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多維度有限型移位的ζ -函數 

 

研 究 生：胡文貴                       指導教授：林松山 教授 

 

國 立 交 通 大 學 

應 用 數 學 系 

 

摘要 

 

     本論文主要研究二維以上有限型移位的ζ -函數。關於
d

作用

φ的ζ -函數
0 ( )sζ 是由林德推廣阿廷-馬蘇爾ζ -函數所得到。首先，

研究二維的情況。定義跡算子 nT 為在 x 方向 n 週期且高度 2 之花樣的

轉移矩陣，此 nT 具有旋轉對稱性。根據 nT 的旋轉對稱性，引進約化

跡算子 nτ ，進一步推得ζ -函數 ( )( ) 1

1

det n
n

n

I sζ τ
∞ −

=

= −∏ 是一個

多項式的無窮乘積的倒數。此外，對於任何由 ( )2GL 中的單位模

變換決定的傾斜坐標皆可得到相同結果。所以有一族ζ -函數都是解

析函數
0 ( )sζ 的半純擴張，在此我們也研究自然邊界問題。這些ζ -

函數在原點的泰勒級數展開式皆相同，並且其係數皆為整數。因此，
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可以得到一族在數論上有趣的恆等式。此方法在三維以上的情況也適

用，而且可應用到有限範圍交互作用之伊辛模型的熱力學ζ -函數。 
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Abstract 
 
     This dissertation investigates zeta functions for d-dimensional 

shifts of finite type, 2d ≥ . A d-dimensional zeta function 0 ( )sζ  

which generalizes the Artin-Mazur zeta function was given by Lind for 
d  action φ . First, the two-dimensional case is studied. The trace 

operator nT  which is the transition matrix for x-periodic patterns of 

period n with height 2 is rotationally symmetric. The rotational symmetry 

of nT  induces the reduced trace operator nτ . The zeta function 

( )( ) 1

1

det n
n

n

I sζ τ
∞ −

=

= −∏  is now a reciprocal of an infinite product 

of polynomials. The results hold for any inclined coordinates, determined 

by unimodular transformation in ( )2GL . Therefore, there exists a 

family of zeta functions that are meromorphic extensions of the same 
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analytic function 0 ( )sζ . The natural boundary of zeta function is 

studied. The Taylor series expansions at the origin for these zeta 
functions are equal with integer coefficients, yielding a family of 
identities which are of interest in number theory. The methods used 

herein are also valid for d-dimensional cases, 3d ≥ , and can be applied 

to thermodynamic zeta functions for the Ising model with finite range 
interactions. 
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1 Introduction

Various zeta functions have been investigated in the fields of number theory, geom-

etry, dynamical systems and statistical physics. This work studies the zeta functions

in a manner that follows the work of Artin and Mazur [1], Bowen and Lanford [11],

Ruelle [45] and Lind [36]. First, recall the zeta function that was defined by Artin and

Mazur.

Let φ : X −→ X be a homeomorphism of a compact space and Γn(φ) denote the

number of fixed points of φn. The zeta function ζφ(s) for φ defined in [1] is

ζφ(s) = exp

( ∞∑

n=1

Γn (φ)

n
sn

)
. (1.1)

Later, Bowen and Lanford [11] demonstrated that if φ is a shift of finite type,

then ζφ(s) is a rational function. In the simplest case, when a shift is generated by a

transition matrix A in Z, (1.1) is computed explicitly as

ζA(s) = exp

( ∞∑
n=1

trAn

n
sn

)
(1.2)

= (det(I − sA))−1, (1.3)

and then

ζA(s) =
∏

λ∈Σ(A)

(1 − λs)−χ(λ), (1.4)

where χ(λ) is a non-negative integer that is the algebraic multiplicity of eigenvalue

λ and Σ(A) is the spectrum of A. ζA(s) is a rational function which involves only

eigenvalues of A.

Lind [36] extended (1.1) to Zd-action as follows. For Zd-action, d ≥ 1, let φ be an

action of Z
d on X. Denote the set of finite-index subgroups of Z

d by Ld. The zeta

function ζφ defined by Lind is

ζφ(s) = exp

(
∑

L∈Ld

ΓL (φ)

[L]
s[L]

)
, (1.5)

where [L] = index[Zd/L] and ΓL(φ) is the number of fixed points by φn for all n ∈ L.

Lind [36] obtained some important results for ζφ, such as conjugacy invariant and prod-

1



uct formulae, and computed ζφ explicitly for some interesting examples. Furthermore,

he raised some fundamental problems for zeta functions, including the following two.

Problem 7.2. [36] For ”finitely determined” Zd-actions φ such as shifts of finite

type, is there a reasonable finite description of ζφ(s)?

Problem 7.5. [36] Compute explicitly the thermodynamic zeta function for the 2-

dimensional Ising model, where α is the Z2 shift action on the space of configurations.

The present authors previously studied pattern generation problems in Zd, d ≥ 2,

and developed several approaches such as the use of higher order transition matrices

and trace operators to compute spatial entropy [4; 6]. The work of Ruelle [45] and

Lind [36] indicated that our methods could also be adopted to study zeta functions.

In this investigation, Problems 7.2 and 7.5 are answered when φ is a shift of finite

type. More related results and questions are also addressed. The following paragraphs

briefly introduce relevant results.

First, the two dimensional case is studied. Let Zm×m be the m ×m square lattice

in Z2 and S be the finite set of symbols (alphabets or colors). SZm×m is the set of

all local patterns (or configurations) on Zm×m. A given subset B ⊂ SZm×m is called

a basic set of admissible local patterns. Σ(B) is the set of all global patterns defined

on Z2 which can be generated by B. For simplicity, only the results of Z2×2 with two

symbols S = {0, 1} are presented here. Subsection 2.3 considers the general case.

As presented elsewhere [36], L2 can be parameterized in Hermite normal form [39]:

L2 =






 n l

0 k


Z

2 : n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1



 .

Given a basic set B, denote by PB




 n l

0 k




 the set of all


 n l

0 k


-periodic and

B-admissible patterns and ΓB




 n l

0 k




 is the number of PB




 n l

0 k




.

The zeta function, defined by (1.5), is denoted by

ζ0
B = exp




∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB




 n l

0 k




 snk


 . (1.6)

2



In [36], ζ0
B is shown analytically in |s| < exp(−g(B)), where

g(B) ≡ lim sup
[L]→∞

1

[L]
log ΓB(L). (1.7)

In this work, the sum of n and k in (1.6) is treated separately as an iterated sum.

Indeed, for any n ≥ 1, define the n-th order zeta function ζn(s) ≡ ζB,n(s) (in x-

direction) as

ζn(s) = exp



 1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB







 n l

0 k







 snk



 ; (1.8)

the zeta function ζ(s) ≡ ζB(s) is given by

ζ(s) =
∞∏

n=1

ζn(s). (1.9)

The first observation of (1.8) is that, for n ≥ 1 and l ≥ 1, any


 n l

0 k


-periodic

pattern is


 n 0

0 nk
(n,l)


-periodic, where (n, l) is the greatest common divisor (GCD) of

n and l. Therefore,


n 0

0 k


-periodicity of patterns must be investigated in details.

The trace operators Tn ≡ Tn(B) that were introduced in [6] are useful in studying
 n l

0 k


-periodic and the B-admissible pattern, where Tn = [tn;i,j] is a 2n×2n matrix

with tn;i,j ∈ {0, 1}. Tn(B) represents the set of patterns that are B-admissible and

x-periodic of period n with height 2. The trace operator Tn can be used to construct

(doubly) periodic B-admissible patterns. Indeed, for k ≥ 1 and 0 ≤ l ≤ n− 1,

ΓB




 n l

0 k




 = tr(Tk

nR
l
n), (1.10)

where Rn is a 2n × 2n rotational matrix defined by





Rn;i,2i−1 = 1 and Rn;2n−1+i,2i = 1 for 1 ≤ i ≤ 2n−1,

Rn;i,j = 0 otherwise.

3



Denote by Rn =
n−1∑
l=0

Rl
n; now based on (1.10), ζn(s) becomes

ζn(s) = exp

(
1

n

∞∑

k=1

1

k
tr(Tk

nRn)s
nk

)
, (1.11)

which is a generalization of (1.2).

To elucidate the method used to study (1.11), Tn is firstly assumed to be symmetric.

Then Tn can be expressed in Jordan canonical form as

Tn = UJUt (1.12)

where the eigen-matrix U = (U1, ..., UN) is an N ×N matrix which consists of linearly

independent (column) eigenvectors Uj , 1 ≤ j ≤ N and N ≡ 2n. Jordan matrix

J = diag(λj) is a diagonal N ×N matrix, which comprises eigenvalues λj, 1 ≤ j ≤ N .

Now,
1
n

∞∑
k=1

1
k
tr(Tk

nRn)s
nk

= 1
n
tr(U(

∞∑
k=1

1
k
Jksnk)UtRn)

=
N∑

j=1

1
n

∣∣Rn ◦ UjU
t
j

∣∣ log(1 − λjs
n)−1 (1.13)

can be proven, where ◦ is a Hadamard product: if A = [ai,j]M×M and B = [bi,j ]M×M ,

then A ◦B = [ai,jbi,j ]M×M .

Evaluating the coefficients |Rn ◦ UjU
t
j | of log(1 − λjs

n)−1 is important. Now, the

Rn-symmetry of Tn is crucial. Indeed, let U be an eigenvector of Tn with eigenvalue

λ, then Rl
nU is also eigenvector of Tn for all 0 ≤ l ≤ n− 1. Notably, Rn

n = I2n , where

Im is the m×m identity matrix.

U is called Rn-symmetric, if Rl
nU = U for all 0 ≤ l ≤ n − 1. And U is called

anti-symmetric if
n−1∑
l=0

Rl
nU = 0. Additionally, for any given eigenvalue λ, the associated

eigenspace Eλ can be proven to be spanned by symmetric eigenvectors U j , 1 ≤ j ≤ pλ,

and anti-symmetric eigenvectors U ′
j , 1 ≤ j ≤ qλ: Eλ = {U1, · · · , Upλ

, U ′
1, · · · , U ′

qλ
},

where pλ + qλ = dim(Eλ) and pλ or qλ can be zero.

Therefore, for each eigenvalue λ of Tn,

4



χ(λ) ≡ 1

n

∑

λj=λ

|Rn ◦ UjU
t
j | = pλ (1.14)

is the number of linearly independent symmetric eigenvectors of Tn with respect to λ,

a non-negative integer. Hence, choosing eigen-matrix U in (1.12), which consists of

symmetric and anti-symmetric eigenvectors, yields

ζn(s) =
∏

λ∈Σ(Tn)

(1 − λsn)−χ(λ) (1.15)

as a rational function, as in (1.4).

To further study χ(λ) in (1.14), the reduced trace operator τn is introduced as

follows. From the rotational matrix Rn, for 1 ≤ i ≤ 2n, the equivalent class Cn(i) of

i is defined as Cn(i) =
{
j
∣∣ (Rl

n

)
i,j

= 1 for some 1 ≤ l ≤ n
}

. The index set In of n is

defined by In =
{
i
∣∣1 ≤ i ≤ 2n, i ≤ j for all j ∈ Cn(i)

}
and χn is the cardinal number

of In. Indeed, χn is the number of necklaces that can be made from n beads of two

colors when the necklaces can be rotated but not turned over. Furthermore,

χn =
1

n

∑

d|n
φ(d)2n/d, (1.16)

where φ(d) is the Euler totient function.

Then, the reduced trace operator τn = [τn;i,j] of Tn is a χn × χn matrix that is

defined by

τn;i,j =
∑

k∈Cn(j)

tn;i,k (1.17)

for each i, j ∈ In. λ ∈ Σ(Tn) with χ(λ) ≥ 1 can be verified if and only if λ ∈ Σ(τn).

Moreover, χ(λ) is the algebraic multiplicity of τn with eigenvalue λ. Therefore,

ζn(s) = (det (I − snτn))−1 , (1.18)

a similar formula as in (1.3). Hence, the zeta function ζ(s) is obtained as

ζ(s) =
∞∏

n=1

(det (I − snτn))−1 , (1.19)

5



which is an infinite product of rational functions. Equation (1.19) generalizes (1.3) and

is a solution to Lind’s Problem 7.2. Furthermore, according to (1.19), the coefficients

of Taylor series expansion for ζ(s) at s = 0 are integers, as obtained by Lind [36].

As presented elsewhere [6], an another trace operator T̂n is B-admissible and y-

periodic of period n with width 2 along the x-axis. Indeed, L2 can be parameterized

as another Hermite normal form, and n-th order zeta function ζ̂n(s) is defined by

ζ̂n(s) = exp



 1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB







 k 0

l n







 snk



 , (1.20)

and the zeta function ζ̂(s) is defined by

ζ̂(s) =
∞∏

n=1

ζ̂n(s). (1.21)

Therefore,

ζ̂(s) =

∞∏

n=1

∏

λ∈Σ(T̂n)

(1 − λsn)−χ̂(λ) (1.22)

=
∞∏

n=1

(det (I − snτ̂n))−1 . (1.23)

The construction of the zeta functions ζ and ζ̂ in rectangular coordinates can be

extended to an inclined coordinates system. Indeed, let the unimodular transformation

γ be an element of the unimodular group GL2(Z): γ =



 a b

c d



, a, b, c and d are

integers and ad− bc = ±1. The lattice Lγ is defined by

Lγ ≡


 n l

0 k




γ

Z
2 =


 na la + kc

nb lb+ kd


Z

2. (1.24)

The n-th order zeta function of ζ0
B(s) with respect to γ is defined by

ζB;γ;n(s) = exp


 1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB




 n l

0 k




γ


 snk


 , (1.25)

and the zeta function ζB;γ with respect to γ is given by

ζB;γ(s) ≡
∞∏

n=1

ζB;γ;n(s). (1.26)
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The n-th order rotational matrix Rγ;n, trace operator Tγ;n(B) and reduced trace oper-

ator τγ;n(B) can also be introduced and

ζB;γ;n(s) = (det (I − snτγ;n))−1 . (1.27)

Therefore, the zeta function ζB;γ is given by

ζB;γ(s) =
∞∏

n=1

(det(I − snτγ;n))−1. (1.28)

Since the iterated sum in (1.25) and (1.26) is a rearrangement of ζ0
B(s),

ζB;γ(s) = ζ0
B(s) (1.29)

for |s| < exp(−g(B)). The identity (1.29) yields a family of identities when ζB;γ is

expressed as a Taylor series expansion at the origin s = 0. The further applications of

these identities in number theory will appear elsewhere.

Note that, one may consider the zeta functions ζr
B, which only involves


 n 0

0 k


-

periodic patterns, defined by

ζr
B = exp




∞∑

n=1

∞∑

k=1

1

nk
ΓB







 n 0

0 k







 snk



 . (1.30)

However, in general, for n ≥ 1, χ(λ) is not an integer in (1.15) for ζr
B;n and ζr

B;n is not

a rational function. Therefore, ζr
B is not an infinite product of rational functions and

may lose some important properties such as GL2(Z) invariant.

The thermodynamic zeta function raised by Ruelle [45] with weight function θ :

X → (0,∞) was defined by Lind [36] as

ζ0
α,θ(s) = exp



∑

L∈Ld





∑

x∈fixL(α)

∏

k∈Zd/L

θ
(
αkx

)



s[L]

[L]


 , (1.31)

where fixL(α) is the set of points fixed by αn for all n ∈ L.

For the Ising model, where α is a shift of finite type given by B and the weight

function θ is a potential with finite range, the previous arguments apply. Indeed, the

trace operator TIsing;n(B) and reduced trace operator τIsing;n(B) can be defined, and

the zeta function is

7



ζIsing;B(s) =
∞∏

n=1

(det (I − snτIsing;n))
−1 . (1.32)

Equation (1.32) is a solution of Lind’s Problem 7.5. Furthermore, the relations of

critical phenomenon in phase transition with the zeta functions will be investigated

later.

Notably, the methods herein also apply to sofic shifts. The results will appear

elsewhere.

It is clear that in many situations the three-dimensional problems are more related

to our real

world phenomena. Now, the zeta functions of d-dimensional shifts of finite type are

studied for

d ≥ 3, and the previous results of Z2 are extended. For simplicity, only the zeta

functions for three-dimensional shifts of finite type are introduced and the general case

is studied in Subsection 3.2.

Let Zm×m×m be the m×m×m cubic lattice in Z3 and S be the finite set of symbols

(alphabets or colors). SZm×m×m is the set of all local patterns on Zm×m×m. Denote

B ⊂ SZm×m×m a basic set of admissible local patterns and P(B) the set of all periodic

patterns that are generated by B on Z3.

The Hermite normal form [39] can be used to parameterize L3 as

L3 =









a1 b12 b13

0 a2 b23

0 0 a3


Z

3 : ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1, i+ 1 ≤ j ≤ 3





.

Given a basic set B. Let L =




a1 b12 b13

0 a2 b23

0 0 a3


Z3 ∈ L3, denote PB







a1 b12 b13

0 a2 b23

0 0 a3







the set of all L-periodic patterns that are generated by B on Z
3 and

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 the number of PB







a1 b12 b13

0 a2 b23

0 0 a3





. Then, the zeta func-

tion in (1.1) is
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ζ0
B = exp




3∑

i=1

∞∑

ai=1

3∑

j=i+1

a
i−1∑

bij=0

1

a1a2a3

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 sa1a2a3


 . (1.33)

Similar to (1.8) and (1.9), the (a1, a2; b12)-th zeta function is defined by

ζB;a1,a2;b12(s) = exp




1

a1a2

∞∑

a3=1

a1−1∑

b13=0

a2−1∑

b23=0

1

a3
ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 sa1a2a3


 (1.34)

and the zeta function ζB(s) is given by

ζB(s) =

∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

ζB;a1,a2;b12(s). (1.35)

The trace operator Ta1,a2;b12(B) and rotational matrices Rx;a1,a2;b12 and

Ry;a1,a2;b12 are introduced. After the rotational symmetry of Ta1,a2;b12 is demonstrated

the reduced trace operator τa1,a2;b12(B) can be defined. Finally, as in (1.18), ζB;a1,a2;b12(s)

can be represented as a rational function:

ζB;a1,a2;b12(s) = (det (I − sa1a2τa1,a2;b12))
−1 . (1.36)

Hence,

ζB(s) =
∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

(det (I − sa1a2τa1,a2;b12))
−1 (1.37)

is a reciprocal of an infinite product of polynomials. Here, we show (1.36) by using a

simpler and more straightforward method than that for (1.18). However, the proof of

(1.18) is also valid for d ≥ 3.

Additionally, for any γ ∈ GL3(Z), the zeta function can also be represented in γ-

coordinates. Therefore, a family of zeta functions exists that have the same integer

coefficients in their Taylor series expansions at s = 0.

As in (1.32), the thermodynamic zeta function for the three-dimensional Ising model

with finite range interactions can also be represented as a reciprocal of an infinite

9



product of polynomials. The three-dimensional model can be applied to study three-

dimensional phase-transitions problems. The further results need to be investigated.

Some references that are related to our work are listed here. Zeta functions and

related topics [1; 5; 11; 20; 22; 23; 24; 30; 31; 36; 37; 38; 40; 41; 42; 44; 45; 47];

patterns generation problems and lattice dynamical systems [2; 3; 4; 6; 7; 8; 12; 13; 14;

15; 16; 17; 18; 19; 25; 26; 28; 29; 34; 35], and phase-transitions in statistical physics

[9; 10; 32; 33; 43] have all been covered elsewhere.

The rest of this dissertation is organized as follows. In Section 2, the trace operator

Tn(B) and rotational matrix Rn are introduced to accommodate the periodic patterns.

Based on the rotational symmetry of the trace operator, the reduced trace operator

τn(B) is defined. Therefore, the rationality of ζB;n is obtained. The results also hold

when inclined coordinates are used for any unimodular transformation γ ∈ GL2(Z).

The meromorphic extension of zeta function is studied. The zeta function of the

solution set of equations on Z
2 with numbers from a finite field is also investigated.

Finally, the method is applied to thermodynamic zeta function for the square Ising

model with a finite range interactions.

In Section 3, the three-dimensional case is studied first. The trace operator Ta1,a2;b12

and rotational matrices Rx;a1,a2;b12 and Ry;a1,a2;b12 are introduced to study periodic pat-

terns. The rotational symmetry of Ta1,a2;b12 induces the reduced trace operator τa1,a2;b12

and then the rationality of

ζB;a1,a2;b12 is obtained. The results hold for any inclined coordinates, determined by

unimodular transformation in GL3(Z). Finally, the d-dimensional cases, d ≥ 4, and

thermodynamic zeta functions for the three-dimensional Ising model with finite range

interactions are studied.

2 Zeta functions for two-dimensional shifts of finite type

In this section, zeta functions for two-dimensional shifts of finite type are studied.

2.1 Periodic patterns

This subsection first reviews the ordering matrices of local patterns and trace operators

[4; 6]. It then derives rotational matrices Rn and Rn, and studies their properties.
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The Rn-symmetry of the trace operator is also discussed. Finally, some properties of

periodic patterns in Z2 are investigated. In particular, the


 n l

0 k


-periodic pattern

is proven to be


 n 0

0 nk
(n,l)


-periodic.

For clarity, two symbols on the 2×2 lattice Z2×2 are initially examined. Subsection

2.3 addresses more general situations.

2.1.1 Ordering matrices and Trace operators

For given positive integers N1 and N2, the rectangular lattice ZN1×N2 is defined by

ZN1×N2 = {(n1, n2)|0 ≤ n1 ≤ N1 − 1 and 0 ≤ n2 ≤ N2 − 1} .

In particular, Z2×2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. Define the set of all global patterns

on Z2 with two symbols {0, 1} by

Σ2
2 = {0, 1}Z

2

=
{
U |U : Z

2 → {0, 1}
}
.

Here, Z2 = {(n1, n2)|n1, n2 ∈ Z}, the set of all planar lattice points (vertices). The set

of all local patterns on ZN1×N2 is defined by

ΣN1×N2 = {U |ZN1×N2
: U ∈ Σ2

2}.

Now, for any given B ⊂ Σ2×2, B is called a basic set of admissible local patterns. In

short, B is a basic set. An N1 × N2 pattern U is called B-admissible if for any vertex

(lattice point) (n1, n2) with 0 ≤ n1 ≤ N1 − 2 and 0 ≤ n2 ≤ N2 − 2, there exists a 2× 2

admissible pattern (βk1,k2)0≤k1,k2≤1 ∈ B such that

Un1+k1,n2+k2 = βk1,k2,

for 0 ≤ k1, k2 ≤ 1. Denote by ΣN1×N2(B) the set of all B-admissible patterns on ZN1×N2.

As presented elsewhere [4], the ordering matrices X2×2 and Y2×2 are introduced to

arrange systematically all local patterns in Σ2×2.

Indeed, the horizontal ordering matrix X2×2 = [xp,q]4×4 is defined by
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0

0 0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0 0 0 0

0

0

0 0 0

0

0

0

0 0 0

0

0 0

0

1

1 1

1

1

1

1

1

1 1 1 1 1

1

1 1

1

1 1 1

1

1 1 1

1

1

1

1

1

1

1

1

1 1

1 1

1

1

1

1

.
(2.1)

The vertical ordering matrix Y2×2 = [yi,j]4×4 is defined by

0

0

0

0 0

0

0

0

0

0

0 0

0

0

0 0

0

0

0

0

0 0

1 1

1 1

1

1 1

1

1 1

1

1 1

1

1 1

1 1

1 1

1

1

1

1

111

1

1

11

00 0 0

0 0

0

0

1

0

0 0 0

0 0

0

0

0

0

1

1 1

1

1 1

1 1

. (2.2)

It is clear that the local pattern yi,j in Y2×2 is the reflection π
4

of xi,j in X2×2, i.e,

. The reflection can be represented by


 0 1

1 0


 in GL2(Z) with determinant

−1.

In (2.1) and (2.2), the orders of the pattern

β0,1 β1,1

β0,0 β1,0 , βi,j ∈ {0, 1}, are given by
2 4

1 3 and

3 4

1 2 respectively. X2×2 and Y2×2 are clearly related as follows.

X2×2 =




y1,1 y1,2 y2,1 y2,2

y1,3 y1,4 y2,3 y2,4

y3,1 y3,2 y4,1 y4,2

y3,3 y3,4 y4,3 y4,4




(2.3)
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and

Y2×2 =




x1,1 x1,2 x2,1 x2,2

x1,3 x1,4 x2,3 x2,4

x3,1 x3,2 x4,1 x4,2

x3,3 x3,4 x4,3 x4,4



. (2.4)

The set C2×2 = [ci,j], which consists of all x-periodic patterns of period 2 with height

2 can be constructed from Y2×2 as follows.

0

0

0 0

00

0

0

1 0

00

1

0

0 1

00

1

0

1 1

00

0

0

0 0

01

0

0

1 0

01

1

0

0 1

01

1

0

1 1

01

0

1

0 0

10

0

1

1 0

10

1

1

0 1

10

1

1

1 1

10

0

1

0 0

11

0

1

1 0

11

1

1

0 1

11

1

1

1 1

11

1 1 1

1 1 1

0 0 0

0 1 0

1 0 1

0 0 0 0 1 0 1 0 1

C2×2 =
. (2.5)

The patterns in C2×2 are expressed as elements in Σ3×2 and are understood to be

extendable periodically in the x-direction to all of Z∞×2. Notably,




c1,2
∼= c1,3, c2,1

∼= c3,1, c2,2
∼= c3,3,

c2,3
∼= c3,2, c2,4

∼= c3,4, c4,2
∼= c4,3,

(2.6)

where ci,j ∼= ci′,j′ means that ci′,j′ is an x-translation by one step from ci,j. Later, the

translation invariance property (2.6) will be shown to imply R2-symmetry of the trace

operator T2.

Finally, P2×2 denotes the set of


 2 0

0 2


-periodic patterns, which can be recorded

from C2×2 or Y2×2 as an element in Σ3×3 as follows.
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0

0

0

0

0 0

0 0

0

0

0

1

0

0 0

0 0

0

0

0

0

0

0 0

1 1

0

0

0

1

0

0 0

1 1

0

1

1

0

0

0 0

0 0

0

1

1

1

0

0 0

0 0

0

1

1

0

0

0 0

1 1

0

1

1

1

0

0 0

1 1

0

0

0

0

1

1 1

0 0

1

0

0

1

1

1 1

0 0

1

0

0

0

1

1 1

1 1

1

0

0

1

1

1 1

1 1

1

1

1

0

1

1 1

0 0

1

1

1

1

1

1 1

0 0

1

1

1

0

1

1 1

1 1

1

1

1

1

1

1 1

1 1

1

P2×2 = . (2.7)

Notably, the upper two rows from the top of each pattern in P2×2 is Ct
2×2, where

Ct
2×2 is the transpose of C2×2.

Therefore, P2×2 can be regarded as a ”Hadamard type product •” of C2×2 with

Ct
2×2, given by the following construction.

P2×2 = C2×2 • Ct
2×2; (2.8)

the lower two rows of each pattern in P2×2 come from C2×2, and the upper two rows

come from Ct
2×2; they are glued together by the middle row. Equation (2.8) is the

prototype for constructing doubly periodic patterns of Z2 from x-periodic patterns.

Later, this idea will be generalized to all doubly periodic patterns.

The y-ordering matrices of patterns in Σn×2, n ≥ 2, can be ordered analogously by

Yn×2 = [yn;i,j] =

β0,1 β1,1 · · · βn−1,1

β0,0 β1,0 · · · βn−1,0 2n × 2n

, (2.9)

where





i = ψ(β0,0β1,0 · · ·βn−1,0),

j = ψ(β0,1β1,1 · · ·βn−1,1),
(2.10)

and the n-th order counting function ψ ≡ ψn : {0, 1}Zn → {j|1 ≤ j ≤ 2n} is defined by

ψ(β0β1 · · ·βn−1) = 1 +
n−1∑

j=0

βj2
(n−1−j). (2.11)

The recursive formulas for generating Yn×2 from Y2×2, taken from another investi-

gation [4], is as follows.
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Let

Yn×2 =



 Yn×2;1 Yn×2;2

Yn×2;3 Yn×2;4



 , (2.12)

where Yn×2;i is a 2n−1 × 2n−1 matrix of patterns. Then,

Y(n+1)×2 =




x1,1Yn×2;1 x1,2Yn×2;2 x2,1Yn×2;1 x2,2Yn×2;2

x1,3Yn×2;3 x1,4Yn×2;4 x2,3Yn×2;3 x2,4Yn×2;4

x3,1Yn×2;1 x3,2Yn×2;2 x4,1Yn×2;1 x4,2Yn×2;2

x3,3Yn×2;3 x3,4Yn×2;4 x4,3Yn×2;3 x4,4Yn×2;4




(2.13)

is a 2n+1 × 2n+1 matrix.

Hence, x-periodic patterns of period n with height 2 can be expressed in Σ(n+1)×2,

and recorded as an element in Cn×2 by

Cn×2 =

β0,1β0,1 β1,1 · · · βn−1,1

β0,0β0,0 β1,0 · · · βn−1,0 2n × 2n

, (2.14)

where βi,j ∈ {0, 1}.
Now, given any basic set B, define the associated horizontal and vertical transition

matrices

H2 = H2(B) = [ap,q] and V2 = V2(B) = [bi,j] by

ap,q =





1 if xp,q ∈ B,
0 if xp,q /∈ B,

and bi,j =





1 if yi,j ∈ B,
0 if yi,j /∈ B,

(2.15)

respectively. Then,

H2 =




a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4




=




b1,1 b1,2 b2,1 b2,2

b1,3 b1,4 b2,3 b2,4

b3,1 b3,2 b4,1 b4,2

b3,3 b3,4 b4,3 b4,4



, (2.16)

and

V2 =




b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

b3,1 b3,2 b3,3 b3,4

b4,1 b4,2 b4,3 b4,4




=




a1,1 a1,2 a2,1 a2,2

a1,3 a1,4 a2,3 a2,4

a3,1 a3,2 a4,1 a4,2

a3,3 a3,4 a4,3 a4,4



. (2.17)
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The associated column matrices H̃2 of H2 and Ṽ2 of V2 are defined as

H̃2 =




a1,1 a2,1 a2,1 a2,2

a3,1 a4,1 a3,2 a4,2

a1,3 a2,3 a1,4 a2,4

a3,3 a4,3 a3,4 a4,4




(2.18)

and

Ṽ2 =




b1,1 b2,1 b2,1 b2,2

b3,1 b4,1 b3,2 b4,2

b1,3 b2,3 b1,4 b2,4

b3,3 b4,3 b3,4 b4,4



, (2.19)

respectively.

The trace operators T2 = T2(B) and T̂2 = T̂2(B) which were introduced in [6] are

defined as

T2 = V2 ◦ H̃2 and T̂2 = H2 ◦ Ṽ2, (2.20)

where ◦ is the Hadamard product: if A = [αi,j]p×p and B = [βi,j]p×p, then A ◦ B =

[αi,jβi,j ]p×p. More precisely,

T2 = [ti,j]22×22 =




a1,1a1,1 a1,2a2,1 a2,1a1,2 a2,2a2,2

a1,3a3,1 a1,4a4,1 a2,3a3,2 a2,4a4,2

a3,1a1,3 a3,2a2,3 a4,1a1,4 a4,2a2,4

a3,3a3,3 a3,4a4,3 a4,3a3,4 a4,4a4,4




(2.21)

and

T̂2 =
[
t̂i,j
]
22×22 =




b1,1b1,1 b1,2b2,1 b2,1b1,2 b2,2b2,2

b1,3b3,1 b1,4b4,1 b2,3b3,2 b2,4b4,2

b3,1b1,3 b3,2b2,3 b4,1b1,4 b4,2b,24

b3,3b3,3 b3,4b4,3 b4,3b3,4 b4,4b4,4



. (2.22)

From (2.5), (2.17) and (2.21), clearly
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ti,j =





1 if ci,j is B-admissible,

0 if ci,j is not B-admissible,
(2.23)

where ci,j ∈ C2×2.

Therefore, T2 is the transition matrix of the B-admissible and x-periodic patterns

of period 2 with height 2. Similarly, T̂2 is the transition matrix of B-admissible and

y-periodic patterns of period 2 with width 2.

The translation invariance property (2.6) of C2×2 implies the following symmetry

of T2;





t1,2 = t1,3, t2,1 = t3,1, t2,2 = t3,3,

t2,3 = t3,2, t2,4 = t3,4, t4,2 = t4,3.
(2.24)

The symmetry of (2.6) or (2.24) can also be identified as the rotational symmetry of a

cylinder since elements in C2×2 can be regarded as cylindrical patterns.

The recursive formulas of Yn×2 can also be applied to Vn. Indeed, if

Vn =


 Vn;1 Vn;2

Vn;3 Vn;4




2n×2n

,

where Vn;j is a 2n−1 × 2n−1 matrix, then

Vn+1 =




a1,1Vn;1 a1,2Vn;2 a2,1Vn;1 a2,2Vn;2

a1,3Vn;3 a1,4Vn;4 a2,3Vn;3 a2,4Vn;4

a3,1Vn;1 a3,2Vn;2 a4,1Vn;1 a4,2Vn;2

a3,3Vn;3 a3,4Vn;4 a4,3Vn;3 a4,4Vn;4




(2.25)

and

Tn = Vn ◦




E2n−2 ⊗



 a1,1 a2,1

a3,1 a4,1



 E2n−2 ⊗



 a1,2 a2,2

a3,2 a4,2





E2n−2 ⊗



 a1,3 a2,3

a3,3 a4,3



 E2n−2 ⊗



 a1,4 a2,4

a3,4 a4,4








, (2.26)

where ⊗ is the Kroncker (tensor) product and Ej is the j × j full matrix.
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Now, Tn represents the transition matrix of B-admissible x-periodic patterns of

period n with height 2. Similarly, T̂n represents the transition matrix of B-admissible

y-periodic patterns of period n with width 2.

2.1.2 Rotational matrices

In this subsection, the rotational matrices Rn and the invariant property of Cn×2 under

Rn are investigated and the Rn-symmetry of Tn is then proven.

The shift of any n-sequence β = (β0β1 · · ·βn−2βn−1), n ≥ 2, βj ∈ {0, 1}, is defined

by

σ((β0β1 · · ·βn−2βn−1)) ≡ σn((β0β1 · · ·βn−2βn−1)) = (β1β2 · · ·βn−1β0). (2.27)

The subscript of σn is omitted for brevity. Notably, the shift (to the left) of any one-

dimensional periodic sequence (β0β1 · · ·βn−1β0 · · · ) of period n becomes

(β1β2 · · ·βn−1β0β1 · · · ).
The 2n × 2n rotational matrix Rn = [Rn;i,j], Rn;i,j ∈ {0, 1}, is defined by

Rn;i,j = 1 if and only if

i = ψ(β0β1 · · ·βn−1) and j = ψ(σ(β0β1 · · ·βn−1)) = ψ(β1β2 · · ·βn−1β0). (2.28)

From (2.28), for convenience, denote by

j = σ(i). (2.29)

Clearly, Rn is a permutation matrix: each row and column of Rn has one and only

one element with a value of 1. Indeed, Rn can be written explicitly as follows, the

proof is omitted.

Lemma 2.1




Rn;i,2i−1 = 1 and Rn;2n−1+i,2i = 1 for 1 ≤ i ≤ 2n−1,

Rn;i,j = 0 otherwise,
(2.30)
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or equivalently,

σ(i) ≡ σn(i) =





2i− 1 for 1 ≤ i ≤ 2n−1,

2(i− 2n−1) for 1 + 2n−1 ≤ i ≤ 2n.
(2.31)

Furthermore, Rn
n = I2n and for any 1 ≤ j ≤ n− 1,

(Rj
n)i,σj(i) = 1. (2.32)

The equivalent class Cn(i) of i is defined by

Cn(i) = {σj(i)|0 ≤ j ≤ n− 1}

=
{
j
∣∣ (Rl

n

)
i,j

= 1 for some 1 ≤ l ≤ n
}
.

(2.33)

Clearly, either Cn(i) = Cn(j) or Cn(i)∩Cn(j) = ∅. Let i be the smallest element in its

equivalent class, and the index set In of n is defined by

In = {i|1 ≤ i ≤ 2n, i ≤ σq(i), 1 ≤ q ≤ n− 1}

=
{
i
∣∣1 ≤ i ≤ 2n, i ≤ j for all j ∈ Cn(i)

}
.

(2.34)

Therefore, for each n ≥ 1, {j|1 ≤ j ≤ 2n} = ∪
i∈In

Cn(i). The cardinal number of In is

denoted by χn. Notably, χn can be identified as the number of necklaces that can be

made from n beads of two colors, when the necklaces can be rotated but not turned

over [48]. Moreover, χn is expressed as

χn =
1

n

∑

d|n
φ(d)2n/d, (2.35)

where φ(n) is the Euler totient function, which counts the numbers smaller or equal to

n and prime relative to n,

φ(n) = n
∏

p|n

(
1 − 1

p

)
. (2.36)

For n = 2 and 3, Rn and Cn(i) are as follows.
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Example 2.2 Rn, In and Cn(i) for n = 2 and 3,

(i) R2=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



, and





C2(1) = {1}, 1 → 1,

C2(2) = C2(3) = {2, 3}, 2 → 3 → 2,

C2(4) = {4}, 4 → 4,

I2 = {1, 2, 4}.

(ii) For R3,






1 → 1,

2 → 3 → 5 → 2,

4 → 7 → 6 → 4,

8 → 8,

I3 = {1, 2, 4, 8}.

The following proposition shows the permutation character of Rn and the proof is

omitted.

Proposition 2.3 Let M = [Mi,j]2n×2n be a matrix where Mi,j denotes a number or a

pattern or a set of patterns. Then,

(RnM)i,j = Mσ(i),j and (MRn)i,j = Mi,σ−1(j). (2.37)

Furthermore, for any l ≥ 1,

(Rl
nM)i,j = Mσl(i),j and (MRl

n)i,j = Mi,σ−l(j). (2.38)

In the following, x-periodic patterns of period n with height k ≥ 1 are studied. More

notation is required.

Definition 2.4

(i) For any n ≥ 1, let (β0β1 · · ·βn−1)
∞ be a periodic sequence of period n, denoted by

β = (β0 · · ·βn−1). σ(β) = σ((β0β1 · · ·βn−1)) = (β1β2 · · ·βn−1β0). For any fixed n ≥ 1

and any j ≥ 0, denote by βj = (β0,jβ1,j · · ·βn−1,j) a periodic sequence of period n.
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(ii) For fixed n ≥ 1 and any k ≥ 1, denote by

[β0β1 · · ·βk−1]

= (β0,0β1,0 · · ·βn−1,0)
∞ ⊕ · · · ⊕ (β0,k−1β1,k−1 · · ·βn−1,k−1)

∞

=

β0,0β0,0 β1,0 βn−1,0

β0,1β0,1 β1,1 βn−1,1

β0,k−1β0,k−1 β1,k−1 βn−1,k−1

,

a x-periodic pattern of period n with height k.

(iii) A Hadamard type product • of patterns is defined as follows.

[β0β1] • [β1β2] = [β0β1β2]

and

[β0β1 · · ·βk−1] = [β0β1] • [β1β2] • · · · • [βk−2βk−1].

(iv) A 2n × 2n ordering matrix Cn×k = [Cn×k;i,j] of x-periodic patterns of period n with

height k ≥ 2 is defined by

Cn×k;i,j = {[β0β1 · · ·βk−1]|ψ(β0) = i and ψ(βk−1) = j}.

(v) For n ≥ 1 and k ≥ 2, denote by Dn,k = [Dn,k;i,j] the ordering matrix of patterns,

which consists of a first row β0 and the k-th row βk−1 of Cn×k:

Dn,k;i,j = {[β0βk−1]|[β0β1 · · ·βk−1] ∈ Cn×k;i,j}.

Some remarks should be made.

Remark 2.5

(1) For any n ≥ 1, the length of β in (i) and βj in (ii) depends on n. For simplicity,

these dependencies are omitted.

(2) The product • defined in (iii) applies only when the top row of the first pattern is

identical to the first row of the second pattern.
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(3) In (iv), when k = 2, (2.14) applies.

(4) Cn×k;i,j is a set of patterns with the same first and k-th rows. Dn,k is exactly Cn×2,

but, importantly, in Cn×k, all patterns in the entry Cn×k;i,j have the same top and first

rows, which can be used to construct y-periodic patterns with a shift in the (k+1)-th

row.

In the following lemma, Rn is used to shift the first row in Dt
n,k.

Lemma 2.6 Let i = ψ(β0) and j = ψ(βk−1). Then

(i) (RnD
t
n,k)i,j = [βk−1σ(β0)],

(ii) (Cn×k •RnD
t
n,k)i,j = [β0β1 · · ·βk−1σ(β0)].

Proof. (i) follows easily from Proposition 2.3 and part (v) of Definition 2.4. From

parts (i) and (iii) of Definition 2.4, a product in (ii) is legitimate since the top row of

Cn×k and the first row of RnD
t
n,k are βk−1, and (ii) follows from (i).

Furthermore, the following result shows that the patterns in Cn×k •Rl
nD

t
n,k are the

same as the patterns in diag(Cn×(k+1)R
n−l
n ) where diag(M) is the diagonal part of M,

such that diag(M) = I ◦ M. They are important in constructing y-periodic patterns.

Proposition 2.7 For any n ≥ 2, k ≥ 1 and 0 ≤ l ≤ n,

patterns in Cn×k •Rl
nD

t
n,k = patterns in diag(Cn×(k+1)R

n−l
n )

= {[β0 · · ·βk−1σ
l(β0)]|[β0 · · ·βk−1] ∈ Cn×k}.

Proof. By (2.38), for any 0 ≤ l ≤ n− 1, 1 ≤ i, j ≤ 2n+1,

(Cn×(k+1)R
n−l
n )i,j = {[β0 · · ·βk−1σ

l−n(βk)] : ψ(β0) = i and ψ(βk) = j}.

Since ψ(βk) = ψ(β0) = i implies βk = β0,

(Cn×(k+1)R
n−l
n )i,i = {[β0 · · ·βk−1σ

l−n(β0)] : ψ(β0) = i}.

However, for any 1 ≤ i, j ≤ 2n, part (ii) of Lemma 2.6 implies

(Cn×k •Rl
nD

t
n,k)i,j = [β0β1 · · ·βk−1σ

l(β0)].

Now, for any 0 ≤ l ≤ n− 1 and β = (β0 · · ·βn−1),

σl(β) = σl−n(β).
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The proof is complete.

The rotational symmetry of Tn is determined by studying Cn×2 in more detail.

Given a basic admissible set B ⊂ Σ2×2, Tn is defined by (2.26). Let [β0β1] ∈ Cn×2, for

0 ≤ j ≤ n− 1, denote

pj = 2βj,0 + βj,1 + 1,

then the associated entry in Tn is

Tn([β0β1]) ≡ ap0,p1ap1,p2 · · ·apn−1,p0. (2.39)

[β0β1] is B-admissible if and only if apj ,pj+1
= 1 for all 0 ≤ j ≤ n− 1, where pn = p0.

Theorem 2.8 For any n ≥ 2, the trace operator Tn = [tn;i,j]2n×2n has the following

Rn-symmetry:

tn;σl(i),σl(j) = tn;i,j (2.40)

for all 1 ≤ i, j ≤ 2n and 0 ≤ l ≤ n− 1.

Proof. Given [β0β1] ∈ Cn×2, all [σl(β0)σ
l(β1)], 0 ≤ l ≤ n − 1, represent similar

x-periodic patterns. The entry of [σl(β0)σ
l(β1)] in Tn is

Tn([σl(β0)σ
l(β1)]) = apl,pl+1

apl+1,pl+2
· · ·apn−1,p0ap0,p1 · · ·apl−1,pl

. (2.41)

Comparing (2.39) with (2.41) clearly reveals that

Tn([β0β1]) = Tn([σ
l(β0)σ

l(β1)]) (2.42)

for all 0 ≤ l ≤ n− 1. Additionally, if Tn = [tn;i,j] with i = ψ(β0) and j = ψ(β1), then

(2.42) implies

tn;σl(i),σl(j) = tn;i,j for all 0 ≤ l ≤ n− 1.

The proof is complete.

Proposition 2.7 and Theorem 2.8 yield the following theorem.

Theorem 2.9 For any n ≥ 2 and k ≥ 2, 0 ≤ l ≤ n− 1,

|Tk−1
n ◦Rl

nT
t
n| = tr(Tk

nR
n−l
n ) (2.43)

and

|Tk−1
n ◦ RnT

t
n| = tr(Tk

nRn), (2.44)
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where

Rn =

n−1∑

l=0

Rl
n. (2.45)

Proof. From Proposition 2.7, (2.39) and the properties of Tn, (2.43) follows. Equations

(2.43) and (2.45) yield (2.44). The proof is complete.

2.1.3 Periodic patterns

This subsection studies in detail (double) periodic patterns in Z2. Indeed, consider a

lattice L with Hermite normal form,

L =


 n l

0 k


Z

2, (2.46)

where n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1. A pattern U = (βi,j)i,j∈Z is called L-periodic if

every i, j ∈ Z

βi+np+lq,j+kq = βi,j (2.47)

for all p, q ∈ Z.

The periodicity of



 n l

0 k



 and



 n 0

0 k′



 are closely related as follows.

Proposition 2.10 For any n ≥ 2, k ≥ 1 and 0 ≤ l ≤ n − 1,



 n l

0 k



-periodic

patterns are



 n 0

0 nk
(n,l)



-periodic where (n, l) is the greatest common divisor (GCD)

of n and l.

Proof. By (2.47), the



 n l

0 k



-periodic pattern is easily identified as



 n l ·m
0 k ·m



-

periodic for all m ∈ N. By taking m = n
(n,l)

, the result holds.

Given an admissible set B ⊂ Σ2×2, defined on square lattice Z2×2, the periodic

patterns that are B-admissible must be verified on Z2×2. Let Z2×2((i, j)) be the square
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lattice with the left-bottom vertex (i, j):

Z2×2((i, j)) = {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)} .

Now, the admissibility is demonstrated to have to be verified on finite square lattices.

Proposition 2.11 An L-periodic pattern U is B-admissible if and only if

U
∣∣
Z2×2((i,j))

∈ B (2.48)

for any 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ k − 1.

Proof. The proof follows easily from (2.47). The details are left to the reader.

According to Proposition 2.11, the admissibility of U is determined by

(βi,j)0≤i≤n,0≤j≤k,

and (βi,j)0≤i≤n,0≤j≤k with the periodic property (2.47). Therefore, the following theo-

rem can be obtained.

Theorem 2.12 Given a basic admissible set B ⊂ Σ2×2, an L-periodic pattern U is

B-admissible if and only if

[β0β1 · · ·βk−1] and [βk−1σ
n−l(β0)] are B-admissible. (2.49)

Proposition 2.7 and Theorem 2.12 yield the following main results.

Theorem 2.13 For n ≥ 1, 0 ≤ l ≤ n − 1 and k ≥ 1, denote by ΓB




 n l

0 k




 the

cardinal number of the set of


 n l

0 k


-periodic and B-admissible patterns. For n ≥ 2,

0 ≤ l ≤ n− 1 and k ≥ 2,

ΓB




 n l

0 k




 = tr

(
Tk

nR
l
n

)
= |Tk−1

n ◦Rn−l
n Tt

n| (2.50)

and

n−1∑

l=0

ΓB




 n l

0 k




 = tr

(
Tk

nRn

)
= |Tk−1

n ◦ RnT
t
n|. (2.51)
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For n ≥ 2 and 0 ≤ l ≤ n− 1,

ΓB




 n l

0 1




 = tr(TnR

l
n) = |diag(Tn) ◦Rn−l

n Tt
n| (2.52)

and

n−1∑

l=0

ΓB







 n l

0 1







 = tr(TnRn) = |diag(Tn) ◦ RnT
t
n|. (2.53)

Furthermore, let

T1 =


 a1,1a1,1 a2,2a2,2

a3,3a3,3 a4,4a4,4


 and R1 =


 1 0

0 1


 ; (2.54)

then

ΓB







 1 0

0 k







 = tr(Tk
1). (2.55)

Proof. By Proposition 2.7, Theorem 2.12 and the construction of Tn, the results

(2.50) to (2.53) hold for n ≥ 2, 0 ≤ l ≤ n− 1 and k ≥ 1.

For n = 1, define

C1×2 =

0

0

0

0 0 0

0 0

1 1

1 1

1

1

1

1

,
(2.56)

which is the collection of x-periodic patterns of period 1 with height 2. Then, B-

admissible patterns of C1×2 are represented by T1 as defined in (2.54). Theorem 2.12

and the construction of T1 easily yields (2.55). The proof is complete.

The n-th order zeta function ζn(s) can now be obtained as follows.

Theorem 2.14 For n ≥ 1,

ζn(s) = exp

(
1

n

∞∑

k=1

1

k
tr(Tk

nRn)s
kn

)
. (2.57)

Proof. The results follow from Theorem 2.13.
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2.2 Rationality of ζn

This subsection proves that ζn is a rational function, as specified by (1.18). To elucidate

the method, the symmetric Tn is considered initially. For any n ≥ 1, let λj be an

eigenvalue of Tn: TnUj = λjUj, 1 ≤ j ≤ N and N ≡ 2n. If Tn is symmetric, then the

Jordan form of Tn [27] is

Tn = UJUt, (2.58)

where

Ut = U−1. (2.59)

The eigen-matrix U in (2.58) is defined by

U = [U1, U2, · · · , UN ]N×N = [ui,j]N×N , (2.60)

where Uj = (u1,j, u2,j, · · · , uN,j)
t is the j-th (column) eigenvector, and

J = diag(λ1, λ2, · · · , λN). (2.61)

Moreover, λj can be arranged such that λ1 ≥ |λ2| ≥ · · · ≥ |λN |. Equation (2.59)

implies

N∑
p=1

ui,puj,p = δi,j and
N∑

q=1

uq,iuq,j = δi,j. (2.62)

Now, Theorem 2.15 will be proven.

Theorem 2.15 Assume Tn is symmetric; then

1

n

n−1∑

l=0

ΓB







 n l

0 k







 =
1

n
tr
(
Tk

nRn

)
=

∑

λ∈Σ(Tn)

χ(λ)λk, (2.63)

where Σ(Tn) is the spectrum of Tn,

χ(λ) =
∑

λj=λ

χ(λj) (2.64)
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and

χ(λj) = 1
n
|Rn ◦ UjU

t
j |

= 1
n

∑
i∈In

ωn,i

n

(
n−1∑
l=0

uσl(i),j

)2

,

(2.65)

where ωn,i is the cardinal number of Cn(i). Moreover,

ζn(s) =
∏

λ∈Σ(Tn)

(1 − λsn)−χ(λ). (2.66)

Proof. Clearly,

tr
(
Tk

nRn

)

= tr (Udiag(λj)U
tRn)

=
N∑

j=1

{
N∑

i=1

ui,j

N∑
p=1

up,j

(
n−1∑
l=1

Rl
n;p,i

)}
λj .

For each j, 1 ≤ j ≤ N,

N∑
i=1

ui,j

(
N∑

p=1

up,j

n−1∑
l=0

Rl
n;p,i

)

=
N∑

i=1

ui,j

(
n−1∑
l=0

uσ−l(i),j

)

=
∑

i∈In

ωn,i

n

(
n−1∑
l=0

uσl(i),j

)(
n−1∑
l=0

uσ−l(i),j

)

=
∑

i∈In

ωn,i

n

(
n−1∑
l=0

uσl(i),j

)2

.

The following is easily verified;

|Rn ◦ UjU
t
j | =

∑

i∈In

ωn,i

n

(
n−1∑

l=0

uσl(i),j

)2

. (2.67)

Then, (2.63)∼(2.65) follow. From [21],

∞∑

k=1

1

k
Jkskn = diag

(
log(1 − λjs

n)−1
)
. (2.68)

Therefore, (2.66) holds. The proof is complete.

We now extend Theorem 2.15 to general Tn. In this case, the Jordan form for Tn

is
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Tn = UJU−1, (2.69)

where U is given as (2.60) and Uj , 1 ≤ j ≤ N , is an eigenvector or generalized

eigenvector [21; 27]. Denote by

U−1 = [wi,j] = [W1;W2; · · · ;WN ]N×N (2.70)

with Wi = (wi,1, wi,2, · · · , wi,N), the i-th row vector.

J = diag(J1, J2, · · · , JQ), (2.71)

where Jq is the Jordan block, 1 ≤ q ≤ Q:

Jq =




λq 1 0 · · · 0 0

0 λq 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λq 1

0 0 0 · · · 0 λq




Mq×Mq

, (2.72)

Mq ≥ 1.

As is well-known [21], for any Jordan block

J =




λ 1 0 · · · 0 0

0 λ 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 1

0 0 0 · · · 0 λ




M×M

(2.73)

and

log(I − tJ) =




µ1,1 µ1,2 µ1,3 · · · µ1,M

0 µ2,2 µ2,3 · · · µ2,M

. . .
...

0 0 · · · 0 µM,M




, (2.74)

where
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µi,i+j−1 = µ1,j for 1 ≤ j ≤M and 1 ≤ i ≤M + 1 − j, (2.75)

and

µi,j = 0 if i > j. (2.76)

In particular, 1 ≤ i ≤ M ,

µi,i = log(1 − λt). (2.77)

Therefore,
∞∑

k=1

1
k
Jkskn

= − log(I − snJ)

= −diag (log(I − snJ1), · · · , log(I − snJQ))

= −[µi,j ]N×N ,
(2.78)

where

log(I − snJq) =




µq;1,1 µq;1,2 µq;1,3 · · · µq;1,Mq

0 µq;2,2 µq;2,3 · · · µq;2,Mq

. . .
...

0 0 · · · 0 µq;Mq,Mq




(2.79)

and

µq;i,i = log(1 − λqs
n), 1 ≤ q ≤ Q. (2.80)

Now, Theorem 2.15 is generalized for general Tn.

Lemma 2.16 For n ≥ 1, in (2.69) and (2.70) the generalized eigen-matrix is denoted

by

U = [U1,1 · · ·U1,M1 ; · · · ;Uq,1 · · ·Uq,Mq
; · · · ;UQ,1 · · ·UQ,MQ

]N×N ,

and its inverse is denoted by
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U−1 = [W1,1; · · · ;W1,M1; · · · ;Wq,1; · · · ;Wq,Mq
; · · · ;WQ,1; · · · ;WQ,MQ

]N×N .

Then,

ζn(s) =

Q∏

q=1

∏

1≤i≤j≤Mq

exp (−χq;i,jµq;i,j) , (2.81)

where

χq;i,j = 1
n
|Rn ◦ Uq,iWq,j|

= 1
n

∑
p∈In

ωn,p

n

(
n−1∑
l=0

uq;σl(p),i

)(
n−1∑
l=0

wq;j,σl(p)

)
.

(2.82)

In particular, if

χq;i,j = 0 for all i 6= j, (2.83)

then

ζn(s) =
Q∏

q=1

(1 − λqs
n)−χq

=
∏

λ∈Σ(Tn)

(1 − λsn)−χ(λ),
(2.84)

where

χq =
1

n

Mq∑

i=1

|Rn ◦ Uq;iWq;i| (2.85)

and

χ(λ) =
∑

λq=λ

χq. (2.86)

Proof. From (2.69) and (2.78),

ζn(s) = exp

(
1

n
tr
(
U (−diag(log(I − snJ1), · · · , log(I − snJQ)))U−1Rn

))
.

Now,
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tr (Udiag(log(I − snJ1), · · · , log(I − snJQ))U−1Rn)

=
N∑

i=1

N∑
j=1

N∑
r=1

N∑
p=1

up,iµi,jwj,r

(
n−1∑
l=0

Rl
n;r,p

)

=
N∑

i=1

N∑
j=1

∑
p∈In

ωn,p

n

(
n−1∑
l=0

uσl(p),i

)(
n−1∑
l=0

wj,σ−l(p)

)
µi,j.

Therefore, (2.81) follows. Clearly, if (2.83) holds, then (2.84) holds. The proof is

complete.

In the rest of the section, (2.83) is proven and χ(λ) is shown to be a nonnegative

integer. Therefore, ζn is a rational function. Some of the symmetry properties of the

eigenvectors associated with the Rn-symmetry of Tn are investigated first.

Lemma 2.17 For n ≥ 1, if U is an eigenvector, then Rl
nU is also an eigenvector for

any 0 ≤ l ≤ n− 1. Furthermore, if U is a generalized eigenvector, then Rl
nU is also a

generalized eigenvector for any 0 ≤ l ≤ n− 1.

Based on Lemma 2.17, the equivalent class R(U) of eigenvector U is introduced by

Rn.

Definition 2.18 For any N × 1 column vector U ,

R(U) =
{
Rl

nU |0 ≤ l ≤ n− 1
}
. (2.87)

U is called (Rn-) symmetric if R(U) = {U}, such meaning that uj = ui for all j ∈ Cn(i)

or

Rl
nU = U (2.88)

for all 0 ≤ l ≤ n− 1. U is called (Rn-) anti-symmetric if
n−1∑
l=0

Rl
nU = 0, such meaning

n−1∑

l=0

Uσl(i) = 0 (2.89)

for all i ∈ In.

For a symmetric eigenvector U , the following property is observed.
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Lemma 2.19 Let U = (u1, u2, · · · , uN)t and W = (w1, w2, · · · , wN),

1

n
|Rn ◦ UW | =

∑

i∈In

1

ωn,i



∑

j∈Cn(i)

uj





∑

j∈Cn(i)

wj


 . (2.90)

Furthermore, if U is symmetric, then

1

n
|Rn ◦ UW | = WU =

N∑

j=1

ujwj, (2.91)

and if U is anti-symmetric, then

1

n
|Rn ◦ UW | = 0. (2.92)

Proof. Clearly,

n−1∑
l=0

uσl(i) = n
ωn,i

∑
j∈Cn(i)

uj and
n−1∑
l=0

wσl(i) = n
ωn,i

∑
j∈Cn(i)

wj. (2.93)

Therefore, substituting (2.93) into (2.82) yields

1

n
|Rn ◦ UW | =

∑

i∈In

1

ωn,i




∑

j∈Cn(i)

uj








∑

j∈Cn(i)

wj



 .

If U is symmetric, then
∑

j∈Cn(i)

uj = ωn,iui.

Hence,

1

n
|Rn ◦ UW | =

∑

i∈In




∑

j∈Cn(i)

uiwj



 =

N∑

j=1

ujwj = WU.

The proof is complete.

The following orthogonal matrix Qn is very useful in finding symmetric and anti-

symmetric eigenvectors of Tn, the details of proof is omitted.

Lemma 2.20 For n ≥ 2, the n× n matrix Qn =
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


1√
n

1√
n

1√
n

· · · 1√
n

1√
n

√
n−1

n
− 1√

n(n−1)
− 1√

n(n−1)
· · · − 1√

n(n−1)
− 1√

n(n−1)

0
√

n−2
n−1

− 1√
(n−1)(n−2)

· · · − 1√
(n−1)(n−2)

− 1√
(n−1)(n−2)

...

0 0 0 · · · 1√
2

− 1√
2




(2.94)

is orthogonal.

In the following lemma, when Qn is used, R(U) can be expressed by symmetric and

anti-symmetric eigenvectors.

Lemma 2.21 For n ≥ 2, given eigenvector U , define

U1 =
1√
n

n−1∑

l=0

Rl
nU (2.95)

and, 2 ≤ j ≤ n,

U j =

√
n− j + 1

n− j + 2
Rj−2

n U − 1√
n− j + 1

√
n− j + 2

n−1∑

k=j−1

Rk
nU. (2.96)

If R(U) has rank κ, for some κ, 1 ≤ κ ≤ n,

(i) then
{
U j

}n

j=1
also has rank κ;

(ii) if U 1 6= 0, then U1 is symmetric, and for each j, 2 ≤ j ≤ n, U j is anti-symmetric.

Proof. Clearly,

(
U 1, U 2, · · · , Un

)t
= Qn

(
U,RnU, · · · , Rj

nU, · · · , Rn−1
n U

)t
.

Since Qn is orthogonal, (i) holds.

Since Rn(U1) = U1, U 1 is symmetric. For 2 ≤ j ≤ n and i ∈ In,
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n−1∑
l=0

(U j)σl(i) =
√

n−j+1
n−j+2

(
n−1∑
l=0

(Rj−2
n U)σl(i) − 1

n−j+1

n−1∑
k=j−1

n−1∑
l=0

(Rk
nU)σl(i)

)

=
√

n−j+1
n−j+2

(
n−1∑
l=0

uσl(i) − 1
n−j+1

n−1∑
k=j−1

n−1∑
l=0

uσl(i)

)

= 0.

Therefore, U j is anti-symmetric for any 2 ≤ j ≤ n. The proof is complete.

The main result can now be proven.

Theorem 2.22 For n ≥ 1,

1

n
tr
(
Tk

nRn

)
=

∑

λ∈Σ(Tn)

χ(λ)λk (2.97)

and

ζn(s) =
∏

λ∈Σ(Tn)

(1 − λsn)−χ(λ), (2.98)

where χ(λ) is the number of linearly independent symmetric eigenvectors and general-

ized eigenvectors of Tn with eigenvalue λ.

Proof. The case of symmetric Tn is considered first. Let Eλ be the eigenspace of Tn

with eigenvalue λ. By Lemma 2.21, Eλ is spanned by linearly independent symmetric

eigenvectors U 1, U 2, · · · , U p and anti-symmetric eigenvectors U ′
1, U

′
2, · · · , U ′

p′, where

p+ p′ = dim(Eλ) and p or p′ may be zero.

Now,

χ(λ) = 1
n

(
p∑

j=1

|Rn ◦ U jU
t

j | +
p′∑

j=1

|Rn ◦ U ′
j(U

′
j)

t|
)

= p,

(2.99)

which is the number of linearly independent symmetric eigenvectors of Tn with eigen-

value λ.

For general Tn, in Jordan canonical form (2.69) and (2.71), U can be decomposed

into

U = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ EλQ
.
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Each Eλj
is spanned by symmetric eigenvectors and generalized eigenvectors

U j,1, U j,2, · · · , U j,pj
and anti-symmetric eigenvectors and generalized eigenvectors

U ′
j,1, U

′
j,2, · · · , U ′

j,p′j
, and pj + p′j = dim(Eλj

).

The inverse matrix is U−1 =

[
W 1,1; · · · ;W 1,p1;W

′
1,1; · · · ;W ′

1,p′1
; · · · ;WQ,1; · · · ;WQ,pQ

;W ′
Q,1; · · · ;W ′

Q,p′
Q

]
.

Lemma 2.19 implies

1
n
|Rn ◦ U j,iW j′,k| = δjj′δik and 1

n
|Rn ◦ U ′

j,iW
′
j′,k| = 0.

Therefore,

χ(λj) = pj

= the number of linearly independent symmetric eigenvectors and

generalized eigenvectors of Tn with eigenvalue λj .

The result follows. The proof is complete.

Now, the reduced trace operator τn of Tn is recalled as in (1.17).

Definition 2.23 For n ≥ 1, Tn = [tn;i,j]. For each i, j ∈ In, define

τn;i,j =
∑

k∈Cn(j)

tn;i,k (2.100)

and denote the reduced trace operator of Tn by τn = [τn;i,j], which is a χn × χn matrix.

The following theorem indicates that τn is more effective in computing the eigenval-

ues with rotationally symmetric eigenvectors and generalized eigenvectors of Tn. See

also Examples 2.54 and 2.55.

Theorem 2.24 λ ∈ Σ(Tn) with χ(λ) ≥ 1 if and only if λ ∈ Σ(τn). Moreover, χ(λ) is

the algebraic multiplicity of τn with eigenvalue λ. Furthermore,

1

n

n−1∑

l=0

ΓB




n l

0 k




 =

∑

λ∈Σ(τn)

χ(λ)λk = tr(τk
n), (2.101)

and

ζn(s) = exp

( ∞∑

k=1

tr(τk
n)

k
snk

)
. (2.102)
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Proof. Let λ ∈ Σ(Tn) be an eigenvalue with rotationally symmetric eigenvector

U = (u1, u2, · · · , u2n)t, where ui = uj for any i ∈ In and j ∈ Cn(i). Define V =

(u1, · · · , ui, · · · , u2n)t for i ∈ In. Then, clearly, TnU = λU implies τnV = λV .

On the other hand, if τnV = λV and V = (v1, · · · , vi, · · · , v2n)t, then V can be

extended to U , a 2n-vector, by uj = vi for i ∈ In and j ∈ Cn(i). Then, TnU = λU and

U is rotationally symmetric. The arguments also hold for a generalized eigenvector.

Finally, (2.101) follows from (2.51) and (2.97), and (2.102) follows from (1.8) and

(2.101). The proof is complete.

Remark 2.25 According to Theorem 2.24, the following is easily verified;

∑

λ∈Σ(Tn)

χ(λ) =
∑

λ∈Σ(τn)

χ(λ) = χn. (2.103)

Theorem 2.24 yields the following result.

Theorem 2.26 For n ≥ 1,

ζn(s) = (det (I − snτn))−1 (2.104)

=
∏

λ∈Σ(τn)

(1 − λsn)−χn(λ) , (2.105)

where χn(λ) is the algebraic multiplicity of λ ∈ Σ(τn) and

ζ(s) =

∞∏

n=1

(det (I − snτn))−1 (2.106)

=

∞∏

n=1

∏

λ∈Σ(τn)

(1 − λsn)−χn(λ) . (2.107)

2.3 More symbols on larger lattice

This subsection extends the results found in previous sections to any finite number of

symbols

p ≥ 2 on any finite square lattice Zm×m, m ≥ 2. The results are outlined here and the

details are left to the reader. The proofs of the theorems are omitted for brevity.

For fixed positive integers p ≥ 2 and m ≥ 2, the set of symbols is denoted by

Sp = {0, 1, 2, · · · , p− 1} and the basic square lattice is Zm×m. We need the following

notations.
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For any fixed n ≥ m, such as in (2.14), the x-periodic patterns of period n with

height m can be recorded as Cn×m;i,j in Cn×m by Cn×m;i,j =

β0,0β0,0 β1,0β1,0 βn−1,0 βm−2,0

β0,1β0,1 β1,1β1,1 βn−1,1 βm−2,1

β0,m−1β0,m−1 β1,m−1β1,m−1 βn−1,m−1 βm−2,m−1

Fig 2.1.

.

Similarly, when 1 ≤ n ≤ m− 1, Cn×m = [Cn×m;i,j] can also be defined as an

(n+m− 1) ×m pattern in Fig 2.1.

Then, for any n ≥ 1, the associated trace operator Tn×m = [tn×m;i,j ] can be defined

by

tn×m;i,j = 1 if and only if Cn×m;i,j is B-admissible. (2.108)

Now, for any n ≥ 1, the corresponding rotational matrix Rn×(m−1) which is a zero-

one pn(m−1) × pn(m−1) matrix is defined by

Rn×(m−1);i,j = 1 if and only if

j = σ(i), (2.109)

where i is given by 1 ≤ i ≤ pn(m−1) and 1 ≤ σ(i) ≤ pn(m−1) is represented by

σ(i) = ψ
(
[σ(β0)σ(β1) · · ·σ(βm−2)]

)
. (2.110)

The explicit expression for Rn×(m−1), like (2.31), can also be obtained and the result is

omitted here.

As (2.33) and (2.34), the equivalent class Cn×(m−1)(i) of i is defined by
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Cn×(m−1)(i) = {σj(i)|0 ≤ j ≤ n− 1}

=

{
j
∣∣
(
Rl

n×(m−1)

)
i,j

= 1 for some 1 ≤ l ≤ n

}
,

(2.111)

and the index set In×(m−1) of n is defined by

In×(m−1) = {i|1 ≤ i ≤ pn(m−1), i ≤ σq(i), 1 ≤ q ≤ n− 1}

=
{
i
∣∣1 ≤ i ≤ pn(m−1), i ≤ j for all j ∈ Cn×(m−1)(i)

}
.

(2.112)

The cardinal number of In×(m−1) is denoted by χn×(m−1) and χn×(m−1) is equal to the

number of necklaces that can be made from 2m−1 colors, when the necklaces can be

rotated but not turned over [48]. χn×(m−1) is expressed as

χn×(m−1) =
1

n

∑

d|n
φ(d)

(
2m−1

)n/d
. (2.113)

Like Proposition 2.3, Rn×(m−1) has the permutation properties. Now, define

Rn×(m−1) =

n−1∑

l=0

Rl
n×(m−1). (2.114)

A similar result to Theorem 2.13 can now be obtained for ΓB




 n l

0 k




.

Theorem 2.27 For n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1,

ΓB







 n l

0 k







 = tr
(
Tk

n×mR
l
n×(m−1)

)
(2.115)

and

n−1∑

l=0

ΓB




 n l

0 k




 = tr

(
Tk

n×mRn×(m−1)

)
. (2.116)

As in (1.8), the n-th order zeta function is given by

ζn(s) = exp


 1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB




 n l

0 k




 skn


 . (2.117)

From Theorem 2.27, the following theorem is obtained.
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Theorem 2.28 For any n ≥ 1,

ζn(s) = exp

(
1

n

∞∑

k=1

1

k
tr
(
Tk

n×mRn×(m−1)

)
snk

)
. (2.118)

The proof that ζn(s) is a rational function depends on the fact that Tn×m is also

Rn×(m−1)-symmetric, which is stated as follows.

Proposition 2.29 For any n ≥ 1,

tn×m;σ(i),σ(j) = tn×m;i,j (2.119)

for any 1 ≤ i, j ≤ pn(m−1).

Then the reduced trace operator τn×m of Tn×m is defined as follows.

Definition 2.30 For n ≥ 1, the reduced trace operator τn×m = [τn×m;i,j] of Tn×m is a

χn×(m−1) × χn×(m−1) matrix defined by

τn×m;i,j =
∑

k∈Cn×(m−1)(j)

tn×m;i,k (2.120)

for each i, j ∈ In×(m−1).

The notion of symmetric and anti-symmetric eigenvectors of Tn×m can also be

defined as in Definition 2.18. Now, the main result can be obtained.

Theorem 2.31 For any n ≥ 1,

ζn(s) =
∏

λ∈Σ(Tn×m)

(1 − λsn)−χ(λ) (2.121)

= (det (I − snτn×m))−1 , (2.122)

where χ(λ) is the number of linearly independent symmetric eigenvectors and general-

ized eigenvectors of Tn×m with eigenvalue λ. The zeta function is

ζ(s) =
∞∏

n=1

(det (I − snτn×m))−1 . (2.123)
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2.4 Zeta functions presented in inclined coordinates

This subsection will present the zeta function with respect to the inclined coordinates,

as determined by applying unimodular transformations in GL2(Z). Z2 is known to be

invariant with respect to unimodular transformation. Indeed, Lind [36] proved that

ζ0
B;γ = ζ0

B for any γ ∈ GL2(Z): the zeta function is independent of a choice of basis

for Z2. This section presents the constructions of the trace operator Tγ;n(B) and the

reduced trace operator τγ;n(B), then determines ζB;γ;n and ζB;γ. Finally, ζB;γ is obtained

as

ζB;γ(s) =

∞∏

n=1

(det(I − snτγ;n(B)))−1. (2.124)

As mentioned in (1.29), ζB;γ(s) = ζ0
B(s) in |s| < exp(−g(B)), for any γ ∈ GL2(Z),

which yields a family of identities when ζB;γ is expressed as Taylor series at the origin

s = 0. Furthermore, for some B ⊂ Σ2×2, we may find a γ ∈ GL2(Z) such that ζB;γ

offers a better description of poles and natural boundary of ζ0
B when ζB and ζ̂B fail to

do so, see Example 2.56.

For simplicity, only B ⊂ Σ2×2 with two symbols are considered. The general cases

can be treated analogously.

We begin with the study in the modular group SL2(Z). The results also hold for

any γ ∈ GL2(Z) with det γ = −1.

Recall the modular group

SL2(Z) =






 a b

c d



∣∣∣ a, b, c, d ∈ Z and ad− bc = 1



 .

γ =


 a b

c d


 ∈ SL2(Z) is called a unimodular transformation. Then,

Z
2 = {p(a, c) + q(b, d)|p, q ∈ Z} (2.125)

holds, here Z2 is the set of lattice points (vertices).

Consider the set of all finite-index subgroups L2 of Z2 by

L2 =






 a11 a12

a21 a22


Z

2
∣∣ a11a22 − a12a21 ≥ 1, aij ∈ Z, 1 ≤ i, j ≤ 2



 ,
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here Z2 =






 n1

n2


 |n1, n2 ∈ Z



. An equivalent relation ∼ exists in L2. Two sub-

lattices L =


 a11 a12

a21 a22


Z2 and L′ =


 a′11 a′12

a′21 a′22


Z2 are equivalent if L and L′

determine the same sublattice of Z2: L′ = L.

The following result states the existence of unique Hermite normal upper (or lower)

triangular forms within each equivalent class in L2.

Proposition 2.32 For each L =



 a11 a12

a21 a22



Z
2 ∈ L2, there is a unique



 n l

0 k



Z
2 ∈

L2, n, k ≥ 1 and 0 ≤ l ≤ n−1, and



 k1 0

l1 n1



Z
2 ∈ L2, n1, k1 ≥ 1 and 0 ≤ l1 ≤ n1−1,

such that they are equivalent, where

nk = n1k1 = a11a22 − a12a21. (2.126)

The proof can be found elsewhere [39].

For a given γ =



 a b

c d



 ∈ SL2(Z), the lattice points in γ-coordinates are

(1, 0)γ = (a, b) and (0, 1)γ = (c, d),

and the unit vectors are


 1

0




γ

=


 a

b


 and


 0

1




γ

=


 c

d


 .

Notably, when γ =


 1 0

0 1


, standard rectangular coordinates are used and the sub-

script γ is omitted.

The parallelogram with respect to γ is defined by

Mγ =



 n l

0 k




γ

=



 na la + kc

nb lb+ kd



 .

Let Lγ = MγZ2. Then,

Lγ = γtL (2.127)
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is easily verified.

The Hermite normal form in Proposition 2.32 indicates the existence and uniqueness

of 0 ≤ lj ≤ nj − 1, 1 ≤ kj for j = 1, 2, such that

Lγ =



 a c

b d







 n l

0 k



Z
2 =



 n1 l1

0 k1



Z
2 =



 k2 0

l2 n2



Z
2 (2.128)

with n1k1 = n2k2 = nk. Therefore, the n-th order zeta function of ζ0
B(s) with respect

to γ is defined by

ζB;γ;n(s) = exp


 1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB




 n l

0 k




γ


 snk


 (2.129)

and the zeta function ζB;γ with respect to γ is defined by

ζB;γ(s) ≡
∞∏

n=1

ζB;γ;n(s). (2.130)

Since (2.128) holds, the iterated sum in (2.129) and (2.130) is a rearrangement of

ζ0
B(s). Therefore,

ζB;γ(s) = ζ0
B(s) (2.131)

for |s| < exp(−g(B)). See Proposition 2.44 (i) and another work [36].

The main purpose of this subsection is to establish results that are similar to The-

orems 2.22, 2.26 and 2.31:

ζB;γ;n(s) =
∏

λ∈Σ(Tγ;n)

(1 − λsn)−χγ;n (2.132)

= (det (I − snτγ;n))−1 , (2.133)

where Tγ;n is the trace operator with respect to γ and τγ;n is the associated reduced

trace operator of Tγ;n. The following introduces cylindrical matrix and rotational

symmetrical operator Rγ;n. The proofs of the results are omitted.

In the following, a unimodular transformation γ is given and fixed. Let Zγ;n×m be the

n×m lattice with one side in the γ1 =


 1

0




γ

=


 a

b


 direction and the other side
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in the γ2 =


 0

1




γ

=


 c

d


 direction. The total number of lattice points on Zγ;n×m

is n ·m. The ordering matrix Yγ;n×m = [yγ;n×m;i,j] of local patterns [βγ;α1,α2]0:n−1,0:m−1

is defined on Zγ;n×m. On Zγ;2×2 and Zγ;n×2, Yγ;2×2 is arranged as in (2.2) and Yγ;n×2

is defined recursively as in (2.12) and (2.13), except that the horizontal is now in the

γ1 direction and the vertical is in the γ2 direction.

The γ1-periodic patterns of period n with height m on Zγ;(n+1)×m can be recorded

as Cγ;n×m;i,j in a cylindrical matrix Cγ;n×m. The shift operator σγ is defined to shift

one step to the left in the γ1 direction.

Since the admissible local pattern B is given on square lattice Z2×2, the periodic pat-

terns in γ-coordinates that are B-admissible must be verified on Z2×2. Let Z2×2 ((i, j)γ)

be the square lattice with the left-bottom vertex (i, j)γ = (i′, j′):

Z2×2 ((i, j)γ) = {(i′, j′), (i′ + 1, j′), (i′, j′ + 1), (i′ + 1, j′ + 1)} .

Now, the admissibility is demonstrated to have to be verified on finite square lattices

as follows.

Proposition 2.33 Given γ =


 a b

c d


 ∈ SL2(Z) and n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n−1.

An


 n l

0 k




γ

-periodic pattern U is B-admissible if and only if

U
∣∣
Z2×2((ξ,η)γ )

∈ B (2.134)

for any 0 ≤ ξ ≤ n− 1 and 0 ≤ η ≤ k − 1.

For a given basic set B ⊂ {0, 1}Z2×2 , the definition of trace operator Tγ;n of B has

to be justified, since B is given in a 2 × 2 square lattice in the



 1

0



 and



 0

1





directions and Tγ;n is defined in the


 a

b


 and


 c

d


 directions.

For any γ =


 a b

c d


 ∈ SL2(Z), the height h(γ) of γ is

h = h(γ) = |a| + |b|, (2.135)
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and the width w(γ) of γ is

w = w(γ) = |c| + |d|. (2.136)

The following lemma determines that the first square lattice that occurs in a paral-

lelogram in the γ-coordinates.

Lemma 2.34 For any γ =



 a b

c d



 ∈ SL2(Z), there exists exactly one square lattice

that is determined by a parallelogram with vertices (0, 0)γ, (w, 0)γ, (0, h)γ and (w, h)γ.

The square lattice has either vertices (0, h)γ and (w, 0)γ or vertices (0, 0)γ and (w, h)γ.

The lemma shows that the existence of the parallelogram contains exactly n · k
square lattices, as follows.

Proposition 2.35 Given γ =


 a b

c d


 ∈ SL2(Z), for any n ≥ 1 and k ≥ 1, exactly

n·k square lattices have pairs of vertices that lie on the parallelogram that is determined

by (0, 0)γ, (w + n− 1, 0)γ, (0, h+ k − 1)γ and (w + n− 1, h+ k − 1)γ.

For a given B, γ ∈ SL2(Z) and n ≥ 1, the trace operator Tγ;n(B) acts exactly on n

square lattices which lie in the γ1-direction.

Therefore, consider Zγ;n+w,h+1. From Proposition 2.35, n square lattices have pairs

of vertices on Zγ;n+w,h+1. The γ1-periodic patterns with period n and height h+ 1 are

denoted by Cγ;n+w,h+1.

The trace operator Tγ;n = Tγ;n(B) = [tγ;n;i,j], associated with B, is defined by

tγ;n;i,j = 1 if and only if the pattern in Cγ;n+w,h+1;i,j is B-admissible. (2.137)

As in another study [6], a recursive formula exists for Tγ;n+1 in terms of Cγ;n+w+1,h+1;i,j,

B and γ.

A similar result as in Proposition 2.7 can be obtained; the detailed proof is omitted.

Proposition 2.36 For γ =


 a b

c d


 ∈ SL2(Z), n ≥ 1 and k ≥ 1,

(
Tk

γ;n

)
i,j

is the

number of B-admissible patterns of the form
[
βγ;0βγ;1 · · ·βγ;h+k−1

]

=
[
βγ;0 · · ·βγ;h−1

]
•
[
βγ;1 · · ·βγ;h

]
• · · · •

[
βγ;k · · ·βγ;h+k−1

]
,

45



where

i = ψ
([
βγ;0 · · ·βγ;h−1

])
(2.138)

and

j = ψ
([
βγ;k · · ·βγ;k+h−1

])
. (2.139)

Now, for any n ≥ 1, the associated rotational matrix Rγ;n which is a zero-one

2nh × 2nh matrix is defined by

Rγ;n;i,j = 1 if and only if j = σγ(i), (2.140)

where 1 ≤ i ≤ 2nh is given by (2.138) and 1 ≤ σγ(i) ≤ 2nh is defined by

σγ(i) = ψ
([
σγ(βγ;0)σγ(βγ;1) · · ·σγ(βγ;h−1)

])
. (2.141)

The equivalent class Cγ;n(i), the index set Iγ;n and the cardinal number χγ;n of Iγ;n

can be defined as similar to (2.111)∼(2.113) and are omitted here. Now, the reduced

trace operator is defined as follows.

Definition 2.37 For n ≥ 1, the reduced trace operator τγ;n = [τγ;n;i,j] of Tγ;n is a

χγ;n × χγ;n matrix defined by

τγ;n;i,j =
∑

k∈Cγ;n(j)

tγ;n;i,k (2.142)

for each i, j ∈ Iγ;n.

Now, define

Rγ;n =
n−1∑

l=0

Rl
γ;n. (2.143)

It is easy to verify that all results also hold for any γ ∈ GL2(Z) with det γ = −1.

The main results as in Theorem 2.13 are then obtained.

Theorem 2.38 Given any B ⊂ Σ2×2 and γ =



 a b

c d



 ∈ GL2(Z). Then, for any

n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n− 1,

ΓB







 n l

0 k




γ



 = tr
(
Tk

γ;nR
l
γ;n

)
(2.144)

and
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n−1∑

l=0

ΓB







 n l

0 k




γ



 = tr
(
Tk

γ;nRγ;n

)
. (2.145)

Moreover,

ζB;γ;n(s) = exp

(
1

n

∞∑

k=1

1

k
tr
(
Tk

γ;nRγ;n

)
snk

)
. (2.146)

Finally, by the argument as in Subsections 2.2 and 2.3, the rationality of the n-th

order zeta function ζB;γ;n is established, as in Theorems 2.22, 2.26 and 2.31.

Theorem 2.39 For any B ⊂ Σ2×2 and γ =


 a b

c d


 ∈ GL2(Z),

ζB;γ;n(s) =
∏

λ∈Σ(Tγ;n(B))

(1 − λsn)−χγ;n(λ) (2.147)

= (det (I − snτγ;n))−1 , (2.148)

where the exponent χγ;n(λ) is the number of linearly independent Rγ;n-symmetric eigen-

vectors of Tγ;n(B) with respect to eigenvalue λ. The zeta function of B with respect to

γ-coordinates is

ζB;γ(s) =

∞∏

n=1

(det (I − snτγ;n))−1 . (2.149)

An immediate consequence of (2.149) is the following result, see Proposition 2.44

and [36].

Corollary 2.40 For any B ⊂ Σ2×2 and γ ∈ GL2(Z), the Taylor series for ζB;γ at s = 0

has integer coefficients.

Proof. Since τγ;n has integer entries for any n ≥ 1. The result follows.

We now briefly investigate the zeta functions presented in the lower Hermite normal

form. For any γ =


a b

c d


 ∈ GL2(Z) and n ≥ 1, define

ζ̂B;γ;n(s) = exp


 1

n

∞∑

k=1

n−1∑

l=0

1

k
ΓB




k 0

l n




γ


 snk


 , (2.150)
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where


k 0

l n




γ

=


ka + lc nc

kb+ ld nd


 and

ζ̂B;γ(s) =
∞∏

n=1

ζ̂B;γ;n(s). (2.151)

Denote by

γ̂ =


0 1

1 0


 , (2.152)

the reflection
π

4
with respect to the diagonal axis y = x. Then we have the following

results.

Theorem 2.41 For any γ ∈ GL2(Z),

ζ̂B;γ;n = ζB;γ̂γ;n (2.153)

and

ζ̂B;γ = ζB;γ̂γ . (2.154)

In particular,

ζ̂B = ζB;γ̂. (2.155)

Proof. For any n ≥ 1, k ≥ 1 and 0 ≤ l ≤ n − 1, and γ =


a b

c d


 ∈ GL2(Z), denote

by the lattices

L̂ =



k 0

l n



Z
2 and L̂γ = M̂γZ

2, (2.156)

where the parallelogram M̂γ is defined by

M̂γ =



k 0

l n




γ

. (2.157)

As in (2.127), it is easy to verify

L̂γ = γtL̂, (2.158)

and

L̂ = Lγ̂, L = L̂γ̂ and L̂γ = Lγ̂γ, Lγ = L̂γ̂γ. (2.159)
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Therefore,

ΓB




k 0

l n




 = ΓB




n l

0 k




γ̂


 . (2.160)

Hence, (2.160) implies

ζ̂B;n = ζB;γ̂;n

and

ζ̂B = ζB;γ̂.

Therefore, (2.153) and (2.154) follow. The proof is complete.

Remark 2.42 From Theorem 2.41, for any B ⊂ Σ2×2 there is a family of zeta func-

tions {ζB;γ|γ ∈ GL2(Z)} =
{
ζ̂B;γ|γ ∈ GL2(Z)

}
. In computation, it is much easier to

study ζB and ζ̂B, i.e., the rectangular zeta functions. However, for certain B, some

other γ ∈ GL2(Z) may give a better description, see Example 2.56.

Remark 2.43 For any B ⊂ Σ2×2 and γ ∈ GL2(Z), ζB;γ in (2.149), which is an infinite

product of rational function, is a rearrangement of ζ0
B in (1.6), which is a triple series.

In deriving the rationality of ζB;γ;n, the basic formula used is the power series

∞∑

k=1

tk

k
= − log(1 − t). (2.161)

The other rearrangements of ζ0
B may not have the form as in (2.149). For example, for

any m ≥ 1, denote by

fB;m(s) = exp



∑

n|m

n−1∑

l=0

1

m
ΓB




n l

0 m
n




 sm


 (2.162)

and

fB(s) =
∞∏

m=1

fB;m(s). (2.163)

In general, fB;m(s) is not a rational function of the form as in (1.3). It is also not

clear how to identify the poles or natural boundary of fB(s) from (2.162) and (2.163),

see Subsection 2.5.
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2.5 Analyticity and meromorphic extensions of zeta functions

This subsection studies the analyticity and meromorphisms of zeta functions obtained

in the previous sections. Possible applications to number theory are also indicated. For

simplicity, only B ⊂ Σ2×2 is considered. The general cases can be treated analogously.

2.5.1 Analyticity of zeta functions

Recall the analyticity results of Lind [36]. Given an admissible set B ⊂ Σ2×2, the

analytic region found by Lind is related to quantity g(B), which specifies the growth

rate of admissible periodic patterns. Given an admissible set B ⊂ Σ2×2,

g(B) ≡ lim sup
[L]→∞

1
[L]

log ΓB(L) (2.164)

= lim
n→∞

sup
[L]≥n

log ΓB(L)

[L]
.

Recall the results of Lind [36] that are related to analyticity of zeta functions.

Proposition 2.44 According to Lind, [36]

(i) The zeta function

ζ0
B(s) = exp

(
∑

L∈L2

ΓB(L)

[L]
s[L]

)
(2.165)

has radius of convergence exp(−g(B)) and is analytic in |s| < exp(−g(B)).

(ii) ζ0
B satisfies the product formula,

ζ0
B(s) =

∏

α

π2(s
|α|), (2.166)

where the product is taken over all admissible periodic patterns α with respect to B,

and

π2(s) =
∞∑

n=1

P (n)sn, (2.167)

where P (n) is the partition function.

(iii) The Taylor series for ζ0
B(s) has integer coefficients.

Now, Propositions 2.44 and 2.32 and Theorem 2.41 imply
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Theorem 2.45 For any admissible set B ⊂ Σ2×2 and γ ∈ GL2(Z),

ζ0
B(s) = ζB;γ(s) = ζ̂B;γ(s) (2.168)

for |s| < exp(−g(B)). Moreover, ζB;γ and ζ̂B;γ have the same (integer) coefficients in

their Taylor series expansions around s = 0.

Proof. Since
∑

L∈L2

ΓB(L)

[L]
s[L]

is absolutely convergent in |s| < exp(−g(B)), for each γ ∈ GL2(Z),

∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB







 n l

0 k




γ



 snk

and
∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ΓB




 k 0

l n




γ


 snk

are absolutely convergent in |s| < exp(−g(B)). Hence (2.168) holds. From (2.168) and

Proposition 2.44 (iii) or Corollary 2.40, ζB;γ and ζ̂B;γ have the same (integer) coefficients

in their Taylor series expansions around s = 0. The proof is complete.

Remark 2.46 The set of identities of (2.168) may lead some interesting results in

number theory. See examples in next subsection.

The rest of subsection discusses the meromorphicity of zeta function ζB;γ. We need

the following notations.

Definition 2.47

(i) Given any B ⊂ Σ2×2 and γ ∈ GL2(Z). The meromorphic domain MB;γ of ζB;γis

defined by

MB;γ = {s ∈ C|ζB;γ(s) is meromorphic at s}. (2.169)

(ii) The pole set PB;γ of ζB;γ is defined by

PB;γ = {s ∈ C|1 − λsn = 0, where λ ∈ Σ(Tγ;n(B)), χγ;n(λ) ≥ 1 and n ≥ 1}

= {s ∈ C|1 − λsn = 0, where λ ∈ Σ(τB;γ;n) and n ≥ 1}.
(2.170)

(iii) ζB;γ has a natural boundary ∂MB;γ if every point in ∂MB;γ is singular.
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Remark 2.48 ζB;γ has a natural boundary if

PB;γ ⊇ ∂MB;γ . (2.171)

In studying the infinite products ζB;γ(s), the associated infinite series

ξB;γ(s) ≡
∞∑

n=1




∑

λ∈Σ(Tγ;n)

λχγ;n(λ)


 sn (2.172)

is useful. Denote by

λ∗B;γ ≡ lim sup
n→∞




∑

λ∈Σ(Tγ;n)

|λ|χγ;n(λ)




1
n

. (2.173)

Let

S∗
B;γ ≡

(
λ∗B;γ

)−1
. (2.174)

Therefore, ξB;γ absolutely converges for |s| < S∗
B;γ.

Furthermore, the reciprocal of ζB;γ,

ζ−1
B;γ ≡

∞∏

n=1

∏

λ∈Σ(Tγ;n)

(1 − λsn)χγ;n(λ) (2.175)

is absolutely convergent in |s| < S∗
B;γ. The similar notations can also be introduced to

ζ̂B;γ, the details are omitted here.

Accordingly, zeta functions ζB;γ have the following meromorphic property.

Theorem 2.49 Given an admissible set B ⊂ Σ2×2 and γ ∈ GL2(Z). Then zeta func-

tion ζB;γ is meromorphic in |s| < S∗
B;γ and may have poles in PB;γ∩

{
s ∈ C| |s| < S∗

B;γ

}
,

i.e.,
{
s ∈ C| |s| < S∗

B;γ

}
⊂ MB;γ.

Proof. For each s /∈ PB;γ and |s| < S∗
B;γ, ζB;γ is convergent and has an isolated pole in

PB;γ when |s| < S∗
B;γ, and then is meromorphic in |s| < S∗

B;γ . The proof is complete.

Theorem 2.50 Given admissible set B ⊂ Σ2×2. For any γ and γ′ in GL2(Z), the zeta

functions ζB;γ = ζB;γ′ in |s| < min(S∗
B;γ,S∗

B;γ′).

Proof. Since ζB;γ and ζB;γ′ are meromorphic functions and are equal to ζ0
B on |s| <

exp(−g(B)), by uniqueness theorem of meromorphic functions [46], they are equal on

|s| < min(S∗
B;γ,S∗

B;γ′).

52



Remark 2.51 Given B ⊂ Σ2×2, can we find a γ ∈ GL2(Z) such that ζB;γ is the

maximum meromorphic extension of ζ0
B, i.e, for any meromorphic extension ζ ′B of ζ0

B,

ζB;γ is a meromorphic extension of ζ ′B? In particular, for any γ′ ∈ GL2(Z), MB;γ′ ⊆
MB;γ? Furthermore, is there γ ∈ GL2(Z) such that ζB;γ admits a natural boundary?

These two problems are closely related. The complete answers are not clear. See

examples studied in Subsection 2.5.2 and Subsection 2.6.

2.5.2 EXAMPLES

This subsection presents some examples to elucidate the methods described above.

Example 2.52 Consider

B =
{

0

0 0

0

,
1

0 0

1

,
0

1 1

0

,
1

1 1

1
}
. (2.176)

Clearly,

H2 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




and V2 =




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1



. (2.177)

First, ΓB




 n l

0 k




 and ΓB




 k 0

l n




 are computed directly as follow:

ΓB




 n l

0 k




 = 2k for any 0 ≤ l ≤ n− 1 (2.178)

and

ΓB







 k 0

l n







 = 2(n,l) for any 1 ≤ l ≤ n− 1, (2.179)

where (n, l) is the greatest common divisor of n and l, are easily verified.

Consequently, for any n ≥ 1,

ζn(s) = exp

(
1
n

∞∑
k=1

n2k

k
skn

)
= (1 − 2sn)−1
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and the zeta function ζ(s) =
∞∏

n=1

(1 − 2sn)−1 with S∗ = 1, which was obtained by Lind

in [36].

However, (2.179) implies

ζ̂n(s) = exp

((
1
n

n∑
l=1

2(n,l)

) ∞∑
k=1

skn

k

)

= (1 − sn)−χ̂n, (2.180)

and the zeta function ζ̂(s) =
∞∏

n=1

(1 − sn)−χ̂n , where

χ̂n =
1

n

n∑

l=1

2(n,l). (2.181)

Now, it is easy to check that lim
n→∞

(χ̂n)
1
n = 2. Therefore, Ŝ∗ = 1

2
as in (2.173) and

(2.174) for ζ̂(s).

Theorem 2.45 implies that the zeta function ζ0
B(s) of B given by (2.176) is

ζ0
B(s) =

∞∏

n=1

(1 − 2sn)−1 =

∞∏

n=1

(1 − sn)−χ̂n (2.182)

in |s| < 1
2
. The natural boundary of (2.182) is |s| = 1 and ζ has poles

{
2−

1
n e2πij/n : 0 ≤ j ≤ n− 1, n ≥ 1

}
,

as described elsewhere [36].

However, (2.177) implies

T2 = V2 and T̂2 = H2.

Furthermore,

Tn =




1 0 · · · 0 1

0 0 · · · 0 0
...

...

0 0 · · · 0 0

1 0 · · · 0 1




2n×2n

(2.183)

and
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T̂n = I2n , (2.184)

where I2n is the 2n × 2n identity matrix. Therefore,

ζ̂n(s) = (1 − sn)−χn, (2.185)

where χn is the cardinal number of In. Now, (2.181) and (2.185) imply χ̂n = χn, i.e.,

χn =
1

n

n∑

l=1

2(n,l). (2.186)

Note that (2.186) also follows from the identity (2.182).

Moreover, (2.184) implies

ζ̂n(s) = exp

(
1

n
tr(Rn) log(1 − sn)−1

)
.

Therefore, (2.185) implies

1

n
tr(Rn) = χn. (2.187)

Hence,

tr(Rn) =
n∑

l=1

2(n,l). (2.188)

The following example can also be solved explicitly and is helpful in elucidating the

natural boundary and location of the poles of the zeta function.

Example 2.53 Consider

H2 =




1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0



. (2.189)

Then,

V2 =




1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0




= G⊗G, (2.190)
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where

G =


 1 1

1 0


 (2.191)

is the one-dimensional golden-mean matrix, which has eigenvalues

g = 1+
√

5
2

and g = 1−
√

5
2

= −g−1. (2.192)

Now,

H̃2 = V2 and Ṽ2 = H2. (2.193)

Then,

T2 = V2 ◦ H̃2 = V2 = G⊗G

can be verified, and for any n ≥ 2,

Tn = G⊗G⊗ · · · ⊗G⊗︸ ︷︷ ︸
n−1 times ⊗

G =
n−1
⊗ G, (2.194)

which is the n− 1 times Kronecker product of G.

The spectrum of Tn is

Σ(Tn) = {gn−jgj |0 ≤ j ≤ n}, (2.195)

which has n+1 members. The number of linearly independent symmetric eigenvectors

of gn−jgj is

χn,j = χ(gn−jgj)

=
∑

i∈In

λn,i=gn−jgj

1.
(2.196)

Clearly, χn,0 = χn,n = 1. Furthermore for any 1 ≤ j ≤ n−1, by Burnside’s Lemma,

χn,j =
1

n

∑

d|(j,n−j)

φ((j, n− j)/d)C
nd/(j,n−j)
jd/(j,n−j) , (2.197)
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where φ is the Euler totient function (2.36). The detailed proof of (2.197) is omitted

for brevity.

Therefore,

ζn(s) =

n∏

j=0

(
1 − gn−jgjsn

)−χn,j (2.198)

and

ζ(s) =
∞∏

n=1

ζn(s). (2.199)

From (2.197),

lim sup
n→∞

max
0≤j≤n

(∣∣gn−jgjχn,j

∣∣) 1
n = 2,

which implies S∗ = 1
2

in (2.174).

Now, consider T̂n and the associated zeta function ζ̂(s). Clearly,

T̂2 = H2 ◦ Ṽ2 = H2.

To study higher-order T̂n, n ≥ 3, the recursive formula of Hn must be obtained. Let

Hn =


 Hn;1 Hn;2

Hn;3 Hn;4


 . (2.200)

Then,

Hn+1 =




Hn;1 Hn;2 Hn;1 0

Hn;3 Hn;4 Hn;3 0

Hn;1 Hn;2 Hn;1 0

0 0 0 0




Now, for n ≥ 2,

T̂n =



 Hn;1 Hn;2

Hn;3 Hn;4



 ◦




n−2
⊗


 1 1

1 1


 n−2

⊗


 1 0

1 0




n−2
⊗


 1 1

0 0


 n−2

⊗


 1 0

0 0







. (2.201)
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The remaining matrix of T̂n can be verified to be a full matrix Er̂n
after the zero

rows and columns have been deleted, where r̂n is the sum of entries in the first row

of T̂n. Hence, the maximum eigenvalue λ̂n of T̂n equals r̂n, the other eigenvalues are

zeros.

From (2.201), it is easy to verify

λ̂n+1 = λ̂n + λ̂n−1 (2.202)

with λ̂2 = 3 and λ̂3 = 4. Therefore,

ζ̂n(s) = (1 − λ̂ns
n)−1 (2.203)

and

ζ̂(s) =
∞∏

n=1

(1 − λ̂ns
n)−1. (2.204)

Now, λ̂n and gn must be compared. Let

gn = αng + βn

with α2 = β2 = 1. Then, αn+1 = αn + βn and βn+1 = αn. That

λ̂n = αn + 2βn

can be verified and

λ̂n+1 − gn+1 = −
(

(
√

5 − 1)αn+1 + 2βn

(
√

5 − 1)αn + 2βn−1

)
(λ̂n − gn). (2.205)

Equation (2.205) implies

λ̂
− 1

2n

2n < g−1 < λ̂
− 1

2n+1

2n+1 . (2.206)

Equation (2.206) implies that the meromorphic extension ζ̂ of ζ0
B satisfies Ŝ∗ = g−1 and

has poles on
{
λ̂
− 1

2n

2n eπij/n : 0 ≤ j ≤ 2n− 1, n ≥ 1
}

with the natural boundary |s| = g−1.

Furthermore, (2.199) and (2.204) lead an identity involving χn,j and g, the detail is

omitted.
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2.6 Equations on Z2 with numbers in a finite field

This subsection briefly discusses the equations on Z2 with numbers in a finite field, see

[31; 36; 47]. The problems can be studied by applying the methods that were developed

in the previous subsections. Lind [36] considered the following example.

Example 2.54 Consider F2 = {0, 1} and

X =
{
x ∈ F Z

2

2 : xi,j + xi+1,j + xi,j+1 = 0 for all i, j ∈ Z

}
. (2.207)

In this case, X is a compact group with coordinate-wise operations, and it is invariant

under the natural Z2-shift action σ.

The equation

xi,j + xi+1,j + xi,j+1 = 0 (2.208)

can be interpreted as a pattern generation problem on L-shape lattices: . Indeed,

the solutions of (2.208) are given by

B(L) =

{
0

0 0 ,

1

0 1 ,

0

1 1 ,

1

1 0

}
, (2.209)

which consists of all even patterns on L-shape lattices. B(L) can be extended to Z2×2

as

B =
{

0

0 0

0

,
0

0 0

1

,
1

0 1

0

,
1

0 1

1

,
0

1 1

0

,
0

1 1

1

,
1

1 0

0

,
1

1 0

1
}
. (2.210)

That

Σ(B) = X (2.211)

can be easily verified.

Therefore,

H2 = H2(B) =




1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0




= V2 (2.212)

and
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H̃2 =




1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0




= Ṽ2. (2.213)

According to (2.54),

T1 =


 1 0

1 0


 and ζ1(s) = 1

1−s
.

For T2 = V2 ◦ H̃2, (2.212) and (2.213) imply

T2 =




1 0 0 0

0 0 0 1

0 0 0 1

1 0 0 0




and τ2 =




1 0 0

0 0 1

1 0 0


 , (2.214)

with

ζ2(s) =
1

1 − s2
.

In general, for any n ≥ 1, induction can be used to show that each row of Tn has

exactly a single 1 and each column has either two 1s or all 0s. Therefore, the eigenvalue

λ of Tn is |λ| = 1 or λ = 0. With a rotationally symmetric eigenvector, Tn generates

the graph with equivalent classes Cn(i) as vertices and has m(n) disjoint cycles; each

cycle has period pn,k ≥ 1, 1 ≤ k ≤ m(n). In computing, it is more efficient to compute

λ ∈ Σ(τn) with algebraic multiplicity χ(λ).

The following can be demonstrated

ζn(s) =

m(n)∏

k=1

1

(1 − ρn,ksn) · · · (1 − ρ
pn,k−1
n,k sn) (1 − sn)

=

m(n)∏

k=1

1

1 − snpn,k
, (2.215)

where ρn,k = e
2πi

pn,k . Hence,

ζ(s) =

∞∏

n=1

m(n)∏

k=1

1

1 − snpn,k
. (2.216)

For n = 1 to 20, the numbers and periods of cycles are listed in Table 2.1.
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n 1 2 3 4 5 6 7 8

p

q

1

1

1

1

1

2

1

1

1 3

1 1

1 2

2 1

1 7

3 1

1

1

9 10 11 12 13

1 7

2 4

1 3 6

1 1 4

1 31

1 3

1 2 4

2 1 5

1 63

1 5

14 15 16 17

1 2 7 14

3 4 1 20

1 3 15

4 4 72

1

1

1 5 15

1 3 256

18 19 20

1 2 7 14

2 1 4 259

1 511

1 27

1 3 6 12

1 1 4 272

p : the period of cycle.

q = q(p) : the number of cycles with period p.

Table 2.1.

From Table 2.1, ζn can be written for 1 ≤ n ≤ 20. For example,

ζ14 =
1

(1 − s14)3 (1 − s28)4 (1 − s98) (1 − s196)20 .

Up to n = 20, the Taylor expansion of (2.216) at s = 0, which recovers Lind’s result

[36] (p.438), is

ζB(s) = 1 + s+ 2s2 + 4s3 + 6s4 + 9s5 + 16s6 + 24s7 + 35s8 + 54s9 (2.217)

+78s10 + 110s11 + 162s12 + 226s13 + 317s14 + 446s15 + 612s16

+834s17 + 1146s18 + 1543s19 + 2071s20 + · · · .

Further investigation is needed to understand τn and pn,k for large n. The results will

appear elsewhere.
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Lind [36] showed that the zeta function ζ0 defined by (2.207) is analytic in |s| < 1.

By (2.216), all poles of ζ appear on |s| = 1. Therefore, ζ is analytic in |s| < 1 with

natural boundary |s| = 1.

In the following example, the harmonic patterns on square-cross lattice L: ,

which were studied by Ledrappier [31], are investigated.

Example 2.55 Let F2 = {0, 1} and

X =
{
x ∈ F Z

2

2 : xi,j = xi−1,j + xi,j−1 + xi+1,j + xi,j+1 for all i, j ∈ Z

}
. (2.218)

As in Example 2.54, the basic set on L is

B(L) =





x0,0x
−1,0

x0,−1

x1,0

x0,1

∈ F L

2 : x0,0 + x−1,0 + x0,−1 + x1,0 + x0,1 = 0



 , (2.219)

which consists of all even patterns on a square-cross lattice. B(L) can be extended to

Z3×3 as

B =





x0,0x

−1,0

x0,−1

x1,0

x0,1x
−1,1

x1,1

x
−1,−1

x1,−1

∈ F
Z3×3

2 : x0,0 + x−1,0 + x0,−1 + x1,0 + x0,1 = 0





. (2.220)

Then, that

Σ(B) = X (2.221)

can be easily verified.

Now, by (2.108), the associated trace operator Tn×3(B) can be constructed for n ≥ 1.

Furthermore, the rotational matrix Rn×2 is defined by (2.109). The number χn×2 of

the equivalent classes of Rn×2 can be shown to be the number of n-bead necklaces with

four colors. The formulae for χn×2, n ≥ 1, is given by (2.113) with m = 3.

As in Example 2.54, the reduced trace operator τn×3 of Tn×3 is more convenient for

computing the n-th order zeta function ζn. The definition and results of the reduced

trace operator for more symbols on larger lattices are similar to Definition 2.23 and

Theorem 2.26.
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By the same argument as in Example 2.54, let the graph generated by Tn×3 have

m(n) disjoint cycles, each of period pn,k ≥ 1, for 1 ≤ k ≤ m(n). Then, the n-th order

zeta function can be represented as

ζn(s) =

m(n)∏

k=1

1

1 − snpn,k
. (2.222)

Hence,

ζ(s) =

∞∏

n=1

m(n)∏

k=1

1

1 − snpn,k
. (2.223)

Table 2.2 presents the numbers and periods of cycles of Tn×3. For brevity, only

n = 1 to 9 are listed.

n 1 2 3 4 5

p

q

1 3

1 1

1 3

1 3

1 2 3 6

2 2 2 2

1 3 6

1 7 8

1 3 5 15

7 7 9 9

6 7 8

1 2 3 4 6 12

2 6 6 8 10 48

1 3 9

1 1 260

1 3 6 12

1 7 88 640

9

1 2 3 6 7 14 21 42

2 2 2 2 260 390 260 390

p : the period of cycle.

q = q(p) : the number of cycles with period p.

Table 2.2.

Up to n = 16, the Taylor expansion of (2.223) at s = 0 is

ζB(s) = 1 + s+ 2s2 + 5s3 + 7s4 + 17s5 + 32s6 + 46s7 + 84s8 + 140s9 (2.224)

+229s10 + 384s11 + 615s12 + 938s13 + 1483s14 + 2353s15 + 3563s16 + · · · .
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The analyticity and the natural boundary of the zeta function in (2.223) need further

investigation. The results will appear elsewhere.

In the following example, we study the equation on the diagonal lattice L: and

show that the rectangular zeta function ζ = ζ̂ fails to describe poles and natural

boundary of ζ0 but ζγ works well with γ =



 1 1

0 1



.

Example 2.56 Let F2 = {0, 1} and

X =
{
x ∈ F Z

2

2 : xi,j + xi+1,j+1 = 0 for all i, j ∈ Z

}
. (2.225)

It is clear that the solutions of xi,j + xi+1,j+1 = 0 mod 2 are given by

B =
{

0

0 0

0

,
1

0 0

0

,
0

0 1

0

,
1

0 1

0

,
0

1 0

1

,
1

1 0

1

,
0

1 1

1

,
1

1 1

1
}
. (2.226)

Now,

H2 = V2 =




1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1




(2.227)

and

H̃2 = Ṽ2 =




1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1



. (2.228)

It is easy to verify

T1 = T̂1 =



 1 0

0 1



 = Rt
1 (2.229)

and

T2 = T̂2 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




= Rt
2. (2.230)

Furthermore, for n ≥ 3, we show that

Tn = T̂n = Rt
n. (2.231)
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Indeed, by the recursive formula of Vn, it can be verified that Vn;i,j = 1 if and only if




i = 2j − 1 and 2j for 1 ≤ j ≤ 2n−1,

i = 2(i− 2n−1) − 1 and 2(i− 2n−1) for 2n−1 + 1 ≤ j ≤ 2n.
(2.232)

Therefore, by applying (2.26), Tn = [tn;i,j] with tn;i,j = 1 if and only if





i = 2j − 1 for 1 ≤ j ≤ 2n−1,

i = 2(i− 2n−1) for 2n−1 + 1 ≤ j ≤ 2n.
(2.233)

Hence,

Tn = Rt
n. (2.234)

Therefore,

ζn(s) =
1

(1 − sn)χn
, (2.235)

where χn is the cardinal number of In, and

ζ(s) =
∞∏

n=1

1

(1 − sn)χn
. (2.236)

As in Example 2.52, lim
n→∞

χ
1
n
n = 2 and then S∗ = 1

2
.

On the other hand, consider

B′ =

{
0

0

0

0

,
0

0

1

1

,
1

1

0

0

,
1

1

1

1
}
. (2.237)

Then,

Σ(B′) = Σ(B). (2.238)

In particular,

ΓB′




 n l

0 k




γ


 = 2k. (2.239)

Therefore, as in Example 2.52,

ζγ;n =
1

1 − 2sn
.

We can also use the construction of Tγ;n in Subsection 2.4 to study ζγ;n. Indeed, it

is easy to see that
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Tγ;1 =




1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1



. (2.240)

Therefore,

ζγ;1 =
1

1 − 2s
. (2.241)

Furthermore, for any n ≥ 2, after deleting the zero columns and rows of Tγ;n, Tγ;n is

reduced to Tγ;1. Therefore,

ζγ;n =
1

1 − 2sn
. (2.242)

Hence,

ζγ =

∞∏

n=1

1

1 − 2sn
. (2.243)

Then, ζγ has natural boundary with |s| = 1 and has poles

{
2−

1
n e2πij/n : 0 ≤ j ≤ n− 1, n ≥ 1

}
.

Motivated by Examples 2.54∼2.56, given a finite field F and a set of finite lattice

points L ⊂ Z2, consider the equation

∑
(i,j)∈L

xi,j = 0 in F. (2.244)

Then, denote the solution set of (2.244) on Z2 by

X(L) =




x ∈ F Z
2

:
∑

(i,j)∈L

xi+k,j+l = 0, (k, l) ∈ Z
2




 . (2.245)

Denoted by

B(L) =



x : L → F :

∑

(i,j)∈L

xi,j = 0



 , (2.246)

B(L) ⊂ F L is the set of admissible local patterns.
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Let Zm×m be the smallest rectangular lattice that contains L. Let B be the set of

all admissible patterns on Zm×m that can be generated from B(L). Then, the following

can be easily verified;

X(L) = Σ(B). (2.247)

The results presented in previous subsections apply to Σ(B) and then to X(L). The

above method can also be applied to any finite set of equations defined on L with

numbers in F , since the solution set B(L) ⊂ F L and can be extended to a unique

admissible set B ⊆ F Zm×m .

2.7 Square lattice Ising model with finite range interaction

This subsection extends the results presented in previous sections to the thermody-

namic zeta function for a square lattice Ising model with finite range interaction, see

Ruelle [45] and Lind [36]. For simplicity, the square lattice Ising model with nearest

neighbor interaction is considered.

The square lattice Ising model with external field H, the coupling constant J in

the horizontal direction, and the coupling constant J ′ in the vertical direction is now

considered. Each site (i, j) of the square lattice Z2 has a spin ui,j with two possible

values, +1 or −1. First, assume that the state space is {+1,−1}Z
2
. Given a state

U = {ui,j}i,j∈Z in {+1,−1}Z
2
, denoted by Um×n = U

∣∣
Zm×n

= {ui,j}0≤i≤m−1,0≤j≤n−1.

Define the Hamiltonian (energy) E(Um×n) for Um×n by

E(Um×n) = −J
∑

0≤i≤m−2
0≤j≤n−1

ui,jui+1,j − J ′
∑

0≤i≤m−1
0≤j≤n−2

ui,jui,j+1 −H
∑

0≤i≤m−1
0≤j≤n−1

ui,j. (2.248)

Therefore, the partition function Zm×n is defined by

Zm×n =
∑

Um×n

∈{+1,−1}Zm×n

exp


K

∑

0≤i≤m−2
0≤j≤n−1

ui,jui+1,j + L
∑

0≤i≤m−1
0≤j≤n−2

ui,jui,j+1 + h
∑

0≤i≤m−1
0≤j≤n−1

ui,j


 ,

(2.249)
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where K = J /kBT ,L = J ′/kBT , h = H/kBT , kB is Boltzmann’s constant and T is

the temperature.

To the thermodynamic zeta function, given L =


 n l

0 k


Z2 ∈ L2, the partition

function for the


 n l

0 k


-periodic states is defined by

ZL = Z




 n l

0 k




 =

∑

U∈fixL({+1,−1}Z2)

exp


K

∑

0≤i≤n−1
0≤j≤k−1

ui,jui+1,j + L
∑

0≤i≤n−1
0≤j≤k−1

ui,jui,j+1 + h
∑

0≤i≤n−1
0≤j≤k−1

ui,j


 .

(2.250)

Then, as in (1.31), the thermodynamic zeta function for the square lattice Ising

model with nearest neighbor interaction can be defined by

ζ0(s) ≡ ζ0
Ising(s) ≡ exp

(
∑

L∈L2

ZL
s[L]

[L]

)

= exp




∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
Z







 n l

0 k







 snk



 . (2.251)

To simplify the notation, the subscript Ising is omitted in this subsection whenever

such omission will not cause confusion.

As (1.8) and (1.9), for any n ≥ 1, define the n-th order thermodynamic zeta function

ζIsing;n(s) as

ζn(s) ≡ ζIsing;n(s) ≡ exp



 1

n

∞∑

k=1

n−1∑

l=0

1

k
Z







 n l

0 k







 snk



 ; (2.252)

the thermodynamic zeta function ζIsing(s) is given by

ζ(s) ≡ ζIsing(s) ≡
∞∏

n=1

ζn(s). (2.253)
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Since the discussion of ζn(s) is similar to that in Subsections 2.1 and 2.2, only the

parts of the arguments that differ are emphasized. The results are outlined here and

the details are left to the reader.

According to the spin ui,j ∈ {+1,−1} for i, j ∈ Z, replacing all the symbols ”0”

in (2.1) and (2.2) with the symbol ”−1” yields the ordering matrices XIsing;2×2 and

YIsing;2×2.

The ordering matrix XIsing;n×2, YIsing;n×2 and the cylindrical ordering matrix

CIsing;n×2 can be obtained in the same way. The recursive formulae for generating

YIsing;n×2 form YIsing;2×2 are as in (2.13).

Given L ∈ L2, (2.250) yields

ZL =
∑

U∈fixL({+1,−1}Z2)

∏

0≤i≤n−1

0≤j≤k−1

exp [ui,j (Kui+1,j + Lui,j+1 + h)] . (2.254)

Based on (2.254), the associated horizontal transition matrix HIsing;2 = [aI;i,j]4×4 and

the vertical transition matrix VIsing;2 = [bI;i,j]4×4 are defined as

HIsing;2 =




eK+L−h e−K−L−h eK−L−h e−K+L−h

e−K+L−h eK−L−h e−K−L−h eK+L−h

eK+L+h e−K−L+h eK−L+h e−K+L+h

e−K+L+h eK−L+h e−K−L+h eK+L+h




= [aI;i,j]4×4 , (2.255)

and

VIsing;2 =




eK+L−h e−K−L−h e−K+L−h eK−L−h

eK−L−h e−K+L−h e−K−L−h eK+L−h

eK+L+h e−K−L+h e−K+L+h eK−L+h

eK−L+h e−K+L+h e−K−L+h eK+L+h




= [bI;i,j]4×4 , (2.256)

respectively. Similar to (2.18) and (2.19), the associated column matrices H̃Ising;2 of

HIsing;2 and ṼIsing;2 of VIsing;2 are defined as

69



H̃Ising;2 =




aI;1,1 aI;2,1 aI;1,2 aI;2,2

aI;3,1 aI;4,1 aI;3,2 aI;4,2

aI;1,3 aI;2,3 aI;1,4 aI;2,4

aI;3,3 aI;4,3 aI;3,4 aI;4,4




(2.257)

and

ṼIsing;2 =




bI;1,1 bI;2,1 bI;1,2 bI;2,2

bI;3,1 bI;4,1 bI;3,2 bI;4,2

bI;1,3 bI;2,3 bI;1,4 bI;2,4

bI;3,3 bI;4,3 bI;3,4 bI;4,4



. (2.258)

Therefore, the trace operators TIsing;2 and T̂Ising;2 are defined as

TIsing;2 = VIsing;2 ◦ H̃Ising;2 and T̂Ising;2 = HIsing;2 ◦ ṼIsing;2. (2.259)

The recursive formulas for TIsing;n and T̂Ising;n are similar to (2.26). Constructing

TIsing;2 and the rotational matrix Rn yield a similar result to that of Theorem 2.13 for

Z







 n l

0 k







.

Theorem 2.57 Given n ≥ 2, 0 ≤ l ≤ n− 1, k ≥ 1,

Z




 n l

0 k




 = tr

(
Tk

Ising;nR
l
n

)
. (2.260)

Furthermore, let

TIsing;1 =


 aI;1,1aI;1,1 aI;2,2aI;2,2

aI;3,3aI;3,3 aI;4,4aI;4,4


 ;

then

Z




 1 0

0 k




 = tr

(
Tk

Ising;1

)
for k ≥ 1.

From Theorem 2.57, the n-th order thermodynamic zeta function ζIsing;n can now

be obtained as follows.
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Theorem 2.58 For any n ≥ 1,

ζIsing;n = exp

(
1

n

∞∑

k=1

tr
(
Tk

Ising;nRn

)
snk

)
. (2.261)

The Rn-symmetric property of TIsing;n is essential to the rationality of n-th order

thermodynamic zeta function ζIsing;n.

Proposition 2.59 For any n ≥ 1,

TIsing;n;σl(i),σl(j) = TIsing;n;i,j (2.262)

for all 1 ≤ i, j ≤ 2n and 0 ≤ l ≤ n− 1.

Similarly, the associated reduced trace operator τIsing;n can be defined as in (2.100).

Finally, by the arguments presented in Subsection 2.2, the rationality of the n-th order

thermodynamic zeta function ζIsng;n is established as follows.

Theorem 2.60 For n ≥ 1,

ζIsing;n(s) =
∏

λ∈Σ(TIsing;n)

(1 − λsn)−χ(λ) (2.263)

= (det (I − snτIsing;n))
−1 , (2.264)

where χ(λ) is the number of linear independent symmetric eigenvectors and generalized

eigenvectors of TIsing;n with eigenvalue λ. Furthermore,

ζIsing(s) =

∞∏

n=1

(det (I − snτIsing;n))
−1 . (2.265)

The state space {+1,−1}Z
2

is extended to the shift of finite type given by B ⊆

{+1,−1}Z2×2 . Given B ⊆ {+1,−1}Z2×2 and L =


 n l

0 k


Z2 ∈ L2, the partition

function for B with


 n l

0 k


-periodic patterns is defined as

ZL(B) = ZB




 n l

0 k




 =
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∑

U∈fixL(Σ(B))

exp


K

∑

0≤i≤n−1

0≤j≤k−1

ui,jui+1,j + L
∑

0≤i≤n−1

0≤j≤k−1

ui,jui,j+1 + h
∑

0≤i≤n−1

0≤j≤k−1

ui,j


 , (2.266)

where un,j = u0,j, 0 ≤ j ≤ k − 1 and ui,k = ui,0, 0 ≤ i ≤ n − 1. Hence, the

thermodynamic zeta function is defined by

ζ0
Ising;B(s) ≡ exp

(
∑

L∈L2

ZL(B)
s[L]

[L]

)

= exp




∞∑

n=1

∞∑

k=1

n−1∑

l=0

1

nk
ZB







 n l

0 k







 snk



 . (2.267)

Similar to (2.252) and (2.253), for any n ≥ 1, the n-th order thermodynamic zeta

function ζIsing;B;n(s) is defined as

ζIsing;B;n(s) ≡ exp


1

n

∞∑

k=1

n−1∑

l=0

1

k
ZB




 n l

0 k




 snk


 (2.268)

and the thermodynamic zeta function ζIsing;B(s) is given by

ζIsing;B(s) ≡
∞∏

n=1

ζIsing;B;n(s). (2.269)

Equations (2.15), (2.255) and (2.256) are combined to define the associated hori-

zontal transition matrix and vertical transition matrix as follows.

HIsing;2(B) = HIsing;2 ◦ H2(B) (2.270)

and

VIsing;2(B) = VIsing;2 ◦ V2(B). (2.271)

Therefore, the trace operator TIsing;n(B) and the associated reduced trace operator

τIsing;n(B) can be defined for all n ≥ 1 as above. Since all arguments for ζIsing;B;n are

similar to those above; the final result is as follows.
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Theorem 2.61 For n ≥ 1,

ζIsing;B;n(s) =
∏

λ∈Σ(TIsing;n(B))

(1 − λsn)−χ(λ) (2.272)

= [det (I − snτIsing;n(B))]−1 , (2.273)

where χ(λ) is the number of linear independent symmetric eigenvectors and generalized

eigenvectors of TIsing;n(B) with eigenvalue λ. Moreover,

ζIsing;B(s) =
∞∏

n=1

[det (I − snτIsing;n(B))]−1 . (2.274)

Remark 2.62 The results in this subsection hold for models with finite range interac-

tion.

3 Zeta functions for higher-dimensional shifts of finite type

This section studies the zeta functions for d-dimensional shifts of finite type, d ≥ 3.

3.1 Three-dimensional shifts of finite type

In this subsection, the zeta functions for three-dimensional shifts of finite type are

investigated.

3.1.1 Periodic patterns, trace operator and rotational matrices

This subsection studies the properties of the periodic patterns and derives trace op-

erator and rotational matrices. Furthermore, ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 can be expressed

in terms of the trace of the products of the trace operator and rotational matrices .

For clarity, two symbols on 2 × 2 × 2 lattice Z2×2×2 are examined first. For given

positive integers N1, N2 and N3, the rectangular lattice ZN1×N2×N3 is defined by

ZN1×N2×N3 = {(n1, n2, n3) : 0 ≤ ni ≤ Ni − 1, 1 ≤ i ≤ 3} .

In particular,

Z2×2×2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .
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Define the set of all global patterns on Z3 with two symbols {0, 1} by

Σ3
2 = {0, 1}Z

3

=
{
U | U : Z

3 → {0, 1}
}
.

Here, Z3 = {(n1, n2, n3) : n1, n2, n3 ∈ Z}, the set of all three-dimensional lattice points

(vertices). The set of all local patterns on ZN1×N2×N3 is defined by

ΣN1×N2×N3 = {U |ZN1×N2×N3
: U ∈ Σ3

2},

and a local pattern of a global pattern U on ZN1×N2×N3 is denoted by

UN1×N2×N3 ≡ U |ZN1×N2×N3
= (uα1,α2,α3)0≤αi≤Ni−1,1≤i≤3 ,

where uα1,α2,α3 ∈ {0, 1}. To simplify the notation, the subscripts of UN1×N2×N3 and

(uα1,α2,α3)0≤αi≤Ni−1,1≤i≤3 are omitted whenever such omission will not cause confusion.

Now, for any given B ⊂ Σ2×2×2, B is called a basic set of admissible local patterns.

In short, B is a basic set. A local pattern UN1×N2×N3 = (uα1,α2,α3) is called B-admissible

if for any vertex (lattice point) (n1, n2, n3) with 0 ≤ ni ≤ Ni − 2, 1 ≤ i ≤ 3, there exist

a 2 × 2 × 2 admissible local pattern (βk1,k2,k3)0≤k1,k2,k3≤1 ∈ B such that

un1+k1,n2+k2,n3+k3 = βk1,k2,k3

for 0 ≤ k1, k2, k3 ≤ 1.

Given a lattice L ∈ L3 with Hermite normal form,

L =




a1 b12 b13

0 a2 b23

0 0 a3


Z

3, (3.1)

where ai ≥ 1 for 1 ≤ i ≤ 3 and 0 ≤ bij ≤ ai − 1 for i + 1 ≤ j ≤ 3. A global pattern

U = (uα1,α2,α3)α1,α2,α3∈Z
is called L-periodic or




a1 b12 b13

0 a2 b23

0 0 a3


-periodic if for every

α1, α2, α3 ∈ Z

uα1+a1p+b12q+b13r,α2+a2q+b23r,α3+a3r = uα1,α2,α3 (3.2)
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for all p, q, r ∈ Z.

The periodicity of




a1 b12 b13

0 a2 b23

0 0 a3


 and




a1 0 0

0 a′2 0

0 0 a′3


 are closely related as fol-

lows.

Proposition 3.1 For ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1, i+ 1 ≤ j ≤ 3, let

s1 = a1

(a1,b12)
and s2 =

[
a1

(a1,b13)
, s1a2

(s1a2,b23)

]
,

where (m,n) is the greatest common divisor of m and n and [p, q] is the least common

multiple of p and q. Then,




a1 b12 b13

0 a2 b23

0 0 a3


-periodic patterns are




a1 0 0

0 s1a2 0

0 0 s2a3


-

periodic.

Proof. By (3.2), the




a1 b12 b13

0 a2 b23

0 0 a3


-periodic pattern is easily identified as




a1 m1b12 m2b13

0 m1a2 m2b23

0 0 m2a3


-periodic for all m1, m2 ∈ N. By taking m1 = s1 and m2 = s2,

the result holds.

Given a basic set B ⊂ Σ2×2×2, defined on cubic lattice Z2×2×2, the L-periodic

patterns that are B-admissible must be verified on Z2×2×2. For n1, n2, n3 ∈ Z, let

Z2×2×2 ((n1, n2, n3)) be the cubic lattice with the smallest vertex (n1, n2, n3):

Z2×2×2 ((n1, n2, n3)) = {(n1 + k1, n2 + k2, n3 + k3) : 0 ≤ k1, k2, k3 ≤ 1} .

Now, the admissibility of L-periodic patterns is demonstrated to be verified on finite

cubic lattices.

Proposition 3.2 An L-periodic pattern U is B-admissible if and only if

U |Z2×2×2((α1,α2,α3))∈ B

for 0 ≤ αi ≤ ai − 1, 1 ≤ i ≤ 3.
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Proof. Sine B ⊂ Σ2×2×2, it is sufficient to prove

{
U |Z2×2×2((α1,α2,α3)): α1, α2, α3 ∈ Z

}

=
{
U |Z2×2×2((α1,α2,α3)): 0 ≤ αi ≤ ai − 1, 1 ≤ i ≤ 3

}
.

The proof follows easily from (3.2). The details are left to the reader.

According to Proposition 3.2, the admissibility of an L-periodic pattern U is deter-

mined by U |Z(a1+1)×(a2+1)×(a3+1)
= (uα1,α2,α3) and U |Z(a1+1)×(a2+1)×(a3+1)

has the periodic

property that is given by (3.2), which can be divided into two parts:





ua1,α2,α3 = u0,α2,α3

uα1,a2,α3 = u[α1−b12]a1 ,0,α3

(3.3)

for 0 ≤ αi ≤ ai, 1 ≤ i ≤ 3, where [m]n ≡ m (mod n);

uα1,α2,a3 =






u[α1−b12−b13]a1 ,0,0 if α2 − b23 = a2

u[α1−b13]a1 ,α2−b23,0 if 0 ≤ α2 − b23 ≤ a2 − 1

u[α1+b12−b13]a1 ,α2−b23+a2,0 if −a2 + 1 ≤ α2 − b23 ≤ −1

(3.4)

for 0 ≤ α1 ≤ a1, 0 ≤ α2 ≤ a2.

Notably, (uα1,α2,α3)0≤α1≤a1,0≤α2≤a2,α3 has the same structure (3.3) for all 0 ≤ α3 ≤ a3,

which fact is useful in constructing the cylindrical ordering matrix. Then, the set of

all local patterns in Σa1+1,a2+1,a3+1 that satisfy the periodic property (3.3) is denoted

by Pa1,a2;b12;a3+1. However, (3.4) is important in allowing patterns in Pa1,a2;b12;a3+1 to

become L-periodic and it will be used to define the rotational matrices later.

Now, the counting function for Un1×n2×n3 = (uα1,α2,α3) in Σn1×n2×n3 , n1, n2, n3 ≥ 1,

is defined by

ψ (Un1×n2×n3) = 1 +

n1−1∑

α1=0

n2−1∑

α2=0

n3−1∑

α3=0

uα1,α2,α32
n1n2(n3−1−α3)+n1(n2−1−α2)+n1−1−α1 . (3.5)

Similar to (3.5), the counting function ψ for patterns U in Pn1,n2;l;1, 0 ≤ l ≤ n1 − 1, is

defined by

ψ
(
U
)
≡ ψ

(
U |Zn1×n2×1

)
. (3.6)

76



Notably, ψ is bijective from Pn1,n2;l;1 to {i | 1 ≤ i ≤ 2n1n2}.
Given n1, n2 ≥ 1, 0 ≤ l ≤ n1 − 1, h ≥ 1, a local pattern U in Pn1,n2;l;h can be

represented as

U = U 0 ⊕z U 1 ⊕z · · · ⊕z Uh−1, (3.7)

where U i ∈ Pn1,n2;l;1, 0 ≤ i ≤ h − 1, and U
′ ⊕z U

′′
means that U

′′
is put on the

top (in the z-direction) of U
′
. Therefore, the cylindrical ordering matrix Cn1,n2;l;h =

[Cn1,n2;l;h;i,j]2n1n2×2n1n2
of patterns in Pn1,n2;l;h is defined by

Cn1,n2;l;h;i,j =
{
U 0 ⊕z · · · ⊕z Uh−1 | ψ(U 0) = i and ψ(Uh−1) = j

}
. (3.8)

In particular, for h = 2, Cn1,n2;l;2 can be applied to construct the associated trace

operator. Notably the set Cn1,n2;l;2;i,j contains exactly one pattern.

Now, given B ⊂ Σ2×2×2, the associated trace operator Tn1,n2;l(B) = [tn1,n2;l;i,j], with

tn1,n2;l;i,j ∈ {0, 1}, can be defined by

tn1,n2;l;i,j = 1 if and only if the pattern in Cn1,n2;l;2;i,j is B-admissible. (3.9)

Remark 3.3 Given L′ =




a1 b12 0

0 a2 0

0 0 a3


Z

3, (3.3) and (3.4) easily verify that

{
U |Za1+1,a2+1,a3+1 : U is L′-periodic

}

=
{
U = U 0 ⊕z · · · ⊕z Ua3 ∈ Pa1,a2;b12;a3+1 : U 0 = Ua3

}
.

(3.10)

Furthermore, given B ⊂ Σ2×2×2, from Proposition 3.2 and the construction of the

transition matrix Ta1,a2;b12(B),

ΓB







a1 b12 0

0 a2 0

0 0 a3





 = tr

(
Ta3

a1,a2;b12
(B)
)
. (3.11)
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The shift maps and the related rotational matrices are considered below for general

L =




a1 b12 b13

0 a2 b23

0 0 a3


Z3.

Let n1, n2 ≥ 1, 0 ≤ l ≤ n1−1; the shift (to the left) in the x-direction of any pattern

U = (uα1,α2,0) in Pn1,n2;l;1, uα1,α2,0 ∈ {0, 1}, is defined by

σx;n1,n2;l((uα1,α2,0)) =
(
u

(1)
α1,α2,0

)
0≤α1≤n1,0≤α2≤n2

where

u
(1)
α1,α2,0 =





u[α1+1−l]n1 ,0,0 if α2 = n2,

u[α1+1]n1 ,α2,0 if 0 ≤ α2 ≤ n2 − 1.
(3.12)

Similarly, the shift (to the below) in the y-direction is defined by

σy;n1,n2;l((uα1,α2,0)) =
(
u

(2)
α1,α2,0

)
0≤α1≤n1,0≤α2≤n2

where

u
(2)
α1,α2,0 =





u[α1−l]n1 ,α2+1−n2,0 if α2 + 1 ≥ n2,

u[α1]n1 ,α2+1,0 if 0 ≤ α2 + 1 ≤ n2 − 1.
(3.13)

Notably, σx;n1,n2;l and σy;n1,n2;l are automorphisms on Pn1,n2;l;1.

The following example illustrates σx;n1,n2;l and σy;n1,n2;l.

Example 3.4 Let

U = (uα1,α2,0) ≡ ∈ P3,2;1;1

u0,0,0

u0,0,0u0,0,0

u1,0,0

u1,0,0

u2,0,0u2,0,0

u2,0,0

u0,1,0u0,1,0 u1,1,0 u2,1,0

be a local pattern that lies on the plane {(z1, z2, 0) : z1, z2 ∈ Z}. Now, consider σx;3,2;1

and σy;3,2;1 which are acting on U . Then it is easy to see

σx;3,2;1

(
U
)

=

u1,0,0

u1,0,0u1,0,0

u2,0,0

u2,0,0

u0,0,0u0,0,0

u0,0,0

u1,1,0u1,1,0 u2,1,0 u0,1,0
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and

σy;3,2;1

(
U
)

= .

u0,1,0

u0,1,0u0,1,0

u1,1,0

u1,1,0

u2,1,0u2,1,0

u2,1,0

u2,0,0u2,0,0 u0,0,0 u1,0,0

Moreover, both σx;3,2;1

(
U
)

and σy;3,2;1

(
U
)

are also belong to P3,2;1;1.

From (3.12) and (3.13), for 0 ≤ ri ≤ ni − 1, i = 1, 2, the following can be straight-

forwardly verified;

σr1

x;n1,n2;l

(
σr2

y;n1,n2;l
((uα1,α2,0))

)
=
(
u

(3)
α1,α2,0

)

0≤α1≤n1,0≤α2≤n2

where

u
(3)
α1,α2,0 =





u[α1+r1−l]n1 ,α2+r2−n2,0 if n2 ≤ α2 + r2 ≤ 2n2 − 1,

u[α1+r1]n1 ,α2+r2,0 if 0 ≤ α2 + r2 ≤ n2 − 1.
(3.14)

Furthermore,

σy;n1,n2;l ◦ σx;n1,n2;l = σx;n1,n2;l ◦ σy;n1,n2;l (3.15)

and

σn1

x;n1,n2;l
= σl

x;n1,n2;l

(
σn2

y;n1,n2;l

)
= identity map. (3.16)

Hence,

σ−1
x;n1,n2;l

≡ σn1−1
x;n1,n2;l

and σ−1
y;n1,n2;l

≡ σl
x;n1,n2;l

(
σn2−1

y;n1,n2;l

)
. (3.17)

Therefore, for 0 ≤ ri ≤ ni − 1, i = 1, 2,

σ−r1

x;n1,n2;l

(
σ−r2

y;n1,n2;l
((uα1,α2,0))

)
=
(
u

(4)
α1,α2,0

)

0≤α1≤n1,0≤α2≤n2

where

u
(4)
α1,α2,0 =






u[α1−r1−l]n1 ,0,0 if α2 − r2 = n2,

u[α1−r1]n1 ,α2−r2,0 if 0 ≤ α2 − r2 ≤ n2 − 1,

u[α1−r1+l]n1 ,α2−r2+n2,0 if −n2 + 1 ≤ α2 − r2 ≤ −1.

(3.18)

Now, the two rotational matrices Rx;n1,n2;l and Ry;n1,n2;l are defined as follows.
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Definition 3.5 The 2n1n2 × 2n1n2 x-rotational matrix Rx;n1,n2;l = [Rx;n1,n2;l;i,j],

Rx;n1,n2;l;i,j ∈ {0, 1}, is defined by

Rx;n1,n2;l;i,j = 1 if and only if i = ψ(U) and j = ψ(σx;n1,n2;l(U)), (3.19)

where U ∈ Pn1,n2;l;1. From (3.19), for convenience, denote by

j = σx(i). (3.20)

Similarly, the 2n1n2 × 2n1n2 y-rotational matrix Ry;n1,n2;l = [Ry;n1,n2;l;i,j],

Ry;n1,n2;l;i,j ∈ {0, 1}, is defined by

Ry;n1,n2;l;i,j = 1 if and only if i = ψ(U) and j = ψ(σy;n1,n2;l(U)), (3.21)

where U ∈ Pn1,n2;l;1. From (3.21), for convenience, denote by

j = σy(i). (3.22)

Obviously, Rx;n1,n2;l and Ry;n1,n2;l are permutation matrices. By (3.16),

Rn1
x;n1,n2;l

= Rl
x;n1,n2;l

Rn2
y;n1,n2;l

= I2n1n2 , where In is the n× n identity matrix.

Example 3.6 Let n1 = 2, n2 = 1 and l = 1,

Rx;2,1;1 = Ry;2,1;1 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



.

Then,

R2
x;2,1;1 = Rx;2,1;1Ry;2,1;1 = I4 but Ry;2,1;1 6= I4.

The following proposition shows the permutation characters ofRx;n1,n2;l andRy;n1,n2;l.

Proposition 3.7 Let M = [Mi,j]2n1n2×2n1n2 be a matrix where Mi,j denotes a number

or a pattern or a set of patterns. Then
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(MRx;n1,n2;l)i,j = Mi,σ−1
x (j) and (MRy;n1,n2;l)i,j = Mi,σ−1

y (j). (3.23)

Furthermore, for any r ≥ 1

(
MRr

x;n1,n2;l

)
i,j

= Mi,σ−r
x (j) and

(
MRr

y;n1,n2;l

)
i,j

= Mi,σ−r
y (j). (3.24)

Proof. For any 1 ≤ i, j ≤ 2n1n2 , by (3.20),

(MRx;n1,n2;l)i,j =
∑
q

Mi,qRx;n1,n2;l;q,j

= Mi,σ−1
x (j)Rx;n1,n2;l;σ

−1
x (j),j

= Mi,σ−1
x (j).

Similarly,

(MRy;n1,n2;l)i,j =
∑
q

Mi,qRy;n1,n2;l;q,j

= Mi,σ−1
y (j)Ry;n1,n2;l;σ

−1
y (j),j

= Mi,σ−1
y (j).

Applying (3.23) r times yields (3.24). The proof is complete.

Now, the following lemma can be obtained.

Lemma 3.8 Given L =




a1 b12 b13

0 a2 b23

0 0 a3


Z3,

{
U |Z(a1+1)×(a2+1)×(a3+1)

: U is L-periodic
}

=
{
U = U 0 ⊕z · · · ⊕z Ua3 ∈ Pa1,a2;b12;a3+1 : Ua3 = σ−b13

x;a1,a2;b12

(
σ−b23

y;a1,a2;b12
(U0)

)}

(3.25)

Proof. From (3.4) and (3.18),

{
U = U 0 ⊕z · · · ⊕z Ua3 ∈ Pa1,a2;b12;a3+1 : Ua3 = σ−b13

x;a1,a2;b12

(
σ−b23

y;a1,a2;b12
(U0)

)}

=
{
U ∈ Pa1,a2;b12;a3+1 : U satisfies (3.4)

}
.

Then, by the construction of Pa1,a2;b12;a3+1, the last set is equal to
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{U ∈ Σa1+1,a2+1,a3+1 : U satisfies (3.3) and (3.4)}

= {U ∈ Σa1+1,a2+1,a3+1 : U satisfies (3.2)} .
Therefore, (3.25) follows. The proof is complete.

Proposition 3.2, 3.7 and Lemma 3.8 yield the following main results for

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





.

Theorem 3.9 Given a basic set B ⊂ Σ2×2×2. For ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1,

i+ 1 ≤ j ≤ 3,

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 = tr

(
Ta3

a1,a2;b12
(B)Rb13

x;a1,a2;b12
Rb23

y;a1,a2;b12

)
. (3.26)

Furthermore,

a1−1∑

b13=0

a2−1∑

b23=0

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 = tr

(
Ta3

a1,a2;b12
(B)Ra1,a2;b12

)
, (3.27)

where

Ra1,a2;b12 =

a1−1∑

b13=0

a2−1∑

b23=0

Rb13
x;a1,a2;b12

Rb23
y;a1,a2;b12

. (3.28)

Proof. From Proposition 3.2, Lemma 3.8 and the construction of Ca1,a2;b12;a3+1,

ΓB







a1 b12 b13

0 a2 b23

0 0 a3







=
2a1a2∑
i=1

♯
{
U ∈ Ca1,a2;b12;a3+1;i,j : U is B-admissible and j = σ−b13

x

(
σ−b23

y (i)
)}
,

where ♯S is the cardinal number of set S.
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Then, Proposition 3.7 and the construction of Ta1,a2;b12(B), Rx;a1,a2;b12 and Ry;a1,a2;b12

easily yield (3.26). Equation (3.27) holds from (3.26) and (3.28). The proof is complete.

The (a1, a2; b12)-th zeta function ζa1,a2;b12(s) can now be obtained as follows.

Theorem 3.10 Given a basic set B ⊂ Σ2×2×2. For ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1,

i+ 1 ≤ j ≤ 3,

ζa1,a2;b12(s) = exp

(
1

a1a2

∞∑

a3=1

1

a3
tr
(
Ta3

a1,a2;b12
(B)Ra1,a2;b12

)
sa1a2a3

)
. (3.29)

Proof. The results follow from Theorem 3.9.

3.1.2 Rationality of ζa1,a2;b12

This subsection proves that ζa1,a2;b12 is a rational function. First, the rotational

symmetry of Ta1,a2;b12 is introduced.

Theorem 3.11 Given B ⊂ Σ2×2×2. Denote by Ta1,a2;b12(B) = [ta1,a2;b12;i,j]. For

a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1,

ta1,a2;b12;σ−1
x (i),σ−1

x (j) = ta1,a2;b12;i,j (3.30)

and

ta1,a2;b12;σ−1
y (i),σ−1

y (j) = ta1,a2;b12;i,j (3.31)

for all 1 ≤ i, j ≤ 2a1a2 . Furthermore,

t
a1,a2;b12;σ

−r1
x (σ

−r2
y (i)),σ

−r1
x (σ

−r2
y (j)) = ta1,a2;b12;i,j (3.32)

for all 1 ≤ i, j ≤ 2a1a2 , −a1 + 1 ≤ r1 ≤ a1 − 1 and −a2 + 1 ≤ r2 ≤ a2 − 1.

Proof. The proof of (3.31) is similar to that of (3.30) and omitted. We now prove

(3.30).

Given 1 ≤ i, j ≤ 2a1a2 , Ca1,a2;b12;2;i,j and Ca1,a2;b12;2;σ−1
x (i),σ−1

x (j) contain only one pat-

tern respectively. Let
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U = U0 ⊕z U 1 = (uα1,α2,α3) ∈ Ca1,a2;b12;2;i,j

with ψ(U 0) = i and ψ(U 1) = j, and

U
′
= U

′
0 ⊕z U

′
1 = (u′α1,α2,α3

) ∈ Ca1,a2;b12;2;σ−1
x (i),σ−1

x (j)

with ψ(U
′
0) = σ−1

x (i) and ψ(U
′
1) = σ−1

x (j). Since B ⊂ Σ2×2×2 and (3.9), to prove (3.30)

is equal to prove

{(un1+k1,n2+k2,k3)0≤k1,k2,k3≤1 : 0 ≤ n1 ≤ a1 − 1, 0 ≤ n2 ≤ a2 − 1}

= {(u′n1+k1,n2+k2,k3
)0≤k1,k2,k3≤1 : 0 ≤ n1 ≤ a1 − 1, 0 ≤ n2 ≤ a2 − 1}.

(3.33)

Since ψ(U 0) = i and ψ(U
′
0) = σ−1

x (i), by (3.18),

u′α1,α2,0 =





u[α1−1−b12]a1 ,0,0 if α2 = a2,

u[α1−1]a1 ,α2,0 if 0 ≤ α2 ≤ a2 − 1.

Similarly, from ψ(U1) = j and ψ(U
′
1) = σ−1

x (j),

u′α1,α2,1 =





u[α1−1−b12]a1 ,0,1 if α2 = a2,

u[α1−1]a1 ,α2,1 if 0 ≤ α2 ≤ a2 − 1.

Then, (3.33) is directly obtained.

Therefore, (3.30) and (3.31) hold. For 0 ≤ r1 ≤ a1 − 1 and 0 ≤ r2 ≤ a2 − 1, by

applying (3.31) r2 times and (3.30) r1 times, (3.32) holds. From (3.15), (3.16) and

(3.17), (3.32) follows. The proof is complete.

To study the rationality of ζa1,a2;b12 , we need more definitions and properties about

the two shifts in (3.20) and (3.22) as follows.

Given a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1, for 1 ≤ i ≤ 2a1a2 , the equivalent class Ca1,a2;b12(i)

of i is defined by

Ca1,a2;b12(i) ≡
{
σ−r1

x

(
σ−r2

y (i)
)

: 0 ≤ r1 ≤ a1 − 1, 0 ≤ r2 ≤ a2 − 1
}
. (3.34)

Clearly,
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either Ca1,a2;b12(i) = Ca1,a2;b12(j) or Ca1,a2;b12(i) ∩ Ca1,a2;b12(j) = ∅. (3.35)

The cardinal number of Ca1,a2;b12(i) is denoted by ωa1,a2;b12;i. Let i be the smallest

element in its equivalent class, and the index set Ia1,a2;b12 is defined by

Ia1,a2;b12 = {i : 1 ≤ i ≤ 2a1a2 , i ≤ j for all j ∈ Ca1,a2;b12(i)} . (3.36)

Therefore,

{j : 1 ≤ j ≤ 2a1a2} = ∪
i∈Ia1,a2;b12

Ca1,a2;b12(i). (3.37)

The cardinal number of Ia1,a2;b12 is denoted by χa1,a2;b12 .

The following example illustrates C2,2;j(i).

Example 3.12





C2,2;0(1) = {1}
C2,2;0(2) = {2, 3, 5, 9}
C2,2;0(4) = {4, 13}
C2,2;0(6) = {6, 11}
C2,2;0(7) = {7, 10}
C2,2;0(8) = {8, 12, 14, 15}
C2,2;0(16) = {16}
I2,2;0 = {1, 2, 4, 6, 7, 8, 16}





C2,2;1(1) = {1}
C2,2;1(2) = {2, 3, 5, 9}
C2,2;1(4) = {4, 13}
C2,2;1(6) = {6, 7, 10, 11}
C2,2;1(8) = {8, 12, 14, 15}
C2,2;1(16) = {16}
I2,2;1 = {1, 2, 4, 6, 8, 16}

The equivalent classes are invariant under the two shift maps. Therefore, the fol-

lowing proposition is directly obtained and the proof is omitted.

Proposition 3.13 Given a1, a2 ≥ 1 and 0 ≤ b12 ≤ a1 − 1. Let N ≡ 2a1a2 and

V = (v1, v2, · · · , vN)t, for 1 ≤ i ≤ N ,

a1−1∑

r1=0

a2−1∑

r2=0

v
σ
−r1
x (σ

−r2
y (i)) =

a1a2

ωa1,a2;b12;i

∑

j∈Ca1,a2;b12
(i)

vj . (3.38)

For the rationality of ζa1,a2;b12 , the reduced trace operator τa1,a2;b12 of Ta1,a2;b12 is

introduced as follows.
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Definition 3.14 For a1, a2 ≥ 1, 0 ≤ b12 ≤ a1−1, the reduced trace operator τa1,a2;b12 =

[τa1,a2;b12;i,j] of Ta1,a2;b12 = [ta1,a2;b12;i,j] is a χa1,a2;b12 × χa1,a2;b12 matrix and is defined by

τa1,a2;b12;i,j =
∑

k∈Ca1,a2;b12
(j)

ta1,a2;b12;i,k (3.39)

for each i, j ∈ Ia1,a2;b12.

The following theorem expresses the average of ΓB in terms of the trace of the

reduced trace operator τ and plays a crucial role in proving the rationality of ζa1,a2;b12 .

The proof here is simpler and more straightforward than the proofs in Subsection 2.2

for d = 2.

Theorem 3.15 Given B ⊂ Σ2×2×2. For ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1,

i+ 1 ≤ j ≤ 3,

1
a1a2

a1−1∑
b13=0

a2−1∑
b23=0

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 = tr

(
τa3

a1,a2;b12

)

=
∑

λ∈Σ(τa1,a2;b12
)

χa1,a2;b12(λ)λa3 ,

(3.40)

where Σ(τa1,a2;b12) is the spectrum of τa1,a2;b12 and χa1,a2;b12(λ) is the algebraic multiplic-

ity of τa1,a2;b12 with eigenvalue λ.

Proof. For simplicity, let N = 2a1a2 and Ta1,a2;b12 = [ti,j ]. From Proposition 3.7 and

Theorem 3.9,

1
a1a2

a1−1∑
b13=0

a2−1∑
b23=0

ΓB







a1 b12 b13

0 a2 b23

0 0 a3







= 1
a1a2

a1−1∑
b13=0

a2−1∑
b23=0

tr
(
Ta3

a1,a2;b12
Rb13

x;a1,a2;b12
Rb23

y;a1,a2;b12

)

= 1
a1a2

a1−1∑
b13=0

a2−1∑
b23=0

N∑
i=1

a3−1∑
j=1

N∑
kj=1

ti,k1tk1,k2 · · · tka3−1,σ
−b13
x

(
σ
−b23
y (i)

).
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Now, by Eq. (3.37), the last sum becomes

1

a1a2

∑

i∈Ia1,a2;b12

∑

q∈Ca1,a2;b12
(i)

a1−1∑

b13=0

a2−1∑

b23=0

a3−1∑

j=1

N∑

kj=1

tq,k1tk1,k2 · · · tka3−1,σ
−b13
x

(
σ
−b23
y (q)

). (3.41)

Fixed q ∈ Ca1,a2;b12(i), there exist 0 ≤ r1 ≤ a1 − 1 and 0 ≤ r2 ≤ a2 − 1 such that

q = σ−r1
x

(
σ−r2

y (i)
)
. Then, by Theorem 3.11,

a1−1∑
b13=0

a2−1∑
b23=0

a3−1∑
j=1

N∑
kj=1

tq,k1tk1,k2 · · · tka3−1,σ
−b13
x

(
σ
−b23
y (q)

)

=
a1−1∑
b13=0

a2−1∑
b23=0

a3−1∑
j=1

N∑
kj=1

tσr1
x (σ

r2
y (q)),σ

r1
x (σ

r2
y (k1))tσr1

x (σ
r2
y (k1)),σ

r1
x (σ

r2
y (k2))

· · · t
σ

r1
x (σ

r2
y (ka3−1)),σ

−b13
x

(
σ
−b23
y (σ

r1
x (σ

r2
y (q)))

)

=
a1−1∑
b13=0

a2−1∑
b23=0

a3−1∑
j=1

N∑
kj=1

ti,σr1
x (σ

r2
y (k1))tσr1

x (σ
r2
y (k1)),σ

r1
x (σ

r2
y (k2)) · · · tσr1

x (σ
r2
y (ka3−1)),σ

−b13
x

(
σ
−b23
y (i)

).

Since
{
σr1

x

(
σr2

y (m)
)

: 1 ≤ m ≤ N
}

= {m : 1 ≤ m ≤ N}, the last sum becomes

a1−1∑

b13=0

a2−1∑

b23=0

a3−1∑

j=1

N∑

kj=1

ti,k1tk1,k2 · · · tka3−1,σ
−b13
x

(
σ
−b23
y (i)

) (3.42)

Therefore, Eq. (3.41) is equal to

1

a1a2

∑

i∈Ia1,a2;b12

ωa1,a2;b12;i

a3−1∑

j=1

N∑

kj=1

a1−1∑

b13=0

a2−1∑

b23=0

ti,k1tk1,k2 · · · tka3−1,σ
−b13
x

(
σ
−b23
y (i)

). (3.43)

According to Proposition 3.13, Eq. (3.43) is equal to

∑

i∈Ia1,a2;b12

a3−1∑

j=1

N∑

kj=1

ti,k1 · · · tka3−2,ka3−1




∑

q∈Ca1,a2;b12
(i)

tka3−1,q





=
∑

i∈Ia1,a2;b12

a3−1∑

j=1

∑

kj∈Ia1,a2;b12

∑

qj∈Ca1,a2;b12
(kj)

ti,q1 · · · tqa3−2,qa3−1




∑

q∈Ca1,a2;b12
(i)

tqa3−1,q


 .

(3.44)

87



For any qa3−1 ∈ Ca1,a2;b12(ka3−1), there exist 0 ≤ r1 ≤ a1 − 1 and 0 ≤ r2 ≤ a2 − 1

such that

qa3−1 = σ−r1
x

(
σ−r2

y (ka3−1)
)
.

Then, by Theorem 3.11,

∑
q∈Ca1,a2;b12

(i)

tqa3−1,q =
∑

q∈Ca1,a2;b12
(i)

t
σ
−r1
x (σ

−r2
y (ka3−1)),q

=
∑

q∈Ca1,a2;b12
(i)

tka3−1,σ
r1
x (σ

r2
y (q))

=
∑

q∈Ca1,a2;b12
(i)

tka3−1,q.

Therefore,

a3−1∑
j=1

∑
qj∈Ca1,a2;b12

(kj)

ti,q1 · · · tqa3−2,qa3−1

(
∑

q∈Ca1,a2;b12
(i)

tqa3−1,q

)

=
a3−2∑
j=1

∑
qj∈Ca1,a2;b12

(kj)

ti,q1 · · ·
(

∑
qa3−1∈Ca1,a2;b12

(ka3−1)

tqa3−2,qa3−1

)(
∑

q∈Ca1,a2;b12
(i)

tka3−1,q

)

=
a3−2∑
j=1

∑
qj∈Ca1,a2;b12

(kj)

ti,q1 · · ·
(

∑
qa3−1∈Ca1,a2;b12

(ka3−1)

tka3−2,qa3−1

)(
∑

q∈Ca1,a2;b12
(i)

tka3−1,q

)

...

=

(
∑

q1∈Ca1,a2;b12
(i)

ti,q1

)[
a3−1∏
j=2

(
∑

qj∈Ca1,a2;b12
(kj)

tkj−1,qj

)](
∑

q∈Ca1,a2;b12
(i)

tka3−1,q

)

= τa1,a2;b12;i,k1τa1,a2;b12;k1,k2 · · · τa1,a2;b12;ka3−1,i

Finally, (3.44) is equal to
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∑
i∈Ia1,a2;b12

a3−1∑
j=1

∑
kj∈Ia1,a2;b12

τa1,a2;b12;i,k1τa1,a2;b12;k1,k2 · · · τa1,a2;b12;ka3−1,i

= tr
(
τa3

a1,a2;b12

)

=
∑

λ∈Σ(τa1,a2;b12
)

χa1,a2;b12(λ)λa3 .

The proof is complete.

Therefore, the rationality of ζa1,a2;b12 and ζ can be obtained as follows.

Theorem 3.16 For a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1,

ζa1,a2;b12(s) = (det (I − sa1a2τa1,a2;b12))
−1

=
∏

λ∈Σ(τa1,a2;b12
)

(1 − λsa1a2)−χa1,a2;b12
(λ),

(3.45)

and

ζ(s) =
∞∏

a1=1

∞∏
a2=1

a1−1∏
b12=0

(det (I − sa1a2τa1,a2;b12))
−1

=
∞∏

a1=1

∞∏
a2=1

a1−1∏
b12=0

∏
λ∈Σ(τa1,a2;b12

)

(1 − λsa1a2)−χa1,a2;b12
(λ).

(3.46)

Proof. By using the power series

− log(1 − t) =

∞∑

n=1

tn

n
, (3.47)

equation (3.45) follows from (1.34) and Theorem 3.15. Equation (3.46) follows form

(1.35) and (3.45).

The following example is used to demonstrate the application of the above result.

Example 3.17 Consider

B = {U2×2×2 = (uα1,α2,α3) ∈ Σ2×2×2 : u0,0,j = u1,0,j = u0,1,j = u1,1,j for j = 0, 1} .

Clearly, the set P(B) of all B-admissible and periodic patterns is
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{
U = (uα1,α2,α3) ∈ Σ3

2 : ui,j,k = u0,0,k for all i, j, k ∈ Z
}
.

Then, it is easy to verify that

ΓB







a1 b12 b13

0 a2 b23

0 0 a3





 = 2a3

for ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1, i+ 1 ≤ j ≤ 3. Therefore,

ζa1,a2;b12(s) = (1 − 2sa1a2)−1 (3.48)

and

ζ(s) =
∞∏

a1=1

∞∏

a2=1

(1 − 2sa1a2)−a1 . (3.49)

However, (3.48) and (3.49) can be obtained from (3.45) and (3.46). The trace

operator

Ta1,a2;b12(B) = Ta1,a2;0(B) =




1 0 · · · 0 1

0 0 · · · 0 0
...

0 0 · · · 0 0

1 0 · · · 0 1




2a1a2×2a1a2

.

Since Ca1,a2;b12(1) = {1} and Ca1,a2;b12(2
a1a2) = {2a1a2}, the reduced trace operator

τa1,a2;b12(B) =




1 0 · · · 0 1

0 0 · · · 0 0
...

0 0 · · · 0 0

1 0 · · · 0 1




χa1,a2;b12
×χa1,a2;b12

.

Therefore,

ζa1,a2;b12(s) = (det (I − sa1a2τa1,a2;b12))
−1

= (1 − 2sa1a2)−1
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and

ζ(s) =

∞∏

a1=1

∞∏

a2=1

(1 − 2sa1a2)−a1 .

Equations (3.48) and (3.49) are recovered.

3.1.3 Zeta functions in inclined coordinates

This subsection presents the zeta function with respect to inclined coordinates, de-

termined by applying the unimodular transformations in GL3(Z). Z3 is known to be

invariant under the unimodular transformation in GL3(Z). Indeed, Lind [36] proved

that the zeta function ζ0
B is independent of a choice of basis for Z3. Recall that

GLd(Z) =
{
γ = [γij ]1≤i,j≤d : γij ∈ Z for 1 ≤ i, j ≤ d and |det(γ)| = 1

}
.

This subsection presents the construction of the trace operator Tγ;a1,a2;b12(B) and the

reduced trace operator τγ;a1,a2;b12(B), and then determines ζγ;a1,a2;b12 and ζB;γ. Finally,

ζB;γ is obtained as

ζB;γ(s) =
∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

(det (I − sa1a2τγ;a1,a2;b12))
−1 . (3.50)

For simplicity, only B ⊂ Σ2×2×2 with two symbols are considered. The general cases

can be treated analogously.

For a given γ =




γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 ∈ GL3(Z), the lattice points in γ-coordinates are

(1, 0, 0)γ = (γ11, γ12, γ13), (0, 1, 0)γ = (γ21, γ22, γ23), (0, 0, 1)γ = (γ31, γ32, γ33),

and the unit vectors are




1

0

0




γ

=




γ11

γ12

γ13


 ,




0

1

0




γ

=




γ21

γ22

γ23


 and




0

0

1




γ

=




γ31

γ32

γ33


 .
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Notably, when γ =




1 0 0

0 1 0

0 0 1


, standard rectangular coordinates are used and the

subscript γ is omitted.

The matrix Mγ is defined by

Mγ =




a1 b12 b13

0 a2 b23

0 0 a3




γ

= γt




a1 b12 b13

0 a2 b23

0 0 a3


 .

Let Lγ = MγZ3. Then,

Lγ = γt




a1 b12 b13

0 a2 b23

0 0 a3


Z

3 (3.51)

is easily verified.

A global pattern Uγ =
(
u(α1,α2,α3)γ

)
α1,α2,α3∈Z

is called Lγ-periodic or


a1 b12 b13

0 a2 b23

0 0 a3




γ

-periodic if for every α1, α2, α3 ∈ Z,

u(α1+a1p+b12q+b13r,α2+a2q+b23r,α3+a3r)γ
= u(α1,α2,α3)γ

(3.52)

for all p, q, r ∈ Z. Therefore, the (a1, a2; b12)-th zeta function of ζ0
B(s) with respect to

γ is defined by

ζB;γ;a1,a2;b12(s) = exp




1

a1a2

∞∑

a3=1

a1−1∑

b13=0

a2−1∑

b23=0

1

a3

ΓB







a1 b12 b13

0 a2 b23

0 0 a3




γ


 sa1a2a3


 (3.53)

and the zeta function ζB;γ with respect to γ is defined by

ζB;γ(s) ≡
∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

ζB;γ;a1,a2;b12 . (3.54)

The following introduces the cylindrical ordering matrix, the trace operator and the

rotational matrices. The proofs of the results as in previous subsections are omitted.
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Fix a γ ∈ GL3(Z). Let Zγ;n1×n2×n3 be the n1 × n2 × n3 lattice with the basis

γ1 =




1

0

0




γ

=




γ11

γ12

γ13


, γ2 =




0

1

0




γ

=




γ21

γ22

γ23


 and γ3 =




0

0

1




γ

=




γ31

γ32

γ33


.

The total number of lattice points on Zγ;n1×n2×n3 is n1 · n2 · n3.

Since the basic set B ⊂ Σ2×2×2, the Lγ-periodic patterns that are B-admissible must

be verified on Z2×2×2. Let (n1, n2, n3)γ = (m1, m2, m3),

Z2×2×2 ((n1, n2, n3)γ) = {(m1 + k1, m2 + k2, m3 + k3) : 0 ≤ k1, k2, k3 ≤ 1} .

Now, the admissibility is demonstrated to have to be verified on finite lattice as follows.

Proposition 3.18 Given γ =




γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 ∈ GL3(Z). An Lγ-periodic pattern U

is B-admissible if and only if

U |Z2×2×2 ((α1, α2, α3)γ) ∈ B

for 0 ≤ αi ≤ ai − 1, 1 ≤ i ≤ 3.

For a1, a2, a3 ≥ 1, it is easy to verify that there exist positive integers â1(γ), â2(γ)

and â3(γ) such that

3⋃

i=1

ai−1⋃

αi=0

Z2×2×2 ((ξ1 + α1, ξ2 + α2, ξ3 + α3)γ) ⊆ Zγ;â1×â2×â3

for some ξ1, ξ2, ξ3 ∈ Z.

According to Proposition 3.18, the admissibility of an Lγ-periodic pattern U is

determined by U |Zγ;â1×â2×â3
=
(
u(α1,α2,α3)γ

)
0≤αi≤âi−1,1≤i≤3

and U |Zγ;â1×â2×â3
has the the

periodic condition that is given by (3.52), which can be divided into two parts: (i)

for 0 ≤ αi ≤ âi − 1, 1 ≤ i ≤ 3 and p, q ∈ Z, if 0 ≤ α1 + a1p + b12q ≤ â1 − 1 and

0 ≤ α2 + a2q ≤ â2 − 1,

u(α1+a1p+b12q,α2+a2q,α3)γ
= u(α1,α2,α3)γ

; (3.55)
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(ii) for 0 ≤ αi ≤ âi−1, 1 ≤ i ≤ 3, p, q ∈ Z and r ∈ Z\{0}, if 0 ≤ α1+a1p+b12q+b13r ≤
â1 − 1, 0 ≤ α2 + a2q + b23r ≤ â2 − 1 and 0 ≤ α3 + a3r ≤ â3 − 1,

u(α1+a1p+b12q+b13r,α2+a2q+b23r,α3+a3r)γ
= u(α1,α2,α3)γ

. (3.56)

Then, for h ≥ 1, the set of all local patterns on Zγ;â1×â2×h that satisfy (3.55) with

0 ≤ α3 ≤ h− 1 is denoted by Pγ;a1,a2;b12;h.

Similar to (3.6), the counting function ψγ for patterns Uγ in Pγ;a1,a2;b12;h is defined

by

ψγ

(
Uγ

)
= 1 +

a1−1∑

α1=0

a2−1∑

α2=0

h−1∑

α3=0

u(α1,α2,α3)γ
2a1a2(h−1−α3)+a1(a2−1−α2)+a1−1−α1 .

A local pattern Uγ in Pγ;a1,a2;b12;h can be represented as

Uγ = Uγ;0 ⊕γ3 Uγ;1 ⊕γ3 · · · ⊕γ3 Uγ;h−1,

where Uγ;i ∈ Pγ;a1,a2;b12;1, 0 ≤ i ≤ h − 1, and U
′
γ ⊕z U

′′
γ means that U

′′
γ is put on

the top (in the γ3-direction) of U
′
γ. For 0 ≤ i ≤ j ≤ h − 1, let Uγ;i:j = Uγ;i ⊕γ3

· · · ⊕γ3 Uγ;j. Therefore, for h ≥ â3, the cylindrical ordering matrix Cγ;a1,a2;b12;h =

[Cγ;a1,a2;b12;h;i,j]2a1a2(h−1)×2a1a2(h−1) of patterns in Pγ;a1,a2;b12;h is defined by

Cγ;a1,a2;b12;h;i,j =
{
Uγ ∈ Pγ;a1,a2;b12;h : ψγ(Uγ;0:â3−2) = i and ψγ(Uγ;h−â3+1:h−1) = j

}
.

In particular, for h = â3, Cγ;a1,a2;b12;â3 can be used to construct the associated trace

operator. Notably the set Cγ;a1,a2;b12;â3;i,j either contains exactly one pattern or is an

empty set.

Now, given B ⊂ Σ2×2×2, the associated trace operator Tγ;a1,a2;b12(B) = [tγ;a1,a2;b12;i,j],

with tγ;a1,a2;b12;i,j ∈ {0, 1}, can be defined by tγ;a1,a2;b12;i,j = 1 if and only if

Cγ;a1,a2;b12;â3;i,j 6= ∅ and the pattern in Cγ;a1,a2;b12;â3;i,j is B-admissible. (3.57)

Now, the shift (to the left) in the γ1-direction of any pattern Uγ = (u(α1,α2,α3)γ
)

in Pγ;a1,a2;b12;â3−1, u(α1,α2,α3)γ
∈ {0, 1}, is defined by

σγ1;a1,a2;b12

(
(u(α1,α2,α3)γ

)
)

=
(
u

(1)
(α1,α2,α3)γ

)

0≤α1≤â1−1,0≤α2≤â2−1,0≤α3≤â3−2
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where

u
(1)
(α1,α2,α3)γ

=





u(α1+1,α2,α3)γ

if 0 ≤ α1 ≤ â1 − 2,

u([α1+1]a1
,α2,α3)γ

if α1 = â1 − 1.
(3.58)

Similarly, the shift (to the below) in the γ2-direction is defined by

σγ2;a1,a2;b12

(
(u(α1,α2,α3)γ

)
)

=
(
u

(2)
(α1,α2,α3)γ

)

0≤α1≤â1−1,0≤α2≤â2−1,0≤α3≤â3−2
,

where

u
(2)
(α1,α2,α3)γ

=





u(α1,α2+1,α3)γ

if 0 ≤ α2 ≤ â2 − 2,

u([α1−b12]a1
,α2+1−a2,α3)γ

if α2 = â2 − 1.
(3.59)

Notably, σγ1;a1,a2;b12 and σγ2;a1,a2;b12 are automorphism on Pγ;a1,a2;b12;â3−1. Furthermore,

σγ2;a1,a2;b12 ◦ σγ1;a1,a2;b12 = σγ1;a1,a2;b12 ◦ σγ2;a1,a2;b12

and

σa1
γ1;a1,a2;b12

= σb12
γ1;a1,a2;b12

(
σa2

γ2;a1,a2;b12

)
= identity map.

Now, the rotational matrices with respect to γ is defined as follows.

Definition 3.19 The 2a1a2(â3−1) × 2n1n2(â3−1) γ1-rotational matrix

Rγ1;a1,a2;b12 = [Rγ1;a1,a2;b12;i,j], Rγ1;a1,a2;b12;i,j ∈ {0, 1}, is defined by

Rγ1;a1,a2;b12;i,j = 1 if and only if i = ψγ(Uγ) and j = ψγ(σγ1;a1,a2;b12(Uγ)), (3.60)

where Uγ ∈ Pγ;a1,a2;b12;â3−1. From (3.60), for convenience, denote by

j = σγ1(i). (3.61)

Similarly, the 2a1a2(â3−1) ×2n1n2(â3−1) γ2-rotational matrix Rγ2;a1,a2;b12 = [Rγ2;a1,a2;b12;i,j],

Rγ2;a1,a2;b12;i,j ∈ {0, 1}, is defined by

Rγ2;a1,a2;b12;i,j = 1 if and only if i = ψγ(Uγ) and j = ψγ(σγ2;a1,a2;b12(Uγ)), (3.62)
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where Uγ ∈ Pγ;a1,a2;b12;â3−1. From (3.62), for convenience, denote by

j = σγ2(i). (3.63)

Moreover,

Rγ;a1,a2;b12 =

a1−1∑

b13=0

a2−1∑

b23=0

Rb13
γ1;a1,a2;b12

Rb23
γ2;a1,a2;b12

. (3.64)

The main results for ΓB







a1 b12 b13

0 a2 b23

0 0 a3




γ


 as in Theorem 3.9 and 3.10 are ob-

tained as follows and the proofs are omitted.

Theorem 3.20 Given a basic set B ⊂ Σ2×2×2. For ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤ ai − 1,

i+ 1 ≤ j ≤ 3,

ΓB







a1 b12 b13

0 a2 b23

0 0 a3




γ


 = tr

(
Ta3

γ;a1,a2;b12
(B)Rb13

γ1;a1,a2;b12
Rb23

γ2;a1,a2;b12

)
(3.65)

and

a1−1∑

b13=0

a2−1∑

b23=0

ΓB







a1 b12 b13

0 a2 b23

0 0 a3




γ


 = tr

(
Ta3

γ;a1,a2;b12
(B)Rγ;a1,a2;b12

)
. (3.66)

Furthermore,

ζγ;a1,a2;b12(s) = exp

(
1

a1a2

∞∑

a3=1

1

a3
tr
(
Ta3

γ;a1,a2;b12
(B)Rγ;a1,a2;b12

)
sa1a2a3

)
. (3.67)

The equivalent class Cγ;a1,a2;b12(i), the cardinal number ωγ;a1,a2;b12;i of Cγ;a1,a2;b12(i),

the index set Iγ;a1,a2;b12 and the cardinal number of χγ;a1,a2;b12 can be defined as in

Subsection 3.1.2 and are omitted here.

Definition 3.21 For a1, a2 ≥ 1, 0 ≤ b12 ≤ a1−1, the reduced trace operator τγ;a1,a2;b12 =

[τγ;a1,a2;b12;i,j] of Tγ;a1,a2;b12 = [tγ;a1,a2;b12;i,j] is a χγ;a1,a2;b12 ×χγ;a1,a2;b12 matrix defined by
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τγ;a1,a2;b12;i,j =
∑

k∈Cγ;a1,a2;b12
(j)

tγ;a1,a2;b12;i,k (3.68)

for each i, j ∈ Iγ;a1,a2;b12.

By the argument as in Subsection 3.1.2, the rotational symmetry of Tγ;a1,a2;b12 can be

obtained and then yields the rationality of the (a1, a2; b12)-th zeta function ζB;γ;a1,a2;b12 .

The results are stated as follows.

Theorem 3.22 Given B ⊂ Σ2×2×2 and γ ∈ GL3(Z). For ai ≥ 1, 1 ≤ i ≤ 3, 0 ≤ bij ≤
ai − 1, i+ 1 ≤ j ≤ 3,

1
a1a2

a1−1∑
b13=0

a2−1∑
b23=0

ΓB







a1 b12 b13

0 a2 b23

0 0 a3




γ


 = tr

(
τa3

γ;a1,a2;b12

)

=
∑

λ∈Σ(τγ;a1,a2;b12
)

χγ;a1,a2;b12(λ)λa3 .

(3.69)

where Σ(τγ;a1,a2;b12) is the spectrum of τγ;a1,a2;b12 and χγ;a1,a2;b12(λ) is the algebraic mul-

tiplicity of τγ;a1,a2;b12 with eigenvalue λ. Moreover,

ζγ;a1,a2;b12(s) = (det (I − sa1a2τγ;a1,a2;b12))
−1

=
∏

λ∈Σ(τγ;a1,a2;b12
)

(1 − λsa1a2)−χγ;a1,a2;b12
(λ),

(3.70)

and

ζγ(s) =
∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

(det (I − sa1a2τγ;a1,a2;b12))
−1 . (3.71)

Corollary 3.23 For any B ⊂ Σ2×2×2 and γ ∈ GL3(Z), the Taylor series expansions

for ζB;γ at s = 0 has integer coefficients.

Proof. Since τγ;a1,a2;b12 has integer entries for any a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1, the

result follows.

Now, that ζB;γ are meromorphic extensions of ζ0
B is obtained as follows.
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Theorem 3.24 Given B ⊂ Σ2×2×2. For any γ ∈ GL3(Z),

ζB;γ(s) = ζ0
B(s) (3.72)

for |s| < exp(−g(B)), where

g(B) = lim sup
[L]→∞

1

[L]
log ΓB(L). (3.73)

Moreover, ζB;γ has the same (integer) coefficients in its Taylor series expansions at

s = 0, for all γ ∈ GL3(Z).

Proof. By Lind [36], ζ0
B has radius of convergence exp(−g(B)) and is analytic in

|s| < exp(−g(B)). Since ζB;γ is a rearrangement of ζ0
B, (3.72) holds. From Lind [36] or

Corollary 3.23, ζB;γ has the same integer coefficients in its Taylor series expansions at

s = 0. The proof is complete.

Remark 3.25 From Theorem 3.22, for any B ⊂ Σ2×2×2, there exists a family of zeta

functions {ζB;γ : γ ∈ GL3(Z)}. For certain B, the other γ ∈ GL3(Z) may give a dif-

ferent description to ζB; see Example 3.17 and the following Example 3.26. Those

different descriptions of ζ0
B may be useful in studying zeta functions.

Example 3.26 Consider the basic set B in Example 3.17 and γ =




1 0 0

0 0 1

0 1 0


. It is

easy to verify that

Tγ;a1,a2;b12 = Tγ;a1,a2;0

for a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1. Moreover, after the zero columns and rows of

Tγ;a1,a2;b12 (or τγ;a1,a2;b12) were deleted, Tγ;a1,a2;b12 (τγ;a1,a2;b12) is reduced to Tγ;1,a2;0

(τγ;1,a2;0). Clearly

Tγ;1,a2;0 = I2a2

and

τγ;1,a2;0 = Iχa2
,
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where

χn =
1

n

∑

d|n
φ(d)2n/d,

and φ(d) is the Euler totient function.

Hence,

ζγ;a1,a2;b12 = (1 − sa1a2)−χa2 (3.74)

and

ζγ =
∞∏

a1=1

∞∏

a2=1

(1 − sa1a2)−a1χa2 . (3.75)

It can be proved that g(B) = log 2. Therefore, from Example 3.17 and Theorem

3.24,
∞∏

a1=1

∞∏

a2=1

(1 − sa1a2)−a1χa2 =

∞∏

a1=1

∞∏

a2=1

(1 − 2sa1a2)−a1 (3.76)

for |s| < 1
2
, and they have the same integer coefficients in their Taylor series expansions

at s = 0.

3.2 Further results

This subsection briefly describes the results for Zd, d ≥ 4, and more symbols on

larger lattice. The thermodynamic zeta function for the three-dimensional Ising model

with finite range interactions is also studied.

3.2.1 Higher-dimensional shifts of finite type

This subsection consider the zeta functions for shifts of finite type on Zd, d ≥ 4.

Only brief statements are made here.

As in [36], Ld can be parameterized by using Hermite normal form [39]:

Ld =








a1 b12 · · · b1d

0 a2 · · · b2d

...

0 0 · · · ad




Z
d : ai ≥ 1, 1 ≤ i ≤ d, 0 ≤ bij ≤ ai − 1, i+ 1 ≤ j ≤ d





.

(3.77)
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Let the lattice Ld = {(n1, n2, · · · , nd) : 0 ≤ ni ≤ 1, 1 ≤ i ≤ d}. Fixed a basic set B ⊂
{0, 1}Ld. For ai ≥ 1, 1 ≤ i ≤ d− 1, 0 ≤ bij ≤ ai − 1, i+ 1 ≤ j ≤ d− 1, the (ai, bij)-th

zeta function is defined by

ζB;(ai,bij)(s)

≡ exp




1
a1···ad−1

∞∑
ad=1

d−1∑
i=1

ai−1∑
bid=0

1
ad

ΓB







a1 b12 b13 · · · b1d

0 a2 b23 · · · b2d

0 0 a3 · · · b3d

...

0 0 0 · · · ad







sa1···ad




(3.78)

and

ζB(s) ≡
d−1∏

i=1

∞∏

ai=1

d−1∏

j=i+1

ai−1∏

bij=0

ζB;(ai,bij)(s). (3.79)

As in Subsections 3.1.1 and 3.1.2, the cylindrical ordering matrix, the trace operator,

the rotational matrices and the reduced trace operator can be defined. The method

in Subsections 3.1.1 and 3.1.2 can also be applied to verify that ζB;(ai,bij) is a rational

function. Therefore, ζB is an infinite product of rational functions. Furthermore,

given any γ ∈ GLd(Z), the result also holds in γ-coordinates. Hence, a family of zeta

functions exists with the same integer coefficients in their Taylor series expansions at

s = 0, and yields a family of identities in number theory.

3.2.2 More symbols on larger lattice

This subsection extends the results of the previous sections and subsections to

any finite number of symbols and any finite lattice. For simplicity, only the zeta

functions for three-dimensional shifts of finite type are discussed. Given a set of symbols

Sp = {0, 1, · · · , p − 1}, p ≥ 2, a set of finite lattice points L ⊂ Z3 and a basic set

B(L) ⊂ SL

p . Let Zm×m×m be the smallest cubic lattice that contains L and B(Zm×m×m)

be the set of all admissible patterns that are generated by B(L). Then, it is easy to

verify that
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P (B(Zm×m×m)) = P (B(L)) .

Therefore, only B ⊂ SZm×m×m
p , for m ≥ 2, need to be considered. The definitions of

cylindrical ordering matrix and the rotational matrices must be adjusted and the details

are omitted here. Then, the associated trace operator and reduced trace operator can

also be defined. Hence, by the arguments similar to those made in Subsections 3.1.1,

3.1.2 and 3.1.3, the results for B ⊂ SZm×m×m
p also hold.

3.2.3 Three-dimensional Ising model with finite range interactions

This subsection will extend the results to the Z3 lattice Ising model with finite

range interactions. For simplicity, only the case of the nearest neighbor interac-

tions is considered. Let the Z3 lattice Ising model with external field H, the cou-

pling constant J1 in the x-direction, the coupling constant J2 in the y-direction and

the coupling constant J3 in the z-direction. Each site (α1, α2, α3) of Z3 lattice has

a spin uα1,α2,α3 with two possible values, +1 or −1. Assume that the state space

is given by B ⊂ {0, 1}Z2×2×2 . Given a state U = (uα1,α2,α3) ∈ {0, 1}Z
3
, denote by

Un1×n2×n3 = U |Zn1×n2×n3
= (uα1,α2,α3)0≤αi≤ni−1,1≤i≤3.

Now, the Hamiltonian (energy) E (Un1×n2×n3) is defined by

E (Un1×n2×n3)

= −J1

∑
0≤α1≤n1−2
0≤α3≤n2−1
0≤α3≤n3−1

uα1,α2,α3uα1+1,α2,α3 −J2

∑
0≤α1≤n1−1
0≤α2≤n2−2
0≤α3≤n3−1

uα1,α2,α3uα1,α2+1,α3

−J3

∑
0≤α1≤n1−1
0≤α2≤n2−1
0≤α3≤n3−2

uα1,α2,α3uα1,α2,α3+1 −H ∑
0≤α1≤n1−1
0≤α2≤n2−1
0≤α3≤n3−1

uα1,α2,α3 .

(3.80)

Given L =




a1 b12 b13

0 a2 b23

0 0 a3


Z

3 ∈ L3, the set of all B-admissible and L-periodic patterns

is denoted by PB(L). Then, the partition function for B with L-periodic patterns is

defined as
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ZB(L) = ZB







a1 b12 b13

0 a2 b23

0 0 a3





 =

∑
U∈PB(L)

exp




∑
0≤α1≤n1−1
0≤α2≤n2−1
0≤α3≤n3−1

uα1,α2,α3 (K1uα1+1,α2,α3 + K2uα1,α2+1,α3 + K3uα1,α2,α3+1 + h)



,

(3.81)

where Ki = Ji/kBT , 1 ≤ i ≤ 3, kB is Boltzmann’s constant and T is the temperature.

Therefore, the thermodynamic zeta function is defined by

ζ0
Ising;B(s) ≡ exp

(
∑

L∈L3

ZB(L)
s[L]

[L]

)
. (3.82)

As (1.34) and (1.35), for any a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1, the (a1, a2; b12)-th

thermodynamic zeta function ζIsing;B;a1,a2;b12(s) is defined as

ζIsing;B;a1,a2;b12(s) ≡ exp




1

a1a2

∞∑

a3=1

a1−1∑

b13=0

a2−1∑

b23=0

1

a3
ZB







a1 b12 b13

0 a2 b23

0 0 a3





 sa1a2a3




(3.83)

and the thermodynamic zeta function ζIsing;B(s) is given by

ζIsing;B(s) ≡
∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

ζIsing;B;a1,a2;b12(s). (3.84)

Since the spin uα1,α2,α3 ∈ {+1,−1}, the cylindrical ordering matrix

CIsing;a1,a2;b12;h = [CIsing;a1,a2;b12;h;i,j] is obtained by replacing all symbols ”0” in Ca1,a2;b12;h

with the symbols ” − 1”. Notably, exactly one patterns exists in CIsing;a1,a2;b12;2;i,j and

the pattern is given by UIsing;i,j ≡ UIsing;a1,a2;b12;2;i,j = (uα1,α2,α3). Define
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ZB (UIsing;i,j) ≡ exp




∑

0≤α1≤a1−1
0≤α2≤a2−1

uα1,α2,0 (K1uα1+1,α2,0 + K2uα1,α2+1,0 + K3uα1,α2,1 + h)


 .

(3.85)

Then, the trace operator TIsing;a1,a2;b12 = [tIsing;a1,a2;b12;i,j] is defined by





tIsing;a1,a2;b12;i,j = 0 if UIsing;i,j is not B-admissible,

tIsing;a1,a2;b12;i,j = ZB (UIsing;i,j) if UIsing;i,j is B-admissible.
(3.86)

Therefore, the associated reduced operator τIsing;a1,a2;b12 can be defined as in Definition

3.14. Since all arguments for the rationality of ζIsing;B;a1,a2;b12 are similar to those in

Subsections 3.1.1 and 3.1.2, only the final result is stated, as follows.

Theorem 3.27 For a1, a2 ≥ 1, 0 ≤ b12 ≤ a1 − 1,

ζIsing;B;a1,a2;b12(s) = (det (I − sa1a2τIsing;a1,a2;b12))
−1 (3.87)

and

ζIsing;B(s) =
∞∏

a1=1

∞∏

a2=1

a1−1∏

b12=0

(det (I − sa1a2τIsing;a1,a2;b12))
−1 . (3.88)

Notably, this result also holds in γ-coordinates for γ ∈ GL3(Z).
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