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模 糊 邏 輯 控 制 系 統 之 穩 定 度 分 析 與 應 用 
 

 
研究生：馬立山                           指導教授：吳炳飛教授 

國立交通大學電控工程研究所博士班 

中文摘要 

在本篇論文中，我們分析了 P 與 PD 型之模糊邏輯控制系統之絕對穩定度，另外也提出了一

種基於模糊邏輯控制系統之應用，即只利用傳輸一狀態之數值信號，並利用適應性模糊類神經

觀測器 (AFNO)去同步一類的未知混沌系統。關於穩定度分析，包括兩種狀況：確定與非確定性

受控體。而穩定度分析包括以下參數：參考輸入、致動增益、區間(Interval )受控體參數。對確

定性受控體而言，我們利用 Popov 或線性化的方法，針對 P 與 PD 型之模糊邏輯控制系統，在不

同參考輸入信號與致動增益下，作絕對穩定度分析，另外，關於模糊邏輯控制系統在參數空間

之穩態誤差也可被分析。針對非確定性受控體，我們利用基於 Lur’e 系統之參數化強健 Popov 準

則，來作 P 型模糊邏輯控制系統之絕對穩定度分析，而關於非確定性受控體之 PD 型分析，在我

們方法中，PD 型之模糊邏輯控制器，為一種單一輸入之 PD 型模糊邏輯控制器，而且此控制器

可被轉成一種特殊 P 型模糊邏輯控制器，而再作進一步分析。與之前研究不同的是，我們利用

參數化強健 Popov 準則，可針對非零之參考輸入，且非確定性之受控體，作絕對穩定度分析。

我們亦利用 PSPICE 元件，設計了一個模糊電流控制 RC 電路，透過數值與 PSPICE 模擬驗證我

們所作分析之結果。另外，在模擬例子中，我們也利用不同平衡點的觀念，解釋模糊邏輯控制

系統之震盪機制。最後，我們也比較幾種非確定性系統之絕對穩定度準則，驗證我們的分析的

有效性。另一方面，模糊邏輯控制系統也可以被設計用來智慧化同步混沌信號，其應用主要觀
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念為只藉傳輸一狀態之數值信號，並利用 AFNO 去同步一類的未知混沌系統，如果此一非線性

混沌系統可以藉由微分幾何的方法，被轉換成標準的 Lur’e 系統，則此方法便可以被應用來作同

步。值得一提的是，在這一個方法中，AFNO 之適應性模糊類神經(FNN)可以被線上即時調整權

重，去對傳送端之非線性項作建模。另外，藉由傳送端傳送一個狀態並利用接收端之觀測器可

以對傳送端未知之所有狀態作重建，當所有狀態被觀測到，傳送端與接收端便達到同步。AFNO

可以線上適應性估測傳送端之狀態，即使傳送端已經切換到另一個混沌系統，接收端之 AFNO

還可以與新的混沌系統達到同步。另外一方面，即使存在建模誤差或外加有界干擾，AFNO 亦

可強健的達到同步。模擬結果驗證 ANFO 對混沌系統之同步應用是有效的。 
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Student：Li-Shan Ma                  Advisor：Prof. Bing-Fei Wu 

Institute of Electrical and Control Engineering 
National Chiao Tung University 

ABSTRACT 
This thesis analyzes the absolute stability in P and PD type fuzzy logic control systems with both 

certain and uncertain linear plants. In addition, the adaptive fuzzy-neural observer (AFNO) is applies 

to synchronize a class of unknown chaotic systems via scalar transmitting signal only. Stability 

analysis includes the reference input, actuator gain and interval plant parameters. For certain linear 

plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov 

or linearization methods under various reference inputs and actuator gains. The steady state errors of  

fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion 

for parametric absolute stability based on Lur’e systems is also applied to the stability analysis of P 

type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is 

a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the 

absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input 

and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. 

Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and 

PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation 

mechanism in fuzzy control systems is specified with various equilibrium points of view in the 

simulation example. Eventually, the comparisons are also given to show the effectiveness of the 

analysis method. On the other hand, the fuzzy control system can be applied to synchronize the chaotic 

signals in the master end intelligently. With a scalar transmitting signal only, the AFNO is utilized to 

synchronize a class of unknown chaotic systems. The proposed method can be used for 

synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur’e 

system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network 

(FNN) in AFNO is adopted on line to model the nonlinear term in the master end. Additionally, the 
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master’s unknown states can be reconstructed from one transmitted state using observer design in the 

slave end. Synchronization is achieved when all states are observed. The utilized scheme can 

adaptively estimate the transmitter states on line, even if the transmitter is changed into another chaotic 

system. On the other hand, the robustness of AFNO can be guaranteed with respect to the modeling 

error, and external bounded disturbance. Simulation results confirm that the AFNO design is valid for 

the application of chaos synchronization. 

 vi



 

 

致         謝 

  修習博士學位這一路走來，有太多我需要感謝的人!尤其是我的論文指導教授 吳炳飛老師。

感謝老師在學術研究上給予學生的啟發、鼓勵與陪伴，在此學生要由衷的向老師表示謝意和敬

意。 

  感謝口試委員 鄧清政教授、張志永教授、涂世雄教授、鄭泗東教授，彭昭暐教授在百忙之中，

願意撥冗參與口試，並給予論文寶貴的建議。 

  在研究過程中，也要特別感謝學長暐哥一路的陪伴。特別是在研究上的討論與建議，常常可

以給我新的啟發與觀念的成長。 

  感謝CSSP 實驗室的同學與學弟妹多年來提供的協助，尤其您們的勤奮和努力，常是我學習的

指標，尤其是重甫、世孟、欣翰、全財等。 

學生也要感謝碩士班的指導教授 涂世雄老師，奠定學生作研究的方法與態度。另外老師為人

處世的言教與身教，也深深地影響著學生。 

  同時，也要感謝建國科技大學同仁們的支持與鼓勵，儘管是一句關心與問候，也常能激勵我，

在繁重的學校工作外，還能努力堅持於相關研究工作。 

  在求學過程中，我也要感謝洪宣天神父，透過與神父定期的靈修談話，讓自己不斷調整與天

主、與人的關係。在談話的過程中，神父也不斷從福音的角度鼓勵我前進，在生活中不斷發現

天主的召叫。 

  感謝父親與母親，從小到大對我與弟妹的栽培，使我們能得到良好的教育，希望未來能對兩

位老人家回報一二。我也要感謝岳父母，對小孩的悉心照顧，分擔我們夫妻倆對小孩的生活照

 vii



顧壓力。 

  另外，家中兩位寶貝兒子慕恩及瀚恩，雖然經常在我趕研究進度時候，意猶未盡地霸佔電腦，

令人幾近抓狂，但您們卻也是鼓勵我奮鬥的泉源。您們的調皮，其實透露了無限的創造力，想

到此時，真的會會心一笑。 

  多年來，太太 憶如在我就讀研究所博士班期間，協助照料子女，尤其在留職停薪那一年，協

助分擔家中許多事務，免除我後顧之憂，使我能一心向學，更是讓我無以回報。 

  因篇幅有限，還有很多曾經教導我的師長、幫助我的同仁、鼓勵我朋友，無法一一致意，謹

在此表達由衷的感謝，謝謝您們。 

  博士求學過程中真的是一個漫長且艱辛的路程，有時看不到希望，甚至必須在絕望中持續奮

鬥，不知何時光明會出現，尤其投稿論文被拒絕，畢業遙遙無期的時候。雖然未來前途也充滿

了挑戰，希望透過如此一個真實的經驗，讓我體察到，即使未來處在困境中，仍要持續奮鬥，

因為奮鬥才有希望。 

 

最後將論文獻給所有關心、支持及協助我的人 

立山 於交大CSSP 實驗室 

11/6/2009 

 

       

 viii



 

Contents 
 

摘要..................................................................................................................................iii 

ABSTRACT .....................................................................................................................v 

誌謝 ...............................................................................................................................vii 

Contents...........................................................................................................................ix 

List of Figures...............................................................................................................xiii 

List of Tables................................................................................................................xvii 

Chapter 1 Introduction...................................................................................................1 

1.1 Motivation................................................................................................................1 

1.2 Organizations of the Dissertation..........................................................................9 

Chapter 2 The Fuzzy Logic Control Systems..............................................................10 

2.1 Fuzzy Logic Controller..........................................................................................10 

2.2 P Type Fuzzy Logic Control System.....................................................................11 

2.3 PD Type Fuzzy Logic Control System..................................................................12 

2.3.1 Calculation of Signed Distance.......................................................................13 

2.3.2 The Presentation of the SFLC System............................................................13 

2.3.3 The Analytic Representation of the SFLC System ........................................14 

Chapter 3 Equilibrium Points and Stability Analysis in P and PD Type Fuzzy 

Control Systems...........................................................................................20 

3.1 Equilibrium Point Analysis for P Type Fuzzy Control Systems with Linear 

Plants......................................................................................................................20 

3.2 Stability Analysis for P Type Fuzzy Control Systems with a Certain Linear 

Plant.......................................................................................................................21 

3.2.1 Frequency Domain Approach.........................................................................21 

3.2.2 Time Domain Approach..................................................................................22 

 ix



3.3 Stability Analysis for P Type Fuzzy Control Systems with an Uncertain Linear 

Plant.......................................................................................................................22 

3.4 Transformation SFLC from PD to P Type.............................................................26 

3.5 Equilibrium Point Analysis for PD Type Fuzzy Control Systems with Linear 

Plants......................................................................................................................27 

3.6 Stability Analysis for PD Type Fuzzy Control Systems with Linear 

Plants......................................................................................................................28 

3.6.1 Frequency Domain Approach.........................................................................28 

3.6.2 Time Domain Approach..................................................................................28 

3.7 Stability Analysis for PD Type Fuzzy Control Systems with Uncertain Linear 

Plants......................................................................................................................29 

Chapter 4 Fuzzy Current Control RC Circuit System Design..................................31 

4.1 The Block Diagram of the Fuzzy Current Control RC Circuit System.................31 

4.2 Circuit Plant...........................................................................................................32 

4.3 Fuzzy Logic Controller Circuit..............................................................................32 

4.4 The Overall Design Circuit....................................................................................32 

4.4.1 Voltage Controlled Current Circuit.................................................................33 

4.4.2 Current Amplifier............................................................................................33 

4.4.3 PD type Signal Generation..............................................................................33 

Chapter 5 Simulation Results.......................................................................................38 

5.1 P Type Example Demonstrations..........................................................................39 

5.1.1 Certain Linear Circuit Plant............................................................................39 

5.1.2 Mechanism of Oscillations in the Fuzzy Control system................................40 

5.1.3 Alternative Control Function..........................................................................41 

5.1.4 Uncertain linear circuit plant...........................................................................41 

 

 x



5.2 PD Type Example Demonstrations …..................................................................42 

5.2.1 Certain Linear Circuit Plant............................................................................42 

5.2.2 Alternative Control Function. ........................................................................42 

5.2.3 Uncertain Linear Circuit Plant........................................................................43 

Chapter 6 Comparisons with Other Approaches.......................................................56 

6.1 Robust Lur’e Test..................................................................................................56 

6.2 Robust Circle Criterion..........................................................................................57 

6.3 Robust Popov Criterion ........................................................................................58 

6.4 Parametric Robust Popov Criterion.......................................................................58 

6.5 A Brief Summary on Comparisons .......................................................................59 

Chapter 7 Application: Observer-Based Synchronization for a Class of Unknown 

Chaotic Systems with Adaptive Fuzzy-Neural Network..........................69 

7.1 Overview ...............................................................................................................69 

7.2 Overall Structure of Adaptive Synchronization with Fuzzy-Neural Observer 

Design....................................................................................................................70 

7.2.1 Introduction of Overall Structure....................................................................70 

7.2.2 Dynamics of the Master and Slave Ends.........................................................70 

7.3 Adaptive Fuzzy-Neural Network Observer Design...............................................71 

7.3.1 Fuzzy-Neural Network....................................................................................72 

7.3.2 Adaptive Fuzzy-Neural Network Observer.....................................................73 

7.4 Simulation Results ................................................................................................75 

7.4.1 Example 1........................................................................................................75 

7.4.2 Example 2........................................................................................................77 

7.5 Conclusion Remarks..............................................................................................79 

Chapter 8 Conclusions...................................................................................................91 

Reference .......................................................................................................................93 

 xi



VITA.............................................................................................................................103 

Publication List............................................................................................................104 

 xii



List of Figures 

 
Fig. 2.1 The P type fuzzy control system........................................................................15 

Fig. 2.2 The membership functions of the fuzzy logic controller....................................15 

Fig. 2.3 The control function of the fuzzy logic controller.............................................16 

Fig 2.4 The single-input fuzzy logic control system......................................................17 

Fig. 2.5 The skew-symmetric property in ( e , e ) and the calculation of signed distance..18 

Fig. 2.6 The control function of the fuzzy logic controller in SFLC...............................18 

Fig. 2.7 The transition formation in the transformation..................................................19 

Fig.3.1 The transformed SFLC with the special P type fuzzy control system 

formation.........................................................................................................30 

Fig. 4.1 The block diagram of a fuzzy current control RC circuit system.......................35 

Fig. 4.2 The RC circuit plant...........................................................................................35 

Fig. 4.3 The designed fuzzy current control RC circuit system.......................................36 

Fig. 4.4 The control function of a fuzzy controller with circuit design parameters........37 

Fig. 5.1 The membership functions of the fuzzy control system.....................................45 

Fig. 5.2 The fuzzy control function with PSPICE simulation by Table 5.2 parameters..45 

Fig. 5.3 The equilibrium stability of the P type fuzzy control system by Table 5.1 for 

, where o indicates a stable equilibrium, and ( , )r K ×  denotes an unstable 

equilibrium....................................................................................................47 

Fig. 5.4 (a) The phase plane of  when ( ,( , )e e ) (0.2,5)r K = ; (b) The time waveform 

when ; (c) PSPICE waveform when ( , .................48 ( , ) (0.2,5)r K = ) (0.2,5)r K =

Fig. 5.5 (a) The phase plane of  when ( ,( , )e e ) (0.2,4)r K = ; (b) The time waveform 

when ; (c) PSPICE waveform when ...............50 ( , ) (0.2,4)r K = ( , ) (0.2,4)r K =

Fig. 5.6 The equilibrium with the stability of the alternative fuzzy controller by Table 

 xiii



5.3 for ( , , where o denotes a stable equilibrium, and ×  indicates an 

unstable equilibrium..........................................................................................51 

)r K

Fig. 5.7 The Popov plots for the P type fuzzy control system with uncertain circuit 

plant...................................................................................................................51 

Fig. 5.8 The equilibriums with the stability of the PD type fuzzy control system by 

Table 5.1 for , where o indicates a stable equilibrium, and  denotes an 

unstable equilibrium..........................................................................................52 

( , )r K ×

Fig. 5.9 (a) The time waveform when ( , ) (0.2,10)r K =  (b) PSPICE waveform when 

....................................................................................................53 ( , ) (0.2,10)r K =

Fig. 5.10 (a)The time waveform when ( , ) (0.2,9)r K = ; (b) PSPICE waveform when 

......................................................................................................54 ( , ) (0.2,9)r K =

Fig. 5.11 Equilibrium with the stability of the PD type fuzzy control systems in Table 

5.3 for ( , , where o denotes a stable equilibrium, and ×  indicates an 

unstable equilibrium..........................................................................................54 

)r K

Fig. 5.12 The Popov plots for the PD type fuzzy control systems with the uncertain 

circuit plant.....................................................................................................55 

Fig. 6.1 The robust Lur’e test..........................................................................................60 

Fig. 6.2 The sector bound from the robust Lur’e test and the control surface of the fuzzy 

logic controller...................................................................................................60 

Fig. 6.3 The time waveform of the stable test case respect to the robust Lur’e test........61 

Fig. 6.4 The time waveform of the unstable test case respect to the robust Lur’e test....62 

Fig. 6.5 Robust circle criterion........................................................................................62 

Fig. 6.6 The sector bound from the robust circle criterion and control surface of fuzzy 

logic controller...................................................................................................63 

Fig. 6.7 The time waveform of the stable test case respect to the robust circle 

criterion...........................................................................................................64 

 xiv



Fig. 6.8 The time waveform of the unstable test case respect to the robust circle 

criterion..............................................................................................................64 

Fig. 6.9 Robust Popov criterion.......................................................................................65 

Fig. 6.10 The sector bound from the robust Popov criterion and control surface of fuzzy 

logic controller...................................................................................................65 

Fig. 6.11 Parametric robust Popov criterion for the reference inputs..............................66 

Fig. 6.12 The time waveform of the stable test case respect to the parametric robust 

Popov criterion with a bounded pulse reference.............................................66 

Fig. 6.13 The time waveform of the stable test case respect to the parametric robust 

Popov criterion with the reference input 990r = ...........................................67 

Fig. 6.14 The time waveform of the stable test case respect to the parametric robust 

Popov criterion with the reference input 990r = − .........................................67 

Fig. 7.1 The overall structure of synchronization with AFNO........................................81 

Fig. 7.2 The fuzzy-neural approximator..........................................................................81 

Fig. 7.3 The first states 1Mx  and 1ˆSx  in Chua’s circuit and AFNO under different initial 

conditions........................................................................................................83 

Fig. 7.4 The second states 2Mx  and 2ˆSx  in Chua’s circuit and AFNO under different 

initial conditions.............................................................................................83 

Fig. 7.5 The third states 3Mx  and 3ˆSx  in Chua’s circuit and AFNO under different 

initial conditions.............................................................................................84 

Fig. 7.6 The first states 1Mx  and 1ˆSx  in Chua’s circuit and AFNO under different 

disturbances....................................................................................................84 

Fig. 7.7 The second states 2Mx  and 2ˆSx  in Chua’s circuit and AFNO under different 

disturbances....................................................................................................85 

Fig. 7.8 The third states 3Mx  and 3ˆSx  in Chua’s circuit and AFNO under different 

disturbances....................................................................................................85 

 xv



Fig. 7.9 The structure of synchronization with the switched masters..............................86 

Fig. 7.10 The first states in Chua’s circuit, Rössler system and AFNO under different 

initial conditions and switched masters: (a) actual figure size (b) enlarged 

figure size of local region...............................................................................87 

Fig. 7.11 The second states in Chua’s circuit, Rössler system and AFNO under different 

initial conditions and switched masters..........................................................88 

Fig. 7.12 The third states in Chua’s circuit, Rössler system and AFNO under different 

initial conditions and switched masters..........................................................88 

Fig. 7.13 The first states in Chua’s circuit, Rössler system and AFNO under different 

disturbances and switched masters.................................................................89 

Fig. 7.14 The second states in Chua’s circuit, Rössler system and AFNO under different 

disturbances and switched masters.................................................................89 

Fig. 7.15 The third states in Chua’s circuit, Rössler system and AFNO under different 

disturbances and switched masters.................................................................90 

 

 xvi



List of Tables 
 

Table 2.1 Rules of the fuzzy logic controller...................................................................16 

Table 2.2 Parameters of the fuzzy logic controller..........................................................16 

Table 2.3 Rules of conventional FLC with control error defined as ..........................17 de

Table 2.4 Rules of SFLC.................................................................................................17 

Table 5.1 Parameters of the fuzzy logic controller in simulations..................................44 

Table 5.2 Parameters of the fuzzy current control RC circuit system.............................46 

Table 5.3 Alternative parameters of the fuzzy logic controller.......................................50 

Table 6.1 Parameters of fuzzy logic controller for the robust Lur’e test........................61 

Table 6.2 Parameters of fuzzy Logic controller for the robust circle criterion ...............63 

Table 6.3 The validity of the different robust stability tests............................................68 

Table 7.1 Three cases of the initial conditions................................................................82 

Table 7.2 Three cases of the disturbances.......................................................................82 

 

 xvii



1

Chapter 1

Introduction

1.1 Motivation

Fuzzy logic controller (FLC) has become a conventionally adopted control algorithm, and

has been employed in various industrial applications [1], since Mamdani [2] proposed the first

linguistic FLC based on expert experience to control a laboratory steam engine. The FLC

design does not require an accurate mathematical model. Unlike traditional nonlinear

controllers, FLC can work with imprecise inputs, and can deal with nonlinearity and

uncertainty. Therefore, many studies are devoted to this field. Conversely, since the accurate

mathematical model is not required to design FLC, the design procedure is still based on trial

and error. Hence, the stability and performance of FLC cannot be guaranteed. Systematic

analysis and synthesis schemes [3]-[26] have recently been developed to improve this issue.

Some methods [3]-[10] adopt the Takagi-Sugeno (T-S) fuzzy models to determine the

stability of fuzzy control systems by the Lyapunov function or linear matrix inequality (LMI).

The overall plant is first represented as a T-S fuzzy model by a fuzzy blending of each linear

system model. The controller is then designed based on this T-S fuzzy model by Lyapunov

function or LMI. However, an appropriate fuzzy model may be difficult to formulate for an

arbitrary nonlinear dynamic system. Additionally, a common Lyapunov function for general

cases, and an existing positive-definite matrix, are both difficult to obtain. Besides the T-S

fuzzy model, Lyapunov functions are also adopted to design and analyze the robust PD fuzzy

controller for bounded uncertainties or nonlinearities of the system, using the
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Popov-Lyapunov approach [11]. In addition, the stability on the T-S fuzzy model is analyzed

by the Kharitonov theorem incorporated with the Schur and Hurwitz criterions [12]. Recently,

the developments of fuzzy logic control designs almost focus on the T-S fuzzy models control.

The stability analyses all apply the time-domain LMI approach. The main research directions

include model uncertainties [13]-[20] and time-delay [21]-[23] or both [24], [25]. The

stability issues due to the reference input influence are not to be discussed in the T-S fuzzy

models control.

Kickert and Mamdani [26] first applied the describing function approach (DF) to analyze

the stability of fuzzy control systems by granting fuzzy control systems as a multi-level relay

model. The describing function of FLC can, under reasonable assumptions, be obtained to

predict the existence of a limit cycle in fuzzy logic control systems [27], [28]. DF provides an

approximate approach to obtain the stability of unforced fuzzy control systems. DF may yield

inaccurate or incorrect analysis results, because it is an aggressive and approximate approach.

In other words, under some assumptions, DF can only be applied to analyze fuzzy system

stability successfully. Additionally, the steady state error and transient response of fuzzy

control systems with the sinusoidal and exponential input describing functions techniques are

analyzed in [29] and [30], respectively.

The choice of parameters in fuzzy control systems with phase plane approach was proposed

in [31]-[33]. Then, the phase plane analysis can be utilized to design fuzzy rules, or measure

the performance and stability of a specific set of fuzzy rules. Phase plane analysis is a simple

graphical approach, in which the system trajectories are inspected to provide information on

system stability and performance. However, it is restricted to second order dynamic systems.

The extension of classical circle criteria is also applied to analyze the stability of linear

systems with fuzzy logic controllers [34], [35]. The extended circle criteria can be employed

to test the SISO and MIMO systems [34]. The extended circle criteria for MISO and MIMO
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are presented in [35] for testing the robust stability in PI, such as fuzzy control systems with

uncertain plant gains. This algorithm limits the nonlinearity of fuzzy controller to the sector

bound.

The Popov is a frequency domain stability criterion for closed loop nonlinear systems of

Lur’e type. Fuzzy control systems can be regarded as Lur’e type systems. Kandel et al. [36] 

adopted the Popov criterion to analyze the stability of fuzzy control systems with controller as

multi-level relay. Furutani et al. [37] utilized the shifted Popov criterion to manage the fuzzy

controller with both time-variant and time-invariant parts. However, the Popov criteria

applied to the stability analyzes on the fuzzy logic control do not consider the effect of

reference input.

On the other hand, the latest research developments on the Lur’e systems stability analyzes 

concentrate on the systems with model uncertainties [38]-[41] and time-delay [42]-[43] or

both [44]-[46]. The main approaches include the time-domain LMI [38]-[44] and the classical

frequency-domain [45], [46] methods. The stability issues due to the reference input influence

are not even discussed except in [51]. By [51], we can predict that the stability of fuzzy

control systems will crash due to reference input shift, so it is important to take the reference

inputs as one of the parameters for stability analyzes of fuzzy control systems.

In short, the recent stability analysis developments on the Lur’e type systems almost always 

use the time-domain LMI approach. The concerned issues are on uncertainties and time-delay

or both. However, the development directions don’t concern the reference input influence on 

stability.

Other investigations on fuzzy logic control systems can be described as follows.

Butkiewicz [47] investigated the steady error of a fuzzy control system with respect to

different fuzzy reasoning processes [47]. Tao and Taur [48] designed a robust

complexity-reduced PID-like fuzzy controller for a plant with fuzzy linear model in [48].
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Malki et al. [49] derived a fuzzy PD controller from the conventional continuous-time linear

PD controller [49], in which the proportional and derivative gains are a nonlinear function of

the input signal. The stability of this new type fuzzy PD controller is ensured by the small

gain theorem. Taur and Tao [50] analyzed and designed region-wise linear fuzzy controllers

(RLFC) [50], and found that the RLFCs generally performed better than the PD controllers.

Our work analyzes the absolute stability in P and PD type fuzzy control systems with both

certain and uncertain linear plants. The control functions in P and PD type fuzzy controllers

are known to be piecewise linear, and can be described with mathematical equations. The

equilibrium points of each piecewise linear surface in a P type fuzzy control system with a

certain linear plant can be calculated by this description. The unique error equilibrium point of

the overall system can be obtained by determining whether the error equilibrium point located

in its own error region. Therefore, the error equilibrium points in the reference and actuator

gain parameter space can be analyzed. Additionally, the absolute stability can be analyzed

using the frequency and time domain approaches. Since a P type fuzzy control system is a

Lur’e system, its stability can be tested by the Popov criteria in the frequency domain. In the 

time domain, the stability can be tested by linearizing the system with regard to the

equilibrium point. Conversely, the stability of a P type fuzzy control system can be tested by

the parametric robust Popov criterion [51] incorporated with the Kharitonov theorem for

uncertain linear plant and interval parameters, including actuator gain, reference input and

plant parameters. Notably, the actuator gain can be included in one of the plant parameters.

For a PD type fuzzy control system, single-input fuzzy logic controller (SFLC) [52] is

introduced into our analysis. In a certain linear plant situation, the equilibrium point of fuzzy

control systems can be analyzed using the same P type fuzzy analysis concepts. A PD type

fuzzy control system with an SFLC controller can be transformed into a P type system, so that

its stability can be analyzed with the Popov and linearization methods. The parametric
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absolute stability of Lur’e systems can also be applied to a transformed PD type fuzzy control 

system when the plant is uncertain. For comparison with theoretical analysis, a fuzzy current

controlled RC circuit is designed with a PSPICE model. Simulation results including both

numerical and PSPICE confirm the theoretical analysis. Additionally, the mechanism of

oscillations in fuzzy control systems is interpreted with a viewpoint of equilibrium points in a

simulation example. Finally, the comparisons also are made to exhibit the effectiveness of the

analysis method. The applied method parametric robust Popov criterion will be compared

with the robust Lur’e test [54], the robust circle criterion [54], and the robust Popov criterion 

[54]. In compared methods, the stability of uncertain fuzzy control systems which are

considered as stable by compared methods will crash under the effect of the reference inputs.

On the other hand, by the applied analysis method, the stability can be guaranteed for the

certain interval reference inputs. In summary, this study can provide a valuable reference in

designing fuzzy control systems.

In conclusion, the stability analysis is extended to a non-zero reference input and an

uncertain linear plant. This is in contrast to the approach employed by Kim et al. [27], in

which DF is derived and applied to analyze the stability of fuzzy control systems for zero

reference inputs and certain linear plants. The DF method may yield inaccurate or incorrect

analysis results without restricted assumptions. By contrast, the Popov criterion based on the

Kharitonov theory can guarantee an exact stability investigation. Moreover, SFLC [52] is

applied in the analysis of a PD type fuzzy control system. SFLC is an efficient FLC, owing to

its 1-D fuzzy rules only. By this feature, the SLFC can be implemented as an analog circuit

and applied for high frequency control. This work first investigates the steady state error and

robust stability analysis for linear plants using the proposed structure transformation.

Additionally, an analog fuzzy control system is designed with a PSPICE model to verify the

analysis results. Finally, the explanations for unstable oscillations in fuzzy control systems are
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presented with the equilibrium concept.

On the other hands, a kind of the applications based on fuzzy control systems is addressed

in this thesis. In this application, the adaptive fuzzy-neural observer (AFNO) is applies to

synchronize a class of unknown chaotic systems with a scalar transmitted signal only. The

synchronization of chaotic systems has been extensively studied and given its potential

application to security communications. Synchronization means that the master and slave

have identical states as time goes to infinity. Pecora and Carroll first considered the

synchronization of chaotic systems [55], in which the drive-response concept is introduced to

achieve synchronization by a scalar transmitted signal. Perfectly identical parameters cannot

be achieved in real applications. Therefore, the nonlinear robust control [56,57] concept is

employed to chaos synchronization with previous known states within the margin of

synchronization error. An adaptive recurrent neural controller can be utilized to synchronize

with respect to unknown systems [58,59]. However, all states should be measurable with this

algorithm. In contrast, the nonlinear observer is designed to synchronize chaotic systems

[60,61,62]. Morgül and Solak [62] presented global synchronization is possible for a system

with Brunowsky canonical form. Grassi and Mascolo [61] provided a systematic method for

synchronizing using a scale transmitted signal. Message-free synchronization has been

developed to permit communication with masking message in chaotic signals [63]. Messages

can be extracted with message-free synchronization. Moreover, Boutayeb [60] proposed a

scheme which is provided to synchronize and extract message simultaneously. Nevertheless,

these systems do not consider the robustness of the state observer with respect to parameters

mismatch [60,61,62]. Adaptive sliding observer design [64,65] can handle parameters

mismatch. Furthermore, a robust observer [66] is designed for synchronization using the

Takagi-Sugeno fuzzy model and the LMI approach. Millerioux and Daafouz recently

introduced the input-independent global chaos synchronization [67]. In this method, the added
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message does not affect the synchronization if the observer gain is appropriately designed.

Other studies consider nonlinear observer designs for chaos synchronization [68,69].

However, by the methods of previous descriptions, the chaotic systems should be known

previously before synchronization design. Recently, the system identification approaches

[70,71,72] have been introduced for a scale signal identification and chaos synchronization

respectively. In [71], the system identification concepts are applied to approximate the chaotic

signal. The proposed identification scheme assumes a Lur’e type system as a reference model. 

This allows us to separate the identification process into two parts, adjusting alternatively the

parameters of the linear and the nonlinear part. For modeling the linear system, the

autoregressive moving average (ARMA) approach is utilized. On the other hand, the genetic

algorithm is applied to optimize the break points parameters of nonlinear static functions to

approximate nonlinear mapping. However, this approach is based on off-line identification,

and it is not an on-line tuning scheme. Furthermore, the order in linear part identification

should be by trial and error. The identification results just imitate the transmission signal and

the other states in the master end cannot be achieved to synchronize simultaneously. In

addition, the simulation results of this approach seem not very well. According to [70], the

recursive identification is applied for chaos synchronization when the slave has exactly

identical structure to the master system, but its parameters are unknown. It is shown that the

unknown slave system parameters can be found by the concepts of adaptive synchronization.

In other words, when the unknown slave system parameters are found, the synchronization is

achieved. However, the structures in the master and slave ends should be known previously

and exactly the same, although the parameters in the slave end can be estimated by recursive

identification. The discussion of robustness is not included too. More recently, an alternative

indirect Takagi–Sugeno fuzzy model based adaptive fuzzy observer design has been applied

to chaos synchronization under assumptions that states are unmeasurable and parameters are
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unknown [72]. The adaptive law is designed to estimate the unknown parameters in the T-S

fuzzy model of the slave end. When the unknown parameters are estimated correctly, the

synchronization is achieved. However, the form of the T-S fuzzy model should be known first,

and then the adaptive fuzzy observer is designed by the T-S fuzzy model. In addition, the

discussion of robustness is not included.

This investigation achieves synchronization with respect to a class of unknown master

chaotic systems by introducing the concepts of AFNO [73], Brunowsky canonical form [62]

and Lur’e systems [74]. The proposed system includes a chaos master with canonical form

and the slave with AFNO. The AFNO combines a FNN and a linear observer. In this design,

the slave should synchronize with the master by a scale transmitted signal .This approach

employs adaptive FNN to model the nonlinear term of the master end. The output of the

adaptive FNN, robust input and a transmitted state are sent to the linear observer to estimate

the states of the slave. The master and slave achieve synchronization when all states are

estimated at the slave. Additionally, the adaptive laws are needed to update the weights of the

FNN, when the reconstructed and transmitted states differ from each other.

The benefits of provided AFNO for synchronization can be stated as follows. AFNO is first

applied to chaos synchronization with only one transmitted signal. Since AFNO is on line

learning at the slave, the synchronization can be achieved respect to a switched unknown

chaotic system with the Lur’e type. Additionally, the adaptability for parameters change or

even system switched in the mater and the robustness for modeling error and external

bounded disturbance are also given. AFNO also has FNN’s inherent properties of 

fault-tolerance, parallelism learning, linguistic information and logic control. By comparing

with [70,71,72], our presentation provides the on-line, robust and adaptive synchronization for

a class of chaotic systems. The form of nonlinear functions in the master end cannot be known

in previous due to soft computing with FNN for fitting it in the slave end.
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1.2 Organizations of the Dissertation

This thesis is organized as follows. Chapter 1 is an introduction. Chapter 2 describes the P

and PD type fuzzy control systems. Chapter 3 analyzes the equilibrium points and stability in

P type fuzzy control system. Chapter 4 then performs the same analyses in a PD type fuzzy

control system. Chapter 5 provides simulation results with Matlab and PSPICE simulators. In

Chapter 6, the comparisons are made to show the superiority of the applied analysis method.

Furthermore, in Chapter 7, the observer-based synchronization for a class of unknown chaotic

systems with adaptive fuzzy-neural network is presented. Finally, some conclusions are given

in Chapter 8.
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Chapter 2

The Fuzzy Logic Control Systems

2.1 Fuzzy Logic Controller

Both P and PD type fuzzy logic control systems include a linear plant with time-invariant

uncertainty, adjustable actuator gain and reference input. Moreover, the fuzzy logic

controllers are the cores of systems. An FLC can be taken as multiple bends of piecewise

linear functions, since it has singleton and specific membership functions. Hence, a fuzzy

logic control system can be treated as a Lur’e type system.

Consider the fuzzy logic control system in Fig. 2.1. The IF-THEN rules in single input

fuzzy logic controller can be described as:

:iRule If e is iM , then fu is iu , (1)

where e is the control error and iM and iu denote fuzzy sets. If a singleton is applied in a

fuzzifier, then the product inference and center average are formulated in the inference engine

and defuzzifier, respectively. The output of the fuzzy logic controller can be represented as

( )f i i
i

u e u , (2)

where
( )

( )
( )

i
i

j
j

M e
e

M e
 


.

For simplification, this study uses the fuzzy rules and membership functions listed in Table

2.1 [27] and Fig. 2.2 are adopted in this thesis, respectively. Table 2.2 presents the fuzzy

controller parameters. Figure 2.3 shows the control function of the fuzzy controller, which can
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be described as:

 
 
 
 
 

2 2 2 3

1 1 1 2

0 1 1

1 1 2 1

2 2 3 2

1: , , ,
2: , , ,

( ) 3 : , , ,
4: , , ,
5: , , ,

f

segment k e c e a a
segment k e c e a a

u e segment k e e a a
segment k e c e a a
segment k e c e a a



  
    
   

  

(3)

where

1 2 30 a a a   , 1 2 30 b b b   , 1 2 1 2 ,c b k a  2 3 2 3 ,c b k a  1
0

1

b
k

a
 , 2 1

1
2 1

b b
k

a a





, and

3 2
2

3 2

b b
k

a a





.

Remark 2.1: The assumptions 1 20 na a a    and 1 20 nb b b    are satisfied

for n multiple bends of a control function. The control output of the static fuzzy system is

given by:

 
 
 

1

0 1 1

1

, , ,
( ) , , ,

, , ,

n n n n

f

n n n n

k e c e a a
u e k e e a a

k e c e a a






  
  
   

(4)

where 1 1,n n n nc b k a   1

1

n n
n

n n

b b
k

a a








,and 1, 2,3, ,n n  .

The control function  satisfies

  2ˆ ˆ ˆ0 ( ) ( ) ( ) ,e e e e k e e     e   , ê , (5)

where (0) 0  , 0k  and  indicates some neighborhood of 0e  .

2.2 P Type Fuzzy Logic Control System

Figure 2.1 illustrates a P type fuzzy control system with a fuzzy logic controller, a

parametric linear time-invariant system and adjustable parameters, which include actuator

gain K and reference input r . The control function of the fuzzy controller is a piecewise
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linear function, and is depicted in Fig. 2.3.

The linear plant ( , )H s p shown in Fig. 2.1 can be presented as

 1
( , ) ( ) ( ) ( )H s p C p sI A p B p

   , (6)

where ( ) n nA p  and ( )A p is a stable matrix; 1( ) nB p   ; 1( ) nC p  , the parameter

vector p exists in a compact and simple connected region l .

The transfer function ( , , )G s p K with amplifier gain K  can be stated as

 1
( , , ) ( ) ( ) ( , )G s p K C p sI A p B p K


  (7)

where 1( , ) ( ) nB p K KB p   , and K . The overall static fuzzy logic control system in

Fig. 2.1 can be described as:

( ) ( , ) fx A p x B p K u  ,

( )y C p x , (8)

where the control input ( )fu e ; the control error e r y  , nx , e and y;

the reference input r is a constant value, and r is a constant value, and r.

The closed loop system is given by

 ( ) ( , ) ( )x A p x B p K r C p x   . (9)

The error equilibrium points and relative stability under the influence of parameters

including actuator gain K , reference input r and time invariant uncertainty in linear plants

are addressed. The parameter vector is defined as ( , , )r p K .

2.3 PD Type Fuzzy Logic Control System

This subchapter discusses the PD type SFLC depicted in Fig. 2.4. The SFLC’s output fu

is proportional to a negative signed distance sD . Additionally, the number of the fuzzy rules,
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as shown in Table 2.3 [52], is significantly reduced into 1-D space, as in Table 2.4, owing to

the single input and skew-symmetric property. Due to the skew-symmetric property of the

rule table, ( e , e) can be split into five regions. Figure 2.5 illustrates an example of this

division of( e , e). The reduced 1-D rules improve the efficiency of the controller by saving

time cost for a look up rule table, although it also adds the calculation time of signed distance.

Therefore, the SFLC is suitable for implementation in circuit control. The SFLC is introduced

in this subchapter for further equilibrium points and stability analysis in the following

subchapters.

2.3.1 Calculation of signed distance

The control error in SFLC is defined as

( )de t y r  . (10)

The switching line ls as shown in Fig. 2.5 is given by

: 0l d ds e e  . (11)

The signed perpendicular distance SD of general point ( , )d dQ e e to a switching line is

calculated as follows:

2
sgn( )

1
d d

s l

e e
D s D






 




, (12)

where
21

d de e
D











is shown in Fig. 2.5 and

1 for 0
sgn( )

1 for 0
l

l
l

s
s

s


 
.

The control output ( )f Su D is defined according to the control rule in SFLC as given in

Table 2.4 and Fig. 2.4.

2.3.2 The presentation of the SFLC system

The SFLC system can be described as:

( ) ( , ) fx A p x B p K u  ,
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( )y C p x , (13)

where the control input ( )f su D .

2.3.3 The analytic representation of the SFLC system

If Tables 2.2, 2.4 and Fig. 2.2 are applied into the controller in SFLC, then the control

function ( ) of the fuzzy controller is as displayed in Fig. 2.6. The surface of the fuzzy

controller in SFLC is typically oddly symmetrical; therefore, the control force is given by

( ) ( ) ( )f s Su D D      , (14)

where
21

s

e e
D







 




.

In the following analysis, this representation as illustrated in Fig. 2.7 is applied to PD type

analysis. In Chapter 3, the SFLC system is reformatted as a special P type fuzzy control

system, and is employed to analyze the equilibrium
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Fig. 2.1 The P type fuzzy control system.

e
(a)

fu
(b)

Fig.2.2 The membership functions of the fuzzy logic controller.
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Table 2.1
Rules of the fuzzy logic controller

e NBE NME NSE ZRE PSE PME PBE

fu NBU NMU NSU ZRU PSU PMU PBU

Table 2.2
Parameters of the fuzzy logic controller

NBE NME NSE ZRE PSE PME PBE
e

3a 2a 1a 0 1a 2a 3a

NBU NMU NSU ZRU PSU PMU PBU
fu

3b 2b 1b 0 1b 2b 3b

e

( )e

1a 2a 3a
1a2a3a

1b

2b

3b

1b

2b

3b

0fu k e

1 1fu k e c 

2 2fu k e c 

Fig. 2.3 The control function of the fuzzy logic controller.
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y

r y
d
dt 2

1

1 



1s I( )B p ( )C p
x

( )A p

fusD

( , , )G s p K

( )

( , )B p Kde

Fig. 2.4 The single-input fuzzy logic control system.

Table 2.3
Rules of conventional FLC with control error defined as de

de
de

Table 2.4
Rules of SFLC

SD NBE NME NSE ZRE PSE PME PBE

fu PBU PMU PSU ZRU NSU NMU NBU
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Fig. 2.5 The skew-symmetric property in ( e , e) and the calculation of signed distance.

sD1a 2a 3a

1a2a3a

1b

2b

3b

1b

2b

3b

( )sD

Fig. 2.6 The control function of the fuzzy logic controller in SFLC.
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y

r yd
dt

e
1s I( )B p ( )C p

x

( )A p

fu
SD





( , , )G s p K
( )

( , )B p K

21





 2

1

1







Fig. 2.7 The transition formation in the transformation.
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Chapter 3

Equilibrium Points and Stability Analysis in

P and PD Type Fuzzy Control Systems

3.1 Equilibrium Point Analysis for P Type Fuzzy Control Systems

with Linear Plants

This subchapter presents the analysis of error equilibrium points and stability in P type

fuzzy control systems. The equilibrium point in fuzzy control systems can be derived when

equilibrium points can be solved. Moreover, the stability of the equilibrium point can be

judged with the linearizing system around the equilibrium or the Popov criterion in the

following subchapter. If the error equilibrium points of the overall system are stable, then the

steady state error can be derived from this result.

By (9), let 0x  , then

 ( ) 0Ax B K r Cx   . (15)

If 1A exists, then (16) is obtained.

1 ( ) ( ) 0x A B K e  , (16)

where e r Cx  .

Multiply the result by C in (16), and let Cx r e  , then

1 ( ) ( ) 0e r CA B K e   . (17)

The state equilibrium points represented as ex , and the error equilibrium points denoted as
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ee , can be determined from (16) and (17), respectively.

Assumption 3.1: The unique solution exists in (17). In other words, an error equilibrium

point uniquely exists.

Under Assumption 3.1, the error equilibrium points can be solved from (18) by replacing (4)

in each segment.

 
 
 

1
1

1
0 1 1

1
1

( )( ) 0 , ,
( )( ) 0 , ,
( )( ) 0 , .

e e
n n n n

e e

e e
n n n n

e r CA B K k e c if e a a
e r CA B K k e if e a a
e r CA B K k e c if e a a









   
  
    

1,2,3, .n  (18)

One of these error equilibrium points is the unique point of the overall system. The unique

point is identified by checking whether ee is located in its own error region.

3.2. Stability Analysis for P Type Fuzzy Control Systems with a

Certain Linear Plant

In the certain linear plant case, the stability can be determined by the time or frequency

domain approaches proposed in [51]. In the time domain approach, the eigenvalues of the

linearizied system (8) can be applied to determine the stability. In the frequency domain, the

Popov criterion is utilized to test stability.

3.2.1 Frequency domain approach

Consider the error dynamic system for a given parameter vector ( , , )r p K .

ˆ ˆ ˆ ˆ( ) ( ) ( ( ) )x A p x B p C p x   , (19)

where ˆ ( , , )ex x x r p K  ,

and

ˆ ˆ ˆ( ( ) ) ( ) ( , , ) ( , , )e eC p x C p x e r p K e r p K            .

The error equilibrium point of the P type fuzzy control system is given by
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( , , ) ( ) ( , , )e ee r p K r C p x r p K  . (20)

The error dynamic system is also of Lur’e type. The function ̂ satisfies the following

sector condition if ( , , )ee r p K  .

2ˆ̂ ˆ ˆ0 ( ) [ ( , , )]ee e k e r p K e  , ê , (21)

where ˆ ( , , )ee e e r p K  and 0k  .

By the Popov criterion, (19) is absolutely stable for a given ( , , )r p K , if there exists a real

number ( , , )v v r p K satisfying

1
Re[(1 ) ( , , )] 0

[ ( , , )]ej v G j p K
k e r p K

    ,  , (22)

where 1( , , ) ( )[ ( )] ( , )G s p K C p sI A p B p K  .

3.2.2 Time domain approach

Under an arbitrary parameter vector ( , , )r p K , if an equilibrium state ( , , )ex r p K of the

system exists, then the stability can be determined from the linearization of (9) near the state

equilibrium point.

Remark 3.1: If the unique state equilibrium is stable, then the steady state error in fuzzy

control systems can be obtained from the state equilibrium by e ee r Cx  .

3.3 Stability Analysis for P Type Fuzzy Control Systems with an

Uncertain Linear Plant

In this subchapter, the parametric absolute stability can be tested using the parametric

robust Popov criterion incorporated with Kharitonov theorem, when the parameter vector

( , , )r p K refR     , where [ , ]refR r r .

The value of ( , , )ee r p K is difficult to calculate from the results in the previous
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subchapter, because fuzzy control function ( ) is sometimes impossible to obtain

mathematically, and parameters ( , , )r p K vary in a range in real application. Therefore, the

stability analysis by the parametric robust Popov criterion in [51] is adopted to handle this

situation.

Applying Theorem 1 in [51], let’sconsider the uncertain P type fuzzy control system (9)

satisfying the following conditions. Then, the P type fuzzy control system is parametric

absolute stable.

(1) If the fuzzy controller is continuous, and for some neighborhood  of 0e 

satisfies

2ˆ ˆ ˆ0 [ ( ) ( )] ( )e e e e k e e     , e   , ê , and (0) 0  , (23)

where ( )k e is a positive number depending on e  .

(2) If 1 1
( ) ( ) ( , ) 0

(0)
C p A p B p K

k
   , p   (24)

holds, for any ( , , ) refr p K R     and any  satisfying the sector condition (23), there

exists a solution ( , , )ee e r p K of (17) in ( , , )e r p K ,

where

 

 

1

0

1

0

, ( ( ) ( ) ( , ) 0)
( )

( , , )

, ( ( ) ( ) ( , ) 0)
( )

e

r
r when r C p A p B p K

p
r p K

r
r when r C p A p B p K

p











 
 

 
    

(25)

and 1
0 ( ) 1 ( ) ( ) ( , ) (0)p C p A p B p K k  . A more detail proof on (15) and (16) can be

referred in the Lemma 1 of [51].

(3) If for a given region refR of r and for any p  , the condition ( )e
R p  is satisfied,

and a real number ( , , )o ov v r p K exists such that the following inequality holds
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1
Re[(1 ) ( , , )] 0

( , , )o
R

j v G j p K
k r p K

    , ,  (26)

where

 ( ) max ( ) : ( , , )e
R Rk p k e e r p K  , (27)

and ( , , )e
R r p K represents the region containing ( , , )ee r p K for all refr R .

Remark 3.2: ( , , )Rk r p K is hard to find, so we suppose that refR  . Moreover, assume

that for any p  , (0, , ) 0G p K  ,  * ( ) max ( ) :R refk p k e e R  , and there exists a real

number ( , , )o ov v r p K letting the inequality hold.

*

1
Re[(1 ) ( , , )] 0o

R

j v G j p K
k

    ,  . (28)

The P type fuzzy control system is then parametric absolute stable. [51]

Remark 3.3:

(1) This test can be extended to the general P type fuzzy control functions design.

(2) The assumption in Remark 3.2 does not lose generality, since most systems have

(0, , ) 0G p K  .

(3) The effect of K can be combined into plant parameters p .

The existence of ( )o ov v p for every p  should be guaranteed in (28). This is

generally a difficult problem. Therefore, the parametric robust Popov criterion incorporated

with Kharitonov [51], [53], [54] for interval Lur’e systems is introduced into a parametric

absolute stable analysis.

Consider the following as a family of interval plants

( )
( , , )

( )
Q s

G s p K
P s

 , (29)

where ( )Q s and ( )P s belong to the families of real interval polynomials Q( )s and P( )s ,

respectively.
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 0 1( ) : ( ) , , , 0, , ,i i is Q s Q s q q s q s and q q q for all i
         Q( )=  

and  0 1( ): ( ) , , , 0, , .n
n j j js P s P s p p s p s and p p p for all j n        P( )=   (30)

( ),i
QK s 1, 2,3,4i  and ( ),j

PK s 1, 2,3, 4j  represent the Kharitonov polynomials associated

with Q( )s and P( )s , respectively. The Kharitonov systems associated with ( , , )G s p K are

defined as the 16 plants of the following set,

 
( )

( ) : : , 1,2,3, 4 ,
( )

i
Q

K j
P

K s
G s i j

K s

    
  

(31)

where

1 2 3 4 5 6
0 1 2 3 4 5 6( ) ;QK s q q s q s q s q s q s q s             

2 2 3 4 5 6
0 1 2 3 4 5 6( ) ;QK s q q s q s q s q s q s q s             

3 2 3 4 5 6
0 1 2 3 4 5 6( ) ;QK s q q s q s q s q s q s q s             

4 2 3 4 5 6
0 1 2 3 4 5 6( ) ;QK s q q s q s q s q s q s q s             

1 2 3 4 5 6
0 1 2 3 5 6( ) ;PK s p p s p s p s p s p s p s             

2 2 3 4 5 6
0 1 2 3 4 5 6( ) ;PK s p p s p s p s p s p s p s             

3 2 3 4 5 6
0 1 2 3 4 5 6( ) ;PK s p p s p s p s p s p s p s             

4 2 3 4 5 6
0 1 2 3 4 5 6( ) .PK s p p s p s p s p s p s p s             

A P type fuzzy control system is absolutely stable in sector  0,k for all

( ) ( , , )G s G s p K , if a real ov can be obtained by verifying the robust Popov condition for

( ) ( )KG s G s to satisfy inequality (28).

Remark 3.4:

(1) The previous descriptions imply that only 16 Popov plots need to be drawn from family

( )KG s to check that the P type fuzzy logic control system is stable when the robust
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Popov condition (28) holds for the whole family ( )G s .

(2) The P type fuzzy control systems of Lur’e type can be tested by the parametric robust

Popov criterion. By [51], [53], [54], the criterion incorporated with Kharitonov for

interval Lur’e systems can be considered here for parametric absolute stability analysis of

P type fuzzy control systems.

3.4 Transformation SFLC from PD to P Type

In the following, the SFLC is transformed from PD to P type, so that the equilibrium point

and stability can be analyzed by the transformed special P type fuzzy logic control system.

From Fig. 2.4, the factor
2

1

1 
of SFLC is integrated into both the proportional and

derivative factors. The  and  in Fig. 2.7 are then defined as

2
,

1








and

2

1

1






. (32)

Assumption 3.2: 0.CB 

According to Assumption 3.2 and Fig 2.7, the following derivation can be obtained.

.e r y r Cx    (33)

By differentiating both sides, then

( ) .fe Cx C Ax Bu CAx     (34)

From (33) and (34), then

1( ) ( ) ,e e r Cx CAx r C x             (35)

where 1 ( ),C C CA   and r r .

After transformation, the transformed plant in Fig. 3.1 can be obtained

1
1( , , ) ( )[ ( )] ( , ).PDG s p K C p sI A p B p K  (36)
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From Fig. 3.1, the special P type transformation from the SFLC system can be described as:

( ) ( , ) fx A p x B p K u  ,

1( )y C p x , (37)

where the control input ( )fu  , and control error r y    .

The transfer function ( , )PDH s p of the transformed plant in Fig. 3.1 can be described as

 1
1( , ) ( ) ( ) ( )PDH s p C p sI A p B p

   , (38)

3.5 Equilibrium Point Analysis for PD Type Fuzzy Control

Systems with Linear Plants

From Fig. 3.1, the equilibrium point can be analyzed

( ) ( , ) ( ).x A p x B p K   (39)

Let 0x  ,

0 ( ) ( , ) ( ).A p x B p K   (40)

If 1( )A p exists, then

1( ) ( , ) ( ) 0.x A p B p K   (41)

By multiplying the result of (40) by C and using (35), then

1( ) ( ) ( ) ( , ) ( ) 0C p x C p A p B p K e e     (42)

When t , 0x  and 0e  are implied.

By 0e  ,

1( ) ( ) ( , ) ( ) 0e ee r C p A p B p K e   . (43)

Remark 3.5: The error equilibrium point of the PD type fuzzy control system is

ee  e
de . (44)
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3.6 Stability Analysis for PD Type Fuzzy Control Systems with

Linear Plants

The transformed P type of SFLC in Fig. 3.1 can be employed to analyze the stability of

SFLC for a given ( , , )r p K .

3.6.1 Frequency domain approach

Consider the error dynamic system in Fig. 3.1 for the given parameter vector ( , , )r p K .

1( ) ( , ) ( ( ) )x A p x B p K C p x     , (45)

where ( , , )ex x x r p K  , 1 1( ( ) ) ( ) ( , , ) ( , , )e eC p x C p x e r p K e r p K            
    ,

and 1( , , ) ( ) ( , , )e ee r p K r C p x r p K   . (46)

The error dynamic system is also of Lur’e type. The function satisfies the following

sector condition, if ( , , )ee r p K  .

20 ( ) [ ( , , )]ee e k e r p K e   , e  , (47)

where ( , , )ee e e r p K  , and 0k  .

From the Popov criterion, (39) is absolutely stable for a given ( , , )r p K , if a real number

0 0 ( , , )v v r p K  satisfying

0
1

Re[(1 ) ( , , )] 0
[ ( , , )]PD ej v G j p K

k e r p K
    , .  (48)

3.6.2 Time domain approach

Consider an arbitrary parameter vector ( , , )r p K in SFLC. Suppose that an equilibrium

state ( , , )ex r p K of the system exists. The stability can be determined by the linearization of
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(37) near the error equilibrium point.

3.7 Stability Analysis for PD Type Fuzzy Control Systems with

Uncertain Linear Plants

Since the transformed SFLC is a special P type fuzzy control system as shown in Fig. 3.1,

the parametric Popov criterion [51] incorporated with Kharitonov theorem is adopted to

analyze the stability of PD type fuzzy control systems with uncertainties.
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y

r r y
1s I( )B p 1( )C px

( )Ap

fu

( , , )PDG s p K
( )

( , )B p K

( , )PDH s p

Fig. 3.1 The transformed SFLC with the special P type fuzzy control system formation.
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Chapter 4

Fuzzy Current Control RC Circuit System

Design

The temperature control is an important issue in many industrial processes or medical

applications. The temperature controls systems are analogous to RC electrical circuits and are

governed by the following third-order equation (49) [75]. In our design, FLC is applied to

control the RC electrical circuits to reach the specified output voltage. In other words, it is

similar to regulate the temperature to desired set point. This chapter specifies fuzzy current

control RC circuit systems of P and PD types for verifying the theoretical analysis using

PSPICE simulation.

In this chapter, the circuit structure is specified first. The fuzzy logic controller is then

designed to construct the fuzzy control function, which is mapping I/O relation of the fuzzy

controller. Finally, some components of the overall structure of the fuzzy logic control system

are introduced.

4.1 The Block Diagram of the Fuzzy Current Control RC Circuit

System

Figure 4.1 depicts the block diagram of a fuzzy current control RC circuit. The control

objective of this system is to track a dc constant reference voltage r . To avoid the loading
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effect from the circuit of the next stage, the voltage buffer is utilized to feed the output

voltage 3v back into the controller to generate the control error voltage ev . The core of this

system is the fuzzy controller. Both P and PD type fuzzy controllers are designed in the

circuit system. The control voltage ofv is transformed into the control current ovci with a

voltage controlled current circuit.

Finally, the amplified current ( )u t from the current amplifier is injected into circuit plant

to let output voltage 3v to track a reference voltage r.

4.2 Circuit Plant

The circuit plant in Fig. 4.2 [75] is composed of RC circuits and external current source

control input ( )u t .The output voltage is 3v . Consider the transfer function of circuit plant

3 1( )
( )

( )
R CY s

H s
U s 

  , (49)

where

3 2
1 2 3 1 2 3 1 1 2 1 2 2 3 2 3 2 3 1 3 1 3 1 2 1 3 1 3

1 2 2 2 1 3 1 1 1 3 2 3 3 1

( )

( ) .

R R R C C C s C R R C C R R C C R R C C R R C C R R C C s

C R C R C R C R C R C R C s C

     

      



4.3 Fuzzy Logic Controller Circuit

The circuit of a fuzzy logic controller is shown in Fig. 4.3. This circuit is designed to

construct the control function of the fuzzy controller. Figure 4.4 illustrates the relationship

between the circuit parameters and the control function [76], [77].

4.4 The Overall Design Circuit

Figure 4.3 shows the overall design circuit. For simplification, the voltage controlled
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current circuit, current amplifier and PD type signal generator are introduced in [78].

4.4.1 Voltage controlled current circuit

Fig. 4.3 displays the voltage controlled current circuit. If the following equalities (50) stand,

then

4 2

3 1

vc vc

vc vc

R R
R R

 , (50)

and

1

of
ovc

vc

V
i

R
 . (51)

4.4.2 Current amplifier

The current amplifier is designed to normalize the signal from voltage controlled current

circuit and amplifies it. The control input ( )u t from the current amplifier for the circuit plant

is given by

2

1

( ) g
og ovc

g

R
u t i i

R
  . (52)

4.4.3 PD type signal generation

The derivative and proportional signals are generated by OP amplifier differentiator and OP

inverting amplifier as illustrated in Fig. 4.3.

The OP amp differentiator is designed as

12 4
e

d

dv
v R C

dt
 . (53)

The value 12 4R C is chosen to meet .

Conversely, the OP inverting amplifier is given by

10

8
p e

R
v v

R
 . (54)
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where 10

8

R
R

 .

In Fig. 4.3, a P type fuzzy control system is chosen when two switches open at P positions.

Conversely, a PD type fuzzy control system is selected when two switches close at PD.
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Fig. 4.1 The block diagram of a fuzzy current control RC circuit system.

y

1R 2R 3R

1C 2C 3C( )u t

Fig. 4.2 The RC circuit plant [75].
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Fig. 4.3 The designed fuzzy current control RC circuit system.



37

2
0

1

f
f

f

R
G

R


2 3
1

1

//f f
f

f

R R
G

R


3

4

f
of cc

f

R
V V

R


2 5'
1

1

//f f
f

f

R R
G

R


5

6

f
of cc

f

R
V V

R


infV

ofV

Fig. 4.4 The control function of a fuzzy controller with circuit design parameters.
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Chapter 5

Simulation Results

In this chapter, a fuzzy control RC circuit plant as shown in Fig. 4.2 is utilized to

investigate the parametric equilibrium points and stability when the circuit plant is certain or

uncertain with P and PD type fuzzy logic controllers, respectively. The varying parameters

include reference input r , an adjustable parameter K and an interval circuit plant

parameters p .

For the analysis of certain plants, the equilibrium points under the ( , )r K parameter space

with stable notation are given. The phase plane and time waveforms are given to verify the

analytical results. The design circuit with PSPICE simulation is also provided to check

theoretical analysis. On the other hand, the parametric robust Popov criterion is employed to

test the stability of the parameter vector ( , , )r p K refR   P . From this point of view, the

effect of K can be combined into plant parameters by the previous introduction.

Let 1 2 3 1R R R  , and 1 2 3 1C C C F   in (49), the third-order transfer with form

0
3 2

3 2 1 0

( )
q

H s
p s p s p s p


  

, (55)

where 0 1q  , 0 1p  , 1 6p  , 2 5p  and 3 1p  .

From Fig. 2.1, combining the adjustable parameter K , the transfer function is given by

0
3 2

3 2 1 0

( , )
q K

G s K
p s p s p s p


  

. (56)

The state space representation for ( , )G s K can be derived



39

0 3 1 3 2 3

0 1 0
( ) 0 0 1

/ / /
A p

p p p p p p

 
  
    

,

0 3

0
( ) 0

( ) /
B K

q K p

 
  
  

,

and  ( ) 1 0 0C p  . (57)

The fuzzy rules are adapted in this simulation as follows:

1:Rule If e is NBE , then fu is NBU ;

:2Rule If e is NSE , then fu is NSU ;

:3Rule If e is ZRE , then fu is ZRU ; (58)

:4Rule If e is PSE , then fu is PSU ;

:5Rule If e is PBE , then fu is PBU .

Figure 5.1 illustrates the membership functions. Table 5.1 shows the fuzzy control system

parameters. Fig. 2.3 shows the control function, where 0 6k  , 1 4 / 9k  and 1 5 / 9c  .

Consider the following simulation with 1 ~ 20K  , 1 ~ 1r  and the initial condition

 (0) 0 0 0x  . Table 5.2 lists the circuit components in Fig. 4.3. For practical

considerations, the parameters of the fuzzy controller are selected as Table 5.2 in order to

approach the ideal control function depicted in Fig. 5.2.

5.1 P Type Example Demonstrations

5.1.1 Certain linear circuit plant

Under Assumptions 3.1, the equilibrium points of the fuzzy control systems in each

segment can be calculated using (18).
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 

 

 

0 0 1
1 2

0 1

0
1 1

0 0 0

0 0 1
2 1

0 0 1

1: , , ,

2 : , , ,

3: , , .

e

e e

e

rp q Kc
segment e a a

p qKk

rp
e segment e a a

p q Kk

rp q Kc
segment e a a

p q Kk

 
 


  
 

 


(59)

The equilibrium point of one segment is ee when t  and ee e .

Equation (60) can be solved by linearizing (9) and using (57)

0 1 0
(̂ , ) 0 0 1 .

-(1+ ( , , )) 6 5
A r p

K r p K

 
  
   

(60)

The stability can be determined by Â .  0 1,k k denotes the slope of ee in the control

function, and  is determined by ee from (18). In (18), the reference r and actuator gain

K affect ee . Figure 5.3 depicts the analysis of the stability of equilibrium points. The reason

for the formation of unstable oscillations is discussed in the following subchapter. Figures 5.4

and 5.5 display the verification of the analysis in Fig. 5.3, with respect to P1 (unstable) and P2

(stable point).

5.1.2 Mechanism of oscillations in the fuzzy control system

In this example, the P type fuzzy control system is a piecewise-linear system with three

segments. An equilibrium ( , 0)e ee e  exists in every segment for a specific ( , )r K pair.

Figure 5.4 (a) shows the three error equilibriums of every piecewise segment in the phase

plane of ( , )e e when ( , ) (0.2,5)r K  . Three equilibrium points are represented as‘*’(stable

equilibrium point for segment 1), x (unstable equilibrium point for segment 2) and ‘▽’

(stable equilibrium point for segment 3), for segments 1–3, respectively. Assume that

( , )e elocates in segment 1 initially. ( , )e e is pulled into the equilibrium point‘*’of segment

1 located in segment 3. When ( , )e e enters segment 2, ( , )e eis pushed away from
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equilibrium point x of segment 2. After ( , )e e is pushed away from segment 2 and enters

segment 3, ( , )e e is pulled back to the equilibrium point‘▽’of segment 3. The limit cycle is

formulated by pushing and pulling.

Conversly ( , )e e crosses the segments 1, 2, and 3, is all pulled into equilibrium points and

finally ( , )e e achieves the global equilibrium point of segment 2. The authors discuss in

detail the stability under different design parameters [79].

5.1.3 Alternative control function

In Fig. 5.3, the effect of reference for stability is not obvious. Therefore, the different fuzzy

controllers in Table 5.3 are designed with different control functions. The results in Fig. 5.6

specify how the different controllers will influence the equilibrium points and stability besides

r and K .

5.1.4 Uncertain linear circuit plant

In this part, the stability of the fuzzy control system with interval plant is checked by (28)

incorporated with Kharitonov theorem. In the following simulations, [ 1,1]r , 2K  ,

1 3~R R and 1 3~C C in circuit plant listed in Table 5.2 with tolerance 5% and * 6Rk  in

(28) are selected. The plant (56) for P type fuzzy control system can be rewritten as

0 0
3 2

3 3 2 2 1 1 0 0

[ , ]
( , )

[ , ] [ , ] [ , ] [ , ]
q q K

G s K
p p s p p s p p s p p

 

       
  

, (61)

where 0 0[ , ] [0.9,1.1]q q   , 3 3[ , ] [0.74,1.34]p p   , 2 2[ , ] [3.87,6.14]p p   ,

1 1[ , ] [5.14,6.95]p p   , and 0 0[ , ] [0.95,1.05]p p   .

It should be noted that the effect of interval actuator gain can be considered into 0 0[ , ]q q  ,

so we just choose 2K  in this example.

By (28) incorporated with Kharitonov theorem, the absolute stability can be tested as

shown in Fig. 5.7. Because the parameter in numerator is just one, only eight Popov curves
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are plotted enough to indicate the stability in such a case.

5.2 PD Type Example Demonstrations

In the following simulation, 10 is selected in PD type fuzzy control system.

5.2.1 Certain linear circuit plant

In this subchapter, Fig. 3.1 demonstrates the PD type fuzzy control system. Under the

Assumptions 3.1, and 3.2, the error equilibrium points of the fuzzy control systems in every

segment can be obtained by (43).

 

 

 

2
0 1

1 22
1 0

2
0

1 12
0 0

2
0 1

2 12
1 0

( ) 1
1: , , ,

1

1
2 : , , ,

1

( ) 1
3: , , .

1

e

e e e
d

e

rp qKc
segment e a a

qKk p

rp
e e segment e a a

qKk p

rp qKc
segment e a a

qKk p



 



 



 

  


 


  
 


     

(62)

By linearizing (39) and using (57), (63) can be carried out, and Fig. 5.8 can be obtained.

1( , , ) ( , , ) ( )A r p K A r p K B K C 

0 1 0
= 0 0 1 .

-(1+ ( , , )) 6 5K r p K

 
 
 
   

(63)

where  0 1,k k denotes the slope of ee in the control function, and  is determined by

ee from (18).

In the following, Figs. 5.9 and 5.10 verify the analysis in Fig. 5.8 with respect to P1 (unstable)

and P2 (stable point).

5.2.2 Alternative control function

The alternative controller in Table 5.3 obviously influences the equilibrium point and
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stability, when the reference is varying. Figure 5.11 shows the analytical results.

5.2.3 Uncertain linear circuit plant

In this subchapter, Fig. 3.1 is adopted to demonstrate the parametric stability of the PD type

fuzzy control system. Following transformation, the analytic new plant for PD type fuzzy

systems is given by (38):

2
2 3 1 3 ( )

( )P D

R R C C s
H s





 (64)

where

2 2 2 2 3 2
1 2 3 1 2 3 2 3 1 3 1 2 1 2 2 3 2 3 1 3 2 3 1 3 1 2 1 3 1 31 ( )R R R C C C s R R C C R R C C R R C C C C R R R R C C R R C C s       

2 3 1 3 2 2 2 1 3 1 1 1 3 2 3 3 2 3 3 1( ) ) .R R CC R C R C R C RC R C R C s R R C C      

In the following simulation, [ 1,1]r , 1K  , 1 3~R R and 1 3~C C in circuit plant, as

listed in Table 5.2 with tolerance 5% and * 6Rk  in (28), are specified to evaluate the

stability of a PD type fuzzy control system. From (36), the analytic new plant for PD type

fuzzy control system can be recast as

1 1 0 0

3 2
3 3 2 2 1 1 0 0

( , , )
( , )

, , , ,PD

K q q s q q
G s K

p p s p p s p p s p p

   

       

      
                

 
        , (65)

where 1 1[ , ] [0.77,1.28]q q    , 0 0[ , ] [7.74,12.76]q q    , 3 3[ , ] [6.02,16.37]p p    ,

2 2[ , ] [33.34,74.24]p p    , 1 1[ , ] [44.33,80.81]p p    , and 0 0[ , ] [8.19,12.22]p p    . The total of

sixteen Popov curves illustrated in Fig. 5.12 are plotted to verify that the PD type fuzzy

control system is stable according to (28) incorporated with Kharitonov theorem.
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Table 5.1

Parameters of the fuzzy logic controller in simulations

NBE NSE ZRE PSE PBEe (or)
1 0.1 0 0.1 1

NBU NSU ZRU PSU PBU
fu

1 0.6 0 0.6 1

(or )e 

(a)
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fu

(b)
Fig. 5.1 The membership functions of the fuzzy control system.

Fig. 5.2 The fuzzy control function with PSPICE simulation by Table 5.2 parameters.
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Table 5.2
Parameters of the fuzzy current control RC circuit system

Circuit

Blocks

Circuit components

Circuit plant 1 2 3 1R R R    , and 1 2 3 1C C C F   .

Subtraction
circuit

4 5 6 7 25R R R R k    , and 0.2refv  V.

Proportion
circuit

8 1R k , 9 10R k , and 10 1R k .

Differentiator
circuit

11 10R k , 12 0.9R k , and 4 100C F .

Inverting
summing

circuit

13 14 15 16 10R R R R k    .

Fuzzy
controller

1 2fR k , 2 12fR k , 3 5 400f fR R   ,

4 6 13f fR R k  , and D1 and D2: 1N4148.

Voltage
controlled

current
circuit

1 2 3 4 10vc vc vc vcR R R R k    .

Current
amplifier

1gR and 2gR are chosen to meet the selected K with

voltage controlled current circuit design.
P type design:

Stable: 1 1gR  and 2 50gR k .

Unstable 1 1gR  and 2 40gR k .

PD type design:
Stable: 1 1gR  and 2 90gR k .

Unstable: 1 1gR  and 2 100gR k .

Power source VCC=15V, VEE=-15V, VCC1=8V, VEE1=-8V,
VCC2=30V, and VEE2=-30V.

Operational
amplifiers in

design

P type design:
OP amps 1~6 with OPA602, and OP amps 7~8
with LM675 (Power op amp).

PD type design:
OP amps 1~6 with OPA602, OP amps 7 with
OPA501 (Power op amp) and OP amps 8 with
LM675.
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Fig. 5.3 The equilibrium stability of the P type fuzzy control system by Table 5.1 for ( , )r K ,

where o indicates a stable equilibrium, and  denotes an unstable equilibrium.
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Fig. 5.4 (a) The phase plane of ( , )e e when ( , ) (0.2,5)r K  ; (b) The time waveform when
( , ) (0.2,5)r K  ; (c) PSPICE waveform when ( , ) (0.2,5)r K  .
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(c)
Fig. 5.5 (a) The phase plane of ( , )e e when ( , ) (0.2,4)r K  ; (b) The time waveform when

( , ) (0.2,4)r K  ; (c) PSPICE waveform when ( , ) (0.2,4)r K  .

Table 5.3
Alternative parameters of the fuzzy logic controller

NBE NSE ZRE PSE PBEe (or)
1 0.01 0 0.01 1

NBU NSU ZRU PSU PBU
fu

1 0.1 0 0.1 1
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Fig. 5.6 The equilibrium with the stability of the alternative fuzzy controller by Table 5.3 for
( , )r K , where o denotes a stable equilibrium, and  indicates an unstable equilibrium.
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Fig. 5.7 The Popov plots for the P type fuzzy control system with uncertain circuit plant.



52

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

18

20

-0.5

0

0.5

rK

ee

P1(0.2,10,0.0037)

P2(0.2,9,0.0033)

Fig. 5.8 The equilibriums with the stability of the PD type fuzzy control system by Table 5.1
for ( , )r K , where o indicates a stable equilibrium, and  denotes an unstable

equilibrium.
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(b)
Fig. 5.9 (a) The time waveform when ( , ) (0.2,10)r K  (b) PSPICE waveform when

( , ) (0.2,10)r K  .
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(b)

Fig. 5.10 (a)The time waveform when ( , ) (0.2,9)r K  ; (b) PSPICE waveform when
( , ) (0.2,9)r K  .
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Fig. 5.11 Equilibrium with the stability of the PD type fuzzy control systems in Table 5.3 for
( , )r K , where o denotes a stable equilibrium, and  indicates an unstable equilibrium.
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Fig. 5.12 The Popov plots for the PD type fuzzy control systems with the uncertain circuit
plant.
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Chapter 6

Comparisons with Other Approaches

In this chapter, we will illustrate the stability of uncertain fuzzy control systems which are

considered as stable by compared methods will crash under the effect of the reference inputs.

On the other hand, the stability can be tested with our applied method and guaranteed under

the effect of the reference inputs. It should be noted that the applied parametric robust Popov

criterion will be comprised with the robust Lur’e test [54], the robust circle criterion [54], and

the robust Popov criterion [54]. In the following, we consider the P type fuzzy control system

in Fig. 2.1 to demonstrate the comparisons. Because the PD type fuzzy control systems can be

transformed into P type ones, we will not exhibit the PD cases additionally.

6.1Robust Lur’e Test 

Consider the stable interval plant [54] in Fig. 2.1:

1 1 0 0
4 3 2

3 3 2 2 1 1 0 0

([ , ] [ , ])
( , )

[ , ] [ , ] [ , ] [ , ]
K q q s q q

G s K
s p p s p p s p p s p p

   

       




   
, (66)

where 0 0[ , ] [3, 3.3]q q   , 1 1[ , ] [3, 3.2]q q   , 0 0[ , ] [3, 4]p p   , 1 1[ , ] [2, 3]p p   ,

2 2[ , ] [24, 25]p p   , and 3 3[ , ] [1, 1.2]p p   . For the following stability test demonstrations,

the default values in the parameters are chosen: 0 3.2q  , 1 3.1q  , 0 3.5p  , 1 2.5p  ,

2 24.5p  , and 3 1.1p  . The parameters in membership functions of the fuzzy logic controller

can be chosen such Table 6.1. The actuator gain 1K  . The total sixteen robust Lur’e curves
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will be illustrated to test the stability of the fuzzy control systems.

From Fig. 6.1, 1/ -1.60Lk  is obtained. Therefore, the control surface ( ) of fuzzy

logic controller should belong to sector bound [0, 0.63]Lk  as shown in Fig. 6.2, and the

fuzzy logic control system is robust absolutely stable.

If the parameters in membership functions of the fuzzy logic controller are chosen such

Table 6.1, then the fuzzy control system is stable. The stable and unstable test cases respect to

the robust Lur’e test are with a pulse reference input for testing 0r  and a constant input

1300r  , respectively. The stable and unstable output waveforms are shown in Figs. 6.3 and

6.4, respectively. In this case, we can find that if the reference input is increased, the stability

of the fuzzy control system which is considered as stable will crash.

6.2 Robust Circle Criterion

Suppose the stable interval plant such the previous test and the parameters in membership

functions of the fuzzy logic controller are chosen such Table 6.2. The total sixteen robust

circle curves will be illustrated to test the stability too. From Fig. 6.5, the circle center located

on ( 1,0) , and radian is 0.6138. The circle cut the negative real axis at two points

11/ 1.61Ck  and 21/ 0.39Ck  . Therefore, the control surface ( ) of the fuzzy logic

controller should belong to the sector bound 1 2[ 0.62, 2.59]C Ck k  as shown in Fig. 6.6, and

the fuzzy logic control system is robust absolutely stable.

If the parameters in membership functions of the fuzzy logic controller are chosen such

Table 6.2, then the fuzzy control system is stable. The stable and unstable test cases respect to

the robust circle criterion are with a pulse reference input and a constant input 2000r  ,

respectively. The stable and unstable output waveforms are shown in Figs. 6.7 and 6.8,

respectively. In this case, we can find that if the reference input is increased the stability of
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the fuzzy control system which is considered as stable will crash, too.

6.3 Robust Popov Criterion

Let’s consider the stable interval plant such the previous test and the parameters in

membership functions of the fuzzy logic controller are chosen such Table 6.1. The total

sixteen robust Popov plots will be plotted to test the stability too. From Fig. 6.9, the Popov

line cut the negative real axis at 1/ 0.62pk  point. Therefore, the control surface ( )

of the fuzzy logic controller should belong to the sector bound [0, 1.61]pk  as shown in Fig.

6.10, and the fuzzy logic control system is robust absolutely stable.

If the parameters in membership functions of the fuzzy logic controller are chosen such

Table 6.1, then the fuzzy control system is stable. The stable and unstable test cases respect to

the robust Popov criterion are with a pulse reference input and a constant input 1300r  ,

respectively. The stable and unstable output waveforms are identical the results as shown in

Figs. 6.3 and 6.4, respectively. In this case, we also find that if the reference input is increased,

the stability of the fuzzy control system which is considered as stable will crash.

6.4 Parametric Robust Popov Criterion

Let’s suppose the stable interval plant such the previous test and the parameters in

membership functions of the fuzzy logic controller are chosen such Table 6.1. If we consider

the reference inputs [ 990, 990]r  , (28) incorporated with Kharitonov theorem is applied

to test the absolute stability of this fuzzy logic control system. By (28),

*1/ 1/ 0.1 10Rk   is chosen. The total sixteen parametric robust Popov curve will be

illustrated to test the robust stability with the reference input in Fig. 6.11. From Fig. 6.11, the

fuzzy control system is robust absolutely stable. Figures 6.12~6.14 show the output
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waveforms for different reference inputs: a bounded pulse reference, 990r  and 990r  ,

respectively. These time waveforms show that the applied parametric robust Popov criterion

is valid. In other words, by the applied parametric robust Popov criterion, the stability of the

fuzzy control systems with uncertain interval plants can be guaranteed under the reference

inputs in certain interval range.

6.5 A Brief Summary on Comparisons

The following Table 6.3 is made for the comparisons with other robust criterions. It shows

the applied parametric robust Popov criterion can deal with fuzzy logic control systems with

the uncertain interval plants and the constant reference inputs cases. The other three

approaches: the robust Lur’e test, the robust circle criterion and the robust Popov criterion just

can deal with the uncertain interval plants and the zero reference inputs cases. In previous

demonstrated examples, the stability will crash due to reference input shift. On the other hand,

the stability of the fuzzy control systems with uncertain interval plants can be assured under

the interval range reference inputs by the applied parametric robust Popov criterion.
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Fig. 6.1 The robust Lur’e test.
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Fig. 6.2 The sector bound from the robust Lur’e test and the control surface of the fuzzy logic
controller.
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Table 6.1
Parameters of fuzzy logic controller for the robust Lur’e test

nbe nme nse zre pse pme pbe

e -2000 -1025 -1000 0 1000 1025 2000

nbu nmu nsu zru psu pmu pbu

fu
-740 -350 100 0 100 350 740
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Fig. 6.3 The time waveform of the stable test case respect to the robust Lur’e test.
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Fig. 6.4 The time waveform of the unstable test case respect to the robust Lur’e test.
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Fig. 6.5 Robust circle criterion.
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Fig. 6.6 The sector bound from the robust circle criterion and control surface of fuzzy logic
controller.

Table 6.2
Parameters of fuzzy logic controller for the robust circle criterion

nbe nme nse zre pse pme pbe
e

-2000 -1020 -1000 0 1000 1020 2000

nbu Nmu nsu zru psu pmu pbu
fu

-4158.4 -1630 -630 0 630 1630 4158.4
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Fig. 6.7 The time waveform of the stable test case respect to the robust circle criterion.
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Fig. 6.8 The time waveform of the unstable test case respect to the robust circle criterion.
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Fig. 6.9 Robust Popov criterion.
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Fig. 6.10 The sector bound from the robust Popov criterion and control surface of fuzzy logic
controller.
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Fig. 6.11 Parametric robust Popov criterion for the reference inputs.
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Fig 6.12 The time waveform of the stable test case respect to the parametric robust Popov
criterion with a bounded pulse reference.
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Fig. 6.13 The time waveform of the stable test case respect to the parametric robust Popov
criterion with the reference input 990r  .
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Fig. 6.14 The time waveform of the stable test case respect to the parametric robust Popov
criterion with the reference input 990r  .
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Table 6.3
The validity of the different robust stability tests

Parametric

robust Popov

criterion

Robust Lur’e test Robust circle

criterion

Robust Popov

criterion

Zero

reference

inputs

Yes Yes Yes Yes

Constant

reference

inputs

Yes No No No
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Chapter 7

Application: Observer-Based Synchronization

for a Class of Unknown Chaotic Systems with

Adaptive Fuzzy-Neural Network

7.1 Overview

The study of the synchronization for a class of unknown chaotic systems with adaptive

fuzzy-neural network is based on the concepts of AFNO, Brunowsky canonical form and

Lur’e systems. The proposed synchronization system contains chaos master with the

canonical form and the soft-computing slave with AFNO. The AFNO is composed of a FNN

and a linear observer. In this design, the AFNO in the slave should synchronize with all states

in the master by a scale transmitted signal only. The FNN in the AFNO is utilized to model

the nonlinear function in the master end adaptively. The linear observer estimates the all

states at the slave end with three inputs including a transmitted state, output of the FNN, and

robust compensation input for counteracting the effect of the external disturbance. When all

states in the master end are estimated at slave end, the synchronization is achieved.

Simulation results confirm that the AFNO is applied to chaos synchronization is valid.
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7.2 Overall Structure of Adaptive Synchronization with

Fuzzy-Neural Observer Design

7.2.1 Introduction of Overall Structure

Assume that the master and slave are all Lur’e type. Figure 7.1 illustrates the overall

structure of adaptive synchronization with AFNO, which is synthesized with an FNN and a

linear observer. In this design, only a scalar transmitted signal 1Mx is sent to the slave from

the master. By the observed state Ŝx , S Ŝ( )f x can be computed to approximate M ( )Mf x with

FNN. The adaptive laws update the weights in FNN when the error exists between 1Mx and

1̂sx . The linear observer inputs are S Ŝ( )Su f x , the transmission signal 1Mx , and the robust

input ru . The synchronization is achieved when ŜMx x .

7.2.2 Dynamics of the Master and Slave Ends

Master End:

1 1

( ( ) )

,
M M M M M M

M M M M

x A x B f x d

y x C x

  

 


(67)

Slave End: [73,80]

1 1

ˆˆ ˆ ˆ( ( ) )

ˆ ,̂
S S S S S S r o o

S S S S

x A x B f x u K e

y x C x

   

 


(68)

where
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0 1 0 0
0 0 1 0

0 0 0 1
0 0 0 0

M SA A

 
 
 
  
 
 
  




    



;

0
0

0
1

M SB B




 




;

 1 0 0 0M SC C   ; d denotes an bounded external disturbance;

( 1)
1 2[ ] [ ]n T T n

M M M M M M Mnx x x x x x x     ,

and ( 1)
1 2[ ] [ ]n T T n

S S S S S S Snx x x x x x x     ; observer gain

1 2[ ]T
o nK k k k  is designed to satisfy S o SA K C strictly Hurwitz, where

( , )S SC A represents observer pair; 1 1̂o M Se x x  ; ru is designed to enhance the robustness

caused by d ; ( )M Mf x is approximated by adaptive FNN with ˆˆ( )S Sf x . ( )M Mf x is

unknown (uncertain) but bounded continuous functions. [81,82]

Synchronization Error:

The synchronization error can be defined as:

ˆsyn M Se x x  , (69)

where ( 1)
1 2[ ] [ ]n T T n

syn syn syn syn syn syn synne e e e e e e     .

The master and slave achieve synchronization when all states are estimated at the slave.

7.3 Adaptive Fuzzy-Neural Network Observer Design

In this subchapter, AFNO is introduced. Under an assumption, the designed AFNO can

estimate the master’s states to achieve synchronization. AFNO can then be synthesized by an



72

FNN and a linear observer.

7.3.1 Fuzzy-Neural Network [73,80]

The FNN is designed to model the nonlinear function M M( )f x with S ˆ( )Sf x . The FNN

depicted in Fig. 7.2 is utilized as an approximator to model the nonlinear functions such

as ( )f x . The FNN [83,84], which consists of fuzzy IF-THEN rules and a fuzzy inference

engine, is adopted as a function approximator. The fuzzy inference engine employs the

IF-THEN rules to generate a mapping from an input linguistic vector

1 2[ ]T n
nx x x x  to an output linguistic variable ( )y x . Fuzzy IF-THEN rule

i th is thus written as:

( )iR : if 1x is 1
iA and…and nx is i

nA , then y is iB ,

where 1 2 , ,i i i
nA A A,  and iB are fuzzy sets with membership functions ( )i

i
jA

x and

( )i
i

B
y , respectively. By using product inference, center-average, and singleton fuzzifier,

output ( )y x from the fuzzy-neural approximator can be written as

11

11

( ( ))
( ) ( )

( ( ))

i
j

i
j

h i n
j jAi T

fh n
j jAi

y μ x
y x x

μ x







  






, (70)

where ( )i
j

jA
x denotes the membership function value of fuzzy variable jx ; h is the total

number of IF-THEN rules, and iy is the point at which ( ) 1i
i

B
y  .

1 2[ ]h T
f y y y   denotes an adjustable parameter vector, and

1 2[ ]h T    represents a fuzzy basic vector, where i is given by

1

11

( ( ))
( )

( ( ))

i
j

i
j

n
j jAi

h n
j jAi

μ x
x

μ x










. (71)

By adjusting the parameter vector f in (70) with adaptive laws, the uncertain nonlinear
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function ( )f x can be approximated by (̂ )f x generated in (72). By using the fuzzy-neural

approximator, the estimated functions (̂ )f x can be determined from the outputs of the

fuzzy-neural approximator, which is defined as follows:

(̂ θ) θ ( )T
f ff x x  , (72)

where θf is an adjustable parameter vector.

In summary, (72) can describe the input-output relation of the FNN. The overall structure

of the FNN is divided into four layers as shown in Fig. 7.2. The physical meanings of (72) can

be interpreted by Fig. 7.2 in the following. The input nodes in Layer I represent input

linguistic vectors. Nodes in Layer II denote values of the membership function of total

linguistic variables. Each node in Layer III excuses a fuzzy rule. The output of Layer IV is the

output signal modeling the nonlinear function. The connection parameters between layer III

and layer IV are adjusted by using adaptive laws. The number of fuzzy rules can be dependent

on complex level of nonlinear systems. In general, the more complex the systems are, the

more numerous rules are demand. Of course, the computing load is heavy with more

numerous rules. On the other hands, when the rules are less, the computing load is slight. This

is a trade off problem.

7.3.2 Adaptive Fuzzy-Neural Network Observer

Assumption 7.1 [73,80]:

The master state vector Mx and the slave state vector Ŝx belong to compact sets MS

and SS respectively, where

 :
M

n
M M M xS x x     , (73)

 ˆˆ ˆ:
S

n
S S S xS x x     , (74)

and
Mx and

Ŝx are designed parameters.
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The optimal parameter vector θff
 falls in some convex region with constant radius

f
 . The

convex region can be specified as shown in (75).

 :
f f

h
f fR

 
     . (75)

The optimal parameter vector *
f can be described as:

ˆ,

ˆˆarg min sup ( ) ( )
f f M M S S

f M M S S fR x S x S
f x f x


 

  

 
  

 
. (76)

Remark 7.1: The optimal *
f is possible in an ideal situation. In our applications, the

adaptive laws will be applied to tune f to approach *
f .

The adaptive fuzzy-neural nonlinear observer with respect to a class of nonlinear systems

(67) can be designed under assumption 7.1. AFNO can be designed [73,80]:

1 1

ˆ ˆ ˆ( ( ) )

ˆ ,̂

T
S S S S f S r o o

S S S S

x A x B x u K e

y x C x

    

 


(77)

where ˆ( )T
f Sx is calculated by FNN to approximate the nonlinear functions ( )M Mf x in

dynamical systems, and ru denotes the robust input to compensate the effect due to external

disturbance and the approximated modeling error by FNN. Based on [73,80], ru can be

designed as follows:

min

1
( )r ou Q e


 , (78)

where 0TQ Q  , and  is a positive constant. In general,  should be proper designed.

The small gamma will cause large ru to attenuate the effect of disturbance. Indeed, the

better attenuation performance will be obtained when the small  is chosen. Additionally,

0TQ Q  will make the Riccati-like equation satisfied in stability and adaptive law

derivation with Lyapunove function [80].
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The adaptive laws in FNN are as follows:

1

1

ˆ( ), if or ( = ,

ˆand ( ) 0)

ˆ ˆPr ( ( )), if and ( )>0,

f f

f

o S f f

T
f o f S

T
f o S f o f S

e x

e x

e x e x

 



    

 

   

 
 
 

 (79)

where 1ˆ ˆ( ) ( ) ( )S Sx L s x   ; 1( )L s denotes a proper stable transfer function to transform

( ) ( )H s L s into a proper strictly-positive real (SPR) transfer function, and 1 denotes the

designed parameter. The function ( )H s is represented as follows:

1( ) ( ( )) .S S o S SH s C sI A K C B   (80)

1 ˆPr ( ( ))f o Se x  in (81) is the operator of projection for achieving minimal modeling error

for ( )M Mf x .

1 1 1 2

ˆ ˆ( ) ( )
ˆ ˆPr ( ( )) ( ) .

T
o f S S

f o S o S f

f

e x x
e x e x

 
     


  (81)

The design procedure, stability proof and adaptive laws (79) can be referred in [73,80]

7.4 Simulation Results

This subchapter verifies the feasibility of AFNO for synchronization using two examples.

7.4.1 Example 1

In this example, AFNO is applied to synchronize a master Chua’s circuit under modeling

error, different initial conditions and external bounded disturbances .The results will

demonstrate the adaptability and robustness of AFNO.

The master Chua’s circuit is reformed as a canonical form [85].
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1 1

2 2

3 3

0 1 0 0
0 0 1 0 ( ( ) )
0 0 0 1

M M

M M M M

M M

x x
x x f x d
x x

    
          
        





, (82)

where 1 2 3

14 168 1
( )

1805 9025 38M M M M Mf x x x x   
3

1 2 3
2 28 7

45 361 95M M Mx x x    
 

The adaptive laws tune FNN to approach ( )M Mf x . The observer is designed to place poles

of S o SA K C in -30 i.e. linear observer gain vector is  90 2700 27000T
oK  .

Other parameters of AFNO are 10 , 1 0.01 , Q is 3 3 identity matrix, and

1 1
2

L
s

 


. The membership functions for Ŝix , 1,2,3i  in FNN are given as follows:

1 ˆ ˆ( ) 1 /(1 exp(5 ( 0.75)))
j

Si SiA
x x     ,

2
2ˆ ˆ( ) exp( ( 0.5) )

j
Si SiA

x x    ,

3
2ˆ ˆ( ) exp( ( 0.25) )

j
Si SiA

x x    ,

4
2ˆ ˆ( ) exp( ( ) )

j
Si SiA

x x   ,

5
2ˆ ˆ( ) exp( ( 0.25) )

j
Si SiA

x x    , (83)

6
2ˆ ˆ( ) exp( ( 0.5) )

j
Si SiA

x x    ,

7 ˆ ˆ( ) 1/(1 exp( 5 ( 0.75)))
j

Si SiA
x x     .

In this example, three states should be estimated, accounting for why the fuzzy rules in

process are 343. The initially adjustable parameters in adaptive FNN are chosen to be

(0) 0f  to demonstrating modeling error. The weights of FNN are turned by the adaptive

laws to form M M( )f x .

Different initial conditions of the master and slave are listed in Table 7.1. Furthermore, the

distinct disturbances are listed in Table 7.2.
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Figures 7.3~7.5 summarize the simulation results of different initial conditions for three

states in AFNO. In Figs. 7.3~7.5, the distinct initial conditions for each state in AFNO are

listed in Table 7.1 and a type of disturbance in the master end is set as Case 1 in Table 7.2.

Figure 7.3 illustrates that the first state 1̂Sx in AFNO with three different initial conditions

synchronizes 1Mx in Chua’s circuit. Figures 7.4 and 7.5 illustrate that 2̂Sx and 3̂Sx

synchronize 2Mx and 3Mx , respectively. Although the initial conditions differ from each

other, AFNO synchronizes with Chua’s circuit quickly, well, and adaptively. Moreover, the

synchronization error approaches zero as time goes to infinity. The robustness of AFNO can

be also specified from Figs. 7.6~7.8 with various intensity disturbances in the master end. In

Figs. 7.6~7.8, the initial conditions of three states are selected as Case1 in Table 7.1 and the

different disturbances are chosen as Table 7.2. Figure 7.6 demonstrates that the first state 1̂Sx

in the slave synchronizes 1Mx in the master end immediately and well under three different

disturbances. Figures 7.7 and 7.8 reveal that 2̂Sx and 3̂Sx synchronize 2Mx and 3Mx ,

individually. Even if the different disturbances are added in the master Chua’s circuit, AFNO

synchronizes with the master robustly.

7.4.2 Example 2

Example 2 demonstrates the adaptability of the utilized method by switched master

between Chua’s circuit and Rössler system as shown in Fig. 7.9. When the master is switched

to another system, the slave follows to synchronize another chaotic system soon and well. The

similar different initial conditions and disturbances listed in Tables 7.1 and 7.2 are considered

in simulations for demonstrating the robustness of AFNO.

The original Rössler system can be presented as [62]:

1 2 1z z az 
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2 1 3z z z  (84)

3 3 2 3z b cz z z   ,

where 1 2 3[ ]Tz z z z .

Let

1
Mx T z , (85)

where
1 0 0

1 0
1 1

T a
a

 
   
  

.

The Rössler system is reformed as the canonical form with

2 2 2
1 2 3 1 1 2 1 3 2( ) ( 1) ( ) ( 1)M M M M M M M M M M Mf x cx ac x a c x ax a x x ax x ax         

2 3M Mx x b  ,

where 0.2a  , 0.2b  , and 6.3c  . Notably, ( )M Mf x is revised from [62].

The parameters of AFNO at the slave resemble those in Example 1. The initial condition of

Rössler system is set [0 0 0]T .

Figures 7.10~7.12 indicate the simulation results with respect to each state for diverse

initial conditions in AFNO and switched masters. The distinct initial conditions for each state

in AFNO are shown in Table 7.1 and a kind of disturbance in the master end is set as Case 1

in Table 7.2. Figure 7.10 illustrates that the first state 1̂Sx in AFNO with three different

initial conditions synchronizes 1Mx in the master end, even if the switched masters exist at

the third second (Chua’s circuit to Rössler system) and the sixth second (Rössler system to

Chua’s circuit). Figures 7.11 and 7.12 exhibit that 2̂Sx and 3̂Sx synchronize 2Mx and 3Mx ,

respectively. Although the initial conditions differ from each other and the switched masters

exist, AFNO synchronizes with the switched masters fast, well, and adaptively. On the other

hand, simulation results in Figs. 7.13~7.15 verify the robustness of AFNO for the different

disturbances and the switched systems in the master end. In Figs. 7.13~7.15, the initial
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conditions of three states are chosen as Case1 in Table 7.1 and the different disturbances are

selected as Table 7.2. Figure 7.13 displays that the first state 1̂Sx synchronizes 1Mx

immediately and well under three different disturbances, even thought the switched masters

exist at the third second (Chua’s circuit to Rössler system) and the sixth second (Rössler

system to Chua’s circuit). Figures 7.14 and 7.15 reveal that 2̂Sx and 3̂Sx synchronize 2Mx

and 3Mx , separately. In spite of the different disturbances and the switched systems are

considered in the master end, AFNO synchronizes with the master robustly.

It is noted that Figs 7.10~7.15 display the simulation results indicating AFNO synchronizes

with Chua’s circuit at 0~3 sec. The Rössler system also runs dynamically from the initial

condition. AFNO synchronizes with Rössler at 3~6 sec, while Chua’s circuit runs

simultaneously.

From these simulation results, AFNO can synchronize with a class of unknown chaotic

systems adaptively and robustly.

7.5 Conclusion Remarks

This work has applied AFNO for synchronization with respect to a class of unknown

chaotic systems via a scalar transmitted signal only. Once the nonlinear chaotic systems could

be transformed into the canonical form of Lur’e system type by the differential geometric

method, the AFNO method can be utilized for synchronization. In this approach, the nonlinear

term in the master end was modeled by the adaptive fuzzy-neural network (FNN) in AFNO

on line. Furthermore, the states in the master end were observed from a scale transmitted

signal by observer design. When states in the master and slave ends were identical, we said

the synchronization was reached. By this scheme, the AFNO could estimate the unknown

master’s states adaptively, even though the master was altered into another chaotic system.

On the other hand, AFNO could deal with the modeling error, and external bounded
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disturbance to demonstrate its robustness advantage. Simulation results showed that the

adaptive and robust AFNO was suitable for chaos synchronization with respect to a class

unknown chaotic systems.
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Fig. 7.1 The overall structure of synchronization with AFNO.
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Fig. 7.2 The fuzzy-neural approximator [73,80].
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Table 7.1
Three cases of the initial conditions

Cases Initial conditions

Case 1 (0) [0 0 0]T
Mx  , and  (0) 1 1 1

T
Sx 

Case 2 (0) [0 0 0]T
Mx  , and  (0) 2 2 2

T
Sx 

Case3 (0) [0 0 0]T
Mx  , and  (0) 3 3 3

T
Sx 

Note: In the simulations, the disturbances in the master end are set as Case 1 in Table 7.2 in
three cases.

Table 7.2
Three cases of the disturbances

Cases Disturbance ( d )

Case 1 0.5 with period 2
Case 2 0.8 with period 2
Case3 1 with period 2

Note: In the simulations, the initial conditions are chosen as Case1 in Table 7.1 in three cases.
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Fig. 7.3 The first states 1Mx and 1̂Sx in Chua’s circuit and AFNO under different initial

conditions.
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Fig. 7.5 The third states 3Mx and 3̂Sx in Chua’s circuit and AFNO under different initial

conditions.
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Fig. 7.9 The structure of synchronization with the switched masters.
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Chapter 8

Conclusions

In this dissertation, the parametric absolute stability in P and PD type fuzzy logic control

systems with both certain and uncertain linear plants with parameters such as the reference

input, actuator gain and interval plan have been analyzed. The adaptive AFNO has been also

applied to synchronize a class of unknown chaotic systems via a scalar transmitted signal only.

In the stability analysis, for certain linear plants, the Popov and linearization methods are

applied to analyze the stability in both P and PD type fuzzy control systems under different

reference inputs and actuator gains. The steady state errors of the fuzzy control systems are

also analyzed. For uncertain plants, the parametric robust Popov criterion based on the Lur’e 

system is applied to the stability analysis of P and PD type fuzzy control systems. Moreover, a

fuzzy current controlled RC circuit is designed to compare theoretical analyses with PSPICE

simulation results. Furthermore, the oscillation phenomena in fuzzy control systems are

interpreted from the point of view of the equilibriums in this simulation example. Finally, the

parametric robust Popov criterion is compared with the other approaches to show the

effectiveness respect to non-zero reference inputs.

About application with the fuzzy control system, AFNO has been applied for

synchronization with respect to a class of unknown chaotic systems via a scalar transmitted

signal only. Once the nonlinear chaotic systems could be transformed into the canonical form

of Lur’e system type by the differential geometric method, the AFNO method can be utilized

for synchronization. In this approach, the nonlinear term in the master end was modeled by
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the adaptive fuzzy-neural network (FNN) in AFNO on line. Furthermore, the states in the

master end were observed from a scale transmitted signal by observer design. When states in

the master and slave ends were identical, we said the synchronization was reached. By this

scheme, the AFNO could estimate the unknown master’s states adaptively, even though the

master was altered into another chaotic system. On the other hand, AFNO could deal with the

modeling error, and external bounded disturbance to demonstrate its robustness advantage.

Simulation results showed that the adaptive and robust AFNO was suitable for chaos

synchronization with respect to a class unknown chaotic systems.
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