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ABSTRACT

A vision-based vehicle system for security patrolling in indoor environments
using an autonomous vehicle is proposed. A small.vehicle with wireless control and a
web camera which has the capabilities of panning, tilting, and zooming is used as a
test bed. At first, an easy-to-use learning-technigue is proposed, which has the
capability of extracting specific features,. including navigation path, floor color,
monitored object, and vehicle location with respect to monitored objects. Next, a
security patrolling method by vehicle navigation with obstacle avoidance and security
monitoring capabilities is proposed. The vehicle navigates according to the node data
of the path map which is created in the learning phase and monitors concerned objects
by a simplified scale-invariant feature transform (simplified-SIFT) algorithm
proposed in this study. Accordingly, we can extract the features of each monitored
object from acquired images and match them with the corresponding learned data by
the Hough transform. Furthermore, a vehicle location estimation technique for path
correction utilizing the monitored object matching result is proposed. In addition,
techniques for obstacle avoidance are also proposed, which can be used to find the

clusters of floor colors, detect obstacles in environments with various floor colors, and
i



integrate a technique of goal-directed minimum path following to guide the vehicle to
avoid obstacles. Good experimental results show the flexibility and feasibility of the

proposed methods for the application of security patrolling in indoor environments.
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Chapter 1
Introduction

1.1 Motivation

In recent years, studies on vision-based autonomous vehicle navigation are in
high prominence because of its great potential in various applications and the
developments of computer vision techniques [1]. They give autonomous vehicles the
ability to perform a great variety of dangerous or dreary works in replacement of
human beings, for example, interoffice document delivering, unmanned transportation,
house cleaning, security patrolling, etc.

Today, for security surveillance, we usually install lots of stationary cameras to
monitor indoor environments. Suceess of environment security monitoring depends
on the operator’s endeavor to keep track of the videos taken by cameras. This way
spends much time and manpower and lacks efficiency. Moreover, it results in
weakness of the surveillance system because of its fixed field of view. These obvious
disadvantages of conventional security surveillance systems prohibit more intelligent
environment monitoring and surveillance applications.

In order to overcome the above problem, we can employ a vision-based
autonomous vehicle which has high mobility and is equipped with more capable
cameras. It can be utilized to patrol in indoor environments to assist the security
surveillance system to monitor the area uncovered by still cameras’ fields of view.
And we can use it in replacement of patrolling guards to conduct security patrolling

ceaselessly. When the vehicle detects an abnormal condition, it can send an alert
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message to the security center. This provides more efficient and reliable security
protection.

To develop autonomous vehicle systems for indoor security patrolling
applications, the most critical requirement is that the vehicle has to be guided smartly
when patrolling in indoor environments. Facing this challenge, learning artificial
landmarks or specific scene features in the environment and locating the vehicle by
landmark or feature matching are feasible solutions. Although many works based on
these ideas have been developed in the past decade, most of them can only learn
landmarks with special shapes or in ideal backgrounds like pure-colored ones,
resulting in unreasonable restrictions on environments in which the vehicle can
navigate. Therefore, it is desired in this study to design a method utilizing the
technique of monitored-object image matching for vehicle location estimation. The
idea, simply speaking, is to analyze the 3D-geometric transformation of different
monitored object views to estimate the vehicle location.

More specifically, in a traditional.vision=based autonomous vehicle navigation
system, the vehicle is usually equipped with a fixed pinhole camera, and the view of
the vehicle is restricted to be a lower area. Hence, instead of using a fixed pinhole
camera, we equip the vehicle with a pen-tilt-zoom camera, called PTZ camera in the
sequel. With the PTZ camera and its movement, the view of the vehicle is extended to
a wider range. Thus we can monitor objects which are located higher than the camera
or detect obstacles which are placed lower than the camera, by the images taken with
the PTZ camera.

In summary, our research goal in this study is to develop an autonomous vehicle
security patrolling system with the following capabilities:

1. navigating in desired environments automatically;

2. monitoring concerned objects;



3. detecting obstacles and dodging automatically; and

4. calibrating vehicle locations against incremental mechanical errors.

1.2 Survey of Related Studies

In order to achieve the mission of security patrolling in indoor environments, the
design of algorithms for learning navigation paths and recording the features of
monitored objects is required at first. While the vehicle patrols routinely, some
unexpected situations might be encountered, such as an obstacle blocking a road
which the vehicle has to pass. To detect such situations, it is necessary to measure the
distance between the vehicle and.an object. Lai:and Tsai [2] proposed a 2D-to-3D
distance transformation by wusing a curve fitting technique and a modified
interpolation technique. The distances between-the vehicle and the surroundings in the
real world were measured accordingly through captured images. For obstacle
avoidance, Chiang and Tsai [3] proposed a goal-directed minimum-path following
technique to guide the vehicle in order to avoid collisions with obstacles. Besides, a
fuzzy guidance technique with two navigation modes was proposed by Chen and Tsai
[4]. It creates a navigation map with two kinds of learned data. Then, a fuzzy
guidance technique is applied to accomplish the navigation work according to the
navigation map. Moreover, a learning method using manual driving was proposed by
Chen and Tsai [5]. Before the vehicle navigation stage, a user drives the vehicle to
learn the navigation path and monitoring objects. Then, the vehicle with mechanic
error correction and visual object monitoring capabilities can accomplish specified
navigation works.

For object monitoring, the vehicle has to learn the features of the concerned
3



object and match the features to determine whether the object is exactly the same as
the previous learned one. There are many progresses made in the use of invariant
features for object shape recognition or matching in the past decade. Schmid and
Mohr [6] proposed a local feature detector for general image recognition problems.
Mikolajczyk and Schmid [7] extended this idea to the Harris-Laplace detector and
used it to detect points of interests at several scales and to select the right scale by
computing the maximum Laplace function. Lowe [8] used a scale-invariant detector
to find the extrema in the difference-of-Gaussian scale-space. He then created a
scale-invariant feature transform (SIFT) descriptor to match key points using a
Euclidean distance metric in an efficient best-bin first algorithm where a match is
rejected if the ratio of the best and the second best matches is greater than a threshold.

While the vehicle patrols, the vehicle location is the most vital information to
keep the navigation in track. Traditionally, an.autonomous vehicle is equipped with an
odometer to measure the current location-of-the vehicle. However, it usually suffers
from incremental mechanic errors."Thus.we.need a technique of vision-based vehicle
location estimation to reset the mechanic error.

Fukui [9] proposed a method for vehicle location by utilizing a diamond shape
whose boundary consists of four identical thick line segments with known lengths.
Magee and Aggarwal [10] used a sphere on which two perpendicular great circles
were drawn as a standard landmark for vehicle location. Huang et al. [11] also used a
colored rectangle signboard and obtained the relative position between the signboard
and the vehicle by calculating the vanishing points in the image of the signboard.
Moreover, Chou and Tsai [12] proposed a method which utilizes a house corner
existing naturally in the house to estimate the vehicle location. And Chiang and Tsai
[13] simplified the Chou’s formula and applied the resulting technique to the

application of indoor vehicle guidance with a PTZ camera.
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1.3 Overview of Proposed Approach

In this study, it is desired to develop an effective vision-based autonomous
vehicle system for security patrolling in indoor environments. With this purpose, an
easy-to-use learning method which processes the odometer data of manual driving
obtained in learning and the features of monitored objects extracted in navigation
automatically is proposed. Secondly, a vision-based navigation technique with
obstacle avoidance and specific object monitoring capabilities is proposed. Finally, a
vehicle location calibration technique based on monitored-object image matching
results is proposed.

We use the odometer to provide the position of the vehicle and the image
captured by the PTZ camera equipped on the wvehicle to monitor higher-located
objects as well as the surrounding environment. An overall framework of the proposed
system is illustrated in Figure 1:1. Here we-divide the work conducted by the system
into two phases: the learning phase and.the navigation phase.

In the learning phase, the proposed learning method consists roughly of four
steps. The first step is navigation path learning. Since the vehicle must know where to
patrol, we control the vehicle to move to desired places through a user interface. Then,
the vehicle processes the odometer data to get the positions of desired places and then
records these data as navigation nodes along the learned path. While the vehicle is
entering a different floor environment, in order for the system to avoid misrecognizing
a new floor as an obstacle, the vehicle has to record the features of the new floor as
part of the navigation node data.

The second step is monitored object learning. In this step, the vehicle has to
record the features of the objects to be monitored. With the use of the PTZ camera, the

vehicle can capture the images of the monitored objects which are located higher than
5
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Figure 1.1 An overall framework of proposed system.

the camera. For object recognition and matching, Lowe [8] proposed the SIFT to
extract features from given images as SIFT descriptors and used a best-bin first
algorithm for SIFT descriptor matching, as mentioned previously. Since in the

navigation phase, the position of the same monitored object will be just close to,
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instead of exactly at, the one found in the learning phase, resulting in a slight variation
on the scale of the taken images, we propose in this study a simplified SIFT which
reduces the difference of Gaussian scale layers. It is faster than the original SIFT to
meet real-time security monitoring needs.

The third step is vehicle locations learning. While using the monitored object
matching results for vehicle location adjustment, the system requires the knowledge
of the vehicle position with respect to the monitored object. Thus a position relative to
the monitored object is recorded.

The final step of the learning phase is creation of a learned path map. The
navigation nodes and the features of the monitored objects recorded in the previous
step are processed to create a path map in this step. This path map is designed to be in
a form of graph which is composed of a set of nades connected with edges. The path
map can then provide the patrolling.data for use in.the navigation phase.

In the navigation phase, the vehiclereads-the path map and moves along the path
nodes orderly in accordance with+the.map.data. While the vehicle navigates, we
analyze the floor images taken by the camera continuously. If an obstacle is detected
on the patrolling path, a new path for obstacle avoidance and destination approaching
is planned. If the vehicle navigates to a node where a monitored object is located, it
detects the object and adjusts the vehicle location to move to the right navigation path.
If the vehicle finds the concerned object missing, a warning message will be issued.

In summary, an autonomous vehicle navigation system for indoor security
patrolling applications with capabilities of novel learning and self-adjustment of
navigation paths is proposed. The vehicle can utilize the navigation map acquired by
the proposed learning process to navigate in desired indoor environments and monitor

concerned objects.



1.4 Contributions

The main contributions of this study are summarized in the following.

(1) Asimplified SIFT algorithm for automatic matching of monitored object images
captured by PTZ cameras is proposed.

(2) A vision-based vehicle location estimation method utilizing monitored-object
image matching to avoid mechanic error accumulation is proposed.

(3) A method for security monitoring of various types of concerned objects is
proposed.

(4) A method based on k-means clustering of floor colors for real-time obstacle
avoidance in environments with various floor colors is proposed.

(5) Avision-based detection of obstacles by learned floor colors is proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we describe
the system configuration of the vehicle used as a test bed in this study, as well as the
principle of vehicle learning and guidance. In Chapter 3, the proposed techniques for
extraction of specific features such as navigation path, floor color, monitored object,
vehicle location with respect to monitored objects are described. In Chapter 4, the
proposed method for security patrolling by vehicle navigation with obstacle
avoidance capability and the security monitoring processes is described. In Chapter 5,
the proposed method for detecting monitored objects by object image matching is
described. In Chapter 6, the proposed vision-based vehicle location estimation by

object image matching results to correct the odometer records in the vehicle is
8



described. In Chapter 7, the proposed method for obstacle avoidance in various floor
environments is described. Some experimental results are shown in Chapter 8.

Finally, some conclusions and suggestions for future works are given in Chapter 9.



Chapter 2
System Configuration and
Navigation Principles

2.1 Introduction

For security surveillance, a vision-based autonomous vehicle system in indoor
environments might face many unexpected conditions, such as colliding with
obstacles, passing through narrow paths, finding missing valuables, etc. In order to
achieve the objective of security patrolling by. an‘autonomous vehicle, a small and
agile vehicle is the best choice for this study. It is Suitable to navigate in the large
patrolling area and monitor the“open space such as corridors, lobbies, or exhibition
halls.

The autonomous vehicle system used in this study is composed of a small vehicle
and a pan-tilt-zoom camera. For users to control the vehicle, some communication
and control equipments are required. The entire system configuration including
hardware equipments and software is introduced in Section 2.2.

To navigate in an unknown indoor environment, a learning strategy is necessary
to teach the vehicle where to navigate, what to monitor, and how to adjust the vehicle
locations before starting security patrolling. In the following sections, we describe the
vehicle navigation principles and the overviews of the detailed processes. In Section
2.3, the principle and process of learning navigation paths and environment features

are described. In Section 2.4, the principle and process of the security patrolling in
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which the vehicle monitors concerned objects and patrols in desired indoor

environments automatically are described.

(b) (c)

Figure 2.1 The vehicle Pioneer3-DX used in this study. (a) A perspective view of the vehicle.

(b) A front view of the vehicle. (c) A left-side view of the vehicle.
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2.2 System Configuration

In this study, we use the Pioneer 3-DX, an agile, versatile intelligent vehicle
made by MobileRobots Inc., as a test bed. The vehicle is equipped with a
pan-tilt-zoom camera, as shown in Figure 2.1. Because the whole system is controlled
by users remotely, some wireless communication equipments are necessary. The
hardware architecture and used components of the test bed are described in Section
2.2. Besides, the software including application programming interfaces and
development tools we used in the study to help us develop the system and provide an

interface for users to control the vehicle is described in Section 2.2.2.

2.2.1 Hardware configuration

The entire navigation system is composed of three parts, as shown in Figure 2.2.
The first part is a vehicle system with a build-in-wireless device and an embedded
control system. The vehicle has an aluminum body of the size of 44cmx38cmx22cm
with two 19cm wheels and a caster. The vehicle can climb a 25% grade and sills of
2.5cm. On flat floors, the vehicle can reach a forward speed of 160cm per second and
a rotation speed of 300 degrees per second. There are three 12V rechargeable
lead-acid batteries in the vehicle which supply the power. The vehicle can run 18-24
hours with the three fully charged batteries. By a user’s command, the embedded
control system can control the vehicle to move forward or backward or to turn around.

The system is also able to return some status parameters of the vehicle to the user.

12
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Figure 2.2 Structure of proposed system.

The second part is a digital IP camera with panning, tilting, and zooming (PTZ)
capabilities. The PTZ IP camera used in this study is an AXIS 213 PTZ made by
AXIS, as shown in Figure 2.3. This is a camera with a height of 130mm, a width of
104 mm, a depth of 130mm, and a weight of 700g. The pan angle range is 340
degrees and the tilt angle range is 100 degrees. It has 26x optical zoom and 12x digital
zoom. The image captured in our experiments is of the resolution of 320x240 pixels
for the reason of raising image processing efficiency. Moreover, the camera is directly
connected to an access point by a network cable for transmission of the captured

image.
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(b) i ©

Figure 2.3 The pan-tilt-zoom camera used in this study. (a) A perspective view of the camera.

(b) A front view of the camera. (c) A left-side view of the camera.

The third part is a remote control system using a notebook PC. A control program
can be executed on the remote control system to issue commands and get the status
information from the vehicle and the PTZ camera. All commands transmitted to the
vehicle or to the camera are through the wireless network. There is an access point in
our test environment which meets the IEEE 208.11g standard to offer a bandwidth for
the remote control system to communicate with the vehicle and the camera. Both the
vehicle and the remote control system own wireless devices to connect to the access

point, and the camera connects to the access point via a network cable. In other words,
14



we use the access point as a medium to connect the three parts of the proposed

navigation system.

2.2.2 Software configuration

The MobileRobots Inc. provides an Advanced Robotics Interface for
Applications (ARIA) which is an object-oriented programming interface in the C™
language to control the mobile robot. The lowest-level data and information of the
vehicle are also retrieved easily by means of the ARIA. In other words, using the
ARIA as an interface makes developers to communicate with the embedded system of
the vehicle. And we use the Borland C++ builder as the development tool in our
experiments.

For PTZ camera controlling, the AXIS ‘Company also provides a development
tool called AXIS Media Contral SDK for the AXIS 213 PTZ. With the SDK, we can
preview the image of the camera’s.view and _get'the current image data from the
camera. We can also perform the panning, tilting, and zooming actions easily through
the SDK. It is convenient for users to develop any function with the images grabbed

from the camera.

2.3 Learning Principle and Proposed
Process

To perform security patrolling in an unknown environment, a learning process is
necessary. It is desired to develop an easy-to-use learning process which can learn the

knowledge of desired navigation paths and concerned objects. As soon as the learning
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process ends, the navigated paths, the features of the monitored objects, and the
vehicle locations’ data are recorded in advance. The entire learning process in this
study is shown in Figure 2.4.

In order to help users teach the vehicle, a user control interface is designed for
use in controlling the vehicle and specifying the objects to be monitored. The user
drives the vehicle to navigate in indoor environments and move to the front of the
concerned objects. The main recorded data include two categories, namely,
path-related data and object-related ones. As soon as the learning process ends, all
data are stored in the storages of the computer such that the learning process is only
executed once and the data can be used repeatedly.

More specifically, while the vehicle navigates in an open space by the control of
a user, it records the path data .provided by the odometer, and denotes them as
navigation nodes. It also analyzes.the images taken by the camera continuously to
detect whether the colors of the-floor.change.-If.the colors change, the vehicle records
the colors of the new floor and the navigation node data which represents the start
position of the new floor.

When the vehicle arrives at the front of a concerned object, the user can control
the PTZ camera to move toward the object and select the object in the image captured
by the camera. Then, the features of the object are computed automatically from the
images by performing the simplified SIFT. And the relative position between the
vehicle and the monitored object is also computed automatically from the image
subsequently. With such manners, the user can specify the concerned objects
continuously along the path until finishing a learning process.

After finishing the learning process, a navigation map which consists of the path
and monitored objects data is created and saved into a text file for use in the

navigation phase.
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Figure 2.4 Flowchart of proposed learning process.
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2.4 Vehicle Guidance Principle and
Proposed Process

Before the vehicle starts to patrol, the system reads the path map created in the
learning phase, as mentioned previously. In order to guide the vehicle along the
learned path, the vehicle moves sequentially from one node to another according to
the path map. While the vehicle patrols in indoor environments, two things should be
paid attention to. One is whether the vehicle reaches the next node or not. The other is
whether the vehicle encounters an obstacle or not. An illustration of the vehicle
navigation process is shown in Figure 2.5.

When the vehicle reaches the next.node, it checks first whether the node includes
the monitored object data or the.color data of the new floor. If the node includes the
color data of the new floor, the:vehicle updates the reference color of the floor which
the obstacle detector uses for recognizing an‘obstacle on the floor. If the node includes
the monitored objects data, the vehicle uses ‘the learned data to detect whether the
object still exists or not. If the detection or matching process of the object fails, the
system will issue an alarm message to the user. Otherwise, the vehicle uses the
learned vehicle locations’ data to adjust the vehicle’s location.

Besides, the vehicle might encounter an obstacle blocking the navigation path in
the patrolling process. In order to detect such a condition, the system analyzes the
images taken by the camera continuously by the use of the floor color to recognize an
obstacle on the floor. If an obstacle is detected on the patrolling path, a new path for
obstacle avoidance and destination approaching is planned. With such navigation
processes, the vehicle can patrol alone the learned path to accomplish specified

security patrolling works.
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Chapter 3
Learning Strategies for Indoor
Navigation by Manual Driving

3.1 Ideas of Proposed Techniques Used
In Learning

In general, indoor environments are usually complicated and the concerned
objects are placed at different positions, and so building a complete path map to guide
the patrolling vehicle is indispensable;=Thus; to'.create the path map and select
monitored objects is a primary-work for security- patrolling by vehicle navigation. In
this chapter, we divide the data to be-learned-into two categories, namely, the camera
parameters and the environment features. After learning whole data, we utilize the
data to build the path map for security patrolling and save it into the storage of the

computer, as described in Section 2.3.

3.1.1 Learning camera parameters

While the vehicle navigates, many unexpected situations might be encountered,
such as facing an obstacle in front. It is desired to measure the distance between the
vehicle and an object. Since the camera is the only sensor to gather the features of the
environment, the calibration of location mapping and image analysis techniques are
necessary in this study. We utilize a real-world location data acquisition method [5] by

the calibration of location mapping to obtain the relative position between the vehicle
20



and an obstacle precisely. The detailed process is described in Section 3.2.1

Besides, while calculating the relative position between the vehicle and the
monitored object, it is necessary to know the camera intrinsic parameters, such as the
focus length, the coordinates of the image center, etc. Hence, we adopted a method
proposed by Shu et al. [14] for calibrating the camera based on planar checkerboard

patterns in this study. The detailed calibration process is described in Section 3.2.2

3.1.2 Environment features for learning

In order to navigate in an unknown environment, four kinds of environment
features for learning are used in this study. The first is navigation path data. Although
we can get the position of the vehicle by the odometer value at any time, it desired to
represent the entire path by simple and useful values. In Section 3.3.1, we describe
how to gather path data when the user controls the vehicle to navigate in an indoor
environment. The second feature‘is floor color. For obstacle avoidance, how to detect
an obstacle in various floor environments is the key issue. Hence, we propose a
detection method which uses the learned floor color based-on k-means clustering, as
illustrated in Section 3.3.2. The third feature is the monitored objects’ feature. In order
to monitor concerned objects, the vehicle must firstly learn the features of them. Then
the vehicle can perform object monitoring by matching the features computed in the
navigation phase. We propose a simplified SIFT in this study to transform
monitored-object images into the features. The detailed learning process is described
in Section 3.3.3. The last feature is the vehicle location with respect to each monitored

object, as illustrated in Section 3.3.4.
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3.2 Camera Calibration

3.2.1 Calibration of location mapping

In order to measure the distance between the vehicle and an object, we map the
tessellated points in the image coordinate system to the ones in the global coordinate
system, as shown in Figure 2.2.

Using a point set attached on the floor with coordinates known in the global
coordinate system, as the red points shown in Figure 2.2, and their corresponding
point set appearing in the image taken by the camera, we can get a point-to-point
coordinate transformation from the image coordinate system to the global coordinate
system. And for any point that is net exactly at the tessellated point, an interpolation
method is performed to gather.their corresponding coordinates in the global

coordinate system.

Figure 3.1 An illustration of attaching grids on the floor. A point set attached on the floor with

coordinates known in the global coordinate system, as the red points.
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3.2.2 Calibration of intrinsic parameters

In order to calibrate the camera, we use a program named CAMcal [14] to
calibrate the intrinsic parameters of the camera. The program reads a sequence of
images of planar checkerboard patterns. The checkerboard pattern consists of tiled
black or white squares with 2cm edges, as shown in Figure 3.3(a). After reading the
images, as shown in Figure 3.3(b), the program extracts the features from the images
of patterns and matches them with those of the patterns themselves, as shown in
Figure 3.2. Once the correspondences between the points in the images and those in
the pattern are established, the camera’s intrinsic parameters such as the focus length,
the origin of the image in the image coordinate system, and the distortion coefficients

can be computed automatically.

Calibration Help
FEH EEW B A 7

Camera Intrinsic Parameters:

focal length x pixel width = 435.306000

focal length x pixel height = 437.137573

principle point = [156.515778 89.188271]

distortion coefficients = [-0.178746 0.304110 -0.001353 0.000000]

Figure 3.2 CAMcal user interface with the extracted grids result.
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(@) (b)

Figure 3.3 The checkerboard pattern used for the intrinsic parameters. (a) The printable

checkerboard pattern. (b) The image of checkerboard pattern taken by the camera.

3.3 Learning of Specific Features

3.3.1 Learning of navigation-paths composed of

nodes

When the vehicle navigates in an open space by the control of a user, the
odometer provides the current position data continuously. The position data consist of
the vehicle coordinates (x, y) in the vehicle coordinates system and the direction
angles @ with respect to the vehicle’s position and direction of the navigation starting
point, respectively. We record both the vehicle coordinates and the direction angle as
path data in this study.

In order to simply the data of learned paths, we only save the coordinates (x, y)
which are called node N; while the vehicle at one of the following three situations:

(1) when the user controls the vehicle to turn;
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(2) when the vehicle detects a new color of the floor;
(3) when the user controls the vehicle to learn a concerned object.

Each node includes the coordinates and the direction angle values and is labeled
with a serial number. These nodes then form a graph of the learned path.

A control user interface is designed for user to drive the vehicle, as shown in
Figure 3.4. When the user controls the vehicle to move to a desired place, the vehicle
system will automatically collect the node data. After finishing learning, we have a set
of notes, denoted as Npah. The process of recording the path data is described as an

algorithm in the following.

B | EFRE | BRsE | TabShees |

Figure 3.4 Control user interface.
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Algorithm 3.1. Path node collection.

Input: The coordinates provided by the odometer in the vehicle.

Output: A set of nodes denoted by Npah ={No, N1, Ny, ..., Ni}.

Steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Record the first node as (xo, yo0, &) = (0, 0, 0) into the set Nyan and mark the
node as Ny with index 0, when the vehicle is at the starting position.

Record the node Ni(x;, yi, 6)into the set Npan by taking the values of the
odometer (x, y) and the direction angle 6, and label the node N;with the next
index number, when the vehicle is at one of the following three situations:
(4) when the user controls the vehicle to turn;

(5) when the vehicle detects a new color of the floor;

(6) when the user controls the vehicle to learn a concerned object.

Repeat Step 2 until the learning process is finished.

Record the finally node Nginto-the-set Npan and label it as N; by the next
index number.

Save all the nodes of the set Npam into the storage of the computer.

As an illustration of the result of applying Algorithm 3.1, we show an example of

recorded nodes in Figure 3.5. It is shown that all nodes of the three situations are

recorded in addition to the start and the end nodes. Each node is labeled with index

numbers according to the order of patrolling. The index numbers are useful for path

map creation and object monitoring.
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Figure 3.5 An illustration of learned data.

3.3.2 Learning of floor colors by k-means clustering

In order to detect an obstacle on various floors, we propose a method by learning
the colors of the floors to distinguish between an obstacle and the floor. We design an
algorithm to cluster the colors of the floor as features. One reasonable assumption is
that there is no obstacle in the initial image captured by the camera. Under this

assumption, we can apply a k-means clustering algorithm to compute the floor-color
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features of the initial floor environment. Traditional clustering techniques usually
choose the RGB space as the feature space. But the color distance in the RGB space
usually can not represent the similarity of the similar color in the real world. Thus we
first transform the image from the RGB space into the Lu v’ space. Then we can find
the clusters in the 2D plane containing the chromatic value of the color and associate
them with appropriate clusters in the 1D luminance space. The detailed algorithm will
be described in Section 7.3. After clustering the colors of the floor successively, we
can retrieve a set of the color features of the floor, denoted as Croor = {ci}i=1...n , @S
shown in Equations (3.1) below, defining the main colors within the image. The color
features set of the floor is useful in determination of obstacle existence and finding a

collision-free path later.

Cﬂoor i {cl}i=1,2 ..... n )

o, 2| SN, e

While a user controls the vehicle'to idearn the navigation paths, the vehicle
performs the above clustering algorithm periodically. In realistic environments, the
colors of the floor and the illumination might change slightly while the vehicle moves,
resulting in the changes of the color features; Therefore, we threshold the differences
of the color features. If the difference of the color features is higher than a threshold
parameter, a new node which represents this new floor is created automatically. And
the vehicle can use this node to know where the new floor begins in the navigation
phase. The process of detecting and recording the color data of a new floor is

described as an algorithm in the following.
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Algorithm 3.2. The color of the new floor detection and recording by node creation.

Input: A color image | and the threshold of the color feature differences ¢

Output: A node which represents the beginning of a new floor.

Steps:

Step 1.  Apply the proposed k-means clustering algorithm on the image |1 to find the
color feature set, denoted as Croor in the initial state.

Step 2. Capture a new image of the current environment, denoted as Ine.

Step 3. Apply the k-means clustering algorithm to find the new color feature set of
the image Inew, denoted as Cpey.

Step 4. Compute the difference between Crew and Cyioor as Cit.

Step 5. If Cgirr is greater than 7, create a node with Cpe, and record it into the path
by Algorithm 3.1 and update Crioor aS Crigw-

Step 6.  Repeat Steps 2 through 5.until the learning process is finished.

3.3.3 Learning of monitored ebjects by simplified

SIFT

In order to learn concerned objects, we design a user interface to help users
specify the object which they want to monitor. While the user controls the vehicle to
the front of the object to be monitored, they can move the PTZ camera toward the
object. Then, they can select the object in the image by the use of the mouse
connected to the computer to drag a rectangle as an interesting region to cover the
object which appears in the image, as shown in Figure 3.6. Now, we apply the
simplified SIFT algorithm which is described in Chapter 5 to obtain the feature set of
the interesting region. Then, we save the vehicle location, the PTZ position, the

feature set, and the interesting region into the storage of the computer. A flowchart is
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illustrated in Figure 3.7, and the detail process is described in the following.

i
Algorithm 3.3. Learning of a anttored object

Input: The position P of a monltc}red ot;;ject
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Output: A monitored object information data)

Steps:

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Drive the vehicle to the monitored object position P.

Move the PTZ camera toward the object and take an image I.

Drag a rectangle on the image | as an interesting region.

Apply the simplified SIFT on the interesting region to extract the feature
set.

Save the vehicle location, the PTZ position, and the feature set of the
interesting region as a monitored object information data.

Save the interesting region in the image.
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Figure 3.7 A flowchart of the learning monitored object process.
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3.3.4 Learning of vehicle locations with respect to

monitored objects

With successively monitoring of an object, we can extract an affine
transformation between the image of the same monitored object in the navigation
phase and the one found in the learning phase. During the learning phase, if we give a
horizontal line, which is parallel to the floor plane in the 3D global coordinate system
in the image, we can acquire the same line found in the image taken in the navigation
phase by applying this affine transformation. Then, by some analytic mathematics
analysis on this horizontal line found in the image taken in the navigation phase, we
can obtain the relative position C(x,, y,).and the relative angle 6. of the vehicle in the
world coordinate system with respect to.the -monitored object, as shown in Figure 3.8.

The detailed algorithm is described in Chapter 6.

\ 4

| _o (et
(d)

Figure 3.8 The relative position C(x,, y,) of the vehicle with respect to the start point in the

world coordinate system.
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Current Image 1921

(b) (©)

Figure 3.9 A user interface to specify the horizontal line. (a)A cyan line specified the

horizontal line of the world coordinate system. (b) A zoom-in window for
specifying the start point of the line. (c) A zoom-in window for specifying the end

point of the line.

Hence, in order to gather the horizontal line, a user interface to help users specify
the line is necessary. Based on the user interface designed for learning of monitored

objects, we add two zoom-in windows for users to point out the start point (1, v1) and
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the end point (u2, v;) of the horizontal line in the image, as shown in Figure 3.9.
Successively specifying the line, we can compute the linear equation’s coefficient b
and ¢ by solving the equation u+bv+c=0 with (u1, vi) and (uz, v2), and apply the
proposed location estimation algorithm described in Chapter 6 to find the relative
position C(x,, y,) and the relative angle 6.

Now we have the relative position C(x,, y,) and the relative angle &, between the
monitored object and the vehicle location. The relative position is useful in adjusting
the vehicle location while the vehicle patrols to the monitored object in the navigation
stage. Thus, the last thing is to save the calibration information data including the start
point (u;, v;), the coefficients » and ¢, the relative position (x,, y,), and the relative
angle 4. for the use in adjusting the vehicle location in the navigation phase. A
flowchart is illustrated in Figure 3.10, and the detailed learning process is described in

the following.

Algorithm 3.4. Learning of vehiclelocations with respect to monitored objects.

Input: A color image | including a monitored object and an interesting region selected

during learning of the monitored object.

Output: A calibration information data.

Steps:

Step 1.  Select the start point (u;, v;) and the end point (u>, v,) of the horizontal line
in the image | which is parallel to the floor plane in the 3D global
coordinate system.

Step 2. Compute the coefficients » and ¢ by solving the equation u+bv+c=0

with (ul, Vl) and (uz, Vz).

Step 3.  Apply the proposed location estimation algorithm described in Chapter 6 to
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find the relative position C(x,, y,) and the relative angle 6. with respect to

the start point in the 3D global coordinate system as an origin.

Step 4.  Save the start point (u1, v1), the coefficients 5 and ¢, the relative position (x,,
v,), and the relative angle g, as calibration information data for a monitored

object.

User Control Interface
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vehicle locations
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Select the start point
» and the end point of
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the Compute the relative 0.
coefficient » position C(x,, y,) and :
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h J
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Image Process and Data Process

Figure 3.10 A flowchart of learning the vehicle locations process.
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Chapter 4
Security Patrolling by Vehicle
Navigation in Indoor Environments

4.1 Introduction to Proposed Ideas

With successfully learned features mentioned in the previous chapter, the vehicle
can navigate accordingly. In this chapter, we describe in more detail how security
patrolling is accomplished by the proposed vehicle navigation scheme.

Firstly, security patrolling must be based on.an effective navigation process. In
Section 4.2.1, we describe how the.vehicle is guided by the learned path. According to
the node data of the path map-which is-created in the learning phase, the vehicle
decides which direction to turn or hew long It should advance. Secondly, in real
applications, the environment is usually complicated and the floor typically consists
of textures of various colors. In order to navigate in such environments, we propose
an obstacle avoidance technique for various floor environments. We describe the
proposed technique in Section 4.2.2. Thirdly, while the vehicle navigates, it usually
suffers from incremental mechanic errors of the vehicle location provided by the
odometer. Hence, we propose a location estimation method based on the
monitored-object matching result to adjust the vehicle location in each navigation
cycle. The detailed adjustment process is described in Section 4.2.3.

By the effective navigation process, the vehicle now can perform security
patrolling to monitor concerned objects. In Section 4.3.1, we propose an object

security monitoring process based on simplified SIFT using the learned feature set of
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the monitored object. We also suggest some possible types of monitored objects in

Section 4.3.2. Lastly, we give a summary in Section 4.

4.2 ldeas of Navigation Process

4.2.1 Guidance by learned paths

In a security patrolling process, the vehicle navigates along a learned path by
visiting each path node consecutively. The learned navigation path, which consists of
a set Npan Of nodes is firstly read by the vehicle at the beginning. The first node of
Npath IS the starting node of the navigation path and specifies the current position of
the vehicle. Then, the vehicle reads.the next node. data Ni.1(xi+1, vi+1) and computes a
turning angle and a moving distance-by-Equations(4.1) and (4.2) in the following
algorithm, for the vehicle to move to-the next position Ni.i(xi1, yi+1), @ shown in
Figure 4.1. Repeating the same actions cycle after cycle, the vehicle can navigate

along the learned path until all nodes have been visited.

Algorithm 4.1. Process of vehicle guidance by a learned path.

Input: A set Npan Of nodes.

Output. Navigation cycles.

Steps:

Step 1.  Start vehicle navigation from the starting node Ny in Npath.

Step 2. Scan Npan to read the next node Nisa(xis1, yis1)-

Step 3. Read the position data provided by the odometer to gather the current

vehicle location coordinates (xod0, Vodo) @and the current direction angle Gygo.
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Compute a vector ¥, by using the following equation:

1

7 Xi _ xi+l - xodo
ANE - (4.1)
Yi yi+l - yodo

Compute the direction angle & for the vehicle to turn toward the node
Ni+1 by using the following equation:
Y
6 =tant| —|. 4.2
new [Xl j ( )
Compute the rotation angle for the vehicle as Gum = Gew — Ghdo and the

navigation distance for the vehicle to advance asd = |I7| .

Turn the vehicle leftward for the angle Gum if Gun IS greater than zero;
otherwise, turn the vehicle rightward for the angle Gun.

Move the vehicle forward for the distance d.

Read the next node ‘data. If there exist remaining nodes, repeat Steps 3

though 8; else, finish the pavigation.

Niti ' -
—» Vehicle direction

‘ Learned node

v
>

Figure 4.1 Computation of the turning angle and move distance.
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4.2.2 Obstacle avoidance in various floor

environments

The first issue involved in obstacle avoidance is obstacle detection. For obstacle
detection in various floor environments, we utilize the colors of the floor. More
specifically, we adopt k-means clustering and a so-called alert line scanning
technique to recognize an obstacle on floors of various colors. The detail of the
proposed obstacle detection method is described in Section 7.3.2, and the detail of the
adopted k-means clustering algorithm is described in Section 7.3.1. If an obstacle is
detected on a navigation path, a new local path is computed to avoid the obstacle. In
this study, we utilize the goal-directed minimum path technique [3] to create the new
local path. The goal of this new local pathristo'guide the vehicle toward the next node
of the navigation path without ‘colliding the obstacle. The process of obstacle
avoidance is described in the following algorithm and a corresponding flowchart is

shown in Figure 2.2.

Algorithm 4.2. Process of obstacle avoidance.

Input: A color image I.

Output: Navigation cycles.

Steps:

Step 1.  Apply the proposed k-means clustering algorithm described in Section 7.3.1
to the colors of the pixels in image | to get color clusters as the color feature
set of I.

Step 2. Scan the alert line to detect if an obstacle exists.

Step 3.  If an obstacle exists, find the distribution of the obstacle; otherwise, repeat
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Step 4.

Step 5.

Step 6.

Steps 1 through 2 until an obstacle is found.

Detect if the navigation path is impeded by any obstacle.

If an obstacle impedes the navigation path, compute the minimum path for
the vehicle to avoid the obstacle; otherwise, repeat Steps 1 through 4 until
an obstacle is found to impede the navigation path.

Drive the vehicle according to the new path.

<Start obstacle avoidance>
Image |

Cluster the floor color captured by
the camera

Scan Alert Line

Obstacle exists

Find obstacle distribution

Navigation is impeded
by obstacle

Minimum-path computation

Drive the vehicle by new
path

Figure 4.2 Flowchart of obstacle avoidance process.
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4.2.3 Path correction by monitored object image

matching

After successfully monitoring an object, we can take advantage of the matching
result to adjust the vehicle location. The matching result includes a set of matched
pairs of features. We define accordingly an affine transform by the use of the set of
matched pairs. Then we can apply this affine transform to transform a horizontal line,
which is learned in the learning phase, into the one which is found in the image taken

by the camera in the navigation phase, as shown in Figure 4.3.

Figure 4.3 A cyan line (on the top of the poster) generated by applying the affine transform.

Now, we have the same horizontal lines which appear both in the images of the
monitored object in the learning and in the navigation phases. Let the horizontal line
which is found in the navigation phase be denoted as /., and the one which was
found in the learning phase be denoted as /iearn. By applying the proposed location
estimation algorithm which is described in Chapter 6, we can gather the relative
position C(xrnavi, rnavi) and the relative angle & navi , between the current vehicle

location and the monitored object position. Then, we can adjust the vehicle location
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by comparing the position C(xnavi, Vrnavi) @nd the angle & navi With the learned position
C(xy, yr) and the learned angle & which are computed by /iearn in the learning phase.
The detailed adjustment algorithm is described in Chapter 6. A flowchart is illustrated
in Figure 4.4, and the detailed path correction process is described as an algorithm in

the following.

Algorithm 4.3. Process of path correction.

Input: The monitored-object matching results and the learned calibration information

including the horizontal line, the relative position C(x,, y,), and the relative angle 4.

Output: the correction process.

Steps:

Step 1. Extract the affine transformation from the monitored-object matching
results.

Step 2.  Apply the affine transformation-to-gather the new horizontal line in the
current image.

Step 3.  Apply the proposed location estimation algorithm described in Chapter 6 by
the new horizontal line and the current PTZ position, to find the relative
position C(xrnavi, Yrnavi) @and the relative angle & navi, between the current
vehicle location and the monitored object position.

Step 4. Compute the correction data to adjust the vehicle by comparing respectively
C(xrnaviy Yrnavi) and Gnavi With C(x,, y,) and . which are learned in the
learning phase.

Step 5. Adjust the vehicle according to the correction data.
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< Start path correction )

Get the same horizontal line
in current image
Horizontal

line in current

Estimation the vehicle
location

Compute the correction data
Correction
data
Adjust the vehicle

< End path correction >

Matching
result

Learned
horizontal
line

PTZ position

Camera System

Learned
location
reference

Figure 4.4 Flowchart of path correction process.
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4.3 Purposes of Security Patrolling

4.3.1 Proposed technique for monitoring of objects

In this section, we briefly describe the proposed security object monitoring
technique. With successively learned concerned objects, we have stored the feature set
of each monitored object, the PTZ position which let the PTZ camera face the
monitored object, and the interesting region which is specified in the learning phase.
Therefore, in the navigation phase, we firstly move the vehicle to the security
monitoring node and move the camera to face the monitored object according to the
learned PTZ position. Then we apply the simplified SIFT algorithm to the image
taken by the camera to extract a feature set F. By.applying the Hough transform, we
can find the matching pairs of the features between the feature sets F and Fiearn. If NO
matching pair is found, the wvehicle-willissue an alarm message. The detailed
simplified SIFT algorithms and Hough. transform for matching are described in the
next chapter. A flowchart of the object monitoring process is illustrated in Figure 4.5,

and the detailed process is described as an algorithm in the following.

Algorithm 4.4. Process of object monitoring.

Input: A color image | taken by the camera, the learned PTZ position, and the learned

feature set Fieam OF the monitored object.

Output: An alarm message or nothing.

Steps:

Step 1. Move the vehicle to the monitoring node according to the learned
navigation data.

Step 2. Move the camera to the learned position and let the camera face the
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monitored object.

Step 3. Take a color image | and apply the simplified SIFT on it to extract a feature
set F.

Step 4. Apply the Hough transform to find the matching pairs of the features
between F and Fieam.

Step 5.  If no matching pair is found, issue an alarm message; otherwise, finish the

monitoring process.

Start object
monitoring

A
Move the PTZ camera Image 1

toward the learned captured by
position : the camera

Compute the feature

The PTZ
position

+ set ‘
The feature
set
Image Process
Y
i Hough transform for
learned » matching the feature
feature set sets

Alert alarm
message

Matching Process

Finish object
monitoring

Figure 4.5 Flowchart of object monitoring process.
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4.3.2 Types of monitored objects

In this study, we propose a simplified SIFT algorithm to transform the image into
the feature set and matching the features for monitoring concerned objects. Based on
the previous work of the SIFT algorithm, the used features should be invariant to
image scaling, translation, and rotation, and partially invariant to illumination changes
and affine or 3D projection. We transform a monitored-object image into such feature
sets for monitoring. Hence, possible types of monitored objects are no longer
restricted to objects with ideal shapes or objects in pure-colored background
environments. An example of concerned objects in complex backgrounds is shown in

Figure 4.6.

Figure 4.6 An example of a concerned object, specified as the blue region, in a complex

background environment.

The main advantage of using the SIFT key as the matched features is that the
SIFT algorithm only extracts the main characteristics of images. Whatever the
viewing angles of the same object changes, in a tolerance, the main characteristics of

the object will remain unchanged for the SIFT algorithm to extract and match. Here
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we list some reasonable possible types of monitored objects in the following:

1.

2.

4.4

Valuable artworks on the wall of an exhibition halls,
Coffers in the cabinet,
Modern flat-panel TVs on walls,

Any planar objects.

Detailed Process for Security
Patrolling by Vehicle Navigation

In this section, we summarize the detailed process for security patrolling. In the

navigation phase, the vehicle navigatesralong.a léarned path by visiting each path

node consecutively through the routes specified by “the node edges and checks the

existence of the learned objects-to achieve-security patrolling. The entire process is

described in the following as an algorithm and a corresponding flowchart is shown in

Figure 4.7.

Algorithm 4.5. Security patrolling navigation.

Input: A path map, learned object data, and learned calibration data.

Output. Navigation process.

Steps:

Step 1.
Step 2.
Step 3.

Step 4.

Read the path map.
Start security patrolling from the starting node in the map.
Scan the node list of the path map to read the next node data.

Move the vehicle to the next node and check if an obstacle is impeding the
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navigation path.
Step 5. If there exists such an obstacle, compute a new local path and drive the
vehicle accordingly to avoid the obstacle.
Step 6.  If there exist a new floor data in the current node, update the reference color
of the floor.
Step 7. If there exist a monitored object in the current node, take the following
action; else, continue the remaining navigation.
Step 7.1. Move the camera to the learned PTZ position.
Step 7.2. Apply simplified SIFT to the image taken by the camera to extract a
feature set and match them with the learned one.
Step 7.3. If the feature set does not matched the learned one, send an alarm
message; otherwise, adjust the vehicle location by the matching result.
Step 8. Read the next node data..If there exists.any remaining node, repeat Steps 3

through 7; else, finish-the navigation.
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Start security
patrolling
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N Start of -
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data
Obstacle Avoidance Process
y Move the camera to
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Update detecting earne position
floor-color
]

Apply simplified-SIFT
to extract the feature set

Has monitored
object data

Match with

1 d featur
N earned features Send

alarm
message

Adjust the vehicle
location

A

Next navigation node
Exist next navigation node

Vehicle Location Adjustment
Navigation Process Loop I TRl 3 10 g Process

Finish security

navigation

Figure 4.7 Flowchart of proposed navigation process.
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Chapter 5
Detection of Monitored Objects by
2D Object Image Matching

5.1 Introduction

In this study, we design a vision-based security monitoring system by vehicle
navigation equipped with a PTZ camera. By the means of the camera, the view of the
vehicle is extended to a wider range. We can perform security monitoring on objects
which are located higher than the.camera. While the vehicle patrols in the navigation
phase, it stops in front of the monitored object by. the use of learned path nodes. But
the stop position at a monitored object-may--hot be precise every time; mostly just
close to the one recorded in the learning phase. It results in slight changes in the
viewing angle of the monitored object from the camera. And the image of the same
monitored object will be different in scales, orientations, or positions with respect to
the one taken for learning in the learning phase. Thus, a method with the ability to
match corresponding objects in images taken with different illuminations and camera
poses is needed.

In the past years, the Scale Invariant Feature Transform (SIFT) has been proven
to be one of the most robust methods which use local invariant feature descriptors
with respect to different geometrical changes [15]. In order to allow efficient
matching between images, all images are represented as a set of vectors, called SIFT
features. Each SIFT feature consists of local image measurements invariant to image

translation, scaling, and rotation, and partially invariant to illumination and 3D
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viewpoint changes. In this study, we take advantage of the SIFT to match monitored
object images and propose a simplified SIFT which is faster than the original one, by
reducing the difference of Gaussian scale layers to meet real-time security monitoring
needs.

In Section 5.2, we firstly review the method of the SIFT proposed by Lowe [8].
Then, in Section 5.3, we describe the proposed simplified SIFT, including the
necessity of simplification and the detailed process for the simplified SIFT feature
generation. In Section 5.4, we describe the matching technique of the features. Lastly,

some experimental results are shown in Section 5.5.

5.2 Review of Method of Matching by
Scale-Invariant Feature Transform
(SIFT)

The SIFT proposed by Lowe [8] includes four major stages of computation to
generate the set of features, which were called keypoints. In this section, we will
describe a brief review of the SIFT. In summary, we divide the SIFT into two parts:
the scale-invariant keypoint localization and the keypoint descriptor generation.

Firstly, the keypoint locations are efficiently detected by identifying the local
maxima and minima of a difference-of-Gaussian (DoG) function in the scale space. At
each location, an orientation is selected at a peak of a histogram of local image
gradient orientations. Secondly, a keypoint is formed by measuring the local image
gradients in a region around each keypoint’s location according to the location, scale

and orientation of the keypoint. The details are described in Section 5.2.1 and 5.2.2.
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5.2.1 Scale-invariant keypoint localization

The first stage of computation searches over all scales and image locations. It is
implemented by using a difference-of-Gaussian function to identify potential interest
points that are invariant to scale and orientation changes.

Given a Gaussian-blurred image, G(x, y, o) with an input image, I(x, y), the scale
space of an image is defined as a function L(x, y, o) computed from the convolution

of G(x, y, o) and I(x, y):

L(x,y,0)=G(x,y,0)*I(x,y), (5.1)

where = is the convolution operation in x and y, and

By 52
G(x,y,cf): 272'0'26 . (5.2)

To efficiently detect stable keypoint locations-in‘the scale space, Lowe makes use of
the scale-space extrema in the difference-of-Gaussian function convolved with the
image, D(x, y, o), which can be computed from the difference of two nearby scales

separated by a constant multiplicative factor &:

D(x,y,O') :(G(x,y,ko-)—G(x,y,O'))*I(XJ’)

=L(x,y,k0)—L(x,y,0'). (5:3)

Applying the equations above repeatedly, the input image is incrementally convolved
with the Gaussian to produce images separated by £ in the scale space, as shown
stacked in the left of Figure 4.7. And each octave of the scale space (i.e., doubling of

o) is divided into an integer number s of intervals, so k = 2. Then, the
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difference-of-Gaussian images are produced by subtracting the adjacent Gaussian
images, as shown in the right of Figure 4.7. After each octave is constructed, the

Gaussian image is down-sampled by a factor of 2, and the process repeats.

A
Scale - Z
(next t:@ =
octave) ﬁ
=

octave)

Scale >:9 =
(first

Difference of Gaussian
Gaussian (DoG)

Figure 5.1 For each octave of scale space, the set of scale space images shown at the left and

the computation of the difference-of-Gaussian images at the right.

The keypoint are identified as local maxima or minima of the DoG images across
scales. Each sample point in the DoG images is compared with its 8 neighbors in the
same scale image, and the 9 corresponding neighbors in neighboring scale images, as

shown in Figure 5.2. If the sample point is a local maximum or minimum, it is
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selected as a candidate keypoint.

Figure 5.2 Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel, as marked withX; with its 26 neighbors, as marked with the

blue circles, in 3x3 regions of the current and adjacent scales (from [8]).

Once a keypoint candidate -has .been-found-by comparing a pixel with its
neighbors, the final keypoints are selected based on measures of their stability by
performing a detailed modeling to fit the nearby data for location, scale, and ratio of
principal curvatures. This information allows points having low contrast or being

localized along an edge to be rejected.

5.2.2 Feature descriptor generation

One or more orientations are assigned to each keypoint location based on local
image gradient directions. All future operations are performed on image data that has
been transformed according to the assigned orientation, scale, and location for each
feature, thereby providing invariance to these transformations. To determine the

keypoint orientation, a gradient orientation histogram is computed in the
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neighborhood of the keypoint, using the Gaussian image at the closest scale to the
keypoint’s scale. For each Gaussian image, L(x, y), at such a scale, the gradient
magnitude, m(x, y), and orientation, (x, y), are computed using pixel differences, as

described by the following equations:

m(x, y) = \/(L(x +1, y)— L(x -1, y))2 + (L(x, y +1)— L(x, y —1))2 , (5.4)

O(x,y)=tan((L(x,y +1)= Lx, y ~D)N(L{x +1,y) = L(x =1 y))). (5.5)

The contribution of each neighboring pixel is weighted by the gradient
magnitude and a Gaussian window with a o that is 1.5 times the scale of the keypoint.
And the orientation histogram is formed by 36:bins covering the 360 degree range of
orientations. Then, peaks in the histogram-will.cerrespond to dominant orientations. If
any other orientations that is within 80% of the highest peak is found, a separate
keypoint is also created for that orientation.

Once a keypoint orientation has been selected, the feature descriptor is computed
as a set of orientation histograms over 4x4 subregions around the keypoint. The image
gradient magnitudes and orientations are firstly sampled around the keypoint location,
using the Gaussian image at the closest scale to the keypoint’s scale. The coordinates
of the descriptor and the gradient orientations are rotated according to the keypoint
orientation for orientation invariance. Then, the contribution of each sample is
weighted by the gradient magnitude and a Gaussian weighting function with o
equal to 1.5 times the width of the descriptor window, as the circular window
indicated in the left side of Figure 5.3. These samples are then accumulated into
orientation histograms summarizing the contents over 4 x4 subregions. Each

orientation histogram contains 8 bins, and each descriptor contains an array of 4
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histograms around the keypoint, as shown in the left side of Figure 5.3. Hence, an

SIFT feature vector contains 4x4x8=128 elements. This vector is then normalized to

enhance invariance to changes in illumination.
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Image gradients Keypoint descriptor

Figure 5.3 For each image, the gradient magnitude and orientation are computed in a region
around the keypoint location;‘and-weighted by a Gaussian window, indicated by
the overlaid circle, as shown on the: left..Four orientation histograms summarize

their contents into 8 bins, as shown on the right: (from [8]).

5.3 Proposed Simplified SIFT Features
for Detection of Monitored Objects

5.3.1 Necessity of simplification of original concept

The time consumption of the process of the SIFT algorithm can be divided into
two parts: the processing time for feature localization and the processing time for
feature descriptor generation. The first part is bounded by the size of the input image
and the process layers specified by the number of intervals and octaves, and the

second part is bound by the number of features and the dimensions of each feature
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descriptor. In this study, the image captured by the camera of the proposed system is
of a fixed resolution of 320240 pixels. Hence, in the first part, we can only control
the number of intervals and octaves to reduce the processing time. In the second part,
because the number of feature is uncontrollable, and the low dimension may result in
unstable matching results, so we do not simplify the process of the feature descriptor
generation.

For security monitoring, while the vehicle navigates to the monitoring node
which is learned in the learning phase, the position of the monitored object will be
close to the one found in the learning phase. Hence, the scale of the monitored-object
image will not change too much.

Therefore, in order to speed up the process, we conducted experiments on
reducing the number of octaves. And the experimental results show that the influence

of reducing the number of octaves on the matching results is insignificant.

5.3.2 Detailed process.of simplified SIFT feature

generation

In this section, we describe the detailed process of the simplified SIFT feature
generation. The inputs of the generation process are a color image I, a number o of
octaves, a number s of intervals, a contrast threshold ¢, and a curvature threshold r.
We can divide the entire process into 5 parts: the color-to-grayscale conversion, the
Gaussian and DoG pyramids construction, the feature localization, the orientation
assignments, and the feature descriptor generation. A flowchart is illustrated in Figure
5.4. After the process is finished, a set of simplified SIFT features of the given image

I is generated. The detailed process is described as an algorithm in the following.
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Figure 5.4 A flowchart of the simplified SIFT generation.

Algorithm 5.1. Process of the simplified SIFT feature generation.

Input: A color image I, a number o of octaves, a number s of intervals, a contrast
threshold ¢, and a curvature threshold r.

Output: The simplified SIFT feature set of the image 1.

Steps:

Step 1. Convert the color image | into a grayscale image Y; using the following

transformation equation:
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Rl
Y, =[-0.299 0.587 0.114]x| G, |. (5.6)
BI

Step 2. Blur the image Y; with o = 0.5 and upsample the image Y; by a factor of 2
using linear interpolation.
Step 3.  Generate the Gaussian and DoG pyramid images using Steps 3.1 through
3.2 in the following.
Step 3.1. Generate the first image of the first octave of the Gaussian pyramid
images by blurring the image Y; using a Gaussian function with the initial
value of o, being 1.6.
Step 3.2. For each octave, save the initial ¢ and perform Steps 3.2.1 through
3.2.2 in the following:
Step 3.2.1.  For each interval;-compute o;; needed to produce the next
level of the Gaussian pyramid images, from o; using the following
equations:

2
c,,=\N2° -1xo,,

i i

(5.7)

where s is the number of intervals which span the octave, and then
compute the convolution of the Gaussian function G(osi) and the
image Y, as L;;.
Step 3.2.2.  Subtract the adjacent Gaussian images L;+; and L; to produce
the DoG image D..
Step 4. Scan the DoG pyramid to find keypoints using Step 4.1 through 4.4 in the

following.
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Step 4.1. For each sample point in the DoG pyramid images, compare it with its
8 neighbors in the same scale image, and the 9 corresponding neighbors in
neighboring scale images.

Step 4.2. If the sample point is a local maximum or minimum, compute the

contrast value |D(x,y), where D(x ,y) is the corresponding DoG image,

and test if the value is greater than a contrast threshold c.

Step 4.3. If the sample point is above the contrast threshold, check if the ratio of
the principal curvatures is below the curvature threshold », by the following
equation:

Tr(H)2 - (r +l)2

Der(H) ~ninies 8)

where H is a 2x2 Hessian.matrix.

Step 4.4. If the sample point’s.ratio-of-the principal curvatures is below the
curvature threshold r, add-the sample point into the keypoint list.

Step 5. Compute the gradient orientation and magnitude of the Gaussian pyramid
images, as the gradient orientation pyramid and the gradient magnitude
pyramid, using Equations (5.4) and (5.5).

Step 6. Assign orientations to the keypoints using Steps 6.1 through 6.4 in the
following.

Step 6.1. Set up an orientation histogram including 36 bins.

Step 6.2. For each keypoint, create a Gaussian weighting mask with oy, = 1.5x
ci, where i is the level where the keypoint at, in the Gaussian pyramid, Also,
accumulate the gradient orientation weighted by the gradient magnitude and
the Gaussian weighting mask into the orientation histogram.

Step 6.3. Find the largest peak in the orientation histogram.
60



Step 6.4. Iterate over all peaks within 80% of the largest peak and copy this
keypoint as a new keypoint with its corresponding orientation into the
keypoints list.

Step 7.  Extract the feature descriptors for the keypoints using Steps 7.1 through 7.2
in the following.

Step 7.1. Set up an orientation histogram including 8 bins.

Step 7.2. For each keypoint:

Step 7.2.1.  create a 4x4 array of 4xe4 sample cells as the sampling grid
for the orientation histogram;

Step 7.2.2.  rotate the sampling grid according to the orientation assigned
in Step 6, for this keypoint;

Step 7.2.3.  create a Gaussian weighting mask with o,y = 8 (1/2 times of
the sampling grid’s width);

Step 7.2.4.  accumulate ieach-sample’s orientation weighted by the
gradient magnitude< and. the-Gaussian weighting mask into the
neighboring bins of the orientation histogram;

Step 7.2.5.  add the orientation histogram bins as the descriptor into the
descriptor list.

Step 8.  Store the descriptors as a simplified SIFT feature set.
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5.4 Proposed Matching Technique
Using Simplified SIFT Features

5.4.1 Concept of proposed matching algorithm

For indoor security monitoring, the vehicle will navigate to the front of each
monitored object. Then, the image taken by the camera is transformed into a set of
SIFT features. In order to achieve the security monitoring mission, an efficient
matching technique to match the feature set extracted from the current image with the
one learned in the learning phase, is indispensable. Hence, the problem is that, given
two sets of features, how we can match_them.efficiently.

According to the paper proposed. by lLowe[8, 16], we adopted a matching
algorithm by the Hough transform: For the given feature set, the best candidate match
for each feature is firstly found by identifying-its nearest neighbor in the other feature
set. The nearest neighbor is defined as‘the feature with the closest Euclidean distance
for the feature descriptor described in Section 5.2.2. After discarding the outliers, the
Hough transform is used to identify the best subsets of matches. Let the given feature
set which is found in the navigation phase be denoted as Fnai and the one which is
learned in the learning phase be denoted as Fiam. Each SIFT feature specifies 4
parameters: feature locations in the image, scales, and orientations. By applying the

affine transform model, as shown in the following equation:

I 3

x -y 10
y x 0 11X |=

X

, (5.9)

~

y

where m = s cos#, n = s sind, and (x, y) and (u,v) specify the locations of Fnai and

62



Fiearn, respectively, the unknown similarity transform parameters between each match
pair are collected as ¢, ¢, s, and 8 by the following equations:

g=tan| 2| and s=—"—.
(mj * cosd (5.10)

A Hough transform entry is then created to predict the model location,
orientation, and scale from the match hypothesis, and each feature votes for all poses
that are consistent with the feature. Then, a peak cluster found in the Hough space is

regarded to specify the best subsets of matches.

5.4.2 Detailed algorithm

In this section, we describe*the detailed matching algorithm. The input of the
algorithm are a SIFT feature set Fravi = {Fui0r Fravits Fraviz, -, Fuaviny found in the
navigation phase and a learned SIFT feature‘set Frarn = {Flearn0, Fiearnis Flearn2, «--
Frearnn}. Each feature Fi(x, y, s, o, @) consists of 5 parameters where x and y specify
the feature locations, and s, o, and @ are the scale, the orientation, and a set of feature
descriptors of the feature described in Section 5.2.2, respectively. While finding the
nearest neighbors, a threshold r,; for the maximum ratio between the distances of the
closest and the second closest neighbors for a match to be allowed, is needed. And for
the Hough transform, it also needs a threshold 7, for the minimum number of matches

before a model is selected. The detailed process is described in the following.

Algorithm 5.2. Process of the matching of the SIFT features.
Input. Two SIFT feature sets Fnavi = {Fravio, Fravils Fravi2, -+ Fuavin} With each being

Of the form Fnavi(xnavia Ynaviy Snaviy Onavi q)navi) and Flearn = {Fleam,Oa Flearn,ly Flearn,Zy ey
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Fiearnn} With each being of the form Fiewn(Xiearns Yiearns Stearns Otearns Pirearn), @ threshold

ru, @nd a threshold 7.

Output: The set of matches or the message ‘false’ if no match is found.

Steps:

Step 1.  Find the nearest neighbors of ®p,,i from ®jearm using the following Steps.

Step 1.1. Compute the closest Euclidean distance D; between each feature
descriptor in ®pqi and Djearn.

Step 1.2. Compute the second closest Euclidean distance D, between each
feature descriptor in ®p4i and Djearn.

Step 1.3. If the ratio of Dy and D, is smaller than r,, add the match into a
nearest neighbor list.

Step 2. Construct a 4D Hough space as a Hough histogram with 4 dimensions: two
dimensions for translation’ (x, ), one dimension for orientation o, and one
dimension for scale s.

Step 3. Set up 21x21 bins with sizes of 0.25 times the maximum image dimension
for the dimensions of translation, 12 bins with sizes of 30 degrees for the
orientation, and 17 bins with sizes of a factor of 2 for the scale.

Step 4.  For each match, perform the following steps to vote for the same pose of the
model.

Step 4.1. Apply the following equations with the F,,; and Fieu.:

Xavi = Voavi 10 m Xiearn

Vnavi X navi 01 y ny- Yiearn
Xoavi T i — (y navi T tnavi) 10 L - Xiearn T Licarn (6.11)
Yavi t Lavi Xavi T Ly 01 L Viearn t Liearn ’

where t,,,; and t,,,, are a slight shift in the direction of each orientation of

Fravi and Flearn, respectively.
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Step 4.2. Compute the s and 6 using Equation (5.10) for this match.

Step 4.3. Accumulate the translation, scale, and rotation weighted by the
distances between (¢, #,) and the nearest translation bins, the difference
angle between 6 and the nearest orientation bins, and the difference scale
between s and the nearest scale bins, into the nearest 2x2x2x2 = 16 bins,
and add the match into the corresponding bins respectively.

Step 5.  Find the peak of the Hough histogram as the set of matches if the number of

matches of the peak is greater than ry;; otherwise, return false.

5.5 EXxperimental Results

In the section, some experimental results are shown in the following. In Figure
5.5, we firstly control the vehicle totlearn.a-valuable painting, as shown in 5.5(a), as
an example of the concerned objects: The features located by the simplified SITF
algorithm are shown in 5.5(b). Then, we start the security patrolling by the vehicle to
monitor this painting with three cases: the original painting exists, the painting is
missing, and the painting is replaced by another painting. In the first case, a successful
matching is performed as shown in (c). In the second and the third cases, the matching
fails as shown in (d) and (e).

For the necessity of simplification discussed in the previous section, some
experimental results are shown in the following. In Figure 5.6 and Figure 5.7, we
compare the original SIFT algorithm and the simplified SIFT algorithm. The
experimental results are shown that the influences of reducing the number of octaves

on the matching results are insignificant.
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Figure 5.5 The experimental results of the monitored object matching process. (a) is the

monitored object learned in the learning phase. The location of features are marked

as green crosses in (b). (c) is the successful matched result which is specified by

the blue region. (d) and (e) are the matching results which fail to match with the

learned object.
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Figure 5.6 The experimental results of the monitored object matching process with the
comparison between the successful matching results by the use of the simplified
SIFT algorithm and the original one. (a) is the matching result conducted by the
use of simplified SIFT algorithm with reducing the number of octaves and (b) is

the one conducted by the use of original SIFT algorithm.
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Figure 5.7 The experimental results of the monitored object matching process with the
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comparison between the failed matching results by the use of simplified SIFT and

original SIFT algorithm. (a) and (c) are matching result conducted by the use of

simplified SIFT algorithm with reducing the number of octaves, and (b) and (d) are

the one conducted by the use of original SIFT algorithm.
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Chapter 6

Vehicle Guidance by Location
Estimation Based on 2D Object
Image Matching Results

6.1 Introduction

For vehicle navigation in indoor environments, the vehicle location is the most
important information to guide the vehicle.in track. Though the location information
including the position and the direction,;-which are.provided by the odometer of the
vehicle, are precise enough for maost applications, it cannot be used solely for the
navigation process because the  incremental mechanical errors might result in
imprecise odometer data and so the deviation‘of the navigation path. Hence, in order
to keep the navigation in track, vision-based vehicle location estimation is helpful to
eliminate the errors.

In this study, we focus on the use of the artificial landmarks or specific scene
features for vehicle localization. A number of methods are reviewed in Section 6.2.
Among these methods, a method proposed by Chou and Tsai [12] utilized a house
corner to estimate the vehicle location. The proposed vehicle location estimation
method in this study is based on the use of the monitored-object matching result and a
simplified version derived from Chou and Tsai. The idea and the detailed process of
the method are described in Section 6.3.

With successively estimated vehicle locations, we can correct the navigation path
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by comparing the estimated location and the learned one, and transform the
adjustment into the global coordinate system. The detailed process of path correction

is described in Section 6.4.

6.2 Review of Vehicle Location
Estimation Techniques

In a known indoor environment, an ordinary approach to vehicle location
estimation is to use some special landmarks and to analyze monocular images
captured by a camera. A the standard landmark proposed by Fukui [9], as shown in
Figure 4.7 (a), is a diamond shape:whose boundary consists of four identical thick line
segments all with a known length."The boundary of the diamond images taken by the
camera is firstly extracted, and the lengths-of-the two diagonals are computed. Then,
by the use of the two diagonals in the image, ‘the location of the camera is derived.
Another landmark proposed by Magee and Aggarwal [10] for vehicle location
estimation is a sphere on which two perpendicular great circles are drawn, as shown in
Figure 4.7 (b). According to the size of the projected circle in the image of the sphere,
the distance from the camera to the sphere center and the direction of the camera are
computed. Then, the vehicle location is computed accordingly in terms of the sphere
coordinates. Huang et al. [11] also proposed a colored rectangle signboard, as shown
in Figure 4.7 (c) which is placed in a known position, as an artificial landmark. The
signboard area is firstly extracted and the vertex points of the signboard are detected.
Then, by computing the vanishing points in the image of the signboard, the position of

the signboard is identified and therefore the vehicle position is identified reversely.
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In the previous works of our laboratory, Chou and Tsai [12] proposed a set of
house corner edges which exists naturally in a house as a landmark. Such a landmark
is visible from a house floor, and show as an identical geometric structure of a “Y”
shape in the image like Figure 4.7 (d). The projections of the three edges on the image
plane are then extracted. Then, under a reasonable assumption that the distance from
the camera to the ceiling is known, the vehicle location is estimated by the use of
these edges. Chiang and Tsai [13] also proposed a method using a simplified version
derived from Chou and Tsai’s formula and the image taken by the PTZ camera. Two
edges are firstly extracted by line detection, as shown in Figure 4.7 (e), and then the

vehicle location is estimated by applying the simplified formula.

(a) (b) (©)
(d)

(€)

Figure 6.1 Some landmarks used in previous approaches. (a) A diamond-shaped standard
mark used in [9]. (b) A sphere used for robot location in [10]. (c) The perspective
projection of a colored rectangle signboard used in [11]. (d) The perspective
projection of a house corner used in [12]. (e) The two red edges of the perspective

projection of a house corner used in [13].
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6.3 Vehicle Location Estimation by
Object Image Matching Results

In the previous sections, we have described the learning of a given horizontal
line and path correction by the given one found in the navigation phase. We use only
one edge for the horizontal line, and the corner point for the start point of the
horizontal line, instead of the three edges of a house corner to estimate the vehicle
location. The linear equation’s coefficients and the start point are computed in the
learning and the navigation phases respectively, as described in Section 3.3.4 and
4.2.3.

In order to describe the proposed,.method conveniently, we introduce the
coordinate systems used in Section 6.3.1:1The idea.of the proposed method is to use
the coefficients of the equation-of the edge and the Iocation of the corner point in the
image coordinate system to estimate the“wehicle location. The detailed idea is
described in Section 6.3.2, and the detailed process of the proposed vehicle location

estimation is described in Section 6.3.3.

6.3.1 Coordinate systems

Here, we use three kinds of the coordinate systems: the reference coordinate
system, the camera coordinate system, and the image coordinate system. With these
coordinate systems, it will be clear and convenient to describe a vehicle location. The
definitions of the three coordinate systems are described in the following.

(1) The reference coordinate system (RCS, denoted as X-Y-Z): In the reference
coordinate system, we assume the X-Y plane is parallel to the floor where

the vehicle navigates on, and the Z-axis is perpendicular to the X-Y plane.
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The corner point is the origin R, of the reference coordinate system.

(2) The camera coordinate system (CCS, denoted as U-V-W): In the camera
coordinate system, we also establish the U-, V-, and W-axes. The U-V plane
is parallel to the image plane, and the U-axis is parallel to the X-Y plane of
the reference coordinate system. The origin C, is located at the camera lens
center and the -axis is aligned to be parallel to the camera optical axis.

(3) The image coordinate system (ICS, denoted as u,-v,): The image plane is
located at I = £, where f'is the focus length of the camera. The u,-v, plane is
coincident with the image plane of the image coordinate system and the
origin 1, is the center of the image plane.

The relations among the three coordinate systems are illustrated in Figure 6.2.

y N
Y
N
Reference P
. NS
coordinate N
\ 4 ]()
Image
y4 2 N P
coordinate W U
Camera
Co coordinate

Figure 6.2 The relations of the reference coordinate system, the camera coordinate system,

and the image coordinate system.

6.3.2 ldea of proposed method

As described in Section 3.3.4, a horizontal line is given in the learning phase to

specify X-axis of the RCS. A start point of the given horizontal line also specifies the
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origin Ry of the RCS. Because the X-Y plane is parallel to the floor, we can treat the
RCS as a virtual house corner. The X- and Y-axes specify the two perpendicular lines
on the ceiling of the virtual house corner, as shown in the left-top of Figure 6.3, and

the Z-axis specifies the virtual line of the virtual house corner.

~
~

. Virtual ceiling
Reference ™ ¥
coordinate

o o —>
Virtual house/
corner

= NS
coordinate '~

Figure 6.3 A diagram of the virtual house corner which is specified by the given horizontal
line (the cyan line on the top of the poster), and the start point (the red point on

the left-top of the poster).

The equations of the edge line through the corner point in terms of image
coordinates (u, v) are described by u, + bv, + ¢ = 0. The desired vehicle location will
be described by three position parameters X, Y., and Z. and two direction parameters
0 and v, where Z. is the distance from the camera to the ceiling and is assumed to be
known; @ is the pan angle between the optical direction of the camera and the Y-axis

of the RCS; and w is the tilt angle of the optical direction of the camera with respect

74



to the RCS and is also assumed to be known by solving the equation w = 90" — ¢,
where ¢ is the tilt angle provided by the PTZ camera. The five vehicle location
parameters can be derived in terms of the two coefficients » and ¢ of the edge line
equation and the start point (u1, v1) in the image taken by the camera. Finally the

vehicle location could be estimated by the computation of these parameters.

6.3.3 Detailed process of location estimation

In this section, we derivate the relation between the reference coordinates and the
coefficients of the edge line equation in the image coordinate system. At first, we
transform the reference coordinates into the camera coordinate. The transformation
consists of four steps.

Step 1.  Translate the origin (=X, <Y, =Z.) of the reference coordinate system to the

origin of the camera system in the following way:

1 0 0 O
1 0 O
— -Y -Z 1

Step 2.  Rotate the X-Y plane about the Z-axis through the pan angle & such that the

X-Y plane is parallel to the U-V plane using the following equation:

cosd -sing 0 O
sin@ cosd 0 O

R(O)=|", 0 1 ol (6.2)
0 0 0 1

Step 3.  Rotate the ¥-Z plane about the X-axis through the tilt angle y such that the
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X-Y plane is parallel to the U-V plane using the following equation:

1 0 0
R.(z//): 0 cosy -—siny
* 0 siny cosy
0 O 0

(6.3)

O O O

Step 4. Reverse the Z-axis such that the positive direction of the Z-axis is identical

to the negative direction of the /-axis using the following equation:

10 0 O
F:O 1 0 0. (6.4)
100 -10 '
00 0 1

Let P be any point in the 3D space with reference coordinates (x, y, z) and
camera coordinates (u, v, w).=Then the above.coordinate transformation can be

described as follows:

(v, w)=(x,y,21)- T(X,. X, Z.) R.(y)- R,(0)- F

z

(6.5)
= (x,y, z,l)Tr
where
]:’:T(XL7YL'ZL)RZ(0)R)L(‘//)FZ
cosgd —sin@cosy —sinfsiny 0
_|sin@ cos@cosy  cosfsiny O (6.6)
1o siny —cosy O
Xo Mo Zy 1
with
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X, =—X_c0s0-Y siné,
v, =(X_ sin@—Y, cos@)cosy — Z_ siny, (6.7)

z, =(X_sin@—Y, cos@)siny + Z_ cosy.

Let P be any point on the X-axis with reference coordinates (x, 0, 0) and the
camera coordinates (u., vy, wy). And let (u,, v,) be the image coordinates of the
projection of P. Then, according to the triangulation principle, we have the following

two equations:

fou,
u,= . \
(6.8)
Jaad
Vp = W, y
where f'is the camera focus length. And Equation (6.5) can be rewritten as:
(ux’ vx’ Wx ’1) = (x’o’o’l)' 7—:’
(6.9)

(xC0S @+ x,,—xSINOCOSY + y,,—xSiNGSiny + z,,1).

Substituting the values of u, and v, above into the two equalities in Equation

(6.8), we get:

L f(xcos@+x,)
P—xsin@siny +z,

(6.10)

(—xsingsiny +
vp=f( singsiny +y,) (6.11)
—xsingsiny +z,

Eliminating the variable x, we can get the equation for the projection of the
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X-axis in the image plane in the following:

v, +(~2,C080 —x,sin@siny )+ £ - (v, cos O+ x, sin G cosy ) 6.1
u, = . .
b -y, Sindsiny +z,sin & cosy (6.12)

After substituting Equation (6.12) into u, + bv,+ ¢ = 0 and Equation (6.7) for xo,

vo, and zo, we obtain the following two equalities:

_ Y siny —Z_cos@dcosy
—-Z,sin@

b , (6.13)

f (=Y, cosy —Z, cos@siny )
. ~Z,sin@ ' (6.14)

Then, we can use Equations (6.13) and (6.14).to derive the variable #. Equations
(6.13) and (6.14) can be transformed into Equations (6.15) and (6.16), respectively,

described in the following:

Z_-(~bsin@+cosdcosy )=, siny, (6.15)

Z.-(~csin@+ f cos@cosy )=—fY, cosy . (6.16)
By eliminating Z. and Y. from Equations (6.15) and (6.16), we can get:

f

tané = - :
fbcosy +csiny

(6.17)

Because the value y can obtain from the use of the tilt angle ¢ provided by the

PTZ camera and the following equation:

w=90"—¢, (6.18)

78



we can apply Equation (6.17) with  to get the value 6, and Equation (6.15) with
known values v, 0, and Z,, to obtain the value Y..

With successively obtained values of v, 6, Y., and Z., we can substitute these
values and the start point (u1,v1) into Equations (6.12) and (6.7) to obtain the values of

Xe.

6.4 Path Correction by Vehicle
Location Estimation Results

After we compute the estimated,vehicle location (X, Y.) and the camera
direction angle 0, the next step is path_correction by the use of the estimated results.
Before describing the process: of the proposed path correction, some coordinate
systems and the definition of the direction-angle of the vehicle and the PTZ camera
are firstly introduced in Section 6.4.1. Then, the detailed process of the proposed path

correction is described in Section 6.4.2.

6.4.1 Direction angle of vehicle and coordinates of

path nodes
In this section, another two coordinate systems are utilized to describe the
relation among the learned path, the vehicle, and the monitored object. The coordinate

systems are shown in Figure 6.4 and the definitions of them are described in the

following.
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(1) The global coordinate system (GCS, denoted as G.-G,): The floor of
environments is defined as the G,-G, plane, and the origin Gy of the global
coordinate system is a pre-defined point on the floor. We define Gy as the
starting position of the navigation in this study.

(2) The vehicle coordinate system (VCS, denoted as V,-V,): The V.-V, plane is
parallel to the G\-G, plane, and the origin ¥} is taken to be the rotation
center of the vehicle, which is at the middle of the line segment connecting
the two driving wheels. The Vj-axis is parallel to the line segment of the two
driving wheels and through the origin V5.

Besides, the direction angle of the vehicle and the PTZ camera are defined for

the convenience of describing the coordination transformation and computing the turn

angle for the correction, as illustrated in Figure 6.5.

() (b)
Figure 6.4 Another two coordinate systems used in this study. (a) The global coordinate

system. (b) The vehicle coordinate system.
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-n/2 -n/2

w2 -m/2 /2
<—

(c) (d)
Figure 6.5 The rotate angle 6, of the vehicle and the pan angle 6, of the PTZ camera. (2)

0<@ <7m.(b) —7<60,<0.(c) 05O, <7.(d) —7<6, <0.

6.4.2 Method of proposed path correction

In the previous section, we have obtained the estimated location between the
vehicle and the origin R, of the reference coordinate. The estimated location includes
three parameters: the camera location in the RCS, (X, Y.), and the direction angle of
the camera, 6. The relation among the vehicle, the camera, and the RCS is illustrated

in Figure 6.6.
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R, Refer§nce
coordinate

Figure 6.6 The relation among the vehicle, the camera, and the reference coordinate system.

In Figure 6.6, the direction angle of the vehicle can be derived by substituting the

6 into the following equation:

0, =90°—(-0)+6,, (6.19)

c

where the angle @ is negative because the angle of the clockwise rotation is positive
and the X-Y plane is rotated through a pan angle -6 to be parallel to the image plane,
as described in Section 6.3.3, and 6. is the pan angle of the PTZ camera. As soon as
the direction angle 6, of the vehicle is obtained, we can compute the vehicle location

in the RCS by substituting the angle 6, and the distance between the camera and the
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center of the vehicle into the following equations:

X,=X.-D,-cosd,
: (6.20)
Y =Y +D_-sing,.

Finally, the location (X,, Y,) and the direction angle 6, of the vehicle are acquired.
If the vehicle is in the learning phase, these parameters are saved as the calibration
information data, as described in Section 3.3.4. If the vehicle is in the navigation
phase, we can utilize the parameters obtained above and the learned ones to correct
the navigation path.

Let the learned location parameters including the location and the direction angle
of the vehicle be denoted as L(X}, Y;, 6)).in the RCS, and the estimated ones as V(X,, 1.,
0,). Utilizing these parameters above and:the corresponding learned path node (L, L,)
and the direction angle ©, of the vehicle at this path node in the GCS, we can compute
the corrected location (N, N,)- and: the'adjustment angle 6., of the vehicle by
transforming the relative location between (X, Y,) and (X}, Y)) in the RCS into the
GCS and computing the adjusting angle between 6, and 6,. The relation among the

RCS, the VCS, and the GCS, and the corresponding angle is illustrated in Figure 6.7

and the detailed transformation is described as an algorithm in the following.

Algorithm 6.1. Computation of the corrected location and the corrected direction
angle of the vehicle.

Input. The estimated location parameters V(X,, Y,, 6,), the learned location parameters
L(X,, Y, 0)), the learned path node (L, L,), and the direction angle ©,.

Output: The corrected location (N, N,) and the adjustment angle 6,4;.
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coordinate

Ry

Global
coordinate

Figure 6.7 The relation among the RCS, the VCS, and the GCS, and the corresponding angle
the vehicle. The learned location of the vehicle is denoted as a pastel vehicle with
the location (X;, Y;) in the RCS, and the current location of the vehicle is denote

as the colored vehicle with the location (X;, Y,) in the RCS.

Steps:
Step 1. Compute the adjustment angle 6,4 between the direction angles of V" and L

using the following equation:
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Step 2.

Step 3.

Step 4.

Step 5.

adj = ev _91 : (621)

Compute the angle ¢ using the following equation:

$=w—06,, where wztan‘l()? )’( ] (6.22)

Ay

Compute the angle ¢¢ of the line segment from the vehicle location L to

in the GCS using the following equation:

9; =9, _¢_0adj' (6.23)

Compute the adjustment location \with respect to the learned node using the

following equations:

X, =D, cos(¢;)

6.24
Yadj :Dadj 'Sin(¢G)v ( :

where

D,y =X, - X,V +(¥,-%) . (6.25)

Compute the corrected location (N, N,) using the following equations:

N, =L, -X,,

(6.26)
N, =L, -Y,

adj*

85



6.5 Experimental Results

In order to conduct experiments about the ability of path correction, we set up a

navigation path including a monitoring node and a path node, as shown in Figure 6.8.

Monitoring

—— p | Path Node

Select Ling X I learn ! reset ! iTeam Gelected i mage

Select LineZ' th: Calibration by Image |
= S lnad
(b) (©

Figure 6.8 An experimental navigation path including a monitoring node and a path node. (a)
A diagram of the navigation path. (b) A photo of the navigation path. (c) The user

interface of learning the monitored object and the location estimation data.
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With the successively learned navigation path, we firstly put the vehicle at an
identical start position to start the navigation. The experimental result shows that the

vehicle navigated correctly on the navigation path, as shown in Figure 6.9.

Select LineXi learm l rezet | Leamn Selected|

Select Line Z j th: [176.325714111328 Calibration by In
e IE1.D103302DD1853

(©)

Figure 6.9 The experimental result of path correction by the navigation starting from the
original learned start position. (a) The vehicle arrived at the monitoring node and
performed the matching and path correction. (b) The vehicle navigated to the next
path node after correcting the navigation path. (c) The vehicle successfully

matched the monitored object and estimated the location.
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Figure 6.10 The experimental result of path correction by the navigation starting from a
different start position. (a) The vehicle started the navigation at a position
different to the start position in the learning phase. (b) The vehicle arrived to a
wrong place where should be the monitoring node, and performed the matching
and path correction. (c) The vehicle still successfully matched the monitored
object and estimated the location. (d)-(e) The vehicle navigated to next path node

after correcting the navigation path.
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We also tested another case with artificial path deviations. We put the vehicle at a
different position to simulate the condition that the vehicle navigates outside the
learned path. The experimental result shows that the vehicle can self-correct the
navigation successfully by estimating the location with respect to the monitored object,

as shown in Figure 6.10.
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Chapter 7
Obstacle Avoidance In Various Floor
Environments

7.1 Overview of Obstacle Avoidance
Methods

While the vehicle navigates, an obstacle appearing on the navigation path
suddenly is an ordinary situation. la'recent years, many methods for vision-based
obstacle avoidance have been proposed.-Ku and Tsai [17] proposed a vision-based
approach by a quadratic classifier for obstacle avoidance. Obstacles including walls
and objects are considered as patterns, and are used as input to the quadratic classifier.
Chen and Tsai [4] proposed a fuzzy guidance technique by utilizing the result of route
area extraction to compute the collision-free direction for the same purpose. Chiang
and Tsai [3] also proposed a goal-directed minimum path following approach to
compute collision-free paths. However, most methods are specific in their applications
and unable to react in certain realistic environments. For real applications, the
environment is usually complicated and the floor typically consists of textures of
various colors. Hence, in order to avoid an obstacle in such environments, we propose
an obstacle avoidance method for various floor environments for the proposed vehicle
system.

In Section 7.2, we describe the idea of the proposed obstacle avoidance method

firstly. The detailed techniques used for obstacle avoidance are described in Section
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7.3. Some experimental results are shown in Section 7.4.

7.2 ldea of Proposed Obstacle
Avoidance Method

In this study, we propose an obstacle avoidance method in various floor
environments by utilizing the colors of the floor. The first step of proposed obstacle
avoidance is obstacle detection. We adopt k-means clustering for detection of an
obstacle to find clusters of floor colors, and an alert line scanning technique to
recognize an obstacle on the floor,, as,.described in Sections 7.3.1 and 7.3.2,
respectively. As soon as an obstacle is detected, we.adopt the goal-directed minimum
path following technique [3] to create a callision-free path, as described in Section
7.3.3.

For the convenience to describe the'obstacle avoidance method, we define some
coordinate systems and the direction angle of the vehicle, as described in Section
7.2.1. And the coordinate transformations among these coordinate systems are

described in Section 7.2.2.

7.2.1 Coordinate system and direction angle of

vehicle

In this section, three coordinate systems: the global coordinate system, the
vehicle coordinate system, and the image coordinate system, are used to describe the

vehicle location and the navigation environment, as defined in Chapter 6. The learned

91



navigation path including several path nodes uses the GCS to represent the location of
each node. While the vehicle navigates, the odometer of the vehicle provides the
current location of the vehicle and the direction angle of the vehicle in the global
coordinate system. The angle, denoted as ®, represents the rotation degree between
the direction of the vehicle and the G, axis of the global coordinate system and plays

an important role in coordinate transformation.

7.2.2 Coordinate transformation

Among the three coordinate systems, we need the transformation between the
image coordinate system and the vehicle coordinate system, and the transformation
between the vehicle coordinate system and the,global coordinate system. The first
transformation is known by the location mapping ‘calibration described in Section
3.2.1. The coordinate transformation between the vehicle coordinate system and the

global coordinate system is illustrated.in Figure 7.1:

Gy

A

Gy
Global
coordinate

Figure 7.1 The coordinate transformation between the VCS and the GCS.
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Based on this figure, the transformation functions between the vehicle coordinate
system and the global coordinate system using the direction angle can be calculated
by Equations (7.1) and (7.2) in the following, where x, and y, are the coordinates of

the vehicle in the world coordinate system.

x=V,cos®-V sin®+x,, (7.1)

y=V.sin®@+V cos®+y,.
! (7.2)

7.3 Obstacle Avoidance Techniques

7.3.1 Finding floor colors by k-means clustering

In order to find the most representative-clusters of the floor colors, an efficient
algorithm to cluster the floor colors is needed. Cluster analysis is one of the applicable
techniques. It has long been used for image segmentation and other image analysis
works. The clustering technique for color image segmentation normally chooses the
RGB space as the feature space. However, for real applications, the color distance in
the RGB space usually cannot represent the differences of the colors in the real world.
Lucchese and Mitra [22] proposed an unsupervised segmentation algorithm based-on
k-means clustering in the chromaticity plane. They suggested that exploiting the
separability of colors in the 3D space may be projected onto a 2D chromatic subspace
and onto a 1D luminance subspace. This inspires us in this study to propose an
efficient unsupervised k-means clustering algorithm for clustering the floor colors.

Among the techniques developed for clustering, the k-means clustering
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algorithm [18, 19] is the most widely used and studied. In order to meet real-time
processing, we need an efficient k-means clustering algorithm. Kanungo et al. [20]
proposed a filtering algorithm which is an efficient implementation of Lloyd’s
k-means clustering algorithm [21]. Hence, we adopted it as the basis of the proposed
k-means clustering algorithm.

For a given color image, we firstly transform the color image from the RGB

space into the Lu v’ space using the following equations:

1

[ = J116Y?-16 for Y >0.008856
903.3Y  forY <0.008856

., S (7.3)
(X +15Y +32)

. QY
(X +15Y +32)"

where

X 0.412453 0.357580 0.180423| |R
Y |=]0.212671 0.715160 0.072169 [x| G |. (7.4)
Z 0.019334 0.119193 0.950227| |B

In order to achieve an unsupervised clustering, we apply a 2D k-means algorithm
where k =2, 3, ..., n, on the u’v’chromaticity plane of the image, to find the a set of &
clusters, denoted as Cc, SO as to minimize the mean squared distance, the so-called
distortion, from each color to its corresponding cluster, respectively. Obviously, as the
number £ of the clusters increases, the distortion decreases. In realistic environments,
the colors of the floor are normally limited to several kinds. Thus we set up thresholds

to prevent too many clusters. There are two thresholds: a threshold t; to limit the
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minimum distance between the centers, and a threshold t, to limit the difference
between the average distance of the cluster centers and the average distortion. The

detailed algorithm is described in the following.

Algorithm 7.1. 2D unsupervised k-means clustering in the u’v’ chromaticity plane.
Input: A set of sample colors, V, in the u’v’ chromaticity plane, two thresholds t; and
T2.

Output: A set of clusters, Cep.

Steps:

Stepl. Setk=2.

Step 2.  Apply k-means algorithm on V, where i = 1, 2, ..., N with k£ being the
number of the clusters.

Step 3.  Compute the average distortion r of.the clustering result.

Step 4. Compute average distance ida.-between the centers of the clusters and find
the minimum distance d,,;; among.them:

Step 5. If d,;, is smaller than 71, repeat Step 1.2 with £ = k£ — 1 to get the clusters as
Cen and return the resulting clusters and finish the algorithm.

Step 6. If |r — daylis smaller than 7, return the clusters computed in Step 1 as Cen
and finish the algorithm; otherwise, repeat Steps 1.2 through 1.6 with £ = &
+1.

After we obtain a set of clusters, C¢,, the next step is to find the luminance
clusters for each cluster in Ccn. We apply a 1D k-means clustering algorithm which is
a simple dimensional reduction of the 2D algorithm above to obtain the clusters C, for
each cluster in Cg,. The thresholds t; and t4 for the 1D algorithm play the
corresponding roles of thresholds t; and t, of the 2D algorithm, respectively. By

combining the clusters C, and their corresponding clusters in C, we can obtain a set
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of the floor color clusters, denoted as Croor. A flowchart of the entire clustering

process is shown in Figure 7.2.

Start the floor color
clustering

Y
Convert the RGB

image into Lu’v’ RGB Image 7
image

Preprocessing

A
k-means clustering in

the u’v’ chromaticity
plane

eans clustering

nlam

At Ay P
Uiliatluily piaiic

k-means clustering for| _
the luminance L

k-means clustering
for luminance

End the floor color
clustering

Figure 7.2 A flowchart of finding the floor color clusters by the k-means clustering.

7.3.2 Obstacle detection by alert line scanning

Once we obtain the floor color clusters, we can utilize the clusters to recognize
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the non-floor colors by scanning an alert line. The alert line is established by three
line segments in the image, as shown in Figure 7.3. If an obstacle is detected on the

alert line, the vehicle should change its navigation path to avoid the obstacle.

Figure 7.3 An alert line specified by three red line segments in the image.

Each color sample of the ir;!ége on; tl;uealert ]ihéﬁ-,is scanned respectively. We first
transform the color samples, dé’r__l'(")ted.égl_:@';afnﬁ—}nto__ th&ia Lu’v’ space, and then compare
each sample C; in Cgert With the c:I'Ljéte.rjs Cﬂoolr.in thg Lu’v’ space. If the C; is similar to
Crioor, it means that no obstacle exists at this sample point in the image. Otherwise, the
sample is marked as a candidate obstacle seed. After scanning the alert line, we can
collect a set of candidate obstacle seeds. Then we apply a region growing algorithm
on these seeds to find a mask of the distribution of the obstacle, and apply the
morphological operations on the mask to remove the noise and small regions.
Obstacles in the mask are set as white parts, as shown in Figure 7.4(b) and (c). Finally,
we rescan the same alert line in the mask to detect the distribution of obstacles on the
alert line. The green and the red parts represent the floor and the obstacles respectively,
as shown in Figure 7.4(a). Then we can obtain the left-most side and the right-most
side points of the obstacles in the alert line. The detailed process is described as an

algorithm in the following.
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(©)

Figure 7.4 The alert scanning results. =(a). The=mask’ of the region growing result of the
candidate obstacle seeds. (b) “Fhe ‘mask generated by applying morphological
operations on (a). (c) The green parts of the alert line represent the floor and the

red parts of the alert line represent the obstacles.

Algorithm 7.2. Alert line scanning for the detection of an obstacle.

Input. An image | with an obstacle and the floor.

Output: Two points of the left-most side and the right-most side of the obstacles or a
Boolean value “false’ if there is no obstacle detected.

Steps:

Step 1.  Transform the sample points on the alert line of I from the RGB space into

the Lu v’ space, with the result denoted as Cjert.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

For each sample point C; in Cqerr and each floor color cluster C; in Cioor
compute the difference between C; and C;, with the result denoted as D; ;.
For each D; j, if |D; j| is larger than a threshold, apply region growing using
the corresponding C; as a seed to create a mask by filling the grown region
with the value 255, and apply the AND operation to merge the masks
created by the region growing by computing the per-element bit-wise
logical conjunction of the masks.

Apply the morphological operations to the mask.

Scan the alert line in the mask, and find the first and the last samples with

values equal to 255, denoted as O, and Ok.

If O, and Oy exist, return these points; otherwise, return a Boolean value

‘false.’

7.3.3 Computation of goaldirected minimum path

In the previous section, we have detected the distribution of the obstacles, and

obtain the left-most side and the right-most side points O, and Ox. Once an obstacle is

detected, a new path is planned to guide the vehicle to avoid the obstacle. In this study,

we adopted the goal-directed minimum path proposed by Chiang and Tsai [3]. The

first step is to transform O, and Oy in the image coordinate system to the vehicle

coordinate system. Then, the computation of a goal-directed minimum path is

illustrated in Figure 7.5, where W, is the appropriate width for the vehicle to pass and

Dg is the shortest distance between the obstacle and the vehicle. With some geometric

computation, we can obtain a node, the so-called obstacle avoidance node, to guide

the vehicle to avoid an obstacle, by choosing the shortest distance of the paths. The
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detailed computation is described as an algorithm in the following.

Search area

y Vehicle
coordinate
S

Figure 7.5 An illustration of computation of goal-direction minimum path (a modified
version from [3]).

Algorithm 7.3. Computation of goal-directed minimum path.
Input: Two points of the left-most side and the right-most side of the obstacles,

denoted as O, and O, in the vehicle coordinate system.
Output. A node of the goal-directed minimum path.

Steps:
Step 1. Compute the two candidate nodes O, and Oy’ for obstacle avoidance in the

VCS using the following equations:

0. =i-W,+0,0,+0,V,

v P

(7.5)

O, =u-W, +0,;0,+0,V,,

v

where i is the unit vector and 7, is the vehicle location in the vehicle
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Step 2.

Step 3.

Step 4.

Step 5.

coordinate system.

Transform O;’ and Oz’ in the vehicle coordinate system to the global
coordinate system using Equations (7.1) and (7.2), with the results denoted
as Ogr and Ogg, and compute the two lengths Length, and Lengthg of the
path after inserting the nodes O¢; and Ogy for obstacle avoidance using the

following equations:

Length, =\V.O;, |+|0; N

next

(7.6)

Length, =V ,Op|+ |0 N,

next |!

where V7 is the vehicle location in the global coordinate system.

If Length, is smaller than Lengthg, choose Og, as the obstacle avoidance
node; else, choose Ogg.

Using Equation (7.7)-in the following to-check whether the node is in a
pre-defined search area’in the image or not. If not, compute the node

position using Equation (7.8) in the following:

VGN‘ >r (7.7)

N=uy-r (7.8)

’

where N is the node for obstacle avoidance, r is the distance between the

vehicle and the next node, and uy is the unit vector of VN .

Return the node position.
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7.4 Experimental Results

In this chapter, we have proposed an unsupervised k-means clustering algorithm
to find clusters of the floor colors. We have tested several kinds of floors, as shown in
Figure 7.6. The experimental results are shown in Figure 7.7.

For the convenience to observe the clustering result, we constructed an u’v’
chromaticity plane image. Each sample point is drawn as a point with the same color
for each cluster, as shown in Figure 7.7(b). The white circles specify the clusters’
average distance between the samples and their corresponding cluster centers. Each
clusters’ samples are specified by different colors. We collected the color samples of
the alert line in the image. Each color samples of the alert line is drawn as a purple

point in the uv’ chromaticity plalé image, asishown in Figure 7.7(b). Then, we

filtered out the samples with ar col
and apply region growing

experimental result for a different fle

7.8.

Figure 7.6 Two kinds of floors.
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Figure 7.7 The experimental result of obstacle detection by k-means clustering. (a) The image

contains the floor and an obstacle. The red parts of the alert line specify the
obstacle and the green parts of the alert specify the floor. (b) The clustering result
which is shown in the «’v’ chromaticity plane. (c) The colors of the clusters. (d)
The non-floor colors on the alert line. (e) The mask created by region growing. (f)

The mask after applying the morphological operations.
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(d) (e)

Figure 7.8 Another experimental result of detecting an obstacle by k-means clustering. (a) The

image contains the floor and an obstacle. (b) The clustering result. (c) The colors
of the clusters. (d) The non-floor colors on the alert line. (¢) The mask created by

region growing. (f) The mask after applying the morphological operations.
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Chapter 8
Experimental Results and
Discussions

8.1 Experimental Results

In this section, we will show some experimental results of the proposed security
patrolling system in indoor environments. Experiments for this study were performed
from the Computer Vision Laboratory at the Department of Computer Science,
through a corridor, to the lobby of .Engineering 3:Building, all in National Chiao Tung
University.

The user interface of the systemiis'shown-in Figure 8.1. At first, a user controls
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Figure 8.1 A user interface of the experiment. User can control the vehicle through this

interface to learn a path and the monitored objects on the path.
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the vehicle to learn a path and some monitored objects on the walls. In this study,
monitored objects are paintings and posters. Whenever the vehicle arrives at a spot,
the user controls the system to record the monitored-object features and the
calibration information. After the learning process, a navigation map is created. An
illustration of the learned data, the navigation map, and the actual navigation path
created in the experiment is shown in Figure 8.2.

Corridor

+<>_-|-‘/I\‘— O

>
J A Poster 1 &
Poster 3 ‘ CvLab
‘ Poster 4
* : Starting and finishing point
‘ Poster 5
<> : Navigation node
‘ : Monitored object check point
Painting ‘
- : Obstacle
: Learned path
‘ Poster 6 o
— : Navigation path
Elevator
Lobby

Figure 8.2 An illustration of learned data and navigation path.
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The vehicle starts security patrolling according to the created map. The
navigation process is shown in Figure 8.2. Whenever the vehicle arrives at a learned
monitoring node, it performs the security check of the existence of the monitored
object. If the check is successful, the vehicle adjusts its location to continue its
navigation on the right way according to the matching result; otherwise, a message is
issued. For each monitored object shown in Figure 8.2, the experimental results are
shown in Figure 8.3. In Figure 8.3, the vehicle performed security monitoring to
monitor 7 monitored objects. The vehicle arrived at the learned monitored node, as
shown in Figure 8.3(b). Then, it extracted the features of the image and matched with
the corresponding learned data. The matching results are shown in Figure 8.3(c) and
the learned monitored objects are shown in Figure 8.3(d).

In addition, while the vehiclé:"ﬁ;ngate;s_, r.t'he_ vehicle will detect obstacles by
scanning the alert line, as showri_.ih Figu}; 78(b) i the vehicle detects an obstacle, a
new path is planned to guide the vehlcre-te—avmd tfi1e obstacle, as shown in Figure

7.8(c) through (h).

Obj.

@ (b) (©) (d)

Figure 8.3 The experimental result of object monitoring and navigation path correction. (a)
Monitored object labels. (b) The vehicle monitors the monitored objects. (¢) The
matching result and the horizontal line used for path correction. (d) The image of

learned monitored objects.
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Obj2.

Obj3.

Obja.

@ (b) (©) (d)

Figure 8.3 The experimental result of object monitoring and navigation path correction. (a)
Monitored object labels. (b) The vehicle monitors the monitored objects. (¢) The
matching result and the horizontal line used for path correction. (d) The image of

learned monitored objects. (continued)
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Objs.

Objs.

Obj7.

@ (b) (©) (d)

Figure 8.3 The experimental result of object monitoring and navigation path correction. (a)
Monitored object labels. (b) The vehicle monitors the monitored objects. (¢) The
matching result and the horizontal line used for path correction. (d) The image of

learned monitored objects. (continued)
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@) (b)

(€) ®

Figure 8.4 The vehicle detects an obstacle and changes the navigation path to avoid the

obstacle. (a) The mask of detected obstacle region. (b) The image contains the
floor, an obstacle, and the alert line specified the distribution of the obstacle.

(c)~(h) show the vehicle avoiding an chair as an obstacle.
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(9) (h)

Figure 8.4 The vehicle detects an obstacle and changes the navigation path to avoid the

obstacle. (a) The mask of detected obstacle region. (b) The image contains the

pecified the distribution of the obstacle.

floor, an obstacle, and the. alé

(c)~(h) show the vehic m ' s an obstacle. (continued)

8.2 Discussions

By analyzing the experimental results of guidance, some problems are identified
as follows.

(1) The reflect light of the lamplight will affect the intensity of the image taken by
the camera because the camera is placed at the lower position, resulting in fewer
matched pairs computed by the SIFT algorithm. Thus, the horizontal line, which
is computed by applying the extracted affine transform, in the image is not
identical, so the computed coefficients of the linear equation will yield errors.
The vehicle location estimation also produces errors.

(2) There are two constraints of the proposed system, namely, the floor has to be flat
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and the luminance has to be even. The obstacle avoidance method used in this
study uses the colors of the floor which is close to the vehicle as the reference to
scan the alert line. If the colors of the floor on the alert line are different to the
ones of the floor which is close to the vehicle, it is difficult to separate the floor
and other things on the floor. The distance between the obstacle and the vehicle

is also difficult to obtain. This problem should be solved in the future.
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Chapter 9
Conclusions and Suggestions for
Future Works

9.1 Conclusions

In this study, several techniques and strategies have been proposed and integrated
into an autonomous vehicle system for security patrolling in indoor environments with
capabilities of specific-object monitoring. .and self-adjustment of navigation paths.
Satisfactory navigation results have beenobtained by this system.

At first, an easy-to-use learning technique is proposed, which has the capability
of extracting specific features, including navigation path, floor color, monitored object,
vehicle location with respect to monitored: objects. A user can easily control the
vehicle with a designed interface to navigate in the environment and specify
concerned objects in the image for later security monitoring.

Next, a security patrolling method by vehicle navigation with obstacle avoidance
and security monitoring capabilities has been proposed. The vehicle navigates
according to the node data of the path map which is created in the learning phase and
monitors the concerned objects by a 2D object image matching technique proposed in
this study, the simplified-SIFT algorithm. Accordingly, we can extract the features of
the monitored object from acquired images and match them with the learned data. The
matching technique is based on the Hough transform. We construct a Hough

transform histogram to predict the model location, orientation, and scale from the
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match hypothesis, and find the best match by finding the peak in the Hough space.

In addition, a vehicle location estimation technique by utilizing the monitored
object matching result has been proposed. The coefficients of the equation of a
horizontal line and the location of the start point in the image are used to estimate the
vehicle location. Also proposed is a path correction method, which compares the
estimated location and the learned one to compute necessary path adjustment and
transform it into the global coordinate system to correct the navigation path.

Finally, for obstacle avoidance, a k-means clustering algorithm for finding
clusters of the floor colors has been proposed, by which we can detect obstacles in
environments with various floor colors. We have also proposed an alert line scanning
technique to detect obstacles and integrated it with a technique of goal-directed
minimum path following to guide the vehicle to‘avoid the obstacle.

The experimental results =shown in the previeus chapters have revealed the

feasibility and practicality of the proposed-system.

9.2 Suggestions for Future Works

The proposed strategies and methods, as mentioned previously, have been
implemented on a vehicle system. Based on our experience of the experiments,
several suggestions and related interesting issues are worth further investigation in the
future. We state them as follows.

(1) Using an omni-directional camera for obstacle avoidance to take wider-view
images of the environment which is close to the vehicle.
(2) Design a learning data managing system for the incremental learning of

monitored objects and learned data management.
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(3)
(4)

()

(6)

Adding more kinds of features for vehicle location estimation.

Adding the capability of transmitting warning messages from the system to a
user’s cell phone or electronic mail address to warn the user immediately.
Adding the capability of voice control when users want to issue navigation
orders to the vehicle.

Adding the capability of starting navigation from arbitrary start points.
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