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摘要 

 
隨著科技的發展與進步，在現今的生活中應用於多媒體運算之可攜式嵌入式

系統的重要性與日俱增。然而由於傳統運算模型中之記憶體存取模型與處理核心

和記憶體間的效能間隙落差，導致多媒體運算無法有效率的對應並且實現在傳統

的處理器架構模型上。另外在硬體實現的系統架構上亦是產生效能無法提升的重

要因素之ㄧ。因此所提出的多媒體處理架構採用史丹佛大學提出之串流處理模型

配合上多種硬體實現的系統架構來克服傳統處理器架構所造成效率低落。並且提

供一具高平行度和有效率運算速率的多媒體運算平台。 

在本論文中，設計並下線製作一個與 AMBA 介面相容之多媒體處理單元作

為構成具多齊質性處理核心之多媒體串流處理架構的核心運算單元。除此之外亦

設計實做浮點運算處理器，利用此浮點運算處理器提供此一與 AMBA 介面相容

之多媒體處理單元有效率的浮點運算處理能力，使其可以更廣泛的應用於各種多

媒體處理運算中。透過不同運算單元與架構間的效能評估與比較，證實了僅需要
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些許的硬體成本即可提供更有效率且更廣泛的多媒體運算處理能力。另外此效能

評估與比較亦證實了具多齊質性處理核心之多媒體串流處理架構在擁有不同數

目之處理核心時，在合理的硬體成本之下其效能可以有效的提升。 
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Abstract 
As the evolution of information technology, embedded systems with media 

applications for portable devices are more and more important in modern life.  
However, the conventional processor architecture does not handle the processing 
requirement of media applications very well since the characteristics of media 
applications and other inheritance disability from conventional microprocessor 
architecture’s memory accessing model and processor-memory performance gap. 

Recent research shows that the stream processing model and stream processor 
architecture are suitable for media applications. However, software implementations 
for a streaming processor are not a trivial job since it evolves a lot of hand and manual 
optimization in memory exchange and tread deployment to different processor 
element or functional unit. 

In this thesis, a processing element for reconfigurable homogenous ALU cluster 
and its Advanced Microcontroller Bus Architecture (AMBA) platform interface has 
been designed and implemented. The proposed design integrated platform based 
design methodology and stream processing model to overcome the challenge of media 
applications. The proposed homogenous ALU cluster is utilized as a reconfigurable 
hardware accelerator for specific and different functions in media applications. The 
chosen AMBA interface provides an integration platform for embedded operating 
system and programming development environment. The combination of these 
methodologies provides a turnkey solution for media applications development in 
modern portable devices. 
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The ALU cluster IP with AMBA interface is taped out using TSMC 0.15um 
technology and operates at 100MHz. The chip area is 3.9*3.9 mm2 and gate count is 
0.2 million. A 4-layer FRP printed circuit board is designed and fabricated as the 
daughter card for system integration. The daughter card carries the designed chip is 
integrated to ARM versatile platform board as the system integration and application 
development environment. In addition, a floating point operation unit for ALU cluster 
IP is proposed and implemented and it will be integrated with ALU cluster IP as the 
future revision of the hardware accelerator. The hard macro of the floating point unit 
operates at 75MHz, its area and gate count is 0.415mm2 and 0.02 million respectively. 
The performance evaluation and comparison in floating point operation benchmark 
between different proposed architectures are presented. Media applications can be 
developed for proposed reconfigurable homogenous processing elements in the future 
using the chips and systems build in this thesis. 
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CHAPTER 1 

Introduction 

 
1.1 Motivation 

Portable systems are more and more important. They become essentials of our 
life. Furthermore, media applications are becoming a dominant portion of processing 
for portable entertainment system in modern life.  

Multimedia processing applications are characterized by large available 
parallelism, little data reuse and high computation to memory access ratio. Large 
available parallelism due to each data stream is independent to others, so each stream 
is possible to be operated concurrently. The reason for the characteristic of little data 
reuse is that typical data reference in media applications require a single read and 
write per global data element. High computation to memory access ratio is needed 
because of large amount of data operations [1 - 4]. Thus these characteristics poorly 
match conventional general purpose processor architecture. The conventional 
programming model and processor architecture dealt with media applications 
traditionally are not efficient because of the characteristics of media applications, its 
memory accessing model and processor-memory performance gap [5]. 

In addition to programming models, system architectures used to implement the 
whole media processing system are also key factors to affect the efficiency of 
processing. System architectures such as application specific integrated circuits 
(ASIC), platform-based architecture and reconfigurable architecture are used to 
implement the hardware for media applications. However, these architectures for 
media processing have their own drawbacks separately. They suffer from lacking of 
flexibility, programmability, and inefficient communication bandwidth. The issues of 
programming model and system architecture mentioned above limit the processing 
requirement needed for modern media application in mobile system.  
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However, streaming programming model has been suggested as an efficient 
programming model for both media applications and base-band architecture for 
software defined radios [6] [7]. In order to build next generation media processing 
system, advantages from different system architectures are integrated. The pros of 
reconfigurable architecture and platform-based architecture will overcome the 
drawbacks of using above-mentioned architecture separately.  

This thesis presented a processing element for reconfigurable homogenous ALU 
cluster and its Advanced Microcontroller Bus Architecture (AMBA) platform 
interface has been designed and implemented. The proposed design provides enough 
processing requirement for media applications and utilized as a reconfigurable 
hardware accelerator for specific and different functions in media applications. 
AMBA AHB interface in this design provides an integration platform for embedded 
operating system and programming development environment. The combination of 
these design methodologies will be a suitable solution in development applications for 
portable devices. 

All design and verification of the proposed architecture are finished with 
cell-based design flow. The chip is taped out using TSMC 0.15um CMOS technology 
and operates at 100MHz. The die size and gate count are 15.2 mm2 and 0.2 million 
respectively. Utilize COB (PGA256) as package material. The pad number of 
proposed chip is 130. The designed chip with daughter card will be integrated with 
ARM926EJ-S versatile baseboard to form a media streaming system and as the 
development environment for applications.  

Furthermore, a floating point operation unit is critical in the majority of media 
application and makes the applications efficient. A floating point operation unit for 
ALU cluster IP is proposed and implemented in this thesis as a modified version of 
the hardware accelerator. The hard macro of three different type floating point unit 
operates at 75MHz, 25MHz and 25MHz, its area and gate count is 0.415 mm2, 
0.529mm2 , 0.396mm2 and 0.02million, 0.03 million, 0.02 million respectively. Then 
the performance evaluation and comparison between two different target architectures 
are presented and shows the results that the floating point unit is efficient and critical 
for the proposed architecture.  
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1.2 Organization 

In the beginning of Chapter 2, the background and challenges about this thesis 
are introduced. Issues of programming models and system architectures for media 
applications are discussed.  

Next come the details of the development roadmap and the proposed design is 
described. The development roadmap and micro-architectures of an ALU cluster, an 
ALU cluster Intellectual Property and Floating point units for the ALU cluster IP and 
the overview of the AMBA AHB protocol are described in Chapter 3.  

In Chapter 4, implementation results of proposed designs are described. The 
verification and testing results are also introduced in this chapter. Then the 
performance evaluation and comparison are discussed in the last part of the chapter. In 
the last chapter of this thesis, Chapter 5, the conclusion and future work are 
summarized.  
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CHAPTER 2 

Background and Challenges 

This chapter begins with the discussion of conventional programming model for 
media application. Therefore two kinds of programming model are used to deal with 
data while the comparison between programming models will be introduced in next 
chapter. Meanwhile, different system architectures of implementing the design are 
presented and discussed. These issues discussed of the programming models and 
system architectures are the background of current research. This thesis is motivated 
from these issues of the background.  

2.1 Issues of Programming Model 

Traditionally, the media applications are processed by conventional 
programming model implemented in conventional general purpose processor 
architecture. As shown in Fig 2.1, conventional programming model read data from 
memory system for computation and write results back into memory system. The 
memory system of this processing model depends on caches, which is optimized for 
latency and data reuse. Remind the characteristics of media processing applications. 
First, every stream is read exactly once, resulting in poor cache performance. Second, 
operating one data element is largely independent to others. It results in a large 
amount of data parallelism and high latency tolerance. Finally it can not support high 
ratio of computation to memory access. Above-mentioned issues show that large 
available parallelism, little data reuse and high computation to memory access ratio 
are cramped by the attributes of caches.  

Another clincher is memory-processor communication bandwidth gap. As shown 
in Fig 2.2, the processor-memory performance gap reveals that the performance 
growth of memory is much slower than processor [8]. The phenomenon will cause 
more latency for memory access and communication between processor and memory 
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is more critical. And traditional memory system utilizes global structures to provide 
data bandwidth. It means that it cannot scale to multiple arithmetic logic units for high 
performance rates in media applications. 

 

Fig 2.1 Conventional Programming Model 
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Fig 2.2 Processor-Memory Performance Gap 
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2.2 Issues of System Architecture 

Generally speaking, there are many different system architectures when 
implementing a design. Three main system architectures of design methodology, such 
as application specified integrated circuit(ASIC), platform-based architecture and 
reconfigurable architecture will be briefly introduced in this section on the basis of 
time to market demands, programmability, flexibility and physical area, etc.  
Following, the pros and cons of these system architectures are discussed. [9 - 11] 

The application specified integrated circuit is the most commonly used in these 
architectures. The ASIC design principle is shown in Fig 2.3. The chip 
implementation could be finished very quickly as long as the well-defined 
specification is given. Overall function and performance, such like area, power 
consumption and operating frequency, are optimized for the specification required. 
Thus long design cycles which include circuit design and the manufacture increase the 
investment risk. And design verifications and corrections also take a large amount of 
design effort. It raises investment risk also. In addition, the waste of logic resources 
and power dissipation for non-active hardware is another issue for the design 
methodology. Besides, let us consider the situation that the specifications are changed. 
In this situation, it reveals the lack of flexibility for ASIC design. It also shows the 
lack of programmability and non-reusable in the architecture.  

 

Fig 2.3 Application Specified Integrated Circuit Design 
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The platform-based architecture includes a processor, memory, communication 
bus and multiple functional hardware accelerators. It gains more flexibility than ASIC 
architecture from reusing existence intellectual property (IP), such as digital signal 
processor (DSP), baseband codec, audio applications accelerator and other functional 
blocks. The example of platform-based architecture is shown in Fig 2.4. Different IP 
blocks are added or removed to meet different application. The platform-based 
architecture provides a common communication bus for convenience to integrated 
different IP macros quickly. Different systems will be set up as fast as possible. It 
reduces the design and re-develops effort significantly. One more attractive thing is 
that these platforms have been set up with a developing baseboard. Many common IP 
and peripherals on the baseboard will benefit to fast prototyping. The existent OS of 
the baseboard can reduce the effort of connecting the real applications to development 
design. Current research such as [12], [13] and [14] are listed in the reference.  

Thus there are some drawbacks in this architecture. The interface communicate 
each functional macro increases the overhead of whole system. Besides, the memory 
bandwidth is limited by the communication bus. These factors decrease the efficiency 
seriously. In the meantime, the power consumption should be increased when more IP 
blocks are included. The idle IP macros waste unnecessary power dissipation, too. As 
discussed above, the platform-based architecture is more flexible and programmable 
than ASIC design. Thus this architecture is still a task-oriented system. It can not be 
applied to any application using the same framework.  

 
Fig 2.4 An Example of Platform-Based Architecture 
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The reconfigurable architecture, the third design methodology, is similar to 
platform-based architecture. As shown in Fig 2.5, there are multiple general 
processing elements in this architecture. These processing elements, or ALU cluster IP 
blocks, play the key role of operating data stream. A system of reconfigurable 
architecture is built up with a micro controller, a bus or a network on chip system and 
a well-hierarchical memory system. One advantage of this kind of architecture is the 
usages of hardware accelerator IP are reconfigurable. It provides a significant 
flexibility and programmability for different applications. Another advantage is the 
applications can be operated concurrently. It means that it provides the ability for 
parallel operation. Nevertheless, there exist some potential drawbacks in using the 
design methodology. First, without power management system the power dissipation 
of unused process elements can not be saved. Second, the reconfigurable architecture 
could not match the above-introduced characteristic very well since the bandwidth of 
communication bus is insufficient and data transfer bottleneck encounters between 
process elements and memory system. The efficient memory hierarchy system is 
needed to solve the performance degradation. Current research such as [15], [16] and 
[17] are referenced in the bibliography. 

 Fig 2.5 A Diagram of Reconfigurable Architecture  
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In conclusion, one of these system architectures can be selected to implement the 
design trading off between pros and cons addressed above. These pros and cons 
corresponding to characteristics of media applications are summarized in the Table 2.1 
listed below. Thus, any one of them adopted alone suffers from some drawbacks and 
can not meet the application of media processing very well. Consequently, the 
proposed design will be addressed and discussed in later section. It must resolves 
these issues. 

 
 
 
 

Table 2.1 System Architecture vs. media application 
  

ASIC Platform-Based 
Architecture 

Reconfigurable 
Architecture 

System 
Architecture for

Media 
Application 

◆ Lack of hardware 
flexibility 

◆ Lack of 
programmability 

◆ Inefficient Memory
bandwidth 

◆ Waste of logic 
resources and 
power to feed 
non-active  
hardware 

◆ Memory bandwidth 
will be limited by 
bus 

◆ Immediate data 
transfer will be 
inefficiency 

◆ Overhead of bus 
interface 

◆ Flexibility and 
programmability, 
but task oriented 

◆ Flexibility and 
programmability 

◆ Parallelism 

◆ Data transfer 
bottleneck between 
process elements 
and memory 
system 

◆ Need to solve 
insufficient 
memory bandwidth 
to expose locality 
with little global 
data reuse 
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CHAPTER 3 

Development Roadmap and Proposed Design 

Base on the previous two chapters, the background, challenges are addressed. 
Then the developmental roadmap and the proposed design of this thesis will discussed 
in this chapter.  

The first section is the developmental roadmap of this thesis. It introduces the 
motivation to propose these designs after the issues of Chapter 2 are discussed. 
Afterwards the streaming programming model and developmental roadmap overcome 
the issues mentioned above are introduced.  

The second section is the demonstration of previous design of ALU cluster. 
Review the architecture of the ALU cluster, the key processing element of ALU 
cluster intellectual property. Through testing the manufactured chip, the results 
confirm the correctness of functionality and the architecture is not only feasible but 
also efficient for media applications. The latter part of the description of this 
paragraph will be introduced clearly in next chapter.  

The third part of this chapter is the description of the designed ALU cluster 
intellectual property. This design is an integration of the improved ALU cluster and 
the AMBA AHB slave interface. The improved ALU cluster is based on the ALU 
cluster discussed in previous section. The detail architectures and overview of AMBA 
AHB slave protocol are introduced in this section.  

Eventually the forth section of this chapter is the description of the designed 
floating point operation units for ALU cluster IP. It will bring up an idea to integrate 
the floating point unit in the ALU cluster IP. The design consideration of the floating 
point units are described in the section. The details of the design are summarized.  
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3.1 Developmental Roadmap 

3.1.1  Motivation 

Issues of programming models and system architectures encountered in modern 
media processing system are addressed in Section 2.1 and Section 2.2. These 
drawbacks make the media applications handled inefficiently. The situation is more 
and more serious when great deals of media applications are applied in portable 
systems.  

The media streaming architecture with homogeneous processor cores, a turnkey 
solution for media applications, is proposed in this thesis. This system intends to 
provide several cons of processing data stream. First it provides highly parallel 
computing ability so that multiple processing elements are needed. Performance 
improvement of media applications is achieved because of exploiting the large 
available parallelism inherence of media process. Subsequently, the communication 
bandwidth bottleneck discussed above has to solve. An efficient hierarchy of memory 
system is needed to expose the characteristic of little global data reuse and high 
computation to memory access ratio in media applications. Therefore, a 
reconfigurable hardware accelerator is built as a processing element to form the media 
streaming architecture with homogeneous processor cores in this thesis.  

3.1.2 Roadmap  

As mentioned above in the previous chapter, the conventional programming 
model is not suitable for these applications. So the stream programming model is 
adopted in this thesis. We will discuss the stream programming model below. 
Following the developmental roadmap including system architecture is described in 
this chapter later.  

3.1.2.1 Stream Programming Model 

In the stream programming model, data is aligned in order as a stream. Streams 
are arbitrary data type. Operations are applied on entire streams. These operations 
perform computations, stream transfers, loads and stores etc. in the programming 
model. Nodes which carry out these operations are called kernels. They perform 
computation, such as a function, to each element of whole data streams. Kernels input 
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one or more data streams to operate and output one or more data streams as outputs. 
These kernels only operate on local data and may not make arbitrary memory 
references.  

After introducing streams, operations and kernels in the stream programming 
model, the structure of the model are depicted in Fig 3.1. As shown in the diagram, 
the stream programming model handles data by chaining operations together and 
makes data passing through kernels. Two example of dealing with applications using 
stream programming model are shown in Fig 3.2 and Fig 3.3 respectively. One is 
1024-points complex radix-2 Fast Fourier Transform (FFT), a popular operation in 
multimedia processing [18]. Another is the example of image processing, the Stereo 
Depth Extraction, commonly used in modern image and medical diagnosing system 
[3].  

 

Fig 3.1 Stream Programming model  
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 Fig 3.2 Example of 1024-points radix-2 Fast Fourier Transform  

 

 

 

 

Fig 3.3 Example of Stereo Depth Extraction  

Remind the characteristic of the conventional programming model discussed in 
Section 2.1. Comparison between the stream programming model and the 
conventional programming model, some obvious pros are revealed when expressing 
media applications in the stream programming model. Corresponding three features of 
media process such as little data reuse, high large available parallelism and 
computation to memory access ratio, Pros are described briefly below. First, multiple 
kernels exploit the inherent parallelism feature. Second, data streams produced at the 
end of one kernel will consume at the next kernel makes the programming model fit 
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the feature of little data reuse. Finally the high computation to memory access ratio 
results from the minimization global memory usage in the stream programming model. 
Features compare between these two programming models are listed in Table 3.1.  

Table 3.1 Comparison between programming models 
 Conventional Programming 

Model 
Stream Programming Model 

Large available 
parallelism 

One central processor unit Multiple kernels 

Little data reuse 
Traditional caches are 

ineffective 

Data produced at the end of 
one kernel will consume at the 

next kernel 
High 

computation to 
memory access 

ratio 

Each element reference the 
off-chip memory 

Minimize global memory 
usage 

The programming model in this thesis was adopted the stream programming 
model. Because of the features mentioned above, it is suitable for processing system 
aimed at multimedia processing applications.  

3.1.2.2 Developmental Roadmap 

The developmental roadmap proposed in this section provides a suitable solution 
to process applications to conform the requirement expected. A sketch map of 
proposed development roadmap is illustrated in Fig 3.4. In this roadmap, five steps 
are segmented to build the media streaming architecture with homogeneous processor 
cores. As illustrated in the Fig 3.4, the proposed system gains the advantages from 
platform-based architecture and reconfigurable architecture. The mixture of system 
architectures are utilized as the structure of proposed system to overcome the 
challenge of issues deriving from using these system architectures singly. And the 
whole processing system provides an efficient processing system to get over issues of 
programming models and system architectures.  
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 Fig 3.4 Development roadmap  

 

Descriptions of these five steps are introduced briefly in this section. First, the 
leftmost chip photo, implemented in UMC 0.18um CMOS technology, in Fig 3.4 is 
the prototype 1 of ALU cluster [19] [20] . This is called the first step of proposed 
developmental roadmap. The chip had been measured and verified. As a processing 
element, the measurement results demonstrate that the architecture and functionality is 
suitable and correct for the applications. 

By the right side of prototype 1, the ALU cluster IP with AMBA AHB interface, 
the prototype 2, was designed and taped out using TSMC 0.15um CMOS technology. 
The layout and die photo with package are depicted in the development roadmap 
respectively. This step verifies the designed ALU cluster IP to be suitable as a 
reconfigurable hardware accelerator in media applications. In addition to this purpose, 
the interface obeyed the AHB slave bus provides a common communication bridge 
between these ALU cluster IPs and micro-controller used to manage whole media 
streaming system. These features make the proposed prototype 2 have ability as a 
processing element to be applied in the media streaming system. It is a significant 
feature of the second step in developmental roadmap. 
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In modern multimedia applications, the floating point operations occupy a large 
percentage of the computation amount. These floating point operations stand a key 
role of performance and power consumption in whole applications. A floating point 
unit is essential in performance improvement if the budget of power consumption and 
logic resources are agreed. Consequently, an ALU cluster IP supported floating point 
operation is a requirement. As shown in the middle of Fig 3.4, an ALU cluster IP with 
floating point supported are introduced. The hard macro of floating point unit is 
designed and implemented using TSMC 0.18um CMS technology. The combinations 
of ALU cluster IP and the hard macro provides efficient computing ability to handle 
floating point operations. It is the third generation in the described developmental 
roadmap.  

Following the forth step in Fig 3.4 is discussed in this paragraph. In this step, 
system integration is preliminary started. An ALU cluster IP with compatible board 
for logic tile connector will be stacked into the RealView versatile platform baseboard 
for ARM926EJ-S [21] [22]. In this baseboard, the ALU cluster IP is verified whether 
the AHB bus interface fits the bus protocol. One ALU cluster IP stacked in the board 
are also made sure that the IP has the ability as a hardware accelerator integrated with 
the platform.  

Finally multiple processing elements, ALU cluster IPs, will be combined with 
the versatile baseboard to form a media streaming architecture with homogeneous 
processor cores. The proposed system matches the features of media applications such 
as large available parallelism, little data reuse and high computation to memory access 
ratio. Suitable benchmarks are ported into this processing system and compare with 
each other. These applications include some popular operations in multimedia 
applications and MIMO-OFDM system. The finite impulse response (FIR) filter 
system and Fast Fourier Transform (FFT) are selected as benchmarks in media 
applications. And the key operations of MIMO-OFDM system, such as matrix 
inversion and Gram-Schmitt process, are selected as benchmarks, too [23]. Adoption 
of stream programming model and mixture of system architectures make the media 
streaming system become a turkey solution for modern multimedia processing 
requirement.  

Five paragraphs discussed above are introduced the proposed developmental 
roadmap compendiously. The details of these steps, such as micro architectures, 
implementation results and etc., are discussed and described in the following sections 
and chapters respectively.  
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3.2  An ALU cluster 

The briefly description of the previous design, an ALU cluster, included the 
micro architecture is described. The ALU cluster is called prototype 1 in the 
above-presented developmental roadmap. It is convincible that it can handle media 
applications expectedly.  

3.2.1  Micro-Architecture of an ALU cluster 

As the major part for handling the media processing, an ALU cluster includes 
five arithmetic units, supporting to process the parallel data concurrently. As shown in 
Fig 3.5, they are two ALUs, two multipliers and one divider. Large amount of digital 
signal processing application are suitable for porting in the architecture with mixture 
of arithmetic units. There is also one scratch pad register file (SPRF), ten banks of 
intra register file (IRF), a controller and a decoder.  

 

Fig 3.5 Micro-Architecture of ALU cluster  

There are thirteen instructions can be executed by the ALU, such as ADD, SUB, 
ABS, AND, OR, XOR, NOT, SLL, SRL, SRA, LT, GT, EQ. The adder and 
comparator adopted for ALUs are the carry-lookahead architecture with two stage 
pipeline. Booth encoding architecture was adopted for our four stage pipeline 
multiplier. This multiplier can carry out multiplication. The last arithmetic unit is the 
divider. It performs the division operation that gets the quotient and remainder and 
calculates the square root. The designed divider in an ALU cluster is not the key 
kernel about performance concerned so that this unit is not pipelined and considered 
to shrink the logic resource by increasing latencies of operation.  
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As mentioned above, in the ALU cluster there are IRFs embedded for each 
operation units. These intra register files are local to themselves arithmetic units. The 
purpose of IRFs is to provide an efficient memory bandwidth for arithmetic units. In 
other words, these arithmetic units would not waste the precious global memory 
bandwidth. It acquires required bandwidth from less precious bandwidth of IRFs. 
Another extra storage element inside the ALU cluster is scratch pad register file. The 
capabilities of SPRF are as the storage element for commonly used coefficient of 
applications.  

The remaining parts of the ALU cluster are the decoder and the controller. The 
decoder can decode the instructions from off-chip instruction memory and provides 
control signals needed for ALU cluster. During the execution of an ALU cluster, the 
controller sequences and issues the decoded instructions to the function units and 
decides the inputs source, such as IRF, SPRF or data memory. When an ALU cluster 
operates to read or write, the controller manages the data flowing.  

3.3  An ALU cluster Intellectual Property 

In this section, an ALU cluster Intellectual Property (IP) is designed and the 
architecture is also discussed. It is the prototype 2 mentioned in the roadmap 
presented in previous section [24]. As mentioned in previous chapter, there is an 
AMBA AHB wrapper in the ALU cluster IP. First the AMBA AHB protocol will 
be described in the following paragraph. Then the micro architecture of an ALU 
cluster IP will be presented and discussed in the last part of this section. 

3.3.1  Overview of AMBA 

The Advanced Microcontroller Bus Architecture (AMBA) specification defines 
an on-chip communications standard for designing high-performance embedded 
microcontrollers [25]. There are three buses defined in this specification. They are 
Advanced High-performance Bus (AHB), Advanced System Bus (ASB), and 
Advanced Peripheral Bus (APB). These bus protocols are used in different 
applications. For example, the AHB are used as the high-performance system 
backbone bus. It is for high-performance and high clock frequency system modules. It 
provides the efficient connection of processors, on-chip memories and off-chip 
external memory interfaces with low-power peripheral macrocell functions. The ASB 
is also for high-performance system modules. It is suitable for system bus that the 
high-performance features of AHB are not required. It also supports the efficient 
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connection of processors, on-chip memories and off-chip external memory interfaces 
with low-power peripheral macrocell functions the same as AHB. Finally, the APB 
optimized with minimal power consumption and interface complexity is used for 
peripherals. APB can be used in conjunction with either version of the system bus. 

Four key requirements are satisfied by AMBA specification. They are 
right-first-time, technology-independent, modular system design and minimization of 
the silicon infrastructure. The system obeyed AMBA protocol could facilitate the 
right-first-time development of embedded microcontroller products with one or more 
CPUs or signal processors. The specification is technology-independent and ensures 
that highly reusable peripheral and system macrocells can be migrated across a 
diverse range of IC processes and be appropriate for full-custom, standard cell and 
gate array technologies. It also improves processor independence, providing a 
development roadmap for advanced cached CPU cores and the development of 
peripheral libraries to encourage modular system design. The system using AMBA 
protocol can be minimized the silicon infrastructure required to support efficient 
on-chip and off-chip communication for both operation and manufacturing test.  

A typical AMBA-based microcontroller is composed of a high-performance 
system backbone bus (AMBA AHB or AMBA ASB) which is able to sustain the 
external memory bandwidth, on which the CPU, on-chip memory and other Direct 
Memory Access (DMA) device reside. The diagram of AMBA-based system is shown 
in Fig 3.6. The backbone bus of whole system has ability to provide a high-bandwidth 
interface between elements involved in the majority of transfers. APB, a lower 
bandwidth bus, is located on the high-performance bus by the bridge. Most of the 
peripheral devices in the AMBA-based system are located.  

The features of AHB, ASB and APB are listed in Fig 3.6. As shown below in this 
figure, AHB is suitable for high performance, pipelined operation, multiple bus 
masters, and burst transformation and split transactions. Compare with AHB, ASB is 
lack of the ability to burst transformation and split transactions. The simple interface 
is adopted by APB. It latches address and control signal to save power. Thus it is 
suitable for many peripherals. The difference between APB and AHB or ASB is that 
AHB and ASB are able to wait the transfer during it is not ready whether the wait 
situation is from on-chip bus or itself. APB must response the transaction 
immediately.  
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Fig 3.6 Diagram of AMBA-based system  

3.3.1.1 Introduction of AMBA AHB  

The AMBA AHB is a new generation bus intended to address the requirements of 
high-performance synthesizable designs. It sits above the APB and implements the 
features required for high-performance, high clock frequency system, including split 
transactions, burst transfers, single cycle bus master handover, single clock edge 
operation, non-tristate implementation and wider data bus configurations. The AMBA 
AHB system is designed with the following components, including AHB bus master, 
slave, decoder and arbiter. These typical components are described briefly below. 

The AHB master starts an AMBA AHB transfer by driving address and control 
signals. They provide information which the AHB slave needed. Exact one bus master 
is allowed to actively use the bus at any one time. This component is the most 
complex bus interface in an AMBA system. Usually the designer would use existence 
bus master rather than concerned with the details in the bus master interface.  

The AHB bus slave responds a write or read operation. All signals required for 
the transfer, such as the address and control information, will be generated by the bus 
master. The bus slave signals back to the active master the success, failure or waiting 
of the data transfer.  

The AHB bus decoder is used to perform a centralized address decoding function, 
which improves the portability of peripherals, by making them independent of the 
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system memory map. It is used to decode the address of each transfer and provide a 
select signal for the slave that is involved in the transfer.  

Finally the AHB bus arbiter will be described. The AHB arbiter is used to control 
which master has access to the bus. It ensures that only one bus master is allowed to 
initiate data transfers at a time. The arbiter uses a prioritization scheme to decide 
which bus master is currently the highest priority master requesting the bus. The detail 
of the priority scheme is not specified and is defined for each application. 

Some details of AHB interface, such as bus interconnection, signals for AHB 
slaves, basic transfer, transfer type, address decoding and burst operation will be 
presented in the following sub sections. The reaming details will be described in the 
AMBA specification.  

3.3.1.2 Bus Interconnection 

The diagram of AMBA AHB interconnection is shown in Fig 3.7. As illustrated 
in the diagram, this protocol is designed to be used with a central multiplexer 
interconnection scheme. The scheme makes all bus master drive out the address and 
control signals indicating the transfer they intend to perform. Then the arbiter obeyed 
the prior policy determines which master is able to route its address and control 
signals to all of the slaves. There is also a central decoder in Fig 3.7. It is used to 
control the read data and response signal multiplexer to response appropriate signals 
from the slave to the master which involved in the transfer. 
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Fig 3.7 Diagram of AMBA AHB interconnection 

3.3.1.3 Signals for the protocol of AMBA AHB slave  

The signals using in AHB slave protocol are shown in Fig 3.8, which is the 
diagram of AHB slave interface. These signals are briefly described in the following 
paragraph. 
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Fig 3.8 Diagram of AHB slave interface  

The input signals are classified into six groups such as select, address and control, 
data, reset, clock and split capable signals. The select signal, HSELx, is from decoder 
and indicates that the current transfer is intended for the selected slave. The address 
and control signals such as HADDR, HWRITE, HTRANS, HSIZE and HBURST are 
from master to slave. HADDR is the system address bus. HWRITE indicates that the 
transfer is reading operation or writing operation. HTRANS indicates the type of 
current transfer. HSIZE shows the size of the transfer and HBURST shows the burst 
type of operations in the transfer. The data signal, HWDATA, is form master and used 
to transfer data during write operations. The reset and clock signal are HRESETn and 
HCLK respectively. The signals shown in the bottom of Fig 3.8 are from arbiter and 
used to support the split transactions. 

There are four output signals. They are HREADY, HRESP, HRDATA and 
HSPLITx. The HREADY indicates a transfer has finished on the bus and the HRESP 
provides additional information on the status of a transfer. Above-mentioned signals 
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are called transfer response signal group. The HRDATA is used to transfer data from 
slaves to masters during read operations. The last output signal is HSPLITx, which is 
used for split completion request.  

3.3.1.4  Basic Transfer 

The basic transfer of AHB protocol is composed of two phases. They are address 
phase and data phase. An example of simple transfer is shown in Fig 3.9. As illustrate 
in the figure, the address phase only requires one cycle but the data phase may require 
several cycles. The necessary signals needed for the basic transfer are HCLK, 
HADDR, control, HWDATA. The transfers will response the HREADY, HRDATA 
and HRESP. The figure demonstrates how the address and data phases of the transfer 
during different clock periods. The address phase always occurs during the data phase 
of previous transfer. The above-mentioned situation of overlapping is based on the 
pipelined nature of the bus and allows for high performance operations. The logic 
high of HREADY represents the transfer is ready to be finished and logic low shows 
that the transfer is needed to be extended. The example of the transfer needed to be 
extended is shown in Fig 3.10. The address phase is the same as Fig 3.9. Thus the data 
phase shown in Fig 3.10 is extended with two cycles because the transfer is not ready 
to be completed by means of signaling the HREADY logic low. This may result from 
both master and slave depends on the transfer type. It will be introduced in the 
following section.  

 
Fig 3.9 An example of simple transfer  
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Fig 3.10 The example of the transfer extended 

3.3.1.5 Transfer Type 

The transfers of AMBA AHB are classified into four different transfer types. The 
HTRANS signals will be used to indicate the type of transfer. The two bits signal 
represents IDLE, BUSY, NONSEQ and SEQ by 00, 01, 10 and 11 respectively. These 
transfer types will be introduced below. 

The IDLE state indicates no data transfer is required and is used when a bus 
master is granted the bus but does not intend to perform a data transfer. The bus slaves 
must always provide a zero wait state OKAY response to IDLE transfers and the 
transfer should be ignored by the slave.  

The BUSY transfer type indicates the bus master is continuing with a burst of 
transfers, but the next transfer cannot take place immediately. This transfer type 
allows bus masters to insert IDLE cycles in the middle of bursts of transfer. When a 
master uses the BUSY transfer type the address and control signals must reflect the 
next transfer in the burst. The transfer should be ignored by the slave. Slaves must 
always provide a zero wait state OKAY response, in the same way that they respond 
to IDLE transfers.  

The NONSEQ transfer type is used to indicate the first transfer of a burst or a 
single transfer. The necessary information such as address and control signals are 
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unrelated to the previous transfer. In AMBA AHB specification, a single transfer on 
the bus is treated as the first one of a burst therefore the transfer type is NONSEQ too.  

The last one transfer type is SEQ. This type indicates the remaining transfers in a 
burst. The address needed is related to the previous transfer and it is equal to the 
address of the previous transfer plus the size in the incrementing burst. But in the 
situation of wrapping burst, the address of the transfer wraps at the address boundary 
equal to the size multiplied by the number of beats in the transfer. In addition, the 
control information is identical to the previous transfer.  

3.3.1.6 Address Decoding 

The select signal, HSELx, will be provided by an address decoder shown in Fig 
3.11 for each slave on the bus. The select signal is a combinatorial decode of the 
high-order address signals and simple address decoding schemes are encouraged to 
avoid complex decode logic and to be suitable for high-performance operations. A 
slave only samples the address and control signals and HSELX when HREADY is 
logic HIGH. It is indicates that the current transfer is completing. Under certain 
situation it is possible that HSELx will be asserted when HREADY is logic LOW, but 
the selected slave will have changed by the time the current transfer completes. The 
minimum address space can be allocated to a single slave is 1kB. All bus masters are 
designed such that they will not perform incrementing transfer over a 1kB boundary, 
thus ensuring that a burst never crosses an address decode boundary.  

 

Fig 3.11 Slave Selected Signal  
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3.3.1.7 Burst Operation 

There are two kinds of bursts of the burst operations supported in the AMBA 
AHB protocol. They are incrementing and wrapping burst modes. Four, eight and 
sixteen-beat bursts are defined in AHB protocol. The burst information is identified by 
the signal HBURST. It decides the burst modes and beat number. The relationship 
between signal and type is listed in Table 3.2. There are eight types defined in this 
table.  

Table 3.2 Burst Signal Encoding 

HBURST [2:0] Type Description 

000 SINGLE Single transfer 
001 INCR Incrementing burst of unspecified length 
010 WRAP4 4-beat wrapping burst 
011 INCR4 4-beat incrementing burst 
100 WRAP8 8-beat wrapping burst 
101 INCR8 8-beat incrementing burst 
110 WRAP16 16-beat wrapping burst 
111 INCR16 16-beat incrementing burst 

 

The address accessing of each transfer in the burst of the incrementing burst 
mode is sequential and an increment of the previous address. In the wrapping burst 
mode, if the start address of the transfer is not aligned to the total number of bytes in 
the burst (size x beats) then the address of the transfer in the burst will wrap when the 
boundary is reached. For example, a four-beat wrapping burst of word accesses will 
wrap at 16-byte boundaries. Therefore, if the start address of the transfer is 0x34, then 
it consists of four transfers to addresses 0x34, 0x38, 0x3C and 0x30. It will wrap the 
address back when the boundary is reached. As description it will wrap back to 0x30.  

Bursts must not cross a 1kB address boundary. It is important that masters do not 
attempt to start a fixed-length incrementing burst which would cause this boundary to 
be crossed. It means that an incrementing burst can be of any length, but the upper 
limit is set by the fact that the address must not cross a 1kB boundary. The signal, 
HSIZE, is used to control the transfer size. It supports eight different sizes such as 8, 
16, 32, 64, 128, 256, 512 and 1024 bits. Finally the endian policy defined in this 
protocol is shown in Table 3.3 and Table 3.4. They are big-endian and little-endian 
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respectively. The designer only needs to obey one of the endian policies and makes 
whole systems consistently.  

Table 3.3 Active Byte Lanes for a 32 bits big endian data bus 
Transfer 

size 
Address 
offset 

Data 
[31:24] 

Data 
[23:16] 

Data 
[15:8] 

Data 
[7:0] 

Word 0 ˇ ˇ ˇ ˇ 
Halfword 0 ˇ ˇ - - 
Halfword 2 - - ˇ ˇ 

Byte 0 ˇ - - - 
Byte 1 - ˇ - - 
Byte 2 - - ˇ - 
Byte 3 - - - ˇ 

Table 3.4 Active Byte Lanes for a 32 bits little endian data bus 
Transfer 

size 
Address 
offset 

Data 
[31:24] 

Data 
[23:16] 

Data 
[15:8] 

Data 
[7:0] 

Word 0 ˇ ˇ ˇ ˇ 
Halfword 0 - - ˇ ˇ 
Halfword 2 ˇ ˇ - - 

Byte 0 - - - ˇ 
Byte 1 - - ˇ - 
Byte 2 - ˇ - - 
Byte 3 ˇ - - - 

 
 
 
 
 

3.3.2  Micro-Architecture of an ALU cluster Intellectual Property 

The proposed ALU cluster Intellectual Property (IP) id described in this section. 
The detail architecture is shown in Fig 3.12. As illustrated in Fig 3.12, four main 
blocks composed of this design are AMBA AHB wrapper, ALU cluster, instruction 
and data memory. The instruction and data memory are used to feed the data and 
instruction required for operation into functional units.  
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Fig 3.12 The Proposed ALU Cluster IP Architecture  

The major part for dealing the media applications is an ALU cluster as 
description in Section 3.2. The arithmetic units and internal storages part of the ALU 
cluster in this ALU cluster IP is the same as the one introduced in Section 3.2.1. 
However, the control and internal storages are improved in this designed ALU cluster 
IP. The ALU cluster in this designed is improved the ability to reading source and 
writing destination. It makes all banks of data and instruction memory expose to the 
AMBA bus. It means that these memory banks can be accessed directly from AMBA 
bus through the AMBA AHB wrapper which will be introduced later. In addition, the 
better performance is exploited by shortening reading cycles. In the original ALU 
cluster, the reading must take four cycles to access one burst reading operation. 
However, in the improved ALU cluster, the reading operation takes two cycle 
latencies in burst reading and then the data is read sequentially in every cycle.  

The ALU cluster IP must has the ability to execute when the AMBA bus is 
granted by other masters so that the ALU cluster needs a functional block to feed 
address to the instruction memory automatically. As illustrates in Fig 3.12, the 
Pc_counter is used to process this job. It will increase the program counter by one in 
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every clock cycle. The decoder will compare the value of program counter with the 
end value of Pc_counter every cycle to check if the ALU cluster finishes the job. If the 
job is completed, the alu_work signal is activated to send information to the wrapper.  
In the alu_work signal is inactive, the IP can not be accessed and returns RETRY 
signal response to AMBA bus. Besides, one special input signal combination can clear 
the end value of Pc_counter in the decoder and force the IP to stop execution. The 
special mechanism is designed in order to avoiding the possibility of the deadlock 
occurrence.  

Another key component of ALU cluster IP is AMBA AHB wrapper. It will be 
discussed in this paragraph. The wrapper interface conforms to Advanced 
Microcontroller Bus Architecture (AMBA) Advanced High-performance Bus (AHB) 
protocol described in Section 3.3.1. It provides a common interface to integrate the 
proposed design with ARM versatile baseboard and form a media processing system. 
A finite state machine (FSM) and an address generation unit (AGU) are composed of 
the architecture of proposed wrapper. The finite state machine of proposed wrapper is 
used to control the states and response the request of AMBA bus. It provides the 
communication capability between AHB slave bus and the ALU cluster inside 
proposed IP. It receives signals from AMBA bus and activates the ALU cluster to 
response. The FSM also controls the address generation unit to produce necessary 
address for the ALU cluster, whether operating in incrementing mode or wrapping 
mode of burst operation.  

This FSM is designed with six states. They are Idle, Accessible, ALU_Work, 
Un-readable Wait, Un-writable Wait and Error. As shown in Fig 3.13, the state 
diagram of the finite state machine, the FSM will stay in the Idle state while the IP is 
not accessible or the operation of ALU cluster is finished. Whether IP has done the 
work or suffers from some error, it returns back to the Idle state. In this state, the 
wrapper will be ready to receive signals from bus and prepare next operation. It will 
go to other starts while the bus is granted and the IP will be accessed or the ALU 
cluster is activated. The condition of going to other state is only when the HTRANS 
signal equals to NONSEQ. If the NONSEQ is encountered, it identifies which 
operation of the IP is requested by HWRITE then the FSM will move to the target 
state.  
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Fig 3.13 The state diagram of the finite state machine 

In the next state, Accessible state, the IP is accessible. When the HTRANS signal 
is equal to NONSEQ and the HWRITE signal is logic high, it will directly move to 
this state. There is a control signal to identify the different types of accessing whether 
incrementing mode or wrapping mode is utilized in the burst transformation while 
staying this state. One type is that the IP is accessed with different address with the 
HTRANS signal equals to NONSEQ. Another one is that the IP is accessed 
continuously with the address of the previous access in wrapping or incrementing 
mode in the burst transformation. Three conditions are forced the FSM to other states. 
These cases are access is finished, ready to read but data is not ready and busy to 
write. The states are moved to Idle, Un-readable Wait and Un-writable Wait. The later 
two of the above-mentioned states are addressed below. 

The Un-readable Wait state exists because of the two necessary cycle of reading 
data latency. One of two paths makes the FSM enter the Un-readable state is when the 
FSM is in the Idle state and the HTRANS signal is NONSEQ and the HWRITE signal 
is logic low. It presents the IP is being read. The first reading operation needs two 
cycles to prepare necessary data so it must be in this state until the data is ready. Then 
it will enter the Accessible state to perform the following reading request. Another one 
of two paths is from Accessible state to Un-readable Wait state because of the 
necessary latencies. In addition, when the IP is being written data in burst mode of 
wrapping or incrementing type thus the TRANS signal of AHB slave is changed to 
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BUSY, the FSM will enter the Un-Writable Wait state. After the signal of TRANS 
release from BUSY to NONSEQ or SEQ, the FSM will return from the Un-writable 
state to Accessible state.  

The last two states of design six-stated FSM are Error and ALU_Work state. 
When proposed IP is accessed illegally due to invalid address and transaction, the 
finite state machine will go to Error state. The invalid address and transaction result 
from the depth limitation of data and instruction memory. The other reason entering 
this state is that the IP is being accessed but is not granted expectedly. When these two 
cases happened, Error state will be entered and escapes from violating AMBA AHB 
protocol. If the Error occurs, the Error state must obey the AHB protocol and thus 
have two cycles response to reply the bus with proper HREADY and HRESP signal as 
defined in the AMBA AHB specification.  

Finally, The ALU_Work state reveals that the applications are being processed in 
ALU cluster. From Idle state is an only one path into the state. Whether accessed by 
reading or writing operations, the FSM has the ability to transfer a two cycle response 
to the AHB bus in the ALU_Work state. Additionally the ALU cluster keeps working 
without being affected by any unexpected access until finishing the operations. 
Eventually there is one characteristics related to the wrapper. That is data and 
instruction memory embedded in the IP can be access directly by proposed wrapper. 

As description of the ALU cluster IP, there is one thing needed to be reminded. 
One instruction must be completed through many stages so it takes more cycles to 
write the executed results back. The ALU is a two stage pipelined structure unit so 
that it takes six cycles, including two extra cycles and four necessary cycles for every 
operation such as instruction decoding, data source selection and results writing. Then 
the four stages pipelined multiplier will need eight cycles and the divider will need 
twenty cycles to write back the results.  

3.4  Floating Point Units for the ALU cluster IP 

In modern media application system, floating point operation is indispensable for 
any applications. The floating point operation units (FPUs) are designed and 
implemented to be integrated with original ALU cluster IP. In the following, the 
design considerations of the floating point units are described. Then the 
implementation results of them are discussed in latter chapter. Besides, the 
performance evaluation of the selected benchmark is compared between the 
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architecture of ALU cluster IP and the architecture of ALU cluster IP supported by the 
floating point units in next chapter too.  

3.4.1  Design Consideration 

The floating point operation units are designed for the ALU cluster IP in order to 
make it more suitable and widely applied for media processing applications. Consider 
the architecture of ALU cluster IP, it is not well-matched for the floating point 
operation using the IEEE 754 standard format for floating point arithmetic [26]. In the 
architecture of original ALU cluster IP, the floating point operations obeyed the 
IEEE754 format need to be decomposed into several fields to finish the calculations 
and the field is easy to encounter the mistake results from the saturation problems. 
Consequently, the floating points units are designed for the IEEE 754 standard single 
precision floating point format.  

The briefly review of IEEE 754 standard for binary floating point format is 
introduced in the following. The format of floating point numbers includes four types 
which are identified by its precision. They are single precision, double precision, 
single extended precision and double extended precision floating point number 
formats. The numbers of bits used to represent the value are 32 bits, 64 bits, larger or 
equal to 43 bits and larger or equal to 79 bits respectively. The last two formats, single 
extended precision and double extended precision, are not commonly used. The 
features of single precision format and double precision format will be focused.  

As illustrated in Table 3.5, the single precision format and double precision 
format are listed. As shown in the table, the IEEE 754 floating point numbers have 
three basic fields such as sign field, exponent field and mantissa field. The field of 
sign bit is used to represent the sign of the floating point number. Zero denotes a 
positive number and one denotes a negative number in this one bit field. The exponent 
field needs to represent both positive and negative exponents. This field occupies 
eight bits in the single precision field and eleven bits in the double precision field. The 
actual exponent is added the value called bias to form the value recorded in this field. 
The bias value is 127 and 1023 for single precision and double precision respectively. 
For example, an exponent of zero means that 127 and 1023 is stored in the exponent 
field for single precision format and double precision format respectively. The 
mantissa, also called the significant, represents the precision bits of the number. The 
significand field occupies twenty-three bits and fifty-two bits for the single and 
double precision format respectively. Whether in single precision or double precision 
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format, it is composed of an implicit leading bit and fraction bits. In order to 
maximize the quantity to represent numbers, floating point numbers are stored in 
normalized form. So the leading digit is assumed to 1 and needs not to represent it 
explicitly. In other words, the mantissa has effectively twenty-four bits of resolution 
with twenty-three fraction bits in single precision format. It is similar to the double 
precision format.  

Table 3.5 Format of single and double precision IEEE 754 floating point number 
 Sign Field Exponent Field Significand Field 

Single Precision 1 bit [31] 8 bits [30:23] 23 bits [22:0] 
Double Precision 1 bits [63] 11 bits [62:52] 52 bits [51:0] 

The summary is described below. First, the sign bit is zero for positive and one 
for negative number. Second, the exponent field contains 127 added to the true 
exponent field for single precision format and 1023 added to the exponent field for 
double precision format. Third, the first bit of the significand is typically assumed to 
be 1.f, where f is the fraction stored in this field.  

The effective range of representing the IEEE 754 floating point number is listed 
in Table 3.6. In this table the single and double precision format are listed. There are 
five distinct numerical ranges are not presentable in this format. Taking single 
precision format as an example, the numbers which are not able to present is listed 
below. The positive number less than 2-149, positive number greater than (2-2-23) * 2127, 
zero, negative number less than - (2-2-23) * 2127 and negative numbers greater than 
-2-149. They are so called positive underflow, positive overflow, zero, negative 
underflow and negative overflow respectively. The overflow of the value means it is 
too large to represent. Underflow is the problem of loss of precision.  

Table 3.6 Effective Range of the IEEE 754 floating point number 
 Binary Value Decimal Value 

Single Precision -(2-2-23)*2127 ~ +(2-2-23)*2127 -1038.53 ~ +1038.53

Double Precision -(2-2-52)*21023 ~ +(2-2-52)*21023 -10308.25 ~ +10308.25

 

Finally, special values defined by IEEE 754 standard are introduced. It reserves 
exponent field values of all zero and all one to denote special values in the floating 
point values. First, zero will be discussed. Zero is not representable in general format 
result from the leading one assumption in mantissa field. Zero is defined to be denoted 
with an exponent field of zero and a fraction field of zero. The positive zero and 
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negative zero are distinct although they are compared as equal. Then the denormalized 
number is described. The exponent field is set to all zero and the fraction is non-zero 
represent a denormalized number. It is not assumed the leading one before the binary 
point. The representation of value will become (-1)S * 0.f * 2-126 and (-1)S * 0.f * 2-1022 
for the single precision and double precision format respectively. Third, the value of 
infinity is denoted with an exponent of all one and a fraction of all zero. The sign bit 
decides it is positive infinity or negative infinity. Denoting the value of infinity as a 
specific value is useful because of allowing operations to continue past overflow 
situations. Operations with infinite values are well defined in IEEE standard. The Last 
special number is Not A Number (NaN). It is used to represent the value which is not 
able to represent as a real number. There are two types of NaN such as Quite NaN 
(QNaN) and Signaling NaN (SNaN). The most significant bit of fraction field is set 
for QNaN. The value pops out of an operation when the result is not mathematically 
defined. The most significant fraction bit is not set for SNaN. It is used to signal an 
exception.  

These features and formats mentioned above is the brief review of the IEEE 754 
floating point format standard. The details information of this standard will be listed 
in the reference list.  

Three different types of FPUs are designed and implemented in this thesis. As 
shown in Fig 3.14 below, the FPU will be integrated with the ALU cluster IP. The data 
format of the ALU cluster IP is 32 bits so that the IEEE 754 single precision floating 
point number format is adopted for the design of the floating point operation unit. 
Three different types of FPUs are described in the following. Considering with the 
features of the benchmarks and applications, some arithmetic operations of floating 
point numbers are critical and some are not. In other words, not all of these functional 
units in the FPUs are operated in the same frequency. Some critical operations need 
faster clock rate and some need not. The FPU of type 1 includes addition, subtraction 
and multiplication operations. The FPU of type 2 includes addition, subtraction, 
multiplication and division operations. The FPU of type3 include division operation 
only. In most of the media processing applications the division operation is not as 
common as the addition, subtraction and multiplication operations. So the type1 and 
type 3 are designed in order to make the critical operations faster and shrink the logic 
resource needed for the non-critical operations by means of increasing the latencies. 
The type 2 FPU is also designed for general benchmarks and applications which 
operations are equally distributed. These FPUs have two input operands and one 
output results, both of them with 32 bits data width. The operations are decided by the 
control signal. The details of implementation are introduced in the following chapter. 

 - 35 -



                                      Chapter 3 Development Roadmap and Proposed Design 

ALU
IRF IRF

ALU

IRF IRF

MUL

IRF IRF

MUL

IRF IRF

DIV

IRF IRF

32 32 32 32 32 32 32 32 32 32

Memory
Instruction 

Data memory

32 3232 14 14232 7+3

32 32 14
alu_work

Decoder

Pc_counter

142

Scratch 
Pad

Controller

5+4

32

32*10

32*5

AMBA AHB wrapper

Finite State MachineAddress Generation Unit

ALU cluster IP

ALU cluster

Floating Point Unit

D
IV

M
U

L
A

D
D

/SU
B

D
ata Input

D
ata O

utput

Control

 

Fig 3.14 An ALU cluster IP with Floating Point Unit Supported Architecture 
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CHAPTER 4 

Implementation Results and 

Performance Evaluation 

After the three chapters presented previously, the background, challenges, 
developmental roadmap and micro-architectures of proposed designs in this thesis are 
addressed. The circuit implementation results of the proposed designs in this thesis 
will discussed in this chapter.  

The first section is the demonstration of previous implementation and chip 
testing results of ALU cluster. Review the implementation results of the ALU cluster, 
the processing element of ALU cluster intellectual property implemented later. 
Through testing the silicon-baked chip, the results confirm the correctness of 
functionality and the architecture is not only feasible but also efficient for media 
applications.  

The second part of this chapter is presented for the implementation and 
verification results of the designed ALU cluster intellectual property. The features 
overview of Magnetic RAM and the details of modified architecture included the 
Magnetic RAM are introduced in this section. Then this section is also described the 
detail results of taping chip out, circuit verification and chip testing. 

The third section of this chapter introduces the circuit implementation and results 
of floating point operation units for ALU cluster IP. It will be integrated with the ALU 
cluster IP. The implementation and verification results are summarized in this section. 
Then the performance evaluation of selected benchmark is estimated to confirm the 
integration of the floating point unit is efficient and it is the forth part of the whole 
chapter.  
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4.1 Implementation and Testing Results of An ALU cluster 

The briefly description of the previous design, an ALU cluster, includes the 
implementation, verification and testing results and related photos. The ALU cluster, 
the prototype 1 called in the above-presented, is convinced that it can handle media 
applications expectedly through silicon measurements.  

The summary of the manufactured ALU cluster is listed in Table 4.1. UMC 
0.18um CMOS technology and cell-based design kit of Artisan are utilized to tape the 
chip out. The operation frequency of post-layout simulation is 100MHz. The chip size 
and core size are about 3x3 mm2 and 2.2x2.2mm2 respectively. The gate count of this 
work is 411491. Power consumption of this work is 968.35mW. Besides the logic 
resources of arithmetic units and control logic, there are total fifteen memory banks 
used for data and instruction. The instruction memory includes four 32 x 128 single 
port static RAM (SRAM) and one 14 x 128 single port SRAM. The instruction 
memory of 128 entries can support output bandwidth of 142 bits per cycle to VLIW 
instructions. The data memory includes ten 32 x 32 single port SRAM. The data 
memory of 32 entries can provided the data bandwidth of 320 bits per cycle.  

Table 4.1 Implementation Results Summary of ALU cluster 
Process UMC 0.18um CMOS Technology 
Library Artisan SAGE-X Standard Cell Library

Post Layout Clock Rate 100MHz 
Chip Size 2.98 x 2.98 mm2

Core Size 
(without memory) 

2.2 x 2.2 mm2

(1.8 x 1.2 mm2) 
Gate Count 

(without memory) 
411491 

(255669) 
Power Consumption 
(without memory) 

968.35mW 
(312.38mW) 

On-Chip Memory 
10 block 32 x 32 single port SRAM 
4 blocks 32 x 128 single port SRAM 
1 block 14 x 128 single port SRAM 

Package CQFP 128 

Pad 
Input : 47 pins 

Output : 32 pins 
Power : 48 pins 
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These banks of memory are generated by memory compiler with Artisan library. 
The gate count of this work excluding these memories is 255669 and the power 
dissipation without these memories is down to 312.38mW. The physical layout of the 
ALU cluster is shown in Fig 4.1 below. The floorplan and pad assignment are also 
shown in Fig 4.2.  
 

 

Fig 4.1 Physical Layout of an ALU cluster 
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Fig 4.2 Floorplan and Pad Assignment of an ALU cluster 

There are total 127 I/O pads, including 47 input pads, 32 output pads and 48 
power pads. In addition to the information, the die microphotograph of taped out chip 
is shown in Fig 4.3. The package used for the manufactured chip is CQFP128 and the 
photograph of the prototype 1 with package is shown in Fig 4.4.  
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Fig 4.3 Microphotograph of taped out ALU cluster 

 

Fig 4.4 An ALU cluster with CQFP128 package  
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As illustrated in Fig 4.5, the manufactured chip is placed on the PCB board 
in order to testing. The measurement equipment adopted is Agilent 16902A Logic 
Analyzer System [27] with Agilent 16720A pattern generator and Agilent 16910A 
logic analyzer modules. The maximum frequency of signal from the pattern 
generator is 300MHz and 180MHz when the pattern generator is operated in half 
channel mode and full channel mode respectively. It is suitable for us to measure 
the chip.  

 

Fig 4.5 An ALU cluster with PCB board 

We measure and verify the chip of the ALU cluster mainly in functionality 
and performance. In the functional testing, the memory testing, the instruction 
testing and the real program testing are executed. The 16-tap FIR filter is selected 
as a benchmark for the real program testing and the performance testing. In the 
memory testing, the benchmarks written to and read from data memory and 
instruction memory are all one, all zero and mixed interleaving one and zero. 
These signals are 32’hFFFFFFFF, 32’h00000000, 32’hAAAAAAAA. 
32’h55555555 and mixed the 32’hAAAAAAAA and 32’h55555555. The usage 
of this kind of benchmark helps us to find out the stuck at zero and stuck at one 
error. The functionality of instructions is tested by feeding random sequence into 
all operation units. All instructions of different operation units are gone through at 
least once to ensure the correctness. These test patterns needed in chip testing 
necessarily obey the format of the pattern generator.  

The functional testing mentioned above including the memory testing, the 
instruction testing and the real program testing are correct. Thus the performance 
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testing of the FIT filter system is down to about sixteen to eighteen Mega Hertz. 
The summaries about testing results mentioned above are listed in Table 4.2. 
Because of the huge loading of the probe lead set, it is more than five times 
slower than the post layout clock rate. It is hard to measure the true performance 
of the chip unless connecting the pod of pattern generator to the PCB directly.  

Table 4.2 Testing results summaries of ALU cluster 

Testing Items Results 

Data Memory Correct 
Read/Write Memory 

Instruction Memory Correct 

ALU0 Correct 
ALU1 Correct 
MUL0 Correct 
MUL1 Correct 

Instruction Functionality 

DIV Correct 

FIR filter system Correct with operating in 16~18 MHz 

 
 

4.2 Verification and Implementation Results of An ALU cluster 
Intellectual Property 

In this section, an ALU cluster Intellectual Property (IP) is designed and 
implemented. As mentioned in previous chapter, there is an AMBA AHB wrapper 
in the ALU cluster IP different from the ALU cluster. First, the modified ALU 
cluster IP architecture will be presented and the introduction of Magnetic RAM is 
described. The taped out chip is concert with the Magnetic RAM (MRAM) 
developed by Industrial Technology Research Institute (ITRI). Then we will 
introduce the implementation of the ALU cluster Intellectual Property. Finally the 
circuit verification and chip testing are introduced in the last two sub-sections in 
the paragraph. The details are described in the following sub-sections. 

4.2.1  An ALU cluster IP with Magnetic RAM 

An ALU cluster IP with Magnetic RAM is the extended version of the ALU 
cluster IP. First we will introduce briefly the characteristics of MRAM. Then the 
architecture of the ALU cluster is slightly modified to adapt the features of using 
MRAM as the data memory of the IP. Finally the implementation and verification 
results of the manufactured chip are discussed.  
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4.2.1.1 Introduction of Magnetic RAM 

Three types of memory such as static RAM (SRAM), dynamic RAM (DRAM) 
and Flash occupy the most proportion of current market. However, they have their 
own drawback respectively. SRAM and DRAM have high data accessing speed, but 
they are volatile when power is turned off and the power consumption of these two 
types of memory is high. These drawbacks can be solved when using the Flash. It is 
non-volatile and the power dissipation is low. But the accessing speed of Flash is low 
and the lifetime of reading and writing is limited.  

Magnetic RAM (MRAM) is the innovation of these types of memory [28]. It 
adopts the magnetic tunnel junction (MTJ) and MOSFET as the mechanism to form 
the memory cell [29]. It collects the pros, such as non-volatile, low power, high 
accessing speed, high cell density and strong radiation resistance, of current existent 
memories. In addition, the MRAM has the advantages such as process compatible and 
long lifetime of writing and reading. Because the MRAM is manufactured by the 
metal layer so it is compatible to CMOS technology and without extra overhead. And 
its lifetime of data accessing is much higher than the conventional non-volatile 
memory such as Flash.  

MRAM applications currently targets to mobile system, smart card, radiation 
hardened military applications, database storage, RFID and MRAM element in FPGA. 
These include both standalone and embedded memory applications. As these 
above-mentioned pros and wide application in modern life, MRAM will become a 
chief tendency of new generation memory system.  

4.2.1.2 Modified ALU cluster IP for Magnetic RAM 

The architecture of ALU cluster IP with SRAM as the data memory must be 
modified to adopt MRAM as the data memory because of the interface of MRAM and 
SRAM is not the same and the data bandwidth between these two memories is also 
different. In order to connect MRAM to our IP, an extra load store unit (LSU) must be 
added to solve the issue presented above. The modified architecture is shown in Fig 
4.6. The instruction format is changed slightly from 142 bits to 143 bits. The 
additional bit is used to control the mode of the ALU cluster IP. If the additional bit is 
not set, the IP will execute the applications normally. When the additional bit is set, 
the data in IRF and MRAM could be accessed separately which is based on the 
executing instruction. The data bandwidth between IRF and MRAM is restricted by 
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MRAM. The bandwidth support by the IRF is also modified to support byte transfer. 
This is also suitable for the AHB wrapper since it is designed for byte, half word, and 
word access in little endian manner the same as non-modified IP.  

 

Fig 4.6 Modified ALU cluster IP architecture for MRAM  

4.2.2  Implementation Results 

The summary of implementation characteristics are listed in Table 4.3. The 
proposed ALU cluster IP is implemented with cell-based design flow and taped out 
using TSMC 0.15um CMOS technology. Synopsys computer aided design (CAD) 
flow is adopted to accomplish this chip. The post-layout operation frequency of an 
ALU cluster IP is 100 MHz. The chip size, core size and gate count are about 3.9x3.9 
mm2, 3.0x3.0 mm2 and 0.2 million, respectively. The physical layout and pad 
assignment are shown in Fig 4.7 and Fig 4.8 respectively.  
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Table 4.3 Summary of Implementation Characteristics  
Process TSMC 0.15um 

Post-layout Clock Rate 100 MHz 
Chip Size 3.91 x 3.90 mm2

Core Size 2.98 x 2.98 mm2

Gate Count 267,473 

On-chip memory 
Instruction Memory : synthesized 

Data Memory : MRAM 

Package Type COB(PGA256) 

Pad 

Input: 34 pins 
Inout : 32 pins 

Output: 24 pins 
Power: 40 pins 

 

Fig 4.7 Physical Layout of an ALU Cluster IP  
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Fig 4.8 Pads Assignment of an ALU Cluster IP  

There are total 130 pads, where 34 input pads, 24 output pads, 32 inout pads and 
40 power pads in this design. In addition, the die microphotograph of taped out chip is 
shown in Fig 4.9. The selected package for the manufactured die is PGA256. The 
prototype with package is shown in Fig 4.10. The definitions of I/O ports are listed in 
Table 4.4.  
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Fig 4.9 Die Microphotograph of Taped Out Chip  

 

Fig 4.10 Photograph of Prototype with Package 
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Table 4.4 The Definitions of I/O the ports  

I/O Port Name 
Input/Output/In

out 
Signal Description 

HCLK Input The clock signal provides for designed chip 

HADDR Input 
This is a 14-bits input used to specify the address 
of instruction memory and data memory 

HSELx Input 
The select signal from the arbiter of AHB bus to 
enable bus slave to work. It will be logical low at 
all execution stage. 

HWRITE Input 
The signal indicates a write transfer at logical 
high and a read transfer at logical low. 

HTRANS Input 
The 2-bits signal determines the transfer type of 
AHB protocol including IDLE, BUSY, NONSEQ 
and SEQ.  

HSIZE Input 
The 3-bits signal used to determine the size of 
transfer.  

HBURST Input 

This 3-bits signal indicates which type of burst 
mode is used. The burst may be either 
incrementing or wrapping and four, eight and 
sixteen beat bursts are supported.  

HRESTn Input The reset signal provides for this chip. 

mem_ls_q Input 
The 8-bits signal used to receive data from data 
memory, Magnetic RAM, which is not embedded 
in the chip. 

HREADY Output 

The signal uses to indicate whether the transfer 
has finished on the bus or not. Logic high means 
it is finished and logic low means that the transfer 
need to extend 

HRESP Output 
2-bits signal response the status of a transfer. 
OKAY, ERROR, RETRY and SPLIT are 
provided. 
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mram_ls_d Output 
The signal is an 8-bits data output to the data 
memory which is not embedded in this chip. 

mram_ls_a Output 
The 10-bits width output. Used to specify the 
address of the external data memory. 

Mram_ls_cen 

Mram_ls_wen 

Mram_ls_oen 

Output 

These three signals are used to control the status 
of the external data memory, such as disable, 
read, write and selected disable mode, by 
different combination of these signals.  

HDATA Inout 
The 32-bits inout signal. These signals receive 
data from input ports to compute and output the 
calculated results outside the chip.  

IOVDD & IOVDD Power 
The power supply provides for the core of this 
chip. There are 12 pairs of power supply. 

CoreVDD & CoreVSS Power 
The power supply provides for the IO Pads. There 
are 8 pairs of power supply. 

 

4.2.3  Circuit Verification 

The popular operation of multimedia processing applications, the finite impulse 
response (FIR) filter system [30], is chosen as the benchmark of the ALU cluster IP. 
The benchmark used to simulate and verify the proposed IP is 16-tap FIR filter system. 
The media applications could be expressed as the stream programming model that 
would be fit the features of the ALU cluster IP. In modern media and DSP applications, 
FIR filtering is one of the most popular and widely operation applied, such as matched 
filtering, pulse shaping and equalization, etc. This selected benchmark is suitable for 
functional verification of one dimensional architecture needed repeat and high 
percentage of addition and multiplication. . 

A brief review of FIR filter system is introduced below. The equation of input 
and output relationship of linear time invariant FIR filter can be describe in Equation 
4.1.  
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   Equation 4.1  ∑
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As shown in the equation, M represents the length of the FIR filter, bk represents 
the coefficients and x[n-k] denotes the data sampled at time instance n-k. The output 
y[n] is the response to the instance time n. As illustrated in Fig 4.11, the coefficients 
bk of the sixteen-tap Kaiser window FIR bandpass filter and the exponential function 
with ten sampling points as the input data are figured. The usage of Mathworks 
Matlab helps us to simulate the correct results in advance. The results are illustrated in 
Fig 4.12. 

 

Fig 4.11 The input function and coefficients of the FIR filter system 

 

 

 

 - 51 -



                                Chapter 4 Implementation Results and Performance Evaluation 
 

 

 

Fig 4.12 Output results of the FIR filter system 

After simulating the 16-tap FIR filter system with Mathworks Matlab, the 
benchmark is ported into the implemented design as circuit verification. The circuit 
verification is executed by post-layout simulation with the taped-out chip introduced 
above. Due to the imperfect library of the CMOS technology, the simulation results 
addressed here are from the ALU cluster IP hard macro. The results of the post-layout 
simulation are listed from Fig 4.13(a) to Fig 4.13(e) continuously. The post-layout 
simulation is based on TSMC 0.15um CMOS technology. The circuit of the proposed 
design shows that it works correctly at clock rate of 100 MHz after comparing 
between the final result from Matlab and the results of post-layout simulation. It 
reveals that the functionality is correct exactly and IP works correctly.  
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Fig 4.13(a) Post-Layout Simulation Results of an ALU cluster IP (Ⅰ) 

Fig 4.13(b) Post-Layout Simulation Results of an ALU cluster IP (Ⅱ) 
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Fig 4.13(c) Post-Layout Simulation Results of an ALU cluster IP (Ⅲ) 

Fig 4.13(d) Post-Layout Simulation Results of an ALU cluster IP (Ⅳ) 

 - 54 -



                                Chapter 4 Implementation Results and Performance Evaluation 
 

Fig 4.13(e) Post-Layout Simulation Results of an ALU cluster IP (Ⅴ) 

4.2.4  Chip Testing  

Chip testing of the prototype 2, the ALU cluster IP, is proceeded. The printed 
circuit board (PCB) are designed and manufactured in order to verify the silicon chip. 
As illustrated in Fig 4.14, a four layer PCB board with socket is used and the 
packaged chip is put on the socket welding on the board for measurement. There are 
three different voltages of power supply as shown in Fig 4.14. They are IO pad power 
for the chip, core power for chip and supply power for MRAM. The voltages are 3.3 V, 
1.2V and 5V respectively. The buffer in the PCB is used to control the input and 
output states of bidirectional IO pad adopted by the chip.  

 
Fig 4.14 The Printed Circuit Board (PCB) for the manufactured chip 
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The testing equipments adopted are Agilent 16902A Logic Analyzer System with 
Agilent 16720A pattern generator and Agilent 16910A logic analyzer modules as 
shown in Fig 4.15. In order to avoid the performance degradation results from the 
pods of pattern generator modules, pods of pattern generator are directly connected to 
the PCB combined the chip. A diagram is illustrated in Fig 4.16.  

 

Fig 4.15 Testing Equipments – Logic Analyzer System 

 

Fig 4.16 Connection between the Chip and Testing Equipments 

Chip testing is divided into two parts such as functional measurement and 
performance measurement. The performance measurement adopts the 16-tap FIR 
filter system presented previously as the benchmark. And the functional 
measurements include basic functions, writing to IRF and memory and reading from 
IRF and memory. While verifying the chip, several phenomenons are revealed. First, 
the input signals from pattern generator modules into the chip can not be sent 
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correctly. After measuring the signal through an oscilloscope, the phenomenon that 
the signals have irregular voltage values near the threshold voltage is revealed. 
Besides, the peripheral signals on the PCB are also measured and the phenomenon is 
also still existent. Second the control signal for the MRAM such as the signal of chip 
enable is toggled irregular and it disagrees with the results of post-layout simulation. 
Not only the chip enable signal but also some other signals also has the same 
phenomenon. These are two main phenomenon observed from the chip testing and 
they may cause the errors of the measurement. Chip testing is progressing and the 
errors will be solved and discussed.  

4.3  Circuit Implementation and Results of Floating Point Units 
for the ALU cluster IP  

In this section, the implementation results of the FPUs described above will be 
introduced. These FPUs are implemented as hard macros with cell-based design flow. 
The macros can be used to integrated with the ALU cluster IP and provide efficient 
floating points operations ability. The synthesis results and the results of Auto Place 
and Route (APR) are discussed. The circuit verification results executed through 
post-layout simulation are also listed in this section too. 

The floating point units are synthesized with Synopsys Design Compiler and the 
physical layouts of these FPU macros are finished by means of the Synopsys Astro. 
The TSMC 0.18um CMOS technology and Artisan SAGE-x Standard Cell Library are 
adopted for implementing these FPUs. As mentioned above, three types of FPUs are 
designed. Type 1 FPU includes the floating point operations for addition, subtraction 
and multiplication. It operates in 75 MHz of post simulation frequency. The gate 
count and area are 23,298 and 0.415 mm2 respectively. The area utilization and power 
consumption are 0.9 and 10.85 mW respectively. The physical layout of the type 1 
macro of the FPU is shown in Fig 4.17. As shown in Fig 4.18, the macro of type 2 
FPU is implemented completely. It provides the floating point operations including 
addition, subtraction, multiplication and division inside. The post simulation clock 
rate of type 2 FPU is 25 MHz. The gate count and area are 31,331 and 0.529 mm2 
respectively. The area utilization, the same as type 1 FPU, is 0.9. The power 
dissipation of type 2 FPU is 4.60 mW. Type 3 FPU, including the division floating 
point operation only, is in order to collocate with type 1 FPU to provide the same 
operations as type 2 FPU. So the type 3 FPU is implemented with the 25 MHz clock 
rate of post simulation in spite of it is not the fastest operation frequency it can 
achieve. The gate count and area are 24,931 and 0.396 mm2. The area utilization, the 
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same as type 1 and type 2 FPU, is 0.9 and the power dissipation is 6.59 mW. The 
physical layout of type 3 FPU macro is shown in Fig 4.19 below. The summary of 
these results are listed in Table 4.5 

 

Fig 4.17 Physical Layout of the Type 1 FPU macro 

 

Fig 4.18 Physical Layout of the Type 2 FPU macro 
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Fig 4.19 Physical Layout of the Type 3 FPU macro 

Table 4.5 Summary of the Implementation Results 

Floating Point Unit 
Type 1 (ADD, 
SUB, MUL) 

Type2 (ADD, 
SUB, MUL, DIV)

Type 3 (DIV 
only) 

Technology TSMC 0.18um TSMC 0.18um TSMC 0.18um 

Cell Library 
Artisan 

SAGE-XTM
Artisan 

SAGE-XTM
Artisan 

SAGE-XTM

Post-layout 
Simulation Clock 

Rate 
75 MHz 25 MHz 25 MHz 

Area Utilization 0.9 0.9 0.9 
Power Consumption 

(mW) 
10.85 4.60 6.59 

Gate Count 23,298 31,331 24,931 
Area (mm2) 0.415 mm2 0.529 mm2 0.396 mm2

The circuit verification results are listed below. Post-layout simulation are 
performed with the TSMC 0.18um CMOS technology and library environment. The 
post-layout simulation results for type 1 FPU are shown in Fig 4.20 and Fig 4.21. 
They are the full view and the interception of whole simulation periods respectively. 
The same as type 1, the verification results of type 2 FPU are shown in Fig 4.22 and 
Fig 4.23 and they are full view and a portion of all periods respectively. Eventually 
the post-layout simulation results of type 3 FPU are illustrated in Fig 4.24 and Fig 
4.25. As described previously, they are also full view and interception of whole 
simulation periods respectively. These outcomes promise that these hard macros work 
correctly corresponding to their own clock rate of post-layout simulation. 
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Fig 4.20 Full View of Post-Layout Simulation Results for Type 1 FPU 

Fig 4.21 Interception of Post-Layout Simulation Results for Type 1 FPU 
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Fig 4.22 Full View of Post-Layout Simulation Results for Type 2 FPU 

Fig 4.23 Interception of Post-Layout Simulation Results for Type 2 FPU 
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Fig 4.24 Full View of Post-Layout Simulation Results for Type 3 FPU 

Fig 4.25 Interception of Post-Layout Simulation Results for Type 3 FPU 

4.4  Performance Evaluation and Comparison 

In this section, the performance of floating point operations will be evaluation 
and comparison. The benchmark used to evaluation is the Fast Fourier Transform 
(FFT) commonly used in media processing applications. There are two target 
architectures used to evaluate the performance of floating point operations and 
compare the performance each other. These two parts mentioned above are discussed 
in the following. 
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4.4.1  Selected Benchmark 

In this thesis, 32-points Fast Fourier Transform is selected as the benchmark. The 
FFT is an efficient algorithm for computation of the Fourier Transform. There are 
three reasons that the FFT is selected. First, the FFT is the most often used operations 
in the multimedia applications or signal processing applications. The second reason is 
taken as an example that executing on the streaming programming model in paper 
[18]. Third, the applications involved the FFT usually need to handle the floating 
point numbers operations. It is well-match for the performance evaluations presented 
in this thesis. 

The Split-Radix FFT (SRFFT) algorithm is adopted to form the benchmark [31] 
[32]. An inspection of the decimation in frequency flowchart of FFT shows that the 
even terms and the odd terms of the Discrete Fourier Transform (DFT) can be 
computed independently. It is quite clear that the radix-2 algorithm is better for the 
even terms and the radix-4 algorithm is better for the odd terms of the DFT. So the 
split-Radix FFT (SRFFT) algorithm which reduces the number of computations 
exploits the idea of using radix-2 and radix-4 algorithms mixed into the same FFT 
algorithm.  

As mentioned above, the FFT algorithm is decomposed into even terms and odd 
terms to compute independently. The radix-2 decimation in frequency FFT algorithm 
used for the even numbered samples of the N-points DFT are given in below. 
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The length-N DFT will be obtained by using the N Split-Radix FFT algorithm. 
The benchmark adopted is the length 32 Split-Radix FFT and its flowchart is shown 
in Fig 4.26.  

 

Fig 4.26 Flowchart of the length 32 Split-Radix FFT algorithm 

4.4.2  Evaluation and Comparison Results  

Reminding the developmental roadmap discussed in the first part of Chapter 3, 
the ALU cluster IPs will be combined with the versatile baseboard to form a media 
streaming architecture with homogeneous processor cores. As shown in Fig 3.4, 
different numbers of ALU cluster IPs will be stacked with the board. As the result of 
the simulator, the numbers of the ALU cluster IPs are decided. One, two, four and 
eight ALU cluster IPs will be integrated with the baseboard in order. As introduced 
above, there are two target architectures to evaluate the performance and any of which 
will be considered when different numbers of ALU cluster IPs are integrated.  
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The two target architectures used in the thesis are Original Integer Architecture 
and Floating Point Unit and Original Integer Architecture Mixed. First, the original 
integer architecture is the architecture of the ALU cluster IP mentioned in Section 
3.3.2. It is the architecture for integer operations essentially. The benchmark with 
floating point operations is decomposed. All operand are presented in the IEEE 754 
floating point format and decomposed into several fields of integer and computes 
separately. It means the floating point operations are executed on the integer operation 
architecture by decomposing the format fit the original form. Then the second 
evaluation architecture is the floating point unit and original integer architecture 
mixed. In the SRFFT benchmark, it includes integer operations and floating point 
number operations. For the second evaluation architecture the integer operations and 
floating point number operations are computed by the integer and floating point unit 
respectively. 

Before the evaluation results are presented, the essential cycles of executing the 
floating point numbers by original integer architecture such as ALU cluster IP will be 
calculated. The multiplication operation of the floating point numbers needs six cycles 
to finish the calculation. The addition operations of the floating point numbers in the 
ALU unit costs seven cycles to complete the calculation. In addition to these floating 
point number operations, other integer operations of this architecture need one cycle 
to finish the operation. The first data inputted into the functional units will need more 
cycles to finish the job result from the pipeline features. The integer ALU operations 
of the ALU cluster IP is two-stage pipelined and the integer multiplication operations 
of the ALU cluster IP is four-stage pipelined. The floating point number operations 
executed in the floating point unit architecture need one cycle for finishing the 
addition and one cycle for completing the multiplication. In the performance 
evaluation in the floating point unit architecture, all of the data are represented by the 
IEEE 754 format and calculate in this architecture.  

Different number of clusters will be considered and evaluated with the two target 
architectures. The essential cycles to complete the 32-points FFT benchmark between 
different number clusters and different target architectures are listed separately in the 
following tables. They show the cycles need to finish the benchmark. The leftmost 
field stands for the ALU cluster IPs included in the evaluation. The middle field listed 
in the table represents the operation cycles needed for the functional unit while 
executing the benchmark. The rightmost field of the tables is the critical cycles which 
is underlined and dominate the performance of the conditions of different number 
clusters and different target architectures.  
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Table 4.6 shows the detail information of cycles for the Original Integer 
Architecture, the ALU cluster IP which is mentioned in former section. When only 
one cluster is used in the evaluation, the dominant functional unit is ALU2 and the 
dominant cycles of the performance is 647 cycles. The same concepts as one cluster, 
the evaluation for two clusters insides are listed and the dominant functional unit is 
ALU1 in the second cluster and the dominant cycles is 331 cycles. As discussed just 
now, the performance of four clusters insides architecture is that the dominant 
functional unit is ALU2 in the second cluster and the dominant cycles are 213 cycles. 
The dominant functional unit is ALU1 of the fifth cluster in the eight clusters 
architecture and its cycles are 151 cycles.  

Table 4.6 Performance Evaluation Results for Original Integer Architecture 
 

Function Unit and Cycles 
Critical 
Cycles 

1 Cluster ALU1:645  ALU2:647  MUL1:412  MUL2:330 647

ALU1:320  ALU2:319  MUL1:141  MUL2:95 320 
2 Clusters 

ALU1:331  ALU2:309  MUL1:256  MUL2:240 331

ALU1:177  ALU2:213  MUL1:55  MUL2:72 213

ALU1:190  ALU2:153  MUL1:105  MUL2:72 190 

ALU1:173  ALU2:179  MUL1:135  MUL2:112 179 
4 Clusters 

ALU1:154  ALU2:141  MUL1:189  MUL2:122 189 

ALU1:145  ALU2:96  MUL1:39  MUL2:34 145 

ALU1:96  ALU2:126  MUL1:52  MUL2:34 126 

ALU1:85  ALU2:90  MUL1:54  MUL2:54 90 

ALU1:91  ALU2:60  MUL1:67  MUL2:44 91 

ALU1:151  ALU2:132  MUL1:89  MUL2:84 151

ALU1:66  ALU2:103  MUL1:92  MUL2:64 103 

ALU1:97  ALU2:90  MUL1:74  MUL2:74 97 

8 Clusters 

ALU1:72  ALU2:102  MUL1:97  MUL2:64 102 
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Table 4.7 shows the detail information of cycles for the Floating Point Unit and 
Original Integer Architecture Mixed. It processes the integer numbers and the floating 
point numbers separately. When only one cluster is used in the evaluation, the 
dominant functional unit is ALU2 and the dominant cycles of the performance is 157 
cycles. The same concepts as one cluster, the evaluation for two clusters insides are 
listed and the dominant functional unit is ALU2 both in the first cluster and in the 
second cluster and the dominant cycles is 74 cycles. As discussed just now, the 
performance of four clusters insides architecture is that the dominant functional unit is 
ALU1 in the third cluster and the dominant cycles are 52 cycles. The dominant 
functional unit is ALU1 of the fifth cluster and ALU2 of the sixth cluster in the eight 
clusters architecture and its cycles are 42 cycles.  

Table 4.7 Performance Evaluation Results for Floating Point Unit and Original Integer Architecture Mixed 
 

Function Unit and Cycles 
Critical 
Cycles 

1 Cluster ALU1:150  ALU2:154  MUL1:157  MUL2:143 157

ALU1:71  ALU2:74  MUL1:74  MUL2:68 74
2 Clusters 

ALU1:69  ALU2:74  MUL1:73  MUL2:67 74

ALU1:48  ALU2:48  MUL1:46  MUL2:42 48 

ALU1:50  ALU2:50  MUL1:48  MUL2:43 50 

ALU1:52  ALU2:50  MUL1:47  MUL2:43 52
4 Clusters 

ALU1:50  ALU2:49  MUL1:48  MUL2:44 50 

ALU1:40  ALU2:39  MUL1:35  MUL2:34 40 

ALU1:38  ALU2:41  MUL1:39  MUL2:34 41 

ALU1:40  ALU2:40  MUL1:35  MUL2:35 40 

ALU1:40  ALU2:38  MUL1:40  MUL2:35 40 

ALU1:42  ALU2:38  MUL1:38  MUL2:36 42

ALU1:38  ALU2:42  MUL1:42  MUL2:36 42

ALU1:40  ALU2:40  MUL1:36  MUL2:36 40 

8 Clusters 

ALU1:40  ALU2:39  MUL1:40  MUL2:36 40 
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As listed and described above, two target architectures with different numbers of 
clusters are evaluated. Considering the performance of the information listed above. 
In order to compare the performance of the selected benchmark, the variable of the 
number of clusters inside will be fixed between these architectures. First, the 
performance when one cluster insides these architectures are compared and plotted in 
Fig 4.27. The cycles used to complete the benchmark is 647 and 157 cycles for the 
original integer architecture and the mixture of floating point unit and original integer 
architecture respectively. Result from analyzing the data above, the performance of 
the mixed floating point unit and original integer architecture is 4.12 times better than 
the original integer architecture in cycles. 
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Fig 4.27 Performance Evaluation of one cluster included in these architectures 

Second, the performance when two clusters included in these architectures are 
compared and plotted in Fig 4.28. The essential cycles used to complete the 
benchmark is 331and 74 cycles for the original integer architecture and floating point 
unit and original integer architecture mixed respectively. Result from analyzing the 
data above, the performance of the mixed of floating point unit and original integer 
architecture is 4.47 times better than the original integer architecture in cycles. 
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Fig 4.28 Performance Evaluation of two clusters included in these architectures 

Following that the performance when four clusters included in these 
architectures are compared and sketched in Fig 4.29. The critical cycles need to finish 
the benchmark is 213 and 52 cycles for the original integer architecture and the 
floating point unit and original integer mixed architecture respectively. Analyzing the 
data above the performance of the mixture of floating point unit and original integer 
architecture is 4.09 times better than the original integer architecture in cycles.  

Four Clusters Used for Different Target Architectuures

0

50

100

150

200

250

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed 

C
yc

le
s

Cluster1_ALU1
Cluster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
Cluster2_ALU2
Cluster2_MUL1
Cluster2_MUL2
Cluster3_ALU1
Cluster3_ALU2
Cluster3_MUL1
Cluster3_MUL2
Cluster4_ALU1
Cluster4_ALU2
Cluster4_MUL1
Cluster4_MUL2

 
Fig 4.29 Performance Evaluation of four clusters included in these architectures 
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Finally the performance when eight clusters included in these architectures are 
compared and sketched in Fig 4.30. The essential cycles need to finish the benchmark 
is 151 and 42 cycles for the original integer architecture and mixed floating point unit 
and original integer architecture respectively. Analyzing the data above the 
performance of the mixed floating point unit and original integer architecture is 3.60 
times better than the original integer architecture in cycles. 
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Fig 4.30 Performance Evaluation of eight clusters included in these architectures 

Because of the hardware implementation, these architectures may operate in 
different clock rate. As described in the previous sections, the original integer 
architecture, the ALU cluster IP, is operated in the clock frequency of 100 MHz for 
post-layout simulation. The floating point unit adopted in the floating point unit and 
original integer architecture mixed are designed and implemented with the 75 MHz 
clock rate in the post-layout simulation. So the comparison of the execution time 
between these architectures is evaluated also. As listed in the Table 4.8, the critical 
execution time of the benchmark for two target architectures with different numbers 
of clusters is shown. The boldface and underlined data are listed to represent the 
critical execution time needed for completing the benchmark. Result from scheduling 
the instructions of the operations in the SRFFT benchmark the critical functional units 
in these architectures is slightly different. When scheduling the instructions, the cycles 
which execute no-operation (NOP) instructions will influence the total execution time 
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result in this situation. The results will be compared each other later to demonstrate 
the trend of the performance evaluation is in similar with the performance evaluation 
in clock cycles.  

Table 4.8 Performance Evaluation Results in Execution Time 
    Execution  

Time 
(ns) 

Original Integer 
Architecture 

Floating Point Unit and 
Original Integer 

Architecture Mixed 

1 Cluster 6470 2035.3

3200 957.8
2 Cluster 

3310 944.5 

2130 602.1 

1900 622.1 

1790 628.9
4 Cluster 

1890 625.2 

1450 505.6 

1260 525.5 

900 518.8 

910 518.8 

1510 532.2 

1030 545.4

970 518.8 

8 Cluster 

102 518.8 

As in Table 4.8 and detail information of the Fig 4.31 shown below, the 
performance when one cluster insides between these architectures are compares and 
plotted in Fig 4.31. The essential execution time need to complete the benchmark is 
6470 and 2035.3 nano seconds for the original integer architecture and mixed 
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architecture of floating point unit and original integer architecture respectively. 
Analyzing the data above, the performance of the mixture of floating point unit and 
original integer architecture is 3.18 times better than the original integer architecture. 
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Fig 4.31 Performance Evaluation of one cluster included in execution time 

Second, the detail information of the performance when two clusters included in 
these architectures are compared and plotted in Fig 4.32 and Table 4.8. The needed 
execution time used to complete the benchmark is 3310 and 957.8 nano seconds for 
the original integer architecture and the mixture of floating point unit and original 
integer architecture respectively. Result from analyzing the data above, the 
performance of the mixed of floating point unit and original integer architecture is 
3.46 times better than the original integer architecture. 
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Fig 4.32 Performance Evaluation of two clusters included in execution time 

Third, the detail information of the performance when four clusters included in 
these architectures are compared and plotted in Fig 4.33 and Table 4.8. The critical 
time need to finish the benchmark is 2130 and 628.9 nano seconds for the original 
integer architecture and the mixture of floating point unit and original integer 
architecture respectively. Analyzing the data above the performance of the mixed 
floating point unit and original integer architecture is about 3.39 times better than the 
original integer architecture in seconds. 
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Fig 4.33 Performance Evaluation of four clusters included in execution time 

Eventually the performance when eight clusters included in these architectures 
are compared and sketched in Fig 4.34. The essential time need to complete the 
benchmark is 1510 and 545.4 nano seconds for the original integer architecture and 
floating point unit and original integer mixed architecture respectively. Result from 
analyzing the data above, the performance of the mixture of floating point unit and 
original integer architecture is about 2.77 times better than the original integer 
architecture. 
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Fig 4.34 Performance Evaluation of eight clusters included in execution time 

The summary of the descriptions above are discussed in this paragraph. The 
performance evaluations considering the execution cycles and the execution time of 
two target architectures with different numbers of clusters used are normalized to the 
original integer architecture such as the architecture of the ALU cluster IP mentioned 
in previous section and the amount of performance enhancement are listed. As shown 
in Fig 4.35, the performance normalized to the original integer architecture is 
sketched. Observing Fig 4.35, it is clear that no matter what numbers of clusters 
included the trend of the performance increases incrementally. Considering the 
phenomenon that more clusters used makes the performance improvement increases 
slight slowly when the number of clusters used is focused between different target 
architectures. This phenomenon results form that more cluster used will share and 
degrade the computation loading of each functional unit and reveals the slight slowly 
increase of performance. In spite of this, it is still about four times of the performance 
improvement when the floating point units involved in the architectures.  

The performance evaluation considering the execution time has the same trend 
and phenomenon. As illustrated in Fig 4.36, the trend of the performance increases 
incrementally regardless of the numbers of clusters. It also has the phenomenon that 
the performance increases slight slowly when more clusters used if the number of 
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clusters used is focused between different target architectures. The reason is the same 
as description above. In spite of this, it is still about 3.3 times of the performance 
improvement when the floating point units involved in the architectures. These two 
performance evaluation executed the benchmark SRFFT prove that the floating point 
unit is an essential units to improve the performance of the architecture.  
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Fig 4.35 Comparison of Performance Normalized in execution cycles 
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Fig 4.36 Comparison of Performance Normalized in execution time 
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The following of this section the performance comparison results which fixed the 
type of adopted architecture when different numbers of clusters included in the 
selected architecture are presented. Consider the execution cycles of finishing the 
SRFFT benchmark, the results are shown in Fig 4.37. As illustrated in the figure, the 
trend shows that the more cluster used in the architecture the higher performance 
which is gained from the architecture. The performance enhancements of the original 
integer architecture are 1.95, 3.04 and 4.28 times higher than one cluster included 
architecture for two clusters, four clusters and eight clusters used in the original 
integer architecture respectively. Similarly the mixture architecture of the floating 
point unit and original integer architecture also has the trend. The performance 
improvements of the selected mixture architecture are 2.12, 3.01 and 3.73 times 
higher than single cluster used for two clusters, four clusters and eight clusters used 
respectively.  

Then the performance comparisons in the perspective of execution time are also 
presented. As shown in Fig 4.38, the trend of performance improvement is the same. 
As illustrated in the figure, the performance enhancements of the original integer 
architecture are 1.95, 3.03 and 4.28 times higher than one cluster included architecture 
for two clusters, four clusters and eight clusters used in the original integer 
architecture respectively. Similarly the mixture architecture of the floating point unit 
and original integer architecture also has the trend in the perspective of execution time. 
The performance improvements of the selected mixture architecture are 2.12, 3.24 and 
3.73 times higher than single cluster used for two clusters, four clusters and eight 
clusters used respectively. The results mentioned above shows that more clusters used 
in the selected architecture makes more parallelism be exploit and improves the 
performance higher. 

A phenomenon observed from Fig 4.37 and Fig 4.38 is discussed in this 
paragraph. It shows that when the numbers of clusters included in the architecture are 
increased from one to two or from two to four, the performance improvement is 
doubled no matter what architectures are adopted and either in the perspective of 
execution time or execution cycles. But when the clusters included increase from four 
to eight, the performance enhancement is not doubled and not conspicuous. The 
phenomenon results from huge data exchange outside the intra register files embedded 
in each arithmetic unit and shows that the performance enhancement does not come 
with more and expensive hardware resources in this case.  
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Fig 4.37 Performance Comparison for Different Number of Clusters used in cycles 
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Fig 4.38 Performance Comparison for Different Number of Clusters used in execution 

time 
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The summarized conclusions of the section of the performance evaluation are 
described in this paragraph. The performance enhancement when the floating point 
unit involved in the target architecture is 4.07 times in the condition of execution 
cycles. In the condition of execution time it also provides 3.2 times of performance 
improvement in the discussed architecture. In the analysis and evaluation of this thesis, 
more clusters used in each architecture result from higher performance and the most 
performance enhancement is 4 times while eight clusters adopted. The area overhead 
while providing the performance improvement discussed above is 10.8% by the 
floating point unit.  
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CHAPTER 5 

Conclusion and Future Work 

In this chapter, the conclusions of proposed designs in this thesis are described. 
The future work of constructing the media processing architecture with homogeneous 
processor cores is also discussed. The details are introduced in the following 
sub-sections.  

5.1  Conclusion  

In this thesis, the media processing architecture with homogeneous processor 
cores is proposed to overcome the challenges of the programming models and system 
architectures. In the meantime, this work has also demonstrated the feasibility of 
implementation consideration. An ALU cluster IP designed shows it is suitable for 
media application and such a hardware accelerator with platform-based design is able 
to form a media streaming architecture with homogeneous processor cores in the 
future. The chip is manufactured using TSMC 0.15um CMOS technology. The details 
of the silicon backed design are addressed in the previous chapters. 

The proposed ALU cluster IP with Magnetic RAM provides the ability to against 
the issue of soft error [35 - 37]. It through the multiple functional units and replace the 
data memory with Magnetic RAM to form a radiation harden architecture. It will be a 
critical issue of the highly integrated design and the design for typical and special 
applications such as mission critical, life critical, military and space applications.  

To go a step further, the ALU cluster IP which supported floating point 
operations is also proposed. The floating point units used to integrate with the ALU 
cluster IP are designed and implemented as hard macros. These hard macros of 
floating point units provide efficient processing ability to handle the operation of 
floating point numbers. The performance evaluation of variant architectures reveals 
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and proves the floating point units designed is essential and critical in the proposed 
hardware accelerator.  

Continuing the design of the media streaming architecture with homogeneous 
processor cores there are future works needed to be implemented, designed and make 
effort. The details are introduced in the following paragraph. 

5.2 Future Work 

As shown in Fig 3.4, the prototype 3, the ALU cluster IP with floating point 
operation supported will be taped out. Then the system integration will preliminary 
start. An ALU cluster IP with compatible board for logic tile connector will be stacked 
into the RealView versatile platform baseboard for ARM926EJ-S shown in Fig 5.1. 
Besides verifying the AMBA protocol of chip, one ALU cluster IP stacked in the 
board also shows that the IP has the capability as a hardware accelerator integrated 
with the platform.  

 

Fig 5.1 RealView Versatile Platform Baseboard for ARM926EJ-S  

Subsequently multiple processing elements, ALU cluster IPs, will be integrated 
with the versatile baseboard to form a media streaming architecture with 
homogeneous processor cores. Suitable and selected benchmarks are ported into this 
processing system and compare with each other. Eventually a high efficient, well 
matched to media application and radiation harden processing system will be 
proposed and completed. 
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