

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

具多齊質性處理器核心之多媒體串流處理架構

Media Streaming Architecture with
Homogeneous Processor Cores

研究生：劉 嘉 儀

指導教授：闕 河 鳴 博士

中 華 民 國 九 十 六 年 七 月

具多齊質性處理器核心之

多媒體串流處理架構

Media Streaming Architecture with

Homogeneous Processor Cores

研 究 生：劉嘉儀

指導教授：闕河鳴 博士

Student：Chia-Yi Liou

Advisor：Dr. Herming Chiueh

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis
Submitted to Department of Communication Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

July 2007
Hsinchu, Taiwan.

中華民國九十六年七月

具多齊質性處理器核心之

多媒體串流處理架構

研究生：劉嘉儀 指導教授：闕河鳴 博士

國立交通大學

電信工程學系碩士班

摘要

隨著科技的發展與進步，在現今的生活中應用於多媒體運算之可攜式嵌入式

系統的重要性與日俱增。然而由於傳統運算模型中之記憶體存取模型與處理核心

和記憶體間的效能間隙落差，導致多媒體運算無法有效率的對應並且實現在傳統

的處理器架構模型上。另外在硬體實現的系統架構上亦是產生效能無法提升的重

要因素之ㄧ。因此所提出的多媒體處理架構採用史丹佛大學提出之串流處理模型

配合上多種硬體實現的系統架構來克服傳統處理器架構所造成效率低落。並且提

供一具高平行度和有效率運算速率的多媒體運算平台。

在本論文中，設計並下線製作一個與 AMBA 介面相容之多媒體處理單元作

為構成具多齊質性處理核心之多媒體串流處理架構的核心運算單元。除此之外亦

設計實做浮點運算處理器，利用此浮點運算處理器提供此一與 AMBA 介面相容

之多媒體處理單元有效率的浮點運算處理能力，使其可以更廣泛的應用於各種多

媒體處理運算中。透過不同運算單元與架構間的效能評估與比較，證實了僅需要

 I

些許的硬體成本即可提供更有效率且更廣泛的多媒體運算處理能力。另外此效能

評估與比較亦證實了具多齊質性處理核心之多媒體串流處理架構在擁有不同數

目之處理核心時，在合理的硬體成本之下其效能可以有效的提升。

 II

Media Streaming Architecture with

Homogeneous Processor Cores

Student: Chia-Yi Liou Advisor: Dr. Herming Chiueh

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract
As the evolution of information technology, embedded systems with media

applications for portable devices are more and more important in modern life.
However, the conventional processor architecture does not handle the processing
requirement of media applications very well since the characteristics of media
applications and other inheritance disability from conventional microprocessor
architecture’s memory accessing model and processor-memory performance gap.

Recent research shows that the stream processing model and stream processor
architecture are suitable for media applications. However, software implementations
for a streaming processor are not a trivial job since it evolves a lot of hand and manual
optimization in memory exchange and tread deployment to different processor
element or functional unit.

In this thesis, a processing element for reconfigurable homogenous ALU cluster
and its Advanced Microcontroller Bus Architecture (AMBA) platform interface has
been designed and implemented. The proposed design integrated platform based
design methodology and stream processing model to overcome the challenge of media
applications. The proposed homogenous ALU cluster is utilized as a reconfigurable
hardware accelerator for specific and different functions in media applications. The
chosen AMBA interface provides an integration platform for embedded operating
system and programming development environment. The combination of these
methodologies provides a turnkey solution for media applications development in
modern portable devices.

 III

The ALU cluster IP with AMBA interface is taped out using TSMC 0.15um
technology and operates at 100MHz. The chip area is 3.9*3.9 mm2 and gate count is
0.2 million. A 4-layer FRP printed circuit board is designed and fabricated as the
daughter card for system integration. The daughter card carries the designed chip is
integrated to ARM versatile platform board as the system integration and application
development environment. In addition, a floating point operation unit for ALU cluster
IP is proposed and implemented and it will be integrated with ALU cluster IP as the
future revision of the hardware accelerator. The hard macro of the floating point unit
operates at 75MHz, its area and gate count is 0.415mm2 and 0.02 million respectively.
The performance evaluation and comparison in floating point operation benchmark
between different proposed architectures are presented. Media applications can be
developed for proposed reconfigurable homogenous processing elements in the future
using the chips and systems build in this thesis.

 IV

Acknowledgement

本篇碩士論文得以順利完成，首先要感謝我的指導教授 闕河鳴

博士。老師擁有淵博的學識，總能讓學生在研究遇到瓶頸的時候給予

寶貴的指導及建議，使我能夠突破與進步。更由於老師在平日培養學

生獨立思考與分析、解決問題的能力，使我對於研究的領域建立正確

的態度及觀念。

再者要感謝晶片系統設計實驗室的學長姐、同學以及學弟妹們，

在我的研究上及生活上给與諸多的指教及幫助。因為你們的支持，才

讓我得以擁有一段快樂充實的碩士班研究生活，謝謝大家。

最後，我要感謝父母的栽培與養育之恩、所有關心我的家人與朋

友、以及我生長的這塊土地、社會與國家。

誠心感謝並祝福所有提攜幫助我和支持鼓勵我的大家，謝謝各位

並祝福各位。

 劉嘉儀

 V

CONTENTS

中文摘要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ Ⅰ

English Abstract..………………………………………………………….. Ⅲ

Acknowledgment…………………………………………………………... Ⅴ

Content……………………………………………………………………... Ⅵ

List of Tables……………………………………………………………….. Ⅷ

List of Figures……………………………………………………………… Ⅸ

Chapter 1 Introduction……………………………………………………. 1

1.1 Motivation……………………………………………………………... 1
1.2 Organization…………………………………………………………… 3

Chapter 2 Background and Challenges………………………………….. 4

2.1 Issues of Programming Model………………………………………… 4
2.2 Issues of System Architecture…………………………………………. 6

Chapter 3 Development Roadmap and Proposed Design……………….. 10

3.1 Developmental Roadmap……………………………………………….. 11
 3.1.1 Motivation………………………………………………………….. 11
 3.1.2 Roadmap………………………………………………………….... 11
 3.1.2.1 Stream Programming Model…………………………………... 11
 3.1.2.2 Developmental Roadmap……………………………………… 14
3.2 An ALU cluster……………………………………………………….. 17

3.2.1 Micro-Architecture of an ALU cluster... 17
3.3 An ALU cluster Intellectual Property………………………………… 18
 3.3.1 Overview of AMBA………………………………………………... 18

 VI

 3.3.1.1 Introduction of AMBA AHB…………………………………... 20
 3.3.1.2 Bus Interconnection…………………………………………… 21
 3.3.1.3 Signals for the protocol of AMBA AHB slave………………… 22
 3.3.1.4 Basic Transfer…………………………………………………. 24
 3.3.1.5 Transfer Type………………………………………………….. 25
 3.3.1.6 Address Decoding……………………………………………... 26
 3.3.1.7 Burst Operation………………………………………………... 27
 3.3.2 Micro-Architecture of an ALU cluster Intellectual Property………. 28
3.4 Floating Point Units for the ALU cluster IP………………………….. 32
 3.4.1 Design Consideration………………………………………………. 33

Chapter 4 Implementation Results and Performance Evaluation……... 37

4.1 Implementation and Testing Results of An ALU cluster……………….. 38
4.2 Verification and Implementation Results of An ALU cluster Intellectual

Property………………………………………………………………….

43

 4.2.1 An ALU cluster IP with Magnetic RAM…………………………... 43
 4.2.1.1 Introduction of Magnetic RAM……………………………….. 44
 4.2.1.2 Modified ALU cluster IP for Magnetic RAM…………………. 44
 4.2.2 Implementation Results…………………………………………….. 45
 4.2.3 Circuit Verification…………………………………………………. 50
 4.2.4 Chip Testing………………………………………………………... 55
4.3 Circuit Implementation and Results of Floating Point Units for the

ALU cluster IP…………………………………………………………..

57

4.4 Performance Evaluation and Comparison……………………………… 62
 4.4.1 Selected Benchmark……………………………………………….. 63
 4.4.2 Evaluation and Comparison Results.. 64

Chapter 5 Conclusion and Future Work…………………………………. 80

 5.1 Conclusion…………………………………………………………….. 80
 5.2 Future Work…………………………………………………………… 81

Bibliography……………………………………………………………….. 82

 VII

LIST of TABLES

Table 2.1 System Architecture vs. media application…………………… 9

Table 3.1 Comparison between programming models………………….. 14
Table 3.2 Burst Signal Encoding………………………………………... 27
Table 3.3 Active Byte Lanes for a 32 bits big endian data bus…………. 28
Table 3.4 Active Byte Lanes for a 32 bits little endian data bus………... 28
Table 3.5 Format of single and double precision IEEE 754 floating

point number…………………………………………………..

34

Table 3.6 Effective Range of the IEEE 754 floating point number……... 34

Table 4.1 Implementation Results Summary of ALU cluster…………… 38
Table 4.2 Testing results summaries of ALU cluster……………………. 43
Table 4.3 Summary of Implementation Characteristics…………………. 46
Table 4.4 The Definitions of I/O the ports………………………………. 49
Table 4.5 Summary of the Implementation Results…………................... 59
Table 4.6 Performance Evaluation Results for Original Integer

Architecture……………………………………………………

66

Table 4.7 Performance Evaluation Results for Floating Point Unit and
Original Integer Architecture Mixed…………………………..

67

Table 4.8 Performance Evaluation Results in Execution Time…………. 71

 VIII

LIST OF FIGURES

Fig 2.1 Conventional Programming Model... 5
Fig 2.2 Processor-Memory Performance Gap………………………. 5
Fig 2.3 Application Specified Integrated Circuit Design…………… 6
Fig 2.4 An Example of Platform-Based Architecture……………….. 7
Fig 2.5 A Diagram of Reconfigurable Architecture…………………. 8

Fig 3.1 Stream Programming model………………………………… 12
Fig 3.2 Example of 1024-points radix-2 Fast Fourier Transform…… 13
Fig 3.3 Example of Stereo Depth Extraction………………………... 13
Fig 3.4 Development roadmap………………………………………. 15
Fig 3.5 Micro-Architecture of ALU cluster…………………………. 17
Fig 3.6 Diagram of AMBA-based system…………………………... 20
Fig 3.7 Diagram of AMBA AHB interconnection…………………... 22
Fig 3.8 Diagram of AHB slave interface……………………………. 23
Fig 3.9 An example of simple transfer……………………………… 24
Fig 3.10 The example of the transfer extended………………………. 25
Fig 3.11 Slave Selected Signal……………………………………….. 26
Fig 3.12 The Proposed ALU Cluster IP Architecture………………… 29
Fig 3.13 The state diagram of the finite state machine……………….. 31
Fig 3.14 An ALU cluster IP with Floating Point Unit Supported

Architecture………………………………………………….

36

Fig 4.1 Physical Layout of an ALU cluster…………………………. 39
Fig 4.2 Floorplan and Pad Assignment of an ALU cluster………….. 40
Fig 4.3 Microphotograph of taped out ALU cluster………………… 41
Fig 4.4 An ALU cluster with CQFP128 package…………………… 41
Fig 4.5 An ALU cluster with PCB board…………………………… 42
Fig 4.6 Modified ALU cluster IP architecture for MRAM…………. 45
Fig 4.7 Physical Layout of an ALU Cluster IP……………………… 46
Fig 4.8 Pads Assignment of an ALU Cluster IP…………………….. 47
Fig 4.9 Die Microphotograph of Taped Out Chip…………………… 48
Fig 4.10 Photograph of Prototype with Package……………………... 48
Fig 4.11 The input function and coefficients of the FIR filter system... 51
Fig 4.12 Output results of the FIR filter system……………………… 52
Fig 4.13(a) Post-Layout Simulation Results of an ALU cluster IP (Ⅰ)… 53

 IX

Fig 4.13(b) Post-Layout Simulation Results of an ALU cluster IP (Ⅱ)… 53
Fig 4.13(c) Post-Layout Simulation Results of an ALU cluster IP (Ⅲ)… 54
Fig 4.13(d) Post-Layout Simulation Results of an ALU cluster IP (Ⅳ)… 54
Fig 4.13(e) Post-Layout Simulation Results of an ALU cluster IP (Ⅴ)… 55
Fig 4.14 The Printed Circuit Board (PCB) for the manufactured chip.. 55
Fig 4.15 Testing Equipments – Logic Analyzer System……………… 56
Fig 4.16 Connection between the Chip and Testing Equipments…….. 56
Fig 4.17 Physical Layout of the Type 1 FPU macro………………….. 58
Fig 4.18 Physical Layout of the Type 2 FPU macro………………….. 58
Fig 4.19 Physical Layout of the Type 3 FPU macro………………….. 59
Fig 4.20 Full View of Post-Layout Simulation Results for Type 1

FPU…………………………………………………………..

60

Fig 4.21 Interception of Post-Layout Simulation Results for Type 1
FPU…………………………………………………………..

60

Fig 4.22 Full View of Post-Layout Simulation Results for Type 2
FPU…………………………………………………………..

61

Fig 4.23 Interception of Post-Layout Simulation Results for Type 2
FPU…………………………………………………………..

61

Fig 4.24 Full View of Post-Layout Simulation Results for Type 3
FPU…………………………………………………………..

62

Fig 4.25 Interception of Post-Layout Simulation Results for Type 3
FPU…………………………………………………………..

62

Fig 4.26 Flowchart of the length 32 Split-Radix FFT algorithm……... 64
Fig 4.27 Performance Evaluation of one cluster included in these

architectures………………………………………………….

68

Fig 4.28 Performance Evaluation of two clusters included in these
architectures………………………………………………….

69

Fig 4.29 Performance Evaluation of four clusters included in these
architectures………………………………………………….

69

Fig 4.30 Performance Evaluation of eight clusters included in these
architectures………………………………………………….

70

Fig 4.31 Performance Evaluation of one cluster included in execution
time…………………………………………………………..

72

Fig 4.32 Performance Evaluation of two clusters included in
execution time……………………………………………….

73

Fig 4.33 Performance Evaluation of four clusters included in
execution time……………………………………………….

74

 X

Fig 4.34 Performance Evaluation of eight clusters included in
execution time……………………………………………….

75

Fig 4.35 Comparison of Performance Normalized in execution cycles 76
Fig 4.36 Comparison of Performance Normalized in execution time... 76
Fig 4.37 Performance Comparison for Different Number of Clusters

used in cycles...

78

Fig 4.38 Performance Comparison for Different Number of Clusters
used in execution time……………………………………….

78

Fig 5.1 RealView Versatile Platform Baseboard for ARM926EJ-S… 81

 XI

 Chapter 1 Introduction

CHAPTER 1

Introduction

1.1 Motivation

Portable systems are more and more important. They become essentials of our
life. Furthermore, media applications are becoming a dominant portion of processing
for portable entertainment system in modern life.

Multimedia processing applications are characterized by large available
parallelism, little data reuse and high computation to memory access ratio. Large
available parallelism due to each data stream is independent to others, so each stream
is possible to be operated concurrently. The reason for the characteristic of little data
reuse is that typical data reference in media applications require a single read and
write per global data element. High computation to memory access ratio is needed
because of large amount of data operations [1 - 4]. Thus these characteristics poorly
match conventional general purpose processor architecture. The conventional
programming model and processor architecture dealt with media applications
traditionally are not efficient because of the characteristics of media applications, its
memory accessing model and processor-memory performance gap [5].

In addition to programming models, system architectures used to implement the
whole media processing system are also key factors to affect the efficiency of
processing. System architectures such as application specific integrated circuits
(ASIC), platform-based architecture and reconfigurable architecture are used to
implement the hardware for media applications. However, these architectures for
media processing have their own drawbacks separately. They suffer from lacking of
flexibility, programmability, and inefficient communication bandwidth. The issues of
programming model and system architecture mentioned above limit the processing
requirement needed for modern media application in mobile system.

 - 1 -

 Chapter 1 Introduction

However, streaming programming model has been suggested as an efficient
programming model for both media applications and base-band architecture for
software defined radios [6] [7]. In order to build next generation media processing
system, advantages from different system architectures are integrated. The pros of
reconfigurable architecture and platform-based architecture will overcome the
drawbacks of using above-mentioned architecture separately.

This thesis presented a processing element for reconfigurable homogenous ALU
cluster and its Advanced Microcontroller Bus Architecture (AMBA) platform
interface has been designed and implemented. The proposed design provides enough
processing requirement for media applications and utilized as a reconfigurable
hardware accelerator for specific and different functions in media applications.
AMBA AHB interface in this design provides an integration platform for embedded
operating system and programming development environment. The combination of
these design methodologies will be a suitable solution in development applications for
portable devices.

All design and verification of the proposed architecture are finished with
cell-based design flow. The chip is taped out using TSMC 0.15um CMOS technology
and operates at 100MHz. The die size and gate count are 15.2 mm2 and 0.2 million
respectively. Utilize COB (PGA256) as package material. The pad number of
proposed chip is 130. The designed chip with daughter card will be integrated with
ARM926EJ-S versatile baseboard to form a media streaming system and as the
development environment for applications.

Furthermore, a floating point operation unit is critical in the majority of media
application and makes the applications efficient. A floating point operation unit for
ALU cluster IP is proposed and implemented in this thesis as a modified version of
the hardware accelerator. The hard macro of three different type floating point unit
operates at 75MHz, 25MHz and 25MHz, its area and gate count is 0.415 mm2,
0.529mm2 , 0.396mm2 and 0.02million, 0.03 million, 0.02 million respectively. Then
the performance evaluation and comparison between two different target architectures
are presented and shows the results that the floating point unit is efficient and critical
for the proposed architecture.

 - 2 -

 Chapter 1 Introduction

1.2 Organization

In the beginning of Chapter 2, the background and challenges about this thesis
are introduced. Issues of programming models and system architectures for media
applications are discussed.

Next come the details of the development roadmap and the proposed design is
described. The development roadmap and micro-architectures of an ALU cluster, an
ALU cluster Intellectual Property and Floating point units for the ALU cluster IP and
the overview of the AMBA AHB protocol are described in Chapter 3.

In Chapter 4, implementation results of proposed designs are described. The
verification and testing results are also introduced in this chapter. Then the
performance evaluation and comparison are discussed in the last part of the chapter. In
the last chapter of this thesis, Chapter 5, the conclusion and future work are
summarized.

 - 3 -

 Chapter 2 Background and Challenges

CHAPTER 2

Background and Challenges

This chapter begins with the discussion of conventional programming model for
media application. Therefore two kinds of programming model are used to deal with
data while the comparison between programming models will be introduced in next
chapter. Meanwhile, different system architectures of implementing the design are
presented and discussed. These issues discussed of the programming models and
system architectures are the background of current research. This thesis is motivated
from these issues of the background.

2.1 Issues of Programming Model

Traditionally, the media applications are processed by conventional
programming model implemented in conventional general purpose processor
architecture. As shown in Fig 2.1, conventional programming model read data from
memory system for computation and write results back into memory system. The
memory system of this processing model depends on caches, which is optimized for
latency and data reuse. Remind the characteristics of media processing applications.
First, every stream is read exactly once, resulting in poor cache performance. Second,
operating one data element is largely independent to others. It results in a large
amount of data parallelism and high latency tolerance. Finally it can not support high
ratio of computation to memory access. Above-mentioned issues show that large
available parallelism, little data reuse and high computation to memory access ratio
are cramped by the attributes of caches.

Another clincher is memory-processor communication bandwidth gap. As shown
in Fig 2.2, the processor-memory performance gap reveals that the performance
growth of memory is much slower than processor [8]. The phenomenon will cause
more latency for memory access and communication between processor and memory

 - 4 -

 Chapter 2 Background and Challenges

is more critical. And traditional memory system utilizes global structures to provide
data bandwidth. It means that it cannot scale to multiple arithmetic logic units for high
performance rates in media applications.

Fig 2.1 Conventional Programming Model

1

10

100

1000

19
80
19
81
19
82
19
83
19
84
19
85
19
86
19
87
19
88
19
89
19
90
19
91
19
92
19
93
19
94
19
95
19
96
19
97
19
98
19
99
20
00

Y EAR

PE
R
F
O
R
M
A
N
C
E

CPU

DRAM

35% up

7% up

Fig 2.2 Processor-Memory Performance Gap

 - 5 -

 Chapter 2 Background and Challenges

2.2 Issues of System Architecture

Generally speaking, there are many different system architectures when
implementing a design. Three main system architectures of design methodology, such
as application specified integrated circuit(ASIC), platform-based architecture and
reconfigurable architecture will be briefly introduced in this section on the basis of
time to market demands, programmability, flexibility and physical area, etc.
Following, the pros and cons of these system architectures are discussed. [9 - 11]

The application specified integrated circuit is the most commonly used in these
architectures. The ASIC design principle is shown in Fig 2.3. The chip
implementation could be finished very quickly as long as the well-defined
specification is given. Overall function and performance, such like area, power
consumption and operating frequency, are optimized for the specification required.
Thus long design cycles which include circuit design and the manufacture increase the
investment risk. And design verifications and corrections also take a large amount of
design effort. It raises investment risk also. In addition, the waste of logic resources
and power dissipation for non-active hardware is another issue for the design
methodology. Besides, let us consider the situation that the specifications are changed.
In this situation, it reveals the lack of flexibility for ASIC design. It also shows the
lack of programmability and non-reusable in the architecture.

Fig 2.3 Application Specified Integrated Circuit Design

 - 6 -

 Chapter 2 Background and Challenges

The platform-based architecture includes a processor, memory, communication
bus and multiple functional hardware accelerators. It gains more flexibility than ASIC
architecture from reusing existence intellectual property (IP), such as digital signal
processor (DSP), baseband codec, audio applications accelerator and other functional
blocks. The example of platform-based architecture is shown in Fig 2.4. Different IP
blocks are added or removed to meet different application. The platform-based
architecture provides a common communication bus for convenience to integrated
different IP macros quickly. Different systems will be set up as fast as possible. It
reduces the design and re-develops effort significantly. One more attractive thing is
that these platforms have been set up with a developing baseboard. Many common IP
and peripherals on the baseboard will benefit to fast prototyping. The existent OS of
the baseboard can reduce the effort of connecting the real applications to development
design. Current research such as [12], [13] and [14] are listed in the reference.

Thus there are some drawbacks in this architecture. The interface communicate
each functional macro increases the overhead of whole system. Besides, the memory
bandwidth is limited by the communication bus. These factors decrease the efficiency
seriously. In the meantime, the power consumption should be increased when more IP
blocks are included. The idle IP macros waste unnecessary power dissipation, too. As
discussed above, the platform-based architecture is more flexible and programmable
than ASIC design. Thus this architecture is still a task-oriented system. It can not be
applied to any application using the same framework.

Fig 2.4 An Example of Platform-Based Architecture

 - 7 -

 Chapter 2 Background and Challenges

The reconfigurable architecture, the third design methodology, is similar to
platform-based architecture. As shown in Fig 2.5, there are multiple general
processing elements in this architecture. These processing elements, or ALU cluster IP
blocks, play the key role of operating data stream. A system of reconfigurable
architecture is built up with a micro controller, a bus or a network on chip system and
a well-hierarchical memory system. One advantage of this kind of architecture is the
usages of hardware accelerator IP are reconfigurable. It provides a significant
flexibility and programmability for different applications. Another advantage is the
applications can be operated concurrently. It means that it provides the ability for
parallel operation. Nevertheless, there exist some potential drawbacks in using the
design methodology. First, without power management system the power dissipation
of unused process elements can not be saved. Second, the reconfigurable architecture
could not match the above-introduced characteristic very well since the bandwidth of
communication bus is insufficient and data transfer bottleneck encounters between
process elements and memory system. The efficient memory hierarchy system is
needed to solve the performance degradation. Current research such as [15], [16] and
[17] are referenced in the bibliography.

 Fig 2.5 A Diagram of Reconfigurable Architecture

 - 8 -

 Chapter 2 Background and Challenges

In conclusion, one of these system architectures can be selected to implement the
design trading off between pros and cons addressed above. These pros and cons
corresponding to characteristics of media applications are summarized in the Table 2.1
listed below. Thus, any one of them adopted alone suffers from some drawbacks and
can not meet the application of media processing very well. Consequently, the
proposed design will be addressed and discussed in later section. It must resolves
these issues.

Table 2.1 System Architecture vs. media application

ASIC Platform-Based
Architecture

Reconfigurable
Architecture

System
Architecture for

Media
Application

◆ Lack of hardware
flexibility

◆ Lack of
programmability

◆ Inefficient Memory
bandwidth

◆ Waste of logic
resources and
power to feed
non-active
hardware

◆ Memory bandwidth
will be limited by
bus

◆ Immediate data
transfer will be
inefficiency

◆ Overhead of bus
interface

◆ Flexibility and
programmability,
but task oriented

◆ Flexibility and
programmability

◆ Parallelism

◆ Data transfer
bottleneck between
process elements
and memory
system

◆ Need to solve
insufficient
memory bandwidth
to expose locality
with little global
data reuse

 - 9 -

 Chapter 3 Development Roadmap and Proposed Design

CHAPTER 3

Development Roadmap and Proposed Design

Base on the previous two chapters, the background, challenges are addressed.
Then the developmental roadmap and the proposed design of this thesis will discussed
in this chapter.

The first section is the developmental roadmap of this thesis. It introduces the
motivation to propose these designs after the issues of Chapter 2 are discussed.
Afterwards the streaming programming model and developmental roadmap overcome
the issues mentioned above are introduced.

The second section is the demonstration of previous design of ALU cluster.
Review the architecture of the ALU cluster, the key processing element of ALU
cluster intellectual property. Through testing the manufactured chip, the results
confirm the correctness of functionality and the architecture is not only feasible but
also efficient for media applications. The latter part of the description of this
paragraph will be introduced clearly in next chapter.

The third part of this chapter is the description of the designed ALU cluster
intellectual property. This design is an integration of the improved ALU cluster and
the AMBA AHB slave interface. The improved ALU cluster is based on the ALU
cluster discussed in previous section. The detail architectures and overview of AMBA
AHB slave protocol are introduced in this section.

Eventually the forth section of this chapter is the description of the designed
floating point operation units for ALU cluster IP. It will bring up an idea to integrate
the floating point unit in the ALU cluster IP. The design consideration of the floating
point units are described in the section. The details of the design are summarized.

 - 10 -

 Chapter 3 Development Roadmap and Proposed Design

3.1 Developmental Roadmap

3.1.1 Motivation

Issues of programming models and system architectures encountered in modern
media processing system are addressed in Section 2.1 and Section 2.2. These
drawbacks make the media applications handled inefficiently. The situation is more
and more serious when great deals of media applications are applied in portable
systems.

The media streaming architecture with homogeneous processor cores, a turnkey
solution for media applications, is proposed in this thesis. This system intends to
provide several cons of processing data stream. First it provides highly parallel
computing ability so that multiple processing elements are needed. Performance
improvement of media applications is achieved because of exploiting the large
available parallelism inherence of media process. Subsequently, the communication
bandwidth bottleneck discussed above has to solve. An efficient hierarchy of memory
system is needed to expose the characteristic of little global data reuse and high
computation to memory access ratio in media applications. Therefore, a
reconfigurable hardware accelerator is built as a processing element to form the media
streaming architecture with homogeneous processor cores in this thesis.

3.1.2 Roadmap

As mentioned above in the previous chapter, the conventional programming
model is not suitable for these applications. So the stream programming model is
adopted in this thesis. We will discuss the stream programming model below.
Following the developmental roadmap including system architecture is described in
this chapter later.

3.1.2.1 Stream Programming Model

In the stream programming model, data is aligned in order as a stream. Streams
are arbitrary data type. Operations are applied on entire streams. These operations
perform computations, stream transfers, loads and stores etc. in the programming
model. Nodes which carry out these operations are called kernels. They perform
computation, such as a function, to each element of whole data streams. Kernels input

 - 11 -

 Chapter 3 Development Roadmap and Proposed Design

one or more data streams to operate and output one or more data streams as outputs.
These kernels only operate on local data and may not make arbitrary memory
references.

After introducing streams, operations and kernels in the stream programming
model, the structure of the model are depicted in Fig 3.1. As shown in the diagram,
the stream programming model handles data by chaining operations together and
makes data passing through kernels. Two example of dealing with applications using
stream programming model are shown in Fig 3.2 and Fig 3.3 respectively. One is
1024-points complex radix-2 Fast Fourier Transform (FFT), a popular operation in
multimedia processing [18]. Another is the example of image processing, the Stereo
Depth Extraction, commonly used in modern image and medical diagnosing system
[3].

Fig 3.1 Stream Programming model

 - 12 -

 Chapter 3 Development Roadmap and Proposed Design

 Fig 3.2 Example of 1024-points radix-2 Fast Fourier Transform

Fig 3.3 Example of Stereo Depth Extraction

Remind the characteristic of the conventional programming model discussed in
Section 2.1. Comparison between the stream programming model and the
conventional programming model, some obvious pros are revealed when expressing
media applications in the stream programming model. Corresponding three features of
media process such as little data reuse, high large available parallelism and
computation to memory access ratio, Pros are described briefly below. First, multiple
kernels exploit the inherent parallelism feature. Second, data streams produced at the
end of one kernel will consume at the next kernel makes the programming model fit

 - 13 -

 Chapter 3 Development Roadmap and Proposed Design

the feature of little data reuse. Finally the high computation to memory access ratio
results from the minimization global memory usage in the stream programming model.
Features compare between these two programming models are listed in Table 3.1.

Table 3.1 Comparison between programming models
 Conventional Programming

Model
Stream Programming Model

Large available
parallelism

One central processor unit Multiple kernels

Little data reuse
Traditional caches are

ineffective

Data produced at the end of
one kernel will consume at the

next kernel
High

computation to
memory access

ratio

Each element reference the
off-chip memory

Minimize global memory
usage

The programming model in this thesis was adopted the stream programming
model. Because of the features mentioned above, it is suitable for processing system
aimed at multimedia processing applications.

3.1.2.2 Developmental Roadmap

The developmental roadmap proposed in this section provides a suitable solution
to process applications to conform the requirement expected. A sketch map of
proposed development roadmap is illustrated in Fig 3.4. In this roadmap, five steps
are segmented to build the media streaming architecture with homogeneous processor
cores. As illustrated in the Fig 3.4, the proposed system gains the advantages from
platform-based architecture and reconfigurable architecture. The mixture of system
architectures are utilized as the structure of proposed system to overcome the
challenge of issues deriving from using these system architectures singly. And the
whole processing system provides an efficient processing system to get over issues of
programming models and system architectures.

 - 14 -

 Chapter 3 Development Roadmap and Proposed Design

ALU cluster IP

ALU
IRF IRF

ALU
IRF IRF

MUL
IRF IRF

MUL
IRF IRF

DIV
IRF IRF

8

Synthesized
Instruction memory

MRAM

32 3232 15 14332 7+3

32 32 14
alu_work

ALU cluster
Pc_counter

143

Scratch
Pad

Controller

108

AMBA AHB wrapper
Finite State MachineAddress Generation Unit

ALU cluster IP

Load_sto

Decode

re

r

8

32

AL
I

U
RF IRF

ALU
IRF IRF

MUL
IRF IRF

MUL
IRF IRF

DIV
IRF IRF

32 32 32 32 32 32 32 32 32 32

Memory
Instruction

Data memory

32 3232 14 14232 7+3

32 32 14
alu_work

Decoder

Pc_counter

142

Scratch
Pad

Controller

5+4

32

32*10

32*5

AMBA AHB wrapper
Finite State MachineAddress Generation Unit

ALU cluster IP

ALU cluster

Floating Point Unit

D
IV

M
U

L
A

D
D

/SU
B

D
ata Input

D
ata O

utput

Control

 Fig 3.4 Development roadmap

Descriptions of these five steps are introduced briefly in this section. First, the
leftmost chip photo, implemented in UMC 0.18um CMOS technology, in Fig 3.4 is
the prototype 1 of ALU cluster [19] [20] . This is called the first step of proposed
developmental roadmap. The chip had been measured and verified. As a processing
element, the measurement results demonstrate that the architecture and functionality is
suitable and correct for the applications.

By the right side of prototype 1, the ALU cluster IP with AMBA AHB interface,
the prototype 2, was designed and taped out using TSMC 0.15um CMOS technology.
The layout and die photo with package are depicted in the development roadmap
respectively. This step verifies the designed ALU cluster IP to be suitable as a
reconfigurable hardware accelerator in media applications. In addition to this purpose,
the interface obeyed the AHB slave bus provides a common communication bridge
between these ALU cluster IPs and micro-controller used to manage whole media
streaming system. These features make the proposed prototype 2 have ability as a
processing element to be applied in the media streaming system. It is a significant
feature of the second step in developmental roadmap.

 - 15 -

 Chapter 3 Development Roadmap and Proposed Design

In modern multimedia applications, the floating point operations occupy a large
percentage of the computation amount. These floating point operations stand a key
role of performance and power consumption in whole applications. A floating point
unit is essential in performance improvement if the budget of power consumption and
logic resources are agreed. Consequently, an ALU cluster IP supported floating point
operation is a requirement. As shown in the middle of Fig 3.4, an ALU cluster IP with
floating point supported are introduced. The hard macro of floating point unit is
designed and implemented using TSMC 0.18um CMS technology. The combinations
of ALU cluster IP and the hard macro provides efficient computing ability to handle
floating point operations. It is the third generation in the described developmental
roadmap.

Following the forth step in Fig 3.4 is discussed in this paragraph. In this step,
system integration is preliminary started. An ALU cluster IP with compatible board
for logic tile connector will be stacked into the RealView versatile platform baseboard
for ARM926EJ-S [21] [22]. In this baseboard, the ALU cluster IP is verified whether
the AHB bus interface fits the bus protocol. One ALU cluster IP stacked in the board
are also made sure that the IP has the ability as a hardware accelerator integrated with
the platform.

Finally multiple processing elements, ALU cluster IPs, will be combined with
the versatile baseboard to form a media streaming architecture with homogeneous
processor cores. The proposed system matches the features of media applications such
as large available parallelism, little data reuse and high computation to memory access
ratio. Suitable benchmarks are ported into this processing system and compare with
each other. These applications include some popular operations in multimedia
applications and MIMO-OFDM system. The finite impulse response (FIR) filter
system and Fast Fourier Transform (FFT) are selected as benchmarks in media
applications. And the key operations of MIMO-OFDM system, such as matrix
inversion and Gram-Schmitt process, are selected as benchmarks, too [23]. Adoption
of stream programming model and mixture of system architectures make the media
streaming system become a turkey solution for modern multimedia processing
requirement.

Five paragraphs discussed above are introduced the proposed developmental
roadmap compendiously. The details of these steps, such as micro architectures,
implementation results and etc., are discussed and described in the following sections
and chapters respectively.

 - 16 -

 Chapter 3 Development Roadmap and Proposed Design

3.2 An ALU cluster

The briefly description of the previous design, an ALU cluster, included the
micro architecture is described. The ALU cluster is called prototype 1 in the
above-presented developmental roadmap. It is convincible that it can handle media
applications expectedly.

3.2.1 Micro-Architecture of an ALU cluster

As the major part for handling the media processing, an ALU cluster includes
five arithmetic units, supporting to process the parallel data concurrently. As shown in
Fig 3.5, they are two ALUs, two multipliers and one divider. Large amount of digital
signal processing application are suitable for porting in the architecture with mixture
of arithmetic units. There is also one scratch pad register file (SPRF), ten banks of
intra register file (IRF), a controller and a decoder.

Fig 3.5 Micro-Architecture of ALU cluster

There are thirteen instructions can be executed by the ALU, such as ADD, SUB,
ABS, AND, OR, XOR, NOT, SLL, SRL, SRA, LT, GT, EQ. The adder and
comparator adopted for ALUs are the carry-lookahead architecture with two stage
pipeline. Booth encoding architecture was adopted for our four stage pipeline
multiplier. This multiplier can carry out multiplication. The last arithmetic unit is the
divider. It performs the division operation that gets the quotient and remainder and
calculates the square root. The designed divider in an ALU cluster is not the key
kernel about performance concerned so that this unit is not pipelined and considered
to shrink the logic resource by increasing latencies of operation.

 - 17 -

 Chapter 3 Development Roadmap and Proposed Design

As mentioned above, in the ALU cluster there are IRFs embedded for each
operation units. These intra register files are local to themselves arithmetic units. The
purpose of IRFs is to provide an efficient memory bandwidth for arithmetic units. In
other words, these arithmetic units would not waste the precious global memory
bandwidth. It acquires required bandwidth from less precious bandwidth of IRFs.
Another extra storage element inside the ALU cluster is scratch pad register file. The
capabilities of SPRF are as the storage element for commonly used coefficient of
applications.

The remaining parts of the ALU cluster are the decoder and the controller. The
decoder can decode the instructions from off-chip instruction memory and provides
control signals needed for ALU cluster. During the execution of an ALU cluster, the
controller sequences and issues the decoded instructions to the function units and
decides the inputs source, such as IRF, SPRF or data memory. When an ALU cluster
operates to read or write, the controller manages the data flowing.

3.3 An ALU cluster Intellectual Property

In this section, an ALU cluster Intellectual Property (IP) is designed and the
architecture is also discussed. It is the prototype 2 mentioned in the roadmap
presented in previous section [24]. As mentioned in previous chapter, there is an
AMBA AHB wrapper in the ALU cluster IP. First the AMBA AHB protocol will
be described in the following paragraph. Then the micro architecture of an ALU
cluster IP will be presented and discussed in the last part of this section.

3.3.1 Overview of AMBA

The Advanced Microcontroller Bus Architecture (AMBA) specification defines
an on-chip communications standard for designing high-performance embedded
microcontrollers [25]. There are three buses defined in this specification. They are
Advanced High-performance Bus (AHB), Advanced System Bus (ASB), and
Advanced Peripheral Bus (APB). These bus protocols are used in different
applications. For example, the AHB are used as the high-performance system
backbone bus. It is for high-performance and high clock frequency system modules. It
provides the efficient connection of processors, on-chip memories and off-chip
external memory interfaces with low-power peripheral macrocell functions. The ASB
is also for high-performance system modules. It is suitable for system bus that the
high-performance features of AHB are not required. It also supports the efficient

 - 18 -

 Chapter 3 Development Roadmap and Proposed Design

connection of processors, on-chip memories and off-chip external memory interfaces
with low-power peripheral macrocell functions the same as AHB. Finally, the APB
optimized with minimal power consumption and interface complexity is used for
peripherals. APB can be used in conjunction with either version of the system bus.

Four key requirements are satisfied by AMBA specification. They are
right-first-time, technology-independent, modular system design and minimization of
the silicon infrastructure. The system obeyed AMBA protocol could facilitate the
right-first-time development of embedded microcontroller products with one or more
CPUs or signal processors. The specification is technology-independent and ensures
that highly reusable peripheral and system macrocells can be migrated across a
diverse range of IC processes and be appropriate for full-custom, standard cell and
gate array technologies. It also improves processor independence, providing a
development roadmap for advanced cached CPU cores and the development of
peripheral libraries to encourage modular system design. The system using AMBA
protocol can be minimized the silicon infrastructure required to support efficient
on-chip and off-chip communication for both operation and manufacturing test.

A typical AMBA-based microcontroller is composed of a high-performance
system backbone bus (AMBA AHB or AMBA ASB) which is able to sustain the
external memory bandwidth, on which the CPU, on-chip memory and other Direct
Memory Access (DMA) device reside. The diagram of AMBA-based system is shown
in Fig 3.6. The backbone bus of whole system has ability to provide a high-bandwidth
interface between elements involved in the majority of transfers. APB, a lower
bandwidth bus, is located on the high-performance bus by the bridge. Most of the
peripheral devices in the AMBA-based system are located.

The features of AHB, ASB and APB are listed in Fig 3.6. As shown below in this
figure, AHB is suitable for high performance, pipelined operation, multiple bus
masters, and burst transformation and split transactions. Compare with AHB, ASB is
lack of the ability to burst transformation and split transactions. The simple interface
is adopted by APB. It latches address and control signal to save power. Thus it is
suitable for many peripherals. The difference between APB and AHB or ASB is that
AHB and ASB are able to wait the transfer during it is not ready whether the wait
situation is from on-chip bus or itself. APB must response the transaction
immediately.

 - 19 -

 Chapter 3 Development Roadmap and Proposed Design

Fig 3.6 Diagram of AMBA-based system

3.3.1.1 Introduction of AMBA AHB

The AMBA AHB is a new generation bus intended to address the requirements of
high-performance synthesizable designs. It sits above the APB and implements the
features required for high-performance, high clock frequency system, including split
transactions, burst transfers, single cycle bus master handover, single clock edge
operation, non-tristate implementation and wider data bus configurations. The AMBA
AHB system is designed with the following components, including AHB bus master,
slave, decoder and arbiter. These typical components are described briefly below.

The AHB master starts an AMBA AHB transfer by driving address and control
signals. They provide information which the AHB slave needed. Exact one bus master
is allowed to actively use the bus at any one time. This component is the most
complex bus interface in an AMBA system. Usually the designer would use existence
bus master rather than concerned with the details in the bus master interface.

The AHB bus slave responds a write or read operation. All signals required for
the transfer, such as the address and control information, will be generated by the bus
master. The bus slave signals back to the active master the success, failure or waiting
of the data transfer.

The AHB bus decoder is used to perform a centralized address decoding function,
which improves the portability of peripherals, by making them independent of the

 - 20 -

 Chapter 3 Development Roadmap and Proposed Design

system memory map. It is used to decode the address of each transfer and provide a
select signal for the slave that is involved in the transfer.

Finally the AHB bus arbiter will be described. The AHB arbiter is used to control
which master has access to the bus. It ensures that only one bus master is allowed to
initiate data transfers at a time. The arbiter uses a prioritization scheme to decide
which bus master is currently the highest priority master requesting the bus. The detail
of the priority scheme is not specified and is defined for each application.

Some details of AHB interface, such as bus interconnection, signals for AHB
slaves, basic transfer, transfer type, address decoding and burst operation will be
presented in the following sub sections. The reaming details will be described in the
AMBA specification.

3.3.1.2 Bus Interconnection

The diagram of AMBA AHB interconnection is shown in Fig 3.7. As illustrated
in the diagram, this protocol is designed to be used with a central multiplexer
interconnection scheme. The scheme makes all bus master drive out the address and
control signals indicating the transfer they intend to perform. Then the arbiter obeyed
the prior policy determines which master is able to route its address and control
signals to all of the slaves. There is also a central decoder in Fig 3.7. It is used to
control the read data and response signal multiplexer to response appropriate signals
from the slave to the master which involved in the transfer.

 - 21 -

 Chapter 3 Development Roadmap and Proposed Design

Fig 3.7 Diagram of AMBA AHB interconnection

3.3.1.3 Signals for the protocol of AMBA AHB slave

The signals using in AHB slave protocol are shown in Fig 3.8, which is the
diagram of AHB slave interface. These signals are briefly described in the following
paragraph.

 - 22 -

 Chapter 3 Development Roadmap and Proposed Design

Fig 3.8 Diagram of AHB slave interface

The input signals are classified into six groups such as select, address and control,
data, reset, clock and split capable signals. The select signal, HSELx, is from decoder
and indicates that the current transfer is intended for the selected slave. The address
and control signals such as HADDR, HWRITE, HTRANS, HSIZE and HBURST are
from master to slave. HADDR is the system address bus. HWRITE indicates that the
transfer is reading operation or writing operation. HTRANS indicates the type of
current transfer. HSIZE shows the size of the transfer and HBURST shows the burst
type of operations in the transfer. The data signal, HWDATA, is form master and used
to transfer data during write operations. The reset and clock signal are HRESETn and
HCLK respectively. The signals shown in the bottom of Fig 3.8 are from arbiter and
used to support the split transactions.

There are four output signals. They are HREADY, HRESP, HRDATA and
HSPLITx. The HREADY indicates a transfer has finished on the bus and the HRESP
provides additional information on the status of a transfer. Above-mentioned signals

 - 23 -

 Chapter 3 Development Roadmap and Proposed Design

are called transfer response signal group. The HRDATA is used to transfer data from
slaves to masters during read operations. The last output signal is HSPLITx, which is
used for split completion request.

3.3.1.4 Basic Transfer

The basic transfer of AHB protocol is composed of two phases. They are address
phase and data phase. An example of simple transfer is shown in Fig 3.9. As illustrate
in the figure, the address phase only requires one cycle but the data phase may require
several cycles. The necessary signals needed for the basic transfer are HCLK,
HADDR, control, HWDATA. The transfers will response the HREADY, HRDATA
and HRESP. The figure demonstrates how the address and data phases of the transfer
during different clock periods. The address phase always occurs during the data phase
of previous transfer. The above-mentioned situation of overlapping is based on the
pipelined nature of the bus and allows for high performance operations. The logic
high of HREADY represents the transfer is ready to be finished and logic low shows
that the transfer is needed to be extended. The example of the transfer needed to be
extended is shown in Fig 3.10. The address phase is the same as Fig 3.9. Thus the data
phase shown in Fig 3.10 is extended with two cycles because the transfer is not ready
to be completed by means of signaling the HREADY logic low. This may result from
both master and slave depends on the transfer type. It will be introduced in the
following section.

Fig 3.9 An example of simple transfer

 - 24 -

 Chapter 3 Development Roadmap and Proposed Design

Fig 3.10 The example of the transfer extended

3.3.1.5 Transfer Type

The transfers of AMBA AHB are classified into four different transfer types. The
HTRANS signals will be used to indicate the type of transfer. The two bits signal
represents IDLE, BUSY, NONSEQ and SEQ by 00, 01, 10 and 11 respectively. These
transfer types will be introduced below.

The IDLE state indicates no data transfer is required and is used when a bus
master is granted the bus but does not intend to perform a data transfer. The bus slaves
must always provide a zero wait state OKAY response to IDLE transfers and the
transfer should be ignored by the slave.

The BUSY transfer type indicates the bus master is continuing with a burst of
transfers, but the next transfer cannot take place immediately. This transfer type
allows bus masters to insert IDLE cycles in the middle of bursts of transfer. When a
master uses the BUSY transfer type the address and control signals must reflect the
next transfer in the burst. The transfer should be ignored by the slave. Slaves must
always provide a zero wait state OKAY response, in the same way that they respond
to IDLE transfers.

The NONSEQ transfer type is used to indicate the first transfer of a burst or a
single transfer. The necessary information such as address and control signals are

 - 25 -

 Chapter 3 Development Roadmap and Proposed Design

unrelated to the previous transfer. In AMBA AHB specification, a single transfer on
the bus is treated as the first one of a burst therefore the transfer type is NONSEQ too.

The last one transfer type is SEQ. This type indicates the remaining transfers in a
burst. The address needed is related to the previous transfer and it is equal to the
address of the previous transfer plus the size in the incrementing burst. But in the
situation of wrapping burst, the address of the transfer wraps at the address boundary
equal to the size multiplied by the number of beats in the transfer. In addition, the
control information is identical to the previous transfer.

3.3.1.6 Address Decoding

The select signal, HSELx, will be provided by an address decoder shown in Fig
3.11 for each slave on the bus. The select signal is a combinatorial decode of the
high-order address signals and simple address decoding schemes are encouraged to
avoid complex decode logic and to be suitable for high-performance operations. A
slave only samples the address and control signals and HSELX when HREADY is
logic HIGH. It is indicates that the current transfer is completing. Under certain
situation it is possible that HSELx will be asserted when HREADY is logic LOW, but
the selected slave will have changed by the time the current transfer completes. The
minimum address space can be allocated to a single slave is 1kB. All bus masters are
designed such that they will not perform incrementing transfer over a 1kB boundary,
thus ensuring that a burst never crosses an address decode boundary.

Fig 3.11 Slave Selected Signal

 - 26 -

 Chapter 3 Development Roadmap and Proposed Design

3.3.1.7 Burst Operation

There are two kinds of bursts of the burst operations supported in the AMBA
AHB protocol. They are incrementing and wrapping burst modes. Four, eight and
sixteen-beat bursts are defined in AHB protocol. The burst information is identified by
the signal HBURST. It decides the burst modes and beat number. The relationship
between signal and type is listed in Table 3.2. There are eight types defined in this
table.

Table 3.2 Burst Signal Encoding

HBURST [2:0] Type Description

000 SINGLE Single transfer
001 INCR Incrementing burst of unspecified length
010 WRAP4 4-beat wrapping burst
011 INCR4 4-beat incrementing burst
100 WRAP8 8-beat wrapping burst
101 INCR8 8-beat incrementing burst
110 WRAP16 16-beat wrapping burst
111 INCR16 16-beat incrementing burst

The address accessing of each transfer in the burst of the incrementing burst
mode is sequential and an increment of the previous address. In the wrapping burst
mode, if the start address of the transfer is not aligned to the total number of bytes in
the burst (size x beats) then the address of the transfer in the burst will wrap when the
boundary is reached. For example, a four-beat wrapping burst of word accesses will
wrap at 16-byte boundaries. Therefore, if the start address of the transfer is 0x34, then
it consists of four transfers to addresses 0x34, 0x38, 0x3C and 0x30. It will wrap the
address back when the boundary is reached. As description it will wrap back to 0x30.

Bursts must not cross a 1kB address boundary. It is important that masters do not
attempt to start a fixed-length incrementing burst which would cause this boundary to
be crossed. It means that an incrementing burst can be of any length, but the upper
limit is set by the fact that the address must not cross a 1kB boundary. The signal,
HSIZE, is used to control the transfer size. It supports eight different sizes such as 8,
16, 32, 64, 128, 256, 512 and 1024 bits. Finally the endian policy defined in this
protocol is shown in Table 3.3 and Table 3.4. They are big-endian and little-endian

 - 27 -

 Chapter 3 Development Roadmap and Proposed Design

respectively. The designer only needs to obey one of the endian policies and makes
whole systems consistently.

Table 3.3 Active Byte Lanes for a 32 bits big endian data bus
Transfer

size
Address
offset

Data
[31:24]

Data
[23:16]

Data
[15:8]

Data
[7:0]

Word 0 ˇ ˇ ˇ ˇ
Halfword 0 ˇ ˇ - -
Halfword 2 - - ˇ ˇ

Byte 0 ˇ - - -
Byte 1 - ˇ - -
Byte 2 - - ˇ -
Byte 3 - - - ˇ

Table 3.4 Active Byte Lanes for a 32 bits little endian data bus
Transfer

size
Address
offset

Data
[31:24]

Data
[23:16]

Data
[15:8]

Data
[7:0]

Word 0 ˇ ˇ ˇ ˇ
Halfword 0 - - ˇ ˇ
Halfword 2 ˇ ˇ - -

Byte 0 - - - ˇ
Byte 1 - - ˇ -
Byte 2 - ˇ - -
Byte 3 ˇ - - -

3.3.2 Micro-Architecture of an ALU cluster Intellectual Property

The proposed ALU cluster Intellectual Property (IP) id described in this section.
The detail architecture is shown in Fig 3.12. As illustrated in Fig 3.12, four main
blocks composed of this design are AMBA AHB wrapper, ALU cluster, instruction
and data memory. The instruction and data memory are used to feed the data and
instruction required for operation into functional units.

 - 28 -

 Chapter 3 Development Roadmap and Proposed Design

Fig 3.12 The Proposed ALU Cluster IP Architecture

The major part for dealing the media applications is an ALU cluster as
description in Section 3.2. The arithmetic units and internal storages part of the ALU
cluster in this ALU cluster IP is the same as the one introduced in Section 3.2.1.
However, the control and internal storages are improved in this designed ALU cluster
IP. The ALU cluster in this designed is improved the ability to reading source and
writing destination. It makes all banks of data and instruction memory expose to the
AMBA bus. It means that these memory banks can be accessed directly from AMBA
bus through the AMBA AHB wrapper which will be introduced later. In addition, the
better performance is exploited by shortening reading cycles. In the original ALU
cluster, the reading must take four cycles to access one burst reading operation.
However, in the improved ALU cluster, the reading operation takes two cycle
latencies in burst reading and then the data is read sequentially in every cycle.

The ALU cluster IP must has the ability to execute when the AMBA bus is
granted by other masters so that the ALU cluster needs a functional block to feed
address to the instruction memory automatically. As illustrates in Fig 3.12, the
Pc_counter is used to process this job. It will increase the program counter by one in

 - 29 -

 Chapter 3 Development Roadmap and Proposed Design

every clock cycle. The decoder will compare the value of program counter with the
end value of Pc_counter every cycle to check if the ALU cluster finishes the job. If the
job is completed, the alu_work signal is activated to send information to the wrapper.
In the alu_work signal is inactive, the IP can not be accessed and returns RETRY
signal response to AMBA bus. Besides, one special input signal combination can clear
the end value of Pc_counter in the decoder and force the IP to stop execution. The
special mechanism is designed in order to avoiding the possibility of the deadlock
occurrence.

Another key component of ALU cluster IP is AMBA AHB wrapper. It will be
discussed in this paragraph. The wrapper interface conforms to Advanced
Microcontroller Bus Architecture (AMBA) Advanced High-performance Bus (AHB)
protocol described in Section 3.3.1. It provides a common interface to integrate the
proposed design with ARM versatile baseboard and form a media processing system.
A finite state machine (FSM) and an address generation unit (AGU) are composed of
the architecture of proposed wrapper. The finite state machine of proposed wrapper is
used to control the states and response the request of AMBA bus. It provides the
communication capability between AHB slave bus and the ALU cluster inside
proposed IP. It receives signals from AMBA bus and activates the ALU cluster to
response. The FSM also controls the address generation unit to produce necessary
address for the ALU cluster, whether operating in incrementing mode or wrapping
mode of burst operation.

This FSM is designed with six states. They are Idle, Accessible, ALU_Work,
Un-readable Wait, Un-writable Wait and Error. As shown in Fig 3.13, the state
diagram of the finite state machine, the FSM will stay in the Idle state while the IP is
not accessible or the operation of ALU cluster is finished. Whether IP has done the
work or suffers from some error, it returns back to the Idle state. In this state, the
wrapper will be ready to receive signals from bus and prepare next operation. It will
go to other starts while the bus is granted and the IP will be accessed or the ALU
cluster is activated. The condition of going to other state is only when the HTRANS
signal equals to NONSEQ. If the NONSEQ is encountered, it identifies which
operation of the IP is requested by HWRITE then the FSM will move to the target
state.

 - 30 -

 Chapter 3 Development Roadmap and Proposed Design

Fig 3.13 The state diagram of the finite state machine

In the next state, Accessible state, the IP is accessible. When the HTRANS signal
is equal to NONSEQ and the HWRITE signal is logic high, it will directly move to
this state. There is a control signal to identify the different types of accessing whether
incrementing mode or wrapping mode is utilized in the burst transformation while
staying this state. One type is that the IP is accessed with different address with the
HTRANS signal equals to NONSEQ. Another one is that the IP is accessed
continuously with the address of the previous access in wrapping or incrementing
mode in the burst transformation. Three conditions are forced the FSM to other states.
These cases are access is finished, ready to read but data is not ready and busy to
write. The states are moved to Idle, Un-readable Wait and Un-writable Wait. The later
two of the above-mentioned states are addressed below.

The Un-readable Wait state exists because of the two necessary cycle of reading
data latency. One of two paths makes the FSM enter the Un-readable state is when the
FSM is in the Idle state and the HTRANS signal is NONSEQ and the HWRITE signal
is logic low. It presents the IP is being read. The first reading operation needs two
cycles to prepare necessary data so it must be in this state until the data is ready. Then
it will enter the Accessible state to perform the following reading request. Another one
of two paths is from Accessible state to Un-readable Wait state because of the
necessary latencies. In addition, when the IP is being written data in burst mode of
wrapping or incrementing type thus the TRANS signal of AHB slave is changed to

 - 31 -

 Chapter 3 Development Roadmap and Proposed Design

BUSY, the FSM will enter the Un-Writable Wait state. After the signal of TRANS
release from BUSY to NONSEQ or SEQ, the FSM will return from the Un-writable
state to Accessible state.

The last two states of design six-stated FSM are Error and ALU_Work state.
When proposed IP is accessed illegally due to invalid address and transaction, the
finite state machine will go to Error state. The invalid address and transaction result
from the depth limitation of data and instruction memory. The other reason entering
this state is that the IP is being accessed but is not granted expectedly. When these two
cases happened, Error state will be entered and escapes from violating AMBA AHB
protocol. If the Error occurs, the Error state must obey the AHB protocol and thus
have two cycles response to reply the bus with proper HREADY and HRESP signal as
defined in the AMBA AHB specification.

Finally, The ALU_Work state reveals that the applications are being processed in
ALU cluster. From Idle state is an only one path into the state. Whether accessed by
reading or writing operations, the FSM has the ability to transfer a two cycle response
to the AHB bus in the ALU_Work state. Additionally the ALU cluster keeps working
without being affected by any unexpected access until finishing the operations.
Eventually there is one characteristics related to the wrapper. That is data and
instruction memory embedded in the IP can be access directly by proposed wrapper.

As description of the ALU cluster IP, there is one thing needed to be reminded.
One instruction must be completed through many stages so it takes more cycles to
write the executed results back. The ALU is a two stage pipelined structure unit so
that it takes six cycles, including two extra cycles and four necessary cycles for every
operation such as instruction decoding, data source selection and results writing. Then
the four stages pipelined multiplier will need eight cycles and the divider will need
twenty cycles to write back the results.

3.4 Floating Point Units for the ALU cluster IP

In modern media application system, floating point operation is indispensable for
any applications. The floating point operation units (FPUs) are designed and
implemented to be integrated with original ALU cluster IP. In the following, the
design considerations of the floating point units are described. Then the
implementation results of them are discussed in latter chapter. Besides, the
performance evaluation of the selected benchmark is compared between the

 - 32 -

 Chapter 3 Development Roadmap and Proposed Design

architecture of ALU cluster IP and the architecture of ALU cluster IP supported by the
floating point units in next chapter too.

3.4.1 Design Consideration

The floating point operation units are designed for the ALU cluster IP in order to
make it more suitable and widely applied for media processing applications. Consider
the architecture of ALU cluster IP, it is not well-matched for the floating point
operation using the IEEE 754 standard format for floating point arithmetic [26]. In the
architecture of original ALU cluster IP, the floating point operations obeyed the
IEEE754 format need to be decomposed into several fields to finish the calculations
and the field is easy to encounter the mistake results from the saturation problems.
Consequently, the floating points units are designed for the IEEE 754 standard single
precision floating point format.

The briefly review of IEEE 754 standard for binary floating point format is
introduced in the following. The format of floating point numbers includes four types
which are identified by its precision. They are single precision, double precision,
single extended precision and double extended precision floating point number
formats. The numbers of bits used to represent the value are 32 bits, 64 bits, larger or
equal to 43 bits and larger or equal to 79 bits respectively. The last two formats, single
extended precision and double extended precision, are not commonly used. The
features of single precision format and double precision format will be focused.

As illustrated in Table 3.5, the single precision format and double precision
format are listed. As shown in the table, the IEEE 754 floating point numbers have
three basic fields such as sign field, exponent field and mantissa field. The field of
sign bit is used to represent the sign of the floating point number. Zero denotes a
positive number and one denotes a negative number in this one bit field. The exponent
field needs to represent both positive and negative exponents. This field occupies
eight bits in the single precision field and eleven bits in the double precision field. The
actual exponent is added the value called bias to form the value recorded in this field.
The bias value is 127 and 1023 for single precision and double precision respectively.
For example, an exponent of zero means that 127 and 1023 is stored in the exponent
field for single precision format and double precision format respectively. The
mantissa, also called the significant, represents the precision bits of the number. The
significand field occupies twenty-three bits and fifty-two bits for the single and
double precision format respectively. Whether in single precision or double precision

 - 33 -

 Chapter 3 Development Roadmap and Proposed Design

format, it is composed of an implicit leading bit and fraction bits. In order to
maximize the quantity to represent numbers, floating point numbers are stored in
normalized form. So the leading digit is assumed to 1 and needs not to represent it
explicitly. In other words, the mantissa has effectively twenty-four bits of resolution
with twenty-three fraction bits in single precision format. It is similar to the double
precision format.

Table 3.5 Format of single and double precision IEEE 754 floating point number
 Sign Field Exponent Field Significand Field

Single Precision 1 bit [31] 8 bits [30:23] 23 bits [22:0]
Double Precision 1 bits [63] 11 bits [62:52] 52 bits [51:0]

The summary is described below. First, the sign bit is zero for positive and one
for negative number. Second, the exponent field contains 127 added to the true
exponent field for single precision format and 1023 added to the exponent field for
double precision format. Third, the first bit of the significand is typically assumed to
be 1.f, where f is the fraction stored in this field.

The effective range of representing the IEEE 754 floating point number is listed
in Table 3.6. In this table the single and double precision format are listed. There are
five distinct numerical ranges are not presentable in this format. Taking single
precision format as an example, the numbers which are not able to present is listed
below. The positive number less than 2-149, positive number greater than (2-2-23) * 2127,
zero, negative number less than - (2-2-23) * 2127 and negative numbers greater than
-2-149. They are so called positive underflow, positive overflow, zero, negative
underflow and negative overflow respectively. The overflow of the value means it is
too large to represent. Underflow is the problem of loss of precision.

Table 3.6 Effective Range of the IEEE 754 floating point number
 Binary Value Decimal Value

Single Precision -(2-2-23)*2127 ~ +(2-2-23)*2127 -1038.53 ~ +1038.53

Double Precision -(2-2-52)*21023 ~ +(2-2-52)*21023 -10308.25 ~ +10308.25

Finally, special values defined by IEEE 754 standard are introduced. It reserves
exponent field values of all zero and all one to denote special values in the floating
point values. First, zero will be discussed. Zero is not representable in general format
result from the leading one assumption in mantissa field. Zero is defined to be denoted
with an exponent field of zero and a fraction field of zero. The positive zero and

 - 34 -

 Chapter 3 Development Roadmap and Proposed Design

negative zero are distinct although they are compared as equal. Then the denormalized
number is described. The exponent field is set to all zero and the fraction is non-zero
represent a denormalized number. It is not assumed the leading one before the binary
point. The representation of value will become (-1)S * 0.f * 2-126 and (-1)S * 0.f * 2-1022
for the single precision and double precision format respectively. Third, the value of
infinity is denoted with an exponent of all one and a fraction of all zero. The sign bit
decides it is positive infinity or negative infinity. Denoting the value of infinity as a
specific value is useful because of allowing operations to continue past overflow
situations. Operations with infinite values are well defined in IEEE standard. The Last
special number is Not A Number (NaN). It is used to represent the value which is not
able to represent as a real number. There are two types of NaN such as Quite NaN
(QNaN) and Signaling NaN (SNaN). The most significant bit of fraction field is set
for QNaN. The value pops out of an operation when the result is not mathematically
defined. The most significant fraction bit is not set for SNaN. It is used to signal an
exception.

These features and formats mentioned above is the brief review of the IEEE 754
floating point format standard. The details information of this standard will be listed
in the reference list.

Three different types of FPUs are designed and implemented in this thesis. As
shown in Fig 3.14 below, the FPU will be integrated with the ALU cluster IP. The data
format of the ALU cluster IP is 32 bits so that the IEEE 754 single precision floating
point number format is adopted for the design of the floating point operation unit.
Three different types of FPUs are described in the following. Considering with the
features of the benchmarks and applications, some arithmetic operations of floating
point numbers are critical and some are not. In other words, not all of these functional
units in the FPUs are operated in the same frequency. Some critical operations need
faster clock rate and some need not. The FPU of type 1 includes addition, subtraction
and multiplication operations. The FPU of type 2 includes addition, subtraction,
multiplication and division operations. The FPU of type3 include division operation
only. In most of the media processing applications the division operation is not as
common as the addition, subtraction and multiplication operations. So the type1 and
type 3 are designed in order to make the critical operations faster and shrink the logic
resource needed for the non-critical operations by means of increasing the latencies.
The type 2 FPU is also designed for general benchmarks and applications which
operations are equally distributed. These FPUs have two input operands and one
output results, both of them with 32 bits data width. The operations are decided by the
control signal. The details of implementation are introduced in the following chapter.

 - 35 -

 Chapter 3 Development Roadmap and Proposed Design

ALU
IRF IRF

ALU

IRF IRF

MUL

IRF IRF

MUL

IRF IRF

DIV

IRF IRF

32 32 32 32 32 32 32 32 32 32

Memory
Instruction

Data memory

32 3232 14 14232 7+3

32 32 14
alu_work

Decoder

Pc_counter

142

Scratch
Pad

Controller

5+4

32

32*10

32*5

AMBA AHB wrapper

Finite State MachineAddress Generation Unit

ALU cluster IP

ALU cluster

Floating Point Unit

D
IV

M
U

L
A

D
D

/SU
B

D
ata Input

D
ata O

utput

Control

Fig 3.14 An ALU cluster IP with Floating Point Unit Supported Architecture

 - 36 -

 Chapter 4 Implementation Results and Performance Evaluation

CHAPTER 4

Implementation Results and

Performance Evaluation

After the three chapters presented previously, the background, challenges,
developmental roadmap and micro-architectures of proposed designs in this thesis are
addressed. The circuit implementation results of the proposed designs in this thesis
will discussed in this chapter.

The first section is the demonstration of previous implementation and chip
testing results of ALU cluster. Review the implementation results of the ALU cluster,
the processing element of ALU cluster intellectual property implemented later.
Through testing the silicon-baked chip, the results confirm the correctness of
functionality and the architecture is not only feasible but also efficient for media
applications.

The second part of this chapter is presented for the implementation and
verification results of the designed ALU cluster intellectual property. The features
overview of Magnetic RAM and the details of modified architecture included the
Magnetic RAM are introduced in this section. Then this section is also described the
detail results of taping chip out, circuit verification and chip testing.

The third section of this chapter introduces the circuit implementation and results
of floating point operation units for ALU cluster IP. It will be integrated with the ALU
cluster IP. The implementation and verification results are summarized in this section.
Then the performance evaluation of selected benchmark is estimated to confirm the
integration of the floating point unit is efficient and it is the forth part of the whole
chapter.

 - 37 -

 Chapter 4 Implementation Results and Performance Evaluation

4.1 Implementation and Testing Results of An ALU cluster

The briefly description of the previous design, an ALU cluster, includes the
implementation, verification and testing results and related photos. The ALU cluster,
the prototype 1 called in the above-presented, is convinced that it can handle media
applications expectedly through silicon measurements.

The summary of the manufactured ALU cluster is listed in Table 4.1. UMC
0.18um CMOS technology and cell-based design kit of Artisan are utilized to tape the
chip out. The operation frequency of post-layout simulation is 100MHz. The chip size
and core size are about 3x3 mm2 and 2.2x2.2mm2 respectively. The gate count of this
work is 411491. Power consumption of this work is 968.35mW. Besides the logic
resources of arithmetic units and control logic, there are total fifteen memory banks
used for data and instruction. The instruction memory includes four 32 x 128 single
port static RAM (SRAM) and one 14 x 128 single port SRAM. The instruction
memory of 128 entries can support output bandwidth of 142 bits per cycle to VLIW
instructions. The data memory includes ten 32 x 32 single port SRAM. The data
memory of 32 entries can provided the data bandwidth of 320 bits per cycle.

Table 4.1 Implementation Results Summary of ALU cluster
Process UMC 0.18um CMOS Technology
Library Artisan SAGE-X Standard Cell Library

Post Layout Clock Rate 100MHz
Chip Size 2.98 x 2.98 mm2

Core Size
(without memory)

2.2 x 2.2 mm2

(1.8 x 1.2 mm2)
Gate Count

(without memory)
411491

(255669)
Power Consumption
(without memory)

968.35mW
(312.38mW)

On-Chip Memory
10 block 32 x 32 single port SRAM
4 blocks 32 x 128 single port SRAM
1 block 14 x 128 single port SRAM

Package CQFP 128

Pad
Input : 47 pins

Output : 32 pins
Power : 48 pins

 - 38 -

 Chapter 4 Implementation Results and Performance Evaluation

These banks of memory are generated by memory compiler with Artisan library.
The gate count of this work excluding these memories is 255669 and the power
dissipation without these memories is down to 312.38mW. The physical layout of the
ALU cluster is shown in Fig 4.1 below. The floorplan and pad assignment are also
shown in Fig 4.2.

Fig 4.1 Physical Layout of an ALU cluster

 - 39 -

 Chapter 4 Implementation Results and Performance Evaluation

clk

d_4

d_3

d_2

d_1

d_0

a_6

a_5

a_4

a_1

a_2

a_3

a_0

io_vdd_0

io_gnd_0

core_vdd_00

core_gnd_00

mem_d_ctrl

mem_d_wr

sel_3

sel_2

sel_1

sel_0

reset

q_12

d_25

d_26

d_27

d_28

d_29

d_30

d_31

q_0

q_3

q_2

q_1

q_4

q_5

q_6

q_7

q_8

q_9

q_10

q_11
q_

13

q_
31

q_
30

q_
29

q_
28

q_
27

q_
26

q_
25

q_
22

q_
23

q_
24

q_
21

q_
20

q_
19

q_
18

q_
17

q_
16

q_
15

q_
14

d_
5

d_
6

d_
7

d_
8

d_
9

d_
10

d_
11

co
re

_g
nd

_0
4

co
re

_v
dd

_0
4

io
_g

nd
_2

io
_v

dd
_2

d_
12

d_
14

d_
13

d_
15

d_
16

d_
17

d_
18CornerUL CornerUR

CornerLRCornerLL

core_vdd_01

core_gnd_01

core_vdd_02

core_gnd_02

io_vdd_1

io_gnd_1

core_vdd_03

core_gnd_03

co
re

_g
nd

_0
5

co
re

_v
dd

_0
5

d_
23

d_
24

co
re

_g
nd

_0
6

co
re

_v
dd

_0
6

io
_g

nd
_3

io
_v

dd
_3

co
re

_g
nd

_0
7

co
re

_v
dd

_0
7

d_
19

d_
20

d_
21

d_
22

core_vdd_11

core_gnd_11

io_vdd_5

io_gnd_5

core_vdd_10

core_gnd_10

core_vdd_09

core_gnd_09

io_vdd_4

io_gnd_4

core_vdd_08

core_gnd_08

co
re

_g
nd

_1
5

co
re

_v
dd

_1
5

io
_g

nd
_7

io
_v

dd
_7

co
re

_g
nd

_1
4

co
re

_v
dd

_1
4

co
re

_g
nd

_1
3

co
re

_v
dd

_1
3

io
_g

nd
_6

io
_v

dd
_6

co
re

_g
nd

_1
2

co
re

_v
dd

_1
2

In
st

ru
ct

io
n

M
em

or
y

Data Memory

ALU Cluster

Fig 4.2 Floorplan and Pad Assignment of an ALU cluster

There are total 127 I/O pads, including 47 input pads, 32 output pads and 48
power pads. In addition to the information, the die microphotograph of taped out chip
is shown in Fig 4.3. The package used for the manufactured chip is CQFP128 and the
photograph of the prototype 1 with package is shown in Fig 4.4.

 - 40 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.3 Microphotograph of taped out ALU cluster

Fig 4.4 An ALU cluster with CQFP128 package

 - 41 -

 Chapter 4 Implementation Results and Performance Evaluation

As illustrated in Fig 4.5, the manufactured chip is placed on the PCB board
in order to testing. The measurement equipment adopted is Agilent 16902A Logic
Analyzer System [27] with Agilent 16720A pattern generator and Agilent 16910A
logic analyzer modules. The maximum frequency of signal from the pattern
generator is 300MHz and 180MHz when the pattern generator is operated in half
channel mode and full channel mode respectively. It is suitable for us to measure
the chip.

Fig 4.5 An ALU cluster with PCB board

We measure and verify the chip of the ALU cluster mainly in functionality
and performance. In the functional testing, the memory testing, the instruction
testing and the real program testing are executed. The 16-tap FIR filter is selected
as a benchmark for the real program testing and the performance testing. In the
memory testing, the benchmarks written to and read from data memory and
instruction memory are all one, all zero and mixed interleaving one and zero.
These signals are 32’hFFFFFFFF, 32’h00000000, 32’hAAAAAAAA.
32’h55555555 and mixed the 32’hAAAAAAAA and 32’h55555555. The usage
of this kind of benchmark helps us to find out the stuck at zero and stuck at one
error. The functionality of instructions is tested by feeding random sequence into
all operation units. All instructions of different operation units are gone through at
least once to ensure the correctness. These test patterns needed in chip testing
necessarily obey the format of the pattern generator.

The functional testing mentioned above including the memory testing, the
instruction testing and the real program testing are correct. Thus the performance

 - 42 -

 Chapter 4 Implementation Results and Performance Evaluation

testing of the FIT filter system is down to about sixteen to eighteen Mega Hertz.
The summaries about testing results mentioned above are listed in Table 4.2.
Because of the huge loading of the probe lead set, it is more than five times
slower than the post layout clock rate. It is hard to measure the true performance
of the chip unless connecting the pod of pattern generator to the PCB directly.

Table 4.2 Testing results summaries of ALU cluster

Testing Items Results

Data Memory Correct
Read/Write Memory

Instruction Memory Correct

ALU0 Correct
ALU1 Correct
MUL0 Correct
MUL1 Correct

Instruction Functionality

DIV Correct

FIR filter system Correct with operating in 16~18 MHz

4.2 Verification and Implementation Results of An ALU cluster
Intellectual Property

In this section, an ALU cluster Intellectual Property (IP) is designed and
implemented. As mentioned in previous chapter, there is an AMBA AHB wrapper
in the ALU cluster IP different from the ALU cluster. First, the modified ALU
cluster IP architecture will be presented and the introduction of Magnetic RAM is
described. The taped out chip is concert with the Magnetic RAM (MRAM)
developed by Industrial Technology Research Institute (ITRI). Then we will
introduce the implementation of the ALU cluster Intellectual Property. Finally the
circuit verification and chip testing are introduced in the last two sub-sections in
the paragraph. The details are described in the following sub-sections.

4.2.1 An ALU cluster IP with Magnetic RAM

An ALU cluster IP with Magnetic RAM is the extended version of the ALU
cluster IP. First we will introduce briefly the characteristics of MRAM. Then the
architecture of the ALU cluster is slightly modified to adapt the features of using
MRAM as the data memory of the IP. Finally the implementation and verification
results of the manufactured chip are discussed.

 - 43 -

 Chapter 4 Implementation Results and Performance Evaluation

4.2.1.1 Introduction of Magnetic RAM

Three types of memory such as static RAM (SRAM), dynamic RAM (DRAM)
and Flash occupy the most proportion of current market. However, they have their
own drawback respectively. SRAM and DRAM have high data accessing speed, but
they are volatile when power is turned off and the power consumption of these two
types of memory is high. These drawbacks can be solved when using the Flash. It is
non-volatile and the power dissipation is low. But the accessing speed of Flash is low
and the lifetime of reading and writing is limited.

Magnetic RAM (MRAM) is the innovation of these types of memory [28]. It
adopts the magnetic tunnel junction (MTJ) and MOSFET as the mechanism to form
the memory cell [29]. It collects the pros, such as non-volatile, low power, high
accessing speed, high cell density and strong radiation resistance, of current existent
memories. In addition, the MRAM has the advantages such as process compatible and
long lifetime of writing and reading. Because the MRAM is manufactured by the
metal layer so it is compatible to CMOS technology and without extra overhead. And
its lifetime of data accessing is much higher than the conventional non-volatile
memory such as Flash.

MRAM applications currently targets to mobile system, smart card, radiation
hardened military applications, database storage, RFID and MRAM element in FPGA.
These include both standalone and embedded memory applications. As these
above-mentioned pros and wide application in modern life, MRAM will become a
chief tendency of new generation memory system.

4.2.1.2 Modified ALU cluster IP for Magnetic RAM

The architecture of ALU cluster IP with SRAM as the data memory must be
modified to adopt MRAM as the data memory because of the interface of MRAM and
SRAM is not the same and the data bandwidth between these two memories is also
different. In order to connect MRAM to our IP, an extra load store unit (LSU) must be
added to solve the issue presented above. The modified architecture is shown in Fig
4.6. The instruction format is changed slightly from 142 bits to 143 bits. The
additional bit is used to control the mode of the ALU cluster IP. If the additional bit is
not set, the IP will execute the applications normally. When the additional bit is set,
the data in IRF and MRAM could be accessed separately which is based on the
executing instruction. The data bandwidth between IRF and MRAM is restricted by

 - 44 -

 Chapter 4 Implementation Results and Performance Evaluation

MRAM. The bandwidth support by the IRF is also modified to support byte transfer.
This is also suitable for the AHB wrapper since it is designed for byte, half word, and
word access in little endian manner the same as non-modified IP.

Fig 4.6 Modified ALU cluster IP architecture for MRAM

4.2.2 Implementation Results

The summary of implementation characteristics are listed in Table 4.3. The
proposed ALU cluster IP is implemented with cell-based design flow and taped out
using TSMC 0.15um CMOS technology. Synopsys computer aided design (CAD)
flow is adopted to accomplish this chip. The post-layout operation frequency of an
ALU cluster IP is 100 MHz. The chip size, core size and gate count are about 3.9x3.9
mm2, 3.0x3.0 mm2 and 0.2 million, respectively. The physical layout and pad
assignment are shown in Fig 4.7 and Fig 4.8 respectively.

 - 45 -

 Chapter 4 Implementation Results and Performance Evaluation

Table 4.3 Summary of Implementation Characteristics
Process TSMC 0.15um

Post-layout Clock Rate 100 MHz
Chip Size 3.91 x 3.90 mm2

Core Size 2.98 x 2.98 mm2

Gate Count 267,473

On-chip memory
Instruction Memory : synthesized

Data Memory : MRAM

Package Type COB(PGA256)

Pad

Input: 34 pins
Inout : 32 pins

Output: 24 pins
Power: 40 pins

Fig 4.7 Physical Layout of an ALU Cluster IP

 - 46 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.8 Pads Assignment of an ALU Cluster IP

There are total 130 pads, where 34 input pads, 24 output pads, 32 inout pads and
40 power pads in this design. In addition, the die microphotograph of taped out chip is
shown in Fig 4.9. The selected package for the manufactured die is PGA256. The
prototype with package is shown in Fig 4.10. The definitions of I/O ports are listed in
Table 4.4.

 - 47 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.9 Die Microphotograph of Taped Out Chip

Fig 4.10 Photograph of Prototype with Package

 - 48 -

 Chapter 4 Implementation Results and Performance Evaluation

Table 4.4 The Definitions of I/O the ports

I/O Port Name
Input/Output/In

out
Signal Description

HCLK Input The clock signal provides for designed chip

HADDR Input
This is a 14-bits input used to specify the address
of instruction memory and data memory

HSELx Input
The select signal from the arbiter of AHB bus to
enable bus slave to work. It will be logical low at
all execution stage.

HWRITE Input
The signal indicates a write transfer at logical
high and a read transfer at logical low.

HTRANS Input
The 2-bits signal determines the transfer type of
AHB protocol including IDLE, BUSY, NONSEQ
and SEQ.

HSIZE Input
The 3-bits signal used to determine the size of
transfer.

HBURST Input

This 3-bits signal indicates which type of burst
mode is used. The burst may be either
incrementing or wrapping and four, eight and
sixteen beat bursts are supported.

HRESTn Input The reset signal provides for this chip.

mem_ls_q Input
The 8-bits signal used to receive data from data
memory, Magnetic RAM, which is not embedded
in the chip.

HREADY Output

The signal uses to indicate whether the transfer
has finished on the bus or not. Logic high means
it is finished and logic low means that the transfer
need to extend

HRESP Output
2-bits signal response the status of a transfer.
OKAY, ERROR, RETRY and SPLIT are
provided.

 - 49 -

 Chapter 4 Implementation Results and Performance Evaluation

mram_ls_d Output
The signal is an 8-bits data output to the data
memory which is not embedded in this chip.

mram_ls_a Output
The 10-bits width output. Used to specify the
address of the external data memory.

Mram_ls_cen

Mram_ls_wen

Mram_ls_oen

Output

These three signals are used to control the status
of the external data memory, such as disable,
read, write and selected disable mode, by
different combination of these signals.

HDATA Inout
The 32-bits inout signal. These signals receive
data from input ports to compute and output the
calculated results outside the chip.

IOVDD & IOVDD Power
The power supply provides for the core of this
chip. There are 12 pairs of power supply.

CoreVDD & CoreVSS Power
The power supply provides for the IO Pads. There
are 8 pairs of power supply.

4.2.3 Circuit Verification

The popular operation of multimedia processing applications, the finite impulse
response (FIR) filter system [30], is chosen as the benchmark of the ALU cluster IP.
The benchmark used to simulate and verify the proposed IP is 16-tap FIR filter system.
The media applications could be expressed as the stream programming model that
would be fit the features of the ALU cluster IP. In modern media and DSP applications,
FIR filtering is one of the most popular and widely operation applied, such as matched
filtering, pulse shaping and equalization, etc. This selected benchmark is suitable for
functional verification of one dimensional architecture needed repeat and high
percentage of addition and multiplication. .

A brief review of FIR filter system is introduced below. The equation of input
and output relationship of linear time invariant FIR filter can be describe in Equation
4.1.

 - 50 -

 Chapter 4 Implementation Results and Performance Evaluation

 Equation 4.1 ∑
−

=

−=
1

0
][*][

M

k
k knxbny

As shown in the equation, M represents the length of the FIR filter, bk represents
the coefficients and x[n-k] denotes the data sampled at time instance n-k. The output
y[n] is the response to the instance time n. As illustrated in Fig 4.11, the coefficients
bk of the sixteen-tap Kaiser window FIR bandpass filter and the exponential function
with ten sampling points as the input data are figured. The usage of Mathworks
Matlab helps us to simulate the correct results in advance. The results are illustrated in
Fig 4.12.

Fig 4.11 The input function and coefficients of the FIR filter system

 - 51 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.12 Output results of the FIR filter system

After simulating the 16-tap FIR filter system with Mathworks Matlab, the
benchmark is ported into the implemented design as circuit verification. The circuit
verification is executed by post-layout simulation with the taped-out chip introduced
above. Due to the imperfect library of the CMOS technology, the simulation results
addressed here are from the ALU cluster IP hard macro. The results of the post-layout
simulation are listed from Fig 4.13(a) to Fig 4.13(e) continuously. The post-layout
simulation is based on TSMC 0.15um CMOS technology. The circuit of the proposed
design shows that it works correctly at clock rate of 100 MHz after comparing
between the final result from Matlab and the results of post-layout simulation. It
reveals that the functionality is correct exactly and IP works correctly.

 - 52 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.13(a) Post-Layout Simulation Results of an ALU cluster IP (Ⅰ)

Fig 4.13(b) Post-Layout Simulation Results of an ALU cluster IP (Ⅱ)

 - 53 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.13(c) Post-Layout Simulation Results of an ALU cluster IP (Ⅲ)

Fig 4.13(d) Post-Layout Simulation Results of an ALU cluster IP (Ⅳ)

 - 54 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.13(e) Post-Layout Simulation Results of an ALU cluster IP (Ⅴ)

4.2.4 Chip Testing

Chip testing of the prototype 2, the ALU cluster IP, is proceeded. The printed
circuit board (PCB) are designed and manufactured in order to verify the silicon chip.
As illustrated in Fig 4.14, a four layer PCB board with socket is used and the
packaged chip is put on the socket welding on the board for measurement. There are
three different voltages of power supply as shown in Fig 4.14. They are IO pad power
for the chip, core power for chip and supply power for MRAM. The voltages are 3.3 V,
1.2V and 5V respectively. The buffer in the PCB is used to control the input and
output states of bidirectional IO pad adopted by the chip.

Fig 4.14 The Printed Circuit Board (PCB) for the manufactured chip

 - 55 -

 Chapter 4 Implementation Results and Performance Evaluation

The testing equipments adopted are Agilent 16902A Logic Analyzer System with
Agilent 16720A pattern generator and Agilent 16910A logic analyzer modules as
shown in Fig 4.15. In order to avoid the performance degradation results from the
pods of pattern generator modules, pods of pattern generator are directly connected to
the PCB combined the chip. A diagram is illustrated in Fig 4.16.

Fig 4.15 Testing Equipments – Logic Analyzer System

Fig 4.16 Connection between the Chip and Testing Equipments

Chip testing is divided into two parts such as functional measurement and
performance measurement. The performance measurement adopts the 16-tap FIR
filter system presented previously as the benchmark. And the functional
measurements include basic functions, writing to IRF and memory and reading from
IRF and memory. While verifying the chip, several phenomenons are revealed. First,
the input signals from pattern generator modules into the chip can not be sent

 - 56 -

 Chapter 4 Implementation Results and Performance Evaluation

correctly. After measuring the signal through an oscilloscope, the phenomenon that
the signals have irregular voltage values near the threshold voltage is revealed.
Besides, the peripheral signals on the PCB are also measured and the phenomenon is
also still existent. Second the control signal for the MRAM such as the signal of chip
enable is toggled irregular and it disagrees with the results of post-layout simulation.
Not only the chip enable signal but also some other signals also has the same
phenomenon. These are two main phenomenon observed from the chip testing and
they may cause the errors of the measurement. Chip testing is progressing and the
errors will be solved and discussed.

4.3 Circuit Implementation and Results of Floating Point Units
for the ALU cluster IP

In this section, the implementation results of the FPUs described above will be
introduced. These FPUs are implemented as hard macros with cell-based design flow.
The macros can be used to integrated with the ALU cluster IP and provide efficient
floating points operations ability. The synthesis results and the results of Auto Place
and Route (APR) are discussed. The circuit verification results executed through
post-layout simulation are also listed in this section too.

The floating point units are synthesized with Synopsys Design Compiler and the
physical layouts of these FPU macros are finished by means of the Synopsys Astro.
The TSMC 0.18um CMOS technology and Artisan SAGE-x Standard Cell Library are
adopted for implementing these FPUs. As mentioned above, three types of FPUs are
designed. Type 1 FPU includes the floating point operations for addition, subtraction
and multiplication. It operates in 75 MHz of post simulation frequency. The gate
count and area are 23,298 and 0.415 mm2 respectively. The area utilization and power
consumption are 0.9 and 10.85 mW respectively. The physical layout of the type 1
macro of the FPU is shown in Fig 4.17. As shown in Fig 4.18, the macro of type 2
FPU is implemented completely. It provides the floating point operations including
addition, subtraction, multiplication and division inside. The post simulation clock
rate of type 2 FPU is 25 MHz. The gate count and area are 31,331 and 0.529 mm2
respectively. The area utilization, the same as type 1 FPU, is 0.9. The power
dissipation of type 2 FPU is 4.60 mW. Type 3 FPU, including the division floating
point operation only, is in order to collocate with type 1 FPU to provide the same
operations as type 2 FPU. So the type 3 FPU is implemented with the 25 MHz clock
rate of post simulation in spite of it is not the fastest operation frequency it can
achieve. The gate count and area are 24,931 and 0.396 mm2. The area utilization, the

 - 57 -

 Chapter 4 Implementation Results and Performance Evaluation

same as type 1 and type 2 FPU, is 0.9 and the power dissipation is 6.59 mW. The
physical layout of type 3 FPU macro is shown in Fig 4.19 below. The summary of
these results are listed in Table 4.5

Fig 4.17 Physical Layout of the Type 1 FPU macro

Fig 4.18 Physical Layout of the Type 2 FPU macro

 - 58 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.19 Physical Layout of the Type 3 FPU macro

Table 4.5 Summary of the Implementation Results

Floating Point Unit
Type 1 (ADD,
SUB, MUL)

Type2 (ADD,
SUB, MUL, DIV)

Type 3 (DIV
only)

Technology TSMC 0.18um TSMC 0.18um TSMC 0.18um

Cell Library
Artisan

SAGE-XTM
Artisan

SAGE-XTM
Artisan

SAGE-XTM

Post-layout
Simulation Clock

Rate
75 MHz 25 MHz 25 MHz

Area Utilization 0.9 0.9 0.9
Power Consumption

(mW)
10.85 4.60 6.59

Gate Count 23,298 31,331 24,931
Area (mm2) 0.415 mm2 0.529 mm2 0.396 mm2

The circuit verification results are listed below. Post-layout simulation are
performed with the TSMC 0.18um CMOS technology and library environment. The
post-layout simulation results for type 1 FPU are shown in Fig 4.20 and Fig 4.21.
They are the full view and the interception of whole simulation periods respectively.
The same as type 1, the verification results of type 2 FPU are shown in Fig 4.22 and
Fig 4.23 and they are full view and a portion of all periods respectively. Eventually
the post-layout simulation results of type 3 FPU are illustrated in Fig 4.24 and Fig
4.25. As described previously, they are also full view and interception of whole
simulation periods respectively. These outcomes promise that these hard macros work
correctly corresponding to their own clock rate of post-layout simulation.

 - 59 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.20 Full View of Post-Layout Simulation Results for Type 1 FPU

Fig 4.21 Interception of Post-Layout Simulation Results for Type 1 FPU

 - 60 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.22 Full View of Post-Layout Simulation Results for Type 2 FPU

Fig 4.23 Interception of Post-Layout Simulation Results for Type 2 FPU

 - 61 -

 Chapter 4 Implementation Results and Performance Evaluation

Fig 4.24 Full View of Post-Layout Simulation Results for Type 3 FPU

Fig 4.25 Interception of Post-Layout Simulation Results for Type 3 FPU

4.4 Performance Evaluation and Comparison

In this section, the performance of floating point operations will be evaluation
and comparison. The benchmark used to evaluation is the Fast Fourier Transform
(FFT) commonly used in media processing applications. There are two target
architectures used to evaluate the performance of floating point operations and
compare the performance each other. These two parts mentioned above are discussed
in the following.

 - 62 -

 Chapter 4 Implementation Results and Performance Evaluation

4.4.1 Selected Benchmark

In this thesis, 32-points Fast Fourier Transform is selected as the benchmark. The
FFT is an efficient algorithm for computation of the Fourier Transform. There are
three reasons that the FFT is selected. First, the FFT is the most often used operations
in the multimedia applications or signal processing applications. The second reason is
taken as an example that executing on the streaming programming model in paper
[18]. Third, the applications involved the FFT usually need to handle the floating
point numbers operations. It is well-match for the performance evaluations presented
in this thesis.

The Split-Radix FFT (SRFFT) algorithm is adopted to form the benchmark [31]
[32]. An inspection of the decimation in frequency flowchart of FFT shows that the
even terms and the odd terms of the Discrete Fourier Transform (DFT) can be
computed independently. It is quite clear that the radix-2 algorithm is better for the
even terms and the radix-4 algorithm is better for the odd terms of the DFT. So the
split-Radix FFT (SRFFT) algorithm which reduces the number of computations
exploits the idea of using radix-2 and radix-4 algorithms mixed into the same FFT
algorithm.

As mentioned above, the FFT algorithm is decomposed into even terms and odd
terms to compute independently. The radix-2 decimation in frequency FFT algorithm
used for the even numbered samples of the N-points DFT are given in below.

∑
−

=
⎥⎦
⎤

⎢⎣
⎡ ++=

12/

0
2/)

2
()()2(

N

n

n
NWNnxnxkX , where 1

2
,,1,0 −=
Nk K , Nj

N eW /2π−=

The odd-numbered samples [X (2k+1)] of the DFT need to pre-multiplication of
the input sequence with WN

n. The raidx-4 decimation in frequency FFT algorithm
used for the odd-numbered samples of the N-points DFT are given in the two
equations below.

∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−+−⎥⎦

⎤
⎢⎣
⎡ +−=+

14/

0
4/)

4
3()

4
()

2
()()14(

N

n

kn
N

n
NWWNnxNnxjNnxnxkX

∑
−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +−++⎥⎦

⎤
⎢⎣
⎡ +−=+

14/

0
4/

3)
4

3()
4

()
2

()()34(
N

n

kn
N

n
N WWNnxNnxjNnxnxkX

 - 63 -

 Chapter 4 Implementation Results and Performance Evaluation

The length-N DFT will be obtained by using the N Split-Radix FFT algorithm.
The benchmark adopted is the length 32 Split-Radix FFT and its flowchart is shown
in Fig 4.26.

Fig 4.26 Flowchart of the length 32 Split-Radix FFT algorithm

4.4.2 Evaluation and Comparison Results

Reminding the developmental roadmap discussed in the first part of Chapter 3,
the ALU cluster IPs will be combined with the versatile baseboard to form a media
streaming architecture with homogeneous processor cores. As shown in Fig 3.4,
different numbers of ALU cluster IPs will be stacked with the board. As the result of
the simulator, the numbers of the ALU cluster IPs are decided. One, two, four and
eight ALU cluster IPs will be integrated with the baseboard in order. As introduced
above, there are two target architectures to evaluate the performance and any of which
will be considered when different numbers of ALU cluster IPs are integrated.

 - 64 -

 Chapter 4 Implementation Results and Performance Evaluation

The two target architectures used in the thesis are Original Integer Architecture
and Floating Point Unit and Original Integer Architecture Mixed. First, the original
integer architecture is the architecture of the ALU cluster IP mentioned in Section
3.3.2. It is the architecture for integer operations essentially. The benchmark with
floating point operations is decomposed. All operand are presented in the IEEE 754
floating point format and decomposed into several fields of integer and computes
separately. It means the floating point operations are executed on the integer operation
architecture by decomposing the format fit the original form. Then the second
evaluation architecture is the floating point unit and original integer architecture
mixed. In the SRFFT benchmark, it includes integer operations and floating point
number operations. For the second evaluation architecture the integer operations and
floating point number operations are computed by the integer and floating point unit
respectively.

Before the evaluation results are presented, the essential cycles of executing the
floating point numbers by original integer architecture such as ALU cluster IP will be
calculated. The multiplication operation of the floating point numbers needs six cycles
to finish the calculation. The addition operations of the floating point numbers in the
ALU unit costs seven cycles to complete the calculation. In addition to these floating
point number operations, other integer operations of this architecture need one cycle
to finish the operation. The first data inputted into the functional units will need more
cycles to finish the job result from the pipeline features. The integer ALU operations
of the ALU cluster IP is two-stage pipelined and the integer multiplication operations
of the ALU cluster IP is four-stage pipelined. The floating point number operations
executed in the floating point unit architecture need one cycle for finishing the
addition and one cycle for completing the multiplication. In the performance
evaluation in the floating point unit architecture, all of the data are represented by the
IEEE 754 format and calculate in this architecture.

Different number of clusters will be considered and evaluated with the two target
architectures. The essential cycles to complete the 32-points FFT benchmark between
different number clusters and different target architectures are listed separately in the
following tables. They show the cycles need to finish the benchmark. The leftmost
field stands for the ALU cluster IPs included in the evaluation. The middle field listed
in the table represents the operation cycles needed for the functional unit while
executing the benchmark. The rightmost field of the tables is the critical cycles which
is underlined and dominate the performance of the conditions of different number
clusters and different target architectures.

 - 65 -

 Chapter 4 Implementation Results and Performance Evaluation

Table 4.6 shows the detail information of cycles for the Original Integer
Architecture, the ALU cluster IP which is mentioned in former section. When only
one cluster is used in the evaluation, the dominant functional unit is ALU2 and the
dominant cycles of the performance is 647 cycles. The same concepts as one cluster,
the evaluation for two clusters insides are listed and the dominant functional unit is
ALU1 in the second cluster and the dominant cycles is 331 cycles. As discussed just
now, the performance of four clusters insides architecture is that the dominant
functional unit is ALU2 in the second cluster and the dominant cycles are 213 cycles.
The dominant functional unit is ALU1 of the fifth cluster in the eight clusters
architecture and its cycles are 151 cycles.

Table 4.6 Performance Evaluation Results for Original Integer Architecture

Function Unit and Cycles
Critical
Cycles

1 Cluster ALU1:645 ALU2:647 MUL1:412 MUL2:330 647

ALU1:320 ALU2:319 MUL1:141 MUL2:95 320
2 Clusters

ALU1:331 ALU2:309 MUL1:256 MUL2:240 331

ALU1:177 ALU2:213 MUL1:55 MUL2:72 213

ALU1:190 ALU2:153 MUL1:105 MUL2:72 190

ALU1:173 ALU2:179 MUL1:135 MUL2:112 179
4 Clusters

ALU1:154 ALU2:141 MUL1:189 MUL2:122 189

ALU1:145 ALU2:96 MUL1:39 MUL2:34 145

ALU1:96 ALU2:126 MUL1:52 MUL2:34 126

ALU1:85 ALU2:90 MUL1:54 MUL2:54 90

ALU1:91 ALU2:60 MUL1:67 MUL2:44 91

ALU1:151 ALU2:132 MUL1:89 MUL2:84 151

ALU1:66 ALU2:103 MUL1:92 MUL2:64 103

ALU1:97 ALU2:90 MUL1:74 MUL2:74 97

8 Clusters

ALU1:72 ALU2:102 MUL1:97 MUL2:64 102

 - 66 -

 Chapter 4 Implementation Results and Performance Evaluation

Table 4.7 shows the detail information of cycles for the Floating Point Unit and
Original Integer Architecture Mixed. It processes the integer numbers and the floating
point numbers separately. When only one cluster is used in the evaluation, the
dominant functional unit is ALU2 and the dominant cycles of the performance is 157
cycles. The same concepts as one cluster, the evaluation for two clusters insides are
listed and the dominant functional unit is ALU2 both in the first cluster and in the
second cluster and the dominant cycles is 74 cycles. As discussed just now, the
performance of four clusters insides architecture is that the dominant functional unit is
ALU1 in the third cluster and the dominant cycles are 52 cycles. The dominant
functional unit is ALU1 of the fifth cluster and ALU2 of the sixth cluster in the eight
clusters architecture and its cycles are 42 cycles.

Table 4.7 Performance Evaluation Results for Floating Point Unit and Original Integer Architecture Mixed

Function Unit and Cycles
Critical
Cycles

1 Cluster ALU1:150 ALU2:154 MUL1:157 MUL2:143 157

ALU1:71 ALU2:74 MUL1:74 MUL2:68 74
2 Clusters

ALU1:69 ALU2:74 MUL1:73 MUL2:67 74

ALU1:48 ALU2:48 MUL1:46 MUL2:42 48

ALU1:50 ALU2:50 MUL1:48 MUL2:43 50

ALU1:52 ALU2:50 MUL1:47 MUL2:43 52
4 Clusters

ALU1:50 ALU2:49 MUL1:48 MUL2:44 50

ALU1:40 ALU2:39 MUL1:35 MUL2:34 40

ALU1:38 ALU2:41 MUL1:39 MUL2:34 41

ALU1:40 ALU2:40 MUL1:35 MUL2:35 40

ALU1:40 ALU2:38 MUL1:40 MUL2:35 40

ALU1:42 ALU2:38 MUL1:38 MUL2:36 42

ALU1:38 ALU2:42 MUL1:42 MUL2:36 42

ALU1:40 ALU2:40 MUL1:36 MUL2:36 40

8 Clusters

ALU1:40 ALU2:39 MUL1:40 MUL2:36 40

 - 67 -

 Chapter 4 Implementation Results and Performance Evaluation

As listed and described above, two target architectures with different numbers of
clusters are evaluated. Considering the performance of the information listed above.
In order to compare the performance of the selected benchmark, the variable of the
number of clusters inside will be fixed between these architectures. First, the
performance when one cluster insides these architectures are compared and plotted in
Fig 4.27. The cycles used to complete the benchmark is 647 and 157 cycles for the
original integer architecture and the mixture of floating point unit and original integer
architecture respectively. Result from analyzing the data above, the performance of
the mixed floating point unit and original integer architecture is 4.12 times better than
the original integer architecture in cycles.

One Cluster Used for Different Target Architectures

0

100

200

300

400

500

600

700

Original Integer Architecture Floating Point Unit and Original Interger Architecture Mixed

C
yc

le
s

ALU1
ALU2
MUL1
MUL2

Fig 4.27 Performance Evaluation of one cluster included in these architectures

Second, the performance when two clusters included in these architectures are
compared and plotted in Fig 4.28. The essential cycles used to complete the
benchmark is 331and 74 cycles for the original integer architecture and floating point
unit and original integer architecture mixed respectively. Result from analyzing the
data above, the performance of the mixed of floating point unit and original integer
architecture is 4.47 times better than the original integer architecture in cycles.

 - 68 -

 Chapter 4 Implementation Results and Performance Evaluation

Two Clusters Used for Different Target Architectures

0

50

100

150

200

250

300

350

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

C
yc

le
s

Cluster1_ALU1
Cluster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
Cluster2_ALU2
Cluster2_MUL1
Cluster2_MUL2

Fig 4.28 Performance Evaluation of two clusters included in these architectures

Following that the performance when four clusters included in these
architectures are compared and sketched in Fig 4.29. The critical cycles need to finish
the benchmark is 213 and 52 cycles for the original integer architecture and the
floating point unit and original integer mixed architecture respectively. Analyzing the
data above the performance of the mixture of floating point unit and original integer
architecture is 4.09 times better than the original integer architecture in cycles.

Four Clusters Used for Different Target Architectuures

0

50

100

150

200

250

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

C
yc

le
s

Cluster1_ALU1
Cluster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
Cluster2_ALU2
Cluster2_MUL1
Cluster2_MUL2
Cluster3_ALU1
Cluster3_ALU2
Cluster3_MUL1
Cluster3_MUL2
Cluster4_ALU1
Cluster4_ALU2
Cluster4_MUL1
Cluster4_MUL2

Fig 4.29 Performance Evaluation of four clusters included in these architectures

 - 69 -

 Chapter 4 Implementation Results and Performance Evaluation

Finally the performance when eight clusters included in these architectures are
compared and sketched in Fig 4.30. The essential cycles need to finish the benchmark
is 151 and 42 cycles for the original integer architecture and mixed floating point unit
and original integer architecture respectively. Analyzing the data above the
performance of the mixed floating point unit and original integer architecture is 3.60
times better than the original integer architecture in cycles.

Eight Clusters used for Different Target Architectures

0

20

40

60

80

100

120

140

160

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

C
yc

le
s

Cluster1_ALU1
CLuster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
CLuster2_ALU2
Cluster2_MUL1
Cluster2_MUL2
Cluster3_ALU1
CLuster3_ALU2
Cluster3_MUL1
Cluster3_MUL2
Cluster4_ALU1
CLuster4_ALU2
Cluster4_MUL1
Cluster4_MUL2
Cluster5_ALU1
CLuster5_ALU2
Cluster5_MUL1
Cluster5_MUL2
Cluster6_ALU1
CLuster6_ALU2
Cluster6_MUL1
Cluster6_MUL2
Cluster7_ALU1
CLuster7_ALU2
Cluster7_MUL1
Cluster7_MUL2
Cluster8_ALU1
CLuster8_ALU2
Cluster8_MUL1
Cluster8_MUL2

Fig 4.30 Performance Evaluation of eight clusters included in these architectures

Because of the hardware implementation, these architectures may operate in
different clock rate. As described in the previous sections, the original integer
architecture, the ALU cluster IP, is operated in the clock frequency of 100 MHz for
post-layout simulation. The floating point unit adopted in the floating point unit and
original integer architecture mixed are designed and implemented with the 75 MHz
clock rate in the post-layout simulation. So the comparison of the execution time
between these architectures is evaluated also. As listed in the Table 4.8, the critical
execution time of the benchmark for two target architectures with different numbers
of clusters is shown. The boldface and underlined data are listed to represent the
critical execution time needed for completing the benchmark. Result from scheduling
the instructions of the operations in the SRFFT benchmark the critical functional units
in these architectures is slightly different. When scheduling the instructions, the cycles
which execute no-operation (NOP) instructions will influence the total execution time

 - 70 -

 Chapter 4 Implementation Results and Performance Evaluation

result in this situation. The results will be compared each other later to demonstrate
the trend of the performance evaluation is in similar with the performance evaluation
in clock cycles.

Table 4.8 Performance Evaluation Results in Execution Time
 Execution

Time
(ns)

Original Integer
Architecture

Floating Point Unit and
Original Integer

Architecture Mixed

1 Cluster 6470 2035.3

3200 957.8
2 Cluster

3310 944.5

2130 602.1

1900 622.1

1790 628.9
4 Cluster

1890 625.2

1450 505.6

1260 525.5

900 518.8

910 518.8

1510 532.2

1030 545.4

970 518.8

8 Cluster

102 518.8

As in Table 4.8 and detail information of the Fig 4.31 shown below, the
performance when one cluster insides between these architectures are compares and
plotted in Fig 4.31. The essential execution time need to complete the benchmark is
6470 and 2035.3 nano seconds for the original integer architecture and mixed

 - 71 -

 Chapter 4 Implementation Results and Performance Evaluation

architecture of floating point unit and original integer architecture respectively.
Analyzing the data above, the performance of the mixture of floating point unit and
original integer architecture is 3.18 times better than the original integer architecture.

One Cluster Used for Different Target Architectures

0

1000

2000

3000

4000

5000

6000

7000

Original Integer Architecture Floating Point Unit and Original Interger Architecture Mixed

Ex
ec

ut
io

n
Ti

m
e(

ns
)

ALU1
ALU2
MUL1
MUL2

Fig 4.31 Performance Evaluation of one cluster included in execution time

Second, the detail information of the performance when two clusters included in
these architectures are compared and plotted in Fig 4.32 and Table 4.8. The needed
execution time used to complete the benchmark is 3310 and 957.8 nano seconds for
the original integer architecture and the mixture of floating point unit and original
integer architecture respectively. Result from analyzing the data above, the
performance of the mixed of floating point unit and original integer architecture is
3.46 times better than the original integer architecture.

 - 72 -

 Chapter 4 Implementation Results and Performance Evaluation

Two Clusters Used for Different Target Architectures

0

500

1000

1500

2000

2500

3000

3500

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

Ex
ec

ut
io

n
Ti

m
e

(n
s)

Cluster1_ALU1
Cluster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
Cluster2_ALU2
Cluster2_MUL1
Cluster2_MUL2

Fig 4.32 Performance Evaluation of two clusters included in execution time

Third, the detail information of the performance when four clusters included in
these architectures are compared and plotted in Fig 4.33 and Table 4.8. The critical
time need to finish the benchmark is 2130 and 628.9 nano seconds for the original
integer architecture and the mixture of floating point unit and original integer
architecture respectively. Analyzing the data above the performance of the mixed
floating point unit and original integer architecture is about 3.39 times better than the
original integer architecture in seconds.

 - 73 -

 Chapter 4 Implementation Results and Performance Evaluation

Four Cluster Used for Different Target Architectures

0

500

1000

1500

2000

2500

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

Ex
ec

ut
io

n
Ti

m
e

(n
s)

Cluster1_ALU1
Cluster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
Cluster2_ALU2
Cluster2_MUL1
Cluster2_MUL2
Cluster3_ALU1
Cluster3_ALU2
Cluster3_MUL1
Cluster3_MUL2
Cluster4_ALU1
Cluster4_ALU2
Cluster4_MUL1
Cluster4_MUL2

Fig 4.33 Performance Evaluation of four clusters included in execution time

Eventually the performance when eight clusters included in these architectures
are compared and sketched in Fig 4.34. The essential time need to complete the
benchmark is 1510 and 545.4 nano seconds for the original integer architecture and
floating point unit and original integer mixed architecture respectively. Result from
analyzing the data above, the performance of the mixture of floating point unit and
original integer architecture is about 2.77 times better than the original integer
architecture.

 - 74 -

 Chapter 4 Implementation Results and Performance Evaluation

Eight Clusters Used for Different Target Architectures

0

200

400

600

800

1000

1200

1400

1600

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

Ex
ec

ut
io

n
tim

e
(n

s)

Cluster1_ALU1
CLuster1_ALU2
Cluster1_MUL1
Cluster1_MUL2
Cluster2_ALU1
CLuster2_ALU2
Cluster2_MUL1
Cluster2_MUL2
Cluster3_ALU1
CLuster3_ALU2
Cluster3_MUL1
Cluster3_MUL2
Cluster4_ALU1
CLuster4_ALU2
Cluster4_MUL1
Cluster4_MUL2
Cluster5_ALU1
CLuster5_ALU2
Cluster5_MUL1
Cluster5_MUL2
Cluster6_ALU1
CLuster6_ALU2
Cluster6_MUL1
Cluster6_MUL2
Cluster7_ALU1
CLuster7_ALU2
Cluster7_MUL1
Cluster7_MUL2
Cluster8_ALU1
CLuster8_ALU2
Cluster8_MUL1
Cluster8_MUL2

Fig 4.34 Performance Evaluation of eight clusters included in execution time

The summary of the descriptions above are discussed in this paragraph. The
performance evaluations considering the execution cycles and the execution time of
two target architectures with different numbers of clusters used are normalized to the
original integer architecture such as the architecture of the ALU cluster IP mentioned
in previous section and the amount of performance enhancement are listed. As shown
in Fig 4.35, the performance normalized to the original integer architecture is
sketched. Observing Fig 4.35, it is clear that no matter what numbers of clusters
included the trend of the performance increases incrementally. Considering the
phenomenon that more clusters used makes the performance improvement increases
slight slowly when the number of clusters used is focused between different target
architectures. This phenomenon results form that more cluster used will share and
degrade the computation loading of each functional unit and reveals the slight slowly
increase of performance. In spite of this, it is still about four times of the performance
improvement when the floating point units involved in the architectures.

The performance evaluation considering the execution time has the same trend
and phenomenon. As illustrated in Fig 4.36, the trend of the performance increases
incrementally regardless of the numbers of clusters. It also has the phenomenon that
the performance increases slight slowly when more clusters used if the number of

 - 75 -

 Chapter 4 Implementation Results and Performance Evaluation

clusters used is focused between different target architectures. The reason is the same
as description above. In spite of this, it is still about 3.3 times of the performance
improvement when the floating point units involved in the architectures. These two
performance evaluation executed the benchmark SRFFT prove that the floating point
unit is an essential units to improve the performance of the architecture.

Performance Normalized to Original Integer Architecture

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

Pe
rf

or
m

an
ce

 E
nh

an
ce

m
en

t

one cluster (cycles)
two clusters (cycles)
four clusters (cycles)
eight clusters (cycles)

Fig 4.35 Comparison of Performance Normalized in execution cycles

Performance Normalized to Otiginal Integer Architecture

0

0.5

1

1.5

2

2.5

3

3.5

4

Original Integer Architecture Floating Point Unit and Original Interger
Architecture Mixed

Pe
rf

or
m

an
ce

 E
nh

an
ce

m
en

t

one cluster (execution time)
two clusters (execution time)
four clusters (execution time)
eight clusters (execution time)

Fig 4.36 Comparison of Performance Normalized in execution time

 - 76 -

 Chapter 4 Implementation Results and Performance Evaluation

The following of this section the performance comparison results which fixed the
type of adopted architecture when different numbers of clusters included in the
selected architecture are presented. Consider the execution cycles of finishing the
SRFFT benchmark, the results are shown in Fig 4.37. As illustrated in the figure, the
trend shows that the more cluster used in the architecture the higher performance
which is gained from the architecture. The performance enhancements of the original
integer architecture are 1.95, 3.04 and 4.28 times higher than one cluster included
architecture for two clusters, four clusters and eight clusters used in the original
integer architecture respectively. Similarly the mixture architecture of the floating
point unit and original integer architecture also has the trend. The performance
improvements of the selected mixture architecture are 2.12, 3.01 and 3.73 times
higher than single cluster used for two clusters, four clusters and eight clusters used
respectively.

Then the performance comparisons in the perspective of execution time are also
presented. As shown in Fig 4.38, the trend of performance improvement is the same.
As illustrated in the figure, the performance enhancements of the original integer
architecture are 1.95, 3.03 and 4.28 times higher than one cluster included architecture
for two clusters, four clusters and eight clusters used in the original integer
architecture respectively. Similarly the mixture architecture of the floating point unit
and original integer architecture also has the trend in the perspective of execution time.
The performance improvements of the selected mixture architecture are 2.12, 3.24 and
3.73 times higher than single cluster used for two clusters, four clusters and eight
clusters used respectively. The results mentioned above shows that more clusters used
in the selected architecture makes more parallelism be exploit and improves the
performance higher.

A phenomenon observed from Fig 4.37 and Fig 4.38 is discussed in this
paragraph. It shows that when the numbers of clusters included in the architecture are
increased from one to two or from two to four, the performance improvement is
doubled no matter what architectures are adopted and either in the perspective of
execution time or execution cycles. But when the clusters included increase from four
to eight, the performance enhancement is not doubled and not conspicuous. The
phenomenon results from huge data exchange outside the intra register files embedded
in each arithmetic unit and shows that the performance enhancement does not come
with more and expensive hardware resources in this case.

 - 77 -

 Chapter 4 Implementation Results and Performance Evaluation

Performance Comparison for Different Number of Clusters used

0

100

200

300

400

500

600

700

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

C
yc

le
s

One Cluster
Two Clusters
Four Clusters
Eight Clusters

Fig 4.37 Performance Comparison for Different Number of Clusters used in cycles

Performance Comparsio for Different Number of Clusters used

0

1000

2000

3000

4000

5000

6000

7000

Original Integer Architecture Floating Point Unit and Original Interger Architecture
Mixed

Ex
ec

ut
io

n
tim

e
(n

s)

One Cluster
Two Clusters
Four Clusters
Eight Clusters

Fig 4.38 Performance Comparison for Different Number of Clusters used in execution

time

 - 78 -

 Chapter 4 Implementation Results and Performance Evaluation

The summarized conclusions of the section of the performance evaluation are
described in this paragraph. The performance enhancement when the floating point
unit involved in the target architecture is 4.07 times in the condition of execution
cycles. In the condition of execution time it also provides 3.2 times of performance
improvement in the discussed architecture. In the analysis and evaluation of this thesis,
more clusters used in each architecture result from higher performance and the most
performance enhancement is 4 times while eight clusters adopted. The area overhead
while providing the performance improvement discussed above is 10.8% by the
floating point unit.

 - 79 -

 Chapter 5 Conclusion and Future Work

CHAPTER 5

Conclusion and Future Work

In this chapter, the conclusions of proposed designs in this thesis are described.
The future work of constructing the media processing architecture with homogeneous
processor cores is also discussed. The details are introduced in the following
sub-sections.

5.1 Conclusion

In this thesis, the media processing architecture with homogeneous processor
cores is proposed to overcome the challenges of the programming models and system
architectures. In the meantime, this work has also demonstrated the feasibility of
implementation consideration. An ALU cluster IP designed shows it is suitable for
media application and such a hardware accelerator with platform-based design is able
to form a media streaming architecture with homogeneous processor cores in the
future. The chip is manufactured using TSMC 0.15um CMOS technology. The details
of the silicon backed design are addressed in the previous chapters.

The proposed ALU cluster IP with Magnetic RAM provides the ability to against
the issue of soft error [35 - 37]. It through the multiple functional units and replace the
data memory with Magnetic RAM to form a radiation harden architecture. It will be a
critical issue of the highly integrated design and the design for typical and special
applications such as mission critical, life critical, military and space applications.

To go a step further, the ALU cluster IP which supported floating point
operations is also proposed. The floating point units used to integrate with the ALU
cluster IP are designed and implemented as hard macros. These hard macros of
floating point units provide efficient processing ability to handle the operation of
floating point numbers. The performance evaluation of variant architectures reveals

 - 80 -

 Chapter 5 Conclusion and Future Work

and proves the floating point units designed is essential and critical in the proposed
hardware accelerator.

Continuing the design of the media streaming architecture with homogeneous
processor cores there are future works needed to be implemented, designed and make
effort. The details are introduced in the following paragraph.

5.2 Future Work

As shown in Fig 3.4, the prototype 3, the ALU cluster IP with floating point
operation supported will be taped out. Then the system integration will preliminary
start. An ALU cluster IP with compatible board for logic tile connector will be stacked
into the RealView versatile platform baseboard for ARM926EJ-S shown in Fig 5.1.
Besides verifying the AMBA protocol of chip, one ALU cluster IP stacked in the
board also shows that the IP has the capability as a hardware accelerator integrated
with the platform.

Fig 5.1 RealView Versatile Platform Baseboard for ARM926EJ-S

Subsequently multiple processing elements, ALU cluster IPs, will be integrated
with the versatile baseboard to form a media streaming architecture with
homogeneous processor cores. Suitable and selected benchmarks are ported into this
processing system and compare with each other. Eventually a high efficient, well
matched to media application and radiation harden processing system will be
proposed and completed.

 - 81 -

 Bibliography

BIBLIOGRAPHY

[1] Rixner, S., Dally, W.J., Kapasi, U.J., Khailany, B., Lopez-Lagunas, A., Mattson,
P.R., Owens, J.D.,” A bandwidth-efficient architecture for media processing,”

Proceedings. 31st Annual ACM/IEEE International Symposium on
Microarchitecture, Pages:3 – 13, 30 Nov.-2 Dec. 1998.

[2] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, A. Das, “Stream Processors:
Programmability with Efficiency,” ACM Queue, pages 52-62, March 2004.

[3] B. Khailany, J. W. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens, B.
Towles, A. Chang, S. Rixner, “Imagine: Media Processing with Streams,” IEEE
Micro, pages 35-46, March-April 2001.

[4] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Matttson, J. D.
Owens, “Programmable Stream Processors,” IEEE Computer, pages 54-62,
August 2003.

[5] K. Mai, T. Paaske, N. Jayasena, R. Ho, J. W. Dally, M. Horowitz, “Smart
Memories: A Modular Reconfigurable Architecture,” Proceedings of the 27th
International Symposium on Computer Architecture, pages 161-171, June 2000.

[6] Owens, J.D., Rixner, S., Kapasi, U.J., Mattson, P., Towles, B., Serebrin, B., Dally,
W.J.,” Media processing applications on the Imagine stream processor,”
Proceedings of the 2002 IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD’02), Pages:295 – 302, Sept. 2002.

[7] Jung Ho Ahn, Dally, W.J., Khailany, B., Kapasi, U.J., Das, A,” Evaluating the
Imagine Stream Architecture,” Proceedings of 31st Annual International
Symposium on Computer Architecture, Pages: 14 – 25, June. 2004.

[8] L. Hennessy, A. Patterson, Computer Architecture: A Quantitative Approach,
Third Edition, Morgan Kaufmann Publishers, 2003.

[9] W. Wolf, Modern VLSI Design: System-on-Chip Design, Third Edition, Prentice
Hall Modern Semiconductor Design Series, 2002.

[10] Neil. H. E. Weste, David Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, Third Edition, Addison-Wesley VLSI Systems Series, 2005.

 - 82 -

 Bibliography

[11] J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design
Perspective, Second Edition, Prentice Hall Electronics and VLSI Series, 2003.

[12] Nsame, P., Savaria, Y.,” A Customizable Embedded SoC Platform Architecture,”
Proceedings of 4th IEEE International Workshop on System-on-Chip for
Real-Time Applications, Pages:299 - 304, July 2004.

[13] Ghattas, H., Mbaye, M., Pepga Bissou, J., Savaria, Y.,” SoC Platform
Architecture for a Network Processor,” Proceedings of International Symposium
on System-on-Chip, Pages:49 - 52, Nov. 2003.

[14] Sangiovanni-Vincentelli, A., Martin, G.,” Platform-based design and software
design methodology for embedded systems,” IEEE Design & Test of Computers,
Pages:23 - 33, Nov.-Dec. 2001.

[15] Todman, T.J., Constantinides, G.A., Wilton, S.J.E.; Mencer, O., Luk, W.; Cheung,
P.Y.K.,” Reconfigurable computing: architectures and design methods,” IEE
Proceedings-Computers and Digital Techniques, Pages:193 - 207, Mar. 2005.

[16] Singh, H., Ming-Hau Lee, Guangming Lu, Kurdahi, F.J., Bagherzadeh, N.,
Chaves Filho, E.M.,” MorphoSys: an integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Transactions on
Computers, Pages:465 - 481, May 2000.

[17] Bocchi, M., de Dominicis, M., Mucci, C., Deledda, A., Campi, F., Lodi, A., Toma,
M., Guerrieri, R.,” Design and implementation of a reconfigurable heterogeneous
multiprocessor SoC,” IEEE Custom Integrated Circuits Conference 2006,
Pages:93 - 96, Sept. 2006.

[18] Kapasi, U.J., Dally, W.J., Rixner, S., Owens, J.D., Khailany, B.,” The Imagine
Stream Processor,” Proceedings of the 2002 IEEE International Conference on
Computer Design: VLSI in Computers and Processors (ICCD’02), Pages:282 –
288, Sept. 2002.

[19] Ting-Wei Lin, Ming-Chung Lee, Fang-Ju Lin, Herming Chiueh, “A Low Power
ALU Cluster Design for Media Streaming Architecture,” IEEE 48th
International Midwest Symposium on Circuits and Systems, Pages:51 - 54 Aug.
2005.

[20] Ting-Wei Lin, “An ALU cluster Design for Media Streaming processors
Architecture,” Master dissertation, University of Chiao Tung University, 2005.

 - 83 -

 Bibliography

[21] ARM Corp., “RealView Platform Baseboard for ARM926EJ-S HBI-0117 User
Guide,”
http://www.arm.com/pdfs/DUI0224C_pb926ej-s_user_guide.pdf

[22] ARM Corp., “Versatile/LT-XC2V4000+ Logic Tile User Guide,”
http://www.arm.com/pdfs/DUI0186B_lt_xc2v_userguide.pdf

[23] Garrett, D., Davis, L., ten Brink, S., Hochwald, B., Knagge, G.,” Silicon
complexity for maximum likelihood MIMO detection using spherical decoding,”
IEEE Journal of Solid-State Circuits, Pages:1544 - 1552, Sept. 2004.

[24] Shao-Hsuan Chang, “Design and Implementation of an ALU Cluster Intellectual
Property as a Reconfigurable Hardware Accelerator for Media Streaming
Architecture,” Master dissertation, University of Chiao Tung University, 2006.

[25] ARM Corp.,” AMBATM Specification (Rev 2.0)
http://www.arm.com/products/solutions/AMBA_Spec.html

[26] IEEE Computer Society (1985),” IEEE Standard for Binary Floating-Point
Arithmetic,” IEEE Std 754, 1985

[27] http://www.agilent.com

[28] D.D. Tang, P.K. Wang, V. S. Speriosu, S. Le, R.E. Fontana, S. Rishton, “An IC
process compatible Nonvolatile Magnetic RAM,” Electron Devices Meeting,
pages 997-1000, 1995.

[29] Durlam, M, Naji, P J, Omair, A, DeHerrera, M, Calder, J, Slaughter, J M, Engel,
B N, Rizzo, N D, Grynkewich, G, Butcher, B, Tracy, C, Smith, K, Kyler, K W,
Ren, J J, Molla, J A, Feil, W A, Williams, R G, Tehrani, S,” A 1-Mbit MRAM
based on 1T1MTJ bit cell integrated with copper interconnects,” IEEE Journal of
Solid-State Circuits, Pages: 769-773, May 2003.

[30] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing,
Second Edition, Prentice Hall Signal Processing Series, 1999.

[31] Sorensen, H., Heideman, M., Burrus, C.,” On computing the split-radix FFT,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, Pages:152 -
156, Feb. 1986.

[32] Duhamel, P.,” Implementation of "Split-radix" FFT algorithms for complex, real,
and real-symmetric data,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Pages:285 - 295, Apr. 1986.

 - 84 -

 Bibliography

[33] User Guide and Reference Manual of Synopsys Online Document

[34] Synopsys SolvNet
http://www.synopsys.com/support/support.html

[35] Saggese, G.P., Wang, N.J., Kalbarczyk, Z.T., Patel, S.J., Iyer, R.K.,” An
experimental study of soft errors in microprocessors,” IEEE Micro, Pages: 30 -
39, Nov.-Dec. 2005.

[36] Baumann, R.,” Soft errors in advanced computer systems,” IEEE Design & Test
of Computers, Pages:258 - 266, May-June 2005.

[37] Mukherjee, S.S., Emer, J., Reinhardt, S.K.,” The soft error problem: an
architectural perspective,” 11th International Symposium on High-Performance
Computer Architecture, 2005. HPCA-11., Page(s):243 - 247, Feb. 2005.

 - 85 -

