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Abstract

Recently, the study of computer-aided diagnosis (CAD) becomes a trend of biomedical
signal processing due to developments from medical image analysis technology. In the past,
a diagnosis depends on doctors’ judgments, is subjective to physicians and costs much time
for subjects to get results. Moreover, subtle differences which reveal potential danger may
be invisible to human eyes. Thus, a simple CAD system with high correct accuracy can
supply an index sign for physicians and subjects in an objective and convenient way. Most
of existent systems, however, provide an absolute prediction on a test subject. It means that
the answer would be either yes or no. ;Therefore, we propose a probabilistic approach to

tell doctors and test subjects probabilistic predictions which show the difference of degree.

In this thesis, we constrict'a computer-aided-MRI evaluation system with statistical
pattern recognition technology. The entire system is parallelly composed of several dis-
ease classification models and €ach classification model is aimed at classifying a particular
disease. For each model, there are two processes: feature selection and extraction, and clas-
sification. Initially, locations where reveal significant anatomical discrepancy discovered
by a voxel-based morphometric analysis (VBM) are picked out as distinguishable features
for classification. Moreover, principal component analysis (PCA) is applied to find proper
representations for those found features and some applicable PCs are chosen to establish
a good classification space by two principal component (PC) selection methods. One is
named as variance-based PC selection method and the other is significant-based PC se-
lection method. Finally, the classification model predicts the possibility of a test subject
to sicken with a particular disease by using Bayes’ Theorem and a nonparametric density

estimation, Parzen windows.

Our proposed classification framework was applied on spinocerebellar ataxia type III
(SCA3) and bipolar disorder (BD) and two corresponding classification models were es-

tablished separately. Both of two PC selection methods were used in each model. Thus,



there were two distinct classifiers in a model. In our experiments, we found that a classifier
with significant-based PC selection method not only achieves a better performance but also

has a more consistent result.
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