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ABSTRACT

This thesis analyzes the absolute stability in P and PD type fuzzy logic control systems with both
certain and uncertain linear plants. In addition, the adaptive fuzzy-neural observer (AFNO) is applies
to synchronize a class of unknown chaotic systems via scalar transmitting signal only. Stability
analysis includes the reference input, actuator gain and interval plant parameters. For certain linear
plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov
or linearization methods under various reference inputs and actuator gains. The steady state errors of
fuzzy control systems are also addressed in‘the parameter plane. The parametric robust Popov criterion
for parametric absolute stability based on Lur’e systems is also applied to the stability analysis of P
type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is
a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the
absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input
and an uncertain linear plant with the parametric robust Popov criterion unlike previous works.
Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and
PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation
mechanism in fuzzy control systems is specified with various equilibrium points of view in the
simulation example. Eventually, the comparisons are also given to show the effectiveness of the
analysis method. On the other hand, the fuzzy control system can be applied to synchronize the chaotic
signals in the master end intelligently. With a scalar transmitting signal only, the AFNO is utilized to
synchronize a class of unknown chaotic systems. The proposed method can be used for
synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur’e
system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network

(FNN) in AFNO is adopted on line to model the nonlinear term in the master end. Additionally, the



master’s unknown states can be reconstructed from one transmitted state using observer design in the
slave end. Synchronization is achieved when all states are observed. The utilized scheme can
adaptively estimate the transmitter states on line, even if the transmitter is changed into another chaotic
system. On the other hand, the robustness of AFNO can be guaranteed with respect to the modeling
error, and external bounded disturbance. Simulation results confirm that the AFNO design is valid for

the application of chaos synchronization.
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Chapter 1

Introduction

1.1 Motivation

Fuzzy logic controller (FLC) has become a conventionally adopted control algorithm, and
has been employed in various industrial applications [1], since Mamdani [2] proposed the first
linguistic FLC based on expert experience to control a laboratory steam engine. The FLC
design does not require an accurate mathematical model. Unlike traditional nonlinear
controllers, FLC can work with imprecise inputs, and can deal with nonlinearity and
uncertainty. Therefore, many studies are devoted to-this field. Conversely, since the accurate
mathematical model is not required to design FLLC, the design procedure is still based on trial
and error. Hence, the stability and performance of FLC cannot be guaranteed. Systematic
analysis and synthesis schemes [3]-[26] have recently been developed to improve this issue.

Some methods [3]-[10] adopt the Takagi-Sugeno (T-S) fuzzy models to determine the
stability of fuzzy control systems by the Lyapunov function or linear matrix inequality (LMI).
The overall plant is first represented as a T-S fuzzy model by a fuzzy blending of each linear
system model. The controller is then designed based on this T-S fuzzy model by Lyapunov
function or LMI. However, an appropriate fuzzy model may be difficult to formulate for an
arbitrary nonlinear dynamic system. Additionally, a common Lyapunov function for general
cases, and an existing positive-definite matrix, are both difficult to obtain. Besides the T-S
fuzzy model, Lyapunov functions are also adopted to design and analyze the robust PD fuzzy

controller for bounded uncertainties or nonlinearities of the system, using the



Popov-Lyapunov approach [11]. In addition, the stability on the T-S fuzzy model is analyzed
by the Kharitonov theorem incorporated with the Schur and Hurwitz criterions [12]. Recently,
the developments of fuzzy logic control designs almost focus on the T-S fuzzy models control.
The stability analyses all apply the time-domain LMI approach. The main research directions
include model uncertainties [13]-[20] and time-delay [21]-[23] or both [24], [25]. The
stability issues due to the reference input influence are not to be discussed in the T-S fuzzy
models control.

Kickert and Mamdani [26] first applied the describing function approach (DF) to analyze
the stability of fuzzy control systems by granting fuzzy control systems as a multi-level relay
model. The describing function of FLC can, under reasonable assumptions, be obtained to
predict the existence of a limit cycle in fuzzy logic control systems [27], [28]. DF provides an
approximate approach to obtain the stability of unforced fuzzy control systems. DF may yield
inaccurate or incorrect analysis results, because it is-an aggressive and approximate approach.
In other words, under some assumptions, DF can only be applied to analyze fuzzy system
stability successfully. Additionally, the steady state error and transient response of fuzzy
control systems with the sinusoidal and exponential input describing functions techniques are
analyzed in [29] and [30], respectively.

The choice of parameters in fuzzy control systems with phase plane approach was proposed
in [31]-[33]. Then, the phase plane analysis can be utilized to design fuzzy rules, or measure
the performance and stability of a specific set of fuzzy rules. Phase plane analysis is a simple
graphical approach, in which the system trajectories are inspected to provide information on
system stability and performance. However, it is restricted to second order dynamic systems.

The extension of classical circle criteria is also applied to analyze the stability of linear
systems with fuzzy logic controllers [34], [35]. The extended circle criteria can be employed

to test the SISO and MIMO systems [34]. The extended circle criteria for MISO and MIMO



are presented in [35] for testing the robust stability in PI, such as fuzzy control systems with
uncertain plant gains. This algorithm limits the nonlinearity of fuzzy controller to the sector
bound.

The Popov is a frequency domain stability criterion for closed loop nonlinear systems of
Lur’e type. Fuzzy control systems can be regarded as Lur’e type systems. Kandel et al. [36]
adopted the Popov criterion to analyze the stability of fuzzy control systems with controller as
multi-level relay. Furutani et al. [37] utilized the shifted Popov criterion to manage the fuzzy
controller with both time-variant and time-invariant parts. However, the Popov criteria
applied to the stability analyzes on the fuzzy logic control do not consider the effect of
reference input.

On the other hand, the latest research developments on the Lur’e systems stability analyzes
concentrate on the systems with model uncertainties [38]-[41] and time-delay [42]-[43] or
both [44]-[46]. The main approaches include the time-domain LMI [38]-[44] and the classical
frequency-domain [45], [46] methods. The stability issues due to the reference input influence
are not even discussed except in [51]. By [51], we can predict that the stability of fuzzy
control systems will crash due to reference input shift, so it is important to take the reference
inputs as one of the parameters for stability analyzes of fuzzy control systems.

In short, the recent stability analysis developments on the Lur’e type systems almost always
use the time-domain LMI approach. The concerned issues are on uncertainties and time-delay
or both. However, the development directions don’t concern the reference input influence on
stability.

Other investigations on fuzzy logic control systems can be described as follows.
Butkiewicz [47] investigated the steady error of a fuzzy control system with respect to
different fuzzy reasoning processes [47]. Tao and Taur [48] designed a robust

complexity-reduced PID-like fuzzy controller for a plant with fuzzy linear model in [48].



Malki et al. [49] derived a fuzzy PD controller from the conventional continuous-time linear
PD controller [49], in which the proportional and derivative gains are a nonlinear function of
the input signal. The stability of this new type fuzzy PD controller is ensured by the small
gain theorem. Taur and Tao [50] analyzed and designed region-wise linear fuzzy controllers
(RLFC) [50], and found that the RLFCs generally performed better than the PD controllers.
Our work analyzes the absolute stability in P and PD type fuzzy control systems with both
certain and uncertain linear plants. The control functions in P and PD type fuzzy controllers
are known to be piecewise linear, and can be described with mathematical equations. The
equilibrium points of each piecewise linear surface in a P type fuzzy control system with a
certain linear plant can be calculated by this description. The unique error equilibrium point of
the overall system can be obtained by determining whether the error equilibrium point located
in its own error region. Therefore, the error’equilibrium points in the reference and actuator
gain parameter space can be analyzed. Additionally, the absolute stability can be analyzed
using the frequency and time domain approaches. Since a P type fuzzy control system is a
Lur’e system, its stability can be tested by the Popov criteria in the frequency domain. In the
time domain, the stability can be tested by linearizing the system with regard to the
equilibrium point. Conversely, the stability of a P type fuzzy control system can be tested by
the parametric robust Popov criterion [51] incorporated with the Kharitonov theorem for
uncertain linear plant and interval parameters, including actuator gain, reference input and
plant parameters. Notably, the actuator gain can be included in one of the plant parameters.
For a PD type fuzzy control system, single-input fuzzy logic controller (SFLC) [52] is
introduced into our analysis. In a certain linear plant situation, the equilibrium point of fuzzy
control systems can be analyzed using the same P type fuzzy analysis concepts. A PD type
fuzzy control system with an SFLC controller can be transformed into a P type system, so that

its stability can be analyzed with the Popov and linearization methods. The parametric



absolute stability of Lur’e systems can also be applied to a transformed PD type fuzzy control
system when the plant is uncertain. For comparison with theoretical analysis, a fuzzy current
controlled RC circuit is designed with a PSPICE model. Simulation results including both
numerical and PSPICE confirm the theoretical analysis. Additionally, the mechanism of
oscillations in fuzzy control systems is interpreted with a viewpoint of equilibrium points in a
simulation example. Finally, the comparisons also are made to exhibit the effectiveness of the
analysis method. The applied method parametric robust Popov criterion will be compared
with the robust Lur’e test [54], the robust circle criterion [54], and the robust Popov criterion
[54]. In compared methods, the stability of uncertain fuzzy control systems which are
considered as stable by compared methods will crash under the effect of the reference inputs.
On the other hand, by the applied analysis method, the stability can be guaranteed for the
certain interval reference inputs. In summaty, this study can provide a valuable reference in
designing fuzzy control systems.

In conclusion, the stability analysis is extended to a non-zero reference input and an
uncertain linear plant. This is in contrast to the approach employed by Kim et al. [27], in
which DF is derived and applied to analyze the stability of fuzzy control systems for zero
reference inputs and certain linear plants. The DF method may yield inaccurate or incorrect
analysis results without restricted assumptions. By contrast, the Popov criterion based on the
Kharitonov theory can guarantee an exact stability investigation. Moreover, SFLC [52] is
applied in the analysis of a PD type fuzzy control system. SFLC is an efficient FLC, owing to
its 1-D fuzzy rules only. By this feature, the SLFC can be implemented as an analog circuit
and applied for high frequency control. This work first investigates the steady state error and
robust stability analysis for linear plants using the proposed structure transformation.
Additionally, an analog fuzzy control system is designed with a PSPICE model to verify the

analysis results. Finally, the explanations for unstable oscillations in fuzzy control systems are



presented with the equilibrium concept.

On the other hands, a kind of the applications based on fuzzy control systems is addressed
in this thesis. In this application, the adaptive fuzzy-neural observer (AFNO) is applies to
synchronize a class of unknown chaotic systems with a scalar transmitted signal only. The
synchronization of chaotic systems has been extensively studied and given its potential
application to security communications. Synchronization means that the master and slave
have identical states as time goes to infinity. Pecora and Carroll first considered the
synchronization of chaotic systems [55], in which the drive-response concept is introduced to
achieve synchronization by a scalar transmitted signal. Perfectly identical parameters cannot
be achieved in real applications. Therefore, the nonlinear robust control [56,57] concept is
employed to chaos synchronization with previous known states within the margin of
synchronization error. An adaptive recurrent neural controller can be utilized to synchronize
with respect to unknown systems [58,59]. However, all states should be measurable with this
algorithm. In contrast, the nonlinear. observer is designed to synchronize chaotic systems
[60,61,62]. Morgiil and Solak [62] presented global synchronization is possible for a system
with Brunowsky canonical form. Grassi and Mascolo [61] provided a systematic method for
synchronizing using a scale transmitted signal. Message-free synchronization has been
developed to permit communication with masking message in chaotic signals [63]. Messages
can be extracted with message-free synchronization. Moreover, Boutayeb [60] proposed a
scheme which is provided to synchronize and extract message simultaneously. Nevertheless,
these systems do not consider the robustness of the state observer with respect to parameters
mismatch [60,61,62]. Adaptive sliding observer design [64,65] can handle parameters
mismatch. Furthermore, a robust observer [66] is designed for synchronization using the
Takagi-Sugeno fuzzy model and the LMI approach. Millerioux and Daafouz recently

introduced the input-independent global chaos synchronization [67]. In this method, the added



message does not affect the synchronization if the observer gain is appropriately designed.
Other studies consider nonlinear observer designs for chaos synchronization [68,69].
However, by the methods of previous descriptions, the chaotic systems should be known
previously before synchronization design. Recently, the system identification approaches
[70,71,72] have been introduced for a scale signal identification and chaos synchronization
respectively. In [71], the system identification concepts are applied to approximate the chaotic
signal. The proposed identification scheme assumes a Lur’e type system as a reference model.
This allows us to separate the identification process into two parts, adjusting alternatively the
parameters of the linear and the nonlinear part. For modeling the linear system, the
autoregressive moving average (ARMA) approach is utilized. On the other hand, the genetic
algorithm is applied to optimize the break points parameters of nonlinear static functions to
approximate nonlinear mapping. However; this. approach is based on off-line identification,
and it is not an on-line tuning scheme. Furthermore, the order in linear part identification
should be by trial and error. The identification results just imitate the transmission signal and
the other states in the master end cannot be achieved to synchronize simultaneously. In
addition, the simulation results of this approach seem not very well. According to [70], the
recursive identification is applied for chaos synchronization when the slave has exactly
identical structure to the master system, but its parameters are unknown. It is shown that the
unknown slave system parameters can be found by the concepts of adaptive synchronization.
In other words, when the unknown slave system parameters are found, the synchronization is
achieved. However, the structures in the master and slave ends should be known previously
and exactly the same, although the parameters in the slave end can be estimated by recursive
identification. The discussion of robustness is not included too. More recently, an alternative
indirect Takagi—Sugeno fuzzy model based adaptive fuzzy observer design has been applied

to chaos synchronization under assumptions that states are unmeasurable and parameters are



unknown [72]. The adaptive law is designed to estimate the unknown parameters in the T-S
fuzzy model of the slave end. When the unknown parameters are estimated correctly, the
synchronization is achieved. However, the form of the T-S fuzzy model should be known first,
and then the adaptive fuzzy observer is designed by the T-S fuzzy model. In addition, the
discussion of robustness is not included.

This investigation achieves synchronization with respect to a class of unknown master
chaotic systems by introducing the concepts of AFNO [73], Brunowsky canonical form [62]
and Lur’e systems [74]. The proposed system includes a chaos master with canonical form
and the slave with AFNO. The AFNO combines a FNN and a linear observer. In this design,
the slave should synchronize with the master by a scale transmitted signal .This approach
employs adaptive FNN to model the nonlinear term of the master end. The output of the
adaptive FNN, robust input and a transmitted state are sent to the linear observer to estimate
the states of the slave. The master and slave achieve synchronization when all states are
estimated at the slave. Additionally, the adaptive laws are needed to update the weights of the
FNN, when the reconstructed and transmitted states differ from each other.

The benefits of provided AFNO for synchronization can be stated as follows. AFNO is first
applied to chaos synchronization with only one transmitted signal. Since AFNO is on line
learning at the slave, the synchronization can be achieved respect to a switched unknown
chaotic system with the Lur’e type. Additionally, the adaptability for parameters change or
even system switched in the mater and the robustness for modeling error and external
bounded disturbance are also given. AFNO also has FNN’s inherent properties of
fault-tolerance, parallelism learning, linguistic information and logic control. By comparing
with [70,71,72], our presentation provides the on-line, robust and adaptive synchronization for
a class of chaotic systems. The form of nonlinear functions in the master end cannot be known

in previous due to soft computing with FNN for fitting it in the slave end.



1.2 Organizations of the Dissertation

This thesis is organized as follows. Chapter 1 is an introduction. Chapter 2 describes the P
and PD type fuzzy control systems. Chapter 3 analyzes the equilibrium points and stability in
P type fuzzy control system. Chapter 4 then performs the same analyses in a PD type fuzzy
control system. Chapter 5 provides simulation results with Matlab and PSPICE simulators. In
Chapter 6, the comparisons are made to show the superiority of the applied analysis method.
Furthermore, in Chapter 7, the observer-based synchronization for a class of unknown chaotic
systems with adaptive fuzzy-neural network is presented. Finally, some conclusions are given

in Chapter 8.



Chapter 2

The Fuzzy Logic Control Systems

2.1 Fuzzy Logic Controller

Both P and PD type fuzzy logic control systems include a linear plant with time-invariant
uncertainty, adjustable actuator gain and reference input. Moreover, the fuzzy logic
controllers are the cores of systems. An FLC can be taken as multiple bends of piecewise
linear functions, since it has singleton and specific membership functions. Hence, a fuzzy
logic control system can be treated as a Lut’e type system.

Consider the fuzzy logic control system in Fig.-2.1. The IF-THEN rules in single input
fuzzy logic controller can be described as:

Rule :If e 1s M,, then u is u,, (1)

1
where e is the control error and M, and u, denote fuzzy sets. If a singleton is applied in a

fuzzifier, then the product inference and center average are formulated in the inference engine

and defuzzifier, respectively. The output of the fuzzy logic controller can be represented as

u, = ZQi(e)ul. , (2)

M, ()

where Qi(e) = m .

For simplification, this study uses the fuzzy rules and membership functions listed in Table
2.1 [27] and Fig. 2.2 are adopted in this thesis, respectively. Table 2.2 presents the fuzzy

controller parameters. Figure 2.3 shows the control function of the fuzzy controller, which can
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be described as:

segment 1:k,e+c,, eec [az’a3]’
segment 2: ke+c,, ee[al’aZ]’
u, = o(e) =+ segment 3:kye, ee [_alﬂal]’ 3)
segment 4: ke—c,,  ec[-a,,—a],
segment 5: k,e—c,, ee [_a37_a2]’
where
b, b, - b,
0<a <a,<a,, 0<b <b,<b,, ¢,=b,—ka,, c¢,=b,—ka,, ky=—", k = , and
a, a, —a,
@:@_@.
a,—a,

Remark 2.1: The assumptions 0<a, <a, <---<a, and 0<b <b,<---<b, are satisfied

for n multiple bends of a control function. The control output of the static fuzzy system is
given by:

ke+c, ee[a,,,a,,+1],
u, =o(e)y=4kye, ee[—al,al], “)

ke-c,6 ec [—am,—an],

where cn:bn+l_ka k :M’and n=123,-.,n.

nn+l? n
a l—a

n+ n

The control function o satisfies
OSé[G(e+é)—G(e)]Sk(e)é2, VeecQ, VeeR, (5)

where o(0)=0, k>0and O indicates some neighborhood of e=0.

2.2 P Type Fuzzy Logic Control System

Figure 2.1 illustrates a P type fuzzy control system with a fuzzy logic controller, a
parametric linear time-invariant system and adjustable parameters, which include actuator

gain K and reference input ». The control function of the fuzzy controller is a piecewise

11



linear function, and is depicted in Fig. 2.3.

The linear plant H (s, p) shown in Fig. 2.1 can be presented as

H(s,p)=C(p)[sI = A(p)] B'(p), 6)
where A(p)eR"™"and A(p) is a stable matrix; B'(p)eR™"; C(p)eR"™, the parameter

vector p exists in a compact and simple connected region P — R’.

The transfer function G(s, p, K) with amplifier gain K € R can be stated as

G(s, p,K)=C(p)[sI - 4(p)]" B(p.K) (7)
where B(p,K)=KB'(p)eR™,and K eR. The overall static fuzzy logic control system in

Fig. 2.1 can be described as:

x=A(p)x+B(p,K)u,,

y=C(p)x, (8)
where the control input u,=o(e); the control error e=r—y, xeR", eeR and yeR;

the reference input » is a constant value, and 7 is a constant value, and reR.

The closed loop system is given by
)'c:A(p)x+B(p,K)G[r—C(p)x]. )]
The error equilibrium points and relative stability under the influence of parameters

including actuator gain K, reference input » and time invariant uncertainty in linear plants

are addressed. The parameter vector is defined as (7, p,K).

2.3 PD Type Fuzzy Logic Control System
This subchapter discusses the PD type SFLC depicted in Fig. 2.4. The SFLC’s output u,

is proportional to a negative signed distance D, . Additionally, the number of the fuzzy rules,

12



as shown in Table 2.3 [52], is significantly reduced into 1-D space, as in Table 2.4, owing to
the single input and skew-symmetric property. Due to the skew-symmetric property of the
rule table, (e,é) can be split into five regions. Figure 2.5 illustrates an example of this
division of(e,é). The reduced 1-D rules improve the efficiency of the controller by saving
time cost for a look up rule table, although it also adds the calculation time of signed distance.
Therefore, the SFLC is suitable for implementation in circuit control. The SFLC is introduced
in this subchapter for further equilibrium points and stability analysis in the following

subchapters.
2.3.1 Calculation of signed distance

The control error in SFLC is defined as

e,(t)y=y~-r. (10)
The switching line s, as shown in Fig. 2.5.is given by

s e, e, =0 (11)
The signed perpendicular distance D ‘of'general point Q(e,,é,) to a switching line is

calculated as follows:

e, + e,

) 12
VI+A° 12

D, =sgn(s,)D =

e, +Ae,| L 1 fors, >0
where D =—=———= 1isshown in Fig. 2.5 and sgn(s,) = .
J1+ A2 -1 fors, <0

The control output u, = ¢(Dy) is defined according to the control rule in SFLC as given in
Table 2.4 and Fig. 2.4.

2.3.2 The presentation of the SFLC system

The SFLC system can be described as:

x=A(p)x+B(p,K)u,,

13



y=C(p)x, (13)
where the control input u, =¢(D,).
2.3.3 The analytic representation of the SFLC system

If Tables 2.2, 2.4 and Fig. 2.2 are applied into the controller in SFLC, then the control

function ¢@(e) of the fuzzy controller is as displayed in Fig. 2.6. The surface of the fuzzy

controller in SFLC is typically oddly symmetrical; therefore, the control force is given by

u, =9(D,)=c(=Ds)=a(p), (14)

where p=-D, = cthe

RN TYEN
In the following analysis, this representation as illustrated in Fig. 2.7 is applied to PD type

analysis. In Chapter 3, the SFLC system is reformatted as a special P type fuzzy control

system, and is employed to analyze the equilibrium
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Fig. 2.1 The P type fuzzy control system.

NBE NMENSE ZRE PSE PME PBE

-a3 -2‘12 -al (l) al aé a3 e

(a)
NBU NMU NSU ZRU PSU PMU PBU

D3 b2 bl 0 bl b2 b3 W

(b)
Fig.2.2 The membership functions of the fuzzy logic controller.
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Table 2.1

Rules of the fuzzy logic controller

NBE NME NSE ZRE PSE PME PBE
NBU NMU NSU ZRU PSU PMU PBU
Table 2.2
Parameters of the fuzzy logic controller
NBE NME NSE ZRE PSE PME PBE
—4; —4, —4 0 a4 a, a,
NBU NMU NSU ZRU PSU PMU PBU
—b, —b, —b, 0 b, b, b
o(e)
b LA 1395 Jy/ A |
u, =ketc :
L | i
u, =ketc i i
| — |
up|=k | | l
4 ] | i .
| I a, a a,
i i __________ _bl
| /A b,
S b

Fig. 2.3 The control function of the fuzzy logic controller.
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Fuzzy Controller

Signed
ene OfSFLC

Distance

B

SFLC

Fig. 2.4 The single-input fuzzy logic control system.

Table 2.3
Rules of conventional FLC with control error defined as e,
€d
éd NB NS ZR PS PB
PB ZR NS NS NB NB
PS PS ZR NS NS NB
ZR PS PS ZR NS NS
NS PB PS PS ZR NS
NB PB PB PS PS ZR
Table 2.4
Rules of SFLC
D NBE NME NSE ZRE PSE PME PBE
Uy PBU PMU PSU ZRU NSU | NMU | NBU
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Fig. 2.5 The skew-symmetric property in (e, é) and the calculation of signed distance.

f (D)

Fig. 2.6 The control function of the fuzzy logic controller in SFLC.
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Fig. 2.7 The transition formation in the transformation.
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Chapter 3

Equilibrium Points and Stability Analysis in

P and PD Type Fuzzy Control Systems

3.1 Equilibrium Point Analysis for P Type Fuzzy Control Systems

with Linear Plants

This subchapter presents the analysis:of ‘error equilibrium points and stability in P type
fuzzy control systems. The equilibrium point in fuzzy control systems can be derived when
equilibrium points can be solved. Moreover, the stability of the equilibrium point can be
judged with the linearizing system around the equilibrium or the Popov criterion in the
following subchapter. If the error equilibrium points of the overall system are stable, then the
steady state error can be derived from this result.

By (9), let x=0, then

Ax+B(K)o [r—-Cx]=0. (15)
If A" exists, then (16) is obtained.
x+A"'B(K)o(e)=0, (16)
where e=r—-Cx.
Multiply the result by C in (16), and let Cx =r—e, then
e—r—CA'B(K)o(e)=0. (17)
The state equilibrium points represented as x°, and the error equilibrium points denoted as

20



¢, can be determined from (16) and (17), respectively.

Assumption 3.1: The unique solution exists in (17). In other words, an error equilibrium
point uniquely exists.

Under Assumption 3.1, the error equilibrium points can be solved from (18) by replacing (4)

in each segment.

¢ —r—CA'B(K)k,e +¢,)=0 if e€la,,a,,],
& —r—CA'B(K)(k,e)=0 ifee[—al,al], n=1,23,--. (18)
e —r—CA’lB(K)(knee —c,)=0 ife e[—an+l,—an].

One of these error equilibrium points is the unique point of the overall system. The unique

point is identified by checking whether e is located in its own error region.

3.2. Stability Analysis for P Type Fuzzy Control Systems with a

Certain Linear Plant

In the certain linear plant case, the stability can be determined by the time or frequency
domain approaches proposed in [51]. In the time domain approach, the eigenvalues of the
linearizied system (8) can be applied to determine the stability. In the frequency domain, the

Popov criterion is utilized to test stability.
3.2.1 Frequency domain approach
Consider the error dynamic system for a given parameter vector (r, p,K).
= A(p)%+B(p)S(-C(p)%) , 19)
where x=x—-x°(r, p,K),
and
6(-C(p)%) =c|-C(p)i+e'(r,p.K) |-c[e(r,p.K)].

The error equilibrium point of the P type fuzzy control system is given by
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e(r,p,K)=r—-C(p)x‘(r,p,K). (20)
The error dynamic system is also of Lur’e type. The function & satisfies the following
sector condition if e°(r,p,K)e€O.
0<eés(é) <kle‘(r,p,K)]é*, VéeR, (21)
where é=e—e‘(r,p,K)and k>0.
By the Popov criterion, (19) is absolutely stable for a given (r, p,K), if there exists a real

number v=v(r, p,K) satisfying

. . 1
Re[(1+]aw)G(]a),p,K)]+m>0, Va)e‘R, (22)

where G(s, p,K)=C(p)[sl —A(p)]'B(p,K).
3.2.2 Time domain approach

Under an arbitrary parameter vector (r, p,K), if an equilibrium state x°(r, p,K) of the

system exists, then the stability can be determined from the linearization of (9) near the state
equilibrium point.
Remark 3.1: If the unique state equilibrium is stable, then the steady state error in fuzzy

control systems can be obtained from the state equilibrium by e =r—Cx°.

3.3 Stability Analysis for P Type Fuzzy Control Systems with an

Uncertain Linear Plant

In this subchapter, the parametric absolute stability can be tested using the parametric
robust Popov criterion incorporated with Kharitonov theorem, when the parameter vector

(r,p,K) eR,, xPxK,where R  =[r,r]cR.

ref

The value of e°(r,p,K) is difficult to calculate from the results in the previous
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subchapter, because fuzzy control function o(e) is sometimes impossible to obtain
mathematically, and parameters (7, p,K) vary in a range in real application. Therefore, the

stability analysis by the parametric robust Popov criterion in [51] is adopted to handle this

situation.

Applying Theorem 1 in [51], let’s consider the uncertain P type fuzzy control system (9)
satisfying the following conditions. Then, the P type fuzzy control system is parametric
absolute stable.

(1) If the fuzzy controller o is continuous, and for some neighborhood O of e¢=0

satisfies
0<élo(e+é)—o(e)|<k(e)é’, VeecO, VéeR,and o(0)=0, (23)

where k(e) is a positive number depending onecO.
O ~CPA™ (PB(p,K) 20, e (24)

holds, forany (r,p,K)eR,,xPxK andany o satisfying the sector condition (23), there

exists a solution e=e°(r, p,K) of (17)in O°(r, p,K),

where

{ d ,r} (when r{C(p)A™ (p)B(p,K)} <0)
So(p)

O°(r, p,K) = (25)

[r, : } (when r{C(p) 4™ (p)B(p, K)} > 0)
S(p)

and ¢,(p)=1-C(p)A”'(p)B(p,K)k(0). A more detail proof on (15) and (16) can be
referred in the Lemma 1 of [51].

(3) If for a given region R . of r and forany p P, the condition O%(p)c Ois satisfied,

ref

and a real number v =v (r, p,K) exists such that the following inequality holds
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Re[(1+ jov,)G(jo, p,K)]+; >0, VoeR, (26)
kR(rapaK)

where

ky(p) =max {k(e):e € 0% (r, p.K)} . (27)
and O (r, p,K) represents the region containing e°(r, p,K) forall reR,, .
Remark 3.2: k,(r, p,K) is hard to find, so we suppose that R, <O . Moreover, assume

that for any peP, G(0,p,K)>0, k;(p)zrnax{k(e):eeR }, and there exists a real

ref

number v, =v (7, p,K) letting the inequality hold.

Re[(1+ jov,)G(jo, p,K)]+ kl* >0, VoeR. (28)

R

The P type fuzzy control system is then parametric absolute stable. [51]

Remark 3.3:

(1) This test can be extended to the general P type fuzzy control functions design.

(2) The assumption in Remark 3.2 does not lese generality, since most systems have
G0,p,K)>0.

(3) The effect of K can be combined into plant parameters p .

The existence of v =v (p) for every peP should be guaranteed in (28). This is

generally a difficult problem. Therefore, the parametric robust Popov criterion incorporated
with Kharitonov [51], [53], [54] for interval Lur’e systems is introduced into a parametric
absolute stable analysis.

Consider the following as a family of interval plants

G(s, p.K) = % , 29)

where Q(s) and P(s) belong to the families of real interval polynomials Q(s) and P(s),

respectively.
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Q(s)={Q(S):Q(S):qO+q1s+---+qrsf, and q, e[q;,q;}, for all i=0,---,7},
and P(s)={P(S):P(S) =p,tps+--+p,s’, andp, e[pj_.,p;], for all j=0,-- -,n}. (30)
Ké(s), i=1,2,3,4 and K}(s), j=1,2,3,4 represent the Kharitonov polynomials associated

with Q(s) and P(s), respectively. The Kharitonov systems associated with G(s, p,K) are

defined as the 16 plants of the following set,

i

G, (s) :{%8 i e{1,2,3,4}}, 31)

where

Ky($) = gy + 475+ 435 + 48 +ay5° 443"+ qis" -
Ko() =) + 47 s+, + 455" +qis" +qis° +qgs° ++-;
K ($)=qo +4,s+q,8" +458° + ;8" G55 +qe s+
Ki($)=qy +q s+ @35> + 58" + 435+ @i T qis® 4+

1 _ - - + 2 + 3 - 4 TS + 6 .
KP(S)—I?O +p,s+p,s +p;s+p s +pSsTtps e
K2(s)=pi+pis+p;s’+p;s +pist+pls’+post+-o;
Ko(s)=ps+prs+pys’ +pis’ +pist+pis®+ pos®+-ov;
Ki(s)=p; +pis+pis’+p;s +pyst+pis® + pls®+ee.

A P type fuzzy control system is absolutely stable in sector [O,k] for all
G(s)e G(s,p,K), if areal v, can be obtained by verifying the robust Popov condition for
G(s) € G, (s)to satisfy inequality (28).

Remark 3.4:

(1) The previous descriptions imply that only 16 Popov plots need to be drawn from family

G, (s) to check that the P type fuzzy logic control system is stable when the robust
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Popov condition (28) holds for the whole family G(s).

(2) The P type fuzzy control systems of Lur’e type can be tested by the parametric robust
Popov criterion. By [51], [53], [54], the criterion incorporated with Kharitonov for
interval Lur’e systems can be considered here for parametric absolute stability analysis of

P type fuzzy control systems.

3.4 Transformation SFLC from PD to P Type

In the following, the SFLC is transformed from PD to P type, so that the equilibrium point

and stability can be analyzed by the transformed special P type fuzzy logic control system.

From Fig. 2.4, the factor of SFLC is integrated into both the proportional and

1
Vi+2?
derivative factors. The o and p inFig. 2.7 arethen defined as

1

az\/li“T, and ,Bzm. (32)
Assumption 3.2: CB=0.
According to Assumption 3.2 and Fig 2.7, the following derivation can be obtained.
e=r—y=r—=Cx. (33)
By differentiating both sides, then
¢=—-Cx=-C(Ax+Bu,)=—-CAx. (34)
From (33) and (34), then
p=ae+fée=a(r—Cx)+ f(-CAx)=r"-Cx, (35)
where C, =(aC+ BCA), and r'=ar.
After transformation, the transformed plant in Fig. 3.1 can be obtained
Gy (5, p, K) = C(p)[s] = A(p)] ' B(p,K). (36)
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From Fig. 3.1, the special P type transformation from the SFLC system can be described as:

%= A(p)x-+ B(p, K,

y'=C(p)x, (37)
where the control input u, =o(p), and control error p =r"—y".

The transfer function H,,(s, p) of the transformed plant in Fig. 3.1 can be described as

H,,(s5,p)=C(p)[s] - A(p)] B'(p), (38)

3.5 Equilibrium Point Analysis for PD Type Fuzzy Control

Systems with Linear Plants

From Fig. 3.1, the equilibrium point can beranalyzed

x = A(p)x+B(p,K)o(p). (39)
Let x=0,

0=A(p)x+B(p,K)o(p). (40)
If A'(p) exists, then

x+ A4 (p)B(p,K)o(p)=0. (41)

By multiplying the result of (40) by C and using (35), then

~C(p)x—C(p)4™ (p)B(p,K)o(ae+é)=0 (42)
When t >, x=0 and é=0 are implied.
By =0,
e —r—C(p)A"(p)B(p,K)o(ae’)=0. (43)
Remark 3.5: The error equilibrium point of the PD type fuzzy control system is

e —

e’ =—e. (44)
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3.6 Stability Analysis for PD Type Fuzzy Control Systems with

Linear Plants

The transformed P type of SFLC in Fig. 3.1 can be employed to analyze the stability of

SFLC for a given (r,p,K).
3.6.1 Frequency domain approach
Consider the error dynamic system in Fig. 3.1 for the given parameter vector (7, p,K) .
x = A(p)3+B(p,K)6(=C/(p)3) (45)
where %=x-X°(r,p.K), 6(-C(p)%)=0|-C/(p)F+&(r,p.K)|-c|&(r.p.K) ],
and e‘(r,p,K)=r'-C/(p)x(r,p,K). (46)

The error dynamic system is also of'Lur’e type. The function & satisfies the following
sector condition, if e‘(r, p,K)€O.

0<éé(e)<kle(r,p,K)Je*, VéeR, (47)
where e=e—e‘(r,p,K),and k£>0.
From the Popov criterion, (39) is absolutely stable for a given (7, p, K), if a real number

v, =V,(r, p,K) satisfying

Re[(1+ja)‘70)GPD(ja)7paK)] >05 Va) EER' (48)

P
ke (r, p,K)]

3.6.2 Time domain approach

Consider an arbitrary parameter vector (», p,K) in SFLC. Suppose that an equilibrium

state x°(r, p,K) of the system exists. The stability can be determined by the linearization of
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(37) near the error equilibrium point.

3.7 Stability Analysis for PD Type Fuzzy Control Systems with

Uncertain Linear Plants

Since the transformed SFLC is a special P type fuzzy control system as shown in Fig. 3.1,
the parametric Popov criterion [51] incorporated with Kharitonov theorem is adopted to

analyze the stability of PD type fuzzy control systems with uncertainties.
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Fig. 3.1 The transformed SFLC with the special P type fuzzy control system formation.
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Chapter 4

Fuzzy Current Control RC Circuit System

Design

The temperature control is an important issue in many industrial processes or medical
applications. The temperature controls systems are analogous to RC electrical circuits and are
governed by the following third-order equation (49) [75]. In our design, FLC is applied to
control the RC electrical circuits to reach'the specified output voltage. In other words, it is
similar to regulate the temperature to desired set point. This chapter specifies fuzzy current
control RC circuit systems of P and PD types for verifying the theoretical analysis using
PSPICE simulation.

In this chapter, the circuit structure is specified first. The fuzzy logic controller is then
designed to construct the fuzzy control function, which is mapping I/O relation of the fuzzy
controller. Finally, some components of the overall structure of the fuzzy logic control system

are introduced.

4.1 The Block Diagram of the Fuzzy Current Control RC Circuit

System

Figure 4.1 depicts the block diagram of a fuzzy current control RC circuit. The control

objective of this system is to track a dc constant reference voltage 7. To avoid the loading
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effect from the circuit of the next stage, the voltage buffer is utilized to feed the output
voltage v, back into the controller to generate the control error voltage v,. The core of this
system is the fuzzy controller. Both P and PD type fuzzy controllers are designed in the

circuit system. The control voltage v

s 18 transformed into the control current i, with a

voltage controlled current circuit.

Finally, the amplified current u(¢) from the current amplifier is injected into circuit plant

to let output voltage v, to track a reference voltage r.

4.2 Circuit Plant
The circuit plant in Fig. 4.2 [75] is composed of RC circuits and external current source
control input u(¢) .The output voltage is~ v, . Consider the transfer function of circuit plant

) EC

A =r6 7 A

; (49)

where

A=RR,RCC,C,s’ +C,(RR,C.C,+RRC,C,+RRCC,+RRCC,+RR,C.C,)s’
+C(R,C,+R,C,+R,C,+RC, +R,C, +R,C,)s +C,.

4.3 Fuzzy Logic Controller Circuit

The circuit of a fuzzy logic controller is shown in Fig. 4.3. This circuit is designed to
construct the control function of the fuzzy controller. Figure 4.4 illustrates the relationship

between the circuit parameters and the control function [76], [77].

4.4 The Overall Design Circuit

Figure 4.3 shows the overall design circuit. For simplification, the voltage controlled
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current circuit, current amplifier and PD type signal generator are introduced in [78].
4.4.1 Voltage controlled current circuit

Fig. 4.3 displays the voltage controlled current circuit. If the following equalities (50) stand,

then
va4 — vaZ (50)
va3 val ,
and
v
i =—". (51)
I{vcl

4.4.2 Current amplifier

The current amplifier is designed to normalize the signal from voltage controlled current

circuit and amplifies it. The control input-u(7) from the current amplifier for the circuit plant

is given by

R
u(l)Sip=a—=i

ove *

(52)

1g
4.4.3 PD type signal generation
The derivative and proportional signals are generated by OP amplifier differentiator and OP
inverting amplifier as illustrated in Fig. 4.3.

The OP amp differentiator is designed as

dv
v, =—R,C, 7; . (53)

The value R,,C, ischosento meet f3.

Conversely, the OP inverting amplifier is given by

y =B, (54)
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where « :& .
R

8
In Fig. 4.3, a P type fuzzy control system is chosen when two switches open at P positions.

Conversely, a PD type fuzzy control system is selected when two switches close at PD.
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Fig. 4.1 The block diagram of a fuzzy current control RC circuit system.

u(t) (} G

Fig. 4.2 The RC circuit plant [75].
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v3

Voltage buffer

Circuit Plant
u(t) R1 R2 R3
7 Substraction circuit
Voltage controlled current circuit
Rvc3 Rvcd
o VE®" Fuzzy logic controller
0 Réf
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Fig. 4.3 The designed fuzzy current control RC circuit system.
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inf

Fig. 4.4 The control function of a fuzzy controller with circuit design parameters.
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Chapter 5
Simulation Results

In this chapter, a fuzzy control RC circuit plant as shown in Fig. 4.2 is utilized to
investigate the parametric equilibrium points and stability when the circuit plant is certain or
uncertain with P and PD type fuzzy logic controllers, respectively. The varying parameters
include reference input », an adjustable parameter K and an interval circuit plant

parameters p .
For the analysis of certain plants, the equilibrium points under the (r,K) parameter space

with stable notation are given. The phase plane and time waveforms are given to verify the
analytical results. The design circuit. ' with PSPICE simulation is also provided to check
theoretical analysis. On the other hand, the parametric robust Popov criterion is employed to

test the stability of the parameter vector (r, p,K) € R, x PxK . From this point of view, the

effect of K can be combined into plant parameters by the previous introduction.

Let R =R, =R, =1Q,and C =C,=C,=1F 1in (49), the third-order transfer with form

H(s)=——D , (55)
D3S” + PyST + piS+ Py

where ¢q,=1, p,=1, p,=6, p,=5 and p,=1.
From Fig. 2.1, combining the adjustable parameter K, the transfer function is given by

q,K

G(s,K)= 3 B .
P3S” + DS+ pis+p,

(56)

The state space representation for G(s, K)can be derived
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0 1 0 0

Alp)= 0 0 1 , B(K)= 0 ,
-n/pPs —n/ps P/ P (9,K)/ p;
and C(p)=[1 0 0]. (57)

The fuzzy rules are adapted in this simulation as follows:

Rule 1:1f e is NBE , then ufis NBU ;

Rule 2:1f e is NSE, then u‘Ais NSU ;

f

Rule 3:1f e is ZRE, then u,is ZRU, (58)

!
Rule 4:1f e is PSE, then ufis PSU ;

Rule 5:1f e is PBE ,then u,is PBU.

S

Figure 5.1 illustrates the membership functions. Table 5.1 shows the fuzzy control system

parameters. Fig. 2.3 shows the control function, where k, =6, k, =4/9 and ¢, =5/9.

Consider the following simulation with- K=1~20, r=-1~1 and the initial condition

x(O):[O 0 O]I. Table 5.2 lists the circuit components in Fig. 4.3. For practical

considerations, the parameters of the fuzzy controller are selected as Table 5.2 in order to

approach the ideal control function depicted in Fig. 5.2.

5.1 P Type Example Demonstrations

5.1.1 Certain linear circuit plant

Under Assumptions 3.1, the equilibrium points of the fuzzy control systems in each

segment can be calculated using (18).
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—q,K
segment I:M, e’ e[al,a2],
D, +qKk,
e = segment 2:L, e e [—al,al], (59)
Do+ 9Kk,
+g,K
segment 3: M, e‘e [—a2,—a1].
Do +4,Kk,

The equilibrium point of one segment is e when t —>o and e—e°.

Equation (60) can be solved by linearizing (9) and using (57)

0 1 0
A(r,p) = 0 0 1| (60)
(14+K¢(r, p,K)) —6 =5

The stability can be determined by A. ¢ e {ko,kl} denotes the slope of ¢ in the control

function, and ¢ is determined by e° from (18). In (18), the reference » and actuator gain

K affect e°. Figure 5.3 depicts the analysis of the stability of equilibrium points. The reason
for the formation of unstable oscillations is discussed in the following subchapter. Figures 5.4
and 5.5 display the verification of the-analysis in'Fig. 5.3, with respect to P1 (unstable) and P2

(stable point).
5.1.2 Mechanism of oscillations in the fuzzy control system

In this example, the P type fuzzy control system is a piecewise-linear system with three
segments. An equilibrium (e‘,é° =0) exists in every segment for a specific (r,K) pair.
Figure 5.4 (a) shows the three error equilibriums of every piecewise segment in the phase
plane of (e,é) when (r,K)=(0.2,5). Three equilibrium points are represented as ‘*’ (stable

equilibrium point for segment 1), x (unstable equilibrium point for segment 2) and ‘\/’
(stable equilibrium point for segment 3), for segments 1-3, respectively. Assume that
(e, é) locates in segment 1 initially. (e,é) is pulled into the equilibrium point “*’ of segment

1 located in segment 3. When (e,é) enters segment 2, (e,¢)is pushed away from
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equilibrium point x of segment 2. After (e,é) is pushed away from segment 2 and enters
segment 3, (e,é) is pulled back to the equilibrium point ‘\/’ of segment 3. The limit cycle is

formulated by pushing and pulling.

Conversly (e,é) crosses the segments 1, 2, and 3, is all pulled into equilibrium points and
finally (e,é) achieves the global equilibrium point of segment 2. The authors discuss in
detail the stability under different design parameters [79].

5.1.3 Alternative control function

In Fig. 5.3, the effect of reference for stability is not obvious. Therefore, the different fuzzy

controllers in Table 5.3 are designed with different control functions. The results in Fig. 5.6

specify how the different controllers will influence the equilibrium points and stability besides

r and K.
5.1.4 Uncertain linear circuit plant

In this part, the stability of the fuzzy control system with interval plant is checked by (28)

incorporated with Kharitonov theorem. In the following simulations, re[-1,1], K =2,
R ~R, and C,~C, in circuit plant listed in Table 5.2 with tolerance +5% and k, =6 in

(28) are selected. The plant (56) for P type fuzzy control system can be rewritten as

_ e
Gls,K) = R (61)
[ps.p5 15" +p, .o, Is” +p . Is+1py» Py ]

where  [g,,¢9,]1=[09,1.1] , [p;,p;1=[0.74,1.34] ., [p,,p,1=[3.87,6.14] ,
[P/, p/1=[5.14,6.95], and [p,,p,]=[0.95,1.05].
It should be noted that the effect of interval actuator gain can be considered into [g,,q, ],

so we just choose K =2 in this example.
By (28) incorporated with Kharitonov theorem, the absolute stability can be tested as
shown in Fig. 5.7. Because the parameter in numerator is just one, only eight Popov curves
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are plotted enough to indicate the stability in such a case.

5.2 PD Type Example Demonstrations
In the following simulation, A =10 is selected in PD type fuzzy control system.
5.2.1 Certain linear circuit plant

In this subchapter, Fig. 3.1 demonstrates the PD type fuzzy control system. Under the
Assumptions 3.1, and 3.2, the error equilibrium points of the fuzzy control systems in every

segment can be obtained by (43).

(rp, —qKe N1+ A2

segment 1: , e €la,a,l,
AqKk, + p,N1+ A7 4.
) i NEYE ,
¢ =—¢ =1 segment 2:— 20 ¢ e[-a,a], (62)

AgKkyLppl1+ 2>

(rpy +qKe W1+
AgKk + pN1+A>

segment 3: ¢ €[-a,,—a,].

By linearizing (39) and using (57), (63) can-be carried out, and Fig. 5.8 can be obtained.
A(F,p,K) = A_%(rapaK)B(K)Cl

0 1 0
- 0 0o 1] (63)
-(1+K%(rapaK)) -6 -5

where y € {ko,kl} denotes the slope of ¢° in the control function, and y is determined by

e from (18).
In the following, Figs. 5.9 and 5.10 verify the analysis in Fig. 5.8 with respect to P1 (unstable)

and P2 (stable point).

5.2.2 Alternative control function

The alternative controller in Table 5.3 obviously influences the equilibrium point and
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stability, when the reference is varying. Figure 5.11 shows the analytical results.

5.2.3 Uncertain linear circuit plant

In this subchapter, Fig. 3.1 is adopted to demonstrate the parametric stability of the PD type
fuzzy control system. Following transformation, the analytic new plant for PD type fuzzy
systems is given by (38):

R,R;C,C,(s+ 1)
Y

Hpp(s) = (64)

where

Y =+1+217 [Rlequcchf +R,R,CC,(RR,CC, +RRC,C,+CC,R.R,+RR,CC, +RR,.CC,)s’
+R,RCC(RC +RC +RC +RC +RC, +RC)s +R2R3C3Cl)]-

In the following simulation, re[=L1], K=1,"R ~R, and C, ~C, in circuit plant, as
listed in Table 5.2 with tolerance “+5% and -k, =6 in (28), are specified to evaluate the
stability of a PD type fuzzy control system. From (36), the analytic new plant for PD type
fuzzy control system can be recast as

K(4.d s+]d-4 )
P b |8+ BBy 5+ BB s+ Boo By |

Gy (s, K) = [ (65)

where  [§,G1=[0.77,1.28] , [d,.G.1=[7.74,12.76] , [p;,p:1=[6.02,16.37]
(5, p11=[33.34,74.24], [p;, p;]1=[44.33,80.81], and [p;,p;]1=[8.19,12.22]. The total of

sixteen Popov curves illustrated in Fig. 5.12 are plotted to verify that the PD type fuzzy

control system is stable according to (28) incorporated with Kharitonov theorem.
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Parameters of the fuzzy logic controller in simulations

Table 5.1

e(orp) NBE NSE ZRE PSE PBE
-1 —0.1 0 0.1 1

N NBU NSU ZRU PSU PBU
/ -1 -0.6 0 0.6 1

NBE NSE ZRE PSE PBE

e(orp)

-a2

al

(a)
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NBU NSU ZRU PSU PBU

-b2 -bl 0 bl b2

(b)

Fig. 5.1 The membership functions of the fuzzy control system.

v

-l.0v
-1.0v -0. 5% ov 0. 5v 1.0v

o V{VOUT_FUZZ¥)
¥ Vin fuzzv

Fig. 5.2 The fuzzy control function with PSPICE simulation by Table 5.2 parameters.
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Table 5.2

Parameters of the fuzzy current control RC circuit system

Circuit Circuit components
Blocks
Circuitplant | R =R, =R, =1Q,and C,=C,=C, =1F.
Subtraction | R, =R, =R =R, =25kQ,and v, =02V.
circuit '
Proportion | R, =1kQ, R,=10kQ,and R, =1kQ.
circuit
Differentiator | R =10kQ, R, =0.9kQ,and C,=100 uF .
circuit
Inverting R;=R,=R;=R,=10kQ.
summing
circuit
Fuzzy R, =2kQ,R,, =12kQ,R,, = R, , =400Q),
controller R,, =R, =13kQ, and D1 and D2: 1N4148.
VOltage val = vaZ = va3 = va4 = IOkQ *
controlled
current
circuit
R, and R,  are chosen to meet the selected K with
voltage ‘controlled current circuit design.
P type design:
Current Stable: R,=1Q and R,, =50kQ.
amplifier Unstable R, =1Q2 and R,, =40kQ.

PD type design:
Stable: R, =1Q and R,, =90kQ.

Unstable: R, =1Q and R,, =100kQ.

Power source

VCC=15V, VEE=-15V, VCC1=8V, VEE1=-8V,
VCC2=30V, and VEE2=-30V.

Operational
amplifiers in
design

P type design:
OP amps 1~6 with OPA602, and OP amps 7~8
with LM675 (Power op amp).

PD type design:
OP amps 1~6 with OPA602, OP amps 7 with
OPA501 (Power op amp) and OP amps 8 with
LM675.
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Fig. 5.3 The equilibrium stability of the P type fuzzy control system by Table 5.1 for (»,K),

where o indicates a stable equilibrium, and > denotes an unstable equilibrium.
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Fig. 5.5 (a) The phase plane of (e,é). when 1 (#,K)=(0.2,4); (b) The time waveform when
(r,K)=1(0.2,4); (c) PSPICE waveform when (r,K)=(0.2,4).

Table 5.3
Alternative parameters of the fuzzy logic controller
NBE NSE ZRE PSE PBE
elorp) -1 —0.01 0 0.01 1
. NBU NSU ZRU PSU PBU
! -1 —0.1 0 0.1 1
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Fig. 5.6 The equilibrium with the stability of the alternative fuzzy controller by Table 5.3 for
(r,K), where o denotes a stable equilibrium, and * indicates an unstable equilibrium.
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Fig. 5.7 The Popov plots for the P type fuzzy control system with uncertain circuit plant.
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Fig. 5.8 The equilibriums with the stability of the PD type fuzzy control system by Table 5.1

for (r,K), where o indicates a:stable equilibrium, and * denotes an unstable

equilibrium.
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Fig. 5.11 Equilibrium with the stability of the PD type fuzzy control systems in Table 5.3 for
(r,K), where o denotes a stable equilibrium, and * indicates an unstable equilibrium.
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Fig. 5.12 The Popov plots for the PD-type fuzzy control systems with the uncertain circuit
plant.
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Chapter 6
Comparisons with Other Approaches

In this chapter, we will illustrate the stability of uncertain fuzzy control systems which are
considered as stable by compared methods will crash under the effect of the reference inputs.
On the other hand, the stability can be tested with our applied method and guaranteed under
the effect of the reference inputs. It should be noted that the applied parametric robust Popov
criterion will be comprised with the robust Lur’e test [54], the robust circle criterion [54], and
the robust Popov criterion [54]. In the following, we consider the P type fuzzy control system
in Fig. 2.1 to demonstrate the comparisons. Because the PD type fuzzy control systems can be

transformed into P type ones, we will not exhibit the PD cases additionally.

6.1 Robust Lur’e Test

Consider the stable interval plant [54] in Fig. 2.1:

G(S,K): - — g(r([quql J:!S—Z[q07?0])4r —, (66)
s +ps,psIs +py,p I +HpL o s+ oy

where  [q,,9,1=[3, 3.3] , [q,.4/1=[3,32] , [py,p1=[3,41 . [p/.p1=12,3] ,
[p,,p,1=[24, 25], and [p;,p;]1=[l, 1.2]. For the following stability test demonstrations,
the default values in the parameters are chosen:g,=3.2, ¢, =3.1, p,=3.5, p =25,
p, =24.5, and p, =1.1. The parameters in membership functions of the fuzzy logic controller

can be chosen such Table 6.1. The actuator gain K =1. The total sixteen robust Lur’e curves
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will be illustrated to test the stability of the fuzzy control systems.

From Fig. 6.1, —1/k, =-1.60 is obtained. Therefore, the control surface o(e) of fuzzy
logic controller should belong to sector bound [0, k, = 0.63]as shown in Fig. 6.2, and the

fuzzy logic control system is robust absolutely stable.

If the parameters in membership functions of the fuzzy logic controller are chosen such
Table 6.1, then the fuzzy control system is stable. The stable and unstable test cases respect to
the robust Lur’e test are with a pulse reference input for testing » =0 and a constant input
r=1300, respectively. The stable and unstable output waveforms are shown in Figs. 6.3 and
6.4, respectively. In this case, we can find that if the reference input is increased, the stability

of the fuzzy control system which is considered as stable will crash.

6.2 Robust Circle Criterion

Suppose the stable interval plant'such the previous test and the parameters in membership
functions of the fuzzy logic controller are chosen such Table 6.2. The total sixteen robust
circle curves will be illustrated to test the stability too. From Fig. 6.5, the circle center located

on (-1,0), and radian is 0.6138. The circle cut the negative real axis at two points
—1/k., =-1.61 and —-1/k., ~—-0.39. Therefore, the control surface o(e) of the fuzzy logic
controller should belong to the sector bound [k, = 0.62, k., =2.59]as shown in Fig. 6.6, and

the fuzzy logic control system is robust absolutely stable.

If the parameters in membership functions of the fuzzy logic controller are chosen such
Table 6.2, then the fuzzy control system is stable. The stable and unstable test cases respect to
the robust circle criterion are with a pulse reference input and a constant input »=2000,
respectively. The stable and unstable output waveforms are shown in Figs. 6.7 and 6.8,

respectively. In this case, we can find that if the reference input is increased the stability of
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the fuzzy control system which is considered as stable will crash, too.

6.3 Robust Popov Criterion

Let’s consider the stable interval plant such the previous test and the parameters in
membership functions of the fuzzy logic controller are chosen such Table 6.1. The total
sixteen robust Popov plots will be plotted to test the stability too. From Fig. 6.9, the Popov

line cut the negative real axis at —1/k, ~-0.62 point. Therefore, the control surface c(e)
of the fuzzy logic controller should belong to the sector bound [0, k, ~1.61]as shown in Fig.

6.10, and the fuzzy logic control system is robust absolutely stable.

If the parameters in membership functions of the fuzzy logic controller are chosen such
Table 6.1, then the fuzzy control system is stable. The stable and unstable test cases respect to
the robust Popov criterion are with:a pulse reference input and a constant input »=1300,
respectively. The stable and unstable output waveforms are identical the results as shown in
Figs. 6.3 and 6.4, respectively. In this case, we also find that if the reference input is increased,

the stability of the fuzzy control system which is considered as stable will crash.

6.4 Parametric Robust Popov Criterion

Let’s suppose the stable interval plant such the previous test and the parameters in
membership functions of the fuzzy logic controller are chosen such Table 6.1. If we consider
the reference inputs » =[-990, 990], (28) incorporated with Kharitonov theorem is applied
to test the absolute stability of this fuzzy logic control system. By (28),
~1/k, ==1/0.1=—10 is chosen. The total sixteen parametric robust Popov curve will be
illustrated to test the robust stability with the reference input in Fig. 6.11. From Fig. 6.11, the
fuzzy control system is robust absolutely stable. Figures 6.12~6.14 show the output
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waveforms for different reference inputs: a bounded pulse reference, » =990 and »=-990,
respectively. These time waveforms show that the applied parametric robust Popov criterion
is valid. In other words, by the applied parametric robust Popov criterion, the stability of the
fuzzy control systems with uncertain interval plants can be guaranteed under the reference

inputs in certain interval range.

6.5 A Brief Summary on Comparisons

The following Table 6.3 is made for the comparisons with other robust criterions. It shows
the applied parametric robust Popov criterion can deal with fuzzy logic control systems with
the uncertain interval plants and the constant reference inputs cases. The other three
approaches: the robust Lur’e test, the robust circle criterion and the robust Popov criterion just
can deal with the uncertain interval plants and the zero reference inputs cases. In previous
demonstrated examples, the stability will crash due to reference input shift. On the other hand,
the stability of the fuzzy control systems with uncertain interval plants can be assured under

the interval range reference inputs by the applied parametric robust Popov criterion.
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Table 6.1

Parameters of fuzzy logic controller for the robust Lur’e test

nbe nme nse zre pse pme pbe
¢ -2000 -1025 -1000 0 1000 1025 2000
nbu nmu nsu zru psu pmu pbu
“r -740 -350 100 0 100 350 740
003
0.025 | |
002 |
0.015] |
0.01H i
> 0.005] .
ol
0.005 |
001k ]
o0tsH |
002 0 a0 a0 4o o eo 70 &0 w0 100

time(sec)

Fig. 6.3 The time waveform of the stable test case respect to the robust Lur’e test.
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Fig. 6.5 Robust circle criterion.
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Fig. 6.7 The time waveform of the stable test case respect to the robust circle criterion.
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Fig. 6.8 The time waveform of the unstable test case respect to the robust circle criterion.
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Fig 6.12 The time waveform of the stable test case respect to the parametric robust Popov

criterion with a bounded pulse reference.
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Table 6.3
The validity of the different robust stability tests

Parametric Robust Lur’e test | Robust circle | Robust  Popov
robust Popov criterion criterion
criterion

Zero

reference Yes Yes Yes Yes

inputs

Constant

reference Yes No No No

inputs
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Chapter 7

Application: Observer-Based Synchronization
for a Class of Unknown Chaotic Systems with

Adaptive Fuzzy-Neural Network

7.1 Overview

The study of the synchronization for-a class of unknown chaotic systems with adaptive
fuzzy-neural network is based on :the concepts of AFNO, Brunowsky canonical form and
Lur’e systems. The proposed synchronization system contains chaos master with the
canonical form and the soft-computing slave with AFNO. The AFNO is composed of a FNN
and a linear observer. In this design, the AFNO in the slave should synchronize with all states
in the master by a scale transmitted signal only. The FNN in the AFNO is utilized to model
the nonlinear function in the master end adaptively. The linear observer estimates the all
states at the slave end with three inputs including a transmitted state, output of the FNN, and
robust compensation input for counteracting the effect of the external disturbance. When all
states in the master end are estimated at slave end, the synchronization is achieved.

Simulation results confirm that the AFNO is applied to chaos synchronization is valid.
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7.2 Overall Structure of Adaptive Synchronization with
Fuzzy-Neural Observer Design

7.2.1 Introduction of Overall Structure

Assume that the master and slave are all Lur’e type. Figure 7.1 illustrates the overall
structure of adaptive synchronization with AFNO, which is synthesized with an FNN and a

linear observer. In this design, only a scalar transmitted signal x,,, is sent to the slave from
the master. By the observed state X, fi(X;)can be computed to approximate f,,(x,,) with
FNN. The adaptive laws update the weights in FNN when the error exists between x,,, and
X, . The linear observer inputs are ug = f;(X), the transmission signal x,,,, and the robust

input u, . The synchronization is achieved when x,, = x;.

7.2.2 Dynamics of the Master and Slave Ends

Master End:

Xy = Ay Xy + By (fy (X)) +d)

I =% = Cy X5

(67)

Slave End: [73,80]

(68)

where
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0 0 0 0]
0 0 0 0
AM - AS - 9 BM = BS = H
0 0 O 0
Cy=Cg=[1 0 --- 0 0]; d denotes an bounded external disturbance;
X, =[x, X, - xz(\zil)]T =0 X Xy IeR,
and xg=[x, X o AU =[x x, 0 x,,] €W ; observer gain
K'=[k k, - k] is designed to satisfy A,—K,C, strictly Hurwitz, where

(Cy, Ag ) represents observer pair; e, =x,,, —X,; u, is designed to enhance the robustness

caused by d; f,(x,) 1s approximated by adaptive FNN with j}S(icS). S (x,) 1s

unknown (uncertain) but bounded continuous functions. [81,82]

Synchronization Error:

The synchronization error can be defined as:

(69)

A e(n—l) ]T — [e

syn a syn synl

e

. T R
syn2 esynn] E‘R .

where ¢, =[e,,

=syn

The master and slave achieve synchronization when all states are estimated at the slave.

7.3 Adaptive Fuzzy-Neural Network Observer Design

In this subchapter, AFNO is introduced. Under an assumption, the designed AFNO can

estimate the master’s states to achieve synchronization. AFNO can then be synthesized by an
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FNN and a linear observer.

7.3.1 Fuzzy-Neural Network [73,80]

The FNN is designed to model the nonlinear function f,(x,,) with f((X;). The FNN

depicted in Fig. 7.2 is utilized as an approximator to model the nonlinear functions such

as f(x). The FNN [83,84], which consists of fuzzy [F-THEN rules and a fuzzy inference

engine, is adopted as a function approximator. The fuzzy inference engine employs the

IF-THEN rules to generate a mapping from an input linguistic vector
x=[x, x, - x,]' €eR'to an output linguistic variable y(x) e R. Fuzzy IF-THEN rule
i th is thus written as:

RY:if x, is 4 and...and x, is A4 ,then y is B,

where A4 ,4,,---,4, and B' are fuzzy'sets with membership functions x ,(x;) and

My (¥"), respectively. By using product inference, center-average, and singleton fuzzifier,

output y(x) from the fuzzy-neural approximator can be written as

S, )
Ry ) =0, T(x), (70)
Zi:l (H.’llﬁl ,UA; (x_j )) ‘

y(x)

where 1, (x;) denotes the membership function value of fuzzy variable x,; 7 is the total

number of IF-THEN rules, and »' is the point at which uB‘.()_/"):l
0,=[y'" y* - ¥"I" denotes an  adjustable  parameter  vector,  and

I'=[t'" > --- "] represents a fuzzy basic vector, where 7’ is given by

. (T, (x)))
T(X)==; . .
>, (x)

(71)

By adjusting the parameter vector 0, in (70) with adaptive laws, the uncertain nonlinear
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function f(x) can be approximated by f (x) generated in (72). By using the fuzzy-neural

approximator, the estimated functions j} (x) can be determined from the outputs of the

fuzzy-neural approximator, which is defined as follows:
f(x[0,)=0/T(x). (72)
where 0, is an adjustable parameter vector.

In summary, (72) can describe the input-output relation of the FNN. The overall structure
of the FNN is divided into four layers as shown in Fig. 7.2. The physical meanings of (72) can
be interpreted by Fig. 7.2 in the following. The input nodes in Layer I represent input
linguistic vectors. Nodes in Layer II denote values of the membership function of total
linguistic variables. Each node in Layer III excuses a fuzzy rule. The output of Layer IV is the
output signal modeling the nonlinear function. The connection parameters between layer I1I
and layer IV are adjusted by using adaptive laws. The number of fuzzy rules can be dependent
on complex level of nonlinear systems. In general, the more complex the systems are, the
more numerous rules are demand. Of course, the computing load is heavy with more
numerous rules. On the other hands, when the rules are less, the computing load is slight. This

is a trade off problem.

7.3.2 Adaptive Fuzzy-Neural Network Observer

Assumption 7.1 [73,80]:

The master state vector x,, and the slave state vector x; belong to compact sets S,,

and S respectively, where
Sy ={x, eR":|x,|<e,, <o}, (73)
Sy ={% eR":[&] <&, <}, (74)

and £, and ¢, are designed parameters.
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The optimal parameter vector 0 falls in some convex region with constant radius &, - The
convex region can be specified as shown in (75).

R, =0, en:fo <, | (75)

2z

The optimal parameter vector Q; can be described as:

6; =arg min { sup |/ <xM>—fS@S|Q,>\}. (76)

Or€Ry; | x\ €8, .25€Ss
Remark 7.1: The optimal Q; is possible in an ideal situation. In our applications, the

adaptive laws will be applied to tune 6, to approach Qf .

The adaptive fuzzy-neural nonlinear observer with respect to a class of nonlinear systems

(67) can be designed under assumption 7.1. AFNO can be designed [73,80]:

b = A+ B (BTG ) 1)+ K e, -

Vs =Xgp=CyXgs
where Qf I'(Xg) is calculated by FNN to approximate the nonlinear functions f,,(x,,) in
dynamical systems, and u, denotes the robust input to compensate the effect due to external
disturbance and the approximated modeling error by FNN. Based on [73,80], u, can be

designed as follows:
1
ur =—- )’min (Q)eo > (78)
4

where O=0" >0, and y is a positive constant. In general, ¥ should be proper designed.
The small gamma will cause large u, to attenuate the effect of disturbance. Indeed, the
better attenuation performance will be obtained when the small y is chosen. Additionally,
O0=0" >0 will make the Riccati-like equation satisfied in stability and adaptive law

derivation with Lyapunove function [80].
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The adaptive laws in FNN are as follows:

red), if|o <, or(l6]=z,,
6, = and ¢,0/¢(%;) <0) (79)
Pr, (7,5, if |6, =5, and e,6]¢(E)>0,

where @(%,)=L"(s)[(X); L'(s) denotes a proper stable transfer function to transform
H(s)L(s) into a proper strictly-positive real (SPR) transfer function, and y, denotes the
designed parameter. The function H(s) is represented as follows:
H(s)=C(sl —(A4, - K,Cy)) " By. (80)
Pr,(y,e,4(X)) in (81) is the operator of projection for achieving minimal modeling error
for f,(x,)-

e,0; (X5)p(%)
2 =f"
le,|

Pr, (y,e,0(X5)) =11€,6(Xs )<y, (81)

The design procedure, stability proof and adaptive laws (79) can be referred in [73,80]

7.4 Simulation Results

This subchapter verifies the feasibility of AFNO for synchronization using two examples.

7.4.1 Example 1

In this example, AFNO is applied to synchronize a master Chua’s circuit under modeling
error, different initial conditions and external bounded disturbances .The results will
demonstrate the adaptability and robustness of AFNO.

The master Chua’s circuit is reformed as a canonical form [85].
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Xy 01| x,, 0

0 1
Xy [=10 0 11 x,, |+|0|((f,(x,)+d), (82)
0 0

Xys3 01} x5 1
where f, (x,,)= 14 Xy — 168 X +ix —ix(ﬁx +lx +x jB
MEEMZ 1805 M 902572 387 45 (3617 M 95 ME M

The adaptive laws tune FNN to approach f,,(x,,). The observer is designed to place poles
of A;—K,Cyin-30 i.e. linear observer gain vector is K, =[90 2700 27000].

Other parameters of AFNO are y =10,y =0.01, O is 3x3 identity matrix, and

L= . The membership functions for x,, i=1,2,3 in FNN are given as follows:

s+2

Moy (x5,)=1/(1+exp(5x (x4 +0.75))),

M (%) = exp(—(%X +0.5)%),

1 () = exp(=(Zg + 0.25)%),

My () = exp(—(%5,)") ,

g (%) = exp(—(%, —0.25)), 83)
H o (Bg) = exp(=(¥5 = 0.5)%),

(i) =111+ exp(=5 % (&, ~0.75)) .

In this example, three states should be estimated, accounting for why the fuzzy rules in
process are 343. The initially adjustable parameters in adaptive FNN are chosen to be

0,(0)=0 to demonstrating modeling error. The weights of FNN are turned by the adaptive
laws to form  f,,(x,,) -

Different initial conditions of the master and slave are listed in Table 7.1. Furthermore, the

distinct disturbances are listed in Table 7.2.
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Figures 7.3~7.5 summarize the simulation results of different initial conditions for three
states in AFNO. In Figs. 7.3~7.5, the distinct initial conditions for each state in AFNO are
listed in Table 7.1 and a type of disturbance in the master end is set as Case 1 in Table 7.2.

Figure 7.3 illustrates that the first state X;, in AFNO with three different initial conditions
synchronizes x,, in Chua’s circuit. Figures 7.4 and 7.5 illustrate that X;, and X,
synchronize x,,, and x,,;, respectively. Although the initial conditions differ from each

other, AFNO synchronizes with Chua’s circuit quickly, well, and adaptively. Moreover, the
synchronization error approaches zero as time goes to infinity. The robustness of AFNO can
be also specified from Figs. 7.6~7.8 with various intensity disturbances in the master end. In
Figs. 7.6~7.8, the initial conditions of three states are selected as Casel in Table 7.1 and the

different disturbances are chosen as Table 7.2. Figure 7.6 demonstrates that the first state X,
in the slave synchronizes x,,, in the master end immediately and well under three different
disturbances. Figures 7.7 and 7.8 reveal that X, and X;, synchronize x,, and x,,,

individually. Even if the different disturbances are added in the master Chua’s circuit, AFNO

synchronizes with the master robustly.

7.4.2 Example 2

Example 2 demonstrates the adaptability of the utilized method by switched master
between Chua’s circuit and Rossler system as shown in Fig. 7.9. When the master is switched
to another system, the slave follows to synchronize another chaotic system soon and well. The
similar different initial conditions and disturbances listed in Tables 7.1 and 7.2 are considered
in simulations for demonstrating the robustness of AFNO.

The original Rossler system can be presented as [62]:

Z, =z, +az
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Z, = -z~ 2 (84)
zy=b—cz;+2z,z;,

where z=[z, z, z] .

Let
Xy = T71£ > (85)
-1 0 O
where T=|a -1 0].
1 —-a 1

The Rossler system is reformed as the canonical form with

2 2 2
Ju (X)) =—cxy +(ac=Dx,, +(a—c)x,; +ax,, —(a” +Dx,,x,,, +ax,,x,,; +ax;,

—Xy X5 0,
where a=0.2, b=0.2,and c=6.3. Notably;. f, (x,,) isrevised from [62].

The parameters of AFNO at the slave resemble those in Example 1. The initial condition of
Rossler systemis set [0 0 0] .

Figures 7.10~7.12 indicate the simulation results with respect to each state for diverse
initial conditions in AFNO and switched masters. The distinct initial conditions for each state
in AFNO are shown in Table 7.1 and a kind of disturbance in the master end is set as Case 1

in Table 7.2. Figure 7.10 illustrates that the first state X;, in AFNO with three different
initial conditions synchronizes x,,, inthe master end, even if the switched masters exist at

the third second (Chua’s circuit to Rossler system) and the sixth second (Rdssler system to

Chua’s circuit). Figures 7.11 and 7.12 exhibit that X, and X, synchronize x,, and x,,;,

respectively. Although the initial conditions differ from each other and the switched masters
exist, AFNO synchronizes with the switched masters fast, well, and adaptively. On the other
hand, simulation results in Figs. 7.13~7.15 verify the robustness of AFNO for the different

disturbances and the switched systems in the master end. In Figs. 7.13~7.15, the initial
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conditions of three states are chosen as Casel in Table 7.1 and the different disturbances are

selected as Table 7.2. Figure 7.13 displays that the first state X, synchronizes x,,,

immediately and well under three different disturbances, even thought the switched masters
exist at the third second (Chua’s circuit to Rossler system) and the sixth second (Rdssler

system to Chua’s circuit). Figures 7.14 and 7.15 reveal that X;, and X, synchronize x,,,
and x,,,, separately. In spite of the different disturbances and the switched systems are

considered in the master end, AFNO synchronizes with the master robustly.

It is noted that Figs 7.10~7.15 display the simulation results indicating AFNO synchronizes
with Chua’s circuit at 0~3 sec. The Rossler system also runs dynamically from the initial
condition. AFNO synchronizes with Rdssler at 3~6 sec, while Chua’s circuit runs
simultaneously.

From these simulation results, AFNO can synchronize with a class of unknown chaotic

systems adaptively and robustly.

7.5 Conclusion Remarks

This work has applied AFNO for synchronization with respect to a class of unknown
chaotic systems via a scalar transmitted signal only. Once the nonlinear chaotic systems could
be transformed into the canonical form of Lur’e system type by the differential geometric
method, the AFNO method can be utilized for synchronization. In this approach, the nonlinear
term in the master end was modeled by the adaptive fuzzy-neural network (FNN) in AFNO
on line. Furthermore, the states in the master end were observed from a scale transmitted
signal by observer design. When states in the master and slave ends were identical, we said
the synchronization was reached. By this scheme, the AFNO could estimate the unknown
master’s states adaptively, even though the master was altered into another chaotic system.

On the other hand, AFNO could deal with the modeling error, and external bounded
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disturbance to demonstrate its robustness advantage. Simulation results showed that the
adaptive and robust AFNO was suitable for chaos synchronization with respect to a class

unknown chaotic systems.
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Fig. 7.2 The fuzzy-neural approximator [73,80].
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Table 7.1

Three cases of the initial conditions

Cases Initial conditions

Case 1 x,(0)=[0 0 0],and x,(0)=[1 1 1]’
Case 2 x,(0)=[0 0 0]",and x,(0)=[2 2 2]
Case3 x,(0)=[0 0 0]",and x,(0)=[3 3 3]

Note: In the simulations, the disturbances in the master end are set as Case 1 in Table 7.2 in

three cases.

Table 7.2
Three cases of the disturbances
Cases Disturbance (d)
Case 1 +0.5 with period 27
Case 2 +0.8 with period 2x
Case3 +1 with period 27

Note: In the simulations, the initial conditions are chosen as Casel in Table 7.1 in three cases.
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Chapter 8

Conclusions

In this dissertation, the parametric absolute stability in P and PD type fuzzy logic control
systems with both certain and uncertain linear plants with parameters such as the reference
input, actuator gain and interval plan have been analyzed. The adaptive AFNO has been also
applied to synchronize a class of unknown chaotic systems via a scalar transmitted signal only.
In the stability analysis, for certain linear plants, the Popov and linearization methods are
applied to analyze the stability in both P and PD.type fuzzy control systems under different
reference inputs and actuator gains. The steady state errors of the fuzzy control systems are
also analyzed. For uncertain plants, the parametric robust Popov criterion based on the Lur’e
system is applied to the stability analysis of P and PD type fuzzy control systems. Moreover, a
fuzzy current controlled RC circuit is designed to compare theoretical analyses with PSPICE
simulation results. Furthermore, the oscillation phenomena in fuzzy control systems are
interpreted from the point of view of the equilibriums in this simulation example. Finally, the
parametric robust Popov criterion is compared with the other approaches to show the
effectiveness respect to non-zero reference inputs.

About application with the fuzzy control system, AFNO has been applied for
synchronization with respect to a class of unknown chaotic systems via a scalar transmitted
signal only. Once the nonlinear chaotic systems could be transformed into the canonical form
of Lur’e system type by the differential geometric method, the AFNO method can be utilized

for synchronization. In this approach, the nonlinear term in the master end was modeled by
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the adaptive fuzzy-neural network (FNN) in AFNO on line. Furthermore, the states in the
master end were observed from a scale transmitted signal by observer design. When states in
the master and slave ends were identical, we said the synchronization was reached. By this
scheme, the AFNO could estimate the unknown master’s states adaptively, even though the
master was altered into another chaotic system. On the other hand, AFNO could deal with the
modeling error, and external bounded disturbance to demonstrate its robustness advantage.
Simulation results showed that the adaptive and robust AFNO was suitable for chaos

synchronization with respect to a class unknown chaotic systems.
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