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Abstract

This dissertation investigates—zeta ‘functions for d-dimensional
shifts of finite type, d > 2. “Avdsdimensional zeta function ¢°(S)

which generalizes the Artin-Mazur zeta function was given by Lind for

Z° action @ . First, the two-dimensional case is studied. The trace

operator Tn which is the transition matrix for x-periodic patterns of

period n with height 2 is rotationally symmetric. The rotational symmetry

of T, induces the reduced trace operator 7,. The zeta function

o0 N -1
¢ = H(det(l —S'7, )) Is now a reciprocal of an infinite product
n=1

of polynomials. The results hold for any inclined coordinates, determined

by unimodular transformation in GL, (Z) Therefore, there exists a

family of zeta functions that are meromorphic extensions of the same



analytic function é’O(S). The natural boundary of zeta function is

studied. The Taylor series expansions at the origin for these zeta
functions are equal with integer coefficients, yielding a family of
identities which are of interest in number theory. The methods used

herein are also valid for d-dimensional cases, 0 >3, and can be applied

to thermodynamic zeta functions for the Ising model with finite range
interactions.
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1 Introduction

Various zeta functions have been investigated in the fields of number theory, geom-
etry, dynamical systems and statistical physics. This work studies the zeta functions
in a manner that follows the work of Artin and Mazur [1], Bowen and Lanford [11],
Ruelle [45] and Lind [36]. First, recall the zeta function that was defined by Artin and
Mazur.

Let ¢ : X — X be a homeomorphism of a compact space and T',(¢) denote the

number of fixed points of ¢". The zeta function (4(s) for ¢ defined in [1] is

Co(s) = exp <ZFnTw>s"> . (1.1)

n=1

Later, Bowen and Lanford [11] demonstrated that if ¢ is a shift of finite type,
then (,(s) is a rational function. In the simplest case, when a shift is generated by a

transition matrix A in Z, (1.1) is computed explicitly as

e o (S (12)

= (det(I'=sA))=", (1.3)
and then
Cals) = AEQA)(l — As) X, (1.4)

where x(\) is a non-negative integer that is the algebraic multiplicity of eigenvalue
A and X(A) is the spectrum of A. (a(s) is a rational function which involves only
eigenvalues of A.

Lind [36] extended (1.1) to Z%-action as follows. For Z%-action, d > 1, let ¢ be an
action of Z% on X. Denote the set of finite-index subgroups of Z? by £;. The zeta
function (4 defined by Lind is

Co(s) = exp <Z FL[L<]¢>S[LJ) , (1.5)

LeLly

where [L] = index[Z?/L] and T'z(¢) is the number of fixed points by ¢ for all n € L.

Lind [36] obtained some important results for (,4, such as conjugacy invariant and prod-



uct formulae, and computed (, explicitly for some interesting examples. Furthermore,
he raised some fundamental problems for zeta functions, including the following two.

Problem 7.2. [36] For “finitely determined” Z-actions ¢ such as shifts of finite
type, is there a reasonable finite description of (4(s)?

Problem 7.5. [36] Compute explicitly the thermodynamic zeta function for the 2-
dimensional Ising model, where o is the Z? shift action on the space of configurations.

The present authors previously studied pattern generation problems in Z%, d > 2,
and developed several approaches such as the use of higher order transition matrices
and trace operators to compute spatial entropy [4; 6]. The work of Ruelle [45] and
Lind [36] indicated that our methods could also be adopted to study zeta functions.

In this investigation, Problems 7.2 and 7.5 are answered when ¢ is a shift of finite
type. More related results and questions are also addressed. The following paragraphs
briefly introduce relevant results.

First, the two dimensional case is studied. Let Z,,x,, be the m x m square lattice
in Z* and S be the finite set of symbols (alphabets or colors). SZmxm is the set of
all local patterns (or configurations) on Z,, ... A given subset B C SZmxm ig called
a basic set of admissible local pdtterns. X(B) is.the set of all global patterns defined
on Z? which can be generated by B. For simplicity, only the results of Zs.» with two
symbols § = {0, 1} are presented here. Subsection 2.3 considers the general case.

As presented elsewhere [36], £y can be parameterized in Hermite normal form [39]:

n
Ly = Z?:n>1, k>1land0<[<n-—1
0 k
) ) n n o
Given a basic set B, denote by Pg the set of all -periodic and
0 k 0 k
[
B-admissible patterns and ' is the number of Pg
0 k 0 k
The zeta function, defined by (1.5), is denoted by
oo oo n—1 1 n 1
B = —T e 1.6
Gom (X35 e [0 ] (16
n=1k=1 =0



In [36], (3 is shown analytically in |s| < exp(—g(B)), where

) 1
g(B) = h[rL?_s)ipm log's(L). (1.7)

In this work, the sum of n and k in (1.6) is treated separately as an iterated sum.
Indeed, for any n > 1, define the n-th order zeta function (,(s) = (gn(s) (in -

direction) as

n—1 1
EFB s" | (1.8)

1 o
Ca(s) = exp —Z
"=11=0 0 k

the zeta function ((s) = (g(s) is given by

C(s) = [T¢a(s)- (1.9)

n
The first observation of (1.8) is that, for n > 1 and [ > 1, any -periodic
0

k

n 0
pattern is -periodic, where (n,l).is.the.greatest common divisor (GCD) of

nk
)

n
n and [. Therefore, -periodicity of patterns must be investigated in details.
k

The trace operators T,, = T,,(B) that were introduced in [6] are useful in studying
n

0 k
with ¢,;; € {0,1}. T,(B) represents the set of patterns that are B-admissible and

-periodic and the B-admissible pattern, where T,, = [t,; ;] is a 2" x 2" matrix

x-periodic of period n with height 2. The trace operator T,, can be used to construct

(doubly) periodic B-admissible patterns. Indeed, for £ > 1 and 0 <1 <n —1,

n v ol
I'p =tr(T,R,), (1.10)
0 k

where R, is a 2™ x 2" rotational matrix defined by

Rn;i,2’i—1 - ]_ and R’ﬂ;2n71+i,2i = 1 for 1 S 7/ S 271—1’

R,i; =0 otherwise.



n—1
Denote by R,, = > R!; now based on (1.10), ¢,(s) becomes
i=0

Cn(s) = exp (%i%tr(TfLRn)snk> ’ (1.11)
k=1

which is a generalization of (1.2).
To elucidate the method used to study (1.11), T,, is firstly assumed to be symmetric.

Then T, can be expressed in Jordan canonical form as
T, = UJU' (1.12)

where the eigen-matrix U = (Uy, ...,Uy) is an N x N matrix which consists of linearly
independent (column) eigenvectors U;, 1 < j < N and N = 2". Jordan matrix
J = diag(}) is a diagonal N x N matrix, which comprises eigenvalues \;, 1 < j < N.

Now,

= Lp(O(Y 1 JF"UR,)
k=1

N
= ZI% |RnonU;1log(1 —Ajs") 7t (1.13)
‘7:

can be proven, where o is a Hadamard‘produet: if A = [a; ;]pxnm and B = [b; |,
then Ao B = [a; ;b j]mxum-

Evaluating the coefficients |R,, o U;U}| of log(1 — A;s")~! is important. Now, the
R,-symmetry of T, is crucial. Indeed, let U be an eigenvector of T, with eigenvalue
A, then RLU is also eigenvector of T, for all 0 <[ < n — 1. Notably, R? = Iy, where
I, is the m x m identity matrix.

U is called R,-symmetric, if RLU =Uforal 0 <] <n-—1. And U is called

anti-symmetric if nz_:lRﬁlU = 0. Additionally, for any given eigenvalue A, the associated
eigenspace Fy canl_b(za proven to be spanned by symmetric eigenvectors Uj, 1 <75 < py,
and anti-symmetric eigenvectors U, 1 < j < gx: E) = {U,,---,0,,,U;,-- UL TS
where py + ¢\ = dim(FE)) and p, or g, can be zero.

Therefore, for each eigenvalue A of T,



1
xX(A) = 5Z|Rn o U;Uj| = pa (1.14)

A=A
is the number of linearly independent symmetric eigenvectors of T,, with respect to A,
a non-negative integer. Hence, choosing eigen-matrix U in (1.12), which consists of

symmetric and anti-symmetric eigenvectors, yields

G(s)= J[ (1 —=asm)X™ (1.15)

AES(T)
as a rational function, as in (1.4).

To further study x(A) in (1.14), the reduced trace operator 7, is introduced as
follows. From the rotational matrix R, for 1 < ¢ < 2" the equivalent class C,, (i) of
i is defined as C,(7) = {j‘ (Ril)” =1forsomel<[< n} The index set Z,, of n is
defined by Z,, = {1‘1 <i<2h i< jforall je C’n(z)} and Y, is the cardinal number

of Z,,. Indeed, x, is the number of necklaces that can be made from n beads of two

colors when the necklaces can be rotated but not turned over. Furthermore,

- L wd
X n%qﬁ(d)z : (1.16)
where ¢(d) is the Euler totient function:
Then, the reduced trace operator 7, = [T, 0f T, is a x, X X, matrix that is
defined by

Tnyig = Z tn;i,k (117)

keCn(j)
for each i,j € Z,. A € X(T,) with x(\) > 1 can be verified if and only if A € X(7,).

Moreover, x(A) is the algebraic multiplicity of 7,, with eigenvalue A. Therefore,

Cols) = (det (I — s"7,)) ", (1.18)

a similar formula as in (1.3). Hence, the zeta function ((s) is obtained as

C(s) =[] (det (1 = s",)) ", (1.19)

n=1



which is an infinite product of rational functions. Equation (1.19) generalizes (1.3) and
is a solution to Lind’s Problem 7.2. Furthermore, according to (1.19), the coefficients
of Taylor series expansion for ((s) at s = 0 are integers, as obtained by Lind [36].

As presented elsewhere [6], an another trace operator ’Tn is B-admissible and y-
periodic of period n with width 2 along the x-axis. Indeed, £, can be parameterized

as another Hermite normal form, and n-th order zeta function En(s) is defined by

Cals) = exp Z Ty sk (1.20)

kllok [ n

and the zeta function E(s) is defined by

~ TG (1.21)
n=1
Therefore,

:ﬁ [T —xsm=™ (1.22)

n=1 )\EE(Tn)
H (det-(F = 5"7)) " (1.23)

The construction of the zeta-functions'¢ and Zin rectangular coordinates can be

extended to an inclined coordinates system. Indeed, let the unimodular transformation
a b

v be an element of the unimodular group GLy(Z): v = , a,b,c and d are
c d
integers and ad — bc = £1. The lattice L, is defined by
l na la+ kc
L=[" 2= | " 72. (1.24)
0 k nb b+ kd
2!

The n-th order zeta function of (3(s) with respect to 7y is defined by

oo n—1
1 1 n I ok
Cen(s) =exp | =3 > T R (1.25)
k=1 1=0
gl
and the zeta function (g, with respect to v is given by
CB“{ HCBwn (126)



The n-th order rotational matrix R,.,,, trace operator T..,(B) and reduced trace oper-

ator 7..,(B) can also be introduced and
CBiyin(s) = (det (I — snTv;n))_l - (1.27)

Therefore, the zeta function (z., is given by

o0

oo (5) = [ (det (I — s"7,0)) (1.28)

n=1

Since the iterated sum in (1.25) and (1.26) is a rearrangement of (3(s),

CBir () = C5(s) (1.29)
for |s| < exp(—g(B)). The identity (1.29) yields a family of identities when (g., is

expressed as a Taylor series expansion at the origin s = 0. The further applications of

these identities in number theory will appear elsewhere.

n
Note that, one may consider the zeta functions (g, which only involves -
0 k
periodic patterns, defined by
G=ew (D2l " | ) o (.30
=ex — s . .
B p PR "
n=Lk=1

However, in general, for n > 1, x(\)'is net-anjinteger in (1.15) for (g, and (g, is not
a rational function. Therefore, (; is not an infinite product of rational functions and
may lose some important properties such as G Ls(Z) invariant.

The thermodynamic zeta function raised by Ruelle [45] with weight function 6 :

X — (0,00) was defined by Lind [36] as

§lL]

Sels)=exp [ Y0 Y ] 0(cka) ) (1.31)

LeLy \ w€fizp (o) keZd/L
where fizy(«) is the set of points fixed by o™ for all n € L.
For the Ising model, where « is a shift of finite type given by B and the weight
function 6 is a potential with finite range, the previous arguments apply. Indeed, the
trace operator Trging..(B) and reduced trace operator Tigng.n(B) can be defined, and

the zeta function is



[e.e]

CIsing;B(s) = H (det (] - snTlsing;n))_l . (132)

n=1

Equation (1.32) is a solution of Lind’s Problem 7.5. Furthermore, the relations of
critical phenomenon in phase transition with the zeta functions will be investigated
later.

Notably, the methods herein also apply to sofic shifts. The results will appear
elsewhere.

It is clear that in many situations the three-dimensional problems are more related
to our real
world phenomena. Now, the zeta functions of d-dimensional shifts of finite type are
studied for
d > 3, and the previous results of Z? are extended. For simplicity, only the zeta
functions for three-dimensional shifts of finite type are introduced and the general case
is studied in Subsection 3.2.

Let Zonxmxm be the m x m x m cubiclatticein Z3 and S be the finite set of symbols
(alphabets or colors). SZmxmxm jsithe setjpof-all local patterns on Z,,xmxm. Denote
B C SZmxmxm g hasic set of adnissible local patterns and P(B) the set of all periodic
patterns that are generated by B on Z2.

The Hermite normal form [39] ¢an be used to parameterize L3 as

ay  bio 513

L3 = 0 ay boy |Z°:a; >1,1<i<3,0<b;<a;—1,i+1<5<3
0 0 a3
ap bz bis ar bz bis
Given abasicset B. Let L= | 0 ay by | Z* € L3, denote Pg 0 ay by
0 0 oag 0 0 a3
the set of all L-periodic patterns that are generated by B on Z3 and
ap bia b ar bz b3
I's 0 as b the number of Pp 0 ay by . Then, the zeta func-
0 0 a3 0 0 a3

tion in (1.1) is



a; bio b13

3 o 3 -1
(5 = exp Zzzzalalzagfs 0 ap by | |55 | (1.33)

i=1a;=1j=i+1b;;=0
! 0 0 as

Similar to (1.8) and (1.9), the (a1, as; bi2)-th zeta function is defined by

oo ai—1laz—1 ax b12 bl3

1 1 alaza;
CBar,aabiz (8) = XD @Z > s [0 b | | (139

a3=1b13=0b23=0 0 0
as

and the zeta function (z(s) is given by

oo oo ai—1

¢s(s) = [T TT T ¢oiaranivna(s)- (1.35)

ar=laz=1b15=0
The trace operator Ty, a,.6,, (B) and rotational matrices Ry.q; a5:0,, a0d

Ry, a0, are introduced. After the.rotational symmetry of Ty, o,.5,, is demonstrated
the reduced trace operator 7,, 4,»(B) canbe defined. Finally, as in (1.18), (5.4;.az:615(S)

can be represented as a rational:function:

CB;al,az;bm(S) 4 (det (I —= SalazTaha%blz))_l : (136>

Hence,

co oo a;—l1

¢s(s) = [T TT I (det (I = "7, ap0a)) " (1.37)

a1=lag=1b15=0

is a reciprocal of an infinite product of polynomials. Here, we show (1.36) by using a
simpler and more straightforward method than that for (1.18). However, the proof of
(1.18) is also valid for d > 3.

Additionally, for any v € GL3(Z), the zeta function can also be represented in 7-
coordinates. Therefore, a family of zeta functions exists that have the same integer
coefficients in their Taylor series expansions at s = 0.

Asin (1.32), the thermodynamic zeta function for the three-dimensional Ising model

with finite range interactions can also be represented as a reciprocal of an infinite



product of polynomials. The three-dimensional model can be applied to study three-
dimensional phase-transitions problems. The further results need to be investigated.

Some references that are related to our work are listed here. Zeta functions and
related topics [1; 5; 11; 20; 22; 23; 24; 30; 31; 36; 37; 38; 40; 41; 42; 44; 45; 47];
patterns generation problems and lattice dynamical systems [2; 3; 4; 6; 7; 8; 12; 13; 14;
15; 16; 17; 18; 19; 25; 26; 28; 29; 34; 35], and phase-transitions in statistical physics
[9; 10; 32; 33; 43] have all been covered elsewhere.

The rest of this dissertation is organized as follows. In Section 2, the trace operator
T, (B) and rotational matrix R, are introduced to accommodate the periodic patterns.
Based on the rotational symmetry of the trace operator, the reduced trace operator
T,(B) is defined. Therefore, the rationality of (g, is obtained. The results also hold
when inclined coordinates are used for any unimodular transformation v € GLy(Z).
The meromorphic extension of zeta function is studied. The zeta function of the
solution set of equations on Z? with numbers from a finite field is also investigated.
Finally, the method is applied to thermodynamic zeta function for the square Ising
model with a finite range interactions.

In Section 3, the three-dimensional case is studied first. The trace operator Ty, o,.5,,
and rotational matrices Ry.q; a0:00s a0 Ryaiian,, areédntroduced to study periodic pat-
terns. The rotational symmetry of T o5 4o:6,5 diduces the reduced trace operator 7, 4,:61,
and then the rationality of
CBiay.as:b1, 1S Obtained. The results hold for any inclined coordinates, determined by
unimodular transformation in GL3(Z). Finally, the d-dimensional cases, d > 4, and
thermodynamic zeta functions for the three-dimensional Ising model with finite range

interactions are studied.

2 Zeta functions for two-dimensional shifts of finite type

In this section, zeta functions for two-dimensional shifts of finite type are studied.

2.1 Periodic patterns

This subsection first reviews the ordering matrices of local patterns and trace operators

[4; 6]. It then derives rotational matrices R, and R,,, and studies their properties.

10



The R,-symmetry of the trace operator is also discussed. Finally, some properties of

n
periodic patterns in Z? are investigated. In particular, the -periodic pattern
0 k
: n 0 ..
is proven to be i -periodic.
0 -2&

(n.0)
For clarity, two symbols on the 2 x 2 lattice Zsyo are initially examined. Subsection

2.3 addresses more general situations.

2.1.1 Ordering matrices and Trace operators

For given positive integers Ny and Ny, the rectangular lattice Zy, «n, is defined by

ZN1><N2 = {(nl,n2)|0 S nq S N1 —1and 0 S N9 S N2 - 1}

In particular, Zsyxo = {(0,0),(1,0),(0,1),(1,1)}. Define the set of all global patterns
on Z? with two symbols {0,1} by

22 = {0,138 = {U|U 7“2 — {0,1}}.

Here, 7% = {(ny,n2)|n1, ny € Z};the set of all-planar lattice points (vertices). The set

of all local patterns on Zy, «xn, is defined:by

XN xN; = {U|ZN1><N2 Ue Eg}

Now, for any given B C Y55, B is called a basic set of admissible local patterns. In
short, B is a basic set. An N; x Ny pattern U is called B-admissible if for any vertex
(lattice point) (nq1,ng) with 0 <ny < Ny —2 and 0 < ny < Ny — 2, there exists a 2 x 2

admissible pattern (B, k,)o<ki ko<1 € B such that

Um +ki,no+ky — /6/61 k2o

for 0 < ky, ko < 1. Denote by Xy, xn, (B) the set of all B-admissible patterns on Zy, « v, -
As presented elsewhere [4], the ordering matrices Xgyo and Yayo are introduced to
arrange systematically all local patterns in Yoys.

Indeed, the horizontal ordering matrix Xoyo = [ 4]axa is defined by

11



NN
AR | (2.1)
L1 1]

o
o
=}
=

0 0 0

o
o

o

1 1

1 11:10 1D1
0 1 1 1 1

OO
11 O I

0 ) 1 1 [ 1
0 0 o 1 0o 1 1
] 0 o 0 O 0o o0 0
0 0o o0 [ 0o 1 1
0 10 1o O 10 1 (22>
0 0 o 11 0, 1 1
1 ] =) B Y o 0
0 0 0 s o et 1
1 1 g PR—" 1 1

It is clear that the local pattern y;;¢in¥axs is the reflection 7 of z;; in Xyoxa, i€,

N

0 1
/ . The reflection can be represented by [ in GLy(Z) with determinant
1

—1 Bo,1 B1,1
, In (2.1) angd (2.2), the orders of the pattern ﬁo,oD pro, Bi; € {0,1}, are given by
4 4
1[1 3 and 1[1 2 respectively. Xoyo and Yoo are clearly related as follows.
Y11 Y12 Y21 Y22

Y1,3 Y14 Y23 Y24
Y31 Y2 Ya1 Ya2

| Y33 Y34 Ya3 Yaa |

12



and

T11 Ti12 T21 X22
13 T14 T23 T4
Yoo = . (2.4)
T31 T32 T41 T42

X33 T34 Ta3 T44

The set Caxo = [c;;], which consists of all x-periodic patterns of period 2 with height

2 can be constructed from Yoo as follows.

o6 0 o o 1 0 {1 0 1 1 1 1
*———o—0
[

o o 0 0 0 O 0 0 O 0O 0 0

o 0 O o t o0 ¢+ O 1 41 1 1
*r—o—0
*———o—0
=0

1

The patterns in Cyyo are expressed as eleménts-in.Ys;.o and are understood to be

extendable periodically in the x=directionto all of Zg .>. Notably,

Cl2 = C{gy =21 = €371, C22 = C33,

(2.6)

Y ~Y ~Y
Co3 = C32, C24 = C34, C42 = C43,

where ¢; ; = ¢y j means that ¢y js is an x-translation by one step from ¢; ;. Later, the
translation invariance property (2.6) will be shown to imply Ry-symmetry of the trace
operator Ts.
2
Finally, P55 denotes the set of -periodic patterns, which can be recorded

0 2
from Cayo or Youo as an element in Y343 as follows.

13



0 0] 0o 0 1 0o 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 o0 1 0 o 1 0 o 1 0
0 0 0o 0 1 0o 1 0] 1 1 f 1
P 0 1 0o 0 1 0 0 1 0o 0 1 0
2x2 — 1 0 1 1 0 1 1 0 1 1 0 1 (2 7)
0 0] 0o 0 f 0 1 0 1 1 1 1
1 0 1 1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0] 0 0 1 0 1 0] 1 1 1 1

Notably, the upper two rows from the top of each pattern in Pays is Cb. ,, where
Ck. ., is the transpose of Cyyo.
Therefore, Poyo can be regarded as a "Hadamard type product e” of Cyys with

Ci. o, given by the following construction.
Poxs = Caxa @ ngz; (2.8)

the lower two rows of each pattern in Pgys coine from Csyo, and the upper two rows
come from C}. ,; they are glued together by the middle row. Equation (2.8) is the
prototype for constructing douhly periodic patterns of Z? from x-periodic patterns.
Later, this idea will be generalized:te all doubly periodic patterns.

The y-ordering matrices of patternsin ¥, 55, n > 2, can be ordered analogously by

, (2.9)

2™ x 2™

Boa1 B - ﬁn—l,l}

Yn><2: [yn727]] = {ﬁoo 310 Bn-1.0

where

i =1(BooBro Ba-10);
J= 1/1(60,151,1 ot '6n—1,1)7
and the n-th order counting function ¥ = v, : {0,1}%2» — {j|1 < j < 2"} is defined by

(2.10)

n—1
Y(Bofr -+ Bomr) = 14+ ;20710 (2.11)
j=0

The recursive formulas for generating Y, «2 from Yo, taken from another investi-

gation [4], is as follows.

14



Let

Yion Yo,
Y= | 7F T (2.12)

Yn><2;3 Yn><2;4

where Y, 2, is a 277! x 277! matrix of patterns. Then,

931,1Ynx2;1 551,2Ynx2;2 932,1Ynx2;1 932,2Ynx2;2
931,3Ynx2;3 551,4Ynx2;4 1’2,3Ynx2;3 !L'2,4Ynx2;4
Y(n+1)><2 = (2.13)
$3,1Ynx2;1 I3,2Ynx2;2 $4,1Ynx2;1 $4,2Ynx2;2

$3,3Ynx2;3 I3,4Ynx2;4 $4,3Ynx2;3 $4,4Ynx2;4

is a 2"t x 27+ matrix.
Hence, x-periodic patterns of period n with height 2 can be expressed in ¥,41)x2,

and recorded as an element in C, .5 by

Bo,1 P11 - Pn-1,1B01
Crxz = : (2.14)

BO;O 61,0 T ﬁn—l,O ﬁO,O on sy on

where 3;; € {0,1}.
Now, given any basic set B, define the.associated horizontal and vertical transition

matrices

H; = Hy(B) = [ap,¢] and V3 = V(B) = {bi;] by

1 if z,,€B 1 if y;, €8
apq = P Tand b = " ’ (2.15)
0 lf LL’p’q ¢ B, O lf yi,j ¢ B,
respectively. Then,
i1 A4i2 4aAisz aig4 b1,1 51,2 b2,1 52,2
Az1 A22 A3 A24 b1,3 51,4 b2,3 52,4
H, = = , (2.16)
agi azz aAz3 34 b3,1 53,2 b4,1 54,2
L Q41 Q42 Q43 Q44 | L b3,3 53,4 b4,3 b4,4 ]

and

b1,1 51,2 b1,3 51,4 a1 Aai2 dg1 A2
bai bap baz bay 1,3 A14 G23 A24
V2 — ) bl ) bl — ) ) bl bl . (2'17)
b3,1 53,2 b3,3 53,4 azi1 AaAzz2 A41 A42
L b4,1 54,2 b4,3 b4,4 ] | 43,3 (34 Q43 Q44 |

15



The associated column matrices ﬁg of H, and {72 of V, are defined as

Q21 QA21 0A22

Qg1 A32 A42

H,

(2.18)

23 A14 A24

g3 A3 4 A44

and

(2.19)

respectively.
The trace operators Ty = T5(B) and Ty = T5(B) which were introduced in [6] are
defined as

T2 = V2 o ﬁg and Tg - H2 o {}2, (220>

where o is the Hadamard product:“if A ="[@; ;|,xp and B = [3; ;]pxp, then Ao B =

[ ;B:.]pxp- More precisely,

11011 Q120271 Q21012 G22022

(13031 Q140471 Q23032 A24049

Tg - [ti,j]22><22 - (221)

a3,1a13 Q32023 Q41014 (42024

(3,3033 (34043 (43034 044044

and

A~

T2:

[ti,j} 22%22

bi1b11
b1,3b31
b3,1b1 3

b3.3b3 3

From (2.5), (2.17) and (2.21), clearly

16

bl 2b2 1

) )

bl 4b4 1

b3.2b2 3

b3.4b4 3

b2,101 2
b2,3b3.2
ba,1b1.4

ba,3b3.4

b2 202 o
b2.4b4 o
ba2b 24

baabaa

(2.22)



1 if ¢;; is B-admissible,
0 if ¢;; is not B-admissible,
where ¢; ; € Caxa.
Therefore, Ty is the transition matrix of the B-admissible and x-periodic patterns
of period 2 with height 2. Similarly, T, is the transition matrix of B-admissible and
y-periodic patterns of period 2 with width 2.

The translation invariance property (2.6) of Caxo implies the following symmetry

of Tg;

t12 =113, to1 =131, t22 =133, (2.24)
lo3 =132, fog =134, ts2 =143

The symmetry of (2.6) or (2.24) can also be identified as the rotational symmetry of a

cylinder since elements in Csyy5 can be regarded as cylindrical patterns.

The recursive formulas of Y, «2 can also be applied to V,,. Indeed, if

Vn: Vn;l Vn;2 ’
Vn;3 Vn;4

2nX2n

where V},; is a 2"~ x 27! matrix, then

al,lvn;l al,QVn;2 az,lvn;1 a2,2vn;2

1,3 Vn;3 a1,4Vn;4 G2,3Vn;3 a2,4vn;4
Vit = (2.25)
as Vn;l 03,2Vn;2 a'4,1Vn;l 7)) Vn;2

03,3Vn;3 03,4Vn;4 a'4,3Vn;3 a4,4Vn;4

and

Q11 Q21 a2 A22

E2n72 ® E2n72 ®
a31 Q41 azo d42

T, =V, o , (2.26)

13 023 a4 A24

E2n72 ® E2n72 ®
a33 043 ag4 Aq44

where ® is the Kroncker (tensor) product and Ej; is the j x j full matrix.

17



Now, T, represents the transition matrix of B-admissible x-periodic patterns of
period n with height 2. Similarly, T, represents the transition matrix of B-admissible

y-periodic patterns of period n with width 2.

2.1.2 Rotational matrices

In this subsection, the rotational matrices R,, and the invariant property of C,, 5> under
R, are investigated and the R,,-symmetry of T,, is then proven.

The shift of any n-sequence 3 = (531 -+ Bu_2Ba_1), n > 2, B; € {0,1}, is defined
by

a((BoBr- - Bn-2Bn-1)) = on((BoBr - - Bu2Bn-1)) = (B1B2 - Bu150). (2.27)

The subscript of o, is omitted for brevity. Notably, the shift (to the left) of any one-

dimensional periodic sequence (Byf31 « -+ 150 - ) of period n becomes

(B1B2 -+ Bn1BoBr---).
The 2™ x 2" rotational matrix Ry'= [R,. ], Rui; € {0,1}, is defined by

Ry, ;=1 ifand only.if

i =U(Bofr - Bao1) and j=U(0(Bof1--Pao1)) =UV(BiP2- - Bu1Bo).  (2.28)

From (2.28), for convenience, denote by

j=o(i). (2.29)

Clearly, R, is a permutation matrix: each row and column of R, has one and only
one element with a value of 1. Indeed, R, can be written explicitly as follows, the

proof is omitted.

Lemma 2.1

o = (2.30)

R,;,;=0 otherwise,

18



or equivalently,

2i — 1 or 1 <4< 21
o(i) = o,(i) = d - (2.31)
20 — 2 1) for 14271 <i< o,

Furthermore, R} = Ion and for any 1 <j <n —1,
(R3)ioi(i) = 1. (2.32)
The equivalent class C,, (i) of ¢ is defined by

Cu(i) = {0?(1)0<j<n—1}
(2.33)
— {]} (Rﬁb)” =1 for some 1 <[ < n}

Clearly, either C, (i) = C,,(j) or C,(i) NC,(j) = 0. Let i be the smallest element in its

equivalent class, and the index set Z,, of n is defined by

Z,= {i[1<i<2"i<09(i),1<q¢<n-—1}
(2.34)

= {ill i< i< jdorall j € C,(i)} .
Therefore, for each n > 1, {j|1 € 7 < 2"} = ZEL%nCn(z) The cardinal number of Z,, is
denoted by x,. Notably, x, can"be identified‘as the number of necklaces that can be
made from n beads of two colors, when-the-mecklaces can be rotated but not turned

over |48]. Moreover, Y, is expressed as
)

X == S o2 (2.35)
dln

where ¢(n) is the Euler totient function, which counts the numbers smaller or equal to

n and prime relative to n,

d(n) = ng (1 - %) : (2.36)

For n = 2 and 3, R,, and C, (i) are as follows.
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Example 2.2 R, Z,, and C,,(i) for n =2 and 3,

1000 Cy(1) = {1}, 1—1,
0010 Cy(2) =Cy3) =1{2,3}, 2—3—2,
) ] G2 =Cl8) = (2:8)

0100 Cy(4) = {4}, 4 —4,
| 00 0 1 | Z, = {1,2,4}.

(

1—1,

2—3—5—2,

(i) For Rs, { 4 — 7 — 6 — 4,
8 — 8§,
| Zs = {1,2,4,8}.

The following proposition shows the permutation character of R, and the proof is

omitted.

Proposition 2.3 Let M = [M; j]an o' be a matriz where M; ; denotes a number or a

pattern or a set of patterns. Then,

(RaM); j =My 5 and (MR, )ij = M; 1) (2.37)
Furthermore, for any | > 1,

(RlnM)ZJ = Mol(i),j cmd (MR;)ZJ = Mi,cr*l(j)' (238)

In the following, x-periodic patterns of period n with height £ > 1 are studied. More

notation is required.

Definition 2.4

(i) For any n > 1, let (Gof1- - Bu_1) be a periodic sequence of period n, denoted by

B = (8o Bn-1) U(B) = 0((BoBr- - Bn-1)) = (BiB2- - Pu-1bo). For any fized n > 1
and any 7 > 0, denote by Bj = (Bo;P1; - Bn-1;) a periodic sequence of period n.

20



(i1) For fited n > 1 and any k > 1, denote by

18051 -+ - Bl
= (Bo,0B1,0"* Bn1,0)® @ - @ (Bog—1P1k=1 " Bn1,k-1)°

—o-—-0-—-0o—o

I | | I |
| Bok—1 | Pre—1 | 1Bn—1,k—1,Bo,k—1

-

Bo,0 B1,0 Bn-1,0 Bo,o
a x-periodic pattern of period n with height k.

(i11)) A Hadamard type product e of patterns is defined as follows.

and
[5031 e 'Bk—l] & [3031] | [3132] e ® [Bk—ZBk—l]'
(iv) A 2" x 2" ordering matriz Cpxi T Coxkis) of &=periodic patterns of period n with

height k > 2 is defined by

Crxksij = {[3031 o ‘Bk—l]W(Bo) =1 and ¢(Bk—1) =J}

(v) Forn > 1 and k > 2, denote by D, = [Dy ki ] the ordering matrixz of patterns,
which consists of a first row B3, and the k-th row B3;_, of Cpxi-

Dn,k;z}j = {[Boﬁk—lmﬁoa e 'Bk—l] € Cnxk;i,j}-
Some remarks should be made.

Remark 2.5

(1) For any n > 1, the length of 3 in (i) and Bj in (ii) depends on n. For simplicity,

these dependencies are omitted.

(2) The product e defined in (i1i) applies only when the top row of the first pattern is

identical to the first row of the second pattern.
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(3) In (iv), when k =2, (2.14) applies.

(4) Crxksij is a set of patterns with the same first and k-th rows. D, is ezactly Cyx2,
but, importantly, in C,xi, all patterns in the entry Cyxy.i; have the same top and first
rows, which can be used to construct y-periodic patterns with a shift in the (k+1)-th

row.

In the following lemma, R,, is used to shift the first row in Dﬁl’k.

Lemma 2.6 Let i = ¢(8,) and j = (B,_,). Then
(i) (RaD;, )i = [Br_10(B0)],
(i3) (Crxi ® RanL,k)i,j = [BOBl e 'Bk—la(ﬁo)]'

Proof. (i) follows easily from Proposition 2.3 and part (v) of Definition 2.4. From
parts (i) and (iii) of Definition 2.4, a product in (ii) is legitimate since the top row of

Cyxi, and the first row of R, DY, are f3;_;, and (i) follows from (i). m

t
n7

Furthermore, the following result shows that the patterns in C, . ® RlnD . are the

same as the patterns in diag(C,x4afRIE") Whiéve diag(M) is the diagonal part of M,
such that diag(M) = I o M. They are important in.constructing y-periodic patterns.

Proposition 2.7 For anyn > 2, k > 1 and 0 <'l <n,

patterns in C,xj ® RLDZJC = patterns in diag(CnX(kH)Rﬁ_l)
= {[Bo " Br1d' Bo)ll[Bo - - - Br_1] € Crxi}-

Proof. By (2.38), forany 0 <[ <n—1,1<i,;j <27+,
(Crxesn B i = {80+ Broro ™ (Br)] 1 ¥(By) = i and ¥(5,) = j}.
Since 1(8;) = ¥(3,) = i implies §;, = f3,,
(Coxpan By ™ii = {180 - P10 (Bo)] : ©(By) = i}
However, for any 1 < i, < 2", part (ii) of Lemma 2.6 implies
(Crxi ® R;Dz,k)i,j = [3031 T 'Bk—lgl(ﬁo)]~
Now, forany 0 <1 <n—1and 8= (By---Bn1),

o'(B) = o' (B).
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The proof is complete. =
The rotational symmetry of T, is determined by studying C, «2 in more detail.
Given a basic admissible set B C Xy.o, T, is defined by (2.26). Let [3,3,] € Cpxz, for
0 <j<n-—1, denote
pj = 2B8j0+ Bj1+ 1,

then the associated entry in T, is

T ([BoB1]) = Apopr 1o =+ 1.0 (2.39)
(8004 is B-admissible if and only if a,, ,,,, = 1 for all 0 < j < n — 1, where p,, = po.
Theorem 2.8 For any n > 2, the trace operator T, = [t,.  lanxon has the following
R, -symmetry:
tn;al(i),al(j) = tn;i,j (240)

foralll <i,j<2"and0<I[l<n-—1.

Proof. Given [3,3;] € Cux2, all [04(Bs)ak(3,)], 0 < I < n — 1, represent similar

0
x-periodic patterns. The entry of {&'(3,)ek(5,)] T, is

TN([OJ (BO)OJ (Bl)]) = lp, pp 1 Bpy 1 prge **  @pr_1,p0%po,p1 " Apy_1,pr- (2'41)

Comparing (2.39) with (2.41) clearly.reveals that

T, ([8051]) = Tn([al(ﬁo)gl(ﬁﬂ]) (2.42)
for all 0 <1 < n — 1. Additionally, if T,, = [t,. ;] with i = ¢(8,) and j = ¥(5,), then
(2.42) implies

bl (i),00(j) = tnsiy for all 0 <7 <mn —1.

The proof is complete. m

Proposition 2.7 and Theorem 2.8 yield the following theorem.
Theorem 2.9 Foranyn>2and k>2,0<1<n-—1,
ITE o RUTY | = tr(TERT (2.43)

and

T o R, T!| = tr(T*R.,), (2.44)
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where

R, =) R, (2.45)

Proof. From Proposition 2.7, (2.39) and the properties of T, (2.43) follows. Equations
(2.43) and (2.45) yield (2.44). The proof is complete. m

2.1.3 Periodic patterns

This subsection studies in detail (double) periodic patterns in Z2. Indeed, consider a

lattice L with Hermite normal form,

z
=" "]z (2.46)
0 k

where n > 1, k> 1and 0 <[ <n—1. A pattern U = (3, ;)i jez is called L-periodic if

every t,] € Z

Bitnptigjthg = Pij (2.47)
for all p,q € Z.
o n n 0
The periodicity of and are closely related as follows.
0 k 0"k
n I
Proposition 2.10 For anyn > 2, k > 1 and 0 < | < n —1, -pertodic
0 k
n 0 . . -
patterns are X -periodic where (n,l) is the greatest common divisor (GCD)
0 --BE

(n,0)
of n and [.

no 1 . L nol-m
Proof. By (2.47), the -periodic pattern is easily identified as -
0 k 0 k-m

periodic for all m € N. By taking m = ﬁ, the result holds. =
Given an admissible set B C Y,yo, defined on square lattice Zsyo, the periodic

patterns that are B-admissible must be verified on Zsys. Let Zayxo((4, 7)) be the square
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lattice with the left-bottom vertex (4, j):
Now, the admissibility is demonstrated to have to be verified on finite square lattices.

Proposition 2.11 An L-periodic pattern U is B-admissible if and only if

U‘Z2x2((ivj)) €B (248>

forany0<i<n—1and0<j<k—1.

Proof. The proof follows easily from (2.47). The details are left to the reader. m
According to Proposition 2.11, the admissibility of U is determined by

STV >

STV >

rem can be obtained.

Theorem 2.12 Given a basic admuissiblelset’B 'C.>ox2, an L-periodic pattern U 1is

B-admissible if and only if
[BoBy - Bi_y] and [By 56" =B, )] are B-admissible. (2.49)

Proposition 2.7 and Theorem 2.12 yield the following main results.

n 1
Theorem 2.13 Forn>1,0<[1<n-—1andk > 1, denote by I'g the
0

n
cardinal number of the set of -periodic and B-admissible patterns. Forn > 2,

0<Ii<n—1andk>2,

n 1
I's =tr (TLR.) =Tk "o R 'TY| (2.50)
0 k
and
— nol k k—1 ¢
> T =tr (T*R,) = [T 1o R, TY. (2.51)
P 0 k
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Forn>2and0<Il<n-—1,

n
['s = tr(T,R.) = |diag(T,) o R*'T" | (2.52)
0 1
and
n—1 n 1 - .
> Ts = tr(T,R,) = |diag(T,) o R, T . (2.53)
=0 0 1
Furthermore, let
aiia G220 10
T, = DL TR nd Ry = ; (2.54)
33033 Q44044 0 1
then
10
I's = tr(T%). (2.55)
0 k

Proof. By Proposition 2.7, Theorem,2:12:and the construction of T,, the results
(2.50) to (2.53) hold for n > 2, 0 SI'< n—.1 and%k > 1.

For n = 1, define
ClX2 = ODO 11:]1 ’ (256)
which is the collection of x-periodic patterns of period 1 with height 2. Then, B-
admissible patterns of Cjy9 are represented by T; as defined in (2.54). Theorem 2.12
and the construction of Ty easily yields (2.55). The proof is complete. m

The n-th order zeta function (,(s) can now be obtained as follows.

Theorem 2.14 Forn > 1,

Gals) = exp (%Z%WTQRH)&”) . (2.57)

Proof. The results follow from Theorem 2.13. =

26



2.2 Rationality of (,

This subsection proves that (, is a rational function, as specified by (1.18). To elucidate
the method, the symmetric T,, is considered initially. For any n > 1, let A; be an
eigenvalue of T,,: T,U; = \;U;, 1 <j <N and N =2". If T,, is symmetric, then the
Jordan form of T, [27] is

T, = UJU', (2.58)

where

Ul =U" (2.59)

The eigen-matrix U in (2.58) is defined by

U= [Ul, Us,--- >UN]N><N = [ui,j]NxNa (2-60)
where U; = (uyj,us, -+ ,un;)" is the j-th (column) eigenvector, and
J :diag(/\l,)\g,--~ ;)\N)- (261)

Moreover, \; can be arranged such that“A; > |A\f> --- > |Ay|. Equation (2.59)

implies

N N
Zui,puj,p = 62’,]’ and Zuqﬂ-uq,j = 62'7]'. (262)
p=1 q=1

Now, Theorem 2.15 will be proven.

Theorem 2.15 Assume T,, is symmetric; then

1n—1 n l 1
~> T's =—tr (TiR,) = > x(M)A", (2.63)
n =0 0 k n AEX(T)

where (T, is the spectrum of T,

X = x(y) (2.64)
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and
x(A) = £[R, o U;U}|

(2.65)
n—1 2
- o (Fu,) -

1€1n

where wy, ; is the cardinal number of Cy,(i). Moreover,

Gls) = J[ (@=asm)>x™. (2.66)

AEX(T)

Proof. Clearly,
tr (TﬁRn)

= tr (Udiag(A;)U'R,)

N N N n—1 ,
5 {Zui,qup,j (ZR) } \
=1 lisn Tp=t =1

For each 5,1 <7 < N,

N N n—1 ;
Z:luiJ ( Z upaj IZ:O Rn;p,i)
1= =

=1l
N n—1
= D Uiy (Zua—l(i),j)
=1 l:0—1 n—1
= 2 (Z“al(n,j) (Z“alm)
1€Tn =0 =0
n—1 2
- 22 (L)

1€Ln

The following is easily verified;

n—1 2
Wni
‘Rn o UjU]t‘ = Z - <Zuol(i)’j> . (267)

1€1n

Then, (2.63)~(2.65) follow. From [21],

Z%Jksk” = diag (log(1 — \;s")7"). (2.68)

k=1
Therefore, (2.66) holds. The proof is complete. m

We now extend Theorem 2.15 to general T,,. In this case, the Jordan form for T,

18
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T, =UJU !, (2.69)

where U is given as (2.60) and U;, 1 < j < N, is an eigenvector or generalized

eigenvector [21; 27]. Denote by

U™ = [wj] = [Wi; Wa; s Wiy (2.70)
with W; = (w; 1, w; 9, -+ ,w; n), the i-th row vector.
J :diag(Jl,J2,~- ,JQ), (271)

where J, is the Jordan block, 1 < ¢ < @:

Ag 0 0 O
Ay 1 0 O
Jo=1| i i o : (2.72)
0 0,420 Ag
| 00,0 0 A Mo,
M, > 1.
As is well-known [21], for any.Jordansblock
[ A 17070 0]
OAx1 .- 00
J=1]: & L (2.73)
000 -+ A1
00 0 -~ 0 A .y
and _ .
Hi1 Hi12 HM1,3 - HiMm
0 po2 oz -+ pom
log(I —tJ) = : , (2.74)
L0 0 0
where
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Miivj—1 = py; for1<j< Mand1<:<M+1-—j, (2.75)

and

In particular, 1 <1 < M,
i =log(l — At). (2.77)
Therefore,
3 %Jkskn
k=1
= —log(I —s"J)
= —diag (log(I — s"Jy),--- ,log(I — s™J,
g (log( 1) 8( Q) (2.78)
= _[,ui,j]NxNa
where
: Hg11 g1z Mg130 0 Hgl,M, ]
0 Pgz2=lg2n - Hg2,M,
log(I — s"J,) = : (2.79)
Y 0 0 pgngm, |
and
figsii = log(1 = Ags"), 1 < ¢ < Q. (2.80)

Now, Theorem 2.15 is generalized for general T,,.

Lemma 2.16 Forn > 1, in (2.69) and (2.70) the generalized eigen-matriz is denoted
by

U= (U1 Ui 3Ups - Upnryio - ;UQ,1"'UQ,MQ]NxN,

and its inverse is denoted by
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-1 . . . . . . . . . .
U = [Wl,l7"' 7W1,M1a”' 7Wq,17”' 7Wq,Mq7”' 7WQ,17”' 7WQ,MQ]N><N-

Then,

Q
Gls) =] exP (—XaqsijHaiij)
g=1 1

<i<j<M,

where

Xazij = %|Rn o Uy iWyjl

n—1 n—1
1 Wn,
= u > " <l_zouq;0’(p),i> <qu;jﬁl(p)) :

pEIn

In particular, if

Xgij = 0 for all i # j,

then
Q
Culs)= = Hl(l EiApst) X
e
— TS sy X)),
/\EZ(Tn)
where
1
Xq = EZ|Rn o UgsiWeil
i=1
and

X(A) = ZXq'

Ag=X

Proof. From (2.69) and (2.78),

Ca(s) = exp (%tr (U (—diag(log(I — s"Jy), -

Now,
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(2.81)
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(2.84)

(2.85)

(2.86)



tr (Udiag(log(I — s"Jy), -+ ,log(I — s"Jg))U™'R,)

N N N N n—1 ;
=SS S upws ( = R)

@
Il
,_.
<
Il
,_.
5
Il
—
=
I
—_

N n—1 n—1
- £33 % 2 (Su) (S mo
Therefore, (2.81) follows. Clearly, if (2.83) holds, then (2.84) holds. The proof is
complete. m
In the rest of the section, (2.83) is proven and x(\) is shown to be a nonnegative

integer. Therefore, (, is a rational function. Some of the symmetry properties of the

eigenvectors associated with the R,-symmetry of T,, are investigated first.

Lemma 2.17 Forn > 1, if U is an eigenvector, then R\U is also an eigenvector for
any 0 <1 <n—1. Furthermore, if U is a generalized eigenvector, then RLU is also a

generalized eigenvector for any 0 < < n—qk.

Based on Lemma 2.17, the equivalentr class R(U). of eigenvector U is introduced by

R,.
Definition 2.18 For any N x 1 column veector UL
RU)={RU0<I<n-1}. (2.87)
U is called (R,,-) symmetric if R(U) = {U}, such meaning that w; = u; for all j € C,(7)
or
RU=U (2.88)

n—1
for all0 <1 <n—1. U is called (R,-) anti-symmetric if >, R.U = 0, such meaning
=0

n—1
> Vg =0 (2.89)
=0

for alli € Z,.

For a symmetric eigenvector U, the following property is observed.
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Lemma 2.19 Let U = (uy,us, -+ ,un)’ and W = (wy, wa, -+, wy),

%|RnoUW\=Zw1. Do | Do wi) (2.90)

n,i

i€Tn JECn(4) JECH (i)
Furthermore, if U is symmetric, then
1 N
— R, oUW | =WU = W, 291
n| © | ;“ij ( )
and if U is anti-symmetric, then
1
~ R, 0o UW| = 0. (2.92)
n
Proof. Clearly,
n—1 n—1
DUy = 5= Do uy and Y wap =g Y wj (2.93)
=0 T JECK(7) =0 T JECK(3)

Therefore, substituting (2.93) into (2.82) yields

%|RnOUW|=Zw1‘ o % > w

i€Z, ' \jeCn() FECH (D)

If U is symmetric, then

E Uj = Wyl

JECR(%)
Hence,
1 N
n| no UW| Z Z UW; Zujwj wuU
i€Zn \jeCn(i) j=1
The proof is complete. m
The following orthogonal matrix @), is very useful in finding symmetric and anti-

symmetric eigenvectors of T,,, the details of proof is omitted.

Lemma 2.20 Forn > 2, the n X n matriz Q,, =
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B Bl Bl B 1
Vi vn n vn n
n—1 1 o 1 _ 1 _ 1
n \/n(n—l) \/n(n—l) n(n—1) v/ n(n—1)
0 n—=2 1 ... _ 1 _ L 2.94
n—l (n—1)(n—2) Vi-1)(@n-2)  /(n-1)(n-2) (2.94)
1 1
- 0 0 % v

1s orthogonal.

In the following lemma, when @, is used, R(U) can be expressed by symmetric and

anti-symmetric eigenvectors.

Lemma 2.21 Forn > 2, given eigenwector U define

- 1 n—1
paEm =W Ay 2.95
1 \/ﬁ; (2.95)

and, 2 < 5 <n,

. n—1
— n—7+1_., 1 k
Uj=—F——=R U — R,U. 2.96
! \/n—j—l—Q " \/n—j+1\/n—j+2k:j_l " (2.96)

If R(U) has rank k, for some k, 1 <k <n,

(1) then {Uj}?zl also has rank k;

(ii) if Uy # 0, then Uy is symmetric, and for each j, 2 < j <n, U; is anti-symmetric.

Proof. Clearly,

(U17U27'” 7Un)t = Qn (UaRnUa ,R%U, ,RZ_IU)t.

Since @, is orthogonal, (i) holds.
Since R, (U,) = Uy, U, is symmetric. For 2 < j < n and i € T,,,
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T 1 n—1 n—1
. Usl(i) = 77T 2o 2o Uol(i)
—0.

Therefore, Uj is anti-symmetric for any 2 < 57 < n. The proof is complete. m

The main result can now be proven.

Theorem 2.22 Forn > 1,

L (ThR) = 3 X0 (2.97)

n
AEX(TR)

and

Gls) = J[ (@=asm)>™, (2.98)

AES(TH)

where x(A) is the number of linearly independent symmetric eigenvectors and general-

1zed ergenvectors of T, with eigénualue X.

Proof. The case of symmetric T, isiconsidered. first. Let E) be the eigenspace of T,
with eigenvalue A. By Lemma 2.21 E, is spanned by linearly independent symmetric
eigenvectors Uy, Uy, -+ - , U, and anti-symmetric eigenvectors Uj, Us, - - - U, where
p+p = dim(E)) and p or p’ may be zero.

Now,

() =1 <;|Rn o U;U;| + Jp; R, o U;<U;)t|> 2.99)
=D
which is the number of linearly independent symmetric eigenvectors of T,, with eigen-
value .
For general T,,, in Jordan canonical form (2.69) and (2.71), U can be decomposed

into

U=E\, ®E), ® - ®E,.
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Each F),; is spanned by symmetric eigenvectors and generalized eigenvectors

Uj1,Uja,- -+ ,Ujp, and anti-symmetric eigenvectors and generalized eigenvectors
/!

F UL, ,Uj'-,p;.= and p; + p; = dim(E),).

The inverse matrix is U™l =

T/ . -_ . / . .
[W1,17"' 7W1,p17 1,10 """

I
) 17p’17

. 7WQ,17 ;WQ@Q;W&,I;'.' ’Wém,Q] .

Lemma 2.19 implies

1 T7. YA/ 1 ! 1
E|Rn o Uj,in’,k| = 5jj’6ik and E|R" o) Uj,iW",k| =0.

J

Therefore,

X)) =p;
= the number of linearly independent symmetric eigenvectors and

generalized eigenvectors of T,, with eigenvalue \;.

The result follows. The proof is complete, , m

Now, the reduced trace operator 7, of T, is recalled as in (1.17).

Definition 2.23 Forn > 1, T, =\[tn.;|. Foreachi;j € I,, define

Tt — Z I (2.100)

keCH()

and denote the reduced trace operator of T, by T, = [Ty ], which is a x,, X xn matriz.

The following theorem indicates that 7,, is more effective in computing the eigenval-
ues with rotationally symmetric eigenvectors and generalized eigenvectors of T,,. See

also Examples 2.54 and 2.55.

Theorem 2.24 \ € X(T,,) with x(A\) > 1 if and only if X € 3(7,,). Moreover, x(X) is

the algebraic multiplicity of T, with eigenvalue X. Furthermore,

n—1
l
IS |” = Y O = (), (2.101)
and
s k
Ca(s) = exp (Z tr(]z—")s”k> . (2.102)
k=1



Proof. Let A € X(T,) be an eigenvalue with rotationally symmetric eigenvector
U = (uy,ug, - ,u)’, where u; = u; for any ¢ € Z, and j € C,(i). Define V =
(ug, -+ ,us -+ ugm)t for i € Z,,. Then, clearly, T,,U = AU implies 7,V = AV.

On the other hand, if 7,V = AV and V' = (v, -+ ,v;,- -+ ,v9n)", then V can be
extended to U, a 2"-vector, by u; = v; for i € Z,, and j € C,,(¢). Then, T,U = AU and
U is rotationally symmetric. The arguments also hold for a generalized eigenvector.

Finally, (2.101) follows from (2.51) and (2.97), and (2.102) follows from (1.8) and
(2.101). The proof is complete. m

Remark 2.25 According to Theorem 2.24, the following is easily verified;

S o= Y v = (2.103)

AeX(Tr) AEX(Th)

Theorem 2.24 yields the following result.

Theorem 2.26 Forn > 1,

Cn(s) =afdet (FLesr,)) ™! (2.104)
= JJ (- xgp) ) (2.105)
AEX(Tn)

where xn(A) is the algebraic multiplicity-of N€-3(m,) and
((s) = [[(det(r = s"7,)) " (2.106)
n=1

- ﬁ [T a—asmy®. (2.107)

n=1 )\EE(Tn)
2.3 More symbols on larger lattice

This subsection extends the results found in previous sections to any finite number of
symbols
p > 2 on any finite square lattice Z,,xm, m > 2. The results are outlined here and the
details are left to the reader. The proofs of the theorems are omitted for brevity.

For fixed positive integers p > 2 and m > 2, the set of symbols is denoted by
S, ={0,1,2,--- ,p— 1} and the basic square lattice i8 Z,,x,. We need the following

notations.
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For any fixed n > m, such as in (2.14), the x-periodic patterns of period n with

height m can be recorded as Cyxm:j in Cpxm by Chxmsi;j =

——0---0---0—0 000

| |
ﬁOmllﬁlmll ﬂnlmlﬁomllﬂlml:

5—¢---+---4—+—¢---+---4

Bo,1 ‘ﬂn 1,1 l Bm—2,1 .

/60,0 ﬁn 1,0 0,0 ﬁm_z,o

| ﬁm—Z,m—l

Fig 2.1.

Similarly, when 1 <n <m — 1, C,xsm = [Crxms,;| can also be defined as an
(n+m — 1) x m pattern in Fig 2.1.
Then, for any n > 1, the associated trace operator T« = [tnxm: ;] can be defined

by

tusomsi = 1 if d0d only il Qs j ds B-admissible. (2.108)

Now, for any n > 1, the corrésponding rotationalimatrix R, (nm—1) which is a zero-

n(m—1) n(m—1)

one p X p matrix is defined"by

Ry« (m—1);i,; = 1 if and only if

j = a(i), (2.109)

where 4 is given by 1 <14 < p™"™~1 and 1 < o(i) < p"™~1 is represented by

(i) = ([0(Bo)o(B1) - - 0 (B1nzs)]) - (2.110)
The explicit expression for R,y (m-1), like (2.31), can also be obtained and the result is

omitted here.

As (2.33) and (2.34), the equivalent class Cy,x(m-1)(Z) of i is defined by
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Crxm-1()) = {7(D0<j<n—1}

(2.111)
— { ‘( (e 1)>”—1f0rsomelgl§n},
and the index set Z,,(;m—1) of n is defined by
Toxm-1y = {i|1 <i<prm=D i <o(i),1 <qg<n-—1}
(2.112)

= {i1 <i<prm Y i <jforall j € Crypm(i)}-
The cardinal number of 7, (,—1) is denoted by Xpx@m—1) and X, xm-1) is equal to the

2m—1

number of necklaces that can be made from colors, when the necklaces can be

rotated but not turned over [48]. X, x(m—1) is expressed as

Xnx(m-1) Z¢ (2m )" (2.113)

Like Proposition 2.3, R, x(m-1) has the permutation properties. Now, define

7L>< m=—1) ZRnx(m 1)- (2114>
n 1
A similar result to Theorem 2.13 éan now be obtained for I's
0 k
Theorem 2.27 Forn>1,k>1and0 <1 <n-—1,
n :
FB =tr ( nXmRnX (m— 1) (2115>
0 k
and
n—1
n 1
> Ts tr (TF  Rox(m1)) - (2.116)
0 k
As in (1.8), the n-th order zeta function is given by
00 n— 11 n 1
Culs) = exp —Z ~T's P (2.117)
— =k 0 k

From Theorem 2.27, the following theorem is obtained.
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Theorem 2.28 For anyn > 1,

I A1
Cols) = exp (EZF&T (TF o Ruxc(m—1)) s“k> : (2.118)
k=1

The proof that (,(s) is a rational function depends on the fact that T, ., is also

Ry, (m—1)-symmetric, which is stated as follows.

Proposition 2.29 For anyn > 1,

tnxm;a(i),a(j) = tnxm;i,j (2119)

for any 1 <i,j < prm=1),
Then the reduced trace operator 7,,x.,, of T, ., is defined as follows.

Definition 2.30 Forn > 1, the reduced trace operator Tpxm = [Tnxm:ij| Of Tnxm 5 a

Xnx(m—1) X Xnx(m—1) matriz defined by

Tl = D N i (2.120)

kecnx(m-l) (.7)

for each i, j € Ly (m—1)-

The notion of symmetric and“anti-symmetric eigenvectors of T, ., can also be

defined as in Definition 2.18. Now, the main result can be obtained.

Theorem 2.31 For anyn > 1,

Gls)= J[ @—=asm)™ (2.121)
AeX(Trnxm)
= (det (I — 8" Tnxm)) (2.122)

where x(A) is the number of linearly independent symmetric eigenvectors and general-

ized eigenvectors of Tpwm with eigenvalue \. The zeta function is

o0

C(s) =[] (det (I = s"rum)) " (2.123)

n=1
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2.4 Zeta functions presented in inclined coordinates

This subsection will present the zeta function with respect to the inclined coordinates,
as determined by applying unimodular transformations in G'Ly(Z). Z? is known to be
invariant with respect to unimodular transformation. Indeed, Lind [36] proved that
ng = (g for any v € GLy(Z): the zeta function is independent of a choice of basis
for Z?. This section presents the constructions of the trace operator T.,.,(B) and the
reduced trace operator 7., (B), then determines (g.,., and (z.,. Finally, (z., is obtained

as

oo

Cos) = [ (det(I — sr,n(B))) . (2.124)

n=1

As mentioned in (1.29), (5., (s) = (3(s) in |s| < exp(—g(B)), for any v € GLy(Z),
which yields a family of identities when (g, is expressed as Taylor series at the origin
s = 0. Furthermore, for some B C Yj.o, we may find a v € GLy(Z) such that (g,
offers a better description of poles and natural boundary of (g when (s and ZB fail to
do so, see Example 2.56.

For simplicity, only B C g oswith two symbols are considered. The general cases
can be treated analogously.

We begin with the study in the modularrgroup SLs(Z). The results also hold for
any v € GLy(Z) with dety = —1.

Recall the modular group

b
SLyz) =4 | a,bc,d € Z and ad — be = 1
c d
v = ¢ € SLy(Z) is called a unimodular transformation. Then,
c d
2* = {p(a,c) +q(b,d)[p,q € Z} (2.125)

holds, here Z? is the set of lattice points (vertices).

Consider the set of all finite-index subgroups £, of Z2 by

ajpr a9 9 .o
Ly = 72| arrage — arnas > 1,05 € 2,1 < i, j <2

ag1 A2
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ny . . . .
here 7? = |ni,ne € Z . An equivalent relation ~ exists in L£o. Two sub-
N2

! !
ai; Q12 ayp Qg

lattices L = 72 and L' =
! !
ag1  A22 Ag1 Aoy

Z? are equivalent if L and L'

determine the same sublattice of Z%: L' = L.
The following result states the existence of unique Hermite normal upper (or lower)

triangular forms within each equivalent class in L.

.. a1l 012 ) , n
Proposition 2.32 Foreach L = 72 € Lo, there is a unique 72 ¢
ag1 A2 0 k
ki O
Lo,n,k>1and0 <[l <n—1, and 72 € Lo, i, ki >1and0 <1y <n;—1,
L m

such that they are equivalent, where
nk = nlk‘l = 110922 — A12Q921. (2126)
The proof can be found elsewhere [39],

a b
For a given v = € SLs(Z), whe lattice points in y-coordinates are

c d

(1,0), = (a, b) “and=0, 15 = (c. d).

and the unit vectors are

1 a c
= and =
0 b 1 d
gl g
Notably, when ~ = , standard rectangular coordinates are used and the sub-

script v is omitted.

The parallelogram with respect to v is defined by

n I na la+ kc
M'Y = =
0 k nb b+ kd
vy
Let L, = M,Z?. Then,
L,=~'L (2.127)
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is easily verified.
The Hermite normal form in Proposition 2.32 indicates the existence and uniqueness

of 0 <l; <n; —1,1<kjfor j =1,2, such that

l ny ky O
L,Y _ a ¢ n Z2 _ 1 1 Z2 _ 2
b d 0 k 0 Kk la no

7* (2.128)

with n1ky = noky = nk. Therefore, the n-th order zeta function of (2(s) with respect

to v is defined by

oo n—1
1 1 n I "
Cen(s) =exp | =3 > - NN (2.129)
k=1 1=0 )
and the zeta function (g, with respect to v is defined by
(i (8) = [ [GB9in(5)- (2.130)
n=1

Since (2.128) holds, the iterated sum. in.(2.129) and (2.130) is a rearrangement of
C2(s). Therefore,

Coals) = Cg(s) (2.131)
for |s| < exp(—g(B)). See Proposition 2.44 (z) and-another work [36].

The main purpose of this subsection is to'establish results that are similar to The-

orems 2.22, 2.26 and 2.31:

CBiyin(S) = H (1= As™)7 X (2.132)
AEX(TH;n)
= (det (I — 8" 7)) ", (2.133)

where T,., is the trace operator with respect to v and 7., is the associated reduced
trace operator of T.,,. The following introduces cylindrical matrix and rotational
symmetrical operator R..,. The proofs of the results are omitted.

In the following, a unimodular transformation « is given and fixed. Let Z,;,x, be the

a
n X m lattice with one side in the v; = = direction and the other side

b

Y
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in the v = 0 = CCZ direction. The total number of lattice points on Z..,,xm
isn-m. The order;ng matrix Yo.wm = [Yymxmsi ;] Of local patterns [/G'Y%OCLOQ]O:n—LO:m—l
is defined on Z..pxm. On Zyoxo and Zy.,x2, Yoxo is arranged as in (2.2) and Y., x2
is defined recursively as in (2.12) and (2.13), except that the horizontal is now in the
~1 direction and the vertical is in the 7, direction.

The ~,-periodic patterns of period n with height m on Z,,(,41)xm can be recorded
as Cyipxmsij 10 a cylindrical matrix C.,,,xp,. The shift operator o is defined to shift
one step to the left in the ; direction.

Since the admissible local pattern B is given on square lattice Zsyo, the periodic pat-

terns in y-coordinates that are B-admissible must be verified on Zsys. Let Zayxo (4, j))

be the square lattice with the left-bottom vertex (i, 7), = (7', j'):

Loz (6, 5)5) = (", 57), (@' + 1,5, (0", + 1), (" + 1,5 + 1)}

Now, the admissibility is demonstrated to have to be verified on finite square lattices

as follows.
. , a_b
Proposition 2.33 Given vy = € SLs(Z) andn > 1,k>1and0 <l <n-—1.
¢
n 1 , _ o .
An -periodic pattern U s B-admissible*if and only if
0 k

Y

Ulzsatiem-) € B (2.134)

forany0<&é<n—1and0<n<k-1.

For a given basic set B C {0,1}#2x2, the definition of trace operator T, of B has

0
to be justified, since B is given in a 2 X 2 square lattice in the and
0 1
a c
directions and T, is defined in the and directions.
b d
a b
For any v = € SLy(Z), the height h(~) of 7 is
c d
h = h(y) = |a| + |b], (2.135)
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and the width w(7) of ~ is

w=w(y)=|c +]d|. (2.136)
The following lemma determines that the first square lattice that occurs in a paral-

lelogram in the v-coordinates.

a
Lemma 2.34 For any v = € SLy(Z), there exists exactly one square lattice

c d
that is determined by a parallelogram with vertices (0,0),, (w,0),, (0,h), and (w, h)..

The square lattice has either vertices (0, h), and (w,0), or vertices (0,0), and (w, h)..

The lemma shows that the existence of the parallelogram contains exactly n - k

square lattices, as follows.

a b
Proposition 2.35 Given v = € SLy(Z), for anyn > 1 and k > 1, exactly

c d

n-k square lattices have pairs of vertices that lie on the parallelogram that is determined

by (0,0), (w+n—1,0),, (0,h+k—LDyand (w+n—1,h+k—1),.

For a given B, v € SLy(Z) andin > 1,the ttace ‘operator T..,(B) acts exactly on n
square lattices which lie in the vj-direction.

Therefore, consider Z.., 4w n+i- FremPropeosition:2.35, n square lattices have pairs
of vertices on Z.,4uw,n+1- The yi-periodic patterns-with period n and height h + 1 are
denoted by C,.p o ht1-

The trace operator T.,.,, = T.,.,,(B) = [ty:n.i;], associated with B, is defined by

tymi; =1 if and only if the pattern in C..; 4 pt1:,; 18 B-admissible. (2.137)

As in another study [6], a recursive formula exists for T, in terms of C..p, w1, n4151.5
B and 7.

A similar result as in Proposition 2.7 can be obtained; the detailed proof is omitted.

a b
Proposition 2.36 For v = € SLy(Z), n > 1 and k > 1, (T'jn)j is the
c d T

number of B-admissible patterns of the form

[B’WOB’Y;l o 'Bv;thk—l]

[3%0 o 'Bv;h—l] ° [Bv;l o 'Bv;h} -0 [ﬁv;k o 'ﬁ'y;h+k—1] )
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where

i =1 ([B’Y;O o 'ﬁv;h—l]) (2.138)
and

j=v ([B'y;k " 'Bv;kJrh—lD : (2.139)

Now, for any n > 1, the associated rotational matrix R,,, which is a zero-one

270 % 2" matrix is defined by
R,..; =1 if and only if j = o,(i), (2.140)
where 1 < i < 2™ is given by (2.138) and 1 < o, (i) < 2™ is defined by

0(i) = ¥ ([04(B,:0) 05 (Bra) -+ 03 (Byn)]) - (2.141)

The equivalent class C,,(7), the index set Z,., and the cardinal number x.,., of Z..,
can be defined as similar to (2.111)~(2.113) and are omitted here. Now, the reduced

trace operator is defined as follows.

Definition 2.37 For n > 1, the neduced traceroperator Ty, = [Tymi;] of Ty is a

X~in X X~in matriz defined by

Tv;n;i,j e Z t’y;n;i,k (2142)
keCyin(4)
for each i,j € L.
Now, define
n—1
Ry,=> R, (2.143)
1=0

It is easy to verify that all results also hold for any v € GLo(Z) with dety = —1.

The main results as in Theorem 2.13 are then obtained.

a b
Theorem 2.38 Given any B C Yayo and v = € GLy(Z). Then, for any
c d

n>1,k>1and0<[1<n-—1,

n 1
I's =tr (T%,R..,) (2.144)
0 k s

~

and
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> Ts ! =tr (T5,R..) - (2.145)

Y

CBiim(5) exp( Zk” R..) s ’“) (2.146)

Finally, by the argument as in Subsections 2.2 and 2.3, the rationality of the n-th

Moreover,

order zeta function (g.,., is established, as in Theorems 2.22, 2.26 and 2.31.

a b
Theorem 2.39 For any B C Yayo and v = € GLy(Z),
c d

Gom(s) = J[ (@ =Asm)0om® (2.147)
AER(T5:n (B)
= (det (I — 8" 7)) ", (2.148)
where the exponent x..n, () is the number of linearly independent R..,,-symmetric eigen-

vectors of T..,,(B) with respect to eigénvalue Xl L he zeta function of B with respect to

v-coordinates is

(B (59 H (det (I — 5" 7,)) " (2.149)

An immediate consequence of {2:149) is the following result, see Proposition 2.44

and [36].

Corollary 2.40 For any B C Yaxg andy € GLy(Z), the Taylor series for (g, at s =0

has integer coefficients.

Proof. Since 7,,, has integer entries for any n > 1. The result follows. =

We now briefly investigate the zeta functions presented in the lower Hermite normal

a b
form. For any v = € GLy(Z) and n > 1, define
c d
N 1 oo n—1 1 ]{7 0 -
(Bin(8) = exp " Z EFB ! n S ) (2.150)
k=1 1=0 ,
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k O ka+lc nc

where = and
[ n kb+1d nd
v
CBy(5) = [ [ Coin(s)- (2.151)
n=1
Denote by
0 1
3= , (2.152)

the reflection % with respect to the diagonal axis y = x. Then we have the following

results.

Theorem 2.41 For any v € GLy(7Z),

CB;’y;n - CB;’Ay'y;n (2153)
and
CB;'y = CB;?V- (2154)
In particular,
(s = L (2.155)

a b
Proof. For any n > 1,k > 1 and0 <[ <n — 1, dnd v = € GLy(Z), denote
d

by the lattices
~ E Of_, ~ —
L = 7* and L, = M,Z~, (2.156)
[l n

where the parallelogram J/\/[\V is defined by

—~ k 0
M, = . (2.157)

[ n

”
As in (2.127), it is easy to verify
L,=+'L, (2.158)
and

E = L@, L= EQ and E.y = L?’Y’ L’Y = wa. (2-159)
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Therefore,

E 0O n
s = Ts . (2.160)
[ n 0 k|_
gl
Hence, (2.160) implies
CB;n = CBﬁ;n
and
(s = (o

Therefore, (2.153) and (2.154) follow. The proof is complete. m

Remark 2.42 From Theorem 2.41, for any B C Yoy there is a family of zeta func-
tions {(p|7 € GLo(Z)} = {ZBWW € GLQ(Z)}. In computation, it is much easier to
study (g and ZB; i.e., the rectangular zeta functions. However, for certain B, some

other v € GLo(Z) may give a better description, see Example 2.56.

Remark 2.43 For any B C Yoxo andy € GLo(Z), (g in (2.149), which is an infinite
product of rational function, is a rearrangement,of (g in (1.6), which is a triple series.

In deriving the rationality of (g.ym, the-basic formula used is the power series

tk
= ~log(1 - By (2.161)

M

o
Il

1

The other rearrangements of (3 maymot havedhe form as in (2.149). For example, for

any m > 1, denote by

n—1
fam(s) =exp | DD %FB z i s (2.162)
nlm 1=0 Y
and N
fo(s) = T fom(s)- (2.163)
m=1

In general, fp.,(s) is not a rational function of the form as in (1.3). It is also not
clear how to identify the poles or natural boundary of fg(s) from (2.162) and (2.163),

see Subsection 2.5.

49



2.5 Analyticity and meromorphic extensions of zeta functions

This subsection studies the analyticity and meromorphisms of zeta functions obtained
in the previous sections. Possible applications to number theory are also indicated. For

simplicity, only B C ¥y» is considered. The general cases can be treated analogously.

2.5.1 Analyticity of zeta functions

Recall the analyticity results of Lind [36]. Given an admissible set B C Yj.9, the
analytic region found by Lind is related to quantity g(5), which specifies the growth

rate of admissible periodic patterns. Given an admissible set B C Yoy,

9(B) = limsup;logls(L) (2.164)

[L]—o0

lim sup log Ts(L) U's(L)
n=oopsy (L]

Recall the results of Lind [36] that are related to analyticity of zeta functions.

Proposition 2.44 According to Lidd, [36]

(i) The zeta function

(5(5) = exp (Z FZE é]L)S[L]) (2.165)

LELS

has radius of convergence exp(—g(B))-and is-analytic in |s| < exp(—g(B)).

(ii) Cg satisfies the product formula,
¢a(s) = [ [r2(s"), (2.166)

where the product is taken over all admissible periodic patterns o with respect to B,

and

mo(s) = ZP(n)s", (2.167)
n=1
where P(n) is the partition function.

(iii) The Taylor series for ((s) has integer coefficients.

Now, Propositions 2.44 and 2.32 and Theorem 2.41 imply
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Theorem 2.45 For any admissible set B C Yoyo and v € GLy(Z),

Cg(s> = CB;“{(S) = ZB;'y(S) (2168)

for |s| < exp(—g(B)). Moreover, (g., and EB;V have the same (integer) coefficients in

their Taylor series expansions around s = 0.

Proof. Since

S

LeLo [ ]

is absolutely convergent in |s| < exp(—g(B)), for each v € GLy(Z),

and

nk

L 4y
are absolutely convergent in |s| < exp(=g(B)):;Hence (2.168) holds. From (2.168) and

Proposition 2.44 (iii) or Corollary 2:40, (;and Zgw have the same (integer) coefficients

in their Taylor series expansionstareund s = 0. The proof is complete. m

Remark 2.46 The set of identities 0f (2r168) may lead some interesting results in

number theory. See examples in next subsection.

The rest of subsection discusses the meromorphicity of zeta function (z,,. We need

the following notations.

Definition 2.47

(1) Given any B C Xaxo and v € GLy(Z). The meromorphic domain Mp., of (g.,is
defined by
Mg, = {s € C|(g.(s) is meromorphic at s}. (2.169)

(it) The pole set Pu., of (g is defined by

Pp, ={s € C|1 = As" =0, where A € 3(T,.,(B)), xy;n(A) > 1 and n > 1} (2.170)
={s € C|l —Xs" =0, where A € ¥(78,y:n) and n > 1}. ‘

(iit) (g has a natural boundary OMpg,,, if every point in OMp., is singular.

o1



Remark 2.48 (g., has a natural boundary if
Ppy 2 OMsp.,. (2.171)
In studying the infinite products (g.,(s), the associated infinite series

G($) =D 1 Y MmN | " (2.172)

AEX(Tin)

is useful. Denote by

3=

Mgy =limsup [ > [Aam(N) | (2.173)
%\ XEX(Tin)
Let
* _ * -1
Sy = (Agy) - (2.174)

Therefore, {5., absolutely converges for [s| < Sf...

Furthermore, the reciprocal of (z.,,
Go=H  Hrma—xsm)yon® (2.175)
n=1_Aed(Tin)
is absolutely convergent in [s| <3Sj._ . Thésimilar notations can also be introduced to

EB;% the details are omitted here.

Accordingly, zeta functions (., have the following meromorphic property.

Theorem 2.49 Given an admissible set B C Yoo and v € GLy(Z). Then zeta func-
tion (g, is meromorphic in |s| < S, and may have poles in Pg,N{s € C||s| < S, },

i.e., {s € C||s| < S8p,} C Mg,.

Proof. For each s ¢ Pp,, and [s| < S, (s, is convergent and has an isolated pole in

Pp when |s| < S, and then is meromorphic in |s| < .. The proof is complete. m

Theorem 2.50 Given admissible set B C Yoyo. For any -~y and ' in GLy(Z), the zeta

functions (g, = (g in |s| < min(Sg..,, Sp..r)-

Proof. Since (p., and (s are meromorphic functions and are equal to (3 on |s| <
exp(—g(B)), by uniqueness theorem of meromorphic functions [46], they are equal on

|s| < min(Sg.,, Sp.,). =

52



Remark 2.51 Given B C ¥jyx2, can we find a v € GLy(Z) such that (p., is the
mazimum meromorphic extension of (3, i.e, for any meromorphic extension Cj of (2,
(B is a meromorphic extension of (p? In particular, for any v € GLy(Z), Mg,y C
Mg ? Furthermore, is there v € GLo(Z) such that (g, admits a natural boundary?
These two problems are closely related. The complete answers are not clear. See

examples studied in Subsection 2.5.2 and Subsection 2.6.

2.5.2 EXAMPLES

This subsection presents some examples to elucidate the methods described above.

Example 2.52 Consider

s={.[T, I, T, I} (2.176)

Clearly,

and| "V = (2.177)

By, O O

o O = O
_ o O =
o o o O
o o o O
_ o O =

0
0
0
1 |
First, I's Z : and ['s ( [ s are computed directly as follow:

k [l n
n 1
I's =2F forany 0<I<n-1 (2.178)
0 k
and
k 0
'z =20 forany 1<1<n-—1, (2.179)
[l n

where (n,1) is the greatest common divisor of n and [, are easily verified.

Consequently, for any n > 1,

Ca(s) =exp <% i %s’m) = (1—2s")7!
k=1



and the zeta function ((s) = J] (1 — 2s")~! with S* = 1, which was obtained by Lind
n=1
in [36].
However, (2.179) implies

= (1 —s")"Xn, (2.180)
and the zeta function ((s) = H(l — ™)X where
n=1
Xn = 1262("’”. (2.181)
(o

S|=

Now, it is easy to check that lim (Y,)» = 2. Therefore, S* = 1 as in (2.173) and

n—oo
-~

(2.174) for ((s).
Theorem 2.45 implies that the zeta function (g(s) of B given by (2.176) is

¢a(s) = [ J =290t T — ) (2.182)

in |s| < 1. The natural boundary of (2.182)is |s| =1 and ¢ has poles
{2—%627”7'/” 0<j<nidin> 1},
as described elsewhere [36].

However, (2.177) implies

TQ = V2 and TQ = Hg.

Furthermore,
(10 -~ 0 1]
00 00
T,=|": : (2.183)
0 0 00
10 --- 01
L. -2n><2n
and
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A~

Tn - ]27L’

where In is the 2" x 2" identity matrix. Therefore,

o~

Cn(s) = (1 —s")7",

(2.184)

(2.185)

where x,, is the cardinal number of Z,,. Now, (2.181) and (2.185) imply X» = Xu, i.€.,

1TL
n=—) 200

Note that (2.186) also follows from the identity (2.182).
Moreover, (2.184) implies

~

Co(s) = exp (%mRn) log(1 — s”)_l) |

Therefore, (2.185) implies

1
“tr(R,) = Y.
nﬂ ) =X

Hence,

a2
=1

(2.186)

(2.187)

(2.188)

The following example can also-be solved explicitly and is helpful in elucidating the

natural boundary and location of the poles of‘the zeta function.

Example 2.53 Consider

(111 0]
1110
H2 =
1110
0000
Then,
(111 1]
1010
V2 - = G &® G,
1100
(100 0|

95

(2.189)

(2.190)



where

11
10

G =

is the one-dimensional golden-mean matrix, which has eigenvalues

g= 1+2\/5 and g = 1—2\/5 = g1
Now,
ﬁg = V2 and {72 = H2.
Then,

T2:V20ﬁ2:V2:G®G

can be verified, and for any n > 2,

T, = GG BBGE= "2 G,

WV
n—1 times . ®

which is the n — 1 times Kronecker product of G.

The spectrum of T, is

X(T,) = {g" 79’0 < j <n},

(2.191)

(2.192)

(2.193)

(2.194)

(2.195)

which has n+1 members. The number of linearly independent symmetric eigenvectors

of g" g is
Xnj = X(9" )
S

i€ly
)\n,i:gnijgj

(2.196)

Clearly, xno0 = Xnn = 1. Furthermore for any 1 < j <n—1, by Burnside’s Lemma,

1 . . nd/(j,n—j
Xnj = — > oG —g) /Ay,

d|(j7n_j)
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where ¢ is the Euler totient function (2.36). The detailed proof of (2.197) is omitted
for brevity.

Therefore,

Gals) =[] (1 = g"gs™) (2.198)

J=0

and

¢(s) = [ n(s)- (2.199)

From (2.197),

S|=

lim sup max (‘g"_jﬁjxn,j‘) =2,

which implies S* = 1 in (2.174).

Now, consider T,, and the associated zeta function E(s) Clearly,

TQZHQO%:HQ.

To study higher-order Tn, n > 3, the.récursiverformula of H,, must be obtained. Let

Hn'l Hn‘2
H, - R (2.200)
Hn;3 Hn;4
Then,
[ Hn;l Hn;2 Hn;l 0 ]
Hn;3 Hn;4 Hn;3 O
Hn+1 =
Hn 1 Hn;2 Hn 1 0
0 0 0 0]
Now, for n > 2,
n—2 1 1 n—2 1 0
® ®
11 10
. H,., M, : - : -
T — I . (2.201)
Hn;3 Hn;4 B ] B ]
n—2 1 1 n—2 1 0
X X
0 0 0 0
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The remaining matrix of ’Tn can be verified to be a full matrix F;, after the zero
rows and columns have been deleted, where 7, is the sum of entries in the first row
of 'f‘n Hence, the maximum eigenvalue Xn of ’Tn equals 7,, the other eigenvalues are
ZETros.

From (2.201), it is easy to verify

Moit = An + Anot (2.202)

with X2 = 3 and /)\\3 = 4. Therefore,

Cals) = (1= Aus™)™! (2.203)
and
Cs)=JJa—2sm (2.204)

Now, Xn and g™ must be compared. Let

gn = Qng +ﬂn

with ap = 3 = 1. Then, a,+1 =@, + B, and §,:1 = «,,. That

/):n = O 2ﬁn

can be verified and

Ang1 — " = — (Eg: BZ”j ;L;i‘) O — g7). (2.205)

Equation (2.205) implies
~ 1 1
Ao < g7t < N (2.206)

Land

Equation (2.206) implies that the meromorphic extension Zof (D satisfies S = '
~1

has poles on {)\273” im0 <j<2n—1,n> 1} with the natural boundary |s| = ¢g~1.

Furthermore, (2.199) and (2.204) lead an identity involving x, ; and g, the detail is

omitted.
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2.6 Equations on Z? with numbers in a finite field

This subsection briefly discusses the equations on Z? with numbers in a finite field, see
[31; 36; 47]. The problems can be studied by applying the methods that were developed

in the previous subsections. Lind [36] considered the following example.

Example 2.54 Consider Fy = {0,1} and

X = {x € FZ : mij+ w441y + w00 = 0 for all i, j € Z} . (2.207)

In this case, X is a compact group with coordinate-wise operations, and it is invariant
under the natural Z2-shift action o.

The equation

Tij + Tiprj + Tijrr =0 (2.208)

can be interpreted as a pattern generation problem on L-shape lattices: I_. Indeed,

the solutions of (2.208) are given by

B(L)Z{ L L L L, } (2.209)

which consists of all even patterns onli-shapelattices. B(L) can be extended to Zgys

as
B:{OEL, 0 S 0 RN U B S SO O [I} (2.210)
That
N(B) =X (2.211)
can be easily verified.
Therefore,
1100
0011
H, = Hy(B) = =V, (2.212)
0011
| 110 0
and
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H, =

— o O —
(@n) — — o
— o o —
(@n) — — o
Il
S

According to (2.54),

10
T, = and ((s) = .
10

For Ty = V, 0 Hy, (2.212) and (2.213) imply

1 000
1 00
00 01
T, = and =10 0 1],
0001
1 00
| 1.0 0 0
with
2 ()
S) e
1 1—1s2

(2.213)

(2.214)

In general, for any n > 1, induction can be used to show that each row of T, has

exactly a single 1 and each column has eithertwe 1s or all Os. Therefore, the eigenvalue

Aof T, is [\ =1 or A = 0. Witha rotationally symmetric eigenvector, T,, generates

the graph with equivalent classes C,, (i) as vertices and has m(n) disjoint cycles; each

cycle has period p,,, > 1, 1 <k <m(n). In computing, it is more efficient to compute

A € X(7,) with algebraic multiplicity x()).

The following can be demonstrated

2mi

where p,, , = e”*. Hence,

oo m(n)

¢)=11 11 hiﬁ

n=1 k=1

For n =1 to 20, the numbers and periods of cycles are listed in Table 2.1.
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n 1 2 3 4 3 6 7
p 1 1 1 1 113 2 17
q 1 1 2 1 111 1 311
9 10 11 12 13
117 11316 1131 112 1163
214 11114 1] 3 211 115
14 15 16 17
112714 113115 1 115] 15
3(14]1)20 41472 1 1131256
18 19 20
11217] 14 1511 1 6 12
21114259 1 |43 1 41272

p : the period of cycle.

q = q(p) : the number of cycles with period p.
Table 2°T.

From Table 2.1, (,, can be written for 1T <<n < 20. For example,

1

G =

36] (p.438), is

Ca(s) =1+ s+ 25% + 453 + 651 + 9s° + 1655 + 2457 + 35s% + 545°

+785"0 + 110s' + 162s'2 + 2265 + 3175 + 4465 + 6125

(1— 314)3 (1— 528)4 (1—s%)(1— 5196)20'
Up to n = 20, the Taylor expansion of (2.216) at s = 0, which recovers Lind’s result

+8345 4 11465 4 15435 4+ 207152 + - -

Further investigation is needed to understand 7,, and p, ; for large n. The results will

appear elsewhere.
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Lind [36] showed that the zeta function ¢° defined by (2.207) is analytic in |s| < 1.
By (2.216), all poles of ¢ appear on |s| = 1. Therefore, ¢ is analytic in |s| < 1 with

natural boundary |s| = 1.

In the following example, the harmonic patterns on square-cross lattice L: +,

which were studied by Ledrappier [31], are investigated.

Example 2.55 Let Fy = {0,1} and

X = {ZL’ € F2Z2 CXi =Tyt i1+ Tig T Tigj for all 1,] € Z} . (2218)

As in Example 2.54, the basic set on L is

B(L) = { .rotisten, €F2 @0+ o+ atrotan=014 " 999

xo,—1

which consists of all even patterns on & squaréseross lattice. B(LL) can be extended to

Zi3x3 as
z—1,1|T0,1 | T1.1
ZL3x3
F. i T_ To— T To1 =20
B = z_1,0{%0,0 |T1,0 € 2 0,0 + 1,0 + 0,-1 + 1,0 + 0,1 . (2220)
T_1,-1%0,—1L1,—1
Then, that

S(B) = X (2.221)

can be easily verified.

Now, by (2.108), the associated trace operator T,,»3(B) can be constructed for n > 1.
Furthermore, the rotational matrix R, x> is defined by (2.109). The number x,xo of
the equivalent classes of R,,«2 can be shown to be the number of n-bead necklaces with
four colors. The formulae for y,x2, n > 1, is given by (2.113) with m = 3.

As in Example 2.54, the reduced trace operator 7,43 of T,,«3 is more convenient for
computing the n-th order zeta function (,. The definition and results of the reduced
trace operator for more symbols on larger lattices are similar to Definition 2.23 and

Theorem 2.26.
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By the same argument as in Example 2.54, let the graph generated by T, «3 have
m(n) disjoint cycles, each of period p,, > 1, for 1 < k < m(n). Then, the n-th order

zeta function can be represented as

m(n)
[ (2.222)
k=1
Hence,
oo m(n)
=111l ——— e (2.223)
n=1k=1

Table 2.2 presents the numbers and periods of cycles of T, «3. For brevity, only

n=1to09 are listed.

2166|810 |48 1 gl 147881640

212(122]260 390 | 260 | 390

p : the period of cycle.
g = q(p) : the number of cycles with period p.
Table 2.2.

Up to n = 16, the Taylor expansion of (2.223) at s = 0 is

((s) =1+ s+ 252+ 5s® + Ts* + 175° + 325° + 4657 + 84% 4 140s° (2.224)

4229510 + 3845 + 61552 + 9385 + 14835 + 23535 + 356351C + - - - .
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The analyticity and the natural boundary of the zeta function in (2.223) need further

investigation. The results will appear elsewhere.

In the following example, we study the equation on the diagonal lattice L: . and

show that the rectangular zeta function ( = E fails to describe poles and natural

11
boundary of ¢¥ but ¢, works well with v =
0 1
Example 2.56 Let Fy = {0,1} and
X = {x € FZ i+ mip1je1 =0 for all i, j € Z} . (2.225)

It is clear that the solutions of x; ; + ;11 j+1 = 0 mod 2 are given by

B:{U 0 0 N Y Y O S I D} (2.226)

Now,
1 010
1 010
H, =V, = (2.227)
0.0 1
(071 0.1
and 5 .
1 1 0,0
- b 00 11
H, = Vo= (2.228)
17T 0 0
| 00 1 1
It is easy to verify
~ 10
T, =T, = =R (2.229)
0 1
and ) )
1 000
~ 0010 .
Ty =Ty = = R;. (2.230)
01 00
|00 0 1
Furthermore, for n > 3, we show that
T,=T, =R, (2.231)
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Indeed, by the recursive formula of V,,, it can be verified that V,,; ; = 1 if and only if

1 =27 —1and 2j for 1 < j <2n-t
(2.232)
i=2(1—2""1) —1and 2(i —2"7') for2" 14 1< <2m,
Therefore, by applying (2.26), T,, = [t ;] with ¢,,;; = 1 if and only if
1=27—1 for 1 <j <2nt
J =7 = (2.233)
i=2(1—2""1) for2nt+1<j<2m,
Hence,
T, = R'. (2.234)
Therefore,
1
n(s) = ——— 2.235
G = T (2235)
where Y, is the cardinal number of Z,,, and
RO | (2.236)
ol (1 - 3”)Xn

1
As in Example 2.52, lim x;; = 2 and, then|S*= %
On the other hand, consider

Bl — { oﬂo 1%0 o¢| 1%1 } (2237>

Then,
Y(B') = X(B). (2.238)
In particular,
n L
I = 2", (2.239)
0 k
v
Therefore, as in Example 2.52,
G = 1
1= 2sn

We can also use the construction of T, in Subsection 2.4 to study (,,,. Indeed, it

is easy to see that
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1100
0011
T, = (2.240)
1100
|00 1 1
Therefore,
o= (2.241)
T2 ‘

Furthermore, for any n > 2, after deleting the zero columns and rows of T,.,, T, is

reduced to T..;. Therefore,

1
= ) 2.242
C“/v 1 _ an ( )
Hence,
¢ = ﬁ L . (2.243)
] g A

Then, ¢, has natural boundary with |s| = 1-and,has poles
{2—%62’”‘3‘/" e - > 1} .

Motivated by Examples 2.54~2:56; given a finite field F' and a set of finite lattice

points I. C Z2, consider the equation

> 7;=0 inF (2.244)

(1,9)€L
Then, denote the solution set of (2.244) on Z? by

X(L) =Sz € F¥ > apm=0,(k1)€Z ;. (2.245)
(4,7)€LL
Denoted by
BlL)=qz:L—F: Y x;=0,, (2.246)
(4,7)€L

B(L) C F" is the set of admissible local patterns.
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Let Z,,xm be the smallest rectangular lattice that contains L. Let B be the set of
all admissible patterns on Z,, ., that can be generated from B(IL). Then, the following

can be easily verified;

X(L) = 3(B). (2.247)

The results presented in previous subsections apply to 3(B) and then to X(L). The
above method can also be applied to any finite set of equations defined on I with
numbers in F, since the solution set B(IL) C F™ and can be extended to a unique

admissible set B C FZmxm,

2.7 Square lattice Ising model with finite range interaction

This subsection extends the results presented in previous sections to the thermody-
namic zeta function for a square lattice Ising model with finite range interaction, see
Ruelle [45] and Lind [36]. For simplicity, the square lattice Ising model with nearest
neighbor interaction is considered.

The square lattice Ising model:with extermal field H, the coupling constant J in
the horizontal direction, and the coupling constant ' in the vertical direction is now
considered. Each site (i,7) of the squarélattice Z?-has a spin u; ; with two possible
values, +1 or —1. First, assume“that the stateispace is {41, —I}ZZ. Given a state
U ={ui;}tijez in {+1, —I}ZZ, denoted by U, ,, = U}men = {w;; }o<i<m—1,0<j<n—1-

Define the Hamiltonian (energy) &(Uxn) for Uyxn by

g(Uan) = —j Z U jUi+1,5 — j/ Z Us Ui 541 — H Z Uy 5. (2248)

0<i<m—2 0<i<m—1 0<i<m—1
0<j<n—1 0<j<n-—-2 0<j<n—1

Therefore, the partition function Z,,,, is defined by

Zmxn = E exp |K E Ui jUiv1,; + L E Ui jui 41+ h E Uij|
Upxcn 0<i<m—2 0<i<m—1 0<i<m—1
{41~ 1)Emxn 0<j<n—1 0<j<n—2 0<j<n—1

(2.249)
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where K = J/kgT L = J'/kgT, h = H/kgT, kp is Boltzmann’s constant and 7' is

the temperature.

n
To the thermodynamic zeta function, given L = Z? € L,, the partition
0 k

n 1l
function for the -periodic states is defined by

0 k
n
0 k

> exp |[K Y wiguisiy+L0 Y wiguign+h Yy
Ue fio ({+1,-1}2) 0<i<n—1 0<i<n—1 0<i<n—1
’ 0<j<k—1 0<j<k—1 0<j<k—1
(2.250)
Then, as in (1.31), the thermodynamic zeta function for the square lattice Ising

model with nearest neighbor interaction can be defined by

S
C(s) = Clsing(s> =€XD (Z ZLm)

LeLo

00 oon—l1 n l .
= exp ;;;%Z & s ] (2.251)

To simplify the notation, the subscript Ising is omitted in this subsection whenever
such omission will not cause confusion.
As (1.8) and (1.9), for any n > 1, define the n-th order thermodynamic zeta function

Clsing;n(s) as

oo n—1
1 1 n
Cn(s) = CIsing;n(s) = exp EZZEZ 0k Snk ) (2252)
k=1 1=0

the thermodynamic zeta function (rging(s) is given by

C(8) = Craig(s) = [ [ ¢al9). (2.253)
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Since the discussion of (,(s) is similar to that in Subsections 2.1 and 2.2, only the
parts of the arguments that differ are emphasized. The results are outlined here and
the details are left to the reader.

According to the spin u;; € {+1,—1} for i,j € Z, replacing all the symbols ”0”
in (2.1) and (2.2) with the symbol "—1" yields the ordering matrices Xyging2x2 and
Y 1sing2x2-

The ordering matrix Xysingnx2, Y Isingmx2 and the cylindrical ordering matrix
Clsinginx2 can be obtained in the same way. The recursive formulae for generating
Y fsingmx2 form Y gngoxo are as in (2.13).

Given L € L, (2.250) yields

ZL = Z H exp [Uid (Kuiﬂ,j + Lum-H + h)] . (2254)
Uefiwy ({+1,-1)2?) 0<isn—1
0<j<k—1

Based on (2.254), the associated horizontal transition matrix Hjgngo = [ j]axa and

the vertical transition matrix Vgng2 = [br; ]axa are defined as

€K+L—h 6—K—L—h eK—L—h e—K—i—L—h

e—K—l—L—h K—=L-h —K~L-—h 6K—|—L—h
Hlsing;2 = = [al?ivj]4><4 s (2255)

K+L+h K-L+h =K+L+h

€ e

6—K+L+h —K-L+h 6K+L+h

and

eK-‘rL—h e—K—L—h e—K—i—L—h eK—L—h

eK—L—h e—K-i-L—h e—K—L—h K+L-h

e
Vlsing;2 = = [b15i7j]4><4 s (2256)

K+L+h —K-L+h —K+L+h K—-L+h

€ € € (&

6K—L+h 6—K+L+h 6—K—L+h eK—I—L—l—h

respectively. Similar to (2.18) and (2.19), the associated column matrices ﬁ[sing;g of

Higing2 and Vigingo of Vigingo are defined as
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ara,1 Gr21 ari2 A4r22

ars31 Gra1 arz2 Aar42

HIsing;2 = (2257)
ara,3 Gr23 ari4 A4r24
L 41,33 Ar43 Ar34 0Ar44 |
and
brai brai braz brop
~ brsq brai brsz brap
Vlsing;2 = (2258)
b[;1,3 b[;2,3 b[;1,4 b[;2,4
L b[;3,3 b[;4,3 b[;3,4 b[;4,4 |
Therefore, the trace operators T rging2 and Trgg.0 are defined as
TIsing;2 = VIsing;Z o HIsing;Z and TIsing;2 = HIsing;Z © Vlsing;2- (2259)

The recursive formulas for T gqsand T Isirign are similar to (2.26). Constructing
T sing;2 and the rotational matrix:R,, yield a similarresult to that of Theorem 2.13 for

n |

0 k
Theorem 2.57 Givenn >2,0<['Sm—1,k>1,

R). (2.260)

Ising;n

Z " =tr (Tk
0

Furthermore, let

ari110r11 ar22a01,2.2

TIsing;l = ;
ar1,3,3041:33 QA1;4,401:4.4
then
1 0 L
0 k ’

From Theorem 2.57, the n-th order thermodynamic zeta function (rsingn can now

be obtained as follows.
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Theorem 2.58 For anyn > 1,

Clsingin = €XP (%Ztr (T];smg;an) 3nk> : (2.261)
k=1

The R,-symmetric property of Tyg g, is essential to the rationality of n-th order

thermodynamic zeta function (rgingmn-

Proposition 2.59 For anyn > 1,

TIsing;n;Ul(i),al(j) = TIsing;n;i,j (2262)
foralll <i,j<2"and0<I[l<n-—1.
Similarly, the associated reduced trace operator 7y, can be defined as in (2.100).

Finally, by the arguments presented in Subsection 2.2, the rationality of the n-th order

thermodynamic zeta function (rspg., is established as follows.

Theorem 2.60 Forn > 1,

Craingn(8) = TP 200 522sm) X (2.263)
)‘EZ(TISing;n)
=(dep (RSetm,  )), (2.264)

where x(A) is the number of linear independent symmetric eigenvectors and generalized

etgenvectors of Trgingn with eigenvalue X. Furthermore,

CIsing(S) = H (det (] - snTISing;n))_l . (2265)
n=1
The state space {+1, —1}Z2 is extended to the shift of finite type given by B C
n
{+1,—1}7>2 Given B C {+1,—1}?2 and L = Z? € L,, the partition
0 k
n
function for B with -periodic patterns is defined as
0 k
n
Z,(B) = 25 =
0 k

71



Z exp K Z umuHLj—l—L Z ui7jui,j+1+h Z Ui g | (2266)

Uefizy (S(B)) 0<i<n—1 0<i<n—1 0<i<n—1
0<j<k—1 0<j<k—1 0<j<k—1

where u,; = up;, 0 < j < k—1and u;p, = w0, 0 < 7 < n — 1. Hence, the

thermodynamic zeta function is defined by

s[L]
Clszng .B\S) = €Xp Z ZL

LeLo

oo oo n—1 n 1
= exp ;;;nk - s (2.267)

Similar to (2.252) and (2.253), for any n > 1, the n-th order thermodynamic zeta

function (rsing.s:n(s) is defined as

oo n—1
J 1 n
Clsm B; n = exp E E ZB Snk (2268)
! B 0 k

and the thermodynamic zeta funetion Crgng5(8) is given by

Clsmg B{S HCIszng ;B; n (2269>

Equations (2.15), (2.255) and (2.256) are combined to define the associated hori-

zontal transition matrix and vertical transition matrix as follows.

HIsing;2(B) = HIsing;2 o H2(B) (2270)

and

Vlsing;2(8> = Vlsing;2 o V2(B) (2271)

Therefore, the trace operator Tgng.,(B) and the associated reduced trace operator
Trsingn(B) can be defined for all n > 1 as above. Since all arguments for (jsing.s;, are

similar to those above; the final result is as follows.
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Theorem 2.61 Forn > 1,

CIsz‘ng;Bm(S) = H (1- )\Sn)—x()\) (2.272)
AEE(TISing;n(B))
= |det (I — s"Trgingn (B _1, 2.273
g;

where x(\) is the number of linear independent symmetric eigenvectors and generalized

eigenvectors of Trsingn(B) with eigenvalue X. Moreover,
Crsing:B(s) = ﬁ [det (I — SnT[Smgm(B))]_l ) (2.274)
n=1
Remark 2.62 The results in this subsection hold for models with finite range interac-
tion.
3 Zeta functions for higher-dimensional shifts of finite type
This section studies the zeta functions for d-dimensional shifts of finite type, d > 3.

3.1 Three-dimensional shifts.of finite type

In this subsection, the zeta functions for three-dimensional shifts of finite type are

investigated.

3.1.1 Periodic patterns, trace operator'and'rotational matrices

This subsection studies the properties of the periodic patterns and derives trace op-

ar bz big
erator and rotational matrices. Furthermore, I'g 0 ay by can be expressed
0 0 as

in terms of the trace of the products of the trace operator and rotational matrices .
For clarity, two symbols on 2 x 2 x 2 lattice Zayaxo are examined first. For given

positive integers Ni, Ny and N3, the rectangular lattice Zy, « v, xn; 1s defined by

ZnyxngxNs = {(n1,n9,m3) : 0 <m; <N, —1,1<i<3}.

In particular,

Zaxax2 = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0), (1,0,1),(1,1,0),(1,1,1)}.
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Define the set of all global patterns on Z* with two symbols {0,1} by

2 ={0,1}" ={U|U:7Z° - {0,1}}.

Here, Z3 = {(ny,n9,n3) : ny,ne,ng € Z}, the set of all three-dimensional lattice points

(vertices). The set of all local patterns on Zy, xn,xn, is defined by

ZN1><N2><N3 = {U|ZleN2xN3 U e Zg’},

and a local pattern of a global pattern U on Zy, x n,xn, is denoted by

UNyxNyx Ny = U‘ZleNszg = (uaha%aS)OgaiSNi—l,lgigi’)’
where Uy as.0s € {0,1}. To simplify the notation, the subscripts of Un, xn,xn, and
(Uay,a2,03)0 <a;<N.—_11<i<s are omitted whenever such omission will not cause confusion.
Now, for any given B C Yayax2, B is called a basic set of admissible local patterns.
In short, B is a basic set. A local pattern Uy, x npx Ny = (Uay,a0,05) 18 called B-admissible
if for any vertex (lattice point) (nq,#9;n3) with0.< n; < N; —2, 1 < i < 3, there exist

a 2 x 2 x 2 admissible local pattern (Bx; ks ks)och, 1y is<1 € B such that

Uny ki, notkangtks-— 6161 ka,k3

for 0 S k’l,k’g,k’g S 1.

Given a lattice L € L3 with Hermite normal form,

a; bz bz
L=110 a by |2 (3.1)
0 0 as

where a; > 1for 1 <¢<3and 0 <b;; <a; —1fori+1<j <3 A global pattern
a; bip bis
U = (Ua1,02,03) 0, ap.asez 18 Called L-periodic or | 0 ay by |-periodic if for every

0 0 as

aq, G, O3 € Z

Uy +a1ptbi2g+bisr,astazgtbesraz+azr — Uay,az,a3 (3.2)
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for all p,q,r € Z.
ar bz bis a 0 0
The periodicity of | 0 ay by | and | 0 af) 0 | are closely related as fol-

0 0 as 0 0 af

lows.

Proposition 3.1 Fora; > 1,1 <i<3,0<b;; <a;,—1,1+1<35<3, let

a1 s1a2
a1,b13) 7 (s1a2,b23) | ’

S1 = (aﬁlﬁm) and S2 = [(

where (m,n) is the greatest common divisor of m and n and [p,q| is the least common
ar bip b3 a0 0
multiple of p and q. Then, | 0 ay by | -periodic patterns are | 0 sjay 0 -
0 0 as 0 0 Soa3
periodic.
ar bz bi3
Proof. By (3.2),the | 0 ay by |-periodic pattern is easily identified as
0 0 as
ar mibias Mmabyz
0 myas mabys |-periodic for all myyme € N./ By taking my; = s; and mg = s9,

0 0 moas
the result holds. m

Given a basic set B C Yayaxa2, defined on cubic lattice Zoyayxa, the L-periodic
patterns that are B-admissible must be verified on Zoyoys. For ni,nq,n3 € 7Z, let

Zaxaxa ((n1,mn2,n3)) be the cubic lattice with the smallest vertex (ny, ng, ns):

Lasaxa ((n1,n9,n3)) = {(ng + k1,ne + ko, ng + k3) : 0 < ky, ko, kg < 1}.

Now, the admissibility of L-periodic patterns is demonstrated to be verified on finite

cubic lattices.

Proposition 3.2 An L-periodic pattern U is B-admissible if and only if

U |ZZ><2><2((0!170¢27‘13))€ B

for0<oa; <a;—1,1<1<3.
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Proof. Sine B C Y92, it is sufficient to prove
{U |Z2><2><2((C‘1170¢2,CVS)): a1, Q, 03 € Z}

= {U |zarsms((oramas): 0 < a; <a; — 1,1 < i < 3}.
The proof follows easily from (3.2). The details are left to the reader. m
According to Proposition 3.2, the admissibility of an L-periodic pattern U is deter-
mined by U |z, 1)« winwiogen= (Uarazas) and U |z, oo .., has the periodic

property that is given by (3.2), which can be divided into two parts:

Uay,a,a5 = U0,a0,03 (3 3>
Uay,az,a3 = Ular—b12]a;,0,a3
for 0 < oy < @, 1 <i <3, where [m],, =m (mod n);
Wloy —b12—b13]ay ,0,0 if ap — by = ay
ual,ag,a3 = u[ocl—bl;g}al ,a2—ba3,0 lf 0 S Qg — 623 S ags — 1 (34)

Wlay +b12—b13]a; ,08—b23+a2,0 if5=as +1 <ap — by < —1

for 0 < a; <ap, 0<as <as.

Notably, (ta;.as.a3)0<o <a1.0<os<as.aq BaSthe same structure (3.3) for all 0 < a3 < as,
which fact is useful in constructing the cylindrical-ordering matrix. Then, the set of
all local patterns in 34,41 4911,05+1 thatsatisfy the periodic property (3.3) is denoted
by Po, asibrgias+1. However, (3.4) is important in allowing patterns in Py, 45:519:05+1 tO
become L-periodic and it will be used to define the rotational matrices later.

Now, the counting function for Us, swnyxns = (Uay.as.as) 10 Sy xnoxngs M1 N, N3 > 1,

is defined by

ni—1lnga—1Ins—1

Y Unisnaxns) = L+ DD Y oy ap0p 2" o0 mlnzmlzaa)immizen (35

a1=0a2=0a3=0
Similar to (3.5), the counting function ¢ for patterns U in P, 4.1, 0 <1 <ny — 1, is
defined by

0 (U) =0 (U 120, mpr) - (3.6)
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Notably, ¢ is bijective from P, ,,41 to {i | 1 <7 <2mn2},
Given ny,me > 1,0 <1 < n; —1, h > 1, a local pattern U in P, noi:n can be

represented as

U=Uy®, U @, &, Uy, (3.7)

where U; € Primou, 0 <@ < h—1, and U D, U means that U is put on the
top (in the z-direction) of U. Therefore, the cylindrical ordering matrix C,,, ,0.n =

[Cy mastshii,jloning womng Of Patterns in Py, 5,0, is defined by

Cnl,nz;l;h;i,j = {UO b, D, Uh—l | E(UO) =1 and E(Uh—l) = .]} . (38)

In particular, for h = 2, C,,, »,4.2 can be applied to construct the associated trace
operator. Notably the set C,,, ,,,..2.;,; contains exactly one pattern.
Now, given B C Xayaxa, the associated trace operator Ty, n,.(B) = [tn, ngsij), With

tnymoiii; € {0, 1}, can be defined by

tnimoiiiy = 1 if and only if= the pattern in.Oy; 1,02, ; s B-admissible. (3.9)

aq b12 0
Remark 3.3 Given L' = | 0 a3 =0 | Z3, (8:8) and (3.4) easily verify that
0 0 as

{U|Za1+1,a2+1,a3+1 U is L’-pem’odic}
(3.10)
= {U=Uo®. - ®:Udsy € Payasibrziast1: Uo= U, } .
Furthermore, given B C Yaxaxa, from Proposition 3.2 and the construction of the

transition matriz Ty, 4y.0,,(B),

aq b12 0
I's 0 ay, O =tr (Tgf’az;bu(B)) . (3.11)
0 0 as
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The shift maps and the related rotational matrices are considered below for general

a; bz bis
0 0 as

Let ny,ne > 1,0 <1 < ny—1; the shift (to the left) in the z-direction of any pattern
U = (Uay.09.0) 10 Pry nyti1s Uag.an0 € {0, 1}, is defined by

_(,,@
ot ((Uar.000)) = (W)eao)

where

Ufay+1-1],, it g = no,
Ul o= Ty (3.12)
Uy +1]n, 000 f 0 <z <np— 1
Similarly, the shift (to the below) in the y-direction is defined by
_ (@ )
Oy mat(tenon o)) = (100)
where
Ulor <y, o2 F1— if as+1>n s
u o =19 A i ’ (3.13)

U[aﬂn17a2+170 lf 0 S (6] + 1 S Mo — 1.
Notably, 04.n, noi and 0y, nyy are atitomerphisms on P, .11

The following example illustrates 0., no a0d Ty noi-

T
UZYLO o 3,27171

U0,0,0 ©1,0,0 %2,0,0 %0,0,0

Example 3.4 Let

U2,0,0

U= (uoc17042,0) =

U0,1,0

be a local pattern that lies on the plane {(z1,22,0) : 21, 20 € Z}. Now, consider 0,391

and oy.32.1 which are acting on U. Then it is easy to see

u0,0,0 |¥1,0,0 | ¥2,0,0 | %0,0,0

0¢;3,2;1 (U> =

u1,1,0 |¥2,1,0 [%o0,1,0 |¥1,1,0

u1,0,0 U2,0,0 u0,0,0 U1,0,0
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and

u2,1,0

B

up,1,0 U1,1,0 U2,1,0 U0,1,0

0y:3,2;1 (U) =

u2,0,0 °

Moreover, both 0,391 (U) and 0y.3.2.1 (U) are also belong to P39.1.1.

From (3.12) and (3.13), for 0 < r; < n; — 1, ¢ = 1,2, the following can be straight-

forwardly verified;

1 T (3)
oot s Ors) = (0000)
zini,na;l y,nl,ng,l(( 1,02 )) ai,a2,0 0<a1 <ny,0<as<ns

where
(3) . u[al—}—rl—l}nl ,aa+r2—ns2,0 if No S Qg + 72 S 271,2 - 17 14
uahaz,o - . (3 )
Ular+71]n ,02+72,0 if 0 <azt+ry<ng—1
Furthermore,
Oyina nosl ©Gmimg mgl 55 Tming ngil © Tying ng;l (3.15)
and
ni . ! na LY -
au’v;m,m;l = Oxingnoil (Uy;nl,ng;l) i ldentlty map. (3'16>
Hence,
-1 _ ni—1 -1 I | no—1
Trinimoil = Taing nasl and Uy;nl,nz;l = Ouing noil (O-y;m,m;l) : (3'17)
Therefore, for 0 <r; <n;,—1,i=1,2,
-1 —r2 (4)
ot (o .((uaao)):<u )
x;ny,na;l ( yim1,m;l 1,02, ) ar,02,0 0<a1 <n1.0<as<ns
where
Ulay—r1—1]n; ,0,0 if ay — 1y = ny,
4) _ .
ual’a%o - u[a1—7’1}n1,a2—7“2,0 lf 0 S Qg — T9 S Ng — 1, (318)

U[al—r1+l]n1,a2—r2+n2,0 if —Ng + 1 S O — T S —1.

Now, the two rotational matrices Ry, nyy and Ry, n,, are defined as follows.
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Definition 3.5 The 2™"2 x 2™"2 g-rotational matric Ry, nyi = [Rem noitil,

Rynymoiij € {0,1}, is defined by

Rx;m,nz;l;M =1 ifandonly if i= @(U) and j = E(Uﬂc;mmz;l(v))a (3'19)

where U € Py, pyaa- From (5.19), for convenience, denote by

= a,(i). (3.20)

Similarly, the 272 x 2™M™2 y-rotational matric Ry, ny1 = [Rymnyneitsijl)s

Ry;nl,nz;l;m S {07 1}; is defined by

Ry oty = 1 if and only if i = @(U) and j = E(Uy;mm;l(ﬁ))a (3.21)

where U € Py, pyaa- From (3.21), for convenience, denote by

= a,(i). (3.22)

Obviously, Ry nyy and Ry, pn.y are permutationsmatrices. By (3.16),
R™ = R 2 = Ionin, twhere-L,-is the n x n identity matrix.

z;n1,n2;l z;n1,n2;l " “yng,na;l

Example 3.6 Let ny =2, ny =1 and'l =1;

Ryo11 = Rypa1 =

_ o O O

o = O O

o o o =
o O = O

Then,

R3p1a = RepanRyznn = I but Rypua # I
The following proposition shows the permutation characters of R, n,u and Ry, nou-

Proposition 3.7 Let M = [M; j]anina xomine be a matriz where M; ; denotes a number

or a pattern or a set of patterns. Then
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(MR naq); ; = M, ) and  (MRyn, noq); ; = M, L) (3.23)

.J 1,0z i,j 0,04

Furthermore, for anyr > 1

(MR, ), = M,

zina,mzil) g 4,05 " ()

and (MR} )” =M, .-+ () (3.24)

y;ma,m2;l 1,0y

Proof. For any 1 <i,j < 2™"2 by (3.20),

(MRw;nl,nz;l)i,j = > Mg Runi noitia,g
q

winy,nzliog ' (5).

=M, ;1R
= M.

W05 (5)"

Similarly,
(MRy;nl ,nz;l)i,j = ZMi,qRyml n2;lig.j
q

=M.

1,0y

=M

Q0 (5)

oL

—1/ N -
yin1,na;loy  (4),9

Applying (3.23) r times yields (3.24). The prooftis complete. m

Now, the following lemma camrbe obtamed.

a; by b3
Lemma 3.8 Given L= | 0 a3 by’ | 27,
0 0 as

{U |20, 41y x (agity agn) U S L—pemodzc}

= {U = UO ©: D Uaa € Pal7a2§b12§‘13+1 : U% = U;;leg,az;bm (0;2213,@;612 (UO))}
(3.25)

Proof. From (3.4) and (3.18),

{U = UO Dz D Uas < IP)111412;%)12;6&:’,-1-1 : Ua3 = U;zll?jaz;blg (0;221?:(12;1)12 (UO))}

= {U € Puyapibrniazsr : U satisfies (3.4)} )

Then, by the construction of Py, 4,:5,5:a5+1, the last set is equal to
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{U € X4y 11,a0+1,a5+1 : U satisfies (3.3) and (3.4)}

= {U € Xu,+1.a0+1,a5+1 : U satisfies (3.2)}.
Therefore, (3.25) follows. The proof is complete. m

Proposition 3.2, 3.7 and Lemma 3.8 yield the following main results for

a; by bz
FB 0 Qo b23
0 0 as

Theorem 3.9 Given a basic set B C Yoyoxe. Fora; >1,1<7<3,0<b;; <a; —1,
1+1<75 <3,

ar b bi3
a: b1: ba:
I's 0 ay b =ir (Taia%blz (B)Rwl;jll,az;blzRy?:Ll,a%blz) ) (326>
0 0 as
Furthermore,
a1—1 ag—1 a; by big
Z Z FB 0 Ta bZ3 = tr (TZiaQ;blg (B>Ra17a2;b12) ) (327>
b13=0b23=0 0 0 p
3
where
a1—1 az—1
by ba:
Ra1,a2;bl2 = Z Z Rxl;flha%mey?ZLa%bm' (3'28>
b13=0b23=0

Proof. From Proposition 3.2, Lemma 3.8 and the construction of Cy, 45:615:a5+15

a; bz bz
FB 0 Qo b23
0 0 as

2a1a2

= 2:231 8 {U € Cu, apirnias+15i,j : U is B-admissible and j = 0, (0,%%(i)) } ,

where £5 is the cardinal number of set S.

82



Then, Proposition 3.7 and the construction of Tq, 4,615 (B); Raar.aib1, A0 Ryay agibis
easily yield (3.26). Equation (3.27) holds from (3.26) and (3.28). The proof is complete.
|

The (ay, az; by2)-th zeta function (4, 4y5,,(s) can now be obtained as follows.

Theorem 3.10 Gien a basic set B C Yoxoxa. Fora; >1,1<¢<3,0<b; <a;—1,
1+1<7<3,

1 - 1 a ajaza
<a1,a2;b12($) = eXp <a1a2 § :a_gtr (Ta?,az;bm (B)Ra17a2§b12) s 3) : (329)
az=1

Proof. The results follow from Theorem 3.9. m

3.1.2 Rationality of (,, 4,:b1,

This subsection proves that (4, a,:5,, 1S @ rational function. First, the rotational

symmetry of Ty, 4,.,, 18 introduced.

Theorem 3.11 Given B C Xoyoxet' Denotérdy Ty, apb,(B) = [tarasibiniij]-  For

aj,ay > 1, 0<bip <a; —1,

tal,az;blz;a;l(i),agl(j) = talya2§b12§i7j (330)

and

tal,az;blg;agl(i),agl(j) = tal,ag;blz;i,j (331>

for all 1 <, 5 <299, Fyrthermore,

taha%bm;a;ﬁ (J;Q (i)>70;71 (U;W (j)) = ta1,a2;b12;i7j (332)

foralll <i,j <2M2 —ag;+1<r<a;—1and —ay+1<7ry<ay—1.

Proof. The proof of (3.31) is similar to that of (3.30) and omitted. We now prove
(3.30).

Given 1 S Z,] S 2a1a2’ Cal,ag;b12;2;i,j and C

a1,a2:b12:2:05 (i),05 1 () CONtain only one pat-

tern respectively. Let
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U=Uy®.U, = (ua17(127063) € Coyazbini2iig
with ¢(Uy) =i and ¥ (U;) = 7, and

cC 1.

S — —
U= UO S Ul = ( a1,a2;b12;2505  (),05 " (5)

’ )
ualva27a3

with ¥(T,) = 05 1(i) and $(U}) = 05 1(j). Since B C Saxaxs and (3.9), to prove (3.30)

is equal to prove

{(un1+k1,n2+k2,k3)ngl,kz,kggl : 0 S n S ay — 17 O S ) S ags — 1}
(3.33)

— / .
= { (U koo g J0<hi ko ks<1 1 0 S S ar — 1,0 < g < ap — 13

Since ¥(U,) = i and P(Uy) = 05 1(i), by (3.18),

/ Ula; —1—b12]ay,0,0 if ay = ay,
ual,az,(] = .
Ufa, —yghano i, 0 <ay <ap—1.

Similarly, from ¥(U,) = j and E(Ull) =T

’ Ufgy —1=bigfay05t i ag=ap,

Uy 9,1 =

Ufo, D 00,1 0 <y <ag — 1.
Then, (3.33) is directly obtained.

Therefore, (3.30) and (3.31) hold. For 0 < r; < a;—1and 0 < ry < ag— 1, by
applying (3.31) 7o times and (3.30) r; times, (3.32) holds. From (3.15), (3.16) and
(3.17), (3.32) follows. The proof is complete. =

To study the rationality of (4, a,:5,,, We need more definitions and properties about
the two shifts in (3.20) and (3.22) as follows.

Given ay, a2 > 1,0 < bjg < ay — 1, for 1 < ¢ < 279 the equivalent class Cy; 4961, (%)
of i is defined by

Carsasibns (1) = {077 (0,72(1)) : 0< 1 <a; —1,0< rp < ag — 1} (3.34)

Clearly,
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either Cal,az;bm (Z) = Ca17a2;b12 (]) or Cal,az;bm (Z) N Ca17a2;b12 (]) = 0. (335)

The cardinal number of Cy; 4y.,,(7) is denoted by W, aybysi- Let @ be the smallest

element in its equivalent class, and the index set Z,, 4,:5,, is defined by

Toranibns = {001 <0 <2M92 4 < jforall j € Cpyanbnli)}- (3.36)
Therefore,
{j 1 S] < 2a1a2} = U Ct117a2;512 (Z) (337>
1€Zay1,a9;b12

The cardinal number of Z,, 4,:4,, is denoted by Xa;.a0:b10-

The following example illustrates Cy o.;(%).

Example 3.12

p

Cao0(1) = {1} (¢ (1) = {1}
2,2:1 =
22,1\ 2) = 14,9, 9,
Ca0(4) = {4, 13} Cooi1(4) = {4,13}
2,21 %) = 14,
Cr9.0(6) = 67 11 4
;72’0&73 ; 101 $ Cy2af6) = {6,7,10,11}
2,2,007) =7, Caii (8) = {8,12,14,15}
Ca0.0(8) = {8,12, 14,15} €y (16) = {16}
2,2;1 =
Coon(16) = {16 B
2,2,0(16) = {16} Ty ={1,2,4,6,8,16}
1'2,2;0 = {17 27 4a 67 7? 87 16} \

\
The equivalent classes are invariant under the two shift maps. Therefore, the fol-

lowing proposition is directly obtained and the proof is omitted.

Proposition 3.13 Given aj,as > 1 and 0 < by < a3 — 1. Let N = 2% qand
V: (2}1’1}2’... 7’UN)t7 fo,,,,l SZS N’

a1—1 az2—1

Z Zvo;” (o 2() — A Z Uj. (3.38)

7”1:0 7”2:0 al’a2’61271jeca1,a2;b12 (7‘)

For the rationality of (4, 4,61, the reduced trace operator 7, 4y, Of Tay apibr, IS

introduced as follows.
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Definition 3.14 Foraj,a; > 1, 0 < by < a3 —1, the reduced trace operator T, ay:b, =

[Talan;b12;i7j] of Tay anibrr = [tahaz;bm;i,j] 18 @ Xay,az;bra X Xar,azbi MAtTiT and is defined by

Tay,a2;b1256,) — E bay assbrasik (3'39>

kecal,aQ;blz (.7)

foreach i,5 € Ly, ayibys-

The following theorem expresses the average of I'z in terms of the trace of the
reduced trace operator 7 and plays a crucial role in proving the rationality of (o, 40:b15-
The proof here is simpler and more straightforward than the proofs in Subsection 2.2

for d = 2.

Theorem 3.15 Given B C Yaxoxe. Fora; > 1,1 < i < 3,0 < b; < a —1,
1+1<j5<3,

. . a; bz bz
al—1 ag—
a11a2 bZObZOPB 0 az b =dr (7_5137&2;612)
13=Y023=
0 0a0as (3.40)

A Z Xa1,a2;b12()‘))‘a3>

)\EZ(Talva%blz)
where X(Tay a:by,) 15 the spectrum of Ta, ayb1s 0N X, 00015 (A) @5 the algebraic multiplic-

1Y Of Tay a0ibro With etgenvalue .

Proof. For simplicity, let N = 2% and T, 4,5,, = [ti;]. From Proposition 3.7 and
Theorem 3.9,

a; bz bz
a1—1 a2—1

a11a2 Z Z I's 0 ax by

b13=0b23=0
0 0 as

a1—1 a2—1

_ 1 as b13 bas
—  aia2 Z Z tr (Ta17a2;bl2R1‘;¢117a2;b12Ry§a17a2;b12)
b13=0b23=0

ai;—1az—1 N az—1 N

= allaz Z Z Z Z Z bikybhyks " tka37170;b13 (U;b23 (i))'

b13=0b23=0i=1 j=1 k;=1
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Now, by Eq. (3.37), the last sum becomes

a1—1 az—laz—1 N

Z Z Z Z Z Zt‘17kltk17k2 T ag— Loy s (J;bzg (q)>- (3-41)

ara
12 Ta1,a93b19 9€Cay,ag:bo (1) b13=0b23=0 j=1 k;=1
Fixed ¢ € Ca; a9y, (%), there exist 0 <r; <a; —1 and 0 <7y < ay — 1 such that

q =0, (0,(i)). Then, by Theorem 3.11,

a1—1az—laz—1 N

Z Z Z Z tq7k1tk1,k2 U tka3717U;b13 (O.;b23 (q))

b13=0b3=0 j=1 k;=1

a1—1az—laz—1 N

= Z Z Z Z t 71( Tz(q) - ( 2(k 1))t0;1(052(k1))ﬁ;1(ng(l@))

613 0b23 0] lkj—l

t0;1 (072 (kag—1) )05 13 (U;bQS (o3 (o3 (q)))>

a1—1az—laz—1 N
= 2 2 2 2 Fion (o720 @il ) ) ot (0209) T ot (072 ) 02 (o0 1)

b13=0b23=0 j= 1k‘J—l

Since {07! (07*(m)) : 1 <m £ N} = {m +1 <m < N}, the last sum becomes

a1—1 ag—1laz—1*N

Z Z Z Z Bigka Tk o - 'tkagﬂ,a;bw (U;bza(i)> (3.42)

b13=0b23=0 j=1 k;=1

Therefore, Eq. (3.41) is equal to

az—1 N ai1—1a2—1

Y Waamei ) D D D bkt ooy (343)

eIal ag;big 7=1 kj—l b13=0b23=0

According to Proposition 3.13, Eq. (3.43) is equal to

az—1 N
E E E ti,kl U tka372,ka3—1 § : tk%,l,q
ieIal,aQ;blz .]:1 kal qecal,ag;blz (Z)
az—1
= E 5 E E ti7q1 e tQa3727Qa371 z : tQag)flyq
€70y ,a9:012 J=1 Kj€2ay a0:b15 41€Cay agibyo (Fj) 4€Cay ag:by (7)

(3.44)
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For any qu,—1 € Cay.ap:b15 (Kag—1), there exist 0 <7 < a; —1land 0 <1y <ay—1

such that

Then, by Theorem 3.11,

2.

qecal ,ag;b19 (2)

Therefore,

az—1

> X

jzl q; ecal,az;blz (kj)

tiﬂh '

az—2

2.

j:1 qjecal ,agib1o (k])

az—2

> X

jzl q; ecal,az;blz (kj)

2

q1 Ecal ,ag3b19 (Z)

Tay,az2;b1258,k1 Tay,az;b125k1,k2 * *

Finally, (3.44) is equal to

ot
tigr

tliql e

az—1
tivql H
Jj=2

—r1

1y
2 (e

y (kas—l)) .

qag—l =0,

t

2.

qecal ,ag;b1o (2)

tqa3—17q op 1 (J;TQ (kag—l))vq

2.

- . ka371,0;1 (052 (Q))
4€Cay,a9:b15 (¢
= Z ) tka371’q-
4€Cay,a9:b15 (1
Qa3z—239as—1 Z ) tqa3717q

4€Ca1 40015

t

Qa3—1 ecal,aQ;blz (kagfl)

2.

) tka371 »q
qecal,aQ;blz (Z)

9a3—2,9a3—1

2.

Ga3—1€Cay by (Kag—1)

>tk

qecal ,ag;b1o (Z)

tka3727Qa371 agz—1,4

2.

45€Cay,ag3b19 (k5)

173

i—1,95

> b

ay,ag;bio (Z)

agz—1,9
q€eC,

Tay,a2;b12;kag—1,i
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az—1

' Z Z Z Tay,a23b1258,k1 Tax,az;b12;k1,k2 ** * Tay,a2;b12;kay -1,
€70y agib1o J=1 K5€Ta) 019

_ as
= tr (Ta17a2;b12)

= Z Xai,a2;b12 ()‘))‘ag'

)‘EE(Talyaz%blz)

The proof is complete. m

Therefore, the rationality of (4, a,:,, and ¢ can be obtained as follows.

Theorem 3.16 For aj,as > 1,0 < by <a; —1,

Ca1,t12;612 (8) = (det (I - SalaQTal,az;bm))_l

(3.45)
= H (]_ — )\SGIGQ)_X(Ll,aQ;blg(A)’
AEZ(Tal,aQ;blg)
and
oo 0o af—1
C(S) = H H H (det (I_SalazTal,az;bu))_l

a1=1laz=1bya=0

(3.46)

oco oo ar=l
= H H i_[ H (1_Asalaz)_xalv%?blz()‘)_

a1=1a2=1b12=0\€X(T0} jag:85)

Proof. By using the power series

“log(1 —t) = ig (3.47)

equation (3.45) follows from (1.34) and Theorem 3.15. Equation (3.46) follows form
(1.35) and (3.45). =

The following example is used to demonstrate the application of the above result.

Example 3.17 Consider

B = {U2><2><2 = (ual,az,ag) € Yoxax2 - Up,0,j = U1,0,; = U0,1,; = U1,1,5 for j =0, 1}-

Clearly, the set P(B) of all B-admissible and periodic patterns is
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{U = (Uay,a0,04) € 3 Uik = ook for all i, 5,k € Z} )
Then, it is easy to verify that
ar bz bis

FB 0 [¢5) b23 =2%
0 0 as

fora; >1,1<7<3,0<b;<a;—1,1+1<75<3. Therefore,

Ca1,a2;b12(8) - (1 - 2$a1a2)—1 (348)

and

C(s) =TT [T (@—2sm). (3.49)

ar=laz=1

However, (3.48) and (3.49) can be obtained from (3.45) and (5.46). The trace

operator

1.0 01
0 0 00
Taa212(B) = Tay azp(B) =
0r0 - 00
10 - 01

L - gajag y9ajag

Since Cayanvys (1) = {1} and Coy 4y, (290%2) = {27192}, the reduced trace operator

10 -+ 01

0 0 - 0 0
Tay,azibra (B) =

0 0 - 0 0

(10 - 01

= Xaq,ag9;b19 XXaq,a9:b19

Therefore,

ala _1
<a17a2;b12(5) = (det ([ — s 27_a17a2;b12))

= (1 — 2sm92)7!
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and

()= TTTT (1 —2sme)™.

ar=laz=1

Equations (3.48) and (3.49) are recovered.

3.1.3 Zeta functions in inclined coordinates

This subsection presents the zeta function with respect to inclined coordinates, de-
termined by applying the unimodular transformations in GL3(Z). Z3 is known to be
invariant under the unimodular transformation in GL3(Z). Indeed, Lind [36] proved

that the zeta function (g is independent of a choice of basis for Z*. Recall that

GLA(Z) = {7 — Pishcssea My € Zfor 1<, < d and |det(y)| = 1} .

This subsection presents the construction of the trace operator T..q, a,:b1,(B) and the
reduced trace operator Ty.q, ay:b,, (B), and/thén determines (.4, a95,, a0d (g,,. Finally,

(B;y is obtained as

oo oo a1—1

Coo(s) = [T T TEAdet L= 52270y ) (3.50)

a1=1az=1bj2=0

For simplicity, only B C Yoy ox2 with twe-symbols are considered. The general cases
can be treated analogously.

Y Y12 713
Foragiven v = | ~9 2 723 | € GL3(Z), the lattice points in y-coordinates are

Y31 V32 V33

(1a 07 0)7 = (7117 T2, 713)7 (07 1a O)'Y = (7217 V22, 723)7 (Oa 07 1)7 = (731) V32, 733)a

and the unit vectors are

1 Y11 0 Va1 0 V31

0 =1 M2 |- 1 =1 722 and 0 = | 732

0 713 0 Y23 1 V33
v v v
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100

Notably, when v = [ 0 1 0 |, standard rectangular coordinates are used and the

001
subscript v is omitted.

The matrix M, is defined by

a; bz bz a; by bz
]\4-y = 0 as bog = 'Vt 0 ay b
0 0 ag 0 0 a3

v

Let L, = M,Z?. Then,

Ly=7"| 0 a by A (3.51)

is easily verified.

A global pattern U, = (u(al,awg)v) is called L.-periodic or

a1,02,03€7
a; bz bis

0 as by | -periodic if for every o, ag€ Z,

0 0 as
v

U(ay+a1pt+biagtbisrastasgtbasr,astair), — U(ar,az,a3)y (3'52>

for all p, q,r € Z. Therefore, the (a1, as; bi2)-th zeta function of (g(s) with respect to
v is defined by

oo a1—1az—1 ax b12 bl3

1 1 aijaza
CB;“/;al,az;bm(s) = exp EZ Z Z a_3FB 0 ag bog g8 (353)

a3=1b13=0b23=0 0 0 a
3

and the zeta function (., with respect to v is defined by

oco oo a1—l1

CB;“/(S> = H H H CB;’Y;al,az;blz' (354>

a1=las=1b15=0

The following introduces the cylindrical ordering matrix, the trace operator and the

rotational matrices. The proofs of the results as in previous subsections are omitted.
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Fix a v € GL3(Z). Let Zyn, xnoxns b€ the ng X ny X ng lattice with the basis

1 M1 0 Vo1 0 V31
M = 0 = Y2 |y Y2 = 1 = Y22 and y3 = 0 = Y32
0 Y13 0 Vo3 1 V33

v v v
The total number of lattice points on Z..;,, xnyxng 1S M1 - N2 - N3,

Since the basic set B C Yaxax2, the L-periodic patterns that are B-admissible must

be verified on Zgyax2. Let (n1,n9,ng)y = (my, me, ms),

Zoxaxa ((n1,n2,n3)) = {(m1 + ki, ma + ko, mg + k3) : 0 < ki, ko, ks < 1}
Now, the admissibility is demonstrated to have to be verified on finite lattice as follows.

Y1 Y12 713
Proposition 3.18 Giveny = | vy 72 o3 | € GL3(Z). An L,-periodic pattern U

Y31 Y32 33
is B-admissible if and only if

U |Z2><2><2 ((alv 02, 043)7) €B

for0<a; <a;—1,1 <1< 3.

For aq,aq,a3 > 1, it is easy to verify that there exist positive integers a; (), az(7)

and az(y) such that

3 a;—1

U U Zaxaxo ((&1 4 a1,& + o, &5+ 3)y) C Zyg, xasxas

i=1 a;=0

for some &1, &y, &3 € Z.
According to Proposition 3.18, the admissibility of an L.-periodic pattern U is
and U |z has the the

'y;al ><62 Xag

determined by U |z, .. . = (u(alvo‘27a3)'¥)Ogaigﬁi—1,1§i§3
periodic condition that is given by (3.52), which can be divided into two parts: (i)
for 0 <o; <a;—1,1<i<3andp,qgeZ if 0 < a;+ap+bog <a; —1 and

0 <ay+ayg<a—1,

U(ar+a1pt+bizg,ocotazq,as)y — Uar,a2,03)y3 (3'55>
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(i) for0 < o; <a@;—1,1<i<3,p,qg € Zandr € Z\{0},if 0 < oy +a1p+b1ag+bizr <

a1—1,0§a2+a2q+b23r§52—1and0§a3+a3r§63—1,

U(aq +a1p+bi2g+bisr,astazgtbesr,astasr)y — U(ar,az,a3)y - (356)

Then, for h > 1, the set of all local patterns on Z,g, xa,xn that satisfy (3.55) with
0 <ag <h—1isdenoted by P..q; as:b10:h-
Similar to (3.6), the counting function i, for patterns U in Pyq; gy is defined

by

aij—las—1 h—1

a1=0as=0a3=0

A local pattern U, in P..q, a,:6:.:n can be represented as

Ufy - Uﬁy’o @73 Uﬁ{;l @’\/3 tee @’yg U’*{;h—l?

the top (in the ~s-direction) of U;. For0i<.i < j < h—1,let Uyyy = U, &,

— . — —n —n .
where Uy € Py anibon, 0 <@ < h—1, and U,y @, Uﬁ/ means that Uﬁ/ is put on
< Dy UW-. Therefore, for h >%@s, thejeylindrical ordering matrix C. .4, 40b10n =

[Cysaragibraihii,jlyeras(n=1) xgo1a5(n-1) “OF pAGHEINS WE Py | gy 0,50 1 defined by

Clyiarazibrashiij = {U’Y € P aziprash EW(U%O@%—?) =i and E«,(Uw;h—aa-i-l:h—l) = ]} :

In particular, for h = a3, C,.q, asib10:3; can be used to construct the associated trace
operator. Notably the set C,.q, a5:510:34:,; €ither contains exactly one pattern or is an
empty set.

Now, given B C Yaxax2, the associated trace operator Ts.q; as:010 (B) = [ty:01.00:010:,5]»

With 2.4, aib10:ij € 10,1}, can be defined by t..4, a0:b10:i,; = 1 if and only if

Ciar,ab10isiij 7 0 and the pattern in C.q, gp:b10:34:4,; 15 B-admissible. (3.57)
Now, the shift (to the left) in the ;-direction of any pattern U, = (U(ay,a5,a5),)

in Prrayanibinias—15 U(ar,az,as), € 10,1}, is defined by

(1)

O an o (u ): U
iarazibnz (Uer,00.09),) < (0‘1’0‘2’0‘3)7)0<a1<al—1,0<a2<az—1,0<a3<63—2
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where

(1) o u(a1+l,a2,a3)—y if 0 S (0%} S zl\l - 2a
(o1,02,03)y . . (3.58)
u([a1+1}a1,a2,a3)«, if o = ay — 1.
Similarly, the shift (to the below) in the ~,-direction is defined by
_(,,@
Trziar,azibrz ((u(alm’o‘””)) a (u(al’a%%)v)ogmgal—1,0§a2§az—1,0§a3§ag—2’
where
(2) . u(al,az—i-l,ag)«, lf O S (&%) S 62 - 27
(ar,02,a3)y (3.59)

U(jar—baa],, aot1—aziaz), i Qa =0z — 1.

Notably, 04,.4; 405610 a0d Try:0; a0:b1, are automorphism on Po.q, g,:615:6,—1. Furthermore,

Ovzsa1,a2;b12 © Ov13a1,a2;b12 = Ov13a1,a2;b12 © Oy2sa1,a2;b12

and

al _ _bia ( as )_ . .
Y1ia1,a2;b12 O-’Yl;a17(12;bl2 072;a1,a2;b12 T 1dent1ty map.

Now, the rotational matrices with respect to v is-defined as follows.

Definition 3.19 The 2¢192(@=1) y 9pna(as—1) ' yotational matriz

R“/l;al,az;bm = [R“/l;al,az;blz;i,j]: R71;01702;612;i7j S {07 1}: 15 deﬁned by

R’yl;a17a2;b12;i,j =1 Zf and only Zf 1= E«,(U’y) and] = E«,(U’h;amm;bm (U’Y))> (360)

where U, € Poy.ay agibinias—1- From (8.60), for convenience, denote by

j= 0w (i) (3.61)
Similarly, the 201%2(@ =1 x gmn2(@=1) ~, _rotational matric Roy.ayabis = [Fosar.anbiails

R 0100010 € {0, 1}, is defined by

R72§a17a2§b12§i7j =1 if and Only if 1= @y(U’O andj = E«/(O”m;al,a%blz (U“/>>v (3'62>
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where U, € Po.ay apibinias—1- From (3.62), for convenience, denote by

J = 0i). (3.63)
Moreover,
a1—1 as—1
Rb Rb
V‘“’“?’bm o Z Z 711?:a1,a2,b12 7223:a1,a2;b12' (3'64)
b13=00b23=0
ar b bis
The main results for I'p 0 ay b as in Theorem 3.9 and 3.10 are ob-
0 0 as
2l

tained as follows and the proofs are omitted.

Theorem 3.20 Given a basic set B C Yoyxoxo. Fora; >1,1<:¢<3,0<b; <a;—1,
1+1< 75 <3,

a; bio b13

s 0 ay b = tp(@ " B)RME, R L) (3.65)

v;a1,a2;b12 T15a1,a2;b12”7 “y2;a1,02;b12
0 0 as
ol
and
a1—1 ag—1 ap b bis
E E _ as
FB 0 as b23 = ir (T’y;al,GQ;blg (B)R'y;al,aQ;blg) . (366)
b13=0b23=0
0 0 as
ol
Furthermore,
o0
G (5) = - (T2 (B)R ) st1e (3.67)
ya1,az2;b12\S) = €XpP a0y as T ~ia1,a2;b12 via1,az2;b12 ) S : :
az=1

The equivalent class Cyiq;.a0:01, (2), the cardinal number wy.q; asib10: OF Coiar agibis (7),
the index set 7.4, 405, and the cardinal number of X4, 40:0, Ccan be defined as in

Subsection 3.1.2 and are omitted here.

Definition 3.21 Fora;,as > 1,0 < by < a;—1, the reduced trace operator Ty.q, as:brn =

[T’Y;aha2;512;i7j] Of T“/;a17a2;b12 = [t“/;al,az;blz;i,j] 18 G Xvy;ar,a2;b12 X Xv;a1,a2;b12 matriz deﬁnEd by
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Tya1,a2;b1258,§ — E : bysar,a05b10;i,k (3-68)

kecw;al,aQ;blg (])

for each i,7 € L4, agibis-

By the argument as in Subsection 3.1.2, the rotational symmetry of T.,.q, 4,.4,, can be
obtained and then yields the rationality of the (a1, as; bi2)-th zeta function (g.y:a1,a0:b10-

The results are stated as follows.

Theorem 3.22 Given B C Xoyxox2 and vy € GL3(Z). Fora; >1,1<i<3,0<b; <

. . ar bia bz
a1—1 az—
a11a2 > > Is 0 ay bo =1r (T’(ylfahaz;bu)
b13=00b23=0 (3 69)
0 0 as '

= > Xrysa,azbz (A)A®.

AEX(To5a1,09;b12)
where X(Ty.a, agibis) 15 the spectrum of Toiayasibis \ONX v:a1 02010 (A) @5 the algebraic mul-

tiplicity of Tyiar asibr. With eigenvalue X. Moréover,

C7§a17025612(8) = (det (I - SalazT’Y;aLaQ;bm))_l

(3.70)
— H (1 — )\SCLlCLQ)_X'y;al,aQ;blz (A)’

)‘EE(T’WH ,a23b19 )

and

oo oo ai—1

G(s) =TT I I (det (7 = 5701 02)) " (3.71)

ay1=laz=1b12=0
Corollary 3.23 For any B C Yaxaxo and v € GL3(Z), the Taylor series expansions

for (g, at s = 0 has integer coefficients.

Proof. Since 7.4, a,,, has integer entries for any a;,as > 1, 0 < bjg < a; — 1, the
result follows. m

Now, that (z., are meromorphic extensions of (3 is obtained as follows.
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Theorem 3.24 Given B C Yoyoxe. For any v € GL3(Z),

CBir () = C5(s) (3.72)
for |s| < exp(—g(B)), where
) 1
g(B) = ll[:z?_s)ipm logI's(L). (3.73)

Moreover, (g, has the same (integer) coefficients in its Taylor series erpansions at

s =0, for all v € GL3(Z).

Proof. By Lind [36], ¢ has radius of convergence exp(—g(B)) and is analytic in
|s| < exp(—g(B)). Since (p., is a rearrangement of (g, (3.72) holds. From Lind [36] or
Corollary 3.23, (., has the same integer coefficients in its Taylor series expansions at

s = 0. The proof is complete. m

Remark 3.25 From Theorem 3.22, for any B C Yoxox2, there exists a family of zeta
functions {(g : v € GL3(Z)}. For certainiB;, the other v € GL3(Z) may give a dif-
ferent description to (g; see Example Ssti=and the following Erample 3.26. Those

different descriptions of (g may=bewseful in studiying, zeta functions.

1 00
Example 3.26 Consider the basi¢set B in FExample 3.17 andyvy= | 0 0 1 |. Itis

010
easy to verify that

T

v;a1,02;b12 T T'Y§C11702§0

for aj,as > 1, 0 < by < a; — 1. Moreover, after the zero columns and rows of
Tara0b1s (07 Tyiar.asibin) were deleted, To.q) aobis (Tyiar,anibn) @ reduced to To ay:0

(Ty1,a0:0)- Clearly

Toit,a550 = L202

and

Tyilazi0 = xay
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where

1
dln

and ¢(d) is the Euler totient function.

Hence,

Crianazibie = (1 — s719) 742 (3.74)

and

G =TT I (1 — sty (3.75)

ar=laz=1

It can be proved that g(B) = log2. Therefore, from Example 3.17 and Theorem
3.24,

ITIT @ —smeyoxe = T T (1 — 252) ™™ (3.76)

a1=laz=1 ar=laz=1

1

for|s| < 3,

at s = 0.

and they have the same integer coefficients in their Taylor series expansions

3.2 Further results

This subsection briefly describes. the results for-Z?, d > 4, and more symbols on
larger lattice. The thermodynamic zeta funetion for the three-dimensional Ising model

with finite range interactions is also studied.

3.2.1 Higher-dimensional shifts of finite type

This subsection consider the zeta functions for shifts of finite type on Z%, d > 4.
Only brief statements are made here.

As in [36], L4 can be parameterized by using Hermite normal form [39]:

ps -
ai bz -+ big
0 ay -+ by d ) . .
Ly = ' 2% :a;>1,1<i<d,0<b; <a;—1,1+1<j5<d
0 0 aq
\ L .

(3.77)
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Let the lattice Ly = {(n1,n9,--- ,nq) : 0<mn; < 1,1 <i<d}. Fixed a basic set B C
{O,I}Ld. For a; 2 1, 1 Slgd—l, Ogb” S ai—l, Z+1 S] Sd—l, the (ai,b,-j)—th

zeta function is defined by

CB;(ai,bij)(S)
[ ar by biz - big ]
0 a b23 ce bgd (378)
oo d—la;—1
= exp al...ﬁ — > > > +Ts 0 0 az -+ by sHed
T g =1i=1b,q=0 "¢ .
i 0 O 0 aq |

and

d—1 co d—1 a;—1

()= [TTT 1T 11 ¢ (5)- (3.79)

iZlaz‘le:i—Flbi]‘:O
As in Subsections 3.1.1 and 3.1.2;'the cylindrical-ordering matrix, the trace operator,
the rotational matrices and the reduced trace operator can be defined. The method

in Subsections 3.1.1 and 3.1.2 can also be applied to:verify that (p,(4;s,,) iS a rational

ij
function. Therefore, (5 is an ihfinite.product of rational functions. Furthermore,
given any v € GLy4(Z), the result alse holdsin y-coordinates. Hence, a family of zeta
functions exists with the same integer coefficients in their Taylor series expansions at

s = 0, and yields a family of identities in number theory.

3.2.2 More symbols on larger lattice

This subsection extends the results of the previous sections and subsections to
any finite number of symbols and any finite lattice. For simplicity, only the zeta
functions for three-dimensional shifts of finite type are discussed. Given a set of symbols
S, = {0,1,---,p— 1}, p > 2, a set of finite lattice points L C Z* and a basic set
B(L) C SI{J. Let Zpsmxm be the smallest cubic lattice that contains L and B(Z,,xmxm )
be the set of all admissible patterns that are generated by B(L). Then, it is easy to
verify that
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P (B(Zmxmxm)) =P (B(L)) .

Therefore, only B C Sf"m’mn, for m > 2, need to be considered. The definitions of
cylindrical ordering matrix and the rotational matrices must be adjusted and the details
are omitted here. Then, the associated trace operator and reduced trace operator can
also be defined. Hence, by the arguments similar to those made in Subsections 3.1.1,

3.1.2 and 3.1.3, the results for B C Sf’”mxm also hold.

3.2.3 Three-dimensional Ising model with finite range interactions

This subsection will extend the results to the Z3 lattice Ising model with finite
range interactions. For simplicity, only the case of the nearest neighbor interac-
tions is considered. Let the Z3 lattice Ising model with external field H, the cou-
pling constant J; in the z-direction, the coupling constant 75 in the y-direction and
the coupling constant J3 in the z-direction. Each site (aq, s, a3) of Z3 lattice has
a SPIN Uqy.ay,05 With two possible values, 41 or —1. Assume that the state space
is given by B C {0,1}%2x2<2_ Civén a state U= (g, apa;) € 10,1}, denote by

Unixngxng = U |Zn1 Xngxng (ual7a2,as)0§ai§ni_1,1§i§3'

Now, the Hamiltonian (energy) & (Us snpxns) is defined by

g (Un1 Xng Xng)

= _jl Z Uay 00,03 War+1,a0,03 — \72 Z Uy ,00,a3Uar,00+1,03

0<a1<ni—2 0<ai<ni—1
0<az<nz—1 Usazsnz—2
0<az<ns—1 0<az<ns—1 (380)

—J3 Z Uay 0,03 Uy az,a5+1 — T Z Uay, 0,03

0<an <ni—1 Usarsni—1
0<az<nz—1 Usazsnz—1
0<az<nz—2 Usazsnz—1
ar bz bis
Given L= | 0 ay by | Z> € L3, theset of all B-admissible and L-periodic patterns
0 0 as

is denoted by Pp(L). Then, the partition function for B with L-periodic patterns is
defined as
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a; bz bis
Zgs (L) = Zp 0 ay b =
0 0 as

Z eXp Z Uay,az,a3 (Klua1+1,a2,a3 + K2u0¢1,a2+1,a3 + K3u0c1,a2,a3+1 + h) ’
UePp(L) 0<a1<ni-1
0<a2<na—1
0<a3z<nz—1
(3.81)
where K; = J;/kpT, 1 <1 < 3, kp is Boltzmann’s constant and T is the temperature.

Therefore, the thermodynamic zeta function is defined by

Clsingis(5) = exp <Z Zs(L ) (3.82)

LeLs
As (134) and (135), for any dai, as Z 1, 0 S b12 S a; — 1, the (al,ag;bm)—th

thermodynamic zeta function (rsingBia; b, (s) 18 defined as

cofunl a; bio b13

§ / § /‘ 2 : ajasza
CIsmgBal,az,bm( ) = eXp ZB 0 as b23 CR
a1G2

a3=1biz= 01)23“0 0 0 a
3

(3.83)

and the thermodynamic zeta function (r4ng.5(s) is given by

oo oo a;—1

ClszngB H H H CIsmgBal,az,blz( ) (384)

al= 1(12 1b12 0

Since the spin %q, ay.05 € {+1, —1}, the cylindrical ordering matrix
Clsingsar,azsbizsh = [Clsingiar,azibiashii,g] i obtained by replacing all symbols 707 in Cy, ay:,0:n
with the symbols ” — 17. Notably, exactly one patterns exists in Crsing.a; a;bro;2:i,; and

the pattern is glven by Ulsmg,w - UISmg a1,a2;b12;258,5 — (ua17a2 as) Define
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ZB (Ulsing;i,j) = exp E Ueay,a0,0 (Kluoq—l—l,ag,O + K2ua1,az+1,0 + K3ua1,a2,1 + h)

0<ai<ai—1
0<az2<az—1
(3.85)
Then, the trace operator Tging.ar asibio = [Elsing:ar.asbiazi,j] 15 defined by
Ursing:ar,aibia:i,j = 0 if  Ulsing,j is not B-admissible, (3.86)

trsingiarasibnasii = 2B (Ulsingiij) if Ulsing;ij 13 B-admissible.

Therefore, the associated reduced operator Trsing.a;,a0:51, Can be defined as in Definition
3.14. Since all arguments for the rationality of Crsing.B.a;1,a0:01, are similar to those in

Subsections 3.1.1 and 3.1.2, only the final result is stated, as follows.

Theorem 3.27 For ai,as > 1,0 < by <a; —1,

Ising;B;a1,a2;b12\5) 7F(AC =8 "TIsing;a1,a2:b12 - .
¢ (s) =u(det (I'=g2™ ) (3.87)
and

oo wo ay—1

Craings(s) = [ [ LT @66 = 85 1 ingir anvnn) ™" (3.88)

a1=las=1b12=0

Notably, this result also holds in y-coordinates for v € GL3(Z).
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