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多電子系統於半導體量子點上之數值研究 

 
 

學生：陳人豪             指導教授：劉晉良 教授 

 

國立交通大學應用數學系博士班 

 
 

摘    要 

 

本論文分為兩部份，在第一個部分，我們利用電流自旋密度 

泛函理論，對於三個垂直排列成一行的半導體量子點提出了 

一個理論模型，並利用一些數值方法來探究。此量子點分子 

模型是由三度空間中的硬牆侷限位能以及外部磁場所組成， 

由於非拋物能帶有效質量的採用，多電子的 Hamiltonian 在 

有限差分法下，會導出一個三次特徵值問題。而我們利用自 

恰法來獲得在量子點分子中六個電子的 Kohn-Sham 軌域及 

能量，其中薛丁格方程與卜易松方程分別由 Jacobi-Davidson 

方法與 GMRES所解出，從數值結果中，我們可以得知原本 

在無磁場下，六個電子都位於中間的量子點，但在施加適當 

之磁場後，每一個量子點都有兩個電子，Förster-Dexter共振 

能量轉換效應也許因此可由兩個量子點分子所形成，並提供 
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量子計算中費米量子位元一個新的設計概念。 

 

在第二個部份，我們對半導體量子點中多電子的 Hamiltonian 

之精確對角化提出了一個新的方法，由於我們的量子點模型 

是由三度空間的硬牆侷限位能以及非拋物能帶有效質量所 

組成，因此一些解析基底，例如拉格爾多項式，在此類模型 

中是無法使用。在本方法中，我們利用單電子波函數所組成 

的 Slater 行列式基底來建構多電子系統之波函數，其中單電 

子 Hamiltonian中使用了一個與能量及位置相關的有效質量， 

並加入了適當的邊界條件，利用有限差分法，同樣也得到了 

一個三次特徵值問題，並且亦透過 Jacobi-Davidson方法來解 

，而多電子 Hamiltonian 中的庫倫矩陣元素則是透過解卜易 

松問題來獲得，我們的數值結果呈現只須少許的單電子基底 

便可得到一個良好的收歛狀態。 
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ABSTRACT 
 

This thesis consists of two parts. In the first part, based on the current 

spin density functional theory, a theoretical model of three vertically 

aligned semiconductor quantum dots is proposed and numerically studied. 

This quantum dot molecule (QDM) model is treated with realistic 

hard-wall confinement potential and external magnetic field in 

three-dimensional setting. Using the effective-mass approximation with 

band nonparabolicity, the many-body Hamiltonian results in a cubic 

eigenvalue problem from a finite difference discretization. A 

self-consistent algorithm for solving the Schrödinger-Poisson system by 

using the Jacobi-Davidson method and GMRES is given to illustrate 
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the Kohn-Sham orbitals and energies of six electrons in the molecule 

with some magnetic fields. It is shown that the six electrons residing 

in the central dot at zero magnetic field can be changed to such that 

each dot contains two electrons with some feasible magnetic field. The 

Förster-Dexter resonant energy transfer may therefore be generated by 

two individual QDMs. This may motivate a new paradigm of Fermionic 

qubits for quantum computing in solid-state systems. 

 

In the second part, we propose a new approach to the exact diagonal- 

ization of many-electron Hamiltonian in semiconductor quantum dot (QD) 

structures. The QD model is based on realistic 3D finite hard-wall 

confinement potential and nonparabolic effective mass approximation 

that render analytical basis functions such as Laguerre polynomials 

inaccessible for the numerical treatment of this kind of models. In this 

approach, the many-electron wave function is expanded in a basis of 

Slater determinants constructed from numerical wave functions of the 

single-electron Hamiltonian with the energy and position dependent 

electron effective mass approximation and suitable boundary conditions 

which result in a cubic eigenvalue problem from a finite difference 
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discretization. The nonlinear eigenvalue problem is also solved by using 

the Jacobi-Davidson method. The Coulomb matrix elements in the 

many-electron Hamiltonian are obtained by solving Poisson’s problems 

via GMRES. Numerical results reveal that a good convergence can be 

achieved by means of a few single-electron basis states. 
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Chapter 1

Introduction

There is significant interest in quantum information processing based on Fermi-

onic qubits using semiconducting materials [1-10]. One of the proposals in this

approach is to exploit electronic excitations of coupled quantum dots (QDs) that

form an artificial molecule (QDM) [6] [7] [9] [10]. In particular, an energy selective

scheme to manipulating excitonic states of QDM, together with control over the

Förster-Dexter resonant energy transfer and biexciton binding energy, can be used

to perform quantum computation and to produce controlled exciton quantum en-

tanglement [7] [11]. The resonant Förster-Dexter energy transfer mechanism is

also responsible for photosynthetic energy process in antenna complexes, biosys-

tems that harvest sunlight [12]. It has been recently shown that two individual

closely spaced fluorescent molecules undergo a strong coherent dipole-dipole cou-

pling can produce entangled states [13]. We propose and numerically investigate

here a theoretical model of three vertically aligned InAs/GaAs QDM whose di-

mensions are commensurable with that of [9] in which a transmission electron

micrograph of a QDM sample is illustrated.

Our QDMmodel consists of one large central dot and two smaller dots situated
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above and beneath the central dot whose geometrical dimensions are shown in

Fig. 1.1 where the radius, thickness, and separation of each dot are indicated

by coordinates. It has been demonstrated in [11] [14] that there exists Förster

energy transfer from smaller to larger dots via electrostatic coupling. Our goal for

this model system is to investigate the detailed electronic properties of the QDM

with N = 6 electrons under the effects of an external magnetic field by using the

current spin density functional theory (CSDFT) [15] [16].

For the many-body Hamiltonian of our QDM model, we extend the models

used in [17-19], which are based on parabolic one-band effective-mass envelope

function approximation with either infinite or quadratic confinement potentials,

to a more realistic finite confinement potential with band nonparabolicity that

leads to an energy-dependent mass in the Hamiltonian for electrons. The non-

parabolicity is derived from a projection from the eight-band Kane Hamiltonian

into the 2 × 2 conduction space and hence gives more accurate results as shown

in [20-23].

The CSDFT applied to the QDM system with three-dimensionality of the

finite confinement and band nonparabolicity poses a very challenging task for the

numerical implementation. The energy-dependent mass in the Hamiltonian results

in a cubic eigenvalue problem from, e.g., a finite difference discretization. The

Jacobi-Davidson (JD) method developed in [24] [25] is extended and incorporated

into a self-consistent algorithm for solving the Schrödinger-Poisson system that
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implements the CSDFT in real space. We also give a detailed description of the

computational algorithm, the Poisson solver, and the approximation methods for

the exchange-correlation (xc) energy.

Numerical results on the Kohn-Sham (KS) orbitals and energies of six elec-

trons in the molecule with some magnetic fields are presented in detail. It is

shown that the six electrons residing in the central dot at zero magnetic field

can be changed to such that each dot contains two electrons with some feasible

magnetic field. The Förster energy transfer may therefore be generated by two

individual QDMs. This may motivate a new paradigm of Fermionic qubits for

quantum computing in solid-state systems, which will be reported in a coming

paper.
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Figure 1.1: Three vertically aligned InAs/GaAs quantum dots with cylindrically

symmetric domain in real space dimensions in nano meters that are used in nu-

merical implementation. The domian in 2D setting is denoted by Ω with the

boundary ∂Ω consisting of the south (S), east (E), north (N), and west (W) sides.
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Chapter 2

The Current Spin Density

Functional Theory for the Model

System

The density functional theory (DFT) introduced in the two seminal papers [26]

[27] is perhaps the most successful approach to compute the electronic structure

of matter ranging from atoms, molecules, to solids. Vignale and Rasolt developed

an extension of DFT that makes it possible to include gauge fields in the energy

functional [15] [16] and has been widely used to describe the electronic structure

of quantum dots in magnetic fields [17] [18] [19] [28].

In CSDFT, the ground state energy of an interacting system with electron

numberN and the total spin S in the local external potential Vext(r) is a functional

of spin density nσ(r), with σ =↑, ↓ (or ±1) denoting spin-up and spin-down,

respectively,
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E (n) = T (n) +
]
n(r)

�
Vext(r)+

1

2
VH(r)

�
dr+EB (n) +Exc (n) , (2.1)

where the total density n(r) =n↑(r)+n↓(r) and the spin densities satisfy the con-

straint
U
nσ(r)dr =Nσ with N↑ = (N + 2S) /2, and N↓ = (N − 2S) /2 [28]. As-

suming that the ground state of the noninteracting reference system is nondegen-

erate, the noninteracting kinetic energy is expressed as

T (n) =
[
j,σ

-
Ψjσ

�����Π
#

1

2m(r,εjσ)

$
Π

�����Ψjσ

.
, (2.2)

where Π = −ih∇ + eA(r) denotes the electron momentum operator, h is the

reduced Planck constant, e is the proton charge, A(r) = B
2
(−y, x, 0) is the vec-

tor potential induced by an external magnetic field B = curl A = Bez applied
perpendicular to the xy plane, and Ψjσ and εjσ are Kohn-Sham (KS) orbitals and

eigenvalues to be specified below. The effect of band nonparabolicity leads to the

mass depending on both energy and position, which is defined by [20]

1

m(r,εjσ)
=
p2

h2

%
2

εjσ +Eg(r)−Vext(r) +
1

εjσ +Eg(r)−Vext(r) +∆(r)

&
, (2.3)

where Eg(r) and ∆(r) are energy-band gap and spin-orbit splitting in the valence

band, respectively, and p is the momentum matrix element. These parameters are

material (position) dependent. We denote the spatial domain of the model, i.e.,

Fig. 1.1, as Ω = ΩInAs ∪ ΩGaAs ⊂ R3, where the three InAs quantum dots are

6



embedded in the GaAs matrix. All numerical values of the parameters used in

this thesis are listed in Table 1, which also includes the corresponding units and

cited references.

Table 1. Numerical values of all parameters used in this thesis.

value unit formula reference

e 1.60219× 10−19 J

B T

h 1.05459× 10−34 Js

p (InAs) 1.20311× 10−28 3m0p
2/h2 [29]

p (GaAs) 1.25614× 10−28

m0 9.10956× 10−31 kg

Eg (InAs) 0.421 eV [29]

Eg (GaAs) 1.52 eV [29]

∆ (InAs) 0.48 eV [29]

∆ (GaAs) 0.34 eV [29]

V0 0.77 eV [29]

"0 8.854187× 10−12 F/m

"InAs 12.2 [20]

"GaAs 12.7

µB 9.2741× 10−24 J/T

c 2.997925× 108 m/s
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The hard-wall confinement potential Vext is induced by a discontinuity of

conduction-band edge of the system components and is given as

Vext(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, in ΩInAs

V0, in ΩGaAs.

(2.4)

The Hartree potential is defined as

VH(r) =
e2

4π"0"(r)

] n(r�)
|r− r�|dr

�, (2.5)

where "0 the permittivity of vacuum and "(r) is the dielectric constant of the

background material.

The vector field A(r) adds extra terms to the energy functional as follows

EB (n) =
1

2
gµBB

] k
n↑(r)−n↓(r)

l
dr+e

]
jp(r) ·A(r)dr, (2.6)

where g is the Landé factor, µB is the Bohr magneton, and

jp(r) =
−ih
2m

[
j,σ

k
Ψ∗jσ(r)∇Ψjσ(r)−Ψjσ(r)∇Ψ∗jσ(r)

l

is the paramagnetic current density.

The xc energy Exc (n) is defined as

Exc (n) = Ex (n) +Ec (n) =
]
n(r)εxc (n, γ) dr, (2.7)

where the xc energy per particle εxc depends on the field B. This is a conse-

quence of the fact that the external field changes the internal structure of the

wave function. It formally depends on the vorticity

8



γ(r) = ∇× jp(r)
n(r)

�����
z

. (2.8)

To minimize the total energy of the system, a functional derivative of E (n) is

taken with respect to Ψ∗jσ under the constraint of the orbitals Ψjσ being normal-

ized. The resulting KS equations are

Hσ
KSΨjσ = εjσΨjσ (2.9)

with the KS Hamiltonian Hσ
KS defined as

Hσ
KS = −Π

#
1

2m(r,εjσ)

$
Π+ Vext(r)+VB(r)+VH(r)+V

σ
xc(r), (2.10)

where

VB(r) = σ
1

2
g(r,εjσ)µBB, (2.11)

g(r,εjσ) = 2

+
1− m0

m(r,εjσ)

∆(r)

3 (εjσ +Eg(r)−Vext(r)) + 2∆(r)
,
, (2.12)

and σ = ±1 referring to the orientation of the electron spin along the z axis. The

xc potential

V σ
xc(r) =

δ [n(r)εxc (n, γ)]

δnσ
− e
n
jp ·Axc, (2.13)

where Axc is the xc vector potential defined by

9



eAxc =
1

n

#
∂

∂y

δ [n(r)εxc (n, γ)]

δγ
, − ∂

∂x

δ [n(r)εxc (n, γ)]

δγ
, 0

$
. (2.14)

We use the LSDA for calculating the xc energy. In CSDFT, the LSDA has

to be extended to include the orbital currents. Following Vignale and Rasolt [16],

the xc vector potential is approximated as

e

c
Axc,σ ≈ −b

nσ(r)
∇×

%
∇× jpσ(r)

nσ(r)

&
, (2.15)

where

−b = mkF
48π2

%
χL
χ0L
− 1

&
(2.16)

with kF being the Fermi momentum and χL
χ0
L
the diamagnetic-susceptibility ratio.

The values of this ratio are tabulated in [30].

For the xc energy functional εxc in (2.13), we adopt the form developed by

Perdew and Wang [31] as

εPWxc (n, ζ) = εx (rs, ζ) + εc (rs, ζ) (2.17)

where

εx (rs, ζ) = − 3

4πrs

�
9π

4

�1/3 k(1 + ζ)4/3 + (1− ζ)4/3
l

2
, (2.18)

εc (rs, ζ) = εc (rs, 0) + αc(rs)
f(ζ)

f ��(0)

�
1− ζ4

�

10



+[εc (rs, 1)− εc (rs, 0)] f(ζ)ζ
4, (2.19)

ζ =
�
n↑(r)−n↓(r)

�
/n(r) is the spin polarization, rs =

�
3
4πn

�1/3
is the Wigner-

Seitz radius, and the functions εc (rs, 0), εc (rs, 1), and −αc(rs) are given in [31].

Note that the magnetic field dependence on the correlation energy, which might

affect the total energies and spin configurations, is not taken into account in the

present formula.

11



Chapter 3

Numerical Methods and

Algorithms for the Model System

Since the three QDs and the magnetic field are cylindrically symmetric, the wave

function, the spin density, and the paramagnetic current density can be repre-

sented as

Ψq(r) = e−ilθφq (r, z) , q ≡ {nlσ} (3.1)

nσ(r) = nσ (r, z) =
Nσ[
q

|φq (r, z)|2 , (3.2)

jp(r) = − h

m(r, z, εq)

N[
q

l |φq (r, z)|2 eeθ, (3.3)

where n is the principal quantum number, l = 0,±1,±2, · · ·, is the quantum

number of the projection of angular momentum onto the magnetic field axis, i.e.,

the z-axis and eeθ is the azimuthal unit vector. The KS equations are then reduced
to a 2D problem in the (r, z) coordinates as

Hlσ
KSφq (r, z) = εqφq (r, z) , (3.4)

12



where the KS Hamiltonian is now defined by

Hlσ
KS = TS + TB + Vext + VB + VH + Vxc (3.5)

TS (r, z) = − h2

2m(r, z, εq)

#
∂2

∂r2
+
1

r

∂

∂r
− l

2

r2
+

∂2

∂z2

$
(3.6)

TB (r, z) =
e2B2r2

8m(r, z, εq)
+

heBl

2m(r, z, εq)
. (3.7)

In 2D setting, the solution domain for (3.4) is again expressed by the same

notation as that of 3D, that is, Ω = ΩInAs ∩ ΩGaAs ⊂ R2. We choose the

domain ΩGaAs sufficiently large so that the wave function is negligibly small

at the boundary of ΩGaAs. By symmetry, the domain Ω can be reduced to

Ω = {(r, z) : 0 ≤ r ≤ rmax,−zmax ≤ z ≤ zmax} for sufficiently large rmax > 0 and

zmax > 0 as shown in Fig. 1.1.

The explicit formula for the potential Vxc(r) in (2.13) is extremely complex in

3D coordinates. Transforming it to the (r, z) space is prohibitively lengthy and

impractical. We use all the original formulas (2.13)-(2.19) for calculating Vxc(r) in

the 3D space and then obtain the potential in the (r, z) coordinates, i.e., Vxc (r, z)

for (3.4).

Since we are dealing with the hard-wall confinement potential, the interface

conditions of the wave function in (3.4) has to be specifically imposed, namely,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2m(r,z,εq)
Πφq(r, z) · n

���
Γ−
= 1

2m(r,z,εq)
Πφq(r, z) · n

���
Γ+
,

φq(r, z)|Γ− = φq(r, z)|Γ+ ,

(3.8)

13



where Γ denotes the interface between two materials, i.e., Γ = ΩInAs∩ΩGaAs, n is

an outward normal unit vector on the boundary of ΩInAs, and Γ− and Γ+are the

sets of limiting points to the curve Γ from the interior and the exterior of ΩInAs,

respectively. The momentum operator Π is similarly defined for the 2D case. The

boundary conditions for (3.4) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂φq(r,z)

∂r

���
W
= 0,

φq(r, z) = 0, on S, E, N,

(3.9)

whereW , S, E, and N denotes the west, south, east, and north side boundaries of

the domain Ω. Note that on the west side of the boundary the values of the wave

function are taken to be the same for satisfying the continuity condition across

W . In actual implementation this condition is replaced by taking the values of

the two horizontal grid points adjacent to W as the same. Moreover, to avoid

numerical over-flow due to the term 1/r in (3.6), we do not define unknowns at

the grid points on W .

Note that the potential functions Vext(r) and VB(r) can be directly reduced to

the (r, z) space since these functions are independent of the azimuthal coordinate.

In real space approximation, the Hartree potential VH(r) is usually calculated by

solving the Poisson equation [32]

∇ · "(r)∇VH(r) = − e2

4π"0
n(r). (3.10)

By cylindrical symmetry, this equation can be written as
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#
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2
+

∂2

∂z2

$
VH (r, θ, z) = f(r, z), (3.11)

f(r, z) = − e2

4π"0"i

N[
q

|φq (r, z)|2 , for i = 1 or 2, (3.12)

where "1 = "InAs if (r, z) ∈ ΩInAs and "2 = "GaAs if (r, z) ∈ ΩGaAs. By using the

method of separating variables and substituting a solution of the form

VH (r, θ, z) = VH (r, z)V (θ) (3.13)

into (3.11), we have

V (θ)

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

$
VH (r, z) + VH (r, z)

1

r2
∂2V (θ)

∂θ2
= f(r, z)

or

V (θ)r2

VH (r, z)

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

$
VH (r, z) +

∂2V (θ)

∂θ2
=

r2

VH (r, z)
f(r, z). (3.14)

Obviously, by setting V (θ) = k where k is an arbitrary constant, a function

V pH (r, z) = kVH (r, z) satisfying the 2D Poisson equation

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

$
V pH (r, z) = f(r, z) (3.15)

is a particular solution of (3.14) in view of a second order nonhomogeneous or-

dinary differential equation with respect to θ. The corresponding homogeneous

general solution is eikθV hH (r, z) satisfying the Laplace equation
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#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
− k

2

r2

$
V hH (r, z) = 0. (3.16)

The general solution of the nonhomogeneous equation (3,14) is therefore of the

form

[
k

eikθV hH (r, z) + V
p
H (r, z) . (3.17)

In 2D setting, we also have similar interface conditions for Poisson’s problem

(3.10), namely,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
" (r, z)∇V pH (r, z) · n|Γ− = " (r, z)∇V pH (r, z) · n|Γ+ ,

VH (r, z)|Γ− = VH(r, z)|Γ+ .

(3.18)

Similarly, the boundary conditions for (3.10) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂V pH(r,z)

∂r

����
W
= 0,

V pH (r, z) = 0, on S, E, N.

(3.19)

By imposing these boundary conditions to the general solution (3.17), we deduce

that the particular solution V pH (r, z) is in fact a general solution of (3.14) and thus

of (3.11), i.e., V hH (r, z) = 0.

Note that for atomic systems the far side boundary condition of the Hartree

potential is usually taken the values obtained by using efficient multipole expan-

sion techniques [33]. For our model problem, the size of the domain is 180× 180

nm2 which in comparison with that of atomic systems is quite large and hence
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the zero boundary condition for the potential on the far side of the boundary is

numerically feasible, see Chapter. 4 below for numerical evidence on the choice

of the size.

We then use the standard finite difference method to approximate our model

problem. Since the mass in (2.3) and the Landé factor of (2.12) are energy depen-

dent, the KS equation (3.4) and its interface and boundary conditions (3.8) and

(3.9) will result in a system of cubic eigenvalue equations

�
A0 + λA1 + λ2A2 + λ3A3

�
x = 0, (3.20)

where the unknown eigenpair (λ,x) is an approximate solution of (εq,φq) for some

q. Starting from the Schrödinger equation, finite difference discretization, to the

coefficient matrices A0, A1, A2, and A3, a detailed derivation of a similar cubic

eigenvalue system is given in Appendix (or[24]). Several Jacobi-Davidson methods

are proposed and compared in [25] for solving this type of eigenvalue problems.

Analogously, the Poisson equation (3.15) with its interface and boundary con-

ditions (3.18) and (3.19) leads to a system of algebraic equations

Ax = b, (3.21)

where now the unknown vector x corresponds to the approximate values of VH (r, z)

at the grid points.

We briefly describe our algorithm for the implementation of the model system
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in CSDFT as follows:

Algorithm 1. A self-consistent method for the current spin density functional

theory.

(1) Set VH = 0, Vxc = 0, and solve (3.20) for φ(0)q (r, z) with σ =↑ and then

with σ =↓ by using the cubic Jacobi-Davidson method. Set k = 0. When

B = 0, the first three lowest energies correspond to n = 1 and l = 0, 1, 2.

We therefore must solve (3.20) six times. At each time, we only seek for the

smallest eigenpair. As for B = 15, the first three lowest energies correspond

to n = 1, 2, 3 and l = 0. We thus solve (3.20) two times. At each time, we

then seek for the three smallest eigenpairs.

(2) Evaluate the electron densities n↑(r), n↓(r), n(r), and the electron energies

E(k)q . If the energies converge within an error tolerance then stop. Otherwise,

set k = k + 1.

(3) Solve (3.21) for the Hartree potential VH by using GMRES [34].

(4) Evaluate Vxc via (2.13) and then solve (3.20) for the next iterate φ
(k)
q (r, z).

Go to (2).

There are several numerical issues deserved to be elaborated due to the special

formulation of the present model when compared with the existing models of

multielectronic systems of QDs. The most prominent feature of the present model

is the nonparabolic dispersion relation used to define the effective mass (2.3), the
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Landé factor (2.12), and the interface condition (3.8). As a result, the set of

eigenvalues that interests us is embedded in the interior of the spectrum of the

eigenvalue problem (3.20) which is a nonsymmetric system. Moreover, with some

feasible magnetic fields, we expect to have degenerate eigenstates due to the two

identical smaller dots, i.e., the eigenvalue system is defective. Instead of using

deflation scheme in the JD solver [25], we extend the generalized Davidson method

of Crouzeix, Philippe, and Sadkane [35] to our cubic JD method that allows us

to compute several eigenpairs simultaneously and to have a block implementation

of Krylov subspaces and search direction transformation. Our JD algorithm is

summarized as follows:

Algorithm 2. A cubic Jacobi-Davidson method.

(1) Choose an arbitrary orthonormal matrix V := [v1,...,vn] and let K be a given

integer that limits the dimension of the basis of the subspace. Here n can

be taken as 3 for six electrons with spin-up and spin-down.

(2) Compute Wk = AkV and Mk = V
∗Wk, for k = 0, 1, 2, 3, where the matrices

Ak are given in (3.20).

(3) For j = n, ...,K, do

(3a) Compute the eigenpairs of (θ3M3+ θ2M2+ θM1+M0)φ = 0 by solving

the generalized linear eigenvalue problem
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0

0 0 I

M0 M1 M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

θs

θ2s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

I

−M3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

θs

θ2s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
using the QZ algorithm [36].

(3b) Select the desired eigenpairs (θi,φi) with nφin2 = 1, for i = 1, ..., n.

(3c) For i = 1, ..., n, compute the Ritz vectors ui = V φi, the residuals

ri = A(θi)ui, and pi = A
�
(θi)ui, where A(θi) := A0+θiA1+θ2iA2+θ3iA3

and A
�
(θi) := A1 + 2θiA2 + 3θ

2
iA3.

(3d) If nrin2 < Tol, for i = 1, ..., n, then stop.

(3e) If K − j < n, then go to Step (4).

(3f) For i = 1, ..., n, do

• If nrin2 < Tol, then go to Step (3f).

• Compute the correction t = −M−1
A ri + εM−1

A , where ε =
u∗iM

−1
A ri

u∗iM
−1
A pi

and MA is a preconditioner (by SSOR) of A(θi).

• Orthonormalize t against V by the modified Gram-Schmidt (MGS)

method.

• For k = 0, 1, 2, 3, compute wk = Akt, Mk =

⎡⎢⎢⎢⎣ Mk V ∗wk

t∗Wk v∗wk

⎤⎥⎥⎥⎦.
• Expand V = [V, t] and Wk = [Wk, wk], for k = 0, 1, 2, 3.

• Set j = j + 1.
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(4) Use n Ritz vectors u1, ..., un to create a new V := MGS(u1, ..., un) and go

to Step (2) for restarting.

Note that the classical approach for dealing with the nonlinear matrix equation

(3.20) is to transform the equation into a generalized linear eigenvalue system

with the matrix dimension of 3 times that of (3.20) and then solve the system by

the Lanczos or Arnoldi method. The matrix dimension of (3.20) for the present

QDM model is about 290000. The JD method described here instead solves the

generalized linear eigenvalue system in Step (3a) in a much smaller subspace

V . The matrix dimension of the matrices Mi, i = 0, 1, 2, 3, is about 50 in our

numerical implementation. The matrix dimension of the linearized system in Step

(3a) is thus about 150. The KS Hamiltonian (2.10) is based on the nonparabolic

band structure approximation. If the Hamiltonian is based on the Kane’s original

form, the resulting eigenvalue problem will then be of linear form but with the

matrix dimension of 4 times that of (3.20). The nonparabolic approximation thus

reduces computational efforts significantly at the cost of more delicate nonlinear

eigenvalue systems.
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Chapter 4

Numerical Results

For the proposed model, we first determine the size of the domain in Fig. 1.1 by

inspecting the rate of change of the first three energy levels with respect to rmax =

zmax. As shown in Fig. 4.1, the change of these energies around rmax = 180nm

and beyond is relatively small. The following numerical results are thus based on

the domain with rmax = 180nm.

We next present the important effect of the band nonparabolicity. In Table

2, we observe that the energy differences between the parabolic and nonparabolic

dispersion relations used in the Hamiltonian for zero magnetic field can be very

significant since the magnitudes are comparable with that of the correlation ener-

gies as shown in Table 3. For the parabolic dispersion case, the effective mass in

(2.2) is taken as m = 0.024m0. In Tables 3 and 4, all energy components in (3.5)

are separately presented to indicate the magnitudes of the energies from various

effects. Here, the total ground-state energy E obtained via the KS eigenvalues εq

is defined by [16]
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E =
N[
q

Eq =
N[
q

εq − 1
2

e2

4π"0"(r)

] ] n(r)n(r�)
|r− r�| dr

�dr

−[
σ

]
V σ
xc(r)n

σ(r)dr−e
c

]
jp ·Axcdr+Exc(n).

Table 2. Energies for the nonparabolic and parabolic

approximation at B = 0 in units of eV .

q = {nlσ} nonparabolic parabolic

{1, 0,+1} 0.094673 0.086873

{1, 1,+1} 0.102689 0.095749

{1, 2,+1} 0.112039 0.106298

Table 3. Energies at B = 0 in units of eV .

q {1, 0,+1} {1, 1,+1} {1, 2,+1}

Eq 0.094673 0.102689 0.112039

kTSl 0.067484 0.075638 0.084511

kTBl 0 0 0

kVextl 0.019227 0.020536 0.022024

EB 0 0 0

1
2
kVHl 0.015120 0.013653 0.012280

Ex −0.006772 −0.006753 −0.006398

Ec −0.000386 −0.000385 −0.000378
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Table 4. Energies at B = 15 in units of eV .

E∗q are energies based on the single-particle Hamiltonian.

q {1, 0,+1} {2, 0,+1} {3, 0,+1} {1, 0,−1} {2, 0,−1} {3, 0,−1}

E∗q 0.103250 0.134668 0.134668 0.114840 0.146072 0.146072

Eq 0.113092 0.146387 0.147649 0.120784 0.153012 0.154220

kTSl 0.078144 0.114168 0.113827 0.077302 0.113209 0.112880

kTBl 0.008975 0.002510 0.002499 0.008889 0.002484 0.002473

kVextl 0.017801 0.021184 0.021067 0.017713 0.021108 0.020994

EB −0.004436 −0.003913 −0.003877 0.004325 0.003832 0.003798

1
2
kVHl 0.021932 0.026358 0.028058 0.021925 0.026359 0.028059

Ex −0.008884 −0.013414 −0.013418 −0.008877 −0.013419 −0.013422

Ec −0.000441 −0.000506 −0.000506 −0.000493 −0.000562 −0.000562

As stated above, our main concern for the present QDM model is to show

the state change of the electrons under the influence of magnetic fields. The wave

functions of the six electrons originally occupying the lowest 3 energy states with

B = 0 as given in Table 3 are shown in the left panel of Fig. 4.2, which clearly

illustrates that the electrons are residing in the central dot. For B = 15, we see

that, corresponding to the lowest 6 energy states as given in Table 4, each one of

these three dots contains two electrons for which their wave functions are shown

in the right panel of Fig. 4.2. Note that three dimensional wave functions can be

easily illustrated from these two dimensional wave functions via the formula (3.1).

24



Accuracy of the exchange energies can be verified by the ratio between the

absolute values of 1
2
kVHl and Ex, which is about 2 for two-electron atoms [37].

It has been theoretically shown in [38] that this ratio is exactly equal to 2 for a

two-electron model for which the xc energy and xc potential can be determined

exactly in an external harmonic potential. From Tables 3 and 4, the ratio is

approximately 2.

Finally, we remark that the essential physics of this study, namely the state

change of electrons in QDM under the influence of magnetic field as such indicated

by Fig. 4.2, can also be simulated by means of a much simpler model, e.g., the

single-particle Hamiltonian with parabolic band structure (i.e., constant effective

mass approximation). However, the numerics of the computed energies can be

quite different from that of the present model as shown by the numbers in the

second and third rows in Table 4. Moreover, we may obtain degenerate states

such as {2, 0,+1} and {3, 0,+1} under the single-particle picture, which obviously

is incorrect. In addition to the effect of the model in use, the state change is

significantly governed by the QDM dimensions as given in Fig. 1.1 so that we can

attain the electronic behavior as shown in Fig. 4.2. These dimensions are also

experimentally feasible [9].
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Figure 4.1: The effect of the domain size on the first three energies at B = 0.
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Figure 4.2: Contour of KS orbitals at B=0 (left panel) and B=15 (right panel).
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Chapter 5

Concluding Remarks

A new mathematical model that incorporates the nonparabolic energy dispersion

relation and realistic hard-wall finite confinement potential into the many-body

Hamiltonian in the current spin density functional theory in 3D setting is pro-

posed. It is used to study the electronic properties of a quantum dot molecule

that consists of three vertically aligned semiconductor quantum dots (one large

central dot and two smaller identical dots) under the influence of magnetic fields.

A new Jacobi-Davidson method is given to solve the cubic eigenvalue problem

resulting from finite difference approximation due to the nonparabolic nature of

the effective mass. It is shown that the effect of band nonparabolicity can be very

significant in the sense that the energy difference between the parabolic and non-

parabolic cases is comparable with that of correlation energies in multielectronic

system. Furthermore, we show that six electrons residing in the large central dot

at zero magnetic field can be changed to such that each dot contains two electrons

with some feasible magnetic field.

This thesis is intended to describe mathematical aspects of the model and to

present preliminary physical results only on the Kohn-Sham orbitals and detailed
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energy components with two different magnetic fields. Following this more realistic

and accurate model, there are many interesting physical phenomena such as capac-

itance, optical and transport properties, Wigner crystallization, Aharonov-Bohm

oscillation, and quantum Hall effect can be further investigated for semiconduc-

tor nanostructures in three dimensional space. In particular, with an additional

electric control, we expect to have an energy selective mechanism to manipulating

excitonic states of two closely spaced QDMs so that a strong coherent dipole-

dipole coupling can be achieved and hence the Förster-Dexter resonant energy

transfer between QDMs can be realized to motivate a new paradigm of Fermionic

qubits for quantum computing in solid-state systems.
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Part II

A Numerical Method for Exact

Diagonalization of Semiconductor

Quantum Dot Model
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Chapter 6

Introduction

Exact diagonalization of many-body Hamiltonian is the most accurate and expen-

sive method to study the electron dynamics and correlation in a semiconductor

QD [44] [46] [47] [50] [51] [53] [28] [62]. Efficient methods such as the Hartree-Fock

method and density functional approach are known to give substantial errors in

energy, many-body wave function, spin-polarized states, and exchange-correlation

potentials etc. [38] [46] [47] [50] [52].

Most of the theoretical models for QDs are based on 2D electron gas systems

with parabolic infinite confinement potential, which are justifiable for calculat-

ing single-particle states, addition energy spectra, and many qualitatively new

features of QDs. In fact, 2D models have turned out to be surprisingly rich and

difficult [28]. However, the Coulomb interaction between electrons in QDs is three

dimensional by nature and is the most important effect of many-body dynamics

in QDs. It has been shown in [43] [54] that 2D models often lead to an inadequate

description of the Coulomb interaction as a consequence of the overestimated car-

rier localization. The 3D models are found to reproduce the experimental data

for a large class of QD structures where simplified 2D models may fail [41] [45]
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[48] [54].

There is another issue concerning the accuracy of QD models, namely, the

effective-mass approximation (EMA) which allows us to model the conduction

electrons in a QD as a decoupled interacting system with one-band effective mass

from their environment that consists of millions of atoms in crystalline structure.

This assumption makes numerous theoretical investigations possible within toler-

able computing resources. Most of the existing models are based on the parabolic

EMA. In [45], the QD model with nonparabolic EMA is shown to describe quan-

titatively the capacitance-voltage and far-infrared measurement data. The model

does estimate correctly the change in the effective mass due to the nonparabolic

effect. Moreover, it is shown in [49] that the effect of band nonparabolicity can be

very significant in the sense that the energy difference between the parabolic and

nonparabolic cases is comparable with that of exchange energies in multielectronic

system.

In addition to the computational complexity compounded greatly by the three

dimensionality and the exact diagonalization, the nonparabolicity leads to nonlin-

ear (cubic) eigenvalue problems with interior eigenvalues which are much harder

to solve than that of linear eigenvalue problems [40] [25] [22] [56] [59] [24]. In

this paper, we propose a numerical algorithm for exact diagonalization of the

many-electron Hamiltonian of a disk-shaped 3D InAs/GaAs QD model with non-

parabolic EMA. The algorithm consists of the advanced cubic Jacobi-Davidson
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method developed in [25] [49], GMRES, a model reduction technique for both

Schrödinger and Poisson equations, and a new numerical approach to the exact

diagonalization.

The computation of all pair-wise Coulomb interactions is one of the limiting

factors in ab initio electronic structure calculations [57]. Our model reduction

technique is a consequence of cylindrical symmetry of the model. This technique

allows us to calculate the Coulomb matrix elements within tolerable accuracy and

computing times. The reduction technique is not meant for general purposes but

for a test of our idea on the numerical exact diagonalization.

Since the states of a QD are localized in space, the plan-wave approach for 2D

electron gas systems would require a very large number of Fourier components to

define a localized state [43]. Another approach that has been developed to reduce

the number of basis states is to construct the single-particle basis functions that

are separable into an in-plane (parallel to the radial axis) and a perpendicular

part. The Fock-Darwin states (associated with Laguerre polynomials) are a good

choice for in-plane states because they are the eigenstates of parabolically confined

electrons [42] [43] [53] [58]. The perpendicular, or subband, functions are deter-

mined numerically by solving a 1D Hartree-Fock equation. The many-electron

system is then solved by minimizing the total energy of all conduction electrons

in the system in a function space spanned by a basis of multi-electron functions

which are constructed as a direct antisymmetrized product of single-particle basis
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functions. To achieve a convergence for a few-electron system, the size of the

single-particle basis functions must be of the order of a million [53].

These approaches are not suitable for the model considered in this paper due

to the hard-wall confinement potential and the nonparabolic EMA. We present

here a fully numerical approach for the exact diagonalization of many-electron

Hamiltonian. In our approach, the basis set of single-particle functions is ob-

tained by solving the cubic eigenvalue problem resulting from a finite difference

approximation of the single-electron QD model. The eigenvalue problem is solved

by the block cubic Jacobi-Davidson method proposed in [49]. Since the single-

particle spectrum depends on the hard-wall confinement potential which is finite,

the size of the basis set will have an upper limit. The use of single-particle basis

will thus reduce the computational cost without losing accuracy on the ground

state energy of the whole system. Compared with other approaches, the trade-off

of our approach is the solution of the cubic eigenvalue problem with the size of

tens of thousands.

We briefly summarize the main results of our approach as follows. For a

4-electron QD with the hard-wall confinement potential taken as V0 = 0.77 eV

(electron volts), we only need 12 ∼ 16 single-particle states to obtain a convergent

ground state energy within meV (milli-electron volts) accuracy. The computa-

tional complexity of calculating all pair-wise Coulomb interactions is CNs2 + Ns

where CNs2 is the binomial coefficient of Ns (the number of single-particle states)
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and 2, i.e., we need to solve the Poisson equation CNs2 +Ns times for this particular

system.

The single-electron nonparabolic EMA model is given in the following chapter.

Numerical methods for this model are briefly described in Chapter 8. We refer to

[25] [24] for more mathematical details on the discretization of the model and the

solution of the cubic eigenvalue problem. In Chapter 9, we introduce our exact

diagonalization approach to the many-electron system. The special point to note

is the construction of the basis set of multi-electron wave functions based on the

single-electron functions. A simple example is given to illustrate the function sapce

definition. In Chapter 10, we present the model reduction technique and numerical

methods for calculating Coulomb matrix elements. An overall algorithm for the

solution procedure of the many-electron system is summarized in this chapter

as well. Numerical results are presented in Chapter 11. Finally, we make some

concluding remarks in the last chapter.
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Chapter 7

Single-Electron Model

Let the spatial domain of the QD model considered herein be a disk-shaped Ω =

ΩInAs ∪ ΩGaAs ⊂ R3 as shown by a cross section of Ω in Fig. 7.1 where the

InAs QD is embedded in the GaAs matrix whose dimensions are commensurable

with that of [9] in which a transmission electron micrograph of a QD sample is

illustrated. Within the nonparabolic EMA, the Hamiltonian for an electron in the

QD is given by

H0 (r) =
−h2
2
∇r

#
1

m(r,ε)

$
∇r + Vc(r) (7.1)

Vc(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, in ΩInAs

V0, in ΩGaAs

(7.2)

1

m(r,ε)
=

p2

h2

%
2

ε+Eg(r)−Vc(r) +
1

ε+Eg(r)−Vc(r) +∆(r)

&
(7.3)

where ∇r stands for the spatial gradient, ε is the electron (unknown) energy, h is

the reduced Planck constant, Eg(r) is the energy-band gap, ∆(r) is the spin-orbit

splitting in the valence band, p is the momentum matrix element, and m0 is the

free electron mass. Note particularly that the nonparabolic effective mass m(r,ε)
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Figure 7.1: A cross section of a disk-shaped InAs quantum dot embedded in the

GaAs matrix in real space dimensions in nano meters that are used in numerical

implementation.

depends on both position and electron energy and that the hard-wall confinement

potential Vc is induced by a discontinuity of conduction-band edges of InAs and

GaAs. All numerical values of the parameters used in this paper are listed in

Table 1 which also includes the corresponding units and cited references.
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Chapter 8

Numerical Methods for Single

Electron Wave Functions

To obtain the states of the many-body system, we begin by solving the single

particle problem

H0Φ = εΦ. (8.1)

Due to cylindrical symmetry, the envelope wave functions Φ (r) of this problem

can be expressed as

Φq (r) = e
−ilθφq (r, z) , q ≡ {nl} , (8.2)

where n is the principal quantum number, and l = 0,±1,±2, · · · is the quantum

number of the projection of angular momentum onto the z-axis. Eq. (8.1) can

then be reduced to a 2D problem in the (r, z) coordinates as

H0φq (r, z) = εqφq (r, z) , (8.3)

where the Hamiltonian H0 is now defined by
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H0 = − h2

2m(r, z, εq)

#
∂2

∂r2
+
1

r

∂

∂r
− l

2

r2
+

∂2

∂z2

$
+ Vc (r, z) (8.4)

In 2D setting, the solution domain for (8.3) is again expressed by the same

notation as that of 3D, that is, Ω = ΩInAs ∩ ΩGaAs ⊂ R2. We choose the do-

main ΩGaAs sufficiently large so that the wave function is negligibly small at

the boundary of ΩGaAs. By symmetry, the domain Ω can be reduced to Ω =

{(r, z) : 0 ≤ r ≤ rmax, 0 ≤ z ≤ zmax} for sufficiently large rmax > 0 and zmax > 0

as shown in Fig. 7.1.

Since we are dealing with the hard-wall confinement potential, the interface

conditions of the wave function in (8.3) has to be specifically imposed, namely,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

m(r,z,εq)
∇φq(r, z) · n

���
Γ−
= 1

m(r,z,εq)
∇φq(r, z) · n

���
Γ+
,

φq(r, z)|Γ− = φq(r, z)|Γ+ ,

(8.5)

where Γ denotes the interface between two materials, i.e., Γ = ΩInAs∩ΩGaAs, n is

an outward normal unit vector on the boundary of ΩInAs, and Γ− and Γ+are the

sets of limiting points to the curve Γ from the interior and the exterior of ΩInAs,

respectively. The momentum operator ∇ is similarly defined for the 2D case. The

boundary conditions for (8.4) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂φq(r,z)

∂r

���
W
= 0,

φq(r, z) = 0, on S, E, N,

(8.6)

whereW , S, E, and N denotes the west, south, east, and north side boundaries of
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the domain Ω. Note that on the west side of the boundary the values of the wave

function are taken to be the same for satisfying the continuity condition across

W . In actual implementation this condition is replaced by taking the values of

the two horizontal grid points adjacent to W as the same. Moreover, to avoid

numerical over-flow due to the term 1/r in (8.4), we do not define unknowns at

the grid points on W .

We then use the standard finite difference method to approximate the model

problem. Since the mass in (7.3) is energy dependent, Eqs. (8.3), (8.5), and (8.6)

result in a system of cubic eigenvalue equations

�
A0 + λA1 + λ2A2 + λ3A3

�
x = 0, (8.7)

where the unknown eigenpair (λ,x) is an approximate solution of (εq,φq) for

some q at grid points. Starting from the Schrödinger equation, finite difference

discretization, to the coefficient matrices A0, A1, A2, and A3, a detailed derivation

of the same cubic eigenvalue system is given in Appendix (or[24]). Several Jacobi-

Davidson methods are proposed and compared in [25] for solving this type of

eigenvalue problems.
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Chapter 9

Many-Electron Model

To describe a system of N electrons in a QD under the influence of the Coulomb

interaction, we write the total Hamiltonian H as a sum of single-particle operators

Hi and two-body operators Vij in the envelope-function approximation as

H =
N[
i=1

Hi +
1

2

[
i�=j
Vij (9.1)

Hi = H0 (ri) (9.2)

Vij = VC (ri, rj) =
e2

4π"0"(ri)

1

|ri − rj| (9.3)

where the single-electron HamiltonianH0 (ri) is defined as (7.1) for the ith electron

and e is the proton charge. For the sake of simplicity in exposition, the mutual

interaction between the electrons in the system is taken to be purely Coulombic.

From single-particle picture to many-particle picture for QDs, we follow the

theoretical framework developed by Pietiläinen and Chakraborty in [53]. The

approximate eigen-pairs (εq,φq) form a single-particle basis set

B = {|Φql = |ql : q = 1, 2, · · · , Ns} . (9.4)
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From this set, a basis BN for N interacting electrons in a QD can be constructed

as a direct antisymmetrized product of B of the form

BN = A
NR
j=1

B = {|Qil : i = 1, 2, · · · , Nm} , (9.5)

where Ns is the total number of computed single-particle states, A denotes the

antisymmetrization operator, and Nm = CNsN . More specificly, the many-body

basis functions |Qil are Slater determinants defined as

|Qil = A [|qi1l ⊗ |qi2l · · ·⊗ |qiN l]

=
1√
N !

�������������������

Φqi1 (r1) Φqi2 (r1) · · · ΦqiN (r1)

Φqi1 (r2) Φqi2 (r2) · · · ΦqiN (r2)

...
...

...
...

Φqi1 (rN) Φqi2 (rN) · · · ΦqiN (rN)

�������������������

. (9.6)

The states of the interacting system are then expressed by the superposition

of the non-interacting states (9.5) as

|Ψl =
Nm[
i=1

ci |Qil , (9.7)

where the unknown coefficients ci are sought by minimizing the energy functional

kΨ |H|Ψl (9.8)

with respect to ci subject to the normalization condition
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kΨ|Ψl = 1. (9.9)

An Example

We now illustrate the above formalism by considering a simple case as follows:

N = 2, Ns = 3 (9.10)

B = {|Φql : q = 1, 2, 3} (9.11)

Nm = C32 =
3!

2!1!
= 3 (9.12)

B2 = A
2R
q=1

B = {|Qil : i = 1, 2, · · · , Nm} (9.13)

|Q1l = |q1; q2l =
1√
2

���������
Φ1 (r1) Φ2 (r1)

Φ1 (r2) Φ2 (r2)

��������� (9.14)

|Q2l = |q1; q3l =
1√
2

���������
Φ1 (r1) Φ3 (r1)

Φ1 (r2) Φ3 (r2)

��������� (9.15)

|Q3l = |q2; q3l =
1√
2

���������
Φ2 (r1) Φ3 (r1)

Φ2 (r2) Φ3 (r2)

��������� (9.16)

|Ψl =
3[
j=1

cj |Qjl (9.17)

kΨ |H|Ψl =
]]
dr1dr2

#
3[
i=1

cj |Qjl∗
$
H

#
3[
i=1

cj |Qjl
$

(9.18)

kΨ|Ψl =
]]
dr1dr2 |Ψ (r1, r2)|2 = 1 (9.19)
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Using the method of Lagrange multipliers, the minimization of (9.8) subject to

(9.9) leads to

∂

∂ci
{kΨ |H|Ψl − λ kΨ|Ψl} = 0, i = 1, 2, 3, (9.20)

∂

∂ci
kΨ |H|Ψl =

]]
dr1dr2 |Qil∗H

⎛⎝ 3[
j=1

cj |Qjl
⎞⎠

+
]]
dr1dr2

⎛⎝ 3[
j=1

cj |Qjl∗
⎞⎠H |Qil (9.21)

∂

∂ci
λ kΨ|Ψl = 2λ

3[
j=1

cj

]]
dr1dr2 |Qil∗ |Qjl (9.22)

Hij = kQi |H|Qjl =
�
Qi

����H1 +H2 + 12V12
����Qj (9.23)

kQ2 |H1|Q3l =
]]
dr1dr2Q

∗
2H1Q3 (9.24)

=
1

2

]]
dr1dr2 [Φ

∗
1 (r1)Φ

∗
3 (r2)− Φ∗1 (r2)Φ

∗
3 (r1)]H1

[Φ2 (r1)Φ3 (r2)− Φ2 (r2)Φ3 (r1)] (9.25)

=
1

2

]]
dr1dr2 [Φ

∗
1 (r1)Φ

∗
3 (r2)− Φ∗1 (r2)Φ

∗
3 (r1)]

[Φ3 (r2)H1Φ2 (r1)− Φ2 (r2)H1Φ3 (r1)] (9.26)

kQ2 |H2|Q3l =
1

2

]]
dr1dr2 [Φ

∗
1 (r1)Φ

∗
3 (r2)− Φ∗1 (r2)Φ

∗
3 (r1)]

[Φ2 (r1)H2Φ3 (r2)− Φ3 (r1)H2Φ2 (r2)] (9.27)
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�
Q2

����12V12
����Q3 =

1

4

]]
dr1dr2 [Φ

∗
1 (r1)Φ

∗
3 (r2)− Φ∗1 (r2)Φ

∗
3 (r1)]

e2

4π"0"(r1)

1

|r1 − r2| [Φ2 (r1)Φ3 (r2)− Φ2 (r2)Φ3 (r1)] (9.28)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

c2

c3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.29)

Therefore, the total energy of N electrons in the QD can be obtained by

diagonalizing the linear eigenvalue problem

Nm[
j=1

(Hij − λδij) cj = 0, (9.30)

where the eigenvectors c = [c1 c2 · · · cNm ]T are the desired expansion coefficients

and the eigenvalues λ the corresponding energies of the interacting system.

The finite confinement potential leads to a finite number of localized states as

well as to energetically higher delocalized states. When the influence of the delo-

calized states on the discrete QD spectrum is neglected, the eigenvalue problem

(9.30) has a finite dimension and can be solved without further approximations.

The most computationally expensive part is the calculation of the Coulomb ma-

trix elements (9.28) whereas the other parts (9.26) and (9.27) can be directly

calculated from (8.7) or equivalently from (8.3).

Obviously, the computational complexity is essentially determined byNs which

in turn is limited by the confinement potential strength V0 in (7.2). This is the
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main difference between our approach and the others such as those in [43] [42]

[53] [58] where the size of the single-particle basis (analytical) functions must be

of the order of a million owing to the approximation by means of either the 2D

electron gas modeling or the subband structure. We also note that the choice of

analytical functions, e.g. Laguerre polynomials, for the single-particle basis is not

feasible for our model because of the finite and local nature of the confinement

potential V0 and the nonlinear dependence of the effective mass m(r,ε) on both

position and electron energy. In fact, the evaluation of Coulomb matrix elements

by using Laguerre polynomials is numerically highly unstable owing to large terms

of alternating sign in the polynomail [53].

Our approach is convergent, stable, and robust (see below). However, the

trade-off of our approach is the solution of the cubic eigenvalue problem (8.7)

with the size of tens of thousands.
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Chapter 10

Numerical Methods for Coulomb

Matrix Elements

Since the basis states |Qil have been constructed by diagonalizing H0, we are left

to compute the Coulomb matrix elements defined by the two-body operator VC

of (9.3) as

k12|VC|34l =
]]
dr�drΦ∗1(r)Φ

∗
2(r

�
)

e2

4π"0"(r)

1

|r− r�|Φ3(r)Φ4(r
�
) (10.1)

=
]]
dr�dreil1θφ1 (r, z) e−il3θφ3 (r, z)

e2

4π"0"(r)

1

|r− r�|
eil2θ

�
φ2
�
r
�
, z
��
e−il4θ

�
φ4
�
r
�
, z
��
, (10.2)

for any arbitrary states Φi(r), i = 1, 2, 3, 4, representing four-center two-electron

repulsion integrals. For real space approximation, we define a potential-like func-

tion V24(r) as

V24(r) =
e2

4π"0"(r)

] eil24θ
�
φ24

�
r
�
, z
��

|r− r�| dr� (10.3)
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where l24 = l2 − l4 and φ24
�
r
�
, z
��
= φ2

�
r
�
, z
��
φ4
�
r
�
, z
��
. This function can then

be cast into a Poisson equation

∇ · "(r)∇V24(r) = − e2

4π"0
eil24θφ24 (r, z) . (10.4)

By cylindrical symmetry, this equation can be written as

#
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2
+

∂2

∂z2

$
V24 (r, θ, z) = e

il24θf(r, z), (10.5)

f(r, z) = − e2

4π"0"i
φ24 (r, z) , for i = 1 or 2, (10.6)

where "1 = "InAs if (r, z) ∈ ΩInAs and "2 = "GaAs if (r, z) ∈ ΩGaAs. By using the

method of separating variables and substituting a solution of the form

V24 (r, θ, z) = V24 (r, z)V24(θ) (10.7)

into (10.5), we have

e−il24θV24(θ)

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

$
V24 (r, z)

+e−il24θV24 (r, z)
1

r2
∂2V24(θ)

∂θ2
= f(r, z)

or

e−il24θV24(θ)r
2

V24 (r, z)

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2

$
V24 (r, z)
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+e−il24θ
∂2V24(θ)

∂θ2
=

r2

V24 (r, z)
f(r, z). (10.8)

Obviously, the function V p24(θ) = e
il24θ is a particular solution of (10.8) if we

view (10.8) as a second order nonhomogeneous ordinary differential equation with

respect to θ provided that there exists a function V p24 (r, z) satisfing the 2D Poisson

equation

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
− l

2
24

r2

$
V p24 (r, z) = f(r, z). (10.9)

This implies that V p24 (r, θ, z) = V
p
24 (r, z)V

p
24(θ) is a particular solution of (10.5).

The general solution of the corresponding homogeneous equation is thus eikθV h24 (r, z)

such that V h24 (r, z) satisfies the Laplace equation

#
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
− k

2

r2

$
V h24 (r, z) = 0 (10.10)

for any integer k. The general solution of the nonhomogeneous equation (10.8)

(or (10.5)) is therefore of the form

[
k

eikθV h24 (r, z) + V
p
24 (r, z) . (10.11)

In 2D setting, we also have interface conditions for Poisson’s problem, namely,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
" (r, z)∇V p24 (r, z) · n|Γ− = " (r, z)∇V p24 (r, z) · n|Γ+ ,

V24 (r, z)|Γ− = V24(r, z)|Γ+ .

(10.12)
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Similarly, the boundary conditions for (10.4) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂V p24(r,z)

∂r

���
W
= 0,

V p24 (r, z) = 0, on S, E, N.

(10.13)

By imposing these boundary conditions to the general solution (10.11), we deduce

that the particular solution V p24 (r, z) is in fact a general solution of (10.8) and

thus of (10.5), i.e., V h24 (r, z) = 0. This implies that V24 (r, θ, z) = e
il24θV p24 (r, z) is

a general solution of (10.4).

Consequently, we have

k12|Vc|34l =
]
Φ∗1(r)Φ3(r)e

il24θV p24 (r, z) dr (10.14)

=
] 2π

0
ei(l13−l42)θdθ

] ]
φ13 (r, z)V

p
24 (r, z) rdrdz (10.15)

= 2πδl13l42

] ]
φ13 (r, z)V

p
24 (r, z) rdrdz (10.16)

where the computation of the 3D Coulomb matrix element (10.1) is reduced to

solving the 2D problem (10.9).

Again the finite difference method is used for solving the Poisson problem

(10.9), (10.12), and (10.13). This leads to a system of algebraic equations

Ax = b, (10.17)

where now the unknown vector x corresponds to the approximate values of V p24 (r, z)

at the grid points.

50



We summarize the above methods for studying the electronic properties of

few interacting electrons confined in a QD via exact diagonalization as follows.

An Exact Diagonalization Algorithm:

(0) Set the number of electrons N and the number of single-particle states Ns.

The number of many-body basis functions Nm = C
Ns
N .

(1) Solve the single-particle problem (8.1) in discrete form (8.7) for Ns basis

functions by means of the cubic Jacobi-Davidson method for some principal

quantum numbers n and angular momentum quantum numbers l (8.2) which

are determined by Ns.

(2) Use the Ns basis functions to construct Nm Slater determinants (9.6).

(3) Evaluate Coulomb matrix elements (10.16) by solving the Poisson problem

(10.9), (10.12), (10.13) in discrete form (10.17) via GMRES [34].

(4) Solve the eigenvalue problem (9.30) for the lowest eigenvalue (ground state

energy) and the corresponding eigenvector of theN-electron system by using

the QR algorithm [36].
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Chapter 11

Numerical Results

Since Coulomb interaction has a long-range tail, the computational domain must

be sufficiently large. We first determine the size of the domain in Fig. 7.1 by

inspecting the rate of change of the ground state energy with respect to rmax =

zmax for a 2-electron system with Ns = 8. As shown in Fig. 11.1, the change of

the ground state energy around rmax = 100 nm and beyond is relatively small.

The following numerical results are thus based on the domain with rmax = 100

nm. On the (100,100) nm2 domain, we set 151 nonuniform grid points [24] along

each direction for the finite difference approximation.

In order to have a sufficiently large basis set B (9.4), it is necessary to solve

(8.4) with various l from 0 to −4. Some smallest positive real eigenvalues and

their associated eigenvectors of (8.7) are computed for each l. Some of the first

low-lying energy levels of the single-electron system are shown in Table 5. If all

these states are taken to be the basis of B, then Ns = 8.

The ground state energies of 2 and 4 electrons with various basis numbers Ns

are shown in Table 6 and plotted in Fig. 11.2. It is clear that the many-electron

QD can be modeled to a very good precision with the energy down to the order of
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milli-electron volts (meV ) by using just few tens of single-partical basis functions.

The convergence behavior of the ground state energy with respect to the basis

size Ns of our approach is also clearly demonstrated by the figure.

The computational complexity increases quadratically with Ns. For example,

for the case of Ns = 18, we need to solve the Poisson problem, i.e., the linear

system (10.17) C182 +18 = 171 times for Coulomb matrix elements. Nevertheless,

all of our numerical methods for solving the systems (8.7), (9.30), and (10.17) are

stable and convergent.

Table 5. The first 8 energy levels of single-particle system for B (9.4).

q (State) n l E (Enegy in eV)

1 1 0 0.248189

2 1 −1 0.275593

3 1 −2 0.309664

4 2 0 0.321248

5 1 −3 0.348811

6 2 −1 0.371052

7 1 −4 0.391899

8 2 −2 0.424284
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Table 6. Ground state energies of N-electron system

with respect to Ns.

N Ns λ (eV)

2 12 0.530213

2 14 0.530046

2 16 0.529667

2 18 0.529667

4 12 1.192199

4 14 1.185846

4 16 1.184708

4 18 1.182987
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Figure 11.1: The effect of the domain size on the ground state energy of two-

electron system with the basis size Ns = 8.
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Figure 11.2: The ground state energies of two- and four-electron QDs as a function

of the basis size Ns from 8 to 18.
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Chapter 12

Concluding Remarks

We have presented a numerical approach to the exact diagonalization of many-

electron Hamiltonian in semiconductor quantum dots within the nonparabolic

effective mass and realistic 3D confinement potential approximation. The many-

electron wave function is expanded in a basis of Slater determinants constructed

from numerical wave functions of the single-particle Hamiltonian system. The

finite confinement potential implies the boundedness of the single-particle states

and thus the finite dimensionality of the function space of many-electron wave

functions.

It has been shown that we only need about Ns = 18 single-particle states to

obtain a convergent ground state energy of a 4-electron system withinmeV (milli-

electron volts) accuracy. The complexity for calculating all pair-wise Coulomb

interactions is O (N2
s ). All numerical methods used in our algorithm are stable

and convergent. The approach proposed here is whereby robust for more general,

realistic, and accurate models of nanoscale semiconductor heterostructures.

57



Chapter 13

Conclusions

This thesis studies two methods in calculating the electronic energy spectrum of

the many-electron Hamiltonian: the current spin density functional theory and

the exact diagonalization technique. The main characteristics and results of our

models are summarized as follows:

Part I. QDM based on the current spin density functional theory.

(1) We propose a new mathematical model that incorporates the nonparabolic

energy dispersion relation and realistic hard-wall finite confinement poten-

tial into the many-body Hamiltonian in the current spin density functional

theory in 3D setting.

(2) A QDM that consists of three vertically aligned semiconductor quantum dots

(one large central dot and two smaller identical dots) under the influence of

magnetic fields is used in numerical implementation.

(3) Instead of using deflation scheme in the JD solver [25], a new JD method

that allows us to compute several eigenpairs simultaneously and to have a

block implementation of the search subspaces is given to solve the cubic
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eigenvalue problem resulting from finite difference approximation due to the

nonparabolic nature of the effective mass.

(4) From Tables 3 and 4, the accuracy of the exchange energies is verified by the

ratio between the absolute values of 1
2
kVHl and Ex. This ratio, in accordance

with the literature [37] [38], is approximately 2.

(5) In Fig. 4.2, it is shown that six electrons residing in the large central dot

at zero magnetic field can be changed to such that each dot contains two

electrons with some feasible magnetic field. The Förster energy transfer may

therefore be generated by two individual QDMs. This may motivate a new

paradigm of Fermionic qubits for quantum computing in solid-state systems.

Part II. A numerical method for exact diagonalization of semiconductor QD

model.

(1) In this approach, the QD model used is based on realistic 3D finite hard-

wall confinement potential and nonparabolic EMA that render analytical

basis functions such as Laguerre polynomials inaccessible for the numerical

treatment of this kind of models.

(2) The many-electron wave function is expanded in a basis of Slater deter-

minants constructed from numerical wave functions of the single-electron

Hamiltonian with the nonparabolic EMA.

59



(3) The cubic eigenvalue problems resulting from the calculations of single-

electron basis states are solved by using JD method described as above.

(4) As shown in Fig. 11.1, the long-range character of the Coulomb interaction

has a profound influence on the ground state energy. Thus, the finite differ-

ence approximations of the Schrödinger equations and the Poisson equations

are performed on a rather large domain with nonuniform mesh.

(5) From Fig. 11.2, it is evident that a good convergence can be achieved by

means of a few single-electron basis states.
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Appendix

In this appendix, a derivation of the resulting cubic eigenvalue problem (3.20)

(or(8.7)) from the finite difference discretization is briefly sketched. For simplicity,

we only consider the case in which nonlinear terms are neglected, that is

Hφ (r, z) = εφ (r, z) , (A.1)

where the Hamiltonian is defined by

H = TS + TB + Vext + VB, (A.2)

TS (r, z) = − h2

2m(r, z, ε)

#
∂2

∂r2
+
1

r

∂

∂r
− l

2

r2
+

∂2

∂z2

$
, (A.3)

TB (r, z) =
e2B2r2

8m(r, z, ε)
+

heBl

2m(r, z, ε)
, (A.4)

Vext(r, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, in ΩInAs

V0, in ΩGaAs.

, (A.5)

VB(r, z) = σ
1

2
g(r, z,ε)µBB. (A.6)

For convenience, we define some notations as follows
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M1 ≡ Eg(r, z)−Vext(r, z), (A.7)

M2 ≡ Eg(r, z)−Vext(r, z) +∆(r, z). (A.8)

Then, the effective mass and the Landé factor can be rewritten as

1

m(r, z,ε)
=
p2

h2

%
3ε+M1 + 2M2

(ε+M1)× (ε+M2)

&
, (A.9)

g(r, z,ε) = 2

+
[h2 × (ε+M1)× (ε+M2)]− (m0p

2∆(r, z))

h2 × (ε+M1)× (ε+M2)

,
. (A.10)

By using the standard central finite difference method and substituting the ex-

pressions of the effective mass and the Landé factor into (A.1), we have

0 = − p2 (3ε+M1 + 2M2)

2 (ε+M1)× (ε+M2)

%
φi,j+1 − 2φi,j + φi,j−1

(∆r)2
+
1

rj

φi,j+1 − φi,j−1
2∆r

− l
2

r2j
φi,j +

φi+1,j − 2φi,j + φi−1,j
(∆z)2

&

+

+
e2B2r2jp

2 (3ε+M1 + 2M2)

8h2 (ε+M1)× (ε+M2)
+
heBlp2 (3ε+M1 + 2M2)

2h2 (ε+M1)× (ε+M2)
+ Vext(rj, zi)

+σµBB

%
h2 × (ε+M1)× (ε+M2)− (m0p

2∆(rj,zi))

h2 × (ε+M1)× (ε+M2)

&
− ε

,
φi,j. (A.11)

where∆r and∆z are mesh lengths in r and z directions, respectively, and φi,j is an

approximated value of function φ at the grid point (rj, zi) for i = 1, . . . , n, and j =

1, . . . , n. Here, the index n denotes the grid point number. In Part I, all numerical
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results are obtained on the uniform grids, i.e., ∆r = ∆z. But in Part II, due to

the long-range tail of the Coulomb interaction, the large computational domain is

required to achieve acceptable accuracy in calculating the ground state energy so

that we must use the nonuniform grids. Furthermore, different formulations are

instead of the finite difference representations of one- and two-order derivatives.

In this appendix, we just give an example of the uniform finite difference scheme.

Finally, by multiplying the common denominator (ε+M1) × (ε+M2) to

(A.11), we obtain

0 = −p
2 (3ε+M1 + 2M2)

2

%
φi,j+1 − 2φi,j + φi,j−1

(∆r)2
+
1

rj

φi,j+1 − φi,j−1
2∆r

− l
2

r2j
φi,j +

φi+1,j − 2φi,j + φi−1,j
(∆z)2

&

+

+
e2B2r2jp

2 (3ε+M1 + 2M2)

8h2
+
heBlp2 (3ε+M1 + 2M2)

2h2

+Vext(rj, zi)× (ε+M1)× (ε+M2)

+σµBB

%
h2 × (ε+M1)× (ε+M2)− (m0p

2∆(rj,zi))

h2

&

−ε× (ε+M1)× (ε+M2)}φi,j. (A.12)

Note that same manipulation treatments are used in the discretizations of the

interface and the boundary conditions. Thus, the finite difference approach of

(A.1) will result in a cubic eigenvalue problem (3.20) (or(8.7)) .

In order to make the problem clear, we classify the matrix coefficients as

follows:
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Table A1. coefficients of matrix A3

φi−1,j 0

φi,j−1 0

φi,j −1

φi,j+1 0

φi+1,j 0

Table A2. coefficients of matrix A2

φi−1,j 0

φi,j−1 0

φi,j σµBB + Vext(rj, zi)− (M1 +M2)

φi,j+1 0

φi+1,j 0
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Table A3. coefficients of matrix A1

φi−1,j − 3p2

2(∆z)2

φi,j−1 − 3p2

2(∆r)2
+ 3p2

4rj∆r

φi,j
3p2

(∆z)2
+ 3p2

(∆r)2
+ 3l2p2

2(rj)2
+ 3e2B2(rj)

2p2

8h2 + 3eBlp2

2h
+ σµBB(M1 +M2)

+Vext(rj, zi)(M1 +M2)−M1M2

φi,j+1 − 3p2

2(∆r)2
− 3p2

4rj∆r

φi+1,j − 3p2

2(∆z)2

Table A4. coefficients of matrix A0

φi−1,j (M1 + 2M2)×
k
− p2

2(∆z)2

l
φi,j−1 (M1 + 2M2)×

k
− p2

2(∆r)2
+ p2

4rj∆r

l
φi,j (M1 + 2M2)×

k
p2

(∆z)2
+ p2

(∆r)2
+ l2p2

2(rj)2
+ e2B2(rj)

2p2

8h2 + eBlp2

2h

l
+M1M2 × [σµBB + Vext(rj, zi)]− m0p2∆(rj ,zi)σµBB

h2

φi,j+1 (M1 + 2M2)×
k
− p2

2(∆r)2
− p2

4rj∆r

l
φi+1,j (M1 + 2M2)×

k
− p2

2(∆z)2

l
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