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ABSTRACT 

A vision-based vehicle system for security patrolling in indoor environments 

using an autonomous vehicle is proposed. A small vehicle with wireless control and a 

web camera which has the capabilities of panning, tilting, and zooming is used as a 

test bed. At first, an easy-to-use learning technique is proposed, which has the 

capability of extracting specific features, including navigation path, floor color, 

monitored object, and vehicle location with respect to monitored objects. Next, a 

security patrolling method by vehicle navigation with obstacle avoidance and security 

monitoring capabilities is proposed. The vehicle navigates according to the node data 

of the path map which is created in the learning phase and monitors concerned objects 

by a simplified scale-invariant feature transform (simplified-SIFT) algorithm 

proposed in this study. Accordingly, we can extract the features of each monitored 

object from acquired images and match them with the corresponding learned data by 

the Hough transform. Furthermore, a vehicle location estimation technique for path 

correction utilizing the monitored object matching result is proposed. In addition, 

techniques for obstacle avoidance are also proposed, which can be used to find the 

clusters of floor colors, detect obstacles in environments with various floor colors, and 
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integrate a technique of goal-directed minimum path following to guide the vehicle to 

avoid obstacles. Good experimental results show the flexibility and feasibility of the 

proposed methods for the application of security patrolling in indoor environments. 
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摘要 

本論文基於電腦視覺技術提出了一套室內安全巡邏自動車系統，採用一台載

有 PTZ 網路攝影機及具無線遙控功能的小型自動車作為實驗平台。本論文首先

提出了一個易於使用的學習方法，供系統作學習巡邏環境之運用，其中包括：巡

邏路線、地板顏色、監控物品，以及自動車相對於監控物品之位置。接著，本論

文提出一個自動車安全巡邏的方法使自動車能進行安全監控以及障礙物自動閃

避的工作。自動車會根據學習到的路徑作巡邏，並利用本論文所提出的簡化式

SIFT(Scale Invariant Feature Transform)方法進行物品監控。該方法從含有監控物

品的影像中抽取特徵點，並與學習所得版本進行比對，再藉由霍夫轉換找出兩版

本間的仿射轉換，據以測定自動車相對於物品之位置，以及修正自動車航行路徑

的偏移。此外，本論文也利用地板的代表顏色來偵測障礙物，讓自動車適應於花

色地板的環境，並整合目標導向路徑追隨之策略，使車子能自動閃避障礙物。最

後我們利用一實際的室內環境來測驗本論文所提出的系統，結果自動車能順利自

動修正路徑以及監控物品，顯示出本論文所提方法的完整性以及可行性。 
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Chapter 1  
Introduction 

1.1 Motivation 

In recent years, studies on vision-based autonomous vehicle navigation are in 

high prominence because of its great potential in various applications and the 

developments of computer vision techniques [1]. They give autonomous vehicles the 

ability to perform a great variety of dangerous or dreary works in replacement of 

human beings, for example, interoffice document delivering, unmanned transportation, 

house cleaning, security patrolling, etc. 

Today, for security surveillance, we usually install lots of stationary cameras to 

monitor indoor environments. Success of environment security monitoring depends 

on the operator’s endeavor to keep track of the videos taken by cameras. This way 

spends much time and manpower and lacks efficiency. Moreover, it results in 

weakness of the surveillance system because of its fixed field of view. These obvious 

disadvantages of conventional security surveillance systems prohibit more intelligent 

environment monitoring and surveillance applications. 

In order to overcome the above problem, we can employ a vision-based 

autonomous vehicle which has high mobility and is equipped with more capable 

cameras. It can be utilized to patrol in indoor environments to assist the security 

surveillance system to monitor the area uncovered by still cameras’ fields of view. 

And we can use it in replacement of patrolling guards to conduct security patrolling 

ceaselessly. When the vehicle detects an abnormal condition, it can send an alert 
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message to the security center. This provides more efficient and reliable security 

protection. 

To develop autonomous vehicle systems for indoor security patrolling 

applications, the most critical requirement is that the vehicle has to be guided smartly 

when patrolling in indoor environments. Facing this challenge, learning artificial 

landmarks or specific scene features in the environment and locating the vehicle by 

landmark or feature matching are feasible solutions. Although many works based on 

these ideas have been developed in the past decade, most of them can only learn 

landmarks with special shapes or in ideal backgrounds like pure-colored ones, 

resulting in unreasonable restrictions on environments in which the vehicle can 

navigate. Therefore, it is desired in this study to design a method utilizing the 

technique of monitored-object image matching for vehicle location estimation. The 

idea, simply speaking, is to analyze the 3D geometric transformation of different 

monitored object views to estimate the vehicle location. 

More specifically, in a traditional vision-based autonomous vehicle navigation 

system, the vehicle is usually equipped with a fixed pinhole camera, and the view of 

the vehicle is restricted to be a lower area. Hence, instead of using a fixed pinhole 

camera, we equip the vehicle with a pen-tilt-zoom camera, called PTZ camera in the 

sequel. With the PTZ camera and its movement, the view of the vehicle is extended to 

a wider range. Thus we can monitor objects which are located higher than the camera 

or detect obstacles which are placed lower than the camera, by the images taken with 

the PTZ camera. 

In summary, our research goal in this study is to develop an autonomous vehicle 

security patrolling system with the following capabilities: 

1. navigating in desired environments automatically; 

2. monitoring concerned objects; 
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3. detecting obstacles and dodging automatically; and 

4. calibrating vehicle locations against incremental mechanical errors. 

1.2 Survey of Related Studies 

In order to achieve the mission of security patrolling in indoor environments, the 

design of algorithms for learning navigation paths and recording the features of 

monitored objects is required at first. While the vehicle patrols routinely, some 

unexpected situations might be encountered, such as an obstacle blocking a road 

which the vehicle has to pass. To detect such situations, it is necessary to measure the 

distance between the vehicle and an object. Lai and Tsai [2] proposed a 2D-to-3D 

distance transformation by using a curve fitting technique and a modified 

interpolation technique. The distances between the vehicle and the surroundings in the 

real world were measured accordingly through captured images. For obstacle 

avoidance, Chiang and Tsai [3] proposed a goal-directed minimum-path following 

technique to guide the vehicle in order to avoid collisions with obstacles. Besides, a 

fuzzy guidance technique with two navigation modes was proposed by Chen and Tsai 

[4]. It creates a navigation map with two kinds of learned data. Then, a fuzzy 

guidance technique is applied to accomplish the navigation work according to the 

navigation map. Moreover, a learning method using manual driving was proposed by 

Chen and Tsai [5]. Before the vehicle navigation stage, a user drives the vehicle to 

learn the navigation path and monitoring objects. Then, the vehicle with mechanic 

error correction and visual object monitoring capabilities can accomplish specified 

navigation works. 

For object monitoring, the vehicle has to learn the features of the concerned 
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object and match the features to determine whether the object is exactly the same as 

the previous learned one. There are many progresses made in the use of invariant 

features for object shape recognition or matching in the past decade. Schmid and 

Mohr [6] proposed a local feature detector for general image recognition problems. 

Mikolajczyk and Schmid [7] extended this idea to the Harris-Laplace detector and 

used it to detect points of interests at several scales and to select the right scale by 

computing the maximum Laplace function. Lowe [8] used a scale-invariant detector 

to find the extrema in the difference-of-Gaussian scale-space. He then created a 

scale-invariant feature transform (SIFT) descriptor to match key points using a 

Euclidean distance metric in an efficient best-bin first algorithm where a match is 

rejected if the ratio of the best and the second best matches is greater than a threshold. 

While the vehicle patrols, the vehicle location is the most vital information to 

keep the navigation in track. Traditionally, an autonomous vehicle is equipped with an 

odometer to measure the current location of the vehicle. However, it usually suffers 

from incremental mechanic errors. Thus we need a technique of vision-based vehicle 

location estimation to reset the mechanic error. 

Fukui [9] proposed a method for vehicle location by utilizing a diamond shape 

whose boundary consists of four identical thick line segments with known lengths. 

Magee and Aggarwal [10] used a sphere on which two perpendicular great circles 

were drawn as a standard landmark for vehicle location. Huang et al. [11] also used a 

colored rectangle signboard and obtained the relative position between the signboard 

and the vehicle by calculating the vanishing points in the image of the signboard. 

Moreover, Chou and Tsai [12] proposed a method which utilizes a house corner 

existing naturally in the house to estimate the vehicle location. And Chiang and Tsai 

[13] simplified the Chou’s formula and applied the resulting technique to the 

application of indoor vehicle guidance with a PTZ camera. 
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1.3 Overview of Proposed Approach 

In this study, it is desired to develop an effective vision-based autonomous 

vehicle system for security patrolling in indoor environments. With this purpose, an 

easy-to-use learning method which processes the odometer data of manual driving 

obtained in learning and the features of monitored objects extracted in navigation 

automatically is proposed. Secondly, a vision-based navigation technique with 

obstacle avoidance and specific object monitoring capabilities is proposed. Finally, a 

vehicle location calibration technique based on monitored-object image matching 

results is proposed. 

We use the odometer to provide the position of the vehicle and the image 

captured by the PTZ camera equipped on the vehicle to monitor higher-located 

objects as well as the surrounding environment. An overall framework of the proposed 

system is illustrated in Figure 1.1. Here we divide the work conducted by the system 

into two phases: the learning phase and the navigation phase. 

In the learning phase, the proposed learning method consists roughly of four 

steps. The first step is navigation path learning. Since the vehicle must know where to 

patrol, we control the vehicle to move to desired places through a user interface. Then, 

the vehicle processes the odometer data to get the positions of desired places and then 

records these data as navigation nodes along the learned path. While the vehicle is 

entering a different floor environment, in order for the system to avoid misrecognizing 

a new floor as an obstacle, the vehicle has to record the features of the new floor as 

part of the navigation node data. 

The second step is monitored object learning. In this step, the vehicle has to 

record the features of the objects to be monitored. With the use of the PTZ camera, the 

vehicle can capture the images of the monitored objects which are located higher than 
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Figure 1.1 An overall framework of proposed system. 

the camera. For object recognition and matching, Lowe [8] proposed the SIFT to 

extract features from given images as SIFT descriptors and used a best-bin first 

algorithm for SIFT descriptor matching, as mentioned previously. Since in the 

navigation phase, the position of the same monitored object will be just close to, 
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instead of exactly at, the one found in the learning phase, resulting in a slight variation 

on the scale of the taken images, we propose in this study a simplified SIFT which 

reduces the difference of Gaussian scale layers. It is faster than the original SIFT to 

meet real-time security monitoring needs. 

The third step is vehicle locations learning. While using the monitored object 

matching results for vehicle location adjustment, the system requires the knowledge 

of the vehicle position with respect to the monitored object. Thus a position relative to 

the monitored object is recorded. 

The final step of the learning phase is creation of a learned path map. The 

navigation nodes and the features of the monitored objects recorded in the previous 

step are processed to create a path map in this step. This path map is designed to be in 

a form of graph which is composed of a set of nodes connected with edges. The path 

map can then provide the patrolling data for use in the navigation phase. 

In the navigation phase, the vehicle reads the path map and moves along the path 

nodes orderly in accordance with the map data. While the vehicle navigates, we 

analyze the floor images taken by the camera continuously. If an obstacle is detected 

on the patrolling path, a new path for obstacle avoidance and destination approaching 

is planned. If the vehicle navigates to a node where a monitored object is located, it 

detects the object and adjusts the vehicle location to move to the right navigation path. 

If the vehicle finds the concerned object missing, a warning message will be issued. 

In summary, an autonomous vehicle navigation system for indoor security 

patrolling applications with capabilities of novel learning and self-adjustment of 

navigation paths is proposed. The vehicle can utilize the navigation map acquired by 

the proposed learning process to navigate in desired indoor environments and monitor 

concerned objects. 
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1.4 Contributions 

The main contributions of this study are summarized in the following. 

(1) A simplified SIFT algorithm for automatic matching of monitored object images 

captured by PTZ cameras is proposed. 

(2) A vision-based vehicle location estimation method utilizing monitored-object 

image matching to avoid mechanic error accumulation is proposed. 

(3) A method for security monitoring of various types of concerned objects is 

proposed. 

(4) A method based on k-means clustering of floor colors for real-time obstacle 

avoidance in environments with various floor colors is proposed. 

(5) A vision-based detection of obstacles by learned floor colors is proposed. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we describe 

the system configuration of the vehicle used as a test bed in this study, as well as the 

principle of vehicle learning and guidance. In Chapter 3, the proposed techniques for 

extraction of specific features such as navigation path, floor color, monitored object, 

vehicle location with respect to monitored objects are described. In Chapter 4, the 

proposed method for security patrolling by vehicle navigation with obstacle 

avoidance capability and the security monitoring processes is described. In Chapter 5, 

the proposed method for detecting monitored objects by object image matching is 

described. In Chapter 6, the proposed vision-based vehicle location estimation by 

object image matching results to correct the odometer records in the vehicle is 
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described. In Chapter 7, the proposed method for obstacle avoidance in various floor 

environments is described. Some experimental results are shown in Chapter 8. 

Finally, some conclusions and suggestions for future works are given in Chapter 9. 
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Chapter 2  
System Configuration and 
Navigation Principles 

2.1 Introduction 

For security surveillance, a vision-based autonomous vehicle system in indoor 

environments might face many unexpected conditions, such as colliding with 

obstacles, passing through narrow paths, finding missing valuables, etc. In order to 

achieve the objective of security patrolling by an autonomous vehicle, a small and 

agile vehicle is the best choice for this study. It is suitable to navigate in the large 

patrolling area and monitor the open space such as corridors, lobbies, or exhibition 

halls. 

The autonomous vehicle system used in this study is composed of a small vehicle 

and a pan-tilt-zoom camera. For users to control the vehicle, some communication 

and control equipments are required. The entire system configuration including 

hardware equipments and software is introduced in Section 2.2. 

To navigate in an unknown indoor environment, a learning strategy is necessary 

to teach the vehicle where to navigate, what to monitor, and how to adjust the vehicle 

locations before starting security patrolling. In the following sections, we describe the 

vehicle navigation principles and the overviews of the detailed processes. In Section 

2.3, the principle and process of learning navigation paths and environment features 

are described. In Section 2.4, the principle and process of the security patrolling in 
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which the vehicle monitors concerned objects and patrols in desired indoor 

environments automatically are described. 

 

(a) 

(b) (c) 

Figure 2.1 The vehicle Pioneer3-DX used in this study. (a) A perspective view of the vehicle. 

(b) A front view of the vehicle. (c) A left-side view of the vehicle. 
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2.2 System Configuration 

In this study, we use the Pioneer 3-DX, an agile, versatile intelligent vehicle 

made by MobileRobots Inc., as a test bed. The vehicle is equipped with a 

pan-tilt-zoom camera, as shown in Figure 2.1. Because the whole system is controlled 

by users remotely, some wireless communication equipments are necessary. The 

hardware architecture and used components of the test bed are described in Section 

2.2. Besides, the software including application programming interfaces and 

development tools we used in the study to help us develop the system and provide an 

interface for users to control the vehicle is described in Section 2.2.2. 

2.2.1 Hardware configuration 

The entire navigation system is composed of three parts, as shown in Figure 2.2. 

The first part is a vehicle system with a build-in wireless device and an embedded 

control system. The vehicle has an aluminum body of the size of 44cm×38cm×22cm 

with two 19cm wheels and a caster. The vehicle can climb a 25% grade and sills of 

2.5cm. On flat floors, the vehicle can reach a forward speed of 160cm per second and 

a rotation speed of 300 degrees per second. There are three 12V rechargeable 

lead-acid batteries in the vehicle which supply the power. The vehicle can run 18-24 

hours with the three fully charged batteries. By a user’s command, the embedded 

control system can control the vehicle to move forward or backward or to turn around. 

The system is also able to return some status parameters of the vehicle to the user. 
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Figure 2.2 Structure of proposed system. 

The second part is a digital IP camera with panning, tilting, and zooming (PTZ) 

capabilities. The PTZ IP camera used in this study is an AXIS 213 PTZ made by 

AXIS, as shown in Figure 2.3. This is a camera with a height of 130mm, a width of 

104 mm, a depth of 130mm, and a weight of 700g. The pan angle range is 340 

degrees and the tilt angle range is 100 degrees. It has 26x optical zoom and 12x digital 

zoom. The image captured in our experiments is of the resolution of 320×240 pixels 

for the reason of raising image processing efficiency. Moreover, the camera is directly 

connected to an access point by a network cable for transmission of the captured 

image. 
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(a) 

 
(b) 

 
(c) 

Figure 2.3 The pan-tilt-zoom camera used in this study. (a) A perspective view of the camera. 

(b) A front view of the camera. (c) A left-side view of the camera. 

The third part is a remote control system using a notebook PC. A control program 

can be executed on the remote control system to issue commands and get the status 

information from the vehicle and the PTZ camera. All commands transmitted to the 

vehicle or to the camera are through the wireless network. There is an access point in 

our test environment which meets the IEEE 208.11g standard to offer a bandwidth for 

the remote control system to communicate with the vehicle and the camera. Both the 

vehicle and the remote control system own wireless devices to connect to the access 

point, and the camera connects to the access point via a network cable. In other words, 
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we use the access point as a medium to connect the three parts of the proposed 

navigation system. 

2.2.2 Software configuration 

The MobileRobots Inc. provides an Advanced Robotics Interface for 

Applications (ARIA) which is an object-oriented programming interface in the C++ 

language to control the mobile robot. The lowest-level data and information of the 

vehicle are also retrieved easily by means of the ARIA. In other words, using the 

ARIA as an interface makes developers to communicate with the embedded system of 

the vehicle. And we use the Borland C++ builder as the development tool in our 

experiments. 

For PTZ camera controlling, the AXIS Company also provides a development 

tool called AXIS Media Control SDK for the AXIS 213 PTZ. With the SDK, we can 

preview the image of the camera’s view and get the current image data from the 

camera. We can also perform the panning, tilting, and zooming actions easily through 

the SDK. It is convenient for users to develop any function with the images grabbed 

from the camera. 

2.3 Learning Principle and Proposed 
Process 

To perform security patrolling in an unknown environment, a learning process is 

necessary. It is desired to develop an easy-to-use learning process which can learn the 

knowledge of desired navigation paths and concerned objects. As soon as the learning 
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process ends, the navigated paths, the features of the monitored objects, and the 

vehicle locations’ data are recorded in advance. The entire learning process in this 

study is shown in Figure 2.4. 

In order to help users teach the vehicle, a user control interface is designed for 

use in controlling the vehicle and specifying the objects to be monitored. The user 

drives the vehicle to navigate in indoor environments and move to the front of the 

concerned objects. The main recorded data include two categories, namely, 

path-related data and object-related ones. As soon as the learning process ends, all 

data are stored in the storages of the computer such that the learning process is only 

executed once and the data can be used repeatedly. 

More specifically, while the vehicle navigates in an open space by the control of 

a user, it records the path data provided by the odometer, and denotes them as 

navigation nodes. It also analyzes the images taken by the camera continuously to 

detect whether the colors of the floor change. If the colors change, the vehicle records 

the colors of the new floor and the navigation node data which represents the start 

position of the new floor. 

When the vehicle arrives at the front of a concerned object, the user can control 

the PTZ camera to move toward the object and select the object in the image captured 

by the camera. Then, the features of the object are computed automatically from the 

images by performing the simplified SIFT. And the relative position between the 

vehicle and the monitored object is also computed automatically from the image 

subsequently. With such manners, the user can specify the concerned objects 

continuously along the path until finishing a learning process. 

After finishing the learning process, a navigation map which consists of the path 

and monitored objects data is created and saved into a text file for use in the 

navigation phase. 
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Figure 2.4 Flowchart of proposed learning process. 
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2.4 Vehicle Guidance Principle and 
Proposed Process 

Before the vehicle starts to patrol, the system reads the path map created in the 

learning phase, as mentioned previously. In order to guide the vehicle along the 

learned path, the vehicle moves sequentially from one node to another according to 

the path map. While the vehicle patrols in indoor environments, two things should be 

paid attention to. One is whether the vehicle reaches the next node or not. The other is 

whether the vehicle encounters an obstacle or not. An illustration of the vehicle 

navigation process is shown in Figure 2.5. 

When the vehicle reaches the next node, it checks first whether the node includes 

the monitored object data or the color data of the new floor. If the node includes the 

color data of the new floor, the vehicle updates the reference color of the floor which 

the obstacle detector uses for recognizing an obstacle on the floor. If the node includes 

the monitored objects data, the vehicle uses the learned data to detect whether the 

object still exists or not. If the detection or matching process of the object fails, the 

system will issue an alarm message to the user. Otherwise, the vehicle uses the 

learned vehicle locations’ data to adjust the vehicle’s location. 

Besides, the vehicle might encounter an obstacle blocking the navigation path in 

the patrolling process. In order to detect such a condition, the system analyzes the 

images taken by the camera continuously by the use of the floor color to recognize an 

obstacle on the floor. If an obstacle is detected on the patrolling path, a new path for 

obstacle avoidance and destination approaching is planned. With such navigation 

processes, the vehicle can patrol alone the learned path to accomplish specified 

security patrolling works. 



 

19 
 

 
Figure 2.5 Flowchart of proposed navigation process. 
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Chapter 3  
Learning Strategies for Indoor 
Navigation by Manual Driving 

3.1 Ideas of Proposed Techniques Used 
in Learning 

In general, indoor environments are usually complicated and the concerned 

objects are placed at different positions, and so building a complete path map to guide 

the patrolling vehicle is indispensable. Thus, to create the path map and select 

monitored objects is a primary work for security patrolling by vehicle navigation. In 

this chapter, we divide the data to be learned into two categories, namely, the camera 

parameters and the environment features. After learning whole data, we utilize the 

data to build the path map for security patrolling and save it into the storage of the 

computer, as described in Section 2.3. 

3.1.1 Learning camera parameters 

While the vehicle navigates, many unexpected situations might be encountered, 

such as facing an obstacle in front. It is desired to measure the distance between the 

vehicle and an object. Since the camera is the only sensor to gather the features of the 

environment, the calibration of location mapping and image analysis techniques are 

necessary in this study. We utilize a real-world location data acquisition method [5] by 

the calibration of location mapping to obtain the relative position between the vehicle 
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and an obstacle precisely. The detailed process is described in Section 3.2.1  

Besides, while calculating the relative position between the vehicle and the 

monitored object, it is necessary to know the camera intrinsic parameters, such as the 

focus length, the coordinates of the image center, etc. Hence, we adopted a method 

proposed by Shu et al. [14] for calibrating the camera based on planar checkerboard 

patterns in this study. The detailed calibration process is described in Section 3.2.2 

3.1.2 Environment features for learning 

In order to navigate in an unknown environment, four kinds of environment 

features for learning are used in this study. The first is navigation path data. Although 

we can get the position of the vehicle by the odometer value at any time, it desired to 

represent the entire path by simple and useful values. In Section 3.3.1, we describe 

how to gather path data when the user controls the vehicle to navigate in an indoor 

environment. The second feature is floor color. For obstacle avoidance, how to detect 

an obstacle in various floor environments is the key issue. Hence, we propose a 

detection method which uses the learned floor color based-on k-means clustering, as 

illustrated in Section 3.3.2. The third feature is the monitored objects’ feature. In order 

to monitor concerned objects, the vehicle must firstly learn the features of them. Then 

the vehicle can perform object monitoring by matching the features computed in the 

navigation phase. We propose a simplified SIFT in this study to transform 

monitored-object images into the features. The detailed learning process is described 

in Section 3.3.3. The last feature is the vehicle location with respect to each monitored 

object, as illustrated in Section 3.3.4. 
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3.2 Camera Calibration 

3.2.1 Calibration of location mapping 

In order to measure the distance between the vehicle and an object, we map the 

tessellated points in the image coordinate system to the ones in the global coordinate 

system, as shown in Figure 2.2. 

Using a point set attached on the floor with coordinates known in the global 

coordinate system, as the red points shown in Figure 2.2, and their corresponding 

point set appearing in the image taken by the camera, we can get a point-to-point 

coordinate transformation from the image coordinate system to the global coordinate 

system. And for any point that is not exactly at the tessellated point, an interpolation 

method is performed to gather their corresponding coordinates in the global 

coordinate system. 

 

Figure 3.1 An illustration of attaching grids on the floor. A point set attached on the floor with 

coordinates known in the global coordinate system, as the red points. 
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3.2.2 Calibration of intrinsic parameters 

In order to calibrate the camera, we use a program named CAMcal [14] to 

calibrate the intrinsic parameters of the camera. The program reads a sequence of 

images of planar checkerboard patterns. The checkerboard pattern consists of tiled 

black or white squares with 2cm edges, as shown in Figure 3.3(a). After reading the 

images, as shown in Figure 3.3(b), the program extracts the features from the images 

of patterns and matches them with those of the patterns themselves, as shown in 

Figure 3.2. Once the correspondences between the points in the images and those in 

the pattern are established, the camera’s intrinsic parameters such as the focus length, 

the origin of the image in the image coordinate system, and the distortion coefficients 

can be computed automatically. 

 

Figure 3.2 CAMcal user interface with the extracted grids result. 



 

24 
 

 

(a) 

 

(b) 

Figure 3.3 The checkerboard pattern used for the intrinsic parameters. (a) The printable 

checkerboard pattern. (b) The image of checkerboard pattern taken by the camera. 

3.3 Learning of Specific Features 

3.3.1 Learning of navigation paths composed of 

nodes 

When the vehicle navigates in an open space by the control of a user, the 

odometer provides the current position data continuously. The position data consist of 

the vehicle coordinates (x, y) in the vehicle coordinates system and the direction 

angles θ with respect to the vehicle’s position and direction of the navigation starting 

point, respectively. We record both the vehicle coordinates and the direction angle as 

path data in this study. 

In order to simply the data of learned paths, we only save the coordinates (x, y) 

which are called node Ni while the vehicle at one of the following three situations: 

(1) when the user controls the vehicle to turn; 
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(2) when the vehicle detects a new color of the floor; 

(3) when the user controls the vehicle to learn a concerned object. 

Each node includes the coordinates and the direction angle values and is labeled 

with a serial number. These nodes then form a graph of the learned path. 

A control user interface is designed for user to drive the vehicle, as shown in 

Figure 3.4. When the user controls the vehicle to move to a desired place, the vehicle 

system will automatically collect the node data. After finishing learning, we have a set 

of notes, denoted as Npath. The process of recording the path data is described as an 

algorithm in the following. 

 

Figure 3.4 Control user interface. 
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Algorithm 3.1 . Path node collection. 

Input: The coordinates provided by the odometer in the vehicle. 

Output: A set of nodes denoted by Npath ={N0, N1, N2, …, Nt}. 

Steps: 

Step 1. Record the first node as (x0, y0, θ0) = (0, 0, 0) into the set Npath and mark the 

node as N0 with index 0, when the vehicle is at the starting position. 

Step 2. Record the node Ni(xi, yi, θi) into the set Npath by taking the values of the 

odometer (x, y) and the direction angle θ, and label the node Ni with the next 

index number, when the vehicle is at one of the following three situations: 

(4) when the user controls the vehicle to turn; 

(5) when the vehicle detects a new color of the floor; 

(6) when the user controls the vehicle to learn a concerned object. 

Step 3. Repeat Step 2 until the learning process is finished. 

Step 4. Record the finally node Nt into the set Npath and label it as Nt by the next 

index number. 

Step 5. Save all the nodes of the set Npath into the storage of the computer. 

 

As an illustration of the result of applying Algorithm 3.1, we show an example of 

recorded nodes in Figure 3.5. It is shown that all nodes of the three situations are 

recorded in addition to the start and the end nodes. Each node is labeled with index 

numbers according to the order of patrolling. The index numbers are useful for path 

map creation and object monitoring. 
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Figure 3.5 An illustration of learned data. 

3.3.2 Learning of floor colors by k-means clustering 

In order to detect an obstacle on various floors, we propose a method by learning 

the colors of the floors to distinguish between an obstacle and the floor. We design an 

algorithm to cluster the colors of the floor as features. One reasonable assumption is 

that there is no obstacle in the initial image captured by the camera. Under this 

assumption, we can apply a k-means clustering algorithm to compute the floor-color 
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features of the initial floor environment. Traditional clustering techniques usually 

choose the RGB space as the feature space. But the color distance in the RGB space 

usually can not represent the similarity of the similar color in the real world. Thus we 

first transform the image from the RGB space into the Lu’v’ space. Then we can find 

the clusters in the 2D plane containing the chromatic value of the color and associate 

them with appropriate clusters in the 1D luminance space. The detailed algorithm will 

be described in Section 7.3. After clustering the colors of the floor successively, we 

can retrieve a set of the color features of the floor, denoted as Cfloor = {ci}i=1,…,n , as 

shown in Equations (3.1) below, defining the main colors within the image. The color 

features set of the floor is useful in determination of obstacle existence and finding a 

collision-free path later. 

{ }
{ }

1,2,...,
;

, , .
floor i i n

i i i i

C c

c L u v
=

=

′ ′=
 (3.1) 

While a user controls the vehicle to learn the navigation paths, the vehicle 

performs the above clustering algorithm periodically. In realistic environments, the 

colors of the floor and the illumination might change slightly while the vehicle moves, 

resulting in the changes of the color features; Therefore, we threshold the differences 

of the color features. If the difference of the color features is higher than a threshold 

parameter, a new node which represents this new floor is created automatically. And 

the vehicle can use this node to know where the new floor begins in the navigation 

phase. The process of detecting and recording the color data of a new floor is 

described as an algorithm in the following. 
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Algorithm 3.2 . The color of the new floor detection and recording by node creation. 

Input: A color image I and the threshold of the color feature differences τ 

Output: A node which represents the beginning of a new floor. 

Steps: 

Step 1. Apply the proposed k-means clustering algorithm on the image I to find the 

color feature set, denoted as Cfloor in the initial state. 

Step 2. Capture a new image of the current environment, denoted as Inew. 

Step 3. Apply the k-means clustering algorithm to find the new color feature set of 

the image Inew, denoted as Cnew. 

Step 4. Compute the difference between Cnew and Cfloor as Cdiff. 

Step 5. If Cdiff  is greater than τ, create a node with Cnew and record it into the path 

by Algorithm 3.1 and update Cfloor as Cnew. 

Step 6. Repeat Steps 2 through 5 until the learning process is finished. 

3.3.3 Learning of monitored objects by simplified 

SIFT 

In order to learn concerned objects, we design a user interface to help users 

specify the object which they want to monitor. While the user controls the vehicle to 

the front of the object to be monitored, they can move the PTZ camera toward the 

object. Then, they can select the object in the image by the use of the mouse 

connected to the computer to drag a rectangle as an interesting region to cover the 

object which appears in the image, as shown in Figure 3.6. Now, we apply the 

simplified SIFT algorithm which is described in Chapter 5 to obtain the feature set of 

the interesting region. Then, we save the vehicle location, the PTZ position, the 

feature set, and the interesting region into the storage of the computer. A flowchart is 
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illustrated in Figure 3.7, and the detail process is described in the following. 

 

Figure 3.6 A red rectangle including the monitored object as an interesting region. 

Algorithm 3.3 . Learning of a monitored object. 

Input: The position P of a monitored object. 

Output: A monitored object information data. 

Steps: 

Step 1. Drive the vehicle to the monitored object position P. 

Step 2. Move the PTZ camera toward the object and take an image I. 

Step 3. Drag a rectangle on the image I as an interesting region. 

Step 4. Apply the simplified SIFT on the interesting region to extract the feature 

set. 

Step 5. Save the vehicle location, the PTZ position, and the feature set of the 

interesting region as a monitored object information data. 

Step 6. Save the interesting region in the image. 
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Figure 3.7 A flowchart of the learning monitored object process. 
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3.3.4 Learning of vehicle locations with respect to 

monitored objects 

With successively monitoring of an object, we can extract an affine 

transformation between the image of the same monitored object in the navigation 

phase and the one found in the learning phase. During the learning phase, if we give a 

horizontal line, which is parallel to the floor plane in the 3D global coordinate system 

in the image, we can acquire the same line found in the image taken in the navigation 

phase by applying this affine transformation. Then, by some analytic mathematics 

analysis on this horizontal line found in the image taken in the navigation phase, we 

can obtain the relative position C(xr, yr) and the relative angle θr of the vehicle in the 

world coordinate system with respect to the monitored object, as shown in Figure 3.8. 

The detailed algorithm is described in Chapter 6. 

 

Figure 3.8 The relative position C(xr, yr) of the vehicle with respect to the start point in the 

world coordinate system. 
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(a) 

 

(b) 

 

(c) 

Figure 3.9 A user interface to specify the horizontal line. (a)A cyan line specified the 

horizontal line of the world coordinate system. (b) A zoom-in window for 

specifying the start point of the line. (c) A zoom-in window for specifying the end 

point of the line. 

Hence, in order to gather the horizontal line, a user interface to help users specify 

the line is necessary. Based on the user interface designed for learning of monitored 

objects, we add two zoom-in windows for users to point out the start point (u1, v1) and 
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the end point (u2, v2) of the horizontal line in the image, as shown in Figure 3.9. 

Successively specifying the line, we can compute the linear equation’s coefficient b 

and c by solving the equation 0u bv c+ + =  with (u1, v1) and (u2, v2), and apply the 

proposed location estimation algorithm described in Chapter 6 to find the relative 

position C(xr, yr) and the relative angle θr. 

Now we have the relative position C(xr, yr) and the relative angle θr between the 

monitored object and the vehicle location. The relative position is useful in adjusting 

the vehicle location while the vehicle patrols to the monitored object in the navigation 

stage. Thus, the last thing is to save the calibration information data including the start 

point (u1, v1), the coefficients b and c, the relative position (xr, yr), and the relative 

angle θr for the use in adjusting the vehicle location in the navigation phase. A 

flowchart is illustrated in Figure 3.10, and the detailed learning process is described in 

the following. 

Algorithm 3.4 . Learning of vehicle locations with respect to monitored objects. 

Input: A color image I including a monitored object and an interesting region selected 

during learning of the monitored object. 

Output: A calibration information data. 

Steps: 

Step 1. Select the start point (u1, v1) and the end point (u2, v2) of the horizontal line 

in the image I which is parallel to the floor plane in the 3D global 

coordinate system. 

Step 2. Compute the coefficients b and c by solving the equation 0u bv c+ + =  

with (u1, v1) and (u2, v2). 

Step 3. Apply the proposed location estimation algorithm described in Chapter 6 to 
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find the relative position C(xr, yr) and the relative angle θr with respect to 

the start point in the 3D global coordinate system as an origin. 

Step 4. Save the start point (u1, v1), the coefficients b and c, the relative position (xr, 

yr), and the relative angle θr as calibration information data for a monitored 

object. 

 
Figure 3.10 A flowchart of learning the vehicle locations process. 
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Chapter 4  
Security Patrolling by Vehicle 
Navigation in Indoor Environments 

4.1 Introduction to Proposed Ideas 

With successfully learned features mentioned in the previous chapter, the vehicle 

can navigate accordingly. In this chapter, we describe in more detail how security 

patrolling is accomplished by the proposed vehicle navigation scheme. 

Firstly, security patrolling must be based on an effective navigation process. In 

Section 4.2.1, we describe how the vehicle is guided by the learned path. According to 

the node data of the path map which is created in the learning phase, the vehicle 

decides which direction to turn or how long it should advance. Secondly, in real 

applications, the environment is usually complicated and the floor typically consists 

of textures of various colors. In order to navigate in such environments, we propose 

an obstacle avoidance technique for various floor environments. We describe the 

proposed technique in Section 4.2.2. Thirdly, while the vehicle navigates, it usually 

suffers from incremental mechanic errors of the vehicle location provided by the 

odometer. Hence, we propose a location estimation method based on the 

monitored-object matching result to adjust the vehicle location in each navigation 

cycle. The detailed adjustment process is described in Section 4.2.3. 

By the effective navigation process, the vehicle now can perform security 

patrolling to monitor concerned objects. In Section 4.3.1, we propose an object 

security monitoring process based on simplified SIFT using the learned feature set of 
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the monitored object. We also suggest some possible types of monitored objects in 

Section 4.3.2. Lastly, we give a summary in Section 4. 

4.2 Ideas of Navigation Process 

4.2.1 Guidance by learned paths 

In a security patrolling process, the vehicle navigates along a learned path by 

visiting each path node consecutively. The learned navigation path, which consists of 

a set Npath of nodes is firstly read by the vehicle at the beginning. The first node of 

Npath is the starting node of the navigation path and specifies the current position of 

the vehicle. Then, the vehicle reads the next node data Ni+1(xi+1, yi+1) and computes a 

turning angle and a moving distance by Equations (4.1) and (4.2) in the following 

algorithm, for the vehicle to move to the next position Ni+1(xi+1, yi+1), as shown in 

Figure 4.1. Repeating the same actions cycle after cycle, the vehicle can navigate 

along the learned path until all nodes have been visited. 

Algorithm 4.1 . Process of vehicle guidance by a learned path. 

Input: A set Npath of nodes. 

Output: Navigation cycles. 

Steps: 

Step 1. Start vehicle navigation from the starting node N0 in Npath. 

Step 2. Scan Npath to read the next node Ni+1(xi+1, yi+1). 

Step 3. Read the position data provided by the odometer to gather the current 

vehicle location coordinates (xodo, yodo) and the current direction angle θodo. 
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Step 4. Compute a vector iV  by using the following equation:  
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Step 5. Compute the direction angle θnew for the vehicle to turn toward the node 

Ni+1 by using the following equation: 

⎟⎟
⎠

⎞
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⎝
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= −

i

i
new X

Y1tanθ . (4.2) 

Step 6. Compute the rotation angle for the vehicle as θturn = θnew − θodo and the 

navigation distance for the vehicle to advance as iVd = . 

Step 7. Turn the vehicle leftward for the angle θturn if θturn is greater than zero; 

otherwise, turn the vehicle rightward for the angle θturn. 

Step 8. Move the vehicle forward for the distance d. 

Step 9. Read the next node data. If there exist remaining nodes, repeat Steps 3 

though 8; else, finish the navigation. 

iV

 

Figure 4.1 Computation of the turning angle and move distance. 
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4.2.2 Obstacle avoidance in various floor 

environments 

The first issue involved in obstacle avoidance is obstacle detection. For obstacle 

detection in various floor environments, we utilize the colors of the floor. More 

specifically, we adopt k-means clustering and a so-called alert line scanning 

technique to recognize an obstacle on floors of various colors. The detail of the 

proposed obstacle detection method is described in Section 7.3.2, and the detail of the 

adopted k-means clustering algorithm is described in Section 7.3.1. If an obstacle is 

detected on a navigation path, a new local path is computed to avoid the obstacle. In 

this study, we utilize the goal-directed minimum path technique [3] to create the new 

local path. The goal of this new local path is to guide the vehicle toward the next node 

of the navigation path without colliding the obstacle. The process of obstacle 

avoidance is described in the following algorithm and a corresponding flowchart is 

shown in Figure 2.2. 

Algorithm 4.2 . Process of obstacle avoidance. 

Input: A color image I. 

Output: Navigation cycles. 

Steps: 

Step 1. Apply the proposed k-means clustering algorithm described in Section 7.3.1 

to the colors of the pixels in image I to get color clusters as the color feature 

set of I. 

Step 2. Scan the alert line to detect if an obstacle exists. 

Step 3. If an obstacle exists, find the distribution of the obstacle; otherwise, repeat 
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Steps 1 through 2 until an obstacle is found. 

Step 4. Detect if the navigation path is impeded by any obstacle. 

Step 5. If an obstacle impedes the navigation path, compute the minimum path for 

the vehicle to avoid the obstacle; otherwise, repeat Steps 1 through 4 until 

an obstacle is found to impede the navigation path. 

Step 6. Drive the vehicle according to the new path. 

Cluster the floor color

Start obstacle avoidance

Minimum-path computation

Drive the vehicle by new 
path

Obstacle  exists

Find obstacle distribution

Navigation is impeded 
by obstacle

Image I 
captured by 
the camera

Scan Alert Line
No

No

Yes

Yes

 

Figure 4.2 Flowchart of obstacle avoidance process. 
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4.2.3 Path correction by monitored object image 

matching 

After successfully monitoring an object, we can take advantage of the matching 

result to adjust the vehicle location. The matching result includes a set of matched 

pairs of features. We define accordingly an affine transform by the use of the set of 

matched pairs. Then we can apply this affine transform to transform a horizontal line, 

which is learned in the learning phase, into the one which is found in the image taken 

by the camera in the navigation phase, as shown in Figure 4.3. 

 
Figure 4.3 A cyan line (on the top of the poster) generated by applying the affine transform. 

Now, we have the same horizontal lines which appear both in the images of the 

monitored object in the learning and in the navigation phases. Let the horizontal line 

which is found in the navigation phase be denoted as lnavi and the one which was 

found in the learning phase be denoted as llearn. By applying the proposed location 

estimation algorithm which is described in Chapter 6, we can gather the relative 

position C(xr,navi, yr,navi) and the relative angle θr,navi , between the current vehicle 

location and the monitored object position. Then, we can adjust the vehicle location 
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by comparing the position C(xr,navi, yr,navi) and the angle θr,navi with the learned position 

C(xr, yr) and the learned angle θr which are computed by llearn in the learning phase. 

The detailed adjustment algorithm is described in Chapter 6. A flowchart is illustrated 

in Figure 4.4, and the detailed path correction process is described as an algorithm in 

the following. 

Algorithm 4.3 . Process of path correction. 

Input: The monitored-object matching results and the learned calibration information 

including the horizontal line, the relative position C(xr, yr), and the relative angle θr. 

Output: the correction process. 

Steps: 

Step 1. Extract the affine transformation from the monitored-object matching 

results. 

Step 2. Apply the affine transformation to gather the new horizontal line in the 

current image. 

Step 3. Apply the proposed location estimation algorithm described in Chapter 6 by 

the new horizontal line and the current PTZ position, to find the relative 

position C(xr,navi, yr,navi) and the relative angle θr,navi , between the current 

vehicle location and the monitored object position. 

Step 4. Compute the correction data to adjust the vehicle by comparing respectively 

C(xr,navi, yr,navi) and θr,navi with C(xr, yr) and θr which are learned in the 

learning phase. 

Step 5. Adjust the vehicle according to the correction data. 
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Figure 4.4 Flowchart of path correction process. 
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4.3 Purposes of Security Patrolling 

4.3.1 Proposed technique for monitoring of objects 

In this section, we briefly describe the proposed security object monitoring 

technique. With successively learned concerned objects, we have stored the feature set 

of each monitored object, the PTZ position which let the PTZ camera face the 

monitored object, and the interesting region which is specified in the learning phase. 

Therefore, in the navigation phase, we firstly move the vehicle to the security 

monitoring node and move the camera to face the monitored object according to the 

learned PTZ position. Then we apply the simplified SIFT algorithm to the image 

taken by the camera to extract a feature set F. By applying the Hough transform, we 

can find the matching pairs of the features between the feature sets F and Flearn. If no 

matching pair is found, the vehicle will issue an alarm message. The detailed 

simplified SIFT algorithms and Hough transform for matching are described in the 

next chapter. A flowchart of the object monitoring process is illustrated in Figure 4.5, 

and the detailed process is described as an algorithm in the following. 

Algorithm 4.4 . Process of object monitoring. 

Input: A color image I taken by the camera, the learned PTZ position, and the learned 

feature set Flearn of the monitored object. 

Output: An alarm message or nothing. 

Steps: 

Step 1. Move the vehicle to the monitoring node according to the learned 

navigation data. 

Step 2. Move the camera to the learned position and let the camera face the 
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monitored object. 

Step 3. Take a color image I and apply the simplified SIFT on it to extract a feature 

set F. 

Step 4. Apply the Hough transform to find the matching pairs of the features 

between F and Flearn. 

Step 5. If no matching pair is found, issue an alarm message; otherwise, finish the 

monitoring process. 

 
Figure 4.5 Flowchart of object monitoring process. 
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4.3.2 Types of monitored objects  

In this study, we propose a simplified SIFT algorithm to transform the image into 

the feature set and matching the features for monitoring concerned objects. Based on 

the previous work of the SIFT algorithm, the used features should be invariant to 

image scaling, translation, and rotation, and partially invariant to illumination changes 

and affine or 3D projection. We transform a monitored-object image into such feature 

sets for monitoring. Hence, possible types of monitored objects are no longer 

restricted to objects with ideal shapes or objects in pure-colored background 

environments. An example of concerned objects in complex backgrounds is shown in 

Figure 4.6. 

 

Figure 4.6 An example of a concerned object, specified as the blue region, in a complex 

background environment. 

The main advantage of using the SIFT key as the matched features is that the 

SIFT algorithm only extracts the main characteristics of images. Whatever the 

viewing angles of the same object changes, in a tolerance, the main characteristics of 

the object will remain unchanged for the SIFT algorithm to extract and match. Here 
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we list some reasonable possible types of monitored objects in the following: 

1. Valuable artworks on the wall of an exhibition halls, 

2. Coffers in the cabinet, 

3. Modern flat-panel TVs on walls, 

4. Any planar objects. 

4.4 Detailed Process for Security 
Patrolling by Vehicle Navigation 

In this section, we summarize the detailed process for security patrolling. In the 

navigation phase, the vehicle navigates along a learned path by visiting each path 

node consecutively through the routes specified by the node edges and checks the 

existence of the learned objects to achieve security patrolling. The entire process is 

described in the following as an algorithm and a corresponding flowchart is shown in 

Figure 4.7. 

Algorithm 4.5 . Security patrolling navigation. 

Input: A path map, learned object data, and learned calibration data. 

Output: Navigation process. 

Steps: 

Step 1. Read the path map. 

Step 2. Start security patrolling from the starting node in the map. 

Step 3. Scan the node list of the path map to read the next node data. 

Step 4. Move the vehicle to the next node and check if an obstacle is impeding the 
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navigation path. 

Step 5. If there exists such an obstacle, compute a new local path and drive the 

vehicle accordingly to avoid the obstacle. 

Step 6. If there exist a new floor data in the current node, update the reference color 

of the floor. 

Step 7. If there exist a monitored object in the current node, take the following 

action; else, continue the remaining navigation. 

Step 7.1. Move the camera to the learned PTZ position. 

Step 7.2. Apply simplified SIFT to the image taken by the camera to extract a 

feature set and match them with the learned one. 

Step 7.3. If the feature set does not matched the learned one, send an alarm 

message; otherwise, adjust the vehicle location by the matching result. 

Step 8. Read the next node data. If there exists any remaining node, repeat Steps 3 

through 7; else, finish the navigation. 
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Figure 4.7 Flowchart of proposed navigation process. 
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Chapter 5  
Detection of Monitored Objects by 
2D Object Image Matching 

5.1 Introduction 

In this study, we design a vision-based security monitoring system by vehicle 

navigation equipped with a PTZ camera. By the means of the camera, the view of the 

vehicle is extended to a wider range. We can perform security monitoring on objects 

which are located higher than the camera. While the vehicle patrols in the navigation 

phase, it stops in front of the monitored object by the use of learned path nodes. But 

the stop position at a monitored object may not be precise every time; mostly just 

close to the one recorded in the learning phase. It results in slight changes in the 

viewing angle of the monitored object from the camera. And the image of the same 

monitored object will be different in scales, orientations, or positions with respect to 

the one taken for learning in the learning phase. Thus, a method with the ability to 

match corresponding objects in images taken with different illuminations and camera 

poses is needed. 

In the past years, the Scale Invariant Feature Transform (SIFT) has been proven 

to be one of the most robust methods which use local invariant feature descriptors 

with respect to different geometrical changes [15]. In order to allow efficient 

matching between images, all images are represented as a set of vectors, called SIFT 

features. Each SIFT feature consists of local image measurements invariant to image 

translation, scaling, and rotation, and partially invariant to illumination and 3D 
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viewpoint changes. In this study, we take advantage of the SIFT to match monitored 

object images and propose a simplified SIFT which is faster than the original one, by 

reducing the difference of Gaussian scale layers to meet real-time security monitoring 

needs. 

In Section 5.2, we firstly review the method of the SIFT proposed by Lowe [8]. 

Then, in Section 5.3, we describe the proposed simplified SIFT, including the 

necessity of simplification and the detailed process for the simplified SIFT feature 

generation. In Section 5.4, we describe the matching technique of the features. Lastly, 

some experimental results are shown in Section 5.5. 

5.2 Review of Method of Matching by 
Scale-Invariant Feature Transform 
(SIFT) 

The SIFT proposed by Lowe [8] includes four major stages of computation to 

generate the set of features, which were called keypoints. In this section, we will 

describe a brief review of the SIFT. In summary, we divide the SIFT into two parts: 

the scale-invariant keypoint localization and the keypoint descriptor generation.  

Firstly, the keypoint locations are efficiently detected by identifying the local 

maxima and minima of a difference-of-Gaussian (DoG) function in the scale space. At 

each location, an orientation is selected at a peak of a histogram of local image 

gradient orientations. Secondly, a keypoint is formed by measuring the local image 

gradients in a region around each keypoint’s location according to the location, scale 

and orientation of the keypoint. The details are described in Section 5.2.1 and 5.2.2. 
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5.2.1 Scale-invariant keypoint localization 

The first stage of computation searches over all scales and image locations. It is 

implemented by using a difference-of-Gaussian function to identify potential interest 

points that are invariant to scale and orientation changes. 

Given a Gaussian-blurred image, G(x, y, σ) with an input image, I(x, y), the scale 

space of an image is defined as a function L(x, y, σ) computed from the convolution 

of G(x, y, σ) and I(x, y): 

( ) ( ) ( )yxIyxGyxL ,,,,, ∗= σσ , (5.1) 

where * is the convolution operation in x and y, and 
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To efficiently detect stable keypoint locations in the scale space, Lowe makes use of 

the scale-space extrema in the difference-of-Gaussian function convolved with the 

image, D(x, y, σ), which can be computed from the difference of two nearby scales 

separated by a constant multiplicative factor k: 
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Applying the equations above repeatedly, the input image is incrementally convolved 

with the Gaussian to produce images separated by k in the scale space, as shown 

stacked in the left of Figure 4.7. And each octave of the scale space (i.e., doubling of 

σ ) is divided into an integer number s of intervals, so k = 21/s. Then, the 
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difference-of-Gaussian images are produced by subtracting the adjacent Gaussian 

images, as shown in the right of Figure 4.7. After each octave is constructed, the 

Gaussian image is down-sampled by a factor of 2, and the process repeats. 

 

Figure 5.1 For each octave of scale space, the set of scale space images shown at the left and 

the computation of the difference-of-Gaussian images at the right. 

The keypoint are identified as local maxima or minima of the DoG images across 

scales. Each sample point in the DoG images is compared with its 8 neighbors in the 

same scale image, and the 9 corresponding neighbors in neighboring scale images, as 

shown in Figure 5.2. If the sample point is a local maximum or minimum, it is 
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selected as a candidate keypoint. 

 

Figure 5.2 Maxima and minima of the difference-of-Gaussian images are detected by 

comparing a pixel, as marked with X, with its 26 neighbors, as marked with the 

blue circles, in 3×3 regions of the current and adjacent scales (from [8]). 

Once a keypoint candidate has been found by comparing a pixel with its 

neighbors, the final keypoints are selected based on measures of their stability by 

performing a detailed modeling to fit the nearby data for location, scale, and ratio of 

principal curvatures. This information allows points having low contrast or being 

localized along an edge to be rejected. 

5.2.2 Feature descriptor generation 

One or more orientations are assigned to each keypoint location based on local 

image gradient directions. All future operations are performed on image data that has 

been transformed according to the assigned orientation, scale, and location for each 

feature, thereby providing invariance to these transformations. To determine the 

keypoint orientation, a gradient orientation histogram is computed in the 
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neighborhood of the keypoint, using the Gaussian image at the closest scale to the 

keypoint’s scale. For each Gaussian image, L(x, y), at such a scale, the gradient 

magnitude, m(x, y), and orientation, θ(x, y), are computed using pixel differences, as 

described by the following equations: 

( ) ( ) ( )( ) ( ) ( )( )22 1,1,,1,1, −−++−−+= yxLyxLyxLyxLyxm , (5.4) 

( ) ( ) ( )( ) ( ) ( )( )( )yxLyxLyxLyxLyx ,1,1/1,1,tan, 1 −−+−−+= −θ . (5.5) 

The contribution of each neighboring pixel is weighted by the gradient 

magnitude and a Gaussian window with a σ that is 1.5 times the scale of the keypoint. 

And the orientation histogram is formed by 36 bins covering the 360 degree range of 

orientations. Then, peaks in the histogram will correspond to dominant orientations. If 

any other orientations that is within 80% of the highest peak is found, a separate 

keypoint is also created for that orientation. 

Once a keypoint orientation has been selected, the feature descriptor is computed 

as a set of orientation histograms over 4×4 subregions around the keypoint. The image 

gradient magnitudes and orientations are firstly sampled around the keypoint location, 

using the Gaussian image at the closest scale to the keypoint’s scale. The coordinates 

of the descriptor and the gradient orientations are rotated according to the keypoint 

orientation for orientation invariance. Then, the contribution of each sample is 

weighted by the gradient magnitude and a Gaussian weighting function with σ 

equal to 1.5 times the width of the descriptor window, as the circular window 

indicated in the left side of Figure 5.3. These samples are then accumulated into 

orientation histograms summarizing the contents over 4 × 4 subregions. Each 

orientation histogram contains 8 bins, and each descriptor contains an array of 4 
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histograms around the keypoint, as shown in the left side of Figure 5.3. Hence, an 

SIFT feature vector contains 4×4×8=128 elements. This vector is then normalized to 

enhance invariance to changes in illumination. 

 

      Image gradients      Keypoint descriptor 

Figure 5.3 For each image, the gradient magnitude and orientation are computed in a region 

around the keypoint location, and weighted by a Gaussian window, indicated by 

the overlaid circle, as shown on the left. Four orientation histograms summarize 

their contents into 8 bins, as shown on the right. (from [8]). 

5.3 Proposed Simplified SIFT Features 
for Detection of Monitored Objects 

5.3.1 Necessity of simplification of original concept 

The time consumption of the process of the SIFT algorithm can be divided into 

two parts: the processing time for feature localization and the processing time for 

feature descriptor generation. The first part is bounded by the size of the input image 

and the process layers specified by the number of intervals and octaves, and the 

second part is bound by the number of features and the dimensions of each feature 
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descriptor. In this study, the image captured by the camera of the proposed system is 

of a fixed resolution of 320×240 pixels. Hence, in the first part, we can only control 

the number of intervals and octaves to reduce the processing time. In the second part, 

because the number of feature is uncontrollable, and the low dimension may result in 

unstable matching results, so we do not simplify the process of the feature descriptor 

generation.  

For security monitoring, while the vehicle navigates to the monitoring node 

which is learned in the learning phase, the position of the monitored object will be 

close to the one found in the learning phase. Hence, the scale of the monitored-object 

image will not change too much. 

Therefore, in order to speed up the process, we conducted experiments on 

reducing the number of octaves. And the experimental results show that the influence 

of reducing the number of octaves on the matching results is insignificant. 

5.3.2 Detailed process of simplified SIFT feature 

generation 

In this section, we describe the detailed process of the simplified SIFT feature 

generation. The inputs of the generation process are a color image I, a number o of 

octaves, a number s of intervals, a contrast threshold c, and a curvature threshold r. 

We can divide the entire process into 5 parts: the color-to-grayscale conversion, the 

Gaussian and DoG pyramids construction, the feature localization, the orientation 

assignments, and the feature descriptor generation. A flowchart is illustrated in Figure 

5.4. After the process is finished, a set of simplified SIFT features of the given image 

I is generated. The detailed process is described as an algorithm in the following. 
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Figure 5.4 A flowchart of the simplified SIFT generation. 

Algorithm 5.1 . Process of the simplified SIFT feature generation. 

Input: A color image I, a number o of octaves, a number s of intervals, a contrast 

threshold c, and a curvature threshold r. 

Output: The simplified SIFT feature set of the image I. 

Steps: 

Step 1. Convert the color image I into a grayscale image YI using the following 

transformation equation: 
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Step 2. Blur the image YI with σ = 0.5 and upsample the image YI by a factor of 2 

using linear interpolation. 

Step 3. Generate the Gaussian and DoG pyramid images using Steps 3.1 through 

3.2 in the following. 

Step 3.1. Generate the first image of the first octave of the Gaussian pyramid 

images by blurring the image YI using a Gaussian function with the initial 

value of σ1 being 1.6. 

Step 3.2. For each octave, save the initial σ and perform Steps 3.2.1 through 

3.2.2 in the following. 

Step 3.2.1. For each interval, compute σf,i needed to produce the next 

level of the Gaussian pyramid images, from σi using the following 

equations: 

i
s

if σσ ×−= 12
2

, , (5.7) 

where s is the number of intervals which span the octave, and then 

compute the convolution of the Gaussian function G(σf,i) and the 

image YI, as Li+1. 

Step 3.2.2. Subtract the adjacent Gaussian images Li+1 and Li to produce 

the DoG image Di. 

Step 4. Scan the DoG pyramid to find keypoints using Step 4.1 through 4.4 in the 

following. 
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Step 4.1. For each sample point in the DoG pyramid images, compare it with its 

8 neighbors in the same scale image, and the 9 corresponding neighbors in 

neighboring scale images. 

Step 4.2. If the sample point is a local maximum or minimum, compute the 

contrast value ( )yxD , , where D(x ,y) is the corresponding DoG image, 

and test if the value is greater than a contrast threshold c. 

Step 4.3. If the sample point is above the contrast threshold, check if the ratio of 

the principal curvatures is below the curvature threshold r, by the following 

equation: 

( )
( )

( )
r

r
Det
Tr 22 1+

<
H

H , (5.8) 

where H is a 2×2 Hessian matrix. 

Step 4.4. If the sample point’s ratio of the principal curvatures is below the 

curvature threshold r, add the sample point into the keypoint list. 

Step 5. Compute the gradient orientation and magnitude of the Gaussian pyramid 

images, as the gradient orientation pyramid and the gradient magnitude 

pyramid, using Equations (5.4) and (5.5). 

Step 6. Assign orientations to the keypoints using Steps 6.1 through 6.4 in the 

following. 

Step 6.1. Set up an orientation histogram including 36 bins. 

Step 6.2. For each keypoint, create a Gaussian weighting mask with σwo = 1.5×

σi , where i is the level where the keypoint at, in the Gaussian pyramid, Also, 

accumulate the gradient orientation weighted by the gradient magnitude and 

the Gaussian weighting mask into the orientation histogram. 

Step 6.3. Find the largest peak in the orientation histogram. 
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Step 6.4. Iterate over all peaks within 80% of the largest peak and copy this 

keypoint as a new keypoint with its corresponding orientation into the 

keypoints list. 

Step 7. Extract the feature descriptors for the keypoints using Steps 7.1 through 7.2 

in the following. 

Step 7.1. Set up an orientation histogram including 8 bins. 

Step 7.2. For each keypoint: 

Step 7.2.1. create a 4×4 array of 4×e4 sample cells as the sampling grid 

for the orientation histogram; 

Step 7.2.2. rotate the sampling grid according to the orientation assigned 

in Step 6, for this keypoint; 

Step 7.2.3. create a Gaussian weighting mask with σwd = 8 (1/2 times of 

the sampling grid’s width); 

Step 7.2.4. accumulate each sample’s orientation weighted by the 

gradient magnitude and the Gaussian weighting mask into the 

neighboring bins of the orientation histogram; 

Step 7.2.5. add the orientation histogram bins as the descriptor into the 

descriptor list. 

Step 8. Store the descriptors as a simplified SIFT feature set. 
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5.4 Proposed Matching Technique 
Using Simplified SIFT Features 

5.4.1 Concept of proposed matching algorithm 

For indoor security monitoring, the vehicle will navigate to the front of each 

monitored object. Then, the image taken by the camera is transformed into a set of 

SIFT features. In order to achieve the security monitoring mission, an efficient 

matching technique to match the feature set extracted from the current image with the 

one learned in the learning phase, is indispensable. Hence, the problem is that, given 

two sets of features, how we can match them efficiently. 

According to the paper proposed by Lowe [8, 16], we adopted a matching 

algorithm by the Hough transform. For the given feature set, the best candidate match 

for each feature is firstly found by identifying its nearest neighbor in the other feature 

set. The nearest neighbor is defined as the feature with the closest Euclidean distance 

for the feature descriptor described in Section 5.2.2. After discarding the outliers, the 

Hough transform is used to identify the best subsets of matches. Let the given feature 

set which is found in the navigation phase be denoted as Fnavi and the one which is 

learned in the learning phase be denoted as Flearn. Each SIFT feature specifies 4 

parameters: feature locations in the image, scales, and orientations. By applying the 

affine transform model, as shown in the following equation: 
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where m = s cosθ, n = s sinθ, and (x, y) and (u,v) specify the locations of Fnavi and 
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Flearn, respectively, the unknown similarity transform parameters between each match 

pair are collected as tx, ty, s, and θ by the following equations: 

⎟
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n1tanθ  and 

cos
ms

θ
= . (5.10)

A Hough transform entry is then created to predict the model location, 

orientation, and scale from the match hypothesis, and each feature votes for all poses 

that are consistent with the feature. Then, a peak cluster found in the Hough space is 

regarded to specify the best subsets of matches. 

5.4.2 Detailed algorithm 

In this section, we describe the detailed matching algorithm. The input of the 

algorithm are a SIFT feature set Fnavi = {Fnavi,0, Fnavi,1, Fnavi,2, …, Fnavi,n} found in the 

navigation phase and a learned SIFT feature set Flearn = {Flearn,0, Flearn,1, Flearn,2, …, 

Flearn,n}. Each feature Fi(x, y, s, o, Φ) consists of 5 parameters where x and y specify 

the feature locations, and s, o, and Φ are the scale, the orientation, and a set of feature 

descriptors of the feature described in Section 5.2.2, respectively. While finding the 

nearest neighbors, a threshold rdis for the maximum ratio between the distances of the 

closest and the second closest neighbors for a match to be allowed, is needed. And for 

the Hough transform, it also needs a threshold rht for the minimum number of matches 

before a model is selected. The detailed process is described in the following. 

Algorithm 5.2 . Process of the matching of the SIFT features. 

Input: Two SIFT feature sets Fnavi = {Fnavi,0, Fnavi,1, Fnavi,2, …, Fnavi,n} with each being 

of the form Fnavi(xnavi, ynavi, snavi, onavi, Φnavi) and Flearn = {Flearn,0, Flearn,1, Flearn,2, …, 
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Flearn,n} with each being of the form Flearn(xlearn, ylearn, slearn, olearn, Φlearn), a threshold 

rht, and a threshold rdis. 

Output: The set of matches or the message ‘false’ if no match is found. 

Steps: 

Step 1. Find the nearest neighbors of Φnavi from Φlearn using the following Steps. 

Step 1.1. Compute the closest Euclidean distance D1 between each feature 

descriptor in Φnavi and Φlearn. 

Step 1.2. Compute the second closest Euclidean distance D2 between each 

feature descriptor in Φnavi and Φlearn. 

Step 1.3. If the ratio of D1 and D2 is smaller than rdis, add the match into a 

nearest neighbor list. 

Step 2. Construct a 4D Hough space as a Hough histogram with 4 dimensions: two 

dimensions for translation (x, y), one dimension for orientation o, and one 

dimension for scale s. 

Step 3. Set up 21×21 bins with sizes of 0.25 times the maximum image dimension 

for the dimensions of translation, 12 bins with sizes of 30 degrees for the 

orientation, and 17 bins with sizes of a factor of 2 for the scale. 

Step 4. For each match, perform the following steps to vote for the same pose of the 

model. 

Step 4.1. Apply the following equations with the Fnavi and Flearn: 
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(5.11)

where tnavi and tlearn are a slight shift in the direction of each orientation of 

Fnavi and Flearn, respectively. 
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Step 4.2. Compute the s and θ using Equation (5.10) for this match. 

Step 4.3. Accumulate the translation, scale, and rotation weighted by the 

distances between (tx, ty) and the nearest translation bins, the difference 

angle between θ and the nearest orientation bins, and the difference scale 

between s and the nearest scale bins, into the nearest 2×2×2×2 = 16 bins, 

and add the match into the corresponding bins respectively. 

Step 5. Find the peak of the Hough histogram as the set of matches if the number of 

matches of the peak is greater than rht; otherwise, return false. 

5.5 Experimental Results 

In the section, some experimental results are shown in the following. In Figure 

5.5, we firstly control the vehicle to learn a valuable painting, as shown in 5.5(a), as 

an example of the concerned objects. The features located by the simplified SITF 

algorithm are shown in 5.5(b). Then, we start the security patrolling by the vehicle to 

monitor this painting with three cases: the original painting exists, the painting is 

missing, and the painting is replaced by another painting. In the first case, a successful 

matching is performed as shown in (c). In the second and the third cases, the matching 

fails as shown in (d) and (e). 

For the necessity of simplification discussed in the previous section, some 

experimental results are shown in the following. In Figure 5.6 and Figure 5.7, we 

compare the original SIFT algorithm and the simplified SIFT algorithm. The 

experimental results are shown that the influences of reducing the number of octaves 

on the matching results are insignificant. 
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(a) 

 

(b) 

 
(c) 

(d) (e) 

Figure 5.5 The experimental results of the monitored object matching process. (a) is the 

monitored object learned in the learning phase. The location of features are marked 

as green crosses in (b). (c) is the successful matched result which is specified by 

the blue region. (d) and (e) are the matching results which fail to match with the 

learned object. 
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(a) 

 

(b) 

Figure 5.6 The experimental results of the monitored object matching process with the 

comparison between the successful matching results by the use of the simplified 

SIFT algorithm and the original one. (a) is the matching result conducted by the 

use of simplified SIFT algorithm with reducing the number of octaves and (b) is 

the one conducted by the use of original SIFT algorithm. 
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 (a) (b) 

(c) (d) 

Figure 5.7 The experimental results of the monitored object matching process with the 

comparison between the failed matching results by the use of simplified SIFT and 

original SIFT algorithm. (a) and (c) are matching result conducted by the use of 

simplified SIFT algorithm with reducing the number of octaves, and (b) and (d) are 

the one conducted by the use of original SIFT algorithm. 
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Chapter 6  
Vehicle Guidance by Location 
Estimation Based on 2D Object 
Image Matching Results 

6.1 Introduction 

For vehicle navigation in indoor environments, the vehicle location is the most 

important information to guide the vehicle in track. Though the location information 

including the position and the direction, which are provided by the odometer of the 

vehicle, are precise enough for most applications, it cannot be used solely for the 

navigation process because the incremental mechanical errors might result in 

imprecise odometer data and so the deviation of the navigation path. Hence, in order 

to keep the navigation in track, vision-based vehicle location estimation is helpful to 

eliminate the errors. 

In this study, we focus on the use of the artificial landmarks or specific scene 

features for vehicle localization. A number of methods are reviewed in Section 6.2. 

Among these methods, a method proposed by Chou and Tsai [12] utilized a house 

corner to estimate the vehicle location. The proposed vehicle location estimation 

method in this study is based on the use of the monitored-object matching result and a 

simplified version derived from Chou and Tsai. The idea and the detailed process of 

the method are described in Section 6.3. 

With successively estimated vehicle locations, we can correct the navigation path 
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by comparing the estimated location and the learned one, and transform the 

adjustment into the global coordinate system. The detailed process of path correction 

is described in Section 6.4. 

6.2 Review of Vehicle Location 
Estimation Techniques 

In a known indoor environment, an ordinary approach to vehicle location 

estimation is to use some special landmarks and to analyze monocular images 

captured by a camera. A the standard landmark proposed by Fukui [9], as shown in 

Figure 4.7 (a), is a diamond shape whose boundary consists of four identical thick line 

segments all with a known length. The boundary of the diamond images taken by the 

camera is firstly extracted, and the lengths of the two diagonals are computed. Then, 

by the use of the two diagonals in the image, the location of the camera is derived. 

Another landmark proposed by Magee and Aggarwal [10] for vehicle location 

estimation is a sphere on which two perpendicular great circles are drawn, as shown in 

Figure 4.7 (b). According to the size of the projected circle in the image of the sphere, 

the distance from the camera to the sphere center and the direction of the camera are 

computed. Then, the vehicle location is computed accordingly in terms of the sphere 

coordinates. Huang et al. [11] also proposed a colored rectangle signboard, as shown 

in Figure 4.7 (c) which is placed in a known position, as an artificial landmark. The 

signboard area is firstly extracted and the vertex points of the signboard are detected. 

Then, by computing the vanishing points in the image of the signboard, the position of 

the signboard is identified and therefore the vehicle position is identified reversely. 
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In the previous works of our laboratory, Chou and Tsai [12] proposed a set of 

house corner edges which exists naturally in a house as a landmark. Such a landmark 

is visible from a house floor, and show as an identical geometric structure of a “Y” 

shape in the image like Figure 4.7 (d). The projections of the three edges on the image 

plane are then extracted. Then, under a reasonable assumption that the distance from 

the camera to the ceiling is known, the vehicle location is estimated by the use of 

these edges. Chiang and Tsai [13] also proposed a method using a simplified version 

derived from Chou and Tsai’s formula and the image taken by the PTZ camera. Two 

edges are firstly extracted by line detection, as shown in Figure 4.7 (e), and then the 

vehicle location is estimated by applying the simplified formula. 

Figure 6.1 Some landmarks used in previous approaches. (a) A diamond-shaped standard 

mark used in [9]. (b) A sphere used for robot location in [10]. (c) The perspective 

projection of a colored rectangle signboard used in [11]. (d) The perspective 

projection of a house corner used in [12]. (e) The two red edges of the perspective 

projection of a house corner used in [13]. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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6.3 Vehicle Location Estimation by 
Object Image Matching Results 

In the previous sections, we have described the learning of a given horizontal 

line and path correction by the given one found in the navigation phase. We use only 

one edge for the horizontal line, and the corner point for the start point of the 

horizontal line, instead of the three edges of a house corner to estimate the vehicle 

location. The linear equation’s coefficients and the start point are computed in the 

learning and the navigation phases respectively, as described in Section 3.3.4 and 

4.2.3. 

In order to describe the proposed method conveniently, we introduce the 

coordinate systems used in Section 6.3.1. The idea of the proposed method is to use 

the coefficients of the equation of the edge and the location of the corner point in the 

image coordinate system to estimate the vehicle location. The detailed idea is 

described in Section 6.3.2, and the detailed process of the proposed vehicle location 

estimation is described in Section 6.3.3. 

6.3.1 Coordinate systems 

Here, we use three kinds of the coordinate systems: the reference coordinate 

system, the camera coordinate system, and the image coordinate system. With these 

coordinate systems, it will be clear and convenient to describe a vehicle location. The 

definitions of the three coordinate systems are described in the following. 

(1) The reference coordinate system (RCS, denoted as X-Y-Z): In the reference 

coordinate system, we assume the X-Y plane is parallel to the floor where 

the vehicle navigates on, and the Z-axis is perpendicular to the X-Y plane. 
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The corner point is the origin Ro of the reference coordinate system. 

(2) The camera coordinate system (CCS, denoted as U-V-W): In the camera 

coordinate system, we also establish the U-, V-, and W-axes. The U-V plane 

is parallel to the image plane, and the U-axis is parallel to the X-Y plane of 

the reference coordinate system. The origin Co is located at the camera lens 

center and the W-axis is aligned to be parallel to the camera optical axis. 

(3) The image coordinate system (ICS, denoted as up-vp): The image plane is 

located at W = f, where f is the focus length of the camera. The up-vp plane is 

coincident with the image plane of the image coordinate system and the 

origin Io is the center of the image plane. 

The relations among the three coordinate systems are illustrated in Figure 6.2. 

Figure 6.2 The relations of the reference coordinate system, the camera coordinate system, 

and the image coordinate system. 

6.3.2 Idea of proposed method 

As described in Section 3.3.4, a horizontal line is given in the learning phase to 

specify X-axis of the RCS. A start point of the given horizontal line also specifies the 
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origin R0 of the RCS. Because the X-Y plane is parallel to the floor, we can treat the 

RCS as a virtual house corner. The X- and Y-axes specify the two perpendicular lines 

on the ceiling of the virtual house corner, as shown in the left-top of Figure 6.3, and 

the Z-axis specifies the virtual line of the virtual house corner. 

C0

V

UW

Reference 
coordinate

Y

Z

XR0

Virtual ceiling

Virtual house 
corner

Image 
coordinate

 

Figure 6.3 A diagram of the virtual house corner which is specified by the given horizontal 

line (the cyan line on the top of the poster), and the start point (the red point on 

the left-top of the poster). 

The equations of the edge line through the corner point in terms of image 

coordinates (u, v) are described by up + bvp + c = 0. The desired vehicle location will 

be described by three position parameters Xc, Yc, and Zc and two direction parameters 

θ and ψ, where Zc is the distance from the camera to the ceiling and is assumed to be 

known; θ is the pan angle between the optical direction of the camera and the Y-axis 

of the RCS; and ψ is the tilt angle of the optical direction of the camera with respect 
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to the RCS and is also assumed to be known by solving the equation ψ = 90˚ − φ, 

where φ is the tilt angle provided by the PTZ camera. The five vehicle location 

parameters can be derived in terms of the two coefficients b and c of the edge line 

equation and the start point (u1, v1) in the image taken by the camera. Finally the 

vehicle location could be estimated by the computation of these parameters. 

6.3.3 Detailed process of location estimation  

In this section, we derivate the relation between the reference coordinates and the 

coefficients of the edge line equation in the image coordinate system. At first, we 

transform the reference coordinates into the camera coordinate. The transformation 

consists of four steps. 

Step 1. Translate the origin (−Xc, −Yc, −Zc) of the reference coordinate system to the 

origin of the camera system in the following way: 
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(6.1) 

Step 2. Rotate the X-Y plane about the Z-axis through the pan angle θ such that the 

X-Y plane is parallel to the U-V plane using the following equation: 
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Step 3. Rotate the Y-Z plane about the X-axis through the tilt angle ψ such that the 
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X-Y plane is parallel to the U-V plane using the following equation: 
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Step 4. Reverse the Z-axis such that the positive direction of the Z-axis is identical 

to the negative direction of the W-axis using the following equation: 
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Let P be any point in the 3-D space with reference coordinates (x, y, z) and 

camera coordinates (u, v, w). Then the above coordinate transformation can be 

described as follows: 
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with 
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( )
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Let P be any point on the X-axis with reference coordinates (x, 0, 0) and the 

camera coordinates (ux, vx, wx). And let (up, vp) be the image coordinates of the 

projection of P. Then, according to the triangulation principle, we have the following 

two equations: 

x

x
p w
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x

x
p w

vfv ⋅
= , 

(6.8) 

where f is the camera focus length. And Equation (6.5) can be rewritten as: 
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Substituting the values of ux and vx above into the two equalities in Equation 

(6.8), we get:  
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Eliminating the variable x, we can get the equation for the projection of the 



 

78 
 

X-axis in the image plane in the following: 
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After substituting Equation (6.12) into up + bvp + c = 0 and Equation (6.7) for x0, 

y0, and z0, we obtain the following two equalities: 
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Then, we can use Equations (6.13) and (6.14) to derive the variable θ. Equations 

(6.13) and (6.14) can be transformed into Equations (6.15) and (6.16), respectively, 

described in the following: 

( ) ψψθθ sincoscossin cc YbZ =+−⋅ , (6.15) 

( ) ψψθθ coscoscossin cc fYfcZ −=+−⋅ . (6.16) 

By eliminating Zc and Yc from Equations (6.15) and (6.16), we can get: 

ψψ
θ

sincos
tan

cfb
f
+

= . (6.17) 

Because the value ψ can obtain from the use of the tilt angle φ provided by the 

PTZ camera and the following equation: 

φψ −= 90 , (6.18) 
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we can apply Equation (6.17) with ψ to get the value θ, and Equation (6.15) with 

known values ψ, θ, and Zc, to obtain the value Yc. 

With successively obtained values of ψ, θ, Yc, and Zc, we can substitute these 

values and the start point (u1,v1) into Equations (6.12) and (6.7) to obtain the values of 

Xc. 

6.4 Path Correction by Vehicle 
Location Estimation Results 

After we compute the estimated vehicle location (Xc, Yc) and the camera 

direction angle θ, the next step is path correction by the use of the estimated results. 

Before describing the process of the proposed path correction, some coordinate 

systems and the definition of the direction angle of the vehicle and the PTZ camera 

are firstly introduced in Section 6.4.1. Then, the detailed process of the proposed path 

correction is described in Section 6.4.2. 

6.4.1 Direction angle of vehicle and coordinates of 

path nodes 

In this section, another two coordinate systems are utilized to describe the 

relation among the learned path, the vehicle, and the monitored object. The coordinate 

systems are shown in Figure 6.4 and the definitions of them are described in the 

following. 
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(1) The global coordinate system (GCS, denoted as Gx-Gy): The floor of 

environments is defined as the Gx-Gy plane, and the origin G0 of the global 

coordinate system is a pre-defined point on the floor. We define G0 as the 

starting position of the navigation in this study. 

(2) The vehicle coordinate system (VCS, denoted as Vx-Vy): The Vx-Vy plane is 

parallel to the Gx-Gy plane, and the origin V0 is taken to be the rotation 

center of the vehicle, which is at the middle of the line segment connecting 

the two driving wheels. The Vy-axis is parallel to the line segment of the two 

driving wheels and through the origin V0. 

Besides, the direction angle of the vehicle and the PTZ camera are defined for 

the convenience of describing the coordination transformation and computing the turn 

angle for the correction, as illustrated in Figure 6.5. 

 

 

Figure 6.4 Another two coordinate systems used in this study. (a) The global coordinate 

system. (b) The vehicle coordinate system. 

(a) 

 

(b) 
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Figure 6.5 The rotate angle θv of the vehicle and the pan angle θv of the PTZ camera. (a) 

πθ ≤≤ v0 . (b) 0≤≤− vθπ . (c) πθ ≤≤ c0 . (d) 0≤≤− cθπ . 

6.4.2 Method of proposed path correction 

In the previous section, we have obtained the estimated location between the 

vehicle and the origin R0 of the reference coordinate. The estimated location includes 

three parameters: the camera location in the RCS, (Xc, Yc), and the direction angle of 

the camera, θ. The relation among the vehicle, the camera, and the RCS is illustrated 

in Figure 6.6. 

(a) (b) 

(c) (d) 
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Figure 6.6 The relation among the vehicle, the camera, and the reference coordinate system. 

In Figure 6.6, the direction angle of the vehicle can be derived by substituting the 

θ into the following equation: 

( ) cv θθθ +−−°= 90 , (6.19) 

where the angle θ is negative because the angle of the clockwise rotation is positive 

and the X-Y plane is rotated through a pan angle –θ to be parallel to the image plane, 

as described in Section 6.3.3, and θc is the pan angle of the PTZ camera. As soon as 

the direction angle θv of the vehicle is obtained, we can compute the vehicle location 

in the RCS by substituting the angle θv and the distance between the camera and the 
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center of the vehicle into the following equations: 
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,cos

vccv

vccv

DYY

DXX
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θ

⋅+=

⋅−=
 (6.20) 

Finally, the location (Xv, Yv) and the direction angle θv of the vehicle are acquired. 

If the vehicle is in the learning phase, these parameters are saved as the calibration 

information data, as described in Section 3.3.4. If the vehicle is in the navigation 

phase, we can utilize the parameters obtained above and the learned ones to correct 

the navigation path. 

Let the learned location parameters including the location and the direction angle 

of the vehicle be denoted as L(Xl, Yl, θl) in the RCS, and the estimated ones as V(Xv, Yv, 

θv). Utilizing these parameters above and the corresponding learned path node (Lx, Ly) 

and the direction angle Θl of the vehicle at this path node in the GCS, we can compute 

the corrected location (Nx, Ny) and the adjustment angle θadj of the vehicle by 

transforming the relative location between (Xv, Yv) and (Xl, Yl) in the RCS into the 

GCS and computing the adjusting angle between θv and θl. The relation among the 

RCS, the VCS, and the GCS, and the corresponding angle is illustrated in Figure 6.7 

and the detailed transformation is described as an algorithm in the following. 

Algorithm 6.1 . Computation of the corrected location and the corrected direction 

angle of the vehicle. 

Input: The estimated location parameters V(Xv, Yv, θv), the learned location parameters 

L(Xl, Yl, θl), the learned path node (Lx, Ly), and the direction angle Θl. 

Output: The corrected location (Nx, Ny) and the adjustment angle θadj. 
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Figure 6.7 The relation among the RCS, the VCS, and the GCS, and the corresponding angle 

the vehicle. The learned location of the vehicle is denoted as a pastel vehicle with 

the location (Xl, Yl) in the RCS, and the current location of the vehicle is denote 

as the colored vehicle with the location (Xv, Yv) in the RCS. 

Steps: 

Step 1. Compute the adjustment angle θadj between the direction angles of V and L 

using the following equation: 
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lvadj θθθ −= . (6.21) 

Step 2. Compute the angle φ using the following equation: 

vθψφ −= , where ⎟⎟
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YY1tanψ . (6.22) 

Step 3. Compute the angle φG of the line segment from the vehicle location L to V 

in the GCS using the following equation: 

adjlG θφφ −−Θ= . (6.23) 

Step 4. Compute the adjustment location with respect to the learned node using the 

following equations: 
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where 

( ) ( )22
lvlvadj YYXXD −+−= . (6.25) 

Step 5. Compute the corrected location (Nx, Ny) using the following equations: 
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6.5 Experimental Results 

In order to conduct experiments about the ability of path correction, we set up a 

navigation path including a monitoring node and a path node, as shown in Figure 6.8. 

 

(a) 

(b) 
  

(c) 

Figure 6.8 An experimental navigation path including a monitoring node and a path node. (a) 

A diagram of the navigation path. (b) A photo of the navigation path. (c) The user 

interface of learning the monitored object and the location estimation data. 
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With the successively learned navigation path, we firstly put the vehicle at an 

identical start position to start the navigation. The experimental result shows that the 

vehicle navigated correctly on the navigation path, as shown in Figure 6.9. 

(a) (b) 

 
(c) 

Figure 6.9 The experimental result of path correction by the navigation starting from the 

original learned start position. (a) The vehicle arrived at the monitoring node and 

performed the matching and path correction. (b) The vehicle navigated to the next 

path node after correcting the navigation path. (c) The vehicle successfully 

matched the monitored object and estimated the location. 
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(a) 

 

(b) 

 

(c) 

 
(d) 

 
(e) 

Figure 6.10 The experimental result of path correction by the navigation starting from a 

different start position. (a) The vehicle started the navigation at a position 

different to the start position in the learning phase. (b) The vehicle arrived to a 

wrong place where should be the monitoring node, and performed the matching 

and path correction. (c) The vehicle still successfully matched the monitored 

object and estimated the location. (d)-(e) The vehicle navigated to next path node 

after correcting the navigation path. 
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We also tested another case with artificial path deviations. We put the vehicle at a 

different position to simulate the condition that the vehicle navigates outside the 

learned path. The experimental result shows that the vehicle can self-correct the 

navigation successfully by estimating the location with respect to the monitored object, 

as shown in Figure 6.10. 



 

90 
 

Chapter 7  
Obstacle Avoidance in Various Floor 
Environments 

7.1 Overview of Obstacle Avoidance 
Methods 

While the vehicle navigates, an obstacle appearing on the navigation path 

suddenly is an ordinary situation. In recent years, many methods for vision-based 

obstacle avoidance have been proposed. Ku and Tsai [17] proposed a vision-based 

approach by a quadratic classifier for obstacle avoidance. Obstacles including walls 

and objects are considered as patterns, and are used as input to the quadratic classifier. 

Chen and Tsai [4] proposed a fuzzy guidance technique by utilizing the result of route 

area extraction to compute the collision-free direction for the same purpose. Chiang 

and Tsai [3] also proposed a goal-directed minimum path following approach to 

compute collision-free paths. However, most methods are specific in their applications 

and unable to react in certain realistic environments. For real applications, the 

environment is usually complicated and the floor typically consists of textures of 

various colors. Hence, in order to avoid an obstacle in such environments, we propose 

an obstacle avoidance method for various floor environments for the proposed vehicle 

system. 

In Section 7.2, we describe the idea of the proposed obstacle avoidance method 

firstly. The detailed techniques used for obstacle avoidance are described in Section 
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7.3. Some experimental results are shown in Section 7.4. 

7.2 Idea of Proposed Obstacle 
Avoidance Method  

In this study, we propose an obstacle avoidance method in various floor 

environments by utilizing the colors of the floor. The first step of proposed obstacle 

avoidance is obstacle detection. We adopt k-means clustering for detection of an 

obstacle to find clusters of floor colors, and an alert line scanning technique to 

recognize an obstacle on the floor, as described in Sections 7.3.1 and 7.3.2, 

respectively. As soon as an obstacle is detected, we adopt the goal-directed minimum 

path following technique [3] to create a collision-free path, as described in Section 

7.3.3. 

For the convenience to describe the obstacle avoidance method, we define some 

coordinate systems and the direction angle of the vehicle, as described in Section 

7.2.1. And the coordinate transformations among these coordinate systems are 

described in Section 7.2.2. 

7.2.1 Coordinate system and direction angle of 

vehicle 

In this section, three coordinate systems: the global coordinate system, the 

vehicle coordinate system, and the image coordinate system, are used to describe the 

vehicle location and the navigation environment, as defined in Chapter 6. The learned 
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navigation path including several path nodes uses the GCS to represent the location of 

each node. While the vehicle navigates, the odometer of the vehicle provides the 

current location of the vehicle and the direction angle of the vehicle in the global 

coordinate system. The angle, denoted as Θ, represents the rotation degree between 

the direction of the vehicle and the Gx axis of the global coordinate system and plays 

an important role in coordinate transformation. 

7.2.2 Coordinate transformation 

Among the three coordinate systems, we need the transformation between the 

image coordinate system and the vehicle coordinate system, and the transformation 

between the vehicle coordinate system and the global coordinate system. The first 

transformation is known by the location mapping calibration described in Section 

3.2.1. The coordinate transformation between the vehicle coordinate system and the 

global coordinate system is illustrated in Figure 7.1. 

 

Figure 7.1 The coordinate transformation between the VCS and the GCS. 
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Based on this figure, the transformation functions between the vehicle coordinate 

system and the global coordinate system using the direction angle can be calculated 

by Equations (7.1) and (7.2) in the following, where xv and yv are the coordinates of 

the vehicle in the world coordinate system. 

vyx xVVx +Θ−Θ= sincos , (7.1) 

vyx yVVy +Θ+Θ= cossin . 
(7.2) 

7.3 Obstacle Avoidance Techniques 

7.3.1 Finding floor colors by k-means clustering 

In order to find the most representative clusters of the floor colors, an efficient 

algorithm to cluster the floor colors is needed. Cluster analysis is one of the applicable 

techniques. It has long been used for image segmentation and other image analysis 

works. The clustering technique for color image segmentation normally chooses the 

RGB space as the feature space. However, for real applications, the color distance in 

the RGB space usually cannot represent the differences of the colors in the real world. 

Lucchese and Mitra [22] proposed an unsupervised segmentation algorithm based-on 

k-means clustering in the chromaticity plane. They suggested that exploiting the 

separability of colors in the 3D space may be projected onto a 2D chromatic subspace 

and onto a 1D luminance subspace. This inspires us in this study to propose an 

efficient unsupervised k-means clustering algorithm for clustering the floor colors. 

Among the techniques developed for clustering, the k-means clustering 
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algorithm [18, 19] is the most widely used and studied. In order to meet real-time 

processing, we need an efficient k-means clustering algorithm. Kanungo et al. [20] 

proposed a filtering algorithm which is an efficient implementation of Lloyd’s 

k-means clustering algorithm [21]. Hence, we adopted it as the basis of the proposed 

k-means clustering algorithm. 

For a given color image, we firstly transform the color image from the RGB 

space into the Lu’v’ space using the following equations: 
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In order to achieve an unsupervised clustering, we apply a 2D k-means algorithm 

where k = 2, 3, …, n, on the u’v’ chromaticity plane of the image, to find the a set of k 

clusters, denoted as Cch, so as to minimize the mean squared distance, the so-called 

distortion, from each color to its corresponding cluster, respectively. Obviously, as the 

number k of the clusters increases, the distortion decreases. In realistic environments, 

the colors of the floor are normally limited to several kinds. Thus we set up thresholds 

to prevent too many clusters. There are two thresholds: a threshold τ1 to limit the 
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minimum distance between the centers, and a threshold τ2 to limit the difference 

between the average distance of the cluster centers and the average distortion. The 

detailed algorithm is described in the following. 

Algorithm 7.1 . 2D unsupervised k-means clustering in the u’v’ chromaticity plane. 

Input: A set of sample colors, V, in the u’v’ chromaticity plane, two thresholds τ1 and 

τ2. 

Output: A set of clusters, Cch. 

Steps: 

Step 1. Set k = 2. 

Step 2. Apply k-means algorithm on V, where i = 1, 2, …, N with k being the 

number of the clusters. 

Step 3. Compute the average distortion r of the clustering result. 

Step 4. Compute average distance davg between the centers of the clusters and find 

the minimum distance dmin among them. 

Step 5. If dmin is smaller than τ1, repeat Step 1.2 with k = k − 1 to get the clusters as 

Cch and return the resulting clusters and finish the algorithm. 

Step 6. If |r − davg|is smaller than τ2, return the clusters computed in Step 1 as Cch 

and finish the algorithm; otherwise, repeat Steps 1.2 through 1.6 with k = k 

+ 1. 

After we obtain a set of clusters, Cch, the next step is to find the luminance 

clusters for each cluster in Cch. We apply a 1D k-means clustering algorithm which is 

a simple dimensional reduction of the 2D algorithm above to obtain the clusters Cl for 

each cluster in Cch. The thresholds τ3 and τ4 for the 1D algorithm play the 

corresponding roles of thresholds τ1 and τ2 of the 2D algorithm, respectively. By 

combining the clusters Cl and their corresponding clusters in Cch, we can obtain a set 
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of the floor color clusters, denoted as Cfloor. A flowchart of the entire clustering 

process is shown in Figure 7.2. 

 

Figure 7.2 A flowchart of finding the floor color clusters by the k-means clustering. 

7.3.2 Obstacle detection by alert line scanning 

Once we obtain the floor color clusters, we can utilize the clusters to recognize 
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the non-floor colors by scanning an alert line. The alert line is established by three 

line segments in the image, as shown in Figure 7.3. If an obstacle is detected on the 

alert line, the vehicle should change its navigation path to avoid the obstacle. 

Figure 7.3 An alert line specified by three red line segments in the image. 

Each color sample of the image on the alert line is scanned respectively. We first 

transform the color samples, denoted as Calert, into the Lu’v’ space, and then compare 

each sample Ci in Calert with the clusters Cfloor in the Lu’v’ space. If the Ci is similar to 

Cfloor, it means that no obstacle exists at this sample point in the image. Otherwise, the 

sample is marked as a candidate obstacle seed. After scanning the alert line, we can 

collect a set of candidate obstacle seeds. Then we apply a region growing algorithm 

on these seeds to find a mask of the distribution of the obstacle, and apply the 

morphological operations on the mask to remove the noise and small regions. 

Obstacles in the mask are set as white parts, as shown in Figure 7.4(b) and (c). Finally, 

we rescan the same alert line in the mask to detect the distribution of obstacles on the 

alert line. The green and the red parts represent the floor and the obstacles respectively, 

as shown in Figure 7.4(a). Then we can obtain the left-most side and the right-most 

side points of the obstacles in the alert line. The detailed process is described as an 

algorithm in the following. 
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(a) 

 
(b) 

 
(c) 

Figure 7.4 The alert scanning results. (a) The mask of the region growing result of the 

candidate obstacle seeds. (b) The mask generated by applying morphological 

operations on (a). (c) The green parts of the alert line represent the floor and the 

red parts of the alert line represent the obstacles. 

Algorithm 7.2 . Alert line scanning for the detection of an obstacle. 

Input: An image I with an obstacle and the floor. 

Output: Two points of the left-most side and the right-most side of the obstacles or a 

Boolean value ‘false’ if there is no obstacle detected. 

Steps: 

Step 1. Transform the sample points on the alert line of I from the RGB space into 

the Lu’v’ space, with the result denoted as Calert. 
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Step 2. For each sample point Ci in Calert and each floor color cluster Cj in Cfloor 

compute the difference between Ci and Cj, with the result denoted as Di, j. 

Step 3. For each Di, j, if |Di, j| is larger than a threshold, apply region growing using 

the corresponding Ci as a seed to create a mask by filling the grown region 

with the value 255, and apply the AND operation to merge the masks 

created by the region growing by computing the per-element bit-wise 

logical conjunction of the masks. 

Step 4. Apply the morphological operations to the mask. 

Step 5. Scan the alert line in the mask, and find the first and the last samples with 

values equal to 255, denoted as OL and OR. 

Step 6. If OL and OR exist, return these points; otherwise, return a Boolean value 

‘false. ’ 

7.3.3 Computation of goal-directed minimum path 

In the previous section, we have detected the distribution of the obstacles, and 

obtain the left-most side and the right-most side points OL and OR. Once an obstacle is 

detected, a new path is planned to guide the vehicle to avoid the obstacle. In this study, 

we adopted the goal-directed minimum path proposed by Chiang and Tsai [3]. The 

first step is to transform OL and OR in the image coordinate system to the vehicle 

coordinate system. Then, the computation of a goal-directed minimum path is 

illustrated in Figure 7.5, where Wv is the appropriate width for the vehicle to pass and 

DG is the shortest distance between the obstacle and the vehicle. With some geometric 

computation, we can obtain a node, the so-called obstacle avoidance node, to guide 

the vehicle to avoid an obstacle, by choosing the shortest distance of the paths. The 
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detailed computation is described as an algorithm in the following. 
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Figure 7.5 An illustration of computation of goal-direction minimum path (a modified 
version from [3]). 

Algorithm 7.3 . Computation of goal-directed minimum path. 

Input: Two points of the left-most side and the right-most side of the obstacles, 

denoted as OL and OR, in the vehicle coordinate system. 

Output: A node of the goal-directed minimum path. 

Steps: 

Step 1. Compute the two candidate nodes OL’ and OR’ for obstacle avoidance in the 

VCS using the following equations: 

,

,

PPPRvR

PPPLvL

VOOOWuO

VOOOWuO

++⋅=′

++⋅=′
 (7.5) 

where u  is the unit vector and Vp is the vehicle location in the vehicle 
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coordinate system. 

Step 2. Transform OL’ and OR’ in the vehicle coordinate system to the global 

coordinate system using Equations (7.1) and (7.2), with the results denoted 

as OGL and OGR, and compute the two lengths LengthL and LengthR of the 

path after inserting the nodes OGL and OGR for obstacle avoidance using the 

following equations: 

,

,

nextGRGRGR

nextGLGLGL

NOOVLength

NOOVLength

+=

+=
 (7.6) 

where VG is the vehicle location in the global coordinate system. 

Step 3. If LengthL is smaller than LengthR, choose OGL as the obstacle avoidance 

node; else, choose OGR. 

Step 4. Using Equation (7.7) in the following to check whether the node is in a 

pre-defined search area in the image or not. If not, compute the node 

position using Equation (7.8) in the following: 

rNVG >
, (7.7) 

ruN N ⋅= , (7.8) 

where N is the node for obstacle avoidance, r is the distance between the 

vehicle and the next node, and uN is the unit vector of NVG . 

Step 5. Return the node position. 
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7.4 Experimental Results 

In this chapter, we have proposed an unsupervised k-means clustering algorithm 

to find clusters of the floor colors. We have tested several kinds of floors, as shown in 

Figure 7.6. The experimental results are shown in Figure 7.7. 

For the convenience to observe the clustering result, we constructed an u’v’ 

chromaticity plane image. Each sample point is drawn as a point with the same color 

for each cluster, as shown in Figure 7.7(b). The white circles specify the clusters’ 

average distance between the samples and their corresponding cluster centers. Each 

clusters’ samples are specified by different colors. We collected the color samples of 

the alert line in the image. Each color samples of the alert line is drawn as a purple 

point in the u’v’ chromaticity plane image, as shown in Figure 7.7(b). Then, we 

filtered out the samples with similar colors of the clusters, as shown in Figure 7.7(d), 

and apply region growing to find the distribution of the obstacle. Another 

experimental result for a different floor and a different obstacle is shown in Figure 

7.8. 

  

Figure 7.6 Two kinds of floors. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7.7 The experimental result of obstacle detection by k-means clustering. (a) The image 

contains the floor and an obstacle. The red parts of the alert line specify the 

obstacle and the green parts of the alert specify the floor. (b) The clustering result 

which is shown in the u’v’ chromaticity plane. (c) The colors of the clusters. (d) 

The non-floor colors on the alert line. (e) The mask created by region growing. (f) 

The mask after applying the morphological operations. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

 
(d) 

 
(e) 

Figure 7.8 Another experimental result of detecting an obstacle by k-means clustering. (a) The 

image contains the floor and an obstacle. (b) The clustering result. (c) The colors 

of the clusters. (d) The non-floor colors on the alert line. (e) The mask created by 

region growing. (f) The mask after applying the morphological operations. 
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Chapter 8  
Experimental Results and 
Discussions 

8.1 Experimental Results 

In this section, we will show some experimental results of the proposed security 

patrolling system in indoor environments. Experiments for this study were performed 

from the Computer Vision Laboratory at the Department of Computer Science, 

through a corridor, to the lobby of Engineering 3 Building, all in National Chiao Tung 

University. 

The user interface of the system is shown in Figure 8.1. At first, a user controls 

 

Figure 8.1 A user interface of the experiment. User can control the vehicle through this 

interface to learn a path and the monitored objects on the path. 



 

106 
 

the vehicle to learn a path and some monitored objects on the walls. In this study, 

monitored objects are paintings and posters. Whenever the vehicle arrives at a spot, 

the user controls the system to record the monitored-object features and the 

calibration information. After the learning process, a navigation map is created. An 

illustration of the learned data, the navigation map, and the actual navigation path 

created in the experiment is shown in Figure 8.2. 

Poster 2

Painting

 : Navigation node

 : Obstacle

: Learned path

: Navigation path

 

 : Starting and finishing point

 : Monitored object check point

Elevator

Poster 3

Poster 4

Poster 5

Poster 1

Poster 6

 

 

Figure 8.2 An illustration of learned data and navigation path. 
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The vehicle starts security patrolling according to the created map. The 

navigation process is shown in Figure 8.2. Whenever the vehicle arrives at a learned 

monitoring node, it performs the security check of the existence of the monitored 

object. If the check is successful, the vehicle adjusts its location to continue its 

navigation on the right way according to the matching result; otherwise, a message is 

issued. For each monitored object shown in Figure 8.2, the experimental results are 

shown in Figure 8.3. In Figure 8.3, the vehicle performed security monitoring to 

monitor 7 monitored objects. The vehicle arrived at the learned monitored node, as 

shown in Figure 8.3(b). Then, it extracted the features of the image and matched with 

the corresponding learned data. The matching results are shown in Figure 8.3(c) and 

the learned monitored objects are shown in Figure 8.3(d). 

In addition, while the vehicle navigates, the vehicle will detect obstacles by 

scanning the alert line, as shown in Figure 7.8(b). If the vehicle detects an obstacle, a 

new path is planned to guide the vehicle to avoid the obstacle, as shown in Figure 

7.8(c) through (h). 

Obj1. 

 

(a) (b) (c) (d) 

Figure 8.3 The experimental result of object monitoring and navigation path correction. (a) 

Monitored object labels. (b) The vehicle monitors the monitored objects. (c) The 

matching result and the horizontal line used for path correction. (d) The image of 

learned monitored objects. 
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Obj2. 

 

Obj3. 

 

Obj4. 

 

(a) (b) (c) (d) 

Figure 8.3 The experimental result of object monitoring and navigation path correction. (a) 

Monitored object labels. (b) The vehicle monitors the monitored objects. (c) The 

matching result and the horizontal line used for path correction. (d) The image of 

learned monitored objects. (continued) 
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Obj5. 

 

Obj6. 

 

Obj7. 

 

(a) (b) (c) (d) 

Figure 8.3 The experimental result of object monitoring and navigation path correction. (a) 

Monitored object labels. (b) The vehicle monitors the monitored objects. (c) The 

matching result and the horizontal line used for path correction. (d) The image of 

learned monitored objects. (continued) 
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(a) 

 
(b) 

(c) (d) 

 
(e) 

 

(f) 

Figure 8.4 The vehicle detects an obstacle and changes the navigation path to avoid the 

obstacle. (a) The mask of detected obstacle region. (b) The image contains the 

floor, an obstacle, and the alert line specified the distribution of the obstacle. 

(c)~(h) show the vehicle avoiding an chair as an obstacle. 
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(g) 

 

(h) 

Figure 8.4 The vehicle detects an obstacle and changes the navigation path to avoid the 

obstacle. (a) The mask of detected obstacle region. (b) The image contains the 

floor, an obstacle, and the alert line specified the distribution of the obstacle. 

(c)~(h) show the vehicle avoiding an chair as an obstacle. (continued) 

8.2 Discussions 

By analyzing the experimental results of guidance, some problems are identified 

as follows. 

(1) The reflect light of the lamplight will affect the intensity of the image taken by 

the camera because the camera is placed at the lower position, resulting in fewer 

matched pairs computed by the SIFT algorithm. Thus, the horizontal line, which 

is computed by applying the extracted affine transform, in the image is not 

identical, so the computed coefficients of the linear equation will yield errors. 

The vehicle location estimation also produces errors. 

(2) There are two constraints of the proposed system, namely, the floor has to be flat 



 

112 
 

and the luminance has to be even. The obstacle avoidance method used in this 

study uses the colors of the floor which is close to the vehicle as the reference to 

scan the alert line. If the colors of the floor on the alert line are different to the 

ones of the floor which is close to the vehicle, it is difficult to separate the floor 

and other things on the floor. The distance between the obstacle and the vehicle 

is also difficult to obtain. This problem should be solved in the future. 
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Chapter 9  
Conclusions and Suggestions for 
Future Works 

9.1 Conclusions 

In this study, several techniques and strategies have been proposed and integrated 

into an autonomous vehicle system for security patrolling in indoor environments with 

capabilities of specific-object monitoring and self-adjustment of navigation paths. 

Satisfactory navigation results have been obtained by this system. 

At first, an easy-to-use learning technique is proposed, which has the capability 

of extracting specific features, including navigation path, floor color, monitored object, 

vehicle location with respect to monitored objects. A user can easily control the 

vehicle with a designed interface to navigate in the environment and specify 

concerned objects in the image for later security monitoring.  

Next, a security patrolling method by vehicle navigation with obstacle avoidance 

and security monitoring capabilities has been proposed. The vehicle navigates 

according to the node data of the path map which is created in the learning phase and 

monitors the concerned objects by a 2D object image matching technique proposed in 

this study, the simplified-SIFT algorithm. Accordingly, we can extract the features of 

the monitored object from acquired images and match them with the learned data. The 

matching technique is based on the Hough transform. We construct a Hough 

transform histogram to predict the model location, orientation, and scale from the 
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match hypothesis, and find the best match by finding the peak in the Hough space. 

In addition, a vehicle location estimation technique by utilizing the monitored 

object matching result has been proposed. The coefficients of the equation of a 

horizontal line and the location of the start point in the image are used to estimate the 

vehicle location. Also proposed is a path correction method, which compares the 

estimated location and the learned one to compute necessary path adjustment and 

transform it into the global coordinate system to correct the navigation path. 

Finally, for obstacle avoidance, a k-means clustering algorithm for finding 

clusters of the floor colors has been proposed, by which we can detect obstacles in 

environments with various floor colors. We have also proposed an alert line scanning 

technique to detect obstacles and integrated it with a technique of goal-directed 

minimum path following to guide the vehicle to avoid the obstacle. 

The experimental results shown in the previous chapters have revealed the 

feasibility and practicality of the proposed system. 

9.2 Suggestions for Future Works 

The proposed strategies and methods, as mentioned previously, have been 

implemented on a vehicle system. Based on our experience of the experiments, 

several suggestions and related interesting issues are worth further investigation in the 

future. We state them as follows. 

(1) Using an omni-directional camera for obstacle avoidance to take wider-view 

images of the environment which is close to the vehicle. 

(2) Design a learning data managing system for the incremental learning of 

monitored objects and learned data management. 
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(3) Adding more kinds of features for vehicle location estimation. 

(4) Adding the capability of transmitting warning messages from the system to a 

user’s cell phone or electronic mail address to warn the user immediately. 

(5) Adding the capability of voice control when users want to issue navigation 

orders to the vehicle. 

(6) Adding the capability of starting navigation from arbitrary start points. 
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