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在廣用無線通道模型上無線網路內的孤立節點數 

 

學生:郭哲瑋         指導教授：易志偉 

國立交通大學 

資訊科學與工程研究所 

摘要 

 在大型無線隨意網路中，網路中孤立節點的存在與否，可視為網路連通性的指

標。在現實生活中，隨著不同環境的影響和限制，我們須選取不同的網路通道模型

來評估網路的可靠性和連通性。在此篇論文中，我們將藉由分析與推導來計算網路

中的孤立節點數的期望值與機率分佈。 

 假設無線網路的節點是以平均值為λ的普瓦松點過程分布在邊長為 l的正方形

區域內，每個節點都具有相同的傳輸功率，且此傳輸功率是固定的，並不會隨著 l的

大小而改變。若兩個節點的相對距離為 r ，則令 ( )f r 代表此兩節點的連線機率。假

設 ( )f r 是在[0, )∞ 內的遞減函數。令
2

0
( )2

R
a f r rdrπ= ∫ 且 2 21 (ln ln ln )l l

a
λ ξ= + + ，其

中ξ是某個常數，並且令 ln aω ξ= + 。在此文中，我們證明在一個網路中的孤立節

點個數的期望值是 e ω− 。此外，隨著 l →∞，網路中孤立節點個數的機率分佈將會漸

近於以 e ω− 為平均值的普瓦松分佈。為了驗證理論的正確性，我們模擬了數個較常

使用的網路通道模型，並且觀察在不同 l大小下，對於網路要達到連通性所需的網

路節點數的變化比較。 
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The Number of Isolated Nodes in Wireless Networks with 

Generalized Channel Models  

Student: Zhe-Wei Kuo        Advisor: Dr. Chih-Wei Yi 

National Chiao Tung University 

Institute of Computer Science and Engineering 

Abstract 

In large-scale wireless ad hoc networks the exist of isolated nodes can be used as an 

indicated of network connectivity. In real world, we often use different network channel 

models to construct networks by considering the effect and restriction of different 

environment. Evaluating the reliability and connectivity base on the network channel 

model which be chosen. In this thesis, we will analysis the expected distribution of 

isolated nodes in networks. 

Assume wireless nodes are deployed by a Poisson point process with density λ  

over a deployment region 2[0, ]D l= , and every node has the same transmission power 

that is fixed and will not change with� l . Let ( )f r  be the probability of the event that 

two nodes have a link if they are apart from each other by r . Assume ( )f r  is a 

decreasing function on [0, )∞  with bounded supports.  Let 
2

0
( )2

R
a f r rdrπ= ∫  and 

2 21
(ln ln ln )l l
a

λ ζ= + +  for some constant ζ , and let ln aω ζ= +  a. In our work, we 

proved that the expected number of isolated nodes in a network is e ω− . In addition, as 



iv 
 

l→∞ , the number of isolated nodes is asymptotically Poisson with mean e ω− . In order 

to verity our theorem, we also simulate several popular network channel models and 

observe the variation of the number of network’s nodes in different l  while considering 

the connectivity property. 

 

 

Keywords 
 

 

connectivity, isolated nodes, Poisson point processes, disk graphs, log-normal distribution, 

path-loss model, slow fading channel, fast fading channel, Nakagami fading channel. 
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Chapter 1

Introduction

1.1 Wireless Ad Hoc Network

In recent years, there has been wide interest in wireless ad hoc networks. A

wireless ad hoc network is a collection of wireless devices distributed in a geographic

region, that forms a decentralized wireless network. ’Ad hoc’ represents that each node is

willing to forward data for other nodes, and so the decision on which nodes forward data

is made dynamically based on the network connectivity. Each device in the network can

communicate through either direct links with nearby nodes or multi-hop communication

sessions with far apart nodes. Due to the lack of fixed infrastructures, wireless ad hoc

networks can be flexibly deployed with low cost for various missions. Wireless ad hoc

networks can be further classified by their application.

Mobile ad hoc networks : A self-configuring network of mobile routers. Nodes can

move randomly and organize themselves arbitrarily. Hence, network topology may change

significantly in short time period.

1



Wireless mesh networks : All radio nodes are static but has highly reliable and redun-

dancy. When one node fails, the rest of network nodes can still communicate with each

other. Node has self form and self heal characteristic.

Wireless sensor networks : A wireless sensor network consists of distributed au-

tonomous sensors to acquire environment status, such as temperature, luminosity, pres-

sure, and motion.

1.2 Research Issue and Motivation

In wireless ad hoc network, without infrastructures, connectivity, a vital prop-

erty to many applications, becomes a major concern [1], [2], [3], [4]. If a network is not

connected, the network will be composed of several independent components, and mem-

bers belong to different components cannot exachange information with each other. This

situation does not satistying the basic function : communication of a network.

Research on the connectivity problem often focus on two issues : the number of isolated

nodes in the network and the connected property of a network. Node is called isolated

if it does not have a link to other nodes. Network is connected if any two nodes in the

network can communicate through one or multi-hops.

Based on the requirement of connectivity, we are interested in the number of isolated

nodes in a network in our work. Thus, we have theoretical derivation to estimate the

number of isolated nodes in networks and also simulate several popular network models

to verify our theoretical results.
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1.3 Related Work

In the past, most theoretical studies of connectivity were based on a disk model

in which two nodes have a link if and only if the distance between them is no more than

r [5]. This model is too simple to precisely depict behaviors of networks over wireless

channels. In this work, we study the connectivity of randomly-deployed wireless networks

in a generalized channel model.

In many applications, such like wireless sensor networks, wireless devices are deployed

in a large volume and distributed in a random manner. Therefore, it is natural to represent

wireless nodes by a random point set. No existing of isolated nodes is a prerequisite of

connectivity. In 1989, it was proved in [6] that if n nodes with transmission radius
√

ln n+ξ
πn

for some constant ξ are independently distributed over a unit-area square, the network

asymptotically has no isolated nodes with probability exp
(−e−ξ

)
. In 1998, it was proved

in [7] that if n nodes are distributed over a unit-area disk, the network is asymptotically

connected if ξ →∞ and asymptotically not connected if ξ → −∞. However, both works

did not consider the possibility of node or link failures. In [8], assuming each node has

the same probability p1 to be failed and each link has the same probability p2 to be down,

authors proved that if the transmission radius is given by
√

ln n+ξ
πp1p2n

, the total number of

isolated active nodes is asymptotically Poisson with mean p1e
−ξ. But in the real world,

the probability of existence of a link between two nodes is highly related to the distance

between them instead of a constant. In [9], [10], [11], the impact on connectivity due to

link failures caused by shadowing or fading was investigated.

We will not apply a scaling model here, e.g. the one used in [7] or [8], in which the

3



deployment region is fixed and the transmission radius is expressed as a function of the

number of nodes. Instead, we assume wireless nodes are represented by a Poisson point

process with density λ over a deployment region D = [0, l]2. Here λ is a function of l,

but for convenience, we always suppress the parameter l of λ. Every node has the same

transmission power that is fixed and won’t change with l. For any two nodes, let f (r) be

the probability of the event that these two nodes have a link if they are apart from each

other by r. Without loss of generality, we assume f (r) is a decreasing function on [0,∞)

with bounded supports, and exists two constants 0 ≤ R1 ≤ R2 < ∞ such that f (r) = 1

if 0 ≤ r ≤ R1 and f (r) = 0 if r > R2. To avoid tedious argument about boundary effect

and simplify the calculation, we apply the torus convention, for example, described in

[12], [13], [14]. Hence, instead of Euclidean distance, we use toroidal distance [15], [16].

Let d (u, v) denote the (toroidal) distance between nodes u and v. In addition, in what

follows, let a =
∫ R2

0
f (r) 2πrdr.

As we mentioned before, the vanishment of isolated nodes is not only a prerequisite

but also a good indication for network connectivity. So∇, we first derive the expected

number of isolated nodes. Then, we further prove that the probability distribution of

the number of isolated nodes asymptotically follows Poisson distribution. The explicit

formulas given in this work allow people to control the expected number of isolated nodes

by tuning the node density or even transmission power. Thus, desired level of connectivity

can be expected. We run extensive simulations to verify our probability analysis. As a

remark, we conjecture that no isolated nodes asymptotically imply connectivity. This

conjecture is also verified through simulations.
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Chapter 2

Wireless Channels

Here, we introduce several link models, including disk model, Bernoulli link model,

slow fading channel model, fast fading channel model and Nakagami fading channel model.

We will introduce the parameters in Chapter 5.

Let α denote the path loss exponent and Sref (dB) be the signal power measured at a

reference distance d0. For convenience, we assume the reference distance d0 = 1. Due to

the path loss, the signal measured at a distance r apart is Sref − 10α log r. Let Sthr (dB)

be the minimum signal power that a signal can be decoded.

2.1 The Disk Model

In the disk model, we assume links exist whenever signals do not decay below

Sthr. Due to the monotonic properties, let RD denote the transmission radius. Based on

log-distance path loss model in [17], we have

Sthr = Sref − 10α log RD.
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Therefore, RD = 10
Sref−Sthr

10α .

2.2 The Bernoulli Model

In a realistic environment, signal strength is not the only factor for the existence

of links. To capture the uncertainty, the Bernoulli link model is a variation of disk model

in which two nodes may have a link with some constant probability p if they are within

the transmission range each other. So, in the Bernoulli link model, R1 = 0 and f (r) = p.

Let RB denote the R2 in the Bernoulli link model.

2.3 The Slow Fading Model

In the slow fading channel model [17], a signal measured at distance r apart from

the transmitter is with strength Sref − 10α log r−LSF . Here LSF is a log-normal random

variable due to slow fading. The pdf and cdf of a normal distribution with mean µ and

standard deviation σ are

n (x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)

and

N (x) =
1

2

(
1 + erf

(
x− µ

σ
√

2

))

respectively, where

erf (x) =
2√
π

∫ x

0

e−t2dt.

Figure. 2.1 is a slow fading model’s snapshot of distribution of links. We consider

a 15 × 15 grid with center at the origin and assume there is a workstation on each grid

6



point. If a workstation has a link to the one at the origin, the gird is marked. Figure. 2.2

is the probability density function of slow fading distribution with different parameters

σ and µ . The x-axis is the variable x of slow fading from 0 to 3, and the y-axis is the

corresponding probability over the variation of variable x with each association σ, and

µ = 0. And Figure. 2.3 is the cumulative density function of slow fading.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 2.1: In a 15× 15 square region, in slow fading model, nodes that have links with

the centered node are shown.
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Figure 2.2: The probability density function of slow fading model.

Note that µ = 0 in the slow fading model. For successful reception, the received signal
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Figure 2.3: The Cumulative density function of slow fading model.

strength must be larger than Sthr. Therefore,

f (r) = Pr (LSF ≤ Sref − Sthr − 10α log r)

= N (Sref − Sthr − 10α log r)

=
1

2

(
1 + erf

(
Sref − Sthr − 10α log r

σ
√

2

))
.

Let RS denote the R2 in the slow fading model. To keep the mean node degree the same,

we have

πR2
D = 2π

∫ RS

0

1

2

(
1 + erf

(
Sref − Sthr − 10α log r

σ
√

2

))
rdr.

2.4 The Fast Fading Model

The Rayleigh model is usually used to characterize the fast fading phenomenon

[18]. Rayleigh model assumes the amplitude of a signal will vary according to a Rayleigh

distribution. The pdf and cdf of a Rayleigh distribution with standard deviation σ are

r (x) =
x

σ2
exp

(
− x2

2σ2

)
, (0 ≤ x ≤ ∞)

8



and

R (x) = 1− exp

(
− x2

2σ2

)

respectively.

Figure. 2.4 is a slow fading model’s snapshot of distribution of links. We consider a

40×40 grid with center at the origin and assume there is a workstation on each grid point.

If a workstation has a link to the one at the origin, the gird is marked. Figure. 2.5 is the

probability density function of slow fading distribution with different parameter σ. The

x-axis is the variable x of slow fading from 0 to 10, and the y-axis is the corresponding

probability over the variation of variable x with each σ. And Figure. 2.6 is the cumulative

density function of slow fading.

−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40

Figure 2.4: In a 40 × 40 square region, in fast fading model, nodes that have links with

the centered node are shown.

Here 2σ2 is equal to the mean square value E (x2). After some derivation, we have

f (r) = exp

(
− rα

10
Sref−Sthr

10

)
. To keep the mean node degree the same, let RF denote the

R2 in the fast fading model and satisfy

πR2
D = 2π

∫ RF

0

exp

(
− rα

10
Sref−Sthr

10

)
rdr.
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Figure 2.5: The probability density function of fast fading model.
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Figure 2.6: The Cumulative density function of fast fading model.

2.5 The Nakagami Fading Model

The Nakagami fading model suggests the magnitude of the received envelope

obeys a Nakagami distribution. The pdf of the Nakagami distribution is

p (x) = 2
(µ

ω

)µ 1

Γ (µ)
x2µ−1e−

µ
ω

x2

,

where µ is the shape parameter, denoting the severity of fading, and ω is the scale pa-

rameter, equaling E (x2). In the case µ = 1, the distribution reduces to a Rayleigh

distribution. If x has a Nakagami distribution with parameters µ and ω, then x2 has a

gamma distribution with shape parameter µ and scale parameter ω
µ
. The pdf and cdf of

10



a gamma function are

g (x) = xµ−1 e
− x

ω
µ(

ω
µ

)µ

Γ (µ)

and

G (x) =
γ

(
µ, x

ω
µ

)

Γ (µ)
.

Figure. 2.7 is a slow fading model’s snapshot of distribution of links. Where consider

a 30 × 30 grid with center at the origin and assume there is a workstation on each grid

point. If a workstation has a link to the one at the origin, the gird is marked. Figure. 2.8

is the probability density function of slow fading distribution with different parameters

ω and µ. The x-axis is the variable x of slow fading from 0 to 3, and the y-axis is the

corresponding probability over the variation of variable x with each association ω and µ.

And Figure. 2.9 is the cumulative density function of slow fading.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Figure 2.7: In a 30× 30 square region, in nakagami fading model, nodes that have links

with the centered node are shown.

The average received power at distance r is 10
Sref−10α log r

10 , so ω = 10
Sref−10α log r

10 . There-

11
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Figure 2.8: The probability density function of nakagami fading model.
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Figure 2.9: The Cumulative density function of nakagami fading model.

fore,

f (r) = Pr
(
x ≥ 10

Sthr
10

)

= 1−G
(
10

Sthr
10

)

= 1−
γ


µ, 10

Sthr
10

10

Sref−10α log r

10
µ




Γ (µ)
.

Let RN denote the R2 in the Nakagami distribution, then RN satisfies

πR2
D = 2π

∫ RN

0




1−
γ


µ, 10

Sthr
10

10

Sref−10α log r

10
µ




Γ (µ)




rdr.
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γ
(
2, r2

50

)

Γ (2)
=

∫ r2

50

0

te−tdt

= −
(

r2

50
+ 1

)
e−

r2

50 + 1,

and

50 =

∫ RN

0

r

(
r2

50
+ 1

)
e−

r2

50 dr

= −1

2

(
100 + R2

N

)
e−

R2
N

50 + 50.
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Chapter 3

The Expected Number of Isolated

Nodes

In this Chapter we will introduce our first main theorem and its proof. The disap-

pearance of isolated nodes is a precondition of network connectivity. It was proved that if

a random geometric graph has no isolated nodes, the graph will be asymptotically almost

surely connected. In [19], the probability of no isolated nodes was considered as a tight

upper bound for the probability of connectivity. The number of isolated nodes can be

a good index of connectivity level. To study the connectivity of wireless networks over

generalized communication channels, we investigate the number of isolated nodes. The

following theorem gives the expected number of isolated nodes in a network.

Remind that in what follows, λ = 1
a
(ln l2 + ln ln l2 + ξ) and ω = ξ + ln a.

14



3.1 The Expected Number

Theorem 1 The expected number of isolated nodes is e−ω.

The proof of Theorem 1 will be given in next section. Here we call a =
∫ R2

0
f (r) 2πrdr

the effective transmission area, the equivalent transmission range in which signals can be

clearly received. λa = ln l2 + ln ln l2 + ξ can be regarded as average number of neighbors,

which is the so-called mean node degree. According to Theorem 1, we can control the

average number of isolated nodes by tuning the parameter ω that depends only on ξ and

a.

Divide
∫ R2

0
f (r) 2πrdr by πR2

2. The ratio is between
R2

1

R2
2

and 1, and is the conditional

probability that two nodes have a link between them if they are within distance R2. If

f(r) = 1, the ratio is equal to 1. So, any two nodes within distance R2 always have a

link, and this is the traditional random geometric graph model.

3.2 Proof of The Expected Number Theorem

In this section, we use Palm theory [20] to derive the expected number of isolated

nodes. Some lemmas will be used to help the proof of theorem. For completeness, we

give the Palm theory in the form used in [20].

Lemma 2 Let ω = ξ + ln a. For any positive integer k,

λk

∫

(x1,··· ,xk)∈Ckk

e−kλa

(
k∏

i=1

dxi

)
∼ (

e−ω
)k

.

15



Proof. This can be proved by straightforward calculation.

λk

∫

(x1,··· ,xk)∈Ckk

e−kλa

(
k∏

i=1

dxi

)

=

(
1

a

(
ln l2 + ln ln l2 + ξ

))k
(

k∏
i=1

(
l2 − (i− 1) πR2

2

)
)

e−k(ln l2+ln ln l2+ξ)

=

(
1

a

)k

e−kξ · (ln l2 + ln ln l2 + ξ)
k

(ln l2)k
·
∏k

i=1 (l2 − (i− 1) πR2
2)

(l2)k

∼
(

1

a
e−ξ

)k

=
(
e−ω

)k
.

Theorem 3 (Palm theory) Let Pλ be a Poisson point set with mean λ. Suppose j ∈ N ,

and suppose h (Y ,X ) is a bounded measurable function defined on all pairs of the form

(Y ,X ) with X a finite subset and Y a subset of X , satisfying h (Y ,X ) = 0 except when

Y has j elements. Then

E


 ∑
Y⊆Pλ

h (Y ,Pλ)


 =

λj

j!
E [h (Xj,Xj∪Pλ)] ,

where the sum on the left-hand side is over all subsets Y of the random Poisson point

set Pλ, and on the right-hand side the set Xj is a binomial process with j elements,

independent of Pλ.

Let Pλ (D) denote a Poisson point process with density λ over D. Let X be a random

point with uniform distribution over D and independent of Pλ (D). Let h (Y ,X ) for Y ⊆ X

be the indicator function such that h (Y ,X ) = 1 if # (Y) = 1 and the node in Y is isolated

16



in X ; otherwise, h (Y ,X ) = 0. So, we have

The expected number of isolated nodes in Pλ (D)

=
∑

{X′}⊆Pλ(D)

Pr (X ′ is isolated) =
∑

{X′}⊆Pλ(D)

E [h ({X ′} ,Pλ (D))]

= E


 ∑

{X′}⊆Pλ(D)

h ({X ′} ,Pλ (D))


 =

(
λl2

)
E [h ({X} , {X} ∪ Pλ (D))]

= λl2 Pr (X is isolated) . (3.1)

The equality in the 3rd line is based on Palm theory, and λl2 is the expected total number

of nodes. The probability Pr (X is isolated) can be calculated by

Pr (X is isolated)

=

∫

x∈D
Pr (X is isolated|X = x) Pr (X = x) dx

=
1

l2

∫

x∈D
Pr (X is isolated|X = x) dx. (3.2)

To calculate Pr (X is isolated|X = x), we apply the partition technique used in elemen-

tary calculus. The disk BR2 (x) is divided by k concentric circles with center at x and

radii r1 < r2 < · · · < rk = R2 into k annuli. For convenience, let r0 = 0. For 1 ≤ i ≤ k,

let 4ri = ri − ri−1, and the annulus with radii ri−1 and ri is called the i-th annulus. The

area of the i-th annulus can be approximated by 2πri4ri. If a node is in the i-th annulus,

the event that X has a link to that node is with probability f (ri), approximately. Let Ni

17



denote the number of nodes in the i-th annulus. Then,

Pr




X doesn’t have links with

nodes in the i-th annulus

∣∣∣∣∣∣∣∣
X = x




=
∞∑

j=0

Pr




All links between X and

nodes in the i-th annulus fail

∣∣∣∣∣∣∣∣
Ni = j


 Pr (Ni = j | X = x)

∼
∞∑

j=0

(1− f (ri))
j

(
(λ2πri4ri)

j

j!
e−λ2πri4ri

)

= e−λ2πri4ri

( ∞∑
j=0

(1− f (ri))
j (λ2πri4ri)

j

j!

)

= e−λ2πri4rie(1−f(ri))λ2πri4ri = e−f(ri)λ2πri4ri .

Therefore,

Pr (X is isolated|X = x)

= Pr




For all 1 ≤ i ≤ k,

X doesn’t have links with

nodes in the i-th annulus

∣∣∣∣∣∣∣∣∣∣∣∣

X = x




= lim
k→∞

k∏
i=1

Pr




X doesn’t have links with

nodes in the i-th annulus

∣∣∣∣∣∣∣∣
X = x




= lim
k→∞

k∏
i=1

e−f(ri)λ2πri4ri = lim
k→∞

e−λ
Pk

i=1 f(ri)2πri4ri

= e−λ
RR2
0 f(r)2πrdr = e−λa. (3.3)

Put (3.1), (3.2), and (3.3) together, and we have

The expected number of isolated nodes in Pλ (D) = λ

∫

x∈D
e−λadx ∼ e−ω.

The last equality holds due to Lemma 2. So, Theorem 1 is proved.
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3.3 Simulations

Here we shows the simulation result of first main theorem. We choose slow fading as

the sample network channel model. Fig. 3.1 depicts the number of isolated nodes w.r.t. ξ

in networks with l = 500 over slow fading channels. In Fig. 3.1, the solid line represents

expected number of isolated nodes and the dotted line represents the average number

of isolated nodes with simulations. The comparison between the simulation results and

theoretical results verifies the accuracy of Theorems 1
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Theorem
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Figure 3.1: The average number of isolated nodes in networks with l = 500 over slow

fading channel.

Next, we run another simulation. Fig. 3.2 depicts the distribution of the number

of isolated nodes over slow fading channels with ξ = −5.8. The blue line marked with

triangle is the theoretical distribution. The black line marked with star and the red line

marked with circle respectively are the experimental distribution corresponding to l = 500

and l = 1000 (the corresponding densities are 0.0291 and 0.339). From this simulation, we

can observe that the both the behavior of distribution of l = 500 and l = 1000 is similar

to Poisson distribution. Hence, we have a conjecture that the distribution of number

19



of isolated nodes may approximate to the distribution of Poisson distribution, and this

conjecture is proved in next chapter.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

number of isolated nodes

pr
ob

ab
ili

ty

l=500
l=1000
Poisson

Figure 3.2: The distribution of the number of isolated nodes.
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Chapter 4

Asymptotic Distribution of the

Number of Isolated Nodes

In chapter 3, we have a conjecture by observing the simulation result. Thus in this

chapter, we will have theoretical derivation to prove the conjecture. And more simulation

results are shown in chapter 5 later.

4.1 Probability Distribution

Theorem 4 The number of isolated nodes is asymptotically Poisson with mean e−ω.

Theorem 4 will be proved in Chapter 4. According to Theorem 4, we know that

a network without isolated nodes is asymptotically with probability exp (−e−ω). This

probability is a bound for the probability of connectivity. We conjecture that even with

link failures, a network without isolated nodes is almost surely connected. If this is true,

then Pr (a network is connected) ∼ exp (−e−ω). This conjecture will be verified through
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simulations in Chapter 5.

4.2 Proof of Probability Distribution Theorem

This section is dedicated to the proof of Theorem 4. We will apply Brun’s sieve

in the form, for example, used in [21] to derive the asymptotic distribution of the number

of isolated nodes.

Theorem 5 (Brun’s Sieve) Assume m (n) is a non-negative integer random variable.

Let B1, · · · , Bm(n) be events and Y be the number of Bi that hold, and

S(j) =
∑

{i1,··· ,ij}⊆{1,··· ,m(n)}
Pr

(
Bi1 ∧ · · · ∧ Bij

)
.

Suppose there is a constant µ such that for every fixed j,

E
[
S(j)

]
∼

1

j!
µj.

Then Y is also asymptotically Poisson with mean µ.

For convenience, let n be the total number of nodes. Let Bi for i = 1, · · · , n be the

event that the node Xi is isolated, and Y be the number of Bi that hold. So, Y is the

total number of isolated nodes. To prove Theorem 4 by applying Brun’s Sieve, we will

need to show that for every fixed k,

E


 ∑

{i1,··· ,ik}⊆{1,··· ,n}
Pr (Bi1 ∧ · · · ∧ Bik)


 ∼ 1

k!

(
e−ω

)k
. (4.1)

To apply Palm theory (Theorem 3) to prove (4.1), let Xk = {X1, · · · , Xk} denote a

uniform k-point process over D and independent of Pλ (D), and Bi for i = 1, · · · , k be the
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event that Xi is isolated in the network of Xk ∪ Pλ (D). Then,

E


 ∑

{i1,··· ,ik}⊆{1,··· ,n}
Pr (Bi1 ∧ · · · ∧ Bik)


 =

nk

k!
Pr (B1 ∧ · · · ∧Bk)

=
1

k!
nk Pr (B1 ∧ · · · ∧Bk) .

Compared with (4.1), we can see if nk Pr (B1 ∧ · · · ∧Bk) ∼ (e−ω)
k
, the proof is complete.

In the rest of this section, we are going to prove this.

Lemma 6 For any integer k ≥ 2 and (x1, x2, · · · , xk) ∈ Ckk, we have

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




= e−kλa.

Proof. For any (x1, · · · , xk) ∈ Ckk, since BR2 (x1) , · · · , BR2 (xk) are pairwise disjoint,

we have

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




=
k∏

i=1

Pr (Bi |Xi = xi )

= e−kλa.

Lemma 7 For any two integers k ≥ 2 and 1 ≤ m ≤ k−1, there exists a positive constant

c such that for any (x1, · · · , xk) ∈ Ckm,

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk



≤ e−(m+c)λa.
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Proof. First, we prove the inequality for k = 2 and m = 1. Consider the case in

which d (x1, x2) ≥ 1
2
R2. Let B′

2 be the event that X2 doesn’t have links to nodes in

BR2 (x2)−BR2 (x1). Then,

Pr


B1 ∧B2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 ≤ Pr (B1 |X1 = x1 ) Pr


B′

2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 .

Since it is known from (3.3) that Pr (B1 |X1 = x1 ) = e−λa, we only need to show that

there exists a positive constant c1 such that

Pr


B′

2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 ≤ e−c1λa.

Let ρ = d (x1, x2). For any ρ ∈ [
1
2
R2, R2

]
and r ∈ [0, R2], let θ (ρ, r) denote the angle of

the arc of ∂Br (x2) not contained in BR2 (x1). See Fig. 4.1. Since θ (ρ, r) is increasing

r

ρ
(   ,  )r1x 2 ρx θ

Figure 4.1: θ (ρ, r) is the angle of the arc of ∂Br (x2) not contained in BR2 (x1).

w.r.t. ρ and f (r) ≥ 0 for r ∈ [0, R2], we have

∫ R2

0

f (r) θ (ρ, r) rdr ≥
∫ R2

1
2
R2

f (r) θ

(
1

2
R2, r

)
rdr,

and let

c1 =

∫ R2
1
2
R2

f (r) θ
(

1
2
R2, r

)
rdr

∫ R2

0
f (r) θ (ρ, r) rdr

.
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Applying the same approach in deriving the probability Pr (X is isolated|X = x) in

Chapter 3, we have

Pr


B′

2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 = e−λ

RR2
0 f(r)θ(ρ,r)rdr

≤ e
−λ
RR2

1
2 R2

f(r)θ( 1
2
R2,r)rdr

= e−c1λ
RR2
0 f(r)2πrdr

= e−c1λa.

Therefore, if 1
2
R2 ≤ d (x1, x2) ≤ R2, we have Pr


B1 ∧B2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 ≤ e−(1+c1)λa.

Now, consider the case in which 0 ≤ d (x1, x2) ≤ 1
2
R2. For this case, we only consider

nodes in BR2 (x1) and divide BR2 (x1) by h concentric circles with center at x1 and radii

r1 < r2 < · · · < rh = R2 as illustrated in Fig. 4.2. Since f (r) is a decreasing function, we

x 2

i

x

i

r

1

ρ

Figure 4.2: A annulus with center at x1.
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have

Pr




X1 and X2 doesn’t have links

with nodes in the i-th annulus

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2




≤
∞∑

j=0

(
(λ2πri4ri)

j

j!
e−λ2πri4ri

)
(1− f (ri))

j (1− f (ri + ρ))j

= e−(f(ri)+f(ri+ρ)−f(ri)f(ri+ρ))λ2πri4ri .

Note that the inequality still holds for annuli not fully contained in BR2 (x2). So,

Pr


B1 ∧B2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 ≤ lim

k→∞

k∏
i=1

e−(f(ri)+f(ri+ρ)−f(ri)f(ri+ρ))λ2πri4ri

= e−λ
RR2
0 (f(r)+f(r+ρ)−f(r)f(r+ρ))2πrdr = e−λ

RR2
0 f(r)2πrdr−λ

RR2
0 (f(r+ρ)−f(r)f(r+ρ))2πrdr.

Since
∫ R2

0
f (r) 2πrdr = a, if we can prove that there exists a positive constant c2 such

that
∫ R2

0
(f (r + ρ)− f (r) f (r + ρ)) 2πrdr ≥ c2a, then this case is also proved. For any

r ∈ [
1
8
R2,

1
4
R2

]
, we have f (r + ρ) ≥ f

(
3
4
R2

)
and 1− f (r) ≥ 1− f

(
1
8
R2

)
. Let

c2 =

∫ 1
4
R2

1
8
R2

f
(

3
4
R2

) (
1− f

(
1
8
R2

))
2πrdr

∫ R2

0
f (r) 2πrdr

.

Then,

∫ R2

0

f (r + ρ) (1− f (r)) 2πrdr ≥
∫ 1

4
R2

1
8
R2

f (r + ρ) (1− f (r)) 2πrdr

≥
∫ 1

4
R2

1
8
R2

f

(
3

4
R2

)(
1− f

(
1

8
R2

))
2πrdr = c2a.

So, if 0 ≤ d (x1, x2) ≤ 1
2
R2, we have Pr


B1 ∧B2

∣∣∣∣∣∣∣∣

X1 = x1

X2 = x2


 ≤ e−(1+c2)λa. Choose

c = min (c1, c2), and the lemma for k = 2 is proved. For any k ≥ 3 and m = 1, since
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there always exist two overlapping disks in the component
⋃

i=1,··· ,k BR2 (xi), it is not

hard to see that the inequality is still correct. For any k ≥ 3 and 2 ≤ m ≤ k − 1, if

(x1, · · · , xk) ∈ Ckm, then {x1, · · · , xk} is partitioned into m sets K1, K2, · · · , Km such

that for each j = 1, · · ·m,
⋃

x∈Kj
BR2 (x) is a maximal component. Let nj = |Kj| be the

number of elements in Kj. Suppose Kj =
{
xj1, · · · , xjnj

}
. Then,

Pr




∧
xi∈Kj

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

Xj1 = xj1

...

Xjnj
= xjnj




= e−λa if nj = 1; and

Pr




∧
xi∈Kj

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

Xj1 = xj1

...

Xjnj
= xjnj



≤ e−(1+c)λa if nj > 1.

Since there exists at least one component contains more than one node, we have

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




=
m∏

j=1

Pr




∧
xi∈Kj

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

Xj1 = xj1

...

Xjnj
= xjnj



≤ e−(m+c)λa.

So, the lemma is proved.

Lemma 8 For any two integers k ≥ 2 and 1 ≤ m ≤ k − 1,

λk

∫

(x1,x2,··· ,xk)∈Ckm

e−(m+c)λa

(
k∏

i=1

dxi

)
= o (1) .
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Proof. First, consider m = 1. This can be validated by straightforward calculation.

λk

∫

(x1,x2,··· ,xk)∈Ck1

e−(1+c)λa

(
k∏

i=1

dxi

)

≤ λkl2

(
k∏

i=2

(
π (2 (i− 1) R2)

2)
)

e−(1+c)λa

= O (1)
(
ln l2 + ln ln l2 + ξ

)k
l2e−(1+c)(ln l2+ln ln l2+ξ)

= o (1) .

Next, we consider 2 ≤ m ≤ k − 1. If (x1, · · · , xk) ∈ Ckm, and then {x1, · · · , xk} can be

partitioned into m sets K1, K2, · · · , Km such that for each j = 1, · · ·m,
⋃

x∈Kj
BR2 (x)

is a maximal connected component. Let nj = |Kj| be the number of elements in Kj,

and suppose Kj =
{
xj1, · · · , xjnj

}
. For fixed k and m, the number of m-partition of

{x1, · · · , xk} are constant. Then,

λk

∫

(x1,x2,··· ,xk)∈Ckm

e−(m+c)λa

(
k∏

i=1

dxi

)

= O (1) e−cλa

m∏
j=1

(
λnj

∫

(xj1,··· ,xjnj)∈Cnj1

e−λa

(
nj∏

j=1

dxi

))

= o (1) .

Because the the last equality is one nj > 1 at least. So, the lemma is proved.

Lemma 9 For any integer k ≥ 2, (λl2)
k
Pr (B1 ∧ · · · ∧Bk) ∼ (e−ω)

k
.

Proof. Let Gr (x1, · · · , xk) denote the r-disk graph over x1, · · · , xk in which there is

an edge between two nodes if and only if their distance is at most r. For any positive

integers k and m with 1 ≤ m ≤ k, let Ckm denote the set of (x1, · · · , xk) ∈ Dk sat-

isfy that G2R2 (x1, · · · , xk) has exactly m connected components. We partition Dk into
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Ck1, Ck2 · · · , Ckk.

(
λl2

)k
Pr (B1 ∧ · · · ∧Bk)

=
(
λl2

)k
∫

(x1,x2,··· ,xk)∈Dk

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




Pr




X1 = x1

...

Xk = xk




(
k∏

i=1

dxi

)

= λk

∫

(x1,x2,··· ,xk)∈Dk

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




(
k∏

i=1

dxi

)

=
k∑

i=1

λk

∫

(x1,x2,··· ,xk)∈Cki

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




(
k∏

i=1

dxi

)
. (4.2)

For the integral over Ckm with 1 ≤ m ≤ k − 1, according to Lemmas 7 and 8, we have

λk

∫

(x1,x2,··· ,xk)∈Ckm

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




(
k∏

i=1

dxi

)

≤ λk

∫

(x1,x2,··· ,xk)∈Ckm

e−(m+c)λa

(
k∏

i=1

dxi

)
= o (1) . (4.3)

For the integral over Ckk, according to Lemmas 6 and 2, we have

λk

∫

(x1,x2,··· ,xk)∈Ckk

Pr




k∧
i=1

Bi

∣∣∣∣∣∣∣∣∣∣∣∣

X1 = x1

...

Xk = xk




(
k∏

i=1

dxi

)

= λk

∫

(x1,x2,··· ,xk)∈Ckk

e−kλa

(
k∏

i=1

dxi

)
∼ (

e−ω
)k

. (4.4)
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After putting (4.2), (4.3), and (4.4) together, and then we have

(
λl2

)k
Pr (B1 ∧ · · · ∧Bk) ∼

(
e−ω

)k
.

30



Chapter 5

Connectivity Analysis by

Simulations

In this chapter, we will show the simulation results of network models that men-

tioned previous. These models will be the same with Chapter 2. In order to simulate

the network models, we need to figure out the node’s transmission radius of each model.

Thus, we will need to set the values of each model’s parameters. According to each model’s

characteristic and reflect the reality, we choose the values from each model’s suggested

range by their author. And without loss of generality and fairness, we assume that each

node has the same transmission power and expect each node to have the same number of

network neighbors.

Section 5.1 involves each network models’ parameters we used in our simulations.

In Section 5.2, several snapshots will be shown as samples of network topology. And in

Section 5.3, we will use charts of probability distribution to discuss about the connectivity

issue.
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5.1 Simulation Models and Environments

Based on the condition of each node has the same number of network neighbors. We

select suitable parameter’s value and then we can derive to obtain the node’s transmission

radius in different link models. Thus, we consider transmission radius R1 and R2 here. If

the distance between any two nodes is smaller than R1, they will be directly connected. If

the distance bwtween any two nodes is more than R1 but smaller than R2, there will be a

probability to be connected or disconnected which is determined by each models’ property.

If the distance between any two nodes is more than R2, they will be disconnected. So,

in this chapter, while simulating in the disk model, we let f (r) = 1 and assume α = 2,

Sref = 35 dBm, and Sthr = 15 dBm, and then we can obtain R1 = R2 = 10. To have a fair

comparison in the simulation, the mean node degree in each model should be the same as

that in the naive disk model. In the Bernoulli model let p = 0.8, so R1 = 0 and R2 = 11.2.

In the slow fading model, we set σ = 8 dB. Therefore, f (r) = 1
2

(
1 + erf

(
5−5 log r

2
√

2

))
,

R1 = 0, and R2 = 13.18597. In the fast fading model, we set f (r) = exp
(
− r2

100

)
, R1 = 0,

and R2 = 38.1. And in the Nakagami fading model, we set µ = 2 in our simulation,

f (r) = 1− γ
�
2, r2

50

�

Γ(2)
=

(
r2

50
+ 1

)
e−

r2

50 , R1 = 0, and R2 = 28.3.

5.2 Examples of Network Topology

In this section, we would like to give some snapshots of network topology, and our

simulation will be considered the of effect toroidal metrics in this section, where toroidal

metrics is a concept that the network nodes nearby the boundary of network deployment

region will still have communication probability with opposite nodes which are also nearby
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the boundary of network deployment region. Then we regard two opposite boundary as

the same one. If two opposite nodes are inside the transmission radius with each other,

then they will have probability to direct communication which is determined by the

network link model.

As defined earlier, f (r) is the probability of the event that two nodes have a link if

they are apart from each other by r. Fig. 5.1 depicts f (r) in each link model introduced

in Chapter 2.
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Disk
Bernoulli
Slow fading
Fast fading

Figure 5.1: The graph of f (r) in each link model.

Next, we would like to give some snapshot of our models. Unlike the snapshots we

show in the chapter 2, we consider transmission radius R1 and R2 in this chapter. We

consider a grid with center at the origin. Assume there is a workstation on each grid

point. Fig. 5.2 is a disk model’s snapshot of distribution of links with R1 = 10, R2 = 10

and f(x) = 1. If a workstation has a link to the one at the origin, the gird is marked.

Fig. 5.3 is a Bernoulli model’s snapshot of distribution of links with R1 = 0, R2 = 11.2

and f(x) = 0.8. Because of the characteristic of Bernoulli model, each grid node inside

radius R2 will has the same probability to has a connection with the original node. The

effective communication areas are uniform spread inside the transmission radius R2 of
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original node.
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Figure 5.2: In a 30 × 30 square region,

given R1 = 0 and R2 = 10 in disk model,

nodes that have links with the centered

node are shown.
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Figure 5.3: In a 30 × 30 square region,

given R1 = 0 and R2 = 11.2 in Bernoulli

model, nodes that have links with the

centered node are shown.

Fig. 5.4 is a slow fading model’s snapshot of distribution of links with R1 = 0,

R2 = 13.18597 and f (r) = 1
2

(
1 + erf

(
5−5 log r

2
√

2

))
. We can observe that the grid nodes

are closed to the original node have higher probability to communication directly, Even

the grid nodes are far away from the original node still not have very low probability to

communicate with original node if they still inside the R2 of original node.

Fig. 5.5 is a snapshot of Nakagami fading model with R1 = 0, R2 = 23.8 and

f (r) =
(

r2

50
+ 1

)
e−

r2

50 . From the snapshot, we could obtain that marked area is highly the

aggregation in the nearby region of original node. In other words, in the Nakagami fading

model, if the grid nodes are closed to the original node, it will have highly probability

to have connection with original node. However, if the grid nodes are far away from the

original nodes, they will have low probability to become an effectively communication
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Figure 5.4: In a 30 × 30 square region, given R1 = 0 and R2 = 13.18597 in slow fading

model, nodes that have links with the centered node are shown.

area. There is a little difference to slow fading model.

Fig. 5.6 is a snapshot of fast fading model R1 = 0, R2 = 38.1 and f (r) = exp
(
− r2

100

)
.

From the figure, we can observe the effectively communication areas are also aggregated

around the original node in the fast fading model.

Next, we would like to show the network connection state of each link model in a small

deployment region.

Fig. 5.7 is an instance of wireless networks with R1 = 0, R2 = 13.18597 and λ = 0.02

in a square of l = 100 over slow fading channels. The solid line between two nodes

represents that it exists a link between these two nodes. And the dotted line denotes

there is a link between nodes in opposite sides due to the toroidal metric. Fig. 5.8 is an

instance with R1 = 0, R2 = 10 and λ = 0.02 in a square of l = 100 over disk channels.

Fig. 5.9 is an instance with R1 = 0, R2 = 11.2 and λ = 0.02 in a square of l = 100

over Bernoulli channels. Fig. 5.10 is an instance with R1 = 0, R2 = 38.1 and λ = 0.02

in a square of l = 100 over fast fading channels. Fig.5.11 is an instance with R1 = 0,
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Figure 5.5: In a 30 × 30 square region,

given R1 = 0 and R2 = 28.3 in Nak-

agami fading model, nodes that have

links with the centered node are shown.
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Figure 5.6: In a 45 × 45 square region,

given R1 = 0 and R2 = 38.1 in fast fad-

ing model, nodes that have links with

the centered node are shown.

R2 = 23.8 and λ = 0.02 in a square of l = 100 over Nakagami fading channels.

5.3 PDF and CDF of Connectivity

In this section, we will show the simulation results of probability distribution that

compares with the theoretical results on connectivity issue. We will show simulations of

network channel models with considering the toroidal metrics property and without the

toroidal metrics property. And we will also simulate the network channel models with

considering R2.

For its convenience, let random variable Diso be the node density for a network without

isolated nodes, random variable Dcon be the node density for a network being connected

and random variable Dth be the theoretical node density leading to a connected network.

We use Poisson point process to generate nodes into the deployment region until there
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Figure 5.7: An instance of networks with R1 = 0, R2 = 13.18597 and λ = 0.02 in a square

of l = 100 in slow fading model.

are no isolated nodes in the network to get Diso for 400 iterations. In a similar way, we

can get Dcon.

5.3.1 Toroidal Metrics

First, we simulate network channel models with toroidal metrics property.

Fig. 5.12 shows, in Bernoulli model, with R1 = 0, R2 = 11.2 and f(x) = 0.8, the cdfs of

Diso, Dcon and Dth in the squares of l = 200, l = 500 and l = 800 respectively. The results

in slow fading model with R1 = 0, R2 = 13.18597 and f (r) = 1
2

(
1 + erf

(
5−5 log r

2
√

2

))
, are

shown in Fig. 5.13, for l = 200, l = 500 and l = 800. Fig.5.14 shows disk model with

R1 = 0, R2 = 10 and f (r) = 1, for l = 200, l = 500 and l = 800.

Fig.5.15 shows fast fading model with R1 = 0, R2 = 38.1 and f (r) = exp
(
− r2

100

)
, for

l = 200, l = 500 and l = 800.

37



0 50 100

0

50

100

Figure 5.8: An instance of network with

R1 = 0, R2 = 10 and λ = 0.02 in a

square of l = 100 in disk model.
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Figure 5.9: An instance of network with

R1 = 0, R2 = 11.2 and λ = 0.02 in a

square of l = 100 in Bernoulli model.

Fig.5.16 shows Nakagami fading model with R1 = 0, R2 = 23.8 and f (r) =

(
r2

50
+ 1

)
e−

r2

50 , for l = 200, l = 500 and l = 800.

In disk, Nakagami fading and fast fading models, the cdfs resemble those in Bernoulli

and slow fading models. Therefore, we can have the insight from these figures that the

higher the value of l is, the closer the cdfs of Diso, Dcon and Dth are. These results also

verify our theoretical analysis.

For grasping the convergence of graphs, Table 5.1 lists the differences between Diso

and Dcon for p = 0.5 as l = 200, l = 500 and l = 800. It can be observed that the

gap decreases as l increases. We can expect that Pr (a network without isolated nodes) ∼

Pr (a network is connected) as l →∞. This verifies our conjecture in Chapter 3.

5.3.2 Euclidean Metrics
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Figure 5.10: An instance of network

with R1 = 0, R2 = 38.1 and λ = 0.02 in

a square of l = 100 in fast fading model.
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Figure 5.11: An instance of network

with R1 = 0, R2 = 23.8 and λ = 0.02

in a square of l = 100 in Nakagami fad-

ing model.

In our simulations, we also simulate our each channel models without toroidal

metrics property. Fig. 5.17 shows, in Bernoulli model, with R1 = 0, R2 = 11.2 and

f(x) = 0.8, the cdfs of Diso, Dcon and Dth in the squares of l = 200 and l = 800

respectively. Fig. 5.18 shows the fast fading model, with R1 = 0, R2 = 38.1 and f (r) =

exp
(
− r2

100

)
, for l = 200 and l = 800.

Generally speaking, without considering the toroidal metrics means that network need

to be deployed more nodes to achieve network’s connectivity. This intuition reflects on

the simulations. From these simulations, we can observe that the c.d.f . on the models

without torodial metrics is right shift to the c.d.f . on the models with toroidal metrics.

Also, we can observe that the behavior of ’not isolated’ and ’connected’ is closer to each

adapter with the growth of network scale. This indicate torus constrain may lead to

need to be deployed more nodes when we discuss network connectivity, but it doesn’t
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Figure 5.12: The cdfs of Diso, Dcon and Dth in the squares of l = 200, l = 500 and l = 800

in Bernoulli model with R1 = 0, R2 = 11.2 and f(x) = 0.8.
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Figure 5.13: The cdfs of Diso, Dcon and Dth in the squares of l = 200, l = 500 and l = 800

over slow fading channels with R1 = 0, R2 = 13.18597 and f (r) = 1
2

(
1 + erf

(
5−5 log r

2
√

2

))
.

effect the convergence relationship of ’not isolated’ and ’connected’ while network scale is

growth. Fig. 5.19 shows the disk model, with R1 = 0, R2 = 10 and f (r) = 1, for l = 200

and l = 800. Fig.5.20 shows the slow fading model, with R1 = 0, R2 = 13.18597 and

f (r) = 1
2

(
1 + erf

(
5−5 log r

2
√

2

))
, for l = 200 and l = 800.The convergent property in both

models also holds.
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Figure 5.14: The cdfs of Diso, Dcon and Dth in the squares of l = 200, l = 500 and l = 800

over disk channels with R1 = 0, R2 = 13.18597 and f (r) = 1.
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Figure 5.15: The cdfs of Diso, Dcon and Dth in the squares of l = 200, l = 500 and l = 800

over fast fading channels with R1 = 0, R2 = 38.1 and f (r) = exp
(
− r2

100

)
.

5.3.3 With Toroidal Metrics But Without Considering R2

In the above simulations, we give bounded transmission radius R2 in each models

and force communication probability to zero while two nodes’ distance exceeds R2. How-

ever, in the fast fading channel model and slow fading channel model, the radio signal

strength decays with distance, therefore. There may be weakly radio signal while two

nodes are far away more than R2. Next we simulate model without consider R2. Fig.

5.21 shows the fast fading model, with R1 = 0, R2 = 38.1 and f (r) = exp
(
− r2

100

)
, for
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Figure 5.16: The cdfs of Diso, Dcon and Dth in the squares of l = 200, l = 500 and l = 800

over Nakagami fading channels with R1 = 0, R2 = 23.8 and f (r) =
(

r2

50
+ 1

)
e−

r2

50 .

Table 5.1: The density differences between Diso and Dcon for p = 0.5.

l = 200 l = 500 l = 800

Disk model 0.0022 0.00170 0.001100

Bernoulli model 0.0013 0.00038 0.000338

Slow fading model 0.0006 0.00011 0.000016

Fast fading model 0.0002 0.00013 0.000038

l = 200, l = 500and l = 800 without consider R2. Compared with the above simulation

results, we can observe that removing R2 constraint doesn’t cause drastic change on the

number of deploy nodes. Although it still has weakly signal strength while two nodes

’ distance exceeds R2, the signal strength is not strong enough to support two nodes’

communication.
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Figure 5.17: The cdfs of Diso, Dcon and Dth in the squares of l = 200 and l = 800 in

Bernoulli model with R1 = 0, R2 = 11.2 and f(x) = 0.8 without torus.
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Figure 5.18: The cdfs of Diso, Dcon and Dth in the squares of l = 200 and l = 800 in fast

fading model with R1 = 0, R2 = 38.1 and f(x) = exp
(
− r2

100

)
without torus.
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Figure 5.19: The cdfs of Diso, Dcon and Dth in the squares of l = 200 and l = 800 in Disk

model with R1 = 0, R2 = 10 and f(x) = 1 without torus.
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Figure 5.20: The cdfs of Diso, Dcon and Dth in the squares of l = 200 and l = 800 in Slow

fading model with R1 = 0, R2 = 13.18597 and f(x) = 1
2

(
1 + erf

(
5−5 log r
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))
without

torus.
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Figure 5.21: The cdfs of Diso, Dcon and Dth in the squares of l = 200 and l = 800 in fast

fading model with R1 = 0, R2 = 38.1 and f(x) = exp
(
− r2

100

)
without R2.
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Chapter 6

Conclusions

In this work, we assume that the distribution of wireless nodes is modeled by a

Poisson point process with mean density over a deployment region instead of a uniform

deployment. Also, a generalized link model is proposed. By deploying nodes with ade-

quate mean density, we can get the expected number of isolated nodes and the distribution

of the number of isolated nodes. Theoretical derivation and simulations are elaborately

demonstrated. In conclusion, the expected number of isolated nodes is e−ω with certain

constant ω and the distribution of the number of isolated nodes is asymptotically Poisson

with mean e−ω. This information can help developer to design a wireless ad hoc and

sensor network or to make decisions based on the demand of performance. Hopefully, the

future research hopefully can loosen the restrictions on the deployment method and the

deployment region.
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