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a b s t r a c t

The purpose of this study was to improve the accuracy rate of brain tissue classification in magnetic
resonance (MR) imaging using a boosted decision tree segmentation algorithm. Herein, we examined
simulated phantom MR (SPMR) images, simulated brain MR (SBMR) images, and a real data. The accuracy
rate and k index when classifying brain tissues as gray matter (GM), white matter (WM), or cerebral-spinal
fluid (CSF) were better when using the boosted decision tree algorithm combined with a fuzzy threshold
than when using a statistical region-growing (SRG) algorithm [Wolf I, Vetter M, Wegner I, Böttger T,
Nolden M, Schöbinger M, et al. The medical imaging interaction toolkit. Med Imag Anal 2005;9:594–604]
and an adaptive segmentation (AS) algorithm [Wells WM, Grimson WEL, Kikinis R, Jolesz FA. Adaptive
segmentation of MRI data. IEEE Trans Med Imag 1996;15:429–42]. The segmentation performance when
using this algorithm on real data from brain MR images was also better than those of SRG and AS algorithm.
k index Segmentation of a real data using the boosted decision tree produced particularly clear brain MR imaging
and permitted more accurate brain tissue segmentation. In conclusion, a decision tree with appropriate
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. Introduction

Magnetic resonance (MR) image segmentation is an important
mage post-processing for medical research and clinical diagnoses.
rain MR image segmentation is critical to the assessment of brain
issues and neurological disorders, such as Alzheimer’s disease and
umors (Rettmann et al., 2002; Anbeek et al., 2004; Zoroofi et al.,
004; Liu et al., 2005; Mohr et al., 2004; Admiraal-Behloul et al.,
005; Gu et al., 2005; Dou et al., 2007; Behrens et al., 2007; Xia et al.,
007). Zoroofi et al. (2004) demonstrated favorable segmentation
erformance using an automatic segmentation technique com-
ined with region growing, gray morphological dilation, filtering,
nd thresholding to assess the necrotic formal head area. Admiraal-

ehloul et al. (2005) used a fully automatic segmentation method
ombined with adaptive and reasoning levels to perform white
atter hyperintensity (WMH) segmentation for volume qualifica-

ion and similarity on older MR images. Dou et al. (2007) proposed a

∗ Corresponding author. Tel.: +886 3 571 2121x54427; fax: +886 3 612 5059.
E-mail address: irradiance@so-net.net.tw (Y.-Y. Chen).
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ed the accuracy rate of MR brain tissue segmentation.
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ramework of fuzzy information fusion combined with registration
peration, feature extraction, fuzzy feature fusion operation, and
uzzy region growing to automatically segment brain tumor tis-
ues on MR images. Xia et al. (2007) proposed a knowledge-driven
lgorithm for automatically delineating the caudate nucleus (CN)
egion in MR-imaged human brains. These studies demonstrate the
mportance of segmentation for neurological applications. In basic
egmentation applications, conventional MR image segmentation
s used to detect regions of growth and edges (Cline et al., 1987;
oliot and Majoyer, 1993; Schiemann et al., 1996). In the brain, MR
mage tissue segmentation is important to accurately distinguish
ray matter (GM), white matter (WM), and cerebral-spinal fluid
CSF) (Zhou et al., 2001; Andersen et al., 2002; Marroquin et al.,
002; Amato et al., 2003; Gu et al., 2005), while automatic MR

mage segmentation is often used to classify brain tissue. Many
utomatic segmentation techniques use probabilistic classification

o segment brain tissue (Andersen et al., 2002; Anbeek et al., 2005;
reenspan et al., 2006), while others use wavelet coefficients as
patial features of voxels in three-dimensional (3D) imaging for
lustering the GM, WM, and CSF with fuzzy theory. Fuzzy logical
odels have been used to test phantom, normal, and Alzheimer’s

hts reserved.
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quality. An expert manually labeled an exemplar brain MR image
from the original image with no noise and heterogeneities; this
was used as our standard image. All of the simulated data were
preprocessed to obtain spatial features and then segmented using
the decision tree algorithm.

Table 1
Designations of original phantom images obtained by combining noise levels and
heterogeneities

Designation Noise level and heterogeneity parameters

Var15 Noise variation = 15 gray levels
Var30 Noise variation = 30 gray levels
Var15RF20 Noise variation = 15 gray levels and 20% RF heterogeneity
Var30RF20 Noise variation = 30 gray levels and 20% RF heterogeneity
Var15RF40 Noise variation = 15 gray levels and 40% RF heterogeneity
Var30RF40 Noise variation = 30 gray levels and 40% RF heterogeneity

Table 2
Designations of original simulated MR images (BrainWeb) obtained by combining
the noise levels and heterogeneities

Designation Noise level and heterogeneity parameters

T1n3 Noise level = 3%
T1n5 Noise level = 5%
T1n7 Noise level = 7%
T1n9 Noise level = 9%
T1n3RF20 Noise level = 3% and 20% RF heterogeneity
T1n5RF20 Noise level = 5% and 20% RF heterogeneity
T1n7RF20 Noise level = 7% and 20% RF heterogeneity
W.-H. Chao et al. / Journal of Neur

rain MR images in order to reduce the difference of partial volume
veraging on the boundary of the ventricles (Barra and Boire, 2000).
nother wavelet application has been used to design attribute vec-

ors as spatial features of voxels for determining correspondence
n 3D brain MR images (Xue et al., 2004). Segmentation applica-
ions include tissue volume quantification and 3D spatial structure
econstruction, which greatly aid in disease diagnosis (Joliot and
ajoyer, 1993; Tang et al., 2000; Yoo et al., 2001; Zoroofi et al.,

001, 2004; Archibald et al., 2003; Mohr et al., 2004; Ali et al.,
005; Andrey and Maurin, 2005; He et al., 2005; Shan et al., 2005;
oulhiane et al., 2006).

Several factors make brain MR image segmentation difficult,
ncluding similar imaging intensities in different regions of the
rain, overlapping intensity distributions, background noise, and
adio-frequency (RF) heterogeneities. These factors often affect the
ccuracy rate. Therefore, many studies have focused on improving
he accuracy of MR image segmentation. Marroquin et al. (2002)
eported an accurate and efficient Bayesian method for segmenting
issues in brain MR images, and evaluated the performance of this

ethod using quantitative indices for GM and WM on simulated
rain MR data. Archibald et al. (2003) improved human brain tis-
ue segmentation in MR images using segmentation preprocessing
ased on the Gegenbauer reconstruction method. Another method
as recently proposed using k-nearest neighbor (KNN) analysis.
ere, a feature space is built from spatial information and then
pplied to the KNN model, which is then used to classify differ-
nt brain structures. Similar indices (SI) and probabilistic SI (PSI)
ere measured to evaluate segmentation performance. Segmen-

ation accuracies in which SI values exceeded 0.8 and PSI values
xceeded 0.7 for all tissues indicated good agreements (Anbeek et
l., 2004, 2005). RF inhomogeneity correction has also been used
s a preprocessing method to improve image segmentation (Zhou
t al., 2001; Andersen et al., 2002). Most of these techniques are
utomatic and, therefore, efficient; however their applications are
ometimes limited to GM and WM delineation, while their accu-
acy has room for improvement. To address these problems, we
ropose the use of decision trees as an easier way to segment brain
R images.
Decision trees can be constructed from many specific algo-

ithms. A classification and regression tree (CART) can be applied for
lassification analysis while also acting as a regression tree. CART
s a binary tree that has been utilized in many studies (Grajski et
l., 1986; Bittencourt and Clarke, 2003; Hautaniemi et al., 2005).
he C4.5 learning method proposed by Quinlan (1993) is another
ecision tree that was reformed from the ID3 learning system pro-
osed by Quinlan (1986) and used in a supervised classification
roblem. The C4.5 was advanced to the See5/C5.0 to improve deci-
ion tree performance (Quinlan, 1996, 2003). The ID3, C4.5, and C5.0
ave been used for classification in many studies. The C4.5 learn-

ng system was used to determine the optimal subset of a control
ystem for selecting attributes among continuous attributes, noise
ata, and alternative measures (Shiue and Guh, 2006). The C5.0
as used to classify electrocardiograms (ECG) in a healthy control

ubject and in a subject with a heart disorder, wherein three experi-
ents were conducted including classifications based on 2, 3, and 7

lasses. This system was successfully used to classify bundle branch
lock, cardiomyopathy, arrhythmia, healthy control, hypertrophy,
yocarditis, and myocardial infraction with good accuracy (Macek,

005). We used a decision tree in our study because it has several
dvantages in biomedical applications. Specifically, it can be effec-

ively used to classify any data structure, it can perform with good
rediction accuracy for non-linear problems, it is easy to interpret
ules in a rule set of the decision tree, and it effectively eliminates
utliers (Hautaniemi et al., 2005). Therefore, we propose a boosted
ecision tree algorithm combined with fuzzy threshold for the clas-

T
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T
T

ce Methods 175 (2008) 206–217 207

ification of brain tissues, such as GM, WM, and CSF, with the goal
f improving accuracy rates of brain MR image segmentation.

The rest of this paper is organized as follows: Section 2 presents
aterials and methods including MR data acquirement, image pre-

rocessing, and details of segmentation algorithm with the boosted
ecision tree. Section 3 shows the results of segmentation using the
oosted decision tree and other methods from MR data. The discus-
ions of this study and comparison with other methods are shown
n Section 4. Finally, the conclusions of this present study are shown
n Section 5.

. Materials and methods

.1. MR data

Two types of simulated data were used in this study, includ-
ng simulated phantom MR (SPMR) images and simulated brain

R (SBMR) images. The SPMR images were obtained from IBSR
http://www.cma.mgh.harvard.edu/ibsr). The SPMR images con-
isted of a circle center, circle ring, and background region, with
oise variations of 15 or 30 gray levels. RF heterogeneities of 20%
nd 40% were also combined in the two SNRP images. The gray level
ariation due to noise and the heterogeneities added to a phantom
mage is summarized in Table 1. The simulated brain MR images
btained from BrainWeb (http://www.bic.mni.mcgill.ca/brainweb)
ere T1-weighted images with resolutions of 256 × 256 × 181 vox-

ls, with 1 mm × 1 mm × 1 mm voxel dimensions. The simulated
rainWeb images were provided with their ground truth and the
oise levels (3%, 5%, 7%, and 9%), inhomogeneity of the simulated
rain images can also be controlled. Furthermore, RF hetero-
eneities of either 20% or 40% were added to the images, with noise
evel respectively described in Table 2. These images provided the
bility to examine performance with spatial information of varying
1n9RF20 Noise level = 9% and 20% RF heterogeneity
1n3RF40 Noise level = 3% and 40% RF heterogeneity
1n5RF40 Noise level = 5% and 40% RF heterogeneity
1n7RF40 Noise level = 7% and 40% RF heterogeneity
1n9RF40 Noise level = 9% and 40% RF heterogeneity

http://www.cma.mgh.harvard.edu/ibsr
http://www.bic.mni.mcgill.ca/brainweb
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and internal node) is split into two or more branch nodes. Examples
of splitting conditions include “A > a,” “B > b,” or “C > c” for each node
in every attribute, as shown in Fig. 2. Branch splitting is determined
by the condition of each node. The leaf nodes depict classification
by these splitting conditions, and the class is labeled on the leaf
08 W.-H. Chao et al. / Journal of Neur

Real data of brain MR images were also used for this experi-
ent. Healthy participants were scanned with a 1.5T MRI system

Signa NV/i, GE Medical Systems, Waukesha, WI) in Buddhist Tzu
hi General Hospital using a standard head coil and an adjustable
added head holder to minimize head motion. The 3D T1-weighted
ime-of-flight fast spoiled gradient recalled acquisition in steady
tate (FSPGR, TR/TE = 13.4/2.7 ms, NEX = 1, FOV = 260 mm; 512 × 256
atrix, slice thickness = 2 mm) pulse sequence was used. 144 axial

lices were acquired encompassing the whole brain.

.2. Image preprocessing

Spatial features were extracted from every MR image pixel loca-
ion and used as the input for the segmentation algorithm for image
reprocessing. The spatial features used in the present study were:
, S, W, x, y, r, and �, where G represents the gray level intensity
f every pixel, S is the spatial gray level of every pixel, W is the
oefficients of the wavelet transform, (x,y) Euclidean coordinates,
nd (r,�) polar coordinates. The spatial features of the general gray
evel, spatial gray level, and wavelet transform were combined in
uclidean coordinates (x,y) or polar coordinates (r,�) by image pre-
rocessing. Noise and RF heterogeneities often reduced the quality
f MR images, such that their impact on segmentation accuracy
eeded to be reduced by image manipulation.

The general gray level represents the intensity of each pixel for
R image segmentation. The use of more spatial features in an

mage is considered to improve the accuracy of image segmenta-
ion. The spatial gray (S) level is given as

(x, y) =
n∑
i=1

ωigi(x, y) (1)

hich is the sum of combined weighting ωi and gray level gi(x,y)
f pixel i on the neighboring area. The neighboring area is shown
n Fig. 1(a), which depicts the five neighbor systems used in this
tudy, wherein the gray level weighting at the center pixel with the
earest four pixels produced n = 5 and ωi = 1/5.

The wavelet transform (W) of the spatial features used in this
tudy was the coefficient of the wavelet transform transferred from
ine gray levels of each local area to represent the wavelet spa-
ial features of the center pixel for every location. The scaled and
ranslated basis functions are defined as

j,m,n(x, y) = 2j/2ϕ(2jx −m,2jy− n), (2)

(x, y) = 2j/2 (2jx −m,2jy− n), i = {H,V,D}, (3)
j,m,n

here the index i identifies the directional wavelets in
H(x,y) = H(x)ϕ(y), V(x,y) =ϕ(x) (y), and D(x,y) = (x) (y). The
iscrete wavelet transform of function g(x, y) of size M × N is then

ig. 1. Local area of each spatial feature. (a) Local area of the spatial gray level. (b)
ocal area of the wavelet transform.
ce Methods 175 (2008) 206–217

ϕ(j0,m,n) = 1√
MN

M−1∑
x=0

N−1∑
y=0

g(x, y)ϕj0,m,n(x, y), (4)

i
 (j0,m,n) = 1√

MN

M−1∑
x=0

N−1∑
y=0

g(x, y) ij,m,n(x, y), i = {H,V,D}, (5)

here the Wϕ(j0,m,n) coefficients define an approximation of g(x,y)
t scale j0. TheWi

 
(j0,m,n) coefficients add horizontal, vertical, and

iagonal details for scales j ≥ j0 (Gonzalez and Woods, 2002). The
btained coefficients were transferred by wavelet from the local
rea to represent the spatial features of the central pixel. Local areas
ere generated from every nine pixels in each MR image, as shown

n Fig. 1(b).

.3. Segmentation

A decision tree combined with boost trials and a fuzzy thresh-
ld was used in this study. This method was shown by Quinlan to
odel the prediction tree using a statistical analysis that considered

utcome variables to make an accurate prediction (Quinlan, 2003).
he image segmentation processing procedures are summarized
n Fig. 3. A standard image was trained using the boosted decision
ree with a fuzzy threshold, while images with noise levels and RF
eterogeneities were then tested by the decision tree constructed

rom the trained structures. The operation is described as follows.

.3.1. Decision tree classification
The decision tree builds a classifier form that can be integrated

sing boosting and a fuzzy threshold (Quinlan, 1993, 2003; Dombi
nd Zsiros, 2005). Regions and tissues in the SPMR images were
ivided into three and four classes of the decision tree, respec-
ively. A schematic diagram of the decision tree structure is shown
n Fig. 2. A decision tree is a tree structure that grows from a root
ode, flows outward toward internal nodes, and terminates at leaf
odes. The leaf nodes represent the class, wherein the classifier is
model derived from the training dataset and is applied to predict

lass values in a test dataset. In the tree structure, each internal
ode is divided by a condition related to a feature, and each branch
enotes the outcome of attribute splitting. Each node (root node
Fig. 2. Schematic diagram of the decision tree structure.
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ig. 3. A flow diagram of image processing procedures for MR image segmentation.

ode. The decision tree structure can be transferred into a set of
ules.

.3.2. Decision tree construction with gain ratio
The proposed decision tree is constructed from a data set S by

he training criteria, Gain Ratio, which is a measure of incorporated
ntropy (Quinlan, 1993; Frey and Fisher, 2003; Ranilla et al., 2003;
ombi and Zsiros, 2005; Hu et al., 2007). The procedures of Gain
atio are defined as follows. For simulated MR data, assume that a
raining data set S consists of C class examples. The function p(S,r)
s the ratio for the class number of an MR data set belonging to class
of the total class number |S| of an MR data set S, where 1 ≤ r ≤ C.
he entropy is defined as

ntropy(S) = −
∑C

r=1
p(S, r)log2p(S, r). (6)

Suppose that T is a feature whose total partitions are v. The value
is any specific value of v, while Si is a subset of the MR data set S cor-
esponding to the value i of T. The information gain, Gain(S,T), cor-
esponding to the partitioning of S from feature T, is calculated by:

ain(S, T) = Entropy(S) −
∑v

i=1

|Si|
|S| Entropy(Si), (7)

here |Si| is the number of subsets Si in the MR data, and
ntropy(Si) is calculated similarly as Entropy(S). In order to obtain
good generation by reducing bias, the gain ratio GainRatio(S,T)
as calculated, wherein the SplitInfo (Eq. (8)) is first provided as:

plitInfo(S, T) = −
∑v

i=1

|Si|
|S| log2

( |Si|
|S|
)
. (8)

The function Gain(S,T) is very sensitive to the value of v, so the
atio of information gain is calculated as:

ain Ratio(S, T) = Gain(S, T)
SplitInfo(S, T)

. (9)

The feature T satisfies:

= argmax
T

(GainRatio(S, T)) (10)

nd is selected as the reference for this step of partitioning. The
ecision tree is constructed by splitting all of the features and max-

mizing the gain ratio (� ).

.3.3. Boosting
The addition of boosting to a decision tree as a means to improve

rediction accuracy is know as adaptive boosting, and was pro-

osed by Freund and Schapire (1996, 1999; Quinlan, 1993, 2003;
rditi and Pulket, 2005). Adaptive boosting is based on a learning
lgorithm of a decision tree classifier over a repeated series of tri-
ls: t = 1,. . .,T. One possible approach is to select a best weight and
ree structure from the distribution of weights over the training set.

t
e
t
t
t

ce Methods 175 (2008) 206–217 209

or a training set (xi,yi). . .(xm,ym), xi belongs to X and yi belongs to
abel set Y. This generates the weak hypothesis ht(i): X → {−1, +1},
s Dt(i) is the weight distribution on training instance i at trial t.
he error of the hypothesis is given as

t = Pri∼Dt [ht(xi) /= yi] =
∑

i:ht (xi) /= yi

Dt(i), (11)

here the Pri∼Dt [.] is the probability with respect to the distribu-
ion Dt(i) when the weak learner was trained. The parameter of
eight will be chosen as

t = 1
2

ln
(

1 − εi
εi

)
, (12)

here˛t increases when εt decreases. After updating Dt(i), the final
ypothesis H measures the confidence in the boosting prediction,
nd is given as

(x) = sign

(
T∑
t=1

˛tht(x)

)
. (13)

The final hypothesis H is a majority vote in t = 1, . . ., T, where ˛t

s the weight of ht.
Many classifiers are constructed from a single training dataset

or boosting. Each classifier is constructed to form a single decision
ree structure or a rule set using the training data. New classifica-
ions are based on votes from many classifiers, while the predicted
nd final classes are decided from the votes. The first step of this
oosting procedure is to build a single decision tree structure or a
ule set from the training data. This classifier will usually contribute
o the errors for some cases in the data. The first decision tree struc-
ure generates the wrong class for some cases in the training data.
ext, the second classifier is constructed with greater attention to
orrect classification. The second classifier will consequently be dif-
erent from the first classifier. The third classifier construction step
s comparatively even more focused, although it also will make mis-
akes in some cases. By setting the boost trial number in advance,
he boosting process continues iteratively by updating Dt(i). The
nal step of the boosting process is stopped when the most recent
lassifier is either extremely accurate or inaccurate.

.3.4. Fuzzy threshold
In a fuzzy threshold process (Quinlan, 1993, 2003), the thresh-

ld for each feature partition is divided into three ranges, including
lower bound, lb; an upper bound, ub; and a central value, t. If the

eature value (or attribute value of the tree) in a node is below lb or
bove ub, the classification is partitioned using single branches cor-
esponding to the conditions “ <= ” or “ > ”, respectively. If the feature
alue is between lb and ub, both branches probabilistically decide
he partition results. The lower and upper bounds are calculated
y approaching the apparent classification sensitivity. The fuzzy
hreshold can resist the effects of noise and improve the accuracy
ate of classification on training and testing.

.3.5. Pruning
Decision tree construction consists of two phases (Quinlan,

986, 1993; Kirchner et al., 2006). The growth phase is gen-
rated first, followed by processing in the pruning phase. The
runing phase is used to optimize the decision tree structures.
lobal pruning was selected in the decision tree algorithm. Sub-
ree replacement is performed in the pruning step when the subtree
rror rates for the training set are reduced. If the error rate is below
he CF (25%), the nodes of the tree structure are trimmed to replace
he subtree by a leaf node. The CF is the probability of a binary dis-
ribution, as defined in Eq. (14), and is calculated from the training
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algorithm with spatial features (G, x, y, r, �), (S, x, y, r, �), (W, x,
y, G, r, �), and (W, x, y, G, r, �, S) from SPMR images with noise
and heterogeneity levels of Var15, Var15RF20, Var15RF40, Var30,
Var30RF20, and Var30RF40. The segmentation performance was
evaluated by averaging the accuracy rates of all the phantom image
10 W.-H. Chao et al. / Journal of Neur

et. The class label of the leaf node is then defined as a simplified
ree consisting of a class of attributes in a subtree. The function
f pruning is to reduce the risk of overfitting the tree. Overfitting
ccurs when the tree is overspecialized to the training set. The
runing phase was developed to improve classification accuracy
y removing subtrees that are predicted to have high error rates.

When replacing the leaf node of a tree, statistical analysis is used
o obtain confidence by manipulating the posterior probability of

isclassification. For example, assume an event happens M times in
trials. The estimated probability p of the event is the ratio M/N. The

onfidence limits for p can then be calculated. For the confidence
F given in Eq. (14), the estimated probability p can be calculated as
-CF such that p ≤ pr. The upper limit pr (Diem, 1962) is satisfied as

F =

⎧⎪⎨
⎪⎩

(1 − pr)N, for M = 0
M∑
i=0

(
N
i

)
pir(1 − pr)N−i, for M> 0

, (14)

here CF-pruning is set to 25% as default.

.4. Evaluation of segmentation

The accuracy rate was used to evaluate the performance of seg-
entation in the present study and was calculated based on the

verlap of the standard reference image (manually labeled by an
xpert) and a collection of segmentation results obtained with the
roposed method. The accuracy rate was quantified as the overlap
raction (Anbeek et al., 2004, 2005; He et al., 2005; Liu et al., 2005)
nd is defined as:

ccuracy rate = Ref(k) ∩ Seg(k)
Ref(k)

, (15)

hich represents the accuracy rate of the segmented area in class k
elative to the area in the standard reference image (Anbeek et al.,
004, 2005). Three classes of phantom MR images (circle center,
ircle ring, and background) and four classes of simulated brain MR
mages (GM, WM, CSF, and background) were segmented in this
tudy. The numerator in Eq. (15) represents the number of classified
r intersection areas of voxels of class k between the segmented
mage and the standard image, while the denominator represents
he area of voxels in class k in the standard image.

The k index (also called the Dice coefficient) as given in Eq. (16),
hich is another means of segmentation evaluation, was also used

o quantify the performance of segmentation. The k index is ordi-
arily used to measure the similarity of two images (Dice, 1945;
arroquin et al., 2002; Archibald et al., 2003; Anbeek et al., 2004,

005; Greenspan et al., 2006; Xia et al., 2007). Given two images, S1
enotes all tissues of the standard reference image, while S2 denotes
ll tissues of the segmented image. The k index is defined as:

(S1, S2) =
2
∣∣S1 ∩ S2

∣∣∣∣S1

∣∣+ ∣∣S2

∣∣ , (16)

here |S1∩S2| denotes the intersection area between S1 and S2. The
index, running from 0 to 1, was applied to compare the segmented

mage and standard image (manually labeled by an expert).

.5. Three-dimensional reconstruction and visualization

Each segmented image was exported separately as a distinct
at (MATLAB) file to Amira 4.1 (Mercury Computer Systems Inc.,
helmsford, MA) for surface rendered 3D models. The segmented
mages were first simplified using the GMC algorithm, then volume
endered with the surface rendering function in Amira. All these
teps were performed with the help of the visualization and mod-
ling software Amira (Stalling et al., 2005). The Amira User’s Guide,
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t
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ce Methods 175 (2008) 206–217

eference manual and Amira Programmer’s Guide are available at
he Website http://www.amiravis.com/.

. Results

.1. Segmentation of SPMR images

As shown in Fig. 4, we examined the accuracy rates of SPMR
mage region segmentation with several levels of noise and hetero-
eneities (see Table 1) using various spatial features. The accuracy
ates of circle center and circle ring segmentation using spatial fea-
ures (G, x, y), (S, x, y), (W, x, y, G, r, �), (W, x, y, G, r, �, S), (G, x, y, r, �),
nd (S, x, y, r, �) and at different levels of noise and heterogeneity
re shown in Fig. 4(a)–(b). Using the decision tree algorithm and
ix spatial features, the accuracy rates for circle center segmenta-
ion were greater than 0.9720, while the accuracy rates for circle
ing segmentation were greater than 0.9309. The highest accuracy
ate came from phantom region segmentation. The lowest accu-
acy rates were obtained when SPMR images were segmented using
his decision tree with spatial features (W, x, y, G, r, �) or (W, x, y,
, r, �, S). Fig. 5 shows images segmented using this decision tree
ig. 4. Accuracy rates of region segmentation obtained using different spatial fea-
ures from simulated phantom MR images. (a) Accuracy rates of circle center
egmentation with different spatial features. (b) Accuracy rates of circle ring seg-
entation with different spatial features.

http://www.amiravis.com/
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th different spatial features and various noise and heterogeneity levels.
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Fig. 6. Mean accuracy rates of tissue segmentation from simulated brain MR images.
Fig. 5. Images segmented from simulated phantom MR images wi

egions in SPMR images with noise and heterogeneity levels of
ar15, Var15RF20, Var15RF40, Var30, Var30RF20, and Var30RF40,
nd segmented with spatial features (G, x, y, r, �), and (S, x, y, r, �).

.2. Segmentation of SBMR images

SBMR images with different noise and heterogeneity levels were
egmented using the boosted decision tree algorithm with spa-
ial features (G, x, y), (S, x, y), (G, x, y, r, �), (S, x, y, r, �), (W, x, y,
, r, �), and (W, x, y, G, r, �, S). Image segmentation decision tree
erformance was best using spatial features (G, x, y, r, �) and (S,
, y, r, �) in SBMR images. Fig. 6 depicts the average brain tissue
egmentation accuracy using the boosted decision tree. Fig. 6(a)
epicts the average segmentation accuracy using spatial feature
G, x, y, r, �) in SBMR images with noise and heterogeneity lev-
ls of T1n7, T1n7RF20, and T1n7RF40. Fig. 6(b) depicts the average
egmentation accuracy with spatial feature (S, x, y, r, �) in SBMR
mages with noise and heterogeneity levels of T1n7, T1n7RF20, and
1n7RF40. Critical average accuracy rates were obtained using a
ecision tree with a boost trial number of 20. Greater boost trials
esulted in a longer processing time. Therefore, the decision tree
ith 20 boost trials was selected to segment all simulated brain
R images, as shown in Fig. 6. Fig. 7(a)–(c) shows the accuracy of

egmenting GM, WM, and CSF, respectively, using spatial feature
G, x, y, r, �) on SBMR images with different noise levels and het-
rogeneities. The accuracy decreased for GM, WM, and CSF when
egmented with spatial feature (G, x, y, r, �) and combined with
oise levels increased from 3% to 9%. Fig. 7(d)–(f) shows the accu-
acy of segmenting GM, WM, and CSF using spatial feature (S, x,
, r, �) on SBMR images with different noise levels and hetero-
eneities. Accuracy rates decreased for GM, WM, and CSF when
egmented with (G, x, y, r, �) and including noise levels increased
rom 3% to 9%. Row 1 in Fig. 8 depicts a standard image (manu-
lly labeled by an expert). The images in column 1 of Fig. 8 show

he original simulated brain MR images using T1n7, T1n7RF20, and
1n7RF40. The images in column 2 of Fig. 8 show simulated brain
R images segmented with spatial feature (G, x, y, r, �) and noise

nd heterogeneity levels of T1n7, T1n7RF20, and T1n7RF40. The
mages in column 3 of Fig. 8 show SBMR images segmented with

(a) Mean accuracy rates of tissue segmentation using the decision tree and 20 boost
trials with spatial feature (G, x, y, r, �) from simulated MR images with noise and
heterogeneity levels T1n7, T1n7RF20, and T1n7RF40. (b) Mean accuracy rates of
tissue segmentation using the decision tree combined with 20 boost trials using
spatial feature (S, x, y, r, �) from simulated MR images with noise and heterogeneity
levels T1n7, T1n7RF20, and T1n7RF40.
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Fig. 7. Accuracy rates of tissue segmentation using a boosted decision tree algorithm on simulated brain MR images. (a) Accuracy rates of GM segmentation using spatial
f (G, x,
( cy rate
s
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t
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s
(

eature (G, x, y, r, �). (b) Accuracy rates of WM segmentation using spatial feature
d) Accuracy rates of GM segmentation with spatial feature (S, x, y, r, �). (e) Accura
egmentation using spatial feature (S, x, y, r, �).

patial feature (S, x, y, r, �) and noise and heterogeneity levels of
1n7, T1n7RF20, and T1n7RF40. The boosted decision tree algo-
ithm performed better clarity of brain tissue segmentation than
hat of original images. The inset images in Fig. 8 show the origi-
al and segmented SBMR images, and illustrate clear distinctions
n the three brain tissues. The inset images in rows 1–3 are 3×
agnifications of boxed-in locations in the original images. These

hree locations were difficult to segment because of their com-
lexity. Fig. 9 shows an example of a 3D surface rendering using
egmented image data, as determined by the boosted decision tree

3

t
r

y, r, �). (c) Accuracy rates of CSF segmentation with spatial feature (G, x, y, r, �).
s of WM segmentation using spatial feature (S, x, y, r, �). (f) Accuracy rates of CSF

rom SBMR data with T1n7RF20, consisting of 181 slices. The brain
as respectively segmented into white matter in the left hemi-

phere (labeled in yellow) and gray matter in the right hemisphere
labeled in orange).
.3. Comparison of segmentation with the other algorithms

The results of segmentation using the boosted decision
ree were also compared with another two segmentation algo-
ithms. One is in the Medical Imaging Interaction Toolkit (MITK,
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ig. 8. Segmentation of simulated brain MR images from BrainWeb. Row 1 depicts
evels T1n7, T1n7RF20, and T1n7RF40. Images in column 1 are the original images, i

are segmented with spatial feature (S, x, y, r, �). All blown-up images were taken
imes.
ttp://www.mitk.org/) whose principle is based on a statis-
ical region-growing (SRG) algorithm in Insight Toolkit (ITK,
ttp://www.itk.org/) (Wolf et al., 2005). The other is adaptive seg-
entation (AS) algorithm for MRI data that uses the knowledge of

t
(
e
s

able 3
egmentation accuracy rates from SBMR images using the boosted decision tree, the SRG

GM WM

(G, x, y, r, �) (S, x, y, r, �) SRG AS (G, x, y, r, �) (S, x,

1n3 0.9865 0.9857 0.6577 0.9349 0.9822 0.981
1n5 0.9822 0.9794 0.7999 0.8873 0.9715 0.972
1n7 0.9794 0.9722 0.9051 0.8254 0.9568 0.960
1n9 0.9760 0.9532 0.9125 0.8099 0.9485 0.931
1n3RF20 0.9839 0.9791 0.7448 0.9329 0.9771 0.973
1n5RF20 0.9822 0.9734 0.7885 0.8986 0.9687 0.963
1n7RF20 0.9742 0.9613 0.9026 0.8178 0.9490 0.947
1n9RF20 0.9746 0.9585 0.9625 0.8182 0.9443 0.945
1n3RF40 0.9853 0.9734 0.7761 0.9514 0.9743 0.963
1n5RF40 0.9812 0.9679 0.8705 0.8786 0.9671 0.947
1n7RF40 0.9753 0.9552 0.9470 0.8319 0.9486 0.931
1n9RF40 0.9721 0.9511 0.9593 0.8077 0.9386 0.920
riginal, unsegmented image, and rows 2 through 4 show noise and heterogeneity
s in column 2 are segmented with spatial feature (G, x, y, r, �), and those in column
the boxed-in region of the shown whole brain horizontal slice and enlarged three
issue intensity properties through the expectation maximization
EM) algorithm to more accurately segment brain MR images (Wells
t al., 1996). Table 3 shows the accuracy rates of GM, WM, and CSF
egmentation using the boosted decision tree with spatial features

, and the AS algorithm

CSF

y, r, �) SRG AS (G, x, y, r, �) (S, x, y, r, �) SRG AS

9 0.9726 0.8329 0.9944 0.9796 0.6958 0.8148
4 0.9386 0.8576 0.9898 0.9731 0.7370 0.8250
9 0.8250 0.8325 0.9842 0.9685 0.7610 0.8407
9 0.5909 0.7033 0.9814 0.9361 0.7824 0.8407
9 0.9636 0.8314 0.9907 0.9750 0.7169 0.7972
8 0.9296 0.8535 0.9888 0.9648 0.7301 0.8000
2 0.8357 0.8503 0.9870 0.9537 0.7625 0.8222
2 0.3962 0.6364 0.9787 0.9592 0.7959 0.8463
1 0.9471 0.7438 0.9888 0.9703 0.7112 0.7630
4 0.8908 0.8374 0.9851 0.9629 0.7424 0.8056
6 0.6601 0.7433 0.9814 0.9564 0.7698 0.8333
1 0.4859 0.6591 0.9796 0.9416 0.7925 0.8333

http://www.mitk.org/
http://www.itk.org/
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Table 4
The segmentation k indices from SBMR images using the boosted decision tree, the SRG, and the AS algorithm

GM WM CSF

(G, x, y, r, �) (S, x, y, r, �) SRG AS (G, x, y, r, �) (S, x, y, r, �) SRG AS (G, x, y, r, �) (S, x, y, r, �) SRG AS

T1n3 0.9839 0.9814 0.7620 0.8680 0.9850 0.9863 0.8671 0.8948 0.9898 0.9828 0.8192 0.7917
T1n5 0.9757 0.9728 0.8405 0.8556 0.9775 0.9797 0.9032 0.8941 0.9861 0.9790 0.8458 0.7661
T1n7 0.9663 0.9632 0.8495 0.8107 0.9683 0.9721 0.8767 0.8666 0.9815 0.9725 0.7427 0.7028
T1n9 0.9602 0.9384 0.7973 0.7455 0.9624 0.9522 0.7348 0.7909 0.9774 0.9546 0.7571 0.6442
T1n3RF20 0.9797 0.9738 0.8174 0.8654 0.9811 0.9806 0.8921 0.8921 0.9879 0.9804 0.8342 0.7863
T1n5RF20 0.9742 0.9740 0.8357 0.8585 0.9759 0.9651 0.9072 0.8929 0.9852 0.9742 0.8408 0.7721
T1n7RF20 0.9834 0.9503 0.8557 0.8137 0.9667 0.9628 0.8846 0.8761 0.9691 0.9662 0.7474 0.6815
T1n9RF20 0.9572 0.9476 0.7729 0.7252 0.9594 0.9610 0.5650 0.7570 0.9759 0.9709 0.8745 0.5995
T 0.973
T 0.964
T 0.954
T 0.946
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1n3RF40 0.9787 0.9648 0.8297 0.8332 0.9801
1n5RF40 0.9745 0.9542 0.8613 0.8405 0.9726
1n7RF40 0.9597 0.9390 0.8222 0.7745 0.9621
1n9RF40 0.9528 0.9312 0.7804 0.7270 0.9554

G, x, y, r, �) and (S, x, y, r, �), the SRG, and the AS algorithm from
BMR images with different noise levels and heterogeneities. The
ccuracy rates of GM, WM, and CSF segmentation using the boosted
ecision tree with spatial features (G, x, y, r, �) and (S, x, y, r, �) at
ll noise levels and heterogeneities were higher than those of SRG
nd AS algorithm.

The k index or similarity index was also used to compare
egmentation performance. Table 4 summarizes the k indices of
egmented GM, WM, and CSF from SBMR images using the boosted
ecision tree with spatial features (G, x, y, r, �) and (S, x, y, r, �),
he SRG and the AS algorithm from SBMR with different noise lev-
ls and heterogeneities. The k values of segmented GM, WM, and
SF using the boosted decision tree with spatial features (G, x, y,
, �) and (S, x, y, r, �) were higher than 0.9312, 0.9464, and 0.9547,
espectively. The k indices of GM, WM, and CSF segmentation using
he boosted decision tree and a fuzzy threshold were much higher
han those using SRG and AS algorithm in several different noise
evels and heterogeneities from SBMR images.
.4. Segmentation of real data in brain MR images

The boosted decision tree, SRG, and AS algorithm were also used
o segment real data from brain MR images. Two subjects (A and B)

ig. 9. A 3D reconstruction of segmented brain image data was shown in axial view.
he brain has been segmented into gray matter (labeled in orange) and white matter
labeled in yellow).

�
t

t
o

T
S
t

S

S

S

8 0.8943 0.8404 0.9879 0.9757 0.8294 0.8000
8 0.8963 0.8801 0.9847 0.9733 0.8498 0.7449
4 0.7819 0.8275 0.9787 0.9672 0.7505 0.6329
4 0.6494 0.7699 0.9769 0.9594 0.7634 0.5927

f brain MR images were segmented for this experiment. Table 5
ummarizes the results in terms of the accuracy rate and k index for
real data experiment. The accuracies of GM, WM, and CSF from

ubject A segmented using the boosted decision tree with (G, x, y,
, �), (S, x, y, r, �), (W, x, y, G, r, �), and (W, x, y, G, r, �, S) were higher
han 0.9973, 0.9979, and 0.9913, respectively. The k indices of the
egmented GM, WM, and CSF from subject A using the boosted
ecision tree with (G, x, y, r, �), (S, x, y, r, �), (W, x, y, G, r, �), and
W, x, y, G, r, �, S) were higher than 0.9942, 0.9978, and 0.9932,
espectively. The accuracy rates of segmented GM, WM, and CSF
rom subject B using the boosted decision tree with (G, x, y, r, �), (S,
, y, r, �), (W, x, y, G, r, �), and (W, x, y, G, r, �, S) were higher than
.9967, 0.9987, and 0.9922, respectively. The k indices of segmented
M, WM, and CSF from subject B using the boosted decision tree
ith (G, x, y, r, �), (S, x, y, r, �), (W, x, y, G, r, �), and (W, x, y, G, r, �,

) were higher than 0.9963, 0.9984, and 0.9942, respectively. The
ccuracy rates and k indices of segmented GM, WM, and CSF using
he boosted decision tree with (G, x, y, r, �), (S, x, y, r, �), (W, x, y, G, r,

), and (W, x, y, G, r, �, S) exhibited much higher performance than
hose using SRG and AS segmentation algorithm from real data.

Fig. 10 depicts segmented images using the boosted decision
ree and the other segmentation algorithm. Images in rows 1 and 2
f Fig. 10 were obtained from subjects A and B. Images in column

able 5
egmentation of MR images from two real subjects using the boosted decision tree,
he SRG, and the AS method

ubject Spatial feature GM WM CSF

ubject A

Accuracy

(G, x, y, r, �) 0.9974 0.9979 0.9913
(S, x, y, r, �) 0.9973 0.9987 0.9897
(W, x, y, G, r, �) 0.9984 0.9989 0.9968
(W, x, y, G, r, �, S) 0.9982 0.9988 0.9963
SRG 0.7407 0.8624 0.1508
AS 0.6364 0.9169 0.6224

k

(G, x, y, r, �) 0.9957 0.9978 0.9944
(S, x, y, r, �) 0.9942 0.9979 0.9932
(W, x, y, G, r, �) 0.9983 0.9987 0.9977
(W, x, y, G, r, �, S) 0.9980 0.9986 0.9975
SRG 0.6735 0.8004 0.2615
AS 0.6889 0.7811 0.7432

ubject B

Accuracy

(G, x, y, r, �) 0.9973 0.9987 0.9955
(S, x, y, r, �) 0.9967 0.9988 0.9922
(W, x, y, G, r, �) 0.9969 0.9992 0.9977
(W, x, y, G, r, �, S) 0.9972 0.9994 0.9980
SRG 0.6635 0.9085 0.1579
AS 0.5432 0.9564 0.6223

k

(G, x, y, r, �) 0.9973 0.9987 0.9966
(S, x, y, r, �) 0.9963 0.9984 0.9942
(W, x, y, G, r, �) 0.9984 0.9987 0.9979
(W, x, y, G, r, �, S) 0.9988 0.9989 0.9982
SRG 0.6195 0.8400 0.2725
AS 0.6231 0.8259 0.7434
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ig. 10. Segmentation of real brain MR imaging data. Images in column 1 show the
olumn 1 and were segmented using the boost decision tree with spatial feature (G,
he SRG algorithm. Images in column 4 correspond to those in column 1 and were s

of Fig. 10 show the original MR images from subjects A and B.
mages in column 2 of Fig. 10 show images corresponding to col-
mn 1 that were segmented using the boosted decision tree with
patial features (G, x, y, r, �). Images in column 3 of Fig. 10 show
mages segmented with the SRG algorithm. Images in column 4 of
ig. 10 show images segmented with the AS algorithm. Clear tis-
ue regions were identified from real segmented brain image data
sing the boosted decision tree, whereas unclear regions and arti-

acts existed in the original images and those segmented with the
RG and AS algorithm. It is, therefore, clear that visually apparent
rtifacts in MR images of real brains are reduced when using the
oosted decision tree.

. Discussion

We found better separation of intensity distributions for each
egion when using the decision tree than in the original SPMR
mages, indicating increased accuracy. Moreover, similar accura-
ies were found when SPMR images were segmented using decision
rees with and without boost trials (data not shown). In all regions,
ccuracies of segmentation from SPMR images using decision tree
lgorithms with spatial features (G, x, y, r, �), and (S, x, y, r, �) as well
s Var15, Var15RF20, Var15RF40, Var30, Var30RF20, Var30RF40
ere the highest (Fig. 4). These two spatial features were, there-

ore, used to segment the SBMR images. The lowest accuracy rates
ere obtained with spatial features (W, x, y, G, r, �), and (W, x, y, G,

, �, S) because the overlapping intensity of each region was greater
hen spatial feature (W) was included (Fig. 1). Segmentation was
oorest when using the decision tree algorithm on SPMR images
ith Var30, Var30RF20, and Var30RF40 due to larger noise varia-

ions in phantom images thus leading to increased overlap of image
ntensity.

The intensity distribution of each tissue in the SBMR images

verlapped more and was more complex than in the SPMR images.
he increased noise levels or RF heterogeneities of SBMR images
ften cause greater image intensity distribution overlap. The SBMR
mages were more difficult to correctly segment, and as such, the
oosted decision tree was proposed. The accuracy rates of SBMR

G
b
0
a
v

al brain MR images of subjects A and B. Images in column 2 correspond to those in
�). Images in column 3 correspond to those in column 1 and were segmented with

nted with the AS algorithm.

issue segmentation increased when the boost trial numbers were
ncreased, but at the expense of a longer process, as depicted in
ig. 6. In order to limit time consumption, we elected to use 20
oost trial numbers in the decision tree algorithm to improve the
ccuracy of SBMR image tissue segmentation (Fig. 6). The spatial
eatures (G, x, y, r, �) and (S, x, y, r, �) were selected as inputs to
he segmentation algorithm since they provided greater accuracy
hen tested in SPMR images (Fig. 4). The accuracy rates of seg-
ented brain tissues using spatial feature (G, x, y, r, �) were higher

han those using spatial feature (S, x, y, r, �) since the general gray
evel (G) had less overlap in the intensity distribution for each tis-
ue compared to the spatial gray level (S). The local area of spatial
eature (S) was also larger than that of spatial feature (G), as shown
n Fig. 1. Thus, the segmentation accuracy rates were lowest when
he spatial features included wavelet transform (W). The segmenta-
ion accuracy rates using the boosted decision tree algorithm with
patial features (G, x, y, r, �) and (S, x, y, r, �) decreased when the
oise levels in brain MR images increased (Fig. 7). The accuracy rates
lso decreased when the noise levels increased in conjunction with
0% or 40% RF heterogeneities. There was no significant difference

n accuracy between SBMR images with 20% or 40% heterogene-
ty since the overlap in the intensity distribution was less affected
y heterogeneities. The decrease in accuracy caused by increased
oise was greater than that caused by heterogeneities.

More complicated statistical analyses or parameter adjustments
re often implemented to further enhance accuracy. Several stud-
es have examined the accuracy of MR segmentation (Marroquin
t al., 2002; Archibald et al., 2003; Anbeek et al., 2005; Greenspan
t al., 2006; Yu et al., 2006). Marroquin et al. (2002) studied auto-
atic segmentation of brain MR images. Their validation was only

erformed on GM and WM. Archibald et al. (2003) stressed the
mportance of improving the accuracy evaluated by the k index;
owever, their validation of brain MR was also limited to WM and

M. Anbeek et al. (2005) performed probability segmentation of
rain tissue on MR imaging with similarity indices of 0.893 for WM,
.830 for GM, and 0.819 for CSF. Greenspan et al. (2006) performed
utomatic segmentation of brain MR images from BrainWeb. The
alidation of segmentation was performed with maximum Dice
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oefficients of 0.889 for GM, 0.920 for WM, and 0.742 for CSF on
1-weighted MR imaging with a noise level of 9%. Yu et al. (2006)
egmented brain MR images from BrainWeb that had been val-
dated with an average overlap metric (AOM) of 0.9 for WM on
1-weighted imaging with a noise level of 3% and RF of 0%. These
tudies addressed the importance of improving tissue segmenta-
ion accuracy in MR images. In the present study, segmentation
rrors were observed to decrease when the boost number was
ncreased, while correct segmentation was not impacted by noise
ffects on the fuzzy threshold. The boosted decision tree algorithm
ombined with a fuzzy threshold performed well and accurately
or SBMR image segmentation. The accuracy rates of GM, WM,
nd CSF segmentation using the boosted decision tree with spa-
ial features (G, x, y, r, �) at all noise levels and heterogeneities were
igher than 0.9721, 0.9386, and 0.9787, respectively (Table 3). The
ighest accuracy rates were obtained when (G, x, y, r, �) was used
o classify the SBMR images. Increased boost trials provided more
ccurate results for SBMR imaging. Higher values of the accuracy
ere obtained in SBMR images when using the boosted decision

ree combined with a fuzzy threshold as compared to SRG and
S for other research methods (Table 3). Thus, the boosted deci-
ion tree algorithm demonstrates improved tissue (GM, WM, and
SF) segmentation performance in SBMR images, and significantly

mproves the accuracy therein.
The k values of segmented GM, WM, and CSF using the boosted

ecision tree with spatial features (G, x, y, r, �) were higher than
.9528, 0.9554, and 0.9769, respectively (Table 4). The k index and
ccuracy rate were both used to evaluate the performance of the
ecision tree combined with boosting and a fuzzy threshold against
RG and AS algorithm. Higher values of the k index were obtained
sing the boosted decision tree compared to using the SRG and AS
lgorithm (Table 4). The observed decrease of these values in the
resence of increased SBMR noise was greater for the SRG and AS
ethod than for the boosted decision tree algorithm. Noise lev-

ls and heterogeneities did not appreciably impact brain tissue
egmentation using the decision tree combined with boost trials
nd a fuzzy threshold. As a real application, brain MR images from
wo subjects were segmented using the boosted decision tree, the
RG and AS algorithm. The values of the k index and accuracy of
egmented GM, WM, and CSF from a real data using the boosted
ecision tree with (G, x, y, r, �), (S, x, y, r, �), (W, x, y, G, r, �), and
W, x, y, G, r, �, S) were greater than 0.99. Higher values of the k
ndex and accuracy were produced by the boosted decision tree in
omparison to the SRG and AS method on real data (Table 5). The
oosted decision tree successfully segmented the tissues in MR-

maged real brains, and exhibited enhanced clarity of brain tissue
Fig. 10). Thus, the boosted decision tree algorithm is equally suit-
ble for brain tissue (GM, WM, and CSF) segmentation in real MR
mages with improved accuracy.

. Conclusions

The present work have demonstrated an automatic method
nd boosted decision tree algorithm for segmenting MR images.
e presented a supervised approach to classification-created MR

mages, wherein structures of interest were precisely addressed by
decision tree, combined with boost trials and a fuzzy threshold.

The decision tree successfully segmented the SPMR images, and
he boosted decision tree algorithm improved the accuracy of tissue
egmentation from SBMR images. Furthermore, the spatial features

G, x, y, r, �) and (S, x, y, r, �) were used to combine the general
ray level and spatial gray level with Euclidean coordinates (x, y) or
olar coordinates (r, �) for image preprocessing. The highest accu-
acy rates and k indices of brain tissue segmentation were obtained
hen the spatial feature (G, x, y, r, �) was used to classify the SBMR

D

D

ce Methods 175 (2008) 206–217

mages. The appreciated boost trials were found to obtain more
ccurate results on SBMR images. The boosted decision tree algo-
ithm also improved the accuracy of tissue segmentation from real
ata. Therefore, the boosted decision tree algorithm proved to be
uitable for tissue (GM, WM, CSF) segmentation of brain MR images
nd provided improved accuracy for brain tissue segmentation.

High accuracy was shown with the proposed method as com-
ared to other segmentation methods on the small set of processed

mages. However, we found the segmentation execution took
pproximately 15 s/slice, with our non-optimal decision tree con-
truction and longer learning phase for image feature extraction
n a 3.2 GHz Pentium Dual Core with 8GB RAM using a MATLAB®

mplementation of the algorithm, which is time-consuming and
linically inflexible. We are currently continuing our efforts to
educe the computation complexity of the proposed method and
valuate it with respect to computation time, degree of robustness
nd accuracy on a larger data set.

In this study, the RF inhomogeneity of MR images significantly
ecreased the accuracy rate of segmented results. Inhomogeneity
esulted in pixel intensity variation across the image. Furthermore,
he current method was not computationally efficient for mod-
lling context in the image due to large data sets (181 slices of
56 × 256 × 16-bit images). Hence, incorporating RF inhomogene-

ty correction into the proposed algorithms could greatly benefit
he accuracy of the resulting segmentation.
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