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摘 要       
  
 在一塊大塊的快閃記憶體中，使用多重小塊的快閃記憶體(bank)做平行

化存取，主要是用來提高系統存取時的效能，此種做法已經很普遍了，然

而，現實環境中的資料存取，將使得各個 bank 間存取工作量的不平均，如

此導致平行化存取產生的效能被限制住，在這篇研究中，我們將比較常存

取的資料作編碼成另一份資料，這類資料也就是消除碼(erasure codes)，因

為消除碼只要與部份的原始資料一起做解碼後，即可回復原本的資料，而

一份要求中含很多的小型工作，研究的目的是希望能將小型工作從工作量

重的 bank 中，藉由其餘工作量輕的 bank 中的消除碼取代，如此達到 bank
間工作量的平衡，研究中主要討論分成(1)如何製作與分派消除碼(2)如何放

置消除碼於 bank 中(3)消除碼分派與放置完後，一份要求來後該如何的做排

班。由實驗結果，我們發現只要提供 10%的額外空間作消除碼，即可使得

讀取的動作提高了 50%的效能。 
 
關鍵字：快閃記憶體﹙Flash memory﹚，儲存系統﹙storage systems﹚，嵌

入式系統﹙embedded systems﹚，作業系統﹙operating systems﹚。 
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ABSTRACT 
 

To use multiple memory banks in parallel is a nature approach to boost the 
performance of flash-memory storage systems. However, realistic data-access 
localities unevenly load each memory bank and thus the benefits of parallelism 
is severely limited. In this work, we propose to encode popular data with 
redundancy by means of erasure codes. Load balancing is thus achieved by 
accessing only lightly loaded banks, because to retrieve a subset of data blocks 
and code blocks sufficiently reconstructs the requested data. The technical issues 
pertain to redundancy allocation, redundancy placement, and request scheduling. 
By experiments, we found that, by offering 10% extra redundant space, the read 
response time is largely improved by 50%. 
 
Keywords: Flash memory, storage systems, embedded systems, operating 
systems 
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Abstract

To use multiple memory banks in parallel is a nature approach to
boost the performance of flash-memory storage systems. However, realis-
tic data-access localities unevenly load each memory bank and thus the
benefits of parallelism is severely limited. In this work, we propose to
encode popular data with redundancy by means of erasure codes. Load
balancing is thus achieved by accessing only lightly loaded banks, because
to retrieve a subset of data blocks and code blocks sufficiently reconstructs
the requested data. The technical issues pertain to redundancy alloca-
tion, redundancy placement, and request scheduling. By experiments, we
found that, by offering 10% extra redundant space, the read response time
is largely improved by 50%.

Keywords: Flash memory, storage systems, embedded systems, op-
erating systems.

1 Introduction

Large flash-memory storage systems, such as solid-state disks (i.e., SSDs) [9, 11,
12], have been strongly demanded in the recent years. However, the throughput
of one single NAND-flash chip fails to match neither the system-bus bandwidth
nor the speed of the processor. Parallelism is one nature solution to close the
performance gap. By using multiple flash-memory banks (a bank refers to a chip
in this paper) in parallel, ideally the throughput can be significantly boosted.
In past work, two typical parallel architectures, interleaving and striping, are
considered [5, 10, 12]. As shown in Figure 1(a), interleaving is to simply tie
together the command/statue lines of banks. However, even to service a small
write, all the banks are involved.

Different from interleaving, striping involves a bank only when necessary.
It overlaps the busy intervals of the involved banks, as shown in Figure 1(b).
The attention of the one single controller is switched among banks for command
setup and data transfer. However, small requests may poorly utilize the banks,
because the entire system has only one request queue. To deal with this problem,
the striping system in Figure 1(c) attaches a request queue to each bank. A
request is divided and dispatched to the queues, and the entire request is fulfilled
upon all the involved banks complete their parts. However, its benefits would
be largely limited by traffic to hot data or garbage-collection activities. For
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Figure 1: Different parallel architectures of flash-memory storage systems. (a)
Interleaving, (b) striping with one single queue, and (c) striping with multiple
queues.

example, as shown in Figure 1, the fulfillment of request R5 is not much benefited
by different parallel architectures.

The major problem of the striping system of Figure 1(c) is that heavily
loaded banks severely delay the completion of large requests. In this paper, an
erasure-code-bases striping policy is proposed to deal with the problem. Our
basic idea is to apply the ability of erasure resilience to load balancing over
banks. Erasure code is a coding technique that transforms n message blocks
into n + m blocks. “Erasure” usually refers to hardware malfunction or trans-
mission loss. Upon erasure, the original message blocks can be reconstructed by
retrieving only a subset S of the n+m coded blocks. Optimal erasure codes have
|S|=n. Optimality is necessarily achieved by expensive computation, such as
Reed-Solomon code [13] and information-dispersal algorithm (IDA) [16]. Sub-
optimal codes like Tornado Code, low-density parity check (LDPC) [15], and
small parity check [14] sacrifice optimality to performance. Erasure codes have
been widely adopted in storage systems for fault tolerance [17, 18, 19].

The use of erasure codes would greatly helps to improve the response of
large requests. Figure 2 shows a scenario in which a request intends to fetch
data blocks a, b, c, and d over a 4-bank striping system. The request is not re-
sponded until bank 1 completes all the outstanding requests, as shown in Figure
2(a). Consider that a code block storing a⊕b is in bank 3. Instead to wait for
bank 1, as shown in Figure 2(b), to retrieve a, c, d, and a⊕b sufficiently recon-
struct the requested data, since (a⊕b)⊕a=b. The response is greatly improved.
The rationale behind the approach is that requests can be “erased” from the
currently busy banks as soon as the information to be retrieved by the erased
requests can be reconstructed by the data of the completed requests. There
are some technical issues need investigation: First, it is infeasible to add redun-
dancy to every piece of data. Policies of how redundancy is allocated, how the
redundancy is encoded, and where to place the redundancy are needed. Upon
the arrival of requests, a scheduling policy is also needed to fulfill the requests

2
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Figure 2: The handling of a read of data blocks a, b, c, and d. (a) The read
request can not be fulfilled until data block b is fetched from bank 1. (b) By
reading code block a⊕b from bank 3, the read is fulfilled earlier.

as soon as possible without introducing extra traffic from/to banks.
The rest of this paper is organized as follows: Section 2 introduce our system

model and some motivating observations. Section 3 introduces our erasure-code-
based striping scheme. Section 4 includes experimental results, and this paper
is concluded in Section 5.

2 System Model and Problem Formulation

2.1 A Striping System

This section presents a striping architecture, based on which the proposed string
policy is developed.

The striping architecture comprises a number NAND-flash chips, each of
which refers to a bank. Signals of command and status of every bank are
separately maintained so that the banks are capable of independent operations.
All the memory banks are managed by one controller unit. A bank operation
is of three phases. In the setup phase, the controller set a command and then
the bank enters the busy phase to carry out the command. In the busy phase
the controller is free. On completion, the controller comes back to examine the
status of the bank. The attention of the controller is switched among banks,
and parallelism is achieved by overlapping the busy phase of banks.1

The physical geometry of a NAND-flash chip is as follows: The entire NAND
flash is partitioned into blocks, and each block is of a number of pages. Reads
and writes are page-oriented, while erasure is conducted in terms of blocks.
The typical block and page sizes are 128 KB and 2 KB, respectively. Let all the
chips/banks in the system are homogeneous. FTL (Flash-Translation Layer)
[11] is adopted to emulate the striping system as an ordinary block device. Any
block-device file systems such as FAT, NTFS, or ext3 can be mounted on the
emulated block device.

1The architecture is sufficient to demonstrate the purpose of this work. To relieve the
controller of data-transfer overheads, a multi-channel DMA controller can be added [10, 12].

3
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To manage data on banks, logical organization is adopted, as shown in Figure
3. Let a bank be partition into equal-size segments. A segment is of multiple
flash-memory blocks. Let a zone refer to the collection of all the segments
having the same physical offsets in banks. A stripe block is of multiple logical
blocks of the emulated block device (i.e., sectors). All the stripe blocks are
sequentially interleaved over banks. Reads and writes to the striping system are
performed in terms of stripe blocks. A stripe block is no smaller than a flash-
memory page, because a partial write to a flash-memory pages is prohibited
[3, 4]. In each segment, a fraction of flash-memory blocks are reserved for
garbage collection and bad-block retirement. They are referred to as spare
blocks. Address translation and garbage collection [1] are conducted internally
in each segment.

The striping system has two operation modes, the on-line phase and the off-
line phase. The striping system accepts requests in the on-line phase. Whenever
the system is idle or very lightly loaded, possibly in the midnights, it enters the
off-line phase for self-reorganization. In the off-line phase, activities of redun-
dancy encoding and placement are conducted.

2.2 Localities of Reads and Writes

This section presents some motivating observations on realistic workloads of
flash-memory storage systems. Because our striping system mainly aims at
mass-storage devices, such as SSDs, that replace hard drives in mobile com-
puters, the disk I/O workload of a typical mobile computer is analyzed. An
arbitrary one-day fragment extracted from the disk traces collected in work [6]
is considered. Let a preliminary system geometry be as follows: There are 8
memory banks, the stripe-block size is 8 KB, and the zone size is 256 MB.

Figure 4(a) shows that some particular banks receive much more writes
than others. That is because of the temporal localities of writes. Writes to
some particular data frequently arrive. Among the writes, the majority is small
writes, as reported in [6]. Because small writes do not span many banks, the
banks in which hot data reside would be popular. The popular banks would
delay the completion of large requests, as previously shown in Figure 2. The
phenomenon would be exaggerated if garbage collection is involved. On the
other hand, Figure 4(a) shows that reads evenly utilize every bank. It is because
the I/O cache of the hot system largely weakens the temporal localities of reads.

4
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Figure 4: Analyzing the characteristics of reads and writes in an one-day frag-
ment of the one-month disk traces.

Instead, we found strong spatial localities among reads. Figure 4(b) shows the
amount of data read from each zone. It shows that only a small number of
zones receive many reads. In other words, data adjacent to the requested data
are possibly to be accessed in the near future. Most of the reads are found
sequential and bulk. A bulk read would spans many banks.

The temporal localities of writes and the spatial localities of reads arise
a potential performance issue of our striping architecture. The completion of
bulk reads is largely delayed by small writes. In the following sections, we shall
discuss how erasure codes help to deal with this problem.

3 An Erasure-Code-Based Striping Scheme

3.1 Redundancy Allocation and Placement

Redundancy allocation and redundancy placement refer to what data should be
added to redundancy and where the redundancy is placed, respectively. This
section aims at policies to deal with the issues.

For the ease of presentation, some terminologies are defined in order. Let Zi

and Bi stand for the i-th zone and the j-th bank, respectively. Let Si,j refers to
the segment of zone Zi on bank Bj . A large request is striped as multiple sub-
requests of stripe blocks. Let a stripe block storing original data be referred to
as a data block. A stripe block storing data encoded by data blocks is referred to
as a code block2. We propose to mix no code blocks with data blocks in the same
segment. Let zones of data blocks be referred to as data zones. A small number
of extra zones, referred to as code zones are added to the striping system for the
storage of code blocks. Because the extra space costs of code zones should not
be large, how the code blocks are allocated is a technical question.

For writes, a bank would have a deep request queue if any of its segments
recently receives many writes. The bank can not response to newly arriving
requests unless all the outstanding requests complete. Not all the banks suffer
from the congestion because hot data are small. For reads, to service reads
involves multiple banks because most of them are bulk and sequential. However,
no matter which zone a large read goes, a bank congested by small writes would
delay its completion.

2To avoid ambiguity, flash-memory blocks are explicitly termed.
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Figure 5: Associating a popular data zone with a code zone. Note that only a
small number of popular data zones need to be associated with code zones.

Suppose that we have n data zones and m code zones. During the on-line
phase, the number of reads each zone receives is accumulated. Once the system
enters the off-line phase, we propose to associate the first m most popular zones
with code zones. The relation of code zones to data zones is one-to-one. As
shown in Figure 5(a), suppose that data zone Z2 is found the most popular
when the system enters the off-line phase. Code zone Z7 is then allocated to
data zone Z2. Data in data zone Z2 are dispersed over banks for the flexibility
of load balancing, and the dispersed information are stored in code zone Z7.
An XOR-based coding scheme is proposed, as follows: Let B be the number of
banks, and G ∈ Z+ an integer. For i=0...B, segment S2,i is XOR’ed to segment
S2,(i+G)%B and S2,(i+1+G)%B . As the example in Figure 5(a) shows, segments
in Z7 are coded as follows:

S7,0 = S2,4 ⊕ S2,5 S7,4 = S2,0 ⊕ S2,1

S7,1 = S2,5 ⊕ S2,6 S7,5 = S2,1 ⊕ S2,2

S7,2 = S2,6 ⊕ S2,7 S7,6 = S2,2 ⊕ S2,3

S7,3 = S2,7 ⊕ S2,4 S7,7 = S2,3 ⊕ S2,0

The coding scheme is to regularly disperse a piece of data over two other
banks. Thus the information can be found in three banks. The parameter G
refers to the group size, which will be discussed in the later sections. If seg-
ments {S2,0, S2,1, S2,2, S2,3} are involved by a read request and bank B2 hap-
pens to be busy, there are many alternatives to fulfill the request. For example,
{S2,0, S2,1, S7,6, S2,3}, {S2,0, S2,1, S7,5, S2,3}, or even {S7,4, S7,5, S7,6, S2,3}. The
design of the coding scheme will further be explained in Appendix.

3.2 Request Scheduling

This section presents a scheduling algorithm that makes use of code blocks so
as to improve the response of large reads.

Request scheduling needs to consider not only load balancing but also the
correctness of the schedule. For example, in Figure 2, neither {a, b, a ⊕ b}
nor {a, b, a ⊕ b, c} are correct schedules. The former schedule fails to fulfill
the request, and the latter one introduces extra traffic. As to load balancing,

6
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Figure 6: (a) Sub-requests of all the data blocks and code blocks are scheduled.
(b) Unneeded sub-requests are removed. “GC” refers to garbage-collection ac-
tivities.

in realistic workload, localities would change from time to time. Occasionally
arriving writes to hot data may transiently congest a bank. Furthermore, it is
hard to schedule garbage collection in advance because it is triggered on demand.
As a result, dramatic changes to the loads of banks happen from time to time.
To schedule sub-requests on lightly loaded banks upon the arrival of a request
may not be a good choice.

We propose a lazy scheduling algorithm to deal with the problems. Upon
the arrival of a read, we are not concerned with which banks should be used to
service the read. Instead, sub-requests of all the data blocks and related code
blocks are scheduled. On the completion of a sub-request, it is examined to see
whether any other sub-request can be removed from queues. A sub-request can
be removed if 1) the entire request is fulfilled, or 2) the sub-request is redundant.
Actually the two cases are similar. Figure 6(a) shows an example of the arrival
of a large read R(a, b, c, d). To service the request, sub-requests of data blocks
a, b, c, and d, code blocks a⊕b, b⊕c, c⊕d, and d⊕a are all scheduled. Figure
6(b) shows that, after a short period of time, sub-requests to a, d, and c⊕ d
complete. Because d=(c⊕d)⊕c, sub-requests of c and d⊕a are removed as they
provide no new information. Sub-requests b, b⊕c, and a⊕b remain. The read
is fulfilled if any of them completes. After the fulfilment, all other remaining
sub-requests can be removed. Without the lazy scheduling algorithm, on the
arrival of R(a, b, c, d), sub-requests of a, d, a⊕b, and c⊕d may be scheduled.
Because garbage collection is triggered at bank B4, the schedule becomes a bad
decision.

The decode procedure and the removal of sub-requests are closely related to
each other. A graph-based decode procedure is adopted. Before sub-requests
of all the data blocks and code blocks are scheduled, a Tanner graph [20] is
constructed. Figure 5(b) shows the graph over blocks in zones Z2 and Z7. The
graph is bipartite. Data blocks and code blocks reside in the left-hand side
as “message”. The right-hand side nodes are “constraints”, and a constraint
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connects to a code block and all the data blocks that are XOR’ed to the code
block. As Figure 5(b) shows, a constraint connects to A, B, and A⊕B. Whenever
a sub-request of a data block or code block completes, the corresponding left-
hand node and all the edges connected to the node are removed from the graph.
After the removal, if there is any constraint that is connected to only one edge,
then the constraint is “resolved” and the only message it connects to can be
decoded without being retrieved. In this case, the constraint and all its edges
are removed. The sub-request of the removed message can be removed from the
queues of the striping system. For example, as shown in Figure 5(b), if B and
A⊕B are retrieved and their edges are removed, then the topmost constraint
connects to message A only. Message A can be decoded since B⊕(A⊕B)=A.
As there is no need to retrieve A, the sub-request of A is removed from queues.
The decode procedure terminates when all constraints are resolved.

3.3 A Read-ahead Policy

The proposed coding scheme provides large requests with better flexibility in
load balancing. This section presents a read-ahead policy. Conditional read
ahead would help to convert a sequence of small reads into large requests.

For example, consider data blocks {x, y, z} and their code blocks {x⊕ y, y⊕
z, z ⊕ x}. Suppose that a read of {x, y} arrives. There are three different ways
to handle the read: To read {x, y}, {x, x⊕ y}, or {y, x⊕ y}. Later a read of {z}
arrives. There is only one choice, to read {z}. If {x, y} are kept in buffer, then
to read {z}, {y ⊕ z}, or {z ⊕ x} fulfills the request. There are either 3*1=3 or
3*3=9 ways to service the two requests. However, if a read {x, y, z} arrives, then
there are 16 ways to service the read (e.g., {x, y, z}, {x, y, y ⊕ z}, {x, z, x⊕ y},
{x, z, y⊕z}, {x, x⊕z, y⊕z}, etc). As the example shows, fragmented sequential
reads largely limit the flexibility of request scheduling.

By analyzing the gathered disk traces, we found two potential problems. As
shown in Figure 7(a), some sequential access patterns are severely fragmented as
many small reads. The other case is that, as shown in Figure 7(b), even though
the reads are large enough, the reads are not aligned on zone/group boundaries.
Since both the two cases are sequential access, a read-ahead mechanism can
be adopted to convert the fragmented reads into bulk and aligned reads. The
intention is to improve the flexibility of load balancing.

A read-ahead policy is proposed. The basic idea behind the policy is to
capture spatial localities. If many data blocks have been sequentially requested,
then it is highly possible that the adjacent data blocks will be accessed in the
near future. It can be realized by using a counter and a threshold value. The
counter accumulates if the newly arrival read continues the last requested data
block. Otherwise the counter is reset. If it’s value is greater than the threshold,
then the following requests are serviced in terms of groups. The threshold value
is currently 128 sectors, which is the largest read size found in the gathered
disk traces. For example, if the group size is 4, and a data block is requested
from segment S3,0, then four adjacent data blocks are read from segments S3,0,
S3,1, S3,2, and S3,3. The extra data are kept in a read-ahead buffer to service
subsequent reads. If the stripe-block size is 8 KB, then the read-ahead buffer is
only 8*4=32 KB.

The workload of the host system may have multiple accesses patterns mixed
together because the host system is multiprogramming. To individually extract
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(a) Reads do not span all the banks

(b) Reads span all the banks but are not aligned at zone boundaries

Figure 7: Two cases of a sequential access pattern: (a) The pattern is fragmented
as many small reads, and (b) reads are not aligned on zone boundaries. A box
stands for one segment.

sequential access patterns from workloads, a thread table is adopted. In our
current design, the thread table is of twenty entries. The value should be no
less than the number of concurrent threads that issue requests to the striping
system. Each entry keeps a counter, the address of the last requested data
block, and a read-ahead buffer. Upon the arrival of a read, all entries of the
table is checked to see if the read continues the last data block of any entry. If
so, the counter is increased and read ahead is performed whenever necessary.
Otherwise the oldest entry is replaced. However, the replacement policy is
vulnerable, because random reads may scrub the entire thread table. To fix
this, a sliding window is added. The sliding window keeps the addresses of
twenty recently received reads. On the arrival of a read, it is checked against
the window. If the read is found sequential, then it proceeds to the thread table
for read ahead and table-entry replacement. Otherwise, the window slides and
the read enters the window.

4 Experimental Results

4.1 Experimental Setup and Performance Metrics

The usefulness of the proposed striping scheme is verified by a series of trace-
driven simulation. A simulator is built for performance verification. Figure 8(a)
includes the default striping-system configuration. The timing characteristics of
NAND flash are extracted from the data sheets of real NAND flash [3]. Figure
8(b) shows that the simulated striping system comprises an FTL implementation
and the proposed striping scheme. The following assumptions are taken: A
request is fulfilled as soon as the requested data can be reconstructed. The
XOR operations are much faster than I/O operations, and the computational
overheads are negligible. The throughput of one single NAND-flash bank does
not saturate the data path to the host system. Overheads of the activities
conducted in the off-line phase are not accounted.

The experimental workload is the disk I/O traces collected from the daily
use of a real-life UMPC (Ultra-Mobile PC) ASUS R2H. The UMPC is equipped
with a Celeron-M ULV processor, 768 MB of RAM, and a 18 GB disk. The
operating system is Windows XP, and the file system is NTFS. Applications
ran on the UMPC are ordinary to many people, such as web browsers, email
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Figure 8: The experimental system configuration.

clients, movie players, FTP clients, office suites, and games. The time duration
of trace collection is one month. The gathered traces are replayed on the striping
system.

The striping system to which the proposed striping scheme is applied is
referred to as a dynamic striping system. A dynamic striping system that never
enters the off-line phase is referred to as a static striping system. In other words,
the static striping system is not benefited by our striping scheme. Under the
same system organization, the performance of a dynamic striping system and
a static striping system are compared against each other. The default system
configuration is shown in Figure 8(a). The default configuration is changed
in terms of the number of code zones, the stripe-block size, and the zone size
for evaluation. Because the proposed striping scheme mainly aims at improving
response, two metrics are adopted. The read response ratio, RR ratio, is defined
by:

RR ratio =
Average read response time in the dynamic striping system
Average read response time in the static striping system

. The write response ratio, WR ratio, is defined for writes accordingly. For both
the ratios, the smaller the better.

4.2 Numerical Results

4.2.1 Number of Code Zones

The first question on the proposed striping scheme would be how the proposed
striping scheme improve response and how much redundancy is needed. It
concerns because redundancy is a synonym of extra hardware costs. In the
default system configuration, the total flash-memory capacity is 20 GB and the
zone size is 256 MB. Therefore the system has 80 data zones. Different numbers
of code zones are added to the default system configuration for evaluation. The
results are shown in Figure 9.

It is shown that the read response is largely benefited by the adding of code
zones, as expected. The improvement quickly saturates at around 8 code zones.
In this case, the extra space cost is 8/80=10%. The RR ratio is 69% in this
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Figure 9: Responsiveness ratios when different numbers of code zones. The
smaller the ratios are, the better.
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Figure 10: Response ratios with different stripe-block sizes.

case. In other words, in average reads are speeded up by about 31%. It is quite
impressive. As to the WR ratios, the proposed striping scheme do not much
affect them. Minor improvement of write response is gained because reads are
not scheduled to the banks that already have been congested by writes. However,
the interpretation of the WR ratios should be that the proposed striping scheme
introduces no negative performance impact to the handling of writes.

4.2.2 Stripe-Block Sizes

The choose of the size of the stripe-block size is a tradeoff between performance
and RAM-space requirements. The smaller the stripe-block size is, the larger
RAM space is required for address translation in FTL. That is because a larger
RAM-resident table is needed for fine-grained address translation. However, the
benefit of using small stripe blocks is better parallelism. For example, a small
write that is of 8 512-byte sectors can be parallelized over 4 banks if the stripe
block is 1 page large (i.e., 2 KB). The same write involve only one bank if the
stripe block size is 4 page large. Different stripe-block sizes are applied to the
default system configuration for evaluation.

The results are shown in Figure 10. In general, the larger the strip-block
size is, the larger the improvement of read response is. There are some reasons:
First, with large strip blocks, data must be accessed in terms of large stripe
blocks even if only a small piece of data is requested. Reads and writes to
small data are enlarged. Because small requests involve only a small number
of banks or even only one bank, the difference among banks’ loads becomes

11



���
���

���
���
���

����

	
 �� �
� 
�� ��
 ��
�
�
�������������

��
��
��

��
��	


��
�

�������
�
�������
�

Figure 11: Response ratios with different zone sizes.

large. Second, because writes to hot data are small, many extra data might
be written. The extra data writes would consequently introduce more garbage-
collection activities. The uneven bank utilization is further exaggerated. Third,
large stripe blocks would cluster requests of moderate sizes as if the requests
were small. Response of writes are not much affected, as explained earlier.

4.2.3 Zone Sizes

The choosing of the zone size would affect the usefulness of the redundancy-
allocation policy. The larger the zone size is, the smaller number of zones we
have. In other words, the resolution of redundancy allocation becomes low if
large zones are used. As a result, the accuracy to capture the localities of reads
is then largely affected. On the other hand, to use small zones would increase
the number of spare blocks needed, because every segment in zones are allocated
to a fixed number of spare blocks (2 per segment in the default configuration).
Different zone sizes are applied to the default system configuration for evalua-
tion.

The results of evaluating our striping system with different zone sizes are
shown in Figure 11. Non-intuitively, as the zone size is enlarged, the read
response is much improved. It is because the number of spare blocks added to
each segment is fixed. The larger the zone size is, the higher a segment’s space
utilization is. High space utilization would introduce heavy garbage-collection
activities, as reported in [2]. Intensive garbage collection would heavily congest
the traffic to a bank, and thus the proposed striping scheme would help to
utilize other lightly loaded banks. As the zone size is larger than 256 MB, the
read response ratios increases. It is because very large zones would reduce the
accuracy to capture the read localities, as mentioned in the previous paragraph.
Again, the write response is not much affected in this part of experiments.

4.3 Discussions

The experimental results shows that, by adding a small amount of redundancy,
i.e., 10% extra space as code zones, the proposed striping scheme can effectively
improve the response of reads. The organization of the striping system concerns
not only the effectiveness of the proposed striping scheme but also resource re-
quirement to manage flash memory (i.e., RAM-space requirements). Generally,
for large-scale flash-memory storage systems such as high-capacity SSDs, large
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mapping units are adopted so as to reduce the size of RAM-resident address
translation table. The results show that our striping scheme largely helps when
large stripe blocks are used. Note that a stripe block is no smaller than a map-
ping unit. The benefit of using large mapping units (i.e., stripe blocks) is not
absolute. There are tradeoffs between performance and resource requirements
when choosing the mapping-unit size, as described in [6]. We have shown that,
our striping scheme is very beneficial with reasonably large mapping units, such
as 4 pages, are used.

To manage large flash memory, in practice the entire flash-memory space is
partitioned into fixed-sized zones and to cache only a limited number of trans-
lation tables in RAM [11]. It is of two purposes: 1) To reduce the RAM-space
requirements, and 2) to avoid scanning the entire flash memory to construct
the translation table. However, if the zone size is too large, not only it takes
lengthy time to scan flash-memory blocks to construct the translation table but
also the cache of translation tables might suffer from threshing. It consists with
our observations on the proposed striping system with different zone sizes. The
striping scheme helps a lot with the zone size is large, but the improvements of
read response is gradually diminished when the zone size becomes fairly large.
A reasonably large zone size, 256 MB, is suggested by our experiment results.

5 Conclusion

In this paper, a novel striping scheme for flash-memory storage systems is con-
sidered. We found that parallelism does not much benefit the fulfillment of large
requests because of the confliction between the localities of reads and writes. An
erasure-code-based striping scheme is introduced. The basic idea is to achieve
load balancing by the ability of erasure resilience. A redundancy-allocation
policy, a request-scheduling algorithm, and a read-ahead policy are presented
to realize the idea. Experiments show that the system repones is dramatically
improved with the cost of a small amount of extra space for the storage of
redundancy.

In the further work, we would continue investigating the performance bene-
fits of using different coding schemes. As optimal erasure resilience might not
be a primary concern, to develop simple yet effective coding scheme for load
balancing over banks is an interesting issue.
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Appendix: Discussions on Coding Schemes

This section provides discussions on different coding schemes and the rationales
of choosing the coding scheme shown in Section 3.1.

The price of erasure resilience is not always expensive. For example, the
parity check of standard RAID-5 tolerates no more than one erasure. Mirroring
is another policy that tolerates erasure. In our problem, the optimality of erasure
resilience do not largely concern because erasure does not mean data loss.

Let us first start with some definitions: Let a coding scheme be denoted by
a graph, in which a vertex refers to a data block d or a code block c. Code
blocks are coded by data blocks only. In other words, only systematic codes
are considered [14]. Let Gn denote a graph which has n data blocks (vertices
d0, d2, ..., dn−1) and n code blocks (vertices c0, c2, ..., cn−1). An edge connecting
a data block and a code block indicates that the code block is XOR’ed by the
data block. A code block or a data block may have many edges connected to. Let
|Gn| be the total number of different subsets of {d0, d1, ..., dn} ∪ {c0, c1, ..., cn},
and each of the subsets has exactly n elements and the subset sufficiently decodes
{d0, d1, ..., dn}. It reflects the scheduling flexibility.

One simple question is that what graph Gn would be so that |Gn| is the
largest. To find out, a systematic procedure is adopted. Let a block be denoted
by a vector (a0, a1, ..., an−1) over field Z2, in which ai = 1 if it is XOR’ed to data
block di. For example, data block d0 is (1, 0, ..., 0), and (1, 1, 1, 0, 0, ..., 0) refers to
a code block d0⊕d1⊕d2. To check whether a subset sufficiently reconstruct the
original data, the linear independence of the vectors of the blocks in the subset
is checked. For example, consider {d0, d1, d2, c0=d0⊕d1,c1=d1⊕ d2,c2=d2⊕d0 }.
Two subsets

{d0, c0, c1} =




1 0 0
1 1 0
0 1 1


 and {c0, c1, c2} =




1 1 0
0 1 1
1 0 1




. The determinant of the second matrix is zero and thus some data blocks can
not be decoded. Let a regular graph Gm

n be defined by

{∀i < n,∀j < m|e(ci, d(i+j)%n)}

Figure 12(a) shows regular graph G2
3, and Figure 12(b) is regular graph G3

5.
By the test described in the last paragraph, |Gm

n | can be systematically com-
puted. The results are shown in Table 1. The mirror scheme (e.g., m=1) and
conventional party-check scheme (e.g., m=n, that of RAID-5) are shown to be
the worst and the second worst in all cases. One interesting finding is that, by
using the systematic test procedure, for n ≤ 5, a regular graph is one among
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Figure 12: Examples of regular graphs on G2
3 and G3

5.

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8

n=3 8 16 10

n=4 16 45 56 17

n=5 32 121 162 176 26

n=6 64 320 492 472 512 37

n=7 128 841 1,570 1,737 1,570 1,408 50

n=8 256 2,205 4,600 4,785 4,600 5,469 3,712 65

Table 1: Enumeration of |Gm
n |.

the best choice. For n ≥ 6, the best choice is not necessarily a regular graph.
However, currently we have no explanations on this.

Regarding n, because in a realistic striping system the number of banks is
usually a power of 2 (e.g., 4 banks, 8 banks, or 16 banks), we choose n = 4
because it divides the total number of banks. As to m, by the results of Table
1, m = 3 is suggested because |G3

4| is the largest. However we decide to take G2
4

instead of G3
4. It is the graph-based decoding procedure mentioned in Section

3.2 has some problem with regular graph G3
4. Consider the Tanner Graph of G3

4

shown in Figure 13(a). As A⊕B⊕C , C⊕D⊕A, and D⊕A⊕B are retrieved, then
the three corresponding left-hand nodes and the connected edges are removed.
The left-hand node of A is not removed because it is connected to two edges.
However, A can be decoded by (A⊕B⊕C)⊕ (C⊕D⊕A)⊕ (D⊕A⊕B). There are
many such exceptions in G3

4. On the other hand, G2
4 suffers from no the problem,

and thus we choose it.
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(a) The Tanner Graph over data blocks 
and code blocks

(b) After retrieving A+B+C, D+A+B, and 
C+D+A, A is still not decoded by the graph.
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Figure 13: A problem of using Tanner Graph to decode G3
4.
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