated with x[2n] and heven; the last 32 clock cycles are associated

with x[2n+1] and hodd.

Note that my folded architecture requires an extra storage element st63 (registers)

to store result (x[2n]h0) at the end of first clock (clkf3) cycle compared with unfolded

structure because the result (x[2n]h0) cannot store to st62 which must be read in latter

clock cycle for my folded architecture.

The result of x[2n]h0+st0 (the expected output result; right side) and x[2n]h0 (left

side) seen in Figure 3.22(b) (x[2n]h0 seen in Figure 3.22(b) is computed by

x[2n]h0+st63 where st63=0 seen in Figure 3.22(a)) are computed in the first clock

cycle (the clock is clkf3; first clock cycle implies that the value of counter is zero) and

then stored to st0 and st63 respectively seen in Figure 3.22(a) at the end of first clock

cycle. In the 2
nd

 clock (clkf) cycle, the result of x[2n]h2+st1 and x[2n]h2+st62 seen in

Figure 3.22(b) are computed and then stored to st1 and st62 seen in Figure 3.22(a),

respectively. The entire computations required by an output sample are separately

calculated at each cycle and the computation of each cycle in my proposed

architecture seen in Figure 3.22(a) is listed in Table 3.2. After the first 32 clock cycles,

the multiplication operations correlated with x[2n] and coefficients heven have been

finished.

And the input sample, x[2n+1], appears after the first 32 clock cycles. In the 33
rd

clock (clkf3) cycles (counter = 32), the results of x[2n]h0+x[2n+1]h1 and

x[2n]h2+x[2n+1]h1+st1 seen in Figure 3.22(b) are computed by x[2n+1]h1+st63 and

x[2n+1]h1+st1 seen in Figure 3.22(a) where the contents of st63 and st1 are x[2n]h0

and x[2n]h2+st1 respectively. These two results are temporarily stored to the st63 and

st1 respectively seen in Figure 3.22(a) at the end of the 33
rd

 clock cycle. At the end of

the 64
th

 clock cycle, the results of x[2n]h0+x[2n+1]h1 and x[2n]h2+x[2n+1]h1+st1 are

shifted to st62 and st0 so as to finish the required computations, respectively. The

other computation correlated with x[2n+1] and hodd at each cycle could be seen from

Table 3.2.

 Chapter 3: Decimator Implementation

~ 79 ~

z-1 z-1z-1 z-1 z-1z-1

3
2

:1

3
2

:1

………

x[2n], x[2n+1]

Control Circuits

64:1 Coefficients

st0st1st2st61st62st63

st63 st62 … st33 st32 st0 st1 … st30 st31
st1 st2 … st30 st31 0

3
2
:1

counter[5]

counter[4:0]counter[4:0]

addL_result
addR_result

fd3

2fd3

z-1 z-1

h0 h2 h4

h1
h3 h5

z-1 z-1

h0

z-1

h62 h62

h63 h61

h2h4

h3

…

…

…

…
 h1

2fd3

y[n]

fd3

…

…

st62 st61 st0st1

x[2n]

x[2n+1]

x[n]

(b)

st31

Folding

(a)

Extra registers

to store data

(x[2n]*h0

+x[2n+1]*h1)

y[n]

……

1 output-sample cycle

=1/fd3

64 cycles

Output

ready

clkf3

fd3 is the frequency of clkd3

2*32*fd3

counter 0 1 2 63……

0

mul_result

readL

readR

h

Figure 3.22 (a) Proposed folded architecture of decimation FIR filter based on

transposed-form using polyphase decomposition (b) the unfolded one

For the below timing diagram of the my folded architecture, the contents of

storage elements, st0, st1, st2, ……, st61, st62 and st63, in the beginning of shown

output sample cycle are st0, st1, st2, ……, st61, st62 and 0, respectively.

 Chapter 3: Decimator Implementation

~ 80 ~

63 00 01 02 03 04 00636261605958counter …… 30 31 32 3329 34 ……
h63 h0 h2 h4 h6 h8 h0h63h61h59h57h55h53…… h60 h62 h1 h3h58 h5 ……h

clkd2

……… ………clkf3

clkd3

readL st63 st62 st61 st60 st59st32 st63st32st33st34st35st36st37…… st33 st32 st63 st62st34 st61 ……
readR st0 st1 st2 st3 st4 st0st31st30st29st28st27…… st30 st31 st1 st2st29 st3 ……

st0 x[2n]*h0+st0st0

st1 ST1st1

st2 st1 ST2

st3 st2 st3 ST3

x x[2(n+1)]x[2n] x[2n+1]x[2(n-1)+1]

x*h x*hmul_result

addL_result

addR_result

mul_result+readL=x*h+readL mul_result+readL=x*h+readL

mul_result+readR=x*h+readR mul_result+readR=x*h+readR

st3 ST4st4

st0

st2

x[2n]*h2+st1 x[2n]*h2+x[2n+1]*h1+st1=ST0

ST0

x[2n]*h4+st2 x[2n]*h4+x[2n+1]*h3+st2=ST1

x[2n]*h6+st3 x[2n]*h6+x[2n+1]*h5+st3=ST2

st4 x[2n]*h8+st4 x[2n]*h8+x[2n+1]*h7+st4=ST3

st29 x[2n]*h58+st29st29

st30 ST30st30

st31 st30 ST31

st32 st31 st32 ST32

st32 ST33st33

st29

st31

ST29

st33

st34st34

st58 st57 ST58

st59 st58 st59 ST59

st59 ST60st60

st58

ST34

x[2n]*h10+st58

x[2n]*h8+st59

st60 x[2n]*h6+st60 x[2n]*h6+x[2n+1]*h7+st60=ST59

st61 st60 ST61

st62 st61 st62 ST62

st62 0st63

st61 x[2n]*h4+st61 x[2n]*h4+x[2n+1]*h5+st61=ST60

x[2n]*h2+st62 x[2n]*h2+x[2n+1]*h3+st62=ST61

0 x[2n]*h0 x[2n]*h0+x[2n+1]*h1=ST62

ST28=x[2n]*h58+x[2n+1]*h57+st29

ST28st28

st33

x[2n]*h60+st30 ST29

x[2n]*h62+st31

ST29=x[2n]*h60+x[2n+1]*h59+st30

ST30

ST30=x[2n]*h62+x[2n+1]*h61+st31

x[2n]*h62+st32

ST31=x[2n]*h62+x[2n+1]*h63+st32

x[2n]*h60+st33 ST32

ST32=x[2n]*h60+x[2n+1]*h61+st33

ST33=x[2n]*h58+x[2n+1]*h59+st34

x[2n]*h58+st34 ST33

…………………………………………………………………

x[2n]*h8+x[2n+1]*h9+st59=ST58

ST57

ST57=x[2n]*h10+x[2n+1]*h11+st58

…………………………………………………………………

st0, st1, st2, st3, … , st29, st30 fetch addR_result

st32, st33, st34, …, st62, st63 fetch addL_result

st31 fetches addL_result and addR_result

One output sample cycle

Figure 3.22(c) Timing diagram of my proposed architecture

 Chapter 3: Decimator Implementation

~ 81 ~

Table 3.2 The computation of each cycle in Figure 3.22(a)

 Left Right

x[2n]

counter 0 1 … 30 31 31 30 … 1 0

heven h0 h2 … h60 h62 h62 h60 … h2 h0

read st63 st62 … st33 st32 st31 st30 … st1 st0

write st63 st62 … st33 st32 st31 st30 … st1 st0

x[2n+1]

counter 32 33 … 62 63 62 61 … 32

hodd h1 h3 … h61 h63 h61 h59 … h1

read st63 st62 … st33 st32 st31 st30 … st1

write st63 st62 … st33 st31 st31 st30 … st1

At the end of the counter=63 cycle, all data shift (behavior of shift registers),

which means that st63>>st62>>st61>>st60>>……>>st2>>st1>>st0.

For example, in the Table 3.2, the columns with counter=62 illustrate that

x[2n+1]h61+st33 is computed in the 63
rd

 clock (clkf) cycle and then stored to st33 at

the end of 63
rd

 clock (clkf) cycle for the left column as well as x[2n+1]h61+st31 is

computed in the 63
rd

 cycle (clkf) cycle and then stored to st31 at the end of 63
rd

 clock

(clkf) cycle for the right column.

Note that the result of x[2n+1]h63+st32 for counter=63 (i.e. in the 64
th

 clock

cycle) is computed and then stored to st31 (not st32) at the end of the 64
th

 clock cycle

due to the data shifting requirement.

 The entire computations listed in Table 3.2 are equivalent to the computations in

Figure 3.22(b), which could be seen in Table 3.3. All required computations are listed

in the left column of Table 3.3 for circuits shown in Figure 3.22(b) and the

corresponding computations are listed in the right column of Table 3.3 for my

proposed circuits shown in Figure 3.22(a). For example, the result of

x[2n]*h2+x[2n+1]*h3+st62 is computed and stored to st61 in Figure 3.22(b) during a

clkd3 cycle. The corresponding computations, x[2n]*h2+st62,

x[2n]*h2+x[2n+1]*h3+st62, and the result of x[2n]*h2+x[2n+1]*h3+st62 stored to st61

are finished separately in the 2
nd

, 34
th

 clock cycle and at the end of 64
th

 clock cycle

respectively for my circuit shown in Figure 3.22(a).

 Chapter 3: Decimator Implementation

~ 82 ~

Table 3.3 The algorithmic operations of proposed folded architecture is equivalent to

the unfolded decimation FIR filter in transposed-form using polyphase

decomposition.

Non-Folding (Transposed-Form)

(64 multipliers for Stage3)

Proposed Folding

(1 multiplier for Stage3)

Clocked by clkd3 Clocked by clkf3

x[2n]*h0+st0=>y (the output data)

x[2n]*h2+x[2n+1]*h1+st1=>st0

x[2n]*h4+x[2n+1]*h3+st2=>st1

……

……

……

x[2n]*h4+x[2n+1]*h5+st61=>st60

x[2n]*h2+x[2n+1]*h3+st62=>st61

x[2n]*h0+x[2n+1]*h1=>st62

counter= =0 (in the first clock cycle)

 x[2n]*h0+st0=>y

……

……

counter= =1 (in the 2
nd

 clock cylce)

 x[2n]*h2+st62=>st62

 (st62: x[2n]*h2+st62)

counter= =33 (in the 34
th
 clock cycle)

 x[2n+1]*h3+st62=>st62

 (st62: x[2n]*h2+st62+x[2n+1]*h3)

counter= =63 (in the 64
th
 clock cycle)

……

(at the end of the 64
th
 clock cycle)

 st62=>st61

……

These operations require complicated control circuits which only govern little

silicon area. And parts of control circuit used to arrange which result store to registers

are shown in Figure 3.23.

 Chapter 3: Decimator Implementation

~ 83 ~

D Q

Clk

Reset Q

D Q

Clk

Reset Q

counter_n[5:0] counter_n[5:0]

counter_n[5:0]

st62st63

Control circuit

addL_result MUX

clkf

00 01 02 ..

63 00 01 02

counter

counter_n

Left

x[2n]

1

h2

st62

st62

x[2n+1]

33

h3

st62

st62

counter

heven

read

write

counter

hodd

read

write

At the end of the counter=63

cycle (i.e. counter_n=63),

data shift st63>>st62

Figure 3.23 Parts of control circuits

 The operations performed by parts of control circuits shown in Figure 3.23 are

listed below:

 The parts of control circuits shown in Figure 3.23 control which data will store to

the register st62 at the end of each clock cycle and the other registers are controlled by

its individual control circuits as well. The counter_n, a half clock cycle delay of

counter, is used to be a control signal for multiplexers and prevent race condition

because the value of counter and registers are both changed (or fetch value) at positive

edge of clock (i.e., the value of counter is not constant around positive edge of clock,

counter_n=1

x[k]*h2+st62=>st62

counter_n=33

x[k+1]*h3+st62=>st62

counter_n=63

st63=>st62

 Chapter 3: Decimator Implementation

~ 84 ~

which would cause race condition). In the Figure 3.23 case, addL_result would store

to st62 when counter_n is 1 or 33, value stored in st63 would store to st62 (shifting

operation) when counter_n is 63 and the value stored in st62 would store to st62 (i.e.,

the value stored in registers is not changed) when counter_n are other values.

3.7 Comparisons

 Now, my proposed folded architecture will be compared with the previous works

on decimation FIR filters with polyphase decomposition described in Section 3.2.2.

 The comparison result of overall, detail area and detail power of decimator are

listed in Table 3.4, Table 3.5 and Table 3.7 as well as the area reduction percentage of

my proposed folded architecture compared with other implementations architecture is

listed in Table 3.6.

Process: TSMC 0.18um

Logic Synthesis Tool: Synopsys Design Compiler

Clock Cycle Time: 17.5 ns

Wire Load Model: tsmc18_wl10 (worst case)

Core level power before APR OSR64@25MHz by Prime Power

Word-length of samples: 27-bits

Word-length of FIR filter coefficients: 20-bits

Table 3.4 Comparison of decimator using the described implementations of FIR filter

 Cell Area

(um
2
)

Average

Power

Peak

Power

Speed

(throughput)

U
n

fo
ld

ed

Direct-Form 2,042,184 5.526mW 0.9876W 2
nd

Transposed-Form 1,882,399 5.542mW 1.183W Fast

F
o
ld

ed

Direct-Form

[12] [13] [14] [15]
693,410 16.96mW 0.2803W 4

th

Transposed-Form

 (This design)
583,466 14.95mW 0.1905W 3

rd

 Chapter 3: Decimator Implementation

~ 85 ~

Another folded architecture of FIR filter in transposed-form mentioned in Figure

3.14 (modified from straightforward implementation of a folded FIR filter [18])

doesn’t meet the timing constraint; the slack is -0.87ns, cell area is 533,350 um
2
 and

total power is 327.5mW. Because it doesn’t meet the timing requirement, it couldn’t

compare with other circuit architecture for justice.

Table 3.5 Detail area comparison of decimator using the described implementations of

FIR filters

Area

(um
2
)

Order

(FIR)
Direct Transposed

Direct

Folding

Transposed

Folding

(this design)

Stage1 42,205 42,195 42,215 42,221

Stage2 18 267,644 242,192 92,223 78,735

Stage3 126 1,562,255 1,427,906 388,782 292,761

Stage4 40 169,284 169,297 169,430 169,108

Total 2,042,184 1,882,399 693,410 583,466

Table 3.6 Area normalized to direct-form folding

(27-bits word-length)

Cell Area Direct Transposed Direct Folding This Design

Stage2 2.90 2.63 1 0.85

Stage3 4.01 3.67 1 0.75

Overall Decimator 2.95 2.71 1 0.84

[12][13][14][15]

 Chapter 3: Decimator Implementation

~ 86 ~

Table 3.7 Detail Power Comparison

Power (mW) Direct Transposed
Direct

Folding

Transposed

Folding

(this design)

Stage1 0.6428 0.6397 0.6421 0.6423

Stage2 0.4160 0.4370 1.966 2.283

Stage3 1.554 1.540 11.14 9.130

Stage4 2.896 2.907 3.193 2.869

Total

(average)
5.526 5.542 16.96 14.95

Total (peak) 987.6 1183 280.3 190.5

From the above comparison tables, they reveal that my proposed folded

architecture requires the smallest silicon area and requires 24.6% less hardware

(silicon area) compared with folded architecture in direct-form [12] [13] [14] [15] for

the high order (126
th

-order) decimation FIR filter with polyphase decomposition. In

addition, the other advantages of my proposed folded architecture compared with

folded architecture in direct-form [12] [13] [14] [15] are shorter critical path (-one

adder delay), shorter latency (-order/2 cycles) and smaller peak power (-30%). The

average power of my design is in the same level with direct-form folding.

 In order to make sure that the proposed folded architecture is still suitable for

sample word-length with 16-bits, the comparison of detail area, area reduction

percentage of my proposed architecture and detail power for 16-bits word-length are

listed below in Table 3.8, Table 3.9 and Table 3.10, respectively.

Process: TSMC 0.18um

Logic Synthesis Tool: Synopsys Design Compiler

Clock Cycle Time: 16.5 ns

Wire Load Model: tsmc18_wl10 (worst case)

Core level power before APR OSR64@25MHz by Prime Power

Word-length of samples: 16-bits

Word-length of FIR filter coefficients: 20-bits

[12][13][14][15]

 Chapter 3: Decimator Implementation

~ 87 ~

Table 3.8 Detail area comparison with 16-bits word-length

Area

(um
2
)

Order

(FIR)
Direct Transposed

Direct

Folding

Transposed

Folding

(this design)

Stage1 - 41,526 41,526 41,486 41,496

Stage2 18 218,687 206,185 55,265 48,316

Stage3 126 1,401,173 1,319,290 224,320 180,251

Stage4 40 101,042 101,042 101,036 101,874

Total - 1,763,251 1,668,867 422,940 372,590

Table 3.9 Area normalized to direct-form folding

(16-bits word-length)

Cell Area Direct Transposed Direct Folding This Design

Stage2 3.96 3.73 1 0.87

Stage3 6.2 5.88 1 0.80

Overall Decimator 4.17 3.95 1 0.88

 The area reduction percentage of my proposed architecture compared with

direct-form folding architecture is decreased because the multiplier governs more

percentage of silicon area in the 2
nd

 and 3
rd

 stage, which is resulted from the

non-decreased word-length of FIR filter coefficients. The main advantage of my

proposed folded architecture compared with folded architecture in direct-form is half

registers usage so the decrease in the percentage of registers’ silicon area will result in

that area reduction percentage of my proposed architecture decrease, too.

 Generally speaking, the word-length of samples (bits resolution) is decreased;

the word-length of FIR filter coefficients must be decreased, too. Because the

resolution of sample is low, the resolution (word-length) of FIR filter coefficients

required by the sample resolution is unnecessary so accurate (i.e. word-length of

coefficient could be smaller even smaller than word-length of sample).

Thus the area reduction percentage of my proposed architecture shown in Table

3.6 is more reasonable than Table 3.9.

[12][13][14][15]

 Chapter 3: Decimator Implementation

~ 88 ~

Table 3.10 Detail power comparison using 16-bits word-length

Power (mW) Direct Transposed
Direct

Folding

Transposed

Folding

(this design)

Stage1 0.6409 0.6391 0.6412 0.6405

Stage2 0.4720 0.4471 0.9586 0.8928

Stage3 1.778 1.706 4.384 3.826

Stage4 1.593 1.614 1.775 1.651

Total

(average)
4.501 4.424 7.778 7.032

Total (peak) 988.7 1110 178.1 130.1

Basically, the advantages of FIR filters in transposed-form are shorter critical

path due to inserting the storage elements (registers) between adders and half registers

requirements due to sharing storage elements using polyphase decomposition

compared with FIR filters in direct-form.

The FIR filters using unfolded structure require many functional units

(multipliers and adders), which result in large silicon area no matter what the forms

(structures) are. However, the power consumed by FIR filters using unfolded structure

is much smaller than folded architecture because the logic gates required by a

multiplier of unfolded structure are much less than logic gates required by the

multiplier of folded architecture so as to obtain small power consumption. The

reasons why the logic gates of a multiplier for unfolded structures are less than for

folded architecture are that one input port of multiplier for unfolded structure is

constant (fixed FIR filters coefficients) and the cycle time for each multiplier of

unfolded structure to calculate is much longer than cycle time for the folded

architecture’s multiplier. The trade-off between unfolded and folded FIR filters is

shown in Figure 3.24.

[12][13][14][15]

 Chapter 3: Decimator Implementation

~ 89 ~

Unfolded

FIR Filter

Folded

FIR Filter

Larger silicon area

Smaller average power

Higher throughput

Smaller silicon area

Higher average power

Lower throughput

Trade off

Figure 3.24 Trade-off between unfolded and folded FIR Filter

For comparison on folded architectures, the advantages of my proposed folded

architecture are summarized below:

 Compared with direct-form folding FIR [12][13][14][15]

 Area reduction [half registers] (-19%@18
th

-order ~ -24%@126
th

-order)

 Short critical path (-one adder delay).

 Short latency (-order/2 cycles).

 Small peak power (-30%, same level average power).

 Compared with other transposed-form folding FIR [18]:

 Much less than half power.

Because my proposed folded architecture is based on transposed-form, it results

in the advantages of shorter critical path (registers are between adders), shorter

latency (output is produced after a multiplication and an addition operation) and

smaller peak power (half data shift in the same time due to half registers requirement)

compared with folded FIR filter architecture in direct-form [12][13][14][15]. In

addition, the half register requirement is obtained by changing computation

procedures and using extra control circuits described in Section 3.6.

The differences between my folded architecture and folded architecture

mentioned in [18] (seen in Figure 3.12 without polyphase decomposition or Figure

3.14 with polyphase decomposition) are that my architecture doesn’t require 2-times

fast clock to maintain throughput and doesn’t shift all data each cycle so as to obtain

less than half power consumption compared with folded architecture mentioned in

[18]. The requirement of 2-times fast multiplication operation also make the timing of

folded architecture seen in Figure 3.14 more critical. However, my architecture

overheads compared with [18] are one adder, multiplexers and control circuits.

 The trade-off between these folded architectures is shown in Figure 3.25.

 Chapter 3: Decimator Implementation

~ 90 ~

Direct-Form Folding

[12][13][14][15]

(Figure 3.9)

This Design

(Transposed Folding)

(Figure 3.22(a))

Transposed Folding

[18]

(Figure 3.14)

Trade off Trade off

Smaller Silicon Area

The same level Power with direct folding

Highest Throughput

Probably Smallest Silicon Area

Twice Power

Lowest Throughput

Largest Silicon Area

The same level Power with my design

Lower Throughput

Folded Architecture

Figure 3.25 Trade-off between the three folded architectures

3.8 Implementation Results

The layout of decimator is shown in Figure 3.26, which is fabricated in TSMC

0.18um CMOS mixed signal RF general purpose MiM Al 1P6M process. In addition,

the information about the number of pad and silicon area of decimator is listed in

Table 3.11. In my chip, there are 5 input pads, 27 output pads, 4-pair core power pads

and 8-pair IO power pads. The core area (active area) is 805x805=648,025 um
2
 (in

utilization ~90%, i.e., cell area=583,466 um
2
). However, the die size is governed

largely by IO pads and bonding pads. As a result, the die area is

1810x1810=3,276,100 um
2
.

For IO power, one set IO power pad can provide the power for 3~4 output pads

or 6~8 input pads. As a result, eight sets IO power pads are given to provide power for

these IO pads (27 output pads and 5 input pads) in my chip. For core power, one set

core power pad can provide 40mA current for core cells. From the power simulation

of APR tool (SocEncounter), the power dissipations of my chip are 17.58mW and

34.31mW at 51.2 MHz (input sampling-rate) for decimation factor 128 and 64,

respectively. However, four sets core power pads are given to prevent IR-drop and

electron-migration.

 Chapter 3: Decimator Implementation

~ 91 ~

Figure 3.26 Layout of decimator

Table 3.11 Pad and silicon area of the chip (decimator)

Input pad 5

Output Pad 27

Core Power 4 pairs

IO Power 8 pairs

Total Pad 56

Active area =805x805 um
2

Die area =1810x1810 um
2

 The place and route of cells are finished by APR tool (SocEncounter). And the

finished layout is stream-in by Virtuoso and shown in above figure. The IO cells and

logic cells are shown as black boxes because these cells are virtual cells (confidential

to student users), which must be replaced in CIC.

 Chapter 3: Decimator Implementation

~ 92 ~

3.8.1 Pad Assignment

 The pad assignment of the chip is shown in Figure 3.27.

OUT[15]

OUT[14]

IO_VSS3

IO_VDD3

OUT[13]

OUT[12]

CORE_VSS1

CORE_VDD1

OUT[11]

OUT[10]

IO_VSS2

IO_VDD2

OUT[9]

OUT[8]

O
U

T
[0

]

O
U

T
[1

]

IO
_
V

D
D

0
IO

_
V

S
S

0

O
U

T
[2

]

O
U

T
[3

]

C
O

R
E

_
V

D
D

0

C
O

R
E

_
V

S
S

0

O
U

T
[4

]

O
U

T
[5

]

IO
_
V

D
D

1

IO
_

V
S

S
1

O
U

T
[6

]

O
U

T
[7

]

DF

IN

IO_VSS7

IO_VDD7

CLK

RESET

CORE_VSS3

CORE_VDD3

ENABLE

OUT[26]

IO_VSS6

IO_VDD6

OUT[25]

OUT[24]

O
U

T
[2

3
]

O
U

T
[2

2
]

IO
_
V

S
S

5

IO
_
V

D
D

5

O
U

T
[2

1
]

O
U

T
[2

0
]

C
O

R
E

_
V

S
S

2

C
O

R
E

_
V

D
D

2

O
U

T
[1

9
]

O
U

T
[1

8
]

IO
_
V

S
S

4

IO
_
V

D
D

4

O
U

T
[1

7
]

O
U

T
[1

6
]

Figure 3.27 Pad assignment

 The IO power pads and core power pads are assigned and distributed

symmetrically around four-side of chip to obtain probably minimum IR-drop.

The above figure also shows the connections between package and die, i.e.

bonding information for chip. The chosen package type is 68LCC (68 pins) and total

pins (pads) of my design are 56. Thus, few pins of the package near corners are not

assigned.

 Chapter 3: Decimator Implementation

~ 93 ~

3.9 Decimator Simulation Result

 The simulation and verification flow is shown in Figure 3.28 below.

Figure 3.28 The post-layout gate-level simulation and verification flow for decimator

 After the decimator is designed (in Chapter 2) and implemented (in Chapter 3) to

the layout level, the function of the circuit (decimator) in layout level must be verified.

In order to verify the function of the circuit (layout-level), a SDM output bit-steam is

used as input to stimulate the circuit (decimator). The simulated output logic values

can be obtained and then can be fetched and analyzed further in Matlab. The

decimator’s output in time-domain could roughly judge the function of decimator is

incorrect or not because the expected decimator output is the sampled version of

SDM’s input. For further and precise verification, to compare the spectra of SDM

bit-stream and fetched output (output of decimator) can confirm the behavior of the

circuit (decimator) is correct or not. The function of decimator is to preserve the

in-band spectrum of decimator’s input (SDM bit-stream). Thus, if the spectrum of

decimator’s output is equal to the in-band spectrum of decimator’s input, the behavior

of circuit (decimator) is correct.

3.9.1 OSR=128

 The post-layout gate-level simulation result of decimator with decimation ratio

128 is shown in Figure 3.29 below and then verified in frequency domain using

Matlab seen in Figure 3.30. The input of SDM is a 50 kHz sinusoidal signal

(continuous-time signal, namely, analog signal) and the output of SDM (SDM

bit-stream, discrete-time signal, namely digital signal) is the input of decimator. Thus,

the expected decimator’s output is a sampled-version 50 kHz sinusoidal signal. The

sampling-rate of input and output of decimator are BW*2*OSR=51.2 MHz and

BW*2 = 400 kHz, respectively.

 Chapter 3: Decimator Implementation

~ 94 ~

Figure 3.29 Post-layout gate-level simulation result with decimation factor=128 at

nWave of workstation

Figure 3.30 Verification in time domain and frequency domain for decimation ratio

128 using Matlab

10
2

10
3

10
4

10
5

10
6

10
7

-100

-90

-80
-70

-60
-50

-40

-30
-20

-10
0

frequency (Hz)

d
B

Spectrum of SDM output 128

10
2

10
3

10
4

10
5

-100

-90
-80
-70

-60
-50
-40

-30
-20
-10

0

frequency (Hz)

d
B

ideal signal band 128

0 0.5 1 1.5

x 10
-3

-0.5

-0.4

-0.3
-0.2

-0.1
0

0.1

0.2
0.3

0.4
0.5

output of hardware

10
2

10
3

10
4

10
5

-100

-90
-80
-70

-60
-50
-40

-30
-20
-10

0

frequency (Hz)

d
B

filter in HW 128

fs=51.2MHz

BW=200kHz, fin=50kHz

Time domain

Frequency domain

Output of decimator

 Chapter 3: Decimator Implementation

~ 95 ~

 In Figure 3.29, the digital signals bus1[26:0], bus2[26:0] and bus3[26:0] are

output of stage1, stage2 and stage3 of decimator, respectively. The digital signal

out[26:0] is the decimator’s output. For convenience, these digital signals are also

shown as analog waveform to represent the magnitude of logic values. Thus, these

digital signals include two waveforms (digital waveform and analog waveform) in

above post-layout-simulation figure. Note that all signals in my design are digital

signal. When the digital signals are shown as analog waveform, the transition of

digital signal (logic values changing) would result in glitch in analog waveform. It is a

normal phenomenon to depict digital signals as analog waveform.

 From the above simulation figure, a sampled 50kHz sinusoidal signal

(BW=200kHz implies Nyquist rate or output sampling rate=400kHz, 400kHz / 8

samples per period=50kHz) appears in the decimator’ output (out[26:0]). Basically,

the function of decimator is correct because the output of decimator (digital signal) is

a sampled-version of SDM’s input (analog signal).

To verify further, the output of decimator is fetched to personal computer and

analyzed in Matlab. The time-domain and frequency-domain of decimator’s output

are shown in right side of Figure 3.30. The left-top of Figure 3.30 is the (entire-band)

spectrum of decimator’s input (SDM output bit-stream). The spectrum of decimator’s

output shown in right-bottom of Figure 3.30 is equivalent to the in-band spectrum of

decimator’s input (SDM output bit-stream) shown in left-bottom of Figure 3.30. Thus,

the behavior of decimator is verified as correct. (The notches of two spectrums are a

little different due to its distinct spectrum resolution. The points of two spectrums

shown in left-top and right-bottom of Figure 3.30 are the same 2
20

. The spectrum

shown in left-bottom of Figure 3.30 is the part (in-band) of spectrum, so the point of

the spectrum is 2
20

/128=2
13

. In addition, the point 2
27

 is out of memory in Matlab.)

3.9.2 OSR=64

 The post-layout gate-level simulation result of decimator with decimation ratio

64 is shown in Figure 3.31 below and then verified in frequency domain using Matlab

seen in Figure 3.32. As described above, the input of SDM is still a 50 kHz sinusoidal

signal (continuous-time signal, namely, analog signal) and the output of SDM (SDM

bit-stream, discrete-time signal, namely digital signal) is the input of decimator. Thus,

the expected decimator’s output is a sampled-version 50 kHz sinusoidal signal. The

sampling-rate of input and output of decimator are BW*2*OSR=25.6 MHz and

BW*2 = 400 kHz, respectively.

 Chapter 3: Decimator Implementation

~ 96 ~

Figure 3.31 Post-layout gate-level simulation result with decimation factor=64 at

nWave of workstation

Figure 3.32 Verification in time domain and frequency domain for decimation ratio 64

using Matlab

10
2

10
3

10
4

10
5

10
6

10
7

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

frequency (Hz)

d
B

Spectrum of SDM output 64

10
2

10
3

10
4

10
5

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

frequency (Hz)

d
B

ideal signal band 64

0 0.5 1 1.5

x 10
-3

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

output of hardware

10
2

10
3

10
4

10
5

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

frequency (Hz)

d
B

filter in HW 64

fs=25.6MHz

BW=200kHz, fin=50kHz

Time domain

Frequency domain

Output of decimator

 Chapter 3: Decimator Implementation

~ 97 ~

 Similarly, these digital signals are also shown as analog waveform to represent

the magnitude of logic values. Thus, these digital signals include two waveforms

(digital waveform and analog waveform) in above post-layout-simulation figure. And

the glitch is normal phenomenon to depict digital signals as analog waveform. The

spectrum of decimator’s output shown in right-bottom of Figure 3.32 is equivalent to

the in-band spectrum of decimator’s input (SDM output bit-stream) shown in

left-bottom of Figure 3.32. Thus, the behavior of decimator is verified as correct.

3.10 Specification Table

 The specification table of chip (decimator) is summarized in Table 3.12.

Table 3.12 Specification

Process TSMC 0.18um

Package LCC68 (68pin)

Num of Pads 56 Pads

Die Area 1.81 x 1.81 mm
2

(core size=0.8x0.8mm
2
, utilization=90%)

Operating Frequency 55MHz

Power Consumption

(By SocEncounter)

17.58mW @51.2MHz for decimation factor=128

34.31mW @51.2MHz for decimation factor=64

Power Consumption

(By Nanosim)

40mW

(1.8V x 22mA[rms])

20mW

(1.8V x11.1mA[avg])
@51.2MHz,df=128

108mW

(1.8V x 60mA[rms])

37.1mW

(1.8V x 20.6mA[avg])
@51.2MHz,df=64

 The operating frequency (input sampling-rate) in my design is 51.2 MHz

(BW*2*OSR=200 kHz *2 * 128 = 51.2 MHz) which is overdesigned to 55MHz. And

the power dissipations simulated by SocEncounter are 17.58mW and 34.31mW at

operating frequency 51.2 MHz for decimation factor 128 and 64, respectively. Besides,

the power dissipations simulated by Nanosim in average mode are 20mW and 37.1

mW at operating frequency 51.2 MHz for decimation factor 128 and 64, respectively.

The power dissipations simulated by Nanosim in RMS mode are 40 mW and 108 mW

at operating frequency 51.2 MHz for decimation factor 128 and 64, respectively.

 Chapter 3: Decimator Implementation

~ 98 ~

3.11 Paper Comparison

 Finally, paper comparison of decimator is listed in Table 3.13.

Table 3.13 Paper comparison

Ref Process

Die

Area

(mm
2

)

Operating

Frequency

(Signal BW)

Bit

Num

of

Stage

Max

Filter

taps

Power Year Comment

[12] FPGA

16MHz

(125kHz)

OSR=64

16 3 127 - 2005
Direct

Folding

[13] FPGA

44.8/12.8MHz

(700k/100kHz)

DECT/GSM

OSR=32/64

 3 49 - 2002
Direct

Folding

[17] 0.6um
21

(~10)

32MHz

(250kHz)

OSR=64

24 - 127 490mW 2000 CSD,A/D

[15] 0.18um 1.96

6MHz

(47kHz)

OSR=64

20 3 63 - 2006
Direct

Folding

This

Design
0.18um

3.27

(0.64)

55MHz

(200kHz)

(400kHz only

OSR64)

OSR=128/64

27 4 127

16.7mW

(df=128)

30.6mW

(df=64)

Transposed

Folding

In die area column of Table 3.13, the number in parentheses is the core area.

Because the process, operating frequency, the word-length of a sample, the

number of stages, and the number of taps of FIR filters are quite distinct for these

decimator papers, it is difficult to compare the FIR filters’ silicon area of each design

from above information. From above table, the used folded architectures are all in

direct-form except my design. Basically, the above table reveals that my decimator is

good enough in each column (operating frequency and so on). And reference paper

[13] and my decimator have two decimation ratios.

 Chapter 4: Testing and Measurement Results

~ 99 ~

 CHAPTER

 4

Testing and Measurement Results

 In this chapter, the testing environment and result of decimator fabricated in

TSMC 0.18um process would be illustrated. In addition, the package type of the chip

is LCC68. For convenience, it could be tested and measured by auto test equipment

(ATE), the Agilent 93000 Soc Series in CIC where the device under test board (DUT)

is provided. Thus, the time required to setup the testing environment is short since the

printed circuit board (PCB) is unnecessary to be prepared.

.

4.1 Introduction to Digital IC Testing using Agilent 93000 in CIC

The Agilent 93000 test system seen in Figure 4.1 is composed of test-head, DUT

(device-under-test) board and DUT interface, etc [19] [20].

 Chapter 4: Testing and Measurement Results

~ 100 ~

Figure 4.1 P600 test system of Agilent 93000 SoC Series

 The specifications of Agilent 93000 are summarized in Table 4.1 below.

Table 4.1 Specification of Agilent 93000

Digital channels 320pins

Data Rate 660Mbps

Vector Memory (per channel) 28MVectors

Scan Memory (per channel) 84MVectors

DPS channels 8 pairs (7V,6A)

High Resolution AWG 16 bits, 30Msps sampling rate

High Speed AWG 12 bits, 500Msps sampling rate

High Resolution Digitizer 16 bits, 3MHz bandwidth, 2Msps

High Speed Digitizer 12 bits, 100MHz bandwidth, 41Msps

In Table 4.1, the DPS and AWG denote device-power supplies and

arbitrary-waveform-generator. Besides, the test development flow is shown in Figure

4.2 to understand the testing steps.

 Chapter 4: Testing and Measurement Results

~ 101 ~

Figure 4.2 Test development flow

The meanings of testing steps are shown as follow: (1) test plan is to determine

what kind of test will be performed; (2) according to the package type (DIP48,

PLCC68, PLCC84, CQFP100, CQFP128, CQFP144, CQFP160, and CQFP208

supported by CIC), choose the DUT board where the chip is put on the socket of DUT

board; (3) pin configuration is to set the input, output and power pins of chip to the

test channel; (4) level setup is to set the voltage and current limit of power supply,

drive voltage (VIL, VIH) and compared voltage threshold (VOL, VOH); (5) timing setup

is to set the clock cycle time and waveform of each symbol; (6) vector setup is to

describe the testing waveform by vector-format according to the predefine waveform;

(7) test-flow setup is to load and set the related file; (8) test device and the result

shown is pass or fail.

Pictures of testing environment are shown in Figure 4.3 below

(a)

 Chapter 4: Testing and Measurement Results

~ 102 ~

(b) (c)

(d)

Figure 4.3 (a) DUT board on test-head of Agilent 93000 (b) chip in socket of DUT

board (c) the reverse-side of DUT board wired the core-power and io-power of the

chip to power-supplies pins (d) Software (SmarTest) used to manipulate the Agilent

93000 in workstation (unix-system)

 The test-pattern for Agilent 93000 is composed of drive vector (input of DUT)

and expected vector (expected output of DUT) shown in Figure 4.4. The drive vectors

are used to stimulate the DUT (chip) and the expected vectors, which are the same

logics value at post-layout simulation, are used to compare with the outputs of DUT

(chip) measured by Agilent 93000. The detail test patterns for Agilent 93000 are

illustrated in Appendix B.

 Chapter 4: Testing and Measurement Results

~ 103 ~

Drive Vector Expected Vector

Test Pattern for Agilent 93000

 IN ENABLE RESET CLK DF
 0 0 1 1 1
 0 0 0 1 1
 0 1 0 1 1
 1 1 0 1 1
 0 1 0 1 1
 ……………………………

 ……………………………

OUT[26:0]
000000000000000000000000000
110001100000001011111010000
111010111101000011110101001
000111000000101001011010001
001111001000010110100000000
……………………………………

……………………………………

Figure 4.4 Test-pattern for Agilent 93000 composed of drive vector (input of DUT)

and expected vector (expected output of DUT)

 The function test is illustrated as Figure 4.5. The drive vectors and expected

vectors are described in the test-patterns for Agilent 93000 seen in Appendix B. The

response of function test is pass or fail. Pass means the all measured output of DUT is

identical to the expected vectors (post-simulation output). If any measured output is

different from expected vector, the response of function test is fail.

Drive Vector

 IN ENABLE RESET CLK DF
 0 0 1 1 1
 0 0 0 1 1
 0 1 0 1 1
 1 1 0 1 1
 0 1 0 1 1

DUT

OUT[26:0]
000000000000000000000000000
110001100000001011111010000
111010111101000011110101001
000111000000101001011010001
001111001000010110100000000
001110011101111111001011110

O
U

T[
2

6
:0

]
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
1

1
0

0
0

0
0

0
0

1
0

1
1

1
1

1
0

1
0

0
0

0
1

1
1

0
1

0
1

1
1

1
0

1
0

0
0

0
1

1
1

1
0

1
0

1
0

0
1

0
0

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
1

0
1

1
0

1
0

0
0

1
0

0
1

1
1

1
0

0
1

0
0

0
0

1
0

1
1

0
1

0
0

0
0

0
0

0
0

0
0

1
1

1
0

0
1

1
1

0
1

1
1

1
1

1
1

0
0

1
0

1
1

1
1

0

Expected Vector Compare

Pass/Fail

Error Memory

DUT = Device Under Test

Figure 4.5 Flow of function test

 Chapter 4: Testing and Measurement Results

~ 104 ~

4.2 Shmoo Plot

 A shmoo plot is a graphical display of the response of a chip varying over a range

of conditions and inputs. The voltage, temperature and operating frequency could be

the conditions as well as the testing result (pass or fail) could be the response for the

chip.

 The conditions of shmoo plot in my testing are the voltage (core power, VDD)

and the operating frequency, which are ranged from 1.62V to 1.98V (x-axis) and

1MHz to 100MHz (y-axis), respectively. The response of chip is pass or fail. The

shmoo plot reveals that the function of the chip is correct or not at certain voltage

(core power, VDD) and certain operating frequency.

4.2.1 OSR=128

 The shmoo plot of the chip (decimator) using bits-stream of SDM with OSR

128 as stimulus is shown in Figure 4.6.

Figure 4.6 Shmoo plot (128)

 From the above Shmoo plot, it is obvious that the requirement of operating

frequency 51.2 MHz is met even at worst case (VDD=1.62V). Besides, the circuit

could operate correctly at higher operating frequency when the core supply voltage is

increased. In the implementation process, the circuit (decimator) is designed and

guaranteed to operate correctly below 55MHz clock rate. It is consistent with the

above Shmoo plot. Furthermore, the fails around core-VDD 1.62V and operating

55MH

z

Pass

Fail

Design Requirement 51.2MHz

Overdesign to 55MHz

 Chapter 4: Testing and Measurement Results

~ 105 ~

frequency 58MHz are because the logic values of few cycles of few nodes correlated

with reset signal are uncertain and only decide to wrong logic around these VDD and

operating frequency. The circuit could operate correctly much higher than 55MHz

(90MHz at VDD=1.8V) at decimation ratio 128 except the above condition because

over designed operating frequency (input sampling-rate) is 55MHz no matter the

decimation ratio is 128 or 64. In other words, there are timing slacks for the 2
nd

, 3
rd

and 4
th

 stages at decimation ratio 128 because it lowers the sampling rate more

compared with decimation ratio 64.

 The response of pass means that expected vector (OUT) is equivalent to

measured vector (OUT). The drive vector (IN) and expected vector (OUT) are already

known and their spectrums could be depicted and shown in Figure 4.7.

Drive Vector

IN

Expected Vector

OUT

Pass
Measured Vector

OUT=

In-band

0.5 0.5

0.5/128=3.9x10-3

f=fdxfs

fs=51.2MHz fs=400kHz

200kHz 25.6MHz100Hz

f=fdxfs

200kHz100Hz

Figure 4.7 The spectrums for drive vector (IN) and expected vector (OUT),

decimation factor 128

 The spectrum of expected vector (output of decimator) is the in-band spectrum

of drive vector (input of decimator). Thus, the behavior of the circuit (decimator) is

correct. (The points of FFT for these two figures are the same; however, the spectrum

resolutions for these two figures over the frequency range (f=fdxfs) [100 200k] in Hz

 Chapter 4: Testing and Measurement Results

~ 106 ~

are different, which result in that the notches over the frequency range (f=fdxfs) [10k

100k] in Hz are a little different.)

 The spectrums of decimator input and output over the frequency range [100

25.6M] are shown in Figure 4.8.

fs=51.2MHz

fs=400kHz

fs/2=200kHz

25.6MHz

25.6MHz

fs/2=200kHz

fs=400kHz

fs=51.2MHz

Figure 4.8 Spectrums of decimator input and output over the frequency range [100Hz

25.6MHz] (128)

 Chapter 4: Testing and Measurement Results

~ 107 ~

 According to the sampling theorem, the spectrum of the signal would repeat

every sampling-frequency (fs). Thus, the spectrum of decimator output, where the fs

is 400 kHz (BW=200 kHz), is repeated 128-times during that frequency range [0

25.6M] (Hz).

4.2.2 OSR=64

 The shmoo plot of the chip (decimator) using bits-stream of SDM with OSR 64

as stimulus is shown in Figure 4.9.

Figure 4.9 Shmoo plot (64)

 Similarly, the above Shmoo plot reveals that the requirement of operating

frequency 51.2 MHz is met. Besides, the circuit could operate correctly at higher

operating frequency when the core supply voltage is increased. In my implementation

process, the circuit (decimator) is designed and guaranteed to operate correctly below

55MHz clock rate. It is consistent with the above Shmoo plot.

 Likewise, the response of pass means that expected vector (OUT) is equivalent

to measured vector (OUT). The drive vector (IN) and expected vector (OUT) are

already known and their spectrums could be depicted and shown in Figure 4.10.

55MH

z

Pass

Fail

Design Requirement 51.2MHz

Overdesign to 55MHz

 Chapter 4: Testing and Measurement Results

~ 108 ~

Drive Vector

IN

Expected Vector

OUT

Pass
Measured Vector

OUT=

In-band

0.5 0.5

0.5/64=7.8x10-3

f=fdxfs

fs=25.6MHz fs=400kHz

200kHz 12.8MHz100Hz

f=fdxfs

200kHz100Hz

Figure 4.10 The spectrums for drive vector (IN) and expected vector (OUT),

decimation factor 64

 The spectrum of expected vector (output of decimator) is the in-band spectrum

of drive vector (input of decimator). Thus, the behavior of the circuit (decimator) for

decimation factor 64 is correct.

 The spectrums of decimator input and output over the frequency range [100

12.8M] are shown in Figure 4.11.

 Chapter 4: Testing and Measurement Results

~ 109 ~

fs=25.6MHz

fs=400kHz

fs/2=200kHz

12.8MHz

fs/2=200kHz

fs=400kHz

fs=25.6MHz

12.8MHz

Figure 4.11 Spectrums of decimator input and output over the frequency range

[100Hz 12.8MHz] (64)

 Likewise, the spectrum of the signal would repeat every sampling-frequency

(fs). Thus, the spectrum of decimator output, where the fs is 400 kHz (BW=200 kHz),

is repeated 64-times during that frequency range [0 12.8M] (Hz).

 Chapter 4: Testing and Measurement Results

~ 110 ~

4.3 Timing diagram

 The timing diagram measured by Agilent 93000 for decimation ratio 128 and 64

are shown in Figure 4.12 and Figure 4.13, respectively. Only parts of signals and

certain periods are shown in timing-diagram because the signals are shown as

time-domain waveforms (i.e., output signals not group into bus to represent as logic

values) and the maximum cycles which could be shown in the timing diagram

window is 400.

Figure 4.12 Timing diagram (decimation ratio 128) plotted by Agilent 93000

 From the above figure, the outputs remain constant for 128 clock cycles due to

decimation ratio 128. The measured outputs are compared with expected outputs each

cycle; however, the outputs are fetched one time every 128 clock cycles (i.e., one

sample output every 128 clock cycles due to decimation ratio 128).

 Chapter 4: Testing and Measurement Results

~ 111 ~

Figure 4.13 Timing diagram (decimation ratio 64) plotted by Agilent 93000

 Likewise, the outputs remain constant for 64 clock cycles due to decimation

ratio 64. The measured outputs are compared with expected outputs each cycle;

however, the outputs are fetched one time every 64 clock cycles (i.e., one sample

output every 64 clock cycles due to decimation ratio 64).

4.4 Measured Power

 The measured operating current and corresponding power consumption are

summarized in Table 4.2 below.

Table 4.2 Measured power consumption

 Decimation ratio=128 Decimation ratio=64

Operating frequency=50MHz

Minimum operating current

Core VDD (1.8V)
8.71mA (15.678mW) 16.6mA (29.88mW)

Maximum operating current

Core VDD (1.8V)
9.34mA (16.812mW) 17.2mA (30.96mW)

Average operating current

Core VDD (1.8V)
9.28mA (16.7mW) 17.0mA (30.6mW)

Operating current

IO VDD (3.3V)
924uA (3.05mW) 1.63mA (5.4mW)

 Chapter 4: Testing and Measurement Results

~ 112 ~

 The average operating currents are 9.28mA and 17.0mA at operating frequency

50MHz and core-VDD 1.8V for decimation ratio 128 and 64, respectively. Thus, the

average power is 16.7mW and 30.6mW at operating frequency 50MHz and core-VDD

1.8V for decimation ratio 128 and 64, respectively. The measured power

approximates to the simulation power. (The measured power is slightly smaller than

the simulation power because the measured operating current is instant operating

current and the simulation current is the average instant operating current which

includes normal operating current and peak operating current.)

 From the above table, the operating currents of IO power supply are 0.924mA

and 1.63mA at operating frequency 50MHz and IO-VDD 3.3V for decimation ratio

128 and 64, respectively. Thus, the IO power is 3.05mW and 5.4mW for decimation

ratio 128 and 64, respectively.

4.5 CHIP Summary

 The information of chip is summarized in Table 4.3 below.

Table 4.3 Chip summary

Decimator

Process TSMC 0.18um

Package LCC68 (only used 56 pads)

Input pad 5

Output Pad 27

Core Power 4 pairs

IO Power 8 pairs

Die area 1810x1810 um
2

Core area 805x805 um
2

CoreVDD 1.8V

IOVDD 3.3V

Decimation ratio 128 and 64

Designed operating frequency 51.2MHz

Signal band-width 200kHz (400kHz only for df=64)

Power consumption @50MHz (df=128) 16.7mW

Power consumption @50MHz (df=64) 30.6mW

 Chapter 4: Testing and Measurement Results

~ 113 ~

 The decimator is fabricated in TSMC 0.18um process. The package type of the

chip (decimator) is LCC68 and only 56 pads (pins) with 4-pair core power and 8-pair

IO power are used. The silicon area of the entire die is 1810x1810 um
2
 and only

805x805 um
2
 is the active area (core area). The core power and IO power of the

process are 1.8V and 3.3V, respectively. The decimator is designed to operate at 51.2

MHz input sampling-rate with decimation ratios 128 and 64 so as to preserve the

signal bandwidth 200 kHz. The measured power consumption is 16.7mW and

30.6mW at input sampling-rate 50MHz for decimation ratio 128 and 64, respectively.

 Chapter 5: Conclusions

~ 114 ~

 CHAPTER

 5

Conclusions

The decimator for programmable oversampling ratio sigma-delta A/D converters

is designed and implemented. The critical component of decimator is the high order

FIR filter, which govern the most silicon area and power. The proposed folded

architecture of decimation FIR filter based on transposed-form using polyphase

decomposition is suitable for high order FIR filter to reduce silicon area because the

high order folded FIR filter requires more register (the number of adders and

multipliers are still invariant for higher order folded FIR filters).

The main advantage of the proposed architecture is smaller area (half registers;

-24% for 126
th

-order FIR filter) compared with folded architecture in direct-form

(Figure 3.9) [12][13][14][15]. In addition, my architecture reveals the smaller peak

power, short critical path and latency. Furthermore, the area reduction percentage of

my folded architecture will increase compared with folded architecture in direct-form

when the scan chain is inserted to test the circuit due to the half register requirement.

 Besides, the advantage of my proposed folded architecture is much less than half

power of folded architecture in transposed-form (Figure 3.14) [18]. My design

overheads compared with circuit mentioned in [18] are one adder, multiplexers and

control circuits. However the silicon area required by transposed-form folding [18] is

 Chapter 5: Conclusions

~ 115 ~

not definitely smaller than silicon area required by folded architecture in direct-form

and my folded architecture because of the twice operating frequency requirement for

transposed-form folding [18] to maintain the throughput (output sampling-rate) (as a

result of trading silicon area for speed).

For power concern, the implementation of FIR filters must focus on the unfolded

structures, which is a correct direction to lower the power consumption of FIR filters;

however, for cost (area) concern, it must focus on folded architecture, which could

reduce the functional units most especially for high order FIR filter. In the folded

architectures of decimation FIR filters, my folded architecture is a good choice to

implement the decimation FIR filters and to obtain area reduction (compared with

direct-folding [12][13][14][15]) without much power overhead (transposed-folding)

[18].

~ 116 ~

Appendix A: Filter Coefficients

For the 2
nd

 and 3
rd

 stage:

1-bit 19-bit

Table A.1 Coefficients of the 2
nd

-stage FIR filter

coefficients decimal value binary value (2’s complement)

h0, h18 0.00035667419434 00000000000010111011

h1, h17 0.00147438049316 00000000001100000101

h2, h16 -0.00535202026367 11111111010100001010

h3, h15 -0.00497627258301 11111111010111001111

h4, h14 0.02363014221191 00000011000001100101

h5, h13 0.01024436950684 00000001010011111011

h6, h12 -0.07559013366699 11110110010100110001

h7, h11 -0.01518249511719 11111110000011101000

h8, h10 0.30679893493652 00100111010001010011

h9 0.51721763610840 01000010001101000011

Table A.2 Coefficients of the 3
rd

-stage FIR filter

coefficients decimal value binary value

h0, h126 0.00014495849609 00000000000001001100

h1, h125 -0.00031471252441 11111111111101011011

h2, h124 0.00013351440430 00000000000001000110

h3, h123 0.00019645690918 00000000000001100111

h4, h122 -0.00015640258789 11111111111110101110

h5, h121 -0.00025367736816 11111111111101111011

h6, h120 0.00020980834961 00000000000001101110

h7, h119 0.00031471252441 00000000000010100101

h8, h118 -0.00030517578125 11111111111101100000

h9, h117 -0.00039291381836 11111111111100110010

h10, h116 0.00041961669922 00000000000011011100

h11, h115 0.00047683715820 00000000000011111010

h12, h114 -0.00056838989258 11111111111011010110

h13, h113 -0.00057411193848 11111111111011010011

h14, h112 0.00074768066406 00000000000110001000

h15, h111 0.00067710876465 00000000000101100011

h16, h110 -0.00096511840820 11111111111000000110

.

~ 117 ~

h17, h109 -0.00079154968262 11111111111001100001

h18, h108 0.00122451782227 00000000001010000010

h19, h107 0.00091361999512 00000000000111011111

h20, h106 -0.00153350830078 11111111110011011100

h21, h105 -0.00104522705078 11111111110111011100

h22, h104 0.00189590454102 00000000001111100010

h23, h103 0.00118446350098 00000000001001101101

h24, h102 -0.00231933593750 11111111101101000000

h25, h101 -0.00132942199707 11111111110101000111

h26, h100 0.00281143188477 00000000010111000010

h27, h99 0.00148200988770 00000000001100001001

h28, h98 -0.00337982177734 11111111100100010100

h29, h97 -0.00163650512695 11111111110010100110

h30, h96 0.00403785705566 00000000100001000101

h31, h95 0.00179672241211 00000000001110101110

h32, h94 -0.00479698181152 11111111011000101101

h33, h93 -0.00195884704590 11111111101111111101

h34, h92 0.00567054748535 00000000101110011101

h35, h91 0.00211906433105 00000000010001010111

h36, h90 -0.00667953491211 11111111001001010010

h37, h89 -0.00227928161621 11111111101101010101

h38, h88 0.00785064697266 00000001000000010100

h39, h87 0.00243759155273 00000000010011111110

h40, h86 -0.00921440124512 11111110110100100001

h41, h85 -0.00259017944336 11111111101010110010

h42, h84 0.01082038879395 00000001011000101001

h43, h83 0.00273704528809 00000000010110011011

h44, h82 -0.01273155212402 11111110010111101101

h45, h81 -0.00287628173828 11111111101000011100

h46, h80 0.01504516601563 00000001111011010000

h47, h79 0.00300407409668 00000000011000100111

h48, h78 -0.01791000366211 11111101101101010010

h49, h77 -0.00312232971191 11111111100110011011

h50, h76 0.02156448364258 00000010110000101010

h51, h75 0.00322723388672 00000000011010011100

h52, h74 -0.02642822265625 11111100100111100000

h53, h73 -0.00331878662109 11111111100100110100

~ 118 ~

h54, h72 0.03329086303711 00000100010000101110

h55, h71 0.00339508056641 00000000011011110100

h56, h70 -0.04384040832520 11111010011000110111

h57, h69 -0.00345611572266 11111111100011101100

h58, h68 0.06248664855957 00000111111111111001

h59, h67 0.00349998474121 00000000011100101011

h60, h66 -0.10539436340332 11110010100000100111

h61, h65 -0.00352478027344 11111111100011001000

h62, h64 0.31807327270508 00101000101101101010

h63 0.50353431701660 01000000011100111101

For the 4
th

 stage:

2-bit 18-bit

Table A.3 Coefficients of the 4
th

-stage compensation FIR filter

coefficients decimal value binary value

h0, h40 0.00000762939453 00000000000000000010

h1, h39 -0.00000762939453 11111111111111111110

h2, h38 0.00000762939453 00000000000000000010

h3, h37 -0.00001144409180 11111111111111111101

h4, h36 0.00001907348633 00000000000000000101

h5, h35 -0.00003051757813 11111111111111111000

h6, h34 0.00004196166992 00000000000000001011

h7, h33 -0.00005722045898 11111111111111110001

h8, h32 0.00008392333984 00000000000000010110

h9, h31 -0.00011444091797 11111111111111100010

h10, h30 0.00016021728516 00000000000000101010

h11, h29 -0.00022506713867 11111111111111000101

h12, h28 0.00031661987305 00000000000001010011

h13, h27 -0.00045394897461 11111111111110001001

h14, h26 0.00066757202148 00000000000010101111

h15, h25 -0.00102996826172 11111111111011110010

h16, h24 0.00168609619141 00000000000110111010

h17, h23 -0.00311279296875 11111111110011010000

h18, h22 0.00709533691406 00000000011101000100

h19, h21 -0.02724456787109 11111110010000011010

h20 1.04457473754883 01000010110110100101

.

~ 119 ~

Appendix B: Test-Patterns for Agilent 93000

 The driving signals (input of chip) generated by Agilent 93000 are defined by the

vectors which consist of the state characters. Each state character of a signal

corresponds to a specific waveform. For example, state character 1 of pin CLK

represents the waveform: forces logic 0 at the beginning of the cycle, forces logic 1 at

the 1/4 cycle delay from the beginning of the cycle and forces logic 0 at the 3/4 cycle

delay from the beginning of the cycle. Corresponding waveforms of state characters

of all signals in my design are shown in Figure B.1. For output pins, the time to fetch

output could also be defined by Agilent 93000. In my case, the outputs are fetched

and compared at the edge of 3/4 cycle.

IN

ENABLE

RESET

CLK

DF

OUT

0 1

0

0

0

1

1

L H

1 cycle period 1 cycle period

1

1

t1 t2 t3 t1 t2 t3

Figure B.1 Corresponding waveforms of state characters of signals in my design

The meanings of the above figure are described below:

PINS Pin_Name

State character Action: Timing (delay from beginning) …..

Drive Action in Pins

F00 force logic 0

F10 force logic 1

Compare Action in Pins

L compare to low (logic 0)

H compare to high (logic 1)

X don’t care

~ 120 ~

Parts of test vectors for SDM with OSR 128 and corresponding

post-layout-simulation are shown in Figure B.2 and Figure B.3.

Figure B.2 Parts of test vectors for SDM with OSR 128

L: compare to logic low

H: compare to logic high

X: don’t care

Testing cycles=42003

Output remain constant

for 128 cycles

Compared with postsim result

Drive Vector

Expected Vector

~ 121 ~

in: 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0…

enable: 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1…

reset: 1 0…

clk: 1…

df: 1…

out[26:0]: 0 …

(i.e., out[26], out[25]...... are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period)

LLH_HHHL_LLHL_HHLH_LHHH_LLHL_LLLL

LLH_HHLH_LLLL_HHLL_HHHL_HLHL_LHLH

in, enable, reset, clk and df are 1, 0, 0, 1, 1 during the period.

out[26:0] are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period shown in above figure.

Figure B.3 Corresponding post-layout-simulation of parts’ test vectors for SDM with

OSR 128

~ 122 ~

 From Figure B.2 and Figure B.3, the parts of cycles reveal that the test patterns

for Agilent 93000 correspond to the post-layout-simulation. In this case, the expected

vectors (OUT) are LLH_HHHL_LLHL_HHLH_LHHH_LLHL_LLLL at the 15835
th

cycle and LLH_HHLH_LLLL_HHLL_HHHL_HLHL_LHLH at the 15850
th

 cycle,

which correspond to (00)1_1110_0010_1101_0111_0010_0000 and

(00)1_1101_0000_1100_1110_1010_0101 of simulation output (out[26:0]). The

corresponding timing diagram of the chip under test is shown in Figure B.4. Also the

corresponding post-layout-simulation diagram is shown in Figure B.5.

Figure B.4 The corresponding timing diagram measured by Agilent 93000 (128)

Note that the measured outputs are equal to the simulation outputs.

Figure B.5 The corresponding post-layout-simulation (128)

~ 123 ~

Parts of test vectors for SDM with OSR 64 and corresponding

post-layout-simulation are shown in Figure B.6 and Figure B.7.

Figure B.6 Parts of test vectors for SDM with OSR 64

L: compare to logic low

H: compare to logic high

X: don’t care

Testing cycles=21003

Output remain constant

for 64 cycles

Compared with postsim result

Drive Vector

Expected Vector

~ 124 ~

in: 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1…

enable: 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1…

reset: 1 0…

clk: 1…

df: 0…

out[26:0]: 0…

(i.e., out[26], out[25]...... are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period)

LLH_HHLH_LHLH_LLHH_LHHL_LLHL_LHLL

LLL_HLHH_HLHL_LHHH_LHLL_HLHL_HLHL

in, enable, reset, clk and df are 1, 0, 0, 1, 0 during the period.

out[26:0] are all LLLLLLLLLLLLLLLLLLLLLLLLLLL during the period shown in above figure.

Figure B.7 Corresponding post-layout-simulation of parts’ test vectors for SDM with

OSR 64

~ 125 ~

From Figure B.6 and Figure B.7, the parts of cycles reveal that the test patterns

for Agilent 93000 correspond to the post-layout-simulation. In this case, the expected

vectors (OUT) are LLH_HHLH_LHLH_LLHH_LHHL_LLHL_LHLL at the 8490
th

cycle and LLL_HLHH_HLHL_LHHH_LHLL_HLHL_HLHL at the 8505
th

 cycle,

which correspond to (00)1_1101_0101_0011_0110_0010_0100 and

(000)_1011_1010_0111_0100_1010_1010 of simulation output (out[26:0]). The

corresponding timing diagram of the chip under test is shown in Figure B.8. Also the

corresponding post-layout-simulation diagram is shown in Figure B.9.

Figure B.8 The corresponding timing diagram measured by Agilent 93000 (64)

Note that the measured outputs are equal to the simulation outputs.

Figure B.9 The corresponding post-layout-simulation (64)

~ 126 ~

References

[1] Pervez M. Aziz, Henrik V. Sorensen and Jan Van der Spiegel, ―An overview of

sigma-delta converters,‖ IEEE Signal Processing Magazine, vol. 13, Issue 1,

pp.61-84, Jan 1996.

[2] Angelo Nagari, Alessandro Mecchia, Ermes Viani, Sergio Pernici, Pierangelo

Confalonieri, and Germano Nicollini, ‖A 2.7-V 11.8-mW Baseband ADC With

72-dB Dynamic Range for GSM Applications,‖ IEEE Journal of Solid-State

Circuits, vol. 35, no. 6 June 2000.

[3] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck, ―Discrete-Time

Signal Processing,‖ 2
nd

 Edition, Prentice Hall, Upper Saddle River, NJ, 1999.

[4] Salas, Hille and Etgen, ―Calculus: one and several variables,‖ 8
th

 Edition, Wiley,

NY, 1999.

[5] R. E. Crochiere and L. R. Rabiner, ―Optimum FIR digital filter implementations

for decimation, interpolation, and narrowband filtering,‖ IEEE Trans. Acoust.,

Speech, Signal Process., vol. ASSP-23, pp. 444–456, 1975.

[6] Eugene B. Hogenauer, ―An economical class of digital filters for decimation and

interpolation,‖ IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. assp-29, no.2, pp. 155-162, April 1981.

[7] J. C. Candy, ―Decimation for sigma delta modulation,‖ IEEE Transactions on

Communications, vol, com-34, pp. 72–76, Jan. 1986.

[8] Letizia Lo Presti, ―Efficient modified-sinc filters for sigma-delta A/D converters,‖

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. 47, no. 11, pp. 1204–1213, Nov. 2000.

[9] Massimiliano Laddomada, ―Comb-Based Decimation Filters for ΣΔ A/D

Converters: Novel Schemes and Comparisons,‖ IEEE Transactions on Signal

Processing, vol. 55, Issue 5, Part 1, pp.1769 – 1779, May 2007.

[10] Massimiliano Laddomada, ―Generalized Comb Decimation Filters for ΣΔ A/D

Converters: Analysis and Design,‖ IEEE Transactions on Circuits and

Systems—I: Regular Papers, vol. 54, no. 5, pp.994-1005, May 2007.

[11] Yonghong Gao, Lihong Jia, Jouni Isoaho and Hannu Tenhunen, ―A Comparison

Design of Comb Decimators for Sigma-Delta Analog-to-Digital Converters,‖

Analog Integrated Circuits and Signal Processing, 22, pp.51-60, 1999.

[12] L. Fujcik, A. S. Kuncheva, T. Mougel, and R. Vrba, ―New VHDL Design of

Decimation Filter for Sigma-Delta Modulator,‖ IEEE Asian Conference on

Sensors and the International Conference on new Techniques in Pharmaceutical

and Biomedical Research, pp. 204-207, Sept. 2005.

[13] Adel Ghazel, Lirida Naviner and Khaled Grati, ―On Design and Implementation

~ 127 ~

of a Decimation Filter for Multistandard Wireless Transceivers,‖ IEEE

Transactions on Wireless Communications, vol. 1, no. 4, pp. 558-562, October

2002.

[14] Lirida A. de B. Naviner and Jean-Franc¸ois Naviner, ―On Customized

Decimation Filter Implementation,‖ IEEE International Conference on Industrial

Technology, vol. 1, pp. 304-309, Dec. 8-10, 2004.

[15] Xin He, Yihe Sun, ―VLSI Implementation of a Decimation Filter for

Sigma-Delta AD Converters,‖ IEEE Region 10 Conference TENCON, pp.1-4,

Nov. 2006.

[16] K. Lin et al., ―Digital filters for high performance audio delta–sigma

analog-to-digital and digital-to-analog conversions,‖ in Proc. Int. Conf. Signal

Processing, Oct. 1996.

[17] Prabir C. Maulik, Mandeep S. Chadha, Member, Wai L. Lee, and Philip J.

Crawley, ―A 16-Bit 250-kHz Delta–Sigma Modulator and Decimation Filter,‖

IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 458-467, April 2000.

[18] Paul Bougas, Paraskevas Kalivas, Andreas Tsirikos, and Kiamal Z. Pekmestzi,

"Pipelined Array-Based FIR Filter Folding," IEEE Transactions On Circuits and

Systems—i: Regular Papers, vol. 52, no. 1,pp.108-118, January 2005.

[19] http://www.cic.org.tw

[20] Agilent Technoliges, ―Agilent 93000 Soc Series User Traing Part I,‖ October

2004.

http://www.cic.org.tw/

	01Title
	02Abstract
	03Acknowledgments
	04Table of Contents
	05ListofTableFigureSymbol
	06Chapter1_Introduction
	07Chapter2_Decimator Architecture and Design
	08Chapter3_Decimator Implementation
	09Chapter4_Testing and Measurement Results
	10Chapter5_Conclusion
	11Appendix
	12References

