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ABSTRACT

This thesis consists of two parts. In the first part, based on the current
spin density functional theory, ‘@ theoretical model of three vertically
aligned semiconductor quantum dots is proposed and numerically studied.
This quantum dot molecule (QDM) model is treated with realistic
hard-wall confinement potential and external magnetic field in
three-dimensional setting. Using the effective-mass approximation with
band nonparabolicity, the many-body Hamiltonian results in a cubic
eigenvalue problem from a finite difference discretization. A
self-consistent algorithm for solving the Schrédinger-Poisson system by

using the Jacobi-Davidson method and GMRES is given to illustrate



the Kohn-Sham orbitals and energies of six electrons in the molecule
with some magnetic fields. It is shown that the six electrons residing
in the central dot at zero magnetic field can be changed to such that
each dot contains two electrons with some feasible magnetic field. The
Forster-Dexter resonant energy transfer may therefore be generated by
two individual QDMs. This may motivate a new paradigm of Fermionic

qubits for quantum computing in solid-state systems.

In the second part, we proposé a new approach to the exact diagonal-
ization of many-electron Hamiltonian in semiconductor quantum dot (QD)
structures. The QD model-is based on- realistic 3D finite hard-wall
confinement potential and nonparabolic effective mass approximation
that render analytical basis functions such as Laguerre polynomials
inaccessible for the numerical treatment of this kind of models. In this
approach, the many-electron wave function is expanded in a basis of
Slater determinants constructed from numerical wave functions of the
single-electron Hamiltonian with the energy and position dependent
electron effective mass approximation and suitable boundary conditions

which result in a cubic eigenvalue problem from a finite difference



discretization. The nonlinear eigenvalue problem is also solved by using
the Jacobi-Davidson method. The Coulomb matrix elements in the
many-electron Hamiltonian are obtained by solving Poisson’s problems
via GMRES. Numerical results reveal that a good convergence can be

achieved by means of a few single-electron basis states.
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the Current=-Spin Density

Functional Theory



Chapter 1

Introduction

There is significant interest in quantum information processing based on Fermi-
onic qubits using semiconducting materials [1-10]. One of the proposals in this
approach is to exploit electronic excitations of coupled quantum dots (QDs) that
form an artificial molecule (QDM) [6] [7] [9] [10]. In particular, an energy selective
scheme to manipulating excitonic states of @DM, together with control over the
Forster-Dexter resonant energy transfer-and biexciton binding energy, can be used
to perform quantum computation and to'produce controlled exciton quantum en-
tanglement [7] [11]. The resonant Forster-Dexter energy transfer mechanism is
also responsible for photosynthetic energy process in antenna complexes, biosys-
tems that harvest sunlight [12]. It has been recently shown that two individual
closely spaced fluorescent molecules undergo a strong coherent dipole-dipole cou-
pling can produce entangled states [13]. We propose and numerically investigate
here a theoretical model of three vertically aligned InAs/GaAs QDM whose di-
mensions are commensurable with that of [9] in which a transmission electron

micrograph of a QDM sample is illustrated.

Our QDM model consists of one large central dot and two smaller dots situated



above and beneath the central dot whose geometrical dimensions are shown in
Fig. 1.1 where the radius, thickness, and separation of each dot are indicated
by coordinates. It has been demonstrated in [11] [14] that there exists Forster
energy transfer from smaller to larger dots via electrostatic coupling. Our goal for
this model system is to investigate the detailed electronic properties of the QDM
with N = 6 electrons under the effects of an external magnetic field by using the

current spin density functional theory (CSDFT) [15] [16].

For the many-body Hamiltonian of our QDM model, we extend the models
used in [17-19], which are based on parabolic one-band effective-mass envelope
function approximation with either infinite or quadratic confinement potentials,
to a more realistic finite confinement. potential with band nonparabolicity that
leads to an energy-dependent; mass in the Hamiltonian for electrons. The non-
parabolicity is derived from a projection from: the eight-band Kane Hamiltonian
into the 2 x 2 conduction space and hence gives more accurate results as shown

in [20-23).

The CSDFT applied to the QDM system with three-dimensionality of the
finite confinement and band nonparabolicity poses a very challenging task for the
numerical implementation. The energy-dependent mass in the Hamiltonian results
in a cubic eigenvalue problem from, e.g., a finite difference discretization. The
Jacobi-Davidson (JD) method developed in [24] [25] is extended and incorporated
into a self-consistent algorithm for solving the Schrodinger-Poisson system that

2



implements the CSDFT in real space. We also give a detailed description of the
computational algorithm, the Poisson solver, and the approximation methods for
the exchange-correlation (xc) energy.

Numerical results on the Kohn-Sham (KS) orbitals and energies of six elec-
trons in the molecule with some magnetic fields are presented in detail. It is
shown that the six electrons residing in the central dot at zero magnetic field
can be changed to such that each dot contains two electrons with some feasible
magnetic field. The Forster energy transfer may therefore be generated by two
individual QDMs. This may motivate a new paradigm of Fermionic qubits for

quantum computing in solid-state systems, which will be reported in a coming

paper.
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Figure 1.1: Three vertically aligned InAs/GaAs quantum dots with cylindrically
symmetric domain in real space dimensions in nano meters that are used in nu-
merical implementation. The domian in 2D setting is denoted by 2 with the

boundary 0f2 consisting of the south (S), east (E), north (N), and west (W) sides.



Chapter 2

The Current Spin Density
Functional Theory for the Model

System

The density functional theory-(DET) introduced in the two seminal papers [26]
[27] is perhaps the most successful approachito compute the electronic structure
of matter ranging from atoms, molécules; to solids. Vignale and Rasolt developed
an extension of DFT that makes it possible to include gauge fields in the energy
functional [15] [16] and has been widely used to describe the electronic structure

of quantum dots in magnetic fields [17] [18] [19] [28].

In CSDFT, the ground state energy of an interacting system with electron
number N and the total spin S in the local external potential V. (r) is a functional
of spin density n?(r), with ¢ =7, | (or £1) denoting spin-up and spin-down,

respectively,



E(n) =T(n)+ [ n(r) [Vem(r)%v,{(r) dr+ Eg(n) + Ewe(n),  (2.1)

where the total density n(r) =n'(r)+n'(r) and the spin densities satisfy the con-
straint [ n?(r)dr =N? with NT = (N +28) /2, and Nt = (N —25) /2 [28]. As-
suming that the ground state of the noninteracting reference system is nondegen-

erate, the noninteracting kinetic energy is expressed as

T(n) = Z <‘I’ja

3o

(ot ler) e

where II = —ihV + eA(r) denotes the electron momentum operator, % is the

reduced Planck constant, e is the proton charge, A(r) = £

(—y, x, 0) is the vec-
tor potential induced by an external magnetic-field B = curl A = BZ applied
perpendicular to the xy plane,;and W zandre;, are Kohn-Sham (KS) orbitals and

eigenvalues to be specified below. The effect of band nonparabolicity leads to the

mass depending on both energy and position, which is defined by [20]

P 2
m(r,ejo) Ch2 €jo + Ey(r)—Veu(r)

. 2.3)

1
ot B) Vo) £ A
where E,(r) and A(r) are energy-band gap and spin-orbit splitting in the valence
band, respectively, and p is the momentum matrix element. These parameters are
material (position) dependent. We denote the spatial domain of the model, i.e.,
Fig. 1.1, as Q = Qa5 U Qgaas C R®, where the three InAs quantum dots are

6



embedded in the GaAs matrix. All numerical values of the parameters used in
this thesis are listed in Table 1, which also includes the corresponding units and

cited references.

Table 1. Numerical values of all parameters used in this thesis.

value unit formula  reference
e 1.60219 x 107 J
B T
I 1.05459 x 1073*  Js
p (InAs)  1.20311 x 102 3mop?/h2  [29]

p (GaAs)  1.25614 x 10;28

mo 9.10956 x 10721 -] kg

E, (InAs) 0.421 eV [29]
E, (GaAs) 1.52 eV [29]
A (InAs) 048 eV [29]
A (GaAs) 0.34 eV [29]
Vo 0.77 % 29]
€0 8.854187 x 1072 F/m

€lnAs 12.2 20]
€CaAs 12.7

KB 9.2741 x 1072*  J/T

¢ 2997925 x 108 m/s



The hard-wall confinement potential V_,; is induced by a discontinuity of

conduction-band edge of the system components and is given as

Oa in ﬁInAs
Veat(r) = (2.4)

VE); in QGaAs-

The Hartree potential is defined as

Vi (r) = 47T€ie(r) / |: = 2f|dr/’ (25)

where ¢y the permittivity of vacuum and €(r) is the dielectric constant of the
background material.

The vector field A(r) adds extra'termsto the energy functional as follows

1
Ep(n) = 59@33/ [nT(r)—nl(r)} dr—i—e/jp(r) - A(r)dr, (2.6)
where g is the Landé factor, up is the Bohr magneton, and

__ih

= 5 [\I/;U(I‘)V\Ifja(r) - \Ijch(r)V\I};U(r)}

3o

Jp(r)
is the paramagnetic current density.

The xc energy E,.(n) is defined as

Eye(n) = E, (n) + E. (n) = / n(r)eze (n, ) dr, (2.7)
where the xc energy per particle €,. depends on the field B. This is a conse-
quence of the fact that the external field changes the internal structure of the
wave function. It formally depends on the vorticity

8



r) = ¥ x Jp(r)
Y(r) =V n() | (2.8)

To minimize the total energy of the system, a functional derivative of E (n) is
taken with respect to W7, under the constraint of the orbitals ¥;, being normal-

ized. The resulting KS equations are

HysVjo = €joVjo (2.9)

with the KS Hamiltonian H% ¢ defined as

o _ 1 o
%g = —1I <2m(r,sja)> '+ Ve (r) +Vp(r)+ Ve (r)+V(r), (2.10)
where
1
Vp(r) = Uag(rﬁja)MBB, (2.11)

o A(r)
m(r.€j0) 3 (€jo + Eg(r)—Ver(r)) + 2A(r) } , (212)

g(rej,) = 2{1—

and o = £1 referring to the orientation of the electron spin along the z axis. The

xc potential

Vi) = - 55y A, (213

where A, is the xc vector potential defined by

9



10 8[n(r)es (n,y)] 9 6[n(r)eze (n,7)]
eA,. = - (8_y 5 T B 5y : 0) : (2.14)

We use the LSDA for calculating the xc energy. In CSDFT, the LSDA has
to be extended to include the orbital currents. Following Vignale and Rasolt [16],

the xc vector potential is approximated as

e —b jch(r)
— ~ V V 2.1
T ng(r) % % ne(r) |’ (2.15)
where
- vkerhixL
b == eis, | 2.1
: 4872 lXOL ] (2.16)

with kr being the Fermi momentum and )XCOL— the diamagnetic-susceptibility ratio.
T
The values of this ratio are tabulated in-{30}:
For the xc energy functional e, in(2:13), we adopt the form developed by

Perdew and Wang [31] as

el (n,¢) = e, (rs, ) +ec (rs,¢) (2.17)

where

Ex (Ts7 C) = -

1/3 4/3 _ \4/3
3 [9_71/ (L+O" + (1= (2.18)

4 2 ’
f(¢ 4
f”((O)) (1 _C )

d7r,

€c(rs:¢) = €c(rs,0) + ac(rs)

10



+lee (rs, 1) = ec (15, 0)] F(O)C, (2.19)

1/3
¢ = (nT(r)—nl(rD /n(r) is the spin polarization, r, = (%) i the Wigner-
Seitz radius, and the functions e, (5, 0), &, (15, 1), and —a,(r,) are given in [31].
Note that the magnetic field dependence on the correlation energy, which might

affect the total energies and spin configurations, is not taken into account in the

present formula.

11



Chapter 3

Numerical Methods and

Algorithms for the Model System

Since the three QDs and the magnetic field are cylindrically symmetric, the wave

function, the spin density, and the paramagnetic current density can be repre-

sented as
\IJq(r) = e*il9¢q (7“, Z) il = {nla} (31)
e 2
n’(r) = n(MEFED. 10 (r2)]", (3.2)
q
1) = 316, (r2) 'S 33)
Jp B m(r, Z,5q) q L > .
where n is the principal quantum number, [ = 0,+1,+£2, ---, is the quantum

number of the projection of angular momentum onto the magnetic field axis, i.e.,
the z-axis and €y is the azimuthal unit vector. The KS equations are then reduced

to a 2D problem in the (r, z) coordinates as

ngs¢q (T7 Z) = 5q¢q (T7 Z) ) (3'4)

12



where the KS Hamiltonian is now defined by

HYy = To+Tp+ Vi + Ve + Vi + Vie (3.5)
h? 9? 10 2 0?
Ts(n2) =~y (a_ e et a_> (3:6)
QBQ 2 B
Te(rz) = oD, hebl (3.7)

8m(r,z,e,)  2m(r,z,e,)

In 2D setting, the solution domain for (3.4) is again expressed by the same
notation as that of 3D, that is, Q@ = Qpus N Qgaas C R2. We choose the
domain Qggus sufficiently large so that the wave function is negligibly small
at the boundary of Qgeas. By symmetry, the domain € can be reduced to
Q=1{(r2):0<7 < Tnu, —ZmaciS 2 < Zmaxpfor sufficiently large 7., > 0 and
Zmax > 0 as shown in Fig. 1.1.

The explicit formula for the potential V(r) in (2.13) is extremely complex in
3D coordinates. Transforming it to the-(1;2) space is prohibitively lengthy and
impractical. We use all the original formulas (2.13)-(2.19) for calculating V,..(r) in
the 3D space and then obtain the potential in the (7, z) coordinates, i.e., V. (7, 2)
for (3.4).

Since we are dealing with the hard-wall confinement potential, the interface

conditions of the wave function in (3.4) has to be specifically imposed, namely,

L Tlg,(r, z) - n‘r— = —L—Tlg,(r,2) - n)r+ :

2m(r,z,eq) 2m(r,z,eq)

(3.8)
¢Q(T= Z)|1“— = qbq(r: Z)|[‘+a

13



where I" denotes the interface between two materials, i.e., I' = Q45 N Qcaas, 0 is
an outward normal unit vector on the boundary of 7,4, and I'" and I'"are the
sets of limiting points to the curve I' from the interior and the exterior of €2, s,
respectively. The momentum operator II is similarly defined for the 2D case. The

boundary conditions for (3.4) are

O¢pq(r,z)

or = O’

W (3.9)
qu(T,Z) :07 on S7 E7 N7

where W, S, E/, and N denotes the west, south, east, and north side boundaries of
the domain Q. Note that on the west side of the boundary the values of the wave
function are taken to be the same, for Satisfying the continuity condition across
W. In actual implementation=this conditionis replaced by taking the values of
the two horizontal grid points adjacent to I/ as the same. Moreover, to avoid
numerical over-flow due to the term 1/r in (3.6), we do not define unknowns at
the grid points on W.

Note that the potential functions V,,.(r) and Vz(r) can be directly reduced to
the (r, z) space since these functions are independent of the azimuthal coordinate.
In real space approximation, the Hartree potential Vy(r) is usually calculated by

solving the Poisson equation [32]

2

V. e(r)VVy(r) =

(o). (3.10)

By cylindrical symmetry, this equation can be written as

14



92 10 1 02 0?
(w + ;a + ﬁ@ + 92 2) VH (T‘ 0 Z) f(T' Z), (311)
f(r,2) 476061 Z |pg (r,2)|7, for i =1 or 2, (3.12)

where €1 = €4, if (1, 2) € Qpuas and €3 = €gaas if (1,2) € Qgaas. By using the

method of separating variables and substituting a solution of the form

Vi (r,0,2z) =Vy (r,z) V(0) (3.13)
into (3.11), we have
2 10 0? 1 02V ()
V(9) (ﬁ +—a— + % 2) Vi (r,z)+ Vi (r,2) = ST f(r,2)

or

orve  r?
002 Vy(r,2)

V(9)r* (52 1o, & fr2).  (3.14)

Vet \ae "o T ) VirmEIs

Obviously, by setting V(#) = k where k is an arbitrary constant, a function
VE (r,z) = EVy (r, z) satisfying the 2D Poisson equation
( 9? 10 0?

W—{— 8_+ P 2) VE(r,z) = f(r,2) (3.15)

is a particular solution of (3.14) in view of a second order nonhomogeneous or-
dinary differential equation with respect to 6. The corresponding homogeneous
general solution is e*V} (r, 2) satisfying the Laplace equation

15



92 10 9% k2
(%JFFEjL@_ﬁ) VHh (r,z) =0. (3.16)

The general solution of the nonhomogeneous equation (3,14) is therefore of the

form

> ROV (1 2) + VI (r, 2) . (3.17)
%

In 2D setting, we also have similar interface conditions for Poisson’s problem

(3.10), namely,

€(r,z) VV (r,z) -nlp- = e(r,z) VVi (1, 2) - n|p

(3.18)
Vi (r, Z)|P— i VH(ra Z)‘F*f :
Similarly, the boundary conditions for (3.10) are
ng(r,z) _ 0
o w (3.19)

VE (r,z) =0, on S, E, N.
By imposing these boundary conditions to the general solution (3.17), we deduce
that the particular solution V} (r, z) is in fact a general solution of (3.14) and thus
of (3.11), i.e., Vi (r,z) = 0.
Note that for atomic systems the far side boundary condition of the Hartree
potential is usually taken the values obtained by using efficient multipole expan-
sion techniques [33]. For our model problem, the size of the domain is 180 x 180

nm? which in comparison with that of atomic systems is quite large and hence

16



the zero boundary condition for the potential on the far side of the boundary is
numerically feasible, see Chapter. 4 below for numerical evidence on the choice
of the size.

We then use the standard finite difference method to approximate our model
problem. Since the mass in (2.3) and the Landé factor of (2.12) are energy depen-
dent, the KS equation (3.4) and its interface and boundary conditions (3.8) and

(3.9) will result in a system of cubic eigenvalue equations

(AO + )\Al + )\2A2 + )\3143) X = O, (320)

where the unknown eigenpair (A, x) is an approximate solution of (g4, ¢,) for some
q. Starting from the Schrodinger equation; finite:difference discretization, to the
coefficient matrices Ay, Ay, As, and Az a detailed derivation of a similar cubic
eigenvalue system is given in Appendix (or[24]). Several Jacobi-Davidson methods
are proposed and compared in [25] for solving this type of eigenvalue problems.
Analogously, the Poisson equation (3.15) with its interface and boundary con-

ditions (3.18) and (3.19) leads to a system of algebraic equations

Ax =D, (3.21)

where now the unknown vector x corresponds to the approximate values of Vy (r, 2)
at the grid points.
We briefly describe our algorithm for the implementation of the model system

17



in CSDFT as follows:

Algorithm 1. A self-consistent method for the current spin density functional

theory.

(1)

Set Viz = 0, Vyc = 0, and solve (3.20) for ¢{”) (r,z) with ¢ =1 and then
with o =] by using the cubic Jacobi-Davidson method. Set £ = 0. When
B = 0, the first three lowest energies correspond to n = 1 and [ = 0,1, 2.
We therefore must solve (3.20) six times. At each time, we only seek for the
smallest eigenpair. As for B = 15, the first three lowest energies correspond
ton =1,2,3 and [ = 0. We thus solve (3.20) two times. At each time, we

then seek for the three smallest, eigenpairs.

Evaluate the electron defisities n/{r), n*(r),n(r), and the electron energies
Eé’“). If the energies converge within an‘error tolerance then stop. Otherwise,

set k =k+ 1.
Solve (3.21) for the Hartree potential Vi by using GMRES [34].

Evaluate V. via (2.13) and then solve (3.20) for the next iterate ¢ (r, z).

Go to (2).

There are several numerical issues deserved to be elaborated due to the special

formulation of the present model when compared with the existing models of

multielectronic systems of QDs. The most prominent feature of the present model

is the nonparabolic dispersion relation used to define the effective mass (2.3), the

18



Landé factor (2.12), and the interface condition (3.8). As a result, the set of
eigenvalues that interests us is embedded in the interior of the spectrum of the
eigenvalue problem (3.20) which is a nonsymmetric system. Moreover, with some
feasible magnetic fields, we expect to have degenerate eigenstates due to the two
identical smaller dots, i.e., the eigenvalue system is defective. Instead of using
deflation scheme in the JD solver [25], we extend the generalized Davidson method
of Crouzeix, Philippe, and Sadkane [35] to our cubic JD method that allows us
to compute several eigenpairs simultaneously and to have a block implementation
of Krylov subspaces and search direction transformation. Our JD algorithm is

summarized as follows:

Algorithm 2. A cubic Jacobi-Davidson method.

(1) Choose an arbitrary orthenormal matrix V = [v;  v,] and let K be a given
integer that limits the dimension of the basis of the subspace. Here n can

be taken as 3 for six electrons with spin-up and spin-down.

(2) Compute Wy, = AV and My = V*W,, for k = 0,1, 2,3, where the matrices

Ay, are given in (3.20).

(3) For j =mn,...,K, do

(3a) Compute the eigenpairs of (#3Ms+ 602 M, + M, + My)¢ = 0 by solving
the generalized linear eigenvalue problem
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using the QQZ algorithm [36].
(3b) Select the desired eigenpairs (6;, ¢;) with ||¢;|l, = 1, for i =1, ..., n.

(3c) For ¢ = 1,...,n, compute the Ritz vectors uw; = V¢;, the residuals
r; = A(0;)u;, and p; = A'(0;)us, where A(6;) := Ag+0; A1 +60?Ay+03 Ag

and A'(6;) := Ay + 20; Ay + 307 As.
(3d) If |74l < Tol, for i = 1, axjn) then stop.
(3e) If K — j < n, then go to Step (4).
(3f) Fori=1,...,n, do

o If ||r;]|, < Tol, then'go to Step (3f).

. — — w Mt
e Compute the correction t = — M r; + M ', where ¢ = T,
it A P

and My is a preconditioner (by SSOR) of A(6;).
e Orthonormalize ¢ against V' by the modified Gram-Schmidt (MGS)

method.

Mk V*wk
e For k£ =0,1,2,3, compute wy, = Apt, M} =

t*W, v*w
k k

e Expand V = [V,t] and Wy, = [Wj, wg], for k =0,1,2,3.
o Set j=7+1
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(4) Use n Ritz vectors uy, ..., u, to create a new V := MGS(uy, ..., u,) and go

to Step (2) for restarting.

Note that the classical approach for dealing with the nonlinear matrix equation
(3.20) is to transform the equation into a generalized linear eigenvalue system
with the matrix dimension of 3 times that of (3.20) and then solve the system by
the Lanczos or Arnoldi method. The matrix dimension of (3.20) for the present
QDM model is about 290000. The JD method described here instead solves the
generalized linear eigenvalue system in Step (3a) in a much smaller subspace
V. The matrix dimension of the matrices M;, i = 0,1, 2,3, is about 50 in our
numerical implementation. The matrixdimension of the linearized system in Step
(3a) is thus about 150. The KS Hamiltoniany(2.10) is based on the nonparabolic
band structure approximation. If the Hamiltonian-is based on the Kane’s original
form, the resulting eigenvalue problem will théw be of linear form but with the
matrix dimension of 4 times that of (3.20). The nonparabolic approximation thus
reduces computational efforts significantly at the cost of more delicate nonlinear

eigenvalue systems.
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Chapter 4

Numerical Results

For the proposed model, we first determine the size of the domain in Fig. 1.1 by
inspecting the rate of change of the first three energy levels with respect to ry.. =
Zmax- As shown in Fig. 4.1, the change of these energies around 7., = 180nm
and beyond is relatively small. The following numerical results are thus based on

the domain with r., = 180nm,

We next present the important effect of the band nonparabolicity. In Table
2, we observe that the energy differences between the parabolic and nonparabolic
dispersion relations used in the Hamiltonian for zero magnetic field can be very
significant since the magnitudes are comparable with that of the correlation ener-
gies as shown in Table 3. For the parabolic dispersion case, the effective mass in
(2.2) is taken as m = 0.024my. In Tables 3 and 4, all energy components in (3.5)
are separately presented to indicate the magnitudes of the energies from various
effects. Here, the total ground-state energy F obtained via the KS eigenvalues ¢,
is defined by [16]
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Table 2. Energies for the nonparabolic and parabolic

approximation at B = 0 in units of eV.

q = {nlo} nonparabolic parabolic
{1,0,+1} 0.094673 0.086873
{1,1,41} 0.102689 0.095749
{1,2,+1} 0.112039 0.106298

Table 3. Energies at B = 0 in tnits of eV'.

q

Ep
= (Va)
E,

E.

{1,0;#1}
0.094673
0.067484

0

0.019227

0

0.015120
—0.006772

—0.000386

{1, 1,41}
0.102689
0.075638

0

0.020536

0
0.013653
—0.006753

—0.000385
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{1,2,+1}
0.112039
0.084511

0

0.022024

0

0.012280
—0.006398

—0.000378



Table 4. Energies at B = 15 in units of eV.
E; are energies based on the single-particle Hamiltonian.

q {1,0,+1} {2,0,+1} {3,0,+1} {1,0,—1} {2,0,—-1} {3,0,—1}
E; 0.103250  0.134668  0.134668  0.114840  0.146072  0.146072
E, 0.113092  0.146387  0.147649  0.120784  0.153012  0.154220
(Ts) 0.078144  0.114168  0.113827  0.077302  0.113209  0.112880

(Tp) 0.008975  0.002510  0.002499  0.008889  0.002484  0.002473
(Vewt) 0.017801  0.021184  0.021067  0.017713  0.021108  0.020994
Ep  —0.004436 —0.003913 —0.003877  0.004325  0.003832  0.003798
2 (Vy)  0.021932  0.026358  0.028058  0.021925  0.026359  0.028059
E, —0.008884 —0.013414  —01013418 " =0.008877 —0.013419 —0.013422

E. —0.000441 —0.000506" —0.000506 - —0.000493 —0.000562 —0.000562

As stated above, our main coneern for-the present QDM model is to show
the state change of the electrons under the influence of magnetic fields. The wave
functions of the six electrons originally occupying the lowest 3 energy states with
B = 0 as given in Table 3 are shown in the left panel of Fig. 4.2, which clearly
illustrates that the electrons are residing in the central dot. For B = 15, we see
that, corresponding to the lowest 6 energy states as given in Table 4, each one of
these three dots contains two electrons for which their wave functions are shown
in the right panel of Fig. 4.2. Note that three dimensional wave functions can be
easily illustrated from these two dimensional wave functions via the formula (3.1).
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Accuracy of the exchange energies can be verified by the ratio between the
absolute values of 3 (V) and E,, which is about 2 for two-electron atoms [37].
It has been theoretically shown in [38] that this ratio is exactly equal to 2 for a
two-electron model for which the xc energy and xc potential can be determined
exactly in an external harmonic potential. From Tables 3 and 4, the ratio is
approximately 2.

Finally, we remark that the essential physics of this study, namely the state
change of electrons in QDM under the influence of magnetic field as such indicated
by Fig. 4.2, can also be simulated by means of a much simpler model, e.g., the
single-particle Hamiltonian with parabolic band structure (i.e., constant effective
mass approximation). However,ithe numeries of the computed energies can be
quite different from that of the present medel-asishown by the numbers in the
second and third rows in Table 4. ‘Moreover, we may obtain degenerate states
such as {2,0,+1} and {3, 0, +1} under the single-particle picture, which obviously
is incorrect. In addition to the effect of the model in use, the state change is
significantly governed by the QDM dimensions as given in Fig. 1.1 so that we can
attain the electronic behavior as shown in Fig. 4.2. These dimensions are also

experimentally feasible [9].
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Figure 4.1: The effect of the domain size on the first three energies at B = 0.
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27



Chapter 5

Concluding Remarks

A new mathematical model that incorporates the nonparabolic energy dispersion
relation and realistic hard-wall finite confinement potential into the many-body
Hamiltonian in the current spin density functional theory in 3D setting is pro-
posed. It is used to study the electronic properties of a quantum dot molecule
that consists of three vertically alignéd’sémiconductor quantum dots (one large
central dot and two smaller identical dots) under the influence of magnetic fields.
A new Jacobi-Davidson method is given to. solve.the cubic eigenvalue problem
resulting from finite difference approximation due to the nonparabolic nature of
the effective mass. It is shown that the effect of band nonparabolicity can be very
significant in the sense that the energy difference between the parabolic and non-
parabolic cases is comparable with that of correlation energies in multielectronic
system. Furthermore, we show that six electrons residing in the large central dot
at zero magnetic field can be changed to such that each dot contains two electrons

with some feasible magnetic field.

This thesis is intended to describe mathematical aspects of the model and to
present preliminary physical results only on the Kohn-Sham orbitals and detailed
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energy components with two different magnetic fields. Following this more realistic
and accurate model, there are many interesting physical phenomena such as capac-
itance, optical and transport properties, Wigner crystallization, Aharonov-Bohm
oscillation, and quantum Hall effect can be further investigated for semiconduc-
tor nanostructures in three dimensional space. In particular, with an additional
electric control, we expect to have an energy selective mechanism to manipulating
excitonic states of two closely spaced QDMs so that a strong coherent dipole-
dipole coupling can be achieved and hence the Forster-Dexter resonant energy
transfer between QDMs can be realized to motivate a new paradigm of Fermionic

qubits for quantum computing in solid-state systems.
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Part 11

A Numerical Method for Exact
Diagonalization of Semiconductor

Quantum Dot Model
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Chapter 6

Introduction

Exact diagonalization of many-body Hamiltonian is the most accurate and expen-
sive method to study the electron dynamics and correlation in a semiconductor
QD [44] [46] [47] [50] [51] [53] [28] [62]. Efficient methods such as the Hartree-Fock
method and density functional approach are known to give substantial errors in
energy, many-body wave function, spin-polarized states, and exchange-correlation

potentials etc. [38] [46] [47] [50] [52].

Most of the theoretical madels for"QDs are based on 2D electron gas systems
with parabolic infinite confinement potential, which are justifiable for calculat-
ing single-particle states, addition energy spectra, and many qualitatively new
features of QDs. In fact, 2D models have turned out to be surprisingly rich and
difficult [28]. However, the Coulomb interaction between electrons in QDs is three
dimensional by nature and is the most important effect of many-body dynamics
in QDs. It has been shown in [43] [54] that 2D models often lead to an inadequate
description of the Coulomb interaction as a consequence of the overestimated car-
rier localization. The 3D models are found to reproduce the experimental data
for a large class of QD structures where simplified 2D models may fail [41] [45]
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48] [54].

There is another issue concerning the accuracy of QD models, namely, the
effective-mass approximation (EMA) which allows us to model the conduction
electrons in a QD as a decoupled interacting system with one-band effective mass
from their environment that consists of millions of atoms in crystalline structure.
This assumption makes numerous theoretical investigations possible within toler-
able computing resources. Most of the existing models are based on the parabolic
EMA. In [45], the QD model with nonparabolic EMA is shown to describe quan-
titatively the capacitance-voltage and far-infrared measurement data. The model
does estimate correctly the change in the effective mass due to the nonparabolic
effect. Moreover, it is shown in 49} that'the effect of band nonparabolicity can be
very significant in the sense that the energy difference between the parabolic and
nonparabolic cases is comparable with that of exchange energies in multielectronic

system.

In addition to the computational complexity compounded greatly by the three
dimensionality and the exact diagonalization, the nonparabolicity leads to nonlin-
ear (cubic) eigenvalue problems with interior eigenvalues which are much harder
to solve than that of linear eigenvalue problems [40] [25] [22] [56] [59] [24]. In
this paper, we propose a numerical algorithm for exact diagonalization of the
many-electron Hamiltonian of a disk-shaped 3D InAs/GaAs QD model with non-
parabolic EMA. The algorithm consists of the advanced cubic Jacobi-Davidson
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method developed in [25] [49], GMRES, a model reduction technique for both
Schrodinger and Poisson equations, and a new numerical approach to the exact

diagonalization.

The computation of all pair-wise Coulomb interactions is one of the limiting
factors in ab initio electronic structure calculations [57]. Our model reduction
technique is a consequence of cylindrical symmetry of the model. This technique
allows us to calculate the Coulomb matrix elements within tolerable accuracy and
computing times. The reduction technique is not meant for general purposes but

for a test of our idea on the numerical exact diagonalization.

Since the states of a QD are localized in space, the plan-wave approach for 2D
electron gas systems would require a very:large number of Fourier components to
define a localized state [43]. Another approach that has been developed to reduce
the number of basis states is to cemstruct the single-particle basis functions that
are separable into an in-plane (parallel to the radial axis) and a perpendicular
part. The Fock-Darwin states (associated with Laguerre polynomials) are a good
choice for in-plane states because they are the eigenstates of parabolically confined
electrons [42] [43] [53] [58]. The perpendicular, or subband, functions are deter-
mined numerically by solving a 1D Hartree-Fock equation. The many-electron
system is then solved by minimizing the total energy of all conduction electrons
in the system in a function space spanned by a basis of multi-electron functions
which are constructed as a direct antisymmetrized product of single-particle basis
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functions. To achieve a convergence for a few-electron system, the size of the

single-particle basis functions must be of the order of a million [53].

These approaches are not suitable for the model considered in this paper due
to the hard-wall confinement potential and the nonparabolic EMA. We present
here a fully numerical approach for the exact diagonalization of many-electron
Hamiltonian. In our approach, the basis set of single-particle functions is ob-
tained by solving the cubic eigenvalue problem resulting from a finite difference
approximation of the single-electron QD model. The eigenvalue problem is solved
by the block cubic Jacobi-Davidson method proposed in [49]. Since the single-
particle spectrum depends on the hard,wall confinement potential which is finite,
the size of the basis set will have an-upper limit.- The use of single-particle basis
will thus reduce the computagtional cost without losing accuracy on the ground
state energy of the whole system. Compared with other approaches, the trade-off
of our approach is the solution of the cubic eigenvalue problem with the size of

tens of thousands.

We briefly summarize the main results of our approach as follows. For a
4-electron QD with the hard-wall confinement potential taken as Vy = 0.77 eV
(electron volts), we only need 12 ~ 16 single-particle states to obtain a convergent
ground state energy within meV (milli-electron volts) accuracy. The computa-
tional complexity of calculating all pair-wise Coulomb interactions is C3*+ N,
where (5 is the binomial coefficient of N (the number of single-particle states)
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and 2, i.e., we need to solve the Poisson equation C3"* 4+ N, times for this particular
system.

The single-electron nonparabolic EMA model is given in the following chapter.
Numerical methods for this model are briefly described in Chapter 8. We refer to
[25] [24] for more mathematical details on the discretization of the model and the
solution of the cubic eigenvalue problem. In Chapter 9, we introduce our exact
diagonalization approach to the many-electron system. The special point to note
is the construction of the basis set of multi-electron wave functions based on the
single-electron functions. A simple example is given to illustrate the function sapce
definition. In Chapter 10, we present the model reduction technique and numerical
methods for calculating Coulomb-matrix eleménts. An overall algorithm for the
solution procedure of the many-electron system is summarized in this chapter
as well. Numerical results aré. presented-in-Chapter 11. Finally, we make some

concluding remarks in the last chapter:
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Chapter 7

Single-Electron Model

Let the spatial domain of the QD model considered herein be a disk-shaped Q =
Qrnas U Qgeas C R? as shown by a cross section of Q in Fig. 7.1 where the
InAs QD is embedded in the GaAs matrix whose dimensions are commensurable
with that of [9] in which a transmission electron micrograph of a QD sample is
illustrated. Within the nonparabolic EMA, the Hamiltonian for an electron in the

QD is given by

Ho(r) = _:2Vr <m<1' 5)) Vet Ve(r) (7.1)
0, n ﬁ[nAs
Vi) = - (72)
‘/Oa in QGaAs
1 2 1
m(re) — h2 L + E,(r)—V.(r) * e+ E,(r)—V.(r) + A(r) (73)

where V, stands for the spatial gradient, ¢ is the electron (unknown) energy, # is
the reduced Planck constant, E,(r) is the energy-band gap, A(r) is the spin-orbit
splitting in the valence band, p is the momentum matrix element, and my is the
free electron mass. Note particularly that the nonparabolic effective mass m(r,e)
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Figure 7.1: A cross section of:a disk-shaped InAs-quantum dot embedded in the
GaAs matrix in real space diméngions in nano nieters that are used in numerical
implementation.

depends on both position and electron energy and that the hard-wall confinement
potential V, is induced by a discontinuity of conduction-band edges of InAs and

GaAs. All numerical values of the parameters used in this paper are listed in

Table 1 which also includes the corresponding units and cited references.
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Chapter 8

Numerical Methods for Single

Electron Wave Functions

To obtain the states of the many-body system, we begin by solving the single

particle problem

Hy® = b, (8.1)
Due to cylindrical symmetry, the envelope wave functions ® (r) of this problem

can be expressed as

®,(r) =e Y, (r,2), ¢g={nl}, (8.2)
where n is the principal quantum number, and [ = 0, £1,£2, - - - is the quantum
number of the projection of angular momentum onto the z-axis. Eq. (8.1) can

then be reduced to a 2D problem in the (r, z) coordinates as

HOQSq (T’, Z) = 5q¢q (T’, Z) ) (83)
where the Hamiltonian Hj is now defined by
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2m(r, z,) ﬁJFFE_ﬁJF@)JrVC(T,Z) (8.4)

In 2D setting, the solution domain for (8.3) is again expressed by the same
notation as that of 3D, that is, @ = Qs N Qgeas C K2 We choose the do-
main Qgeas sufficiently large so that the wave function is negligibly small at
the boundary of Qgeas. By symmetry, the domain Q can be reduced to Q =
{(r;2z) : 0 <7 < rpax, 0 < 2 < znax t for sufficiently large rp.x > 0 and zp. > 0
as shown in Fig. 7.1.

Since we are dealing with the hard-wall confinement potential, the interface

conditions of the wave function in (8.3) has to be specifically imposed, namely,

e V Qa2 ) n‘r— = ey 0alr 2) - n’r+ ’

¢q(ra Z)lr‘f = qu(rﬂ Z)‘r+ )

(8.5)

where I' denotes the interface between twoimaterials, i.e., I' = Q45 N Qcaas, 0 is
an outward normal unit vector on the boundary of 7,45, and I'" and I'"are the
sets of limiting points to the curve I' from the interior and the exterior of €27, 4,
respectively. The momentum operator V is similarly defined for the 2D case. The

boundary conditions for (8.4) are

8¢q (T’,Z)

or = O’

W (8.6)
qu(T,Z) :07 on S7 E7 N7

where W, S, E/, and N denotes the west, south, east, and north side boundaries of
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the domain €. Note that on the west side of the boundary the values of the wave
function are taken to be the same for satisfying the continuity condition across
W. In actual implementation this condition is replaced by taking the values of
the two horizontal grid points adjacent to W as the same. Moreover, to avoid
numerical over-flow due to the term 1/r in (8.4), we do not define unknowns at
the grid points on W.

We then use the standard finite difference method to approximate the model
problem. Since the mass in (7.3) is energy dependent, Egs. (8.3), (8.5), and (8.6)

result in a system of cubic eigenvalue equations

(A() + >\A1 - >\2A2 + )\3143) X = O, (87)

where the unknown eigenpair (A,X) is an approximate solution of (g4, ¢,) for
some ¢ at grid points. Starting from the Schrddinger equation, finite difference
discretization, to the coefficient matrices Ay, Ay, As, and Az, a detailed derivation
of the same cubic eigenvalue system is given in Appendix (or[24]). Several Jacobi-
Davidson methods are proposed and compared in [25] for solving this type of

eigenvalue problems.
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Chapter 9

Many-Electron Model

To describe a system of N electrons in a QD under the influence of the Coulomb
interaction, we write the total Hamiltonian H as a sum of single-particle operators

H; and two-body operators V;; in the envelope-function approximation as

N
1
H = > Hi+-> V (9.1)
i=1 21‘;&;’

e? 1

a 471'606(1'2‘) ’I‘i - I'j’

Vii = Velrixy) (9.3)

where the single-electron Hamiltonian Hy (r;) is defined as (7.1) for the ith electron
and e is the proton charge. For the sake of simplicity in exposition, the mutual
interaction between the electrons in the system is taken to be purely Coulombic.

From single-particle picture to many-particle picture for QDs, we follow the
theoretical framework developed by Pietildinen and Chakraborty in [53]. The

approximate eigen-pairs (g4, ¢,) form a single-particle basis set



From this set, a basis By for N interacting electrons in a QD can be constructed

as a direct antisymmetrized product of B of the form

N
By=AQRB={Q:):i=1,2,---,Ny}, (9.5)

j=1

where N, is the total number of computed single-particle states, A denotes the
antisymmetrization operator, and N,, = Cx°. More specificly, the many-body

basis functions |@Q;) are Slater determinants defined as

‘QZ> = AHQM) ® ’CIi2> Q@ ‘inﬂ

(I)qz‘l (rl) (I)qz'z (1‘1) (I)qz'N (1‘1)
1| D, (x2) - Po,(r2)s - Dy, (12)

- o= (9.6)
(I)qz‘l (rN) q)qz‘z (rN) T ¢qiN (rN)

The states of the interacting system are then expressed by the superposition

of the non-interacting states (9.5) as

o) = z Q) (9.7)

where the unknown coefficients ¢; are sought by minimizing the energy functional

(V[H[ W) (9.8)

with respect to ¢; subject to the normalization condition
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(U[T) = 1.

An Example

(9.9)

We now illustrate the above formalism by considering a simple case as follows:

Q1)

|Q2)

|Qs)

v)

(V[H| W)

(V|w)

2, N, =3

{|®,) :q=1,2,3}

5 3L
27 anidl

2
AR B ={Q) i =1,2,---, Ny}
q=1

3

|q1;q2>:% Dy (r1) Do (1)
By (ry) Py (r2)
|ql;q3>:% Py (ry) P5(ry)
) (ry) Ps(rz)
|q2;q3>:% Dy (r1) P3(ry)
Dy (rs) D3 (r2)
S

// drydr; (g ¢ |Qj>*> H (gcj |Qj>>
// drydrs |0 (11, 1)]° = 1
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(9.10)
(9.11)
(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)



Using the method of Lagrange multipliers, the minimization of (9.8) subject to

(9.9) leads to

0
8 C;

{(V|H|¥) - \(¥|V)} =0,i=1,2,3,

0

5 (VIH|Y) = /drldr2|Ql (Zaﬂ@)

+// drdr, (Z::l ¢ |Qj>*) H|Qs)

3
A (w]w) =2 g /[ dridr21Q:)71Q))

= (Q; | H] Qg> = <Qz Hy+ Hy + %‘/12

o)

<Q2|H1|Q3> = /drldrgQSHng

= % // dridry (@] (r1) O (r2) — 7 (r2) D5 (r1)] Hy

(@5 (r1) @3 (r2) — Py (r2) P3 (11)]

= % / drldrg [q)i (I‘l) q);; (r2) - q)T (r2) q)?; (rl)]

(@3 (r2) H1 P (1) — Pg (r2) H1P3 (11)]

(@:11:] Qs) = 5 [ ey 93 (1) @5 (x2) — @5 (e2) @5 (1)

(@5 (r1) Ha®3 (r2) — P35 (r1) Ha®Ps (r2)]
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(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)



(@ Vi Q) = 1 [ drades @3 ) @5 (62) — @5 () 23 m”ﬁ:(rl)
e (0 (1) @4 (1) = o (1) B (1) (9.9
Hy, Hi; His 1 cy
Hy  Hye Hog o | =2 e (9.29)
H3y  Hszp Hsg 3 3

Therefore, the total energy of N electrons in the QD can be obtained by

diagonalizing the linear eigenvalue problem

Np,
j=1
where the eigenvectors ¢ = [cy=¢y -+ cNm]T are the desired expansion coefficients

and the eigenvalues A the corresponding energies of the interacting system.

The finite confinement potential-leads tora finite number of localized states as
well as to energetically higher delocalized states. When the influence of the delo-
calized states on the discrete QD spectrum is neglected, the eigenvalue problem
(9.30) has a finite dimension and can be solved without further approximations.
The most computationally expensive part is the calculation of the Coulomb ma-
trix elements (9.28) whereas the other parts (9.26) and (9.27) can be directly
calculated from (8.7) or equivalently from (8.3).

Obviously, the computational complexity is essentially determined by N, which
in turn is limited by the confinement potential strength V5 in (7.2). This is the
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main difference between our approach and the others such as those in [43] [42]
[53] [58] where the size of the single-particle basis (analytical) functions must be
of the order of a million owing to the approximation by means of either the 2D
electron gas modeling or the subband structure. We also note that the choice of
analytical functions, e.g. Laguerre polynomials, for the single-particle basis is not
feasible for our model because of the finite and local nature of the confinement
potential V5 and the nonlinear dependence of the effective mass m(r,e) on both
position and electron energy. In fact, the evaluation of Coulomb matrix elements
by using Laguerre polynomials is numerically highly unstable owing to large terms
of alternating sign in the polynomail [53].

Our approach is convergent,istable, and robust (see below). However, the
trade-off of our approach is thessolution of the cubic eigenvalue problem (8.7)

with the size of tens of thousands.
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Chapter 10

Numerical Methods for Coulomb

Matrix Elements

Since the basis states |@Q);) have been constructed by diagonalizing Hy, we are left
to compute the Coulomb matrix elements defined by the two-body operator Vg

of (9.3) as

’ " - 1~ 62 1 ’
(12|Ve34) = // A BB S ) (10)
= // dr'dre™¢, (r,z) e "0 s (1, 2) ¢ !
’ PN drege(r) v — 1|
e gy (v, ) e gy (v, ), (10.2)

for any arbitrary states ®;(r), ¢ = 1,2, 3,4, representing four-center two-electron
repulsion integrals. For real space approximation, we define a potential-like func-

tion Voy(r) as

2 eil2ad rZ
Vaa(r) = —2 / o )dr’ (10.3)

 4mege(r) |r — 1|
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where loy = Iy — 4 and ¢oy (r', z'> = ¢ (r', z') Q4 (7“/, z/) . This function can then

be cast into a Poisson equation

V- e(r)VVy(r) = —6—26“249@524 (r, 2). (10.4)

47re

By cylindrical symmetry, this equation can be written as

? 10 18 o
or2  ror r2002 022

+-=—+ + —> Vay (1,0, 2) = " f(r, 2), (10.5)

62

f(r,z) = ¢4 (1, 2), for i =1 or 2, (10.6)

_47T€0€i
where €1 = €4, if (1, 2) € Quas and €3 = €gaas if (1,2) € Qgaas. By using the

method of separating variables @nd substituting’.a solution of the form

Vau (7,0, 2 ="Vor (r, 2) ¥24(9) (10.7)
into (10.5), we have
; ”? 19 02
—iloa6
o il2a Vaa(0) (W + o + @) Vay (1, 2)
1 9%*Vay(0)

e~ a0V, (r,2)

ﬁ 962 = f(ra Z)

or

e 240V, (0)r? (82 10 0?

Vo (r2) \orz T rar a—>V<>
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982‘/24<6> o T2

—il24 —
e 002 Vou (1, 2)

f(r, 2). (10.8)

Obviously, the function Vg;(6) = e¥24% is a particular solution of (10.8) if we
view (10.8) as a second order nonhomogeneous ordinary differential equation with
respect to 6 provided that there exists a function VJj (r, z) satisfing the 2D Poisson
equation

2 10 0% 12
(32 10+ 5~ ) VB 2) = £ (10.9)

This implies that VI (r,0,2) = Vi, (r, 2) V31(6) is a particular solution of (10.5).
The general solution of the corresponding homogeneous equation is thus e*?V}2 (r, 2)

such that Vi (r, z) satisfies the:Laplace equation

or2 ' ror)s02 g2

2 2 2
(a i Wy k)VQ’}l(r,z):O (10.10)

for any integer k. The general solution of the nonhomogeneous equation (10.8)

(or (10.5)) is therefore of the form

> eV (r,2) + VEy (r,2). (10.11)
k

In 2D setting, we also have interface conditions for Poisson’s problem, namely,

€ (Ta Z) v‘éﬁ <T7 Z) ’ n|1"* =€ <T7 Z) v‘/lel (T, Z) ’ n|1"+ )
(10.12)

‘/24 (T, Z)|1“* - ‘/24(T7 Z)ll"+ :
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Similarly, the boundary conditions for (10.4) are

8V21:1 (r,2)

or = 0’

W (10.13)
Vi (r,z) =0, on S, E, N.

By imposing these boundary conditions to the general solution (10.11), we deduce
that the particular solution Vi (r,z) is in fact a general solution of (10.8) and
thus of (10.5), i.e., V& (r, 2) = 0. This implies that Va4 (1,0, 2) = €24VJ) (r, 2) is
a general solution of (10.4).

Consequently, we have

(12[Vi[34) = / &3 (0)®3 (1) 2OV (r, 2) dr (10.14)
27y
= / e’(lle"l“)ed@//(mg (r,2) Vay (r,z)rdrdz  (10.15)
0

= 271-6l13l42 //¢13 (T7 Z) ‘/214)1 (7“, Z) rdrdz (10'16)

where the computation of the 3D Coulomb matrix element (10.1) is reduced to
solving the 2D problem (10.9).
Again the finite difference method is used for solving the Poisson problem

(10.9), (10.12), and (10.13). This leads to a system of algebraic equations

Ax =b, (10.17)

where now the unknown vector x corresponds to the approximate values of Vi (r, 2)

at the grid points.
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We summarize the above methods for studying the electronic properties of
few interacting electrons confined in a QD via exact diagonalization as follows.

An Exact Diagonalization Algorithm:

(0) Set the number of electrons N and the number of single-particle states Nj.

The number of many-body basis functions N,, = Cy*.

(1) Solve the single-particle problem (8.1) in discrete form (8.7) for N, basis
functions by means of the cubic Jacobi-Davidson method for some principal
quantum numbers n and angular momentum quantum numbers / (8.2) which

are determined by Nj.

(2) Use the Ny basis functions'to construct N, Slater determinants (9.6).

(3) Evaluate Coulomb matrix elements (10.16) by solving the Poisson problem

(10.9), (10.12), (10.13) in discrete form (10:17) via GMRES [34].

(4) Solve the eigenvalue problem (9.30) for the lowest eigenvalue (ground state
energy) and the corresponding eigenvector of the N-electron system by using

the QR algorithm [36].

o1



Chapter 11

Numerical Results

Since Coulomb interaction has a long-range tail, the computational domain must
be sufficiently large. We first determine the size of the domain in Fig. 7.1 by
inspecting the rate of change of the ground state energy with respect to ry., =
Zmax for a 2-electron system with Ny = 8. As shown in Fig. 11.1, the change of
the ground state energy around rysg’= 100. nm and beyond is relatively small.
The following numerical results are thus-based on the domain with 7., = 100
nm. On the (100,100) nm? demain, we'set 151 nonuniform grid points [24] along

each direction for the finite difference approximation.

In order to have a sufficiently large basis set B (9.4), it is necessary to solve
(8.4) with various [ from 0 to —4. Some smallest positive real eigenvalues and
their associated eigenvectors of (8.7) are computed for each [. Some of the first
low-lying energy levels of the single-electron system are shown in Table 5. If all

these states are taken to be the basis of B, then N, = 8.

The ground state energies of 2 and 4 electrons with various basis numbers N,
are shown in Table 6 and plotted in Fig. 11.2. It is clear that the many-electron
QD can be modeled to a very good precision with the energy down to the order of
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milli-electron volts (meV’) by using just few tens of single-partical basis functions.
The convergence behavior of the ground state energy with respect to the basis

size N, of our approach is also clearly demonstrated by the figure.

The computational complexity increases quadratically with N,. For example,
for the case of Ny = 18, we need to solve the Poisson problem, i.e., the linear
system (10.17) C3® + 18 = 171 times for Coulomb matrix elements. Nevertheless,
all of our numerical methods for solving the systems (8.7), (9.30), and (10.17) are

stable and convergent.

Table 5. The first 8 energy levels of single-particle system for B (9.4).

q (State) n 1 E (Exegy in eV)
1 1 0 0.248189
2 1 -1 0.275593
3 1 -2 0.309664
4 2 0 0.321248
5 1 =3 0.348811
6 2 -1 0.371052
7 1 —4 0.391899
8 2 =2 0.424284

53



Table 6. Ground state energies of N-electron system

with respect to N.

N N A (eV)
2 12 0.530213
2 14 0.530046
2 16 0.529667
2 18 0.529667
4 12 1.192199
4 14

4 16

4 18
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Figure 11.1: The effect of the domain size on the ground state energy of two-

electron system with the basis size Ny = 8.
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Figure 11.2: The ground state energies of two- and four-electron QDs as a function

of the basis size N, from 8 to 18.
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Chapter 12

Concluding Remarks

We have presented a numerical approach to the exact diagonalization of many-
electron Hamiltonian in semiconductor quantum dots within the nonparabolic
effective mass and realistic 3D confinement potential approximation. The many-
electron wave function is expanded in a basis of Slater determinants constructed
from numerical wave functions of the single-particle Hamiltonian system. The
finite confinement potential implies thetboundedness of the single-particle states
and thus the finite dimensionality of the function space of many-electron wave
functions.

It has been shown that we only need about N, = 18 single-particle states to
obtain a convergent ground state energy of a 4-electron system within meV (milli-
electron volts) accuracy. The complexity for calculating all pair-wise Coulomb
interactions is O (N2). All numerical methods used in our algorithm are stable
and convergent. The approach proposed here is whereby robust for more general,

realistic, and accurate models of nanoscale semiconductor heterostructures.
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Chapter 13

Conclusions

This thesis studies two methods in calculating the electronic energy spectrum of
the many-electron Hamiltonian: the current spin density functional theory and
the exact diagonalization technique. The main characteristics and results of our
models are summarized as follows:

Part I. QDM based on the current, spin density functional theory.

(1) We propose a new mathematical model that-incorporates the nonparabolic
energy dispersion relation and tealistieshard-wall finite confinement poten-
tial into the many-body Hamiltenian in'the current spin density functional

theory in 3D setting.

(2) A QDM that consists of three vertically aligned semiconductor quantum dots
(one large central dot and two smaller identical dots) under the influence of

magnetic fields is used in numerical implementation.

(3) Instead of using deflation scheme in the JD solver [25], a new JD method
that allows us to compute several eigenpairs simultaneously and to have a
block implementation of the search subspaces is given to solve the cubic
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eigenvalue problem resulting from finite difference approximation due to the

nonparabolic nature of the effective mass.

(4) From Tables 3 and 4, the accuracy of the exchange energies is verified by the
ratio between the absolute values of 1 (V) and E,. This ratio, in accordance

with the literature [37] [38], is approximately 2.

(5) In Fig. 4.2, it is shown that six electrons residing in the large central dot
at zero magnetic field can be changed to such that each dot contains two
electrons with some feasible magnetic field. The Forster energy transfer may
therefore be generated by two individual QDMs. This may motivate a new

paradigm of Fermionic qubits for quantum,.computing in solid-state systems.

Part II. A numerical method for exact diagonalization of semiconductor QD

model.

(1) In this approach, the QD model used is based on realistic 3D finite hard-
wall confinement potential and nonparabolic EMA that render analytical
basis functions such as Laguerre polynomials inaccessible for the numerical

treatment of this kind of models.

(2) The many-electron wave function is expanded in a basis of Slater deter-
minants constructed from numerical wave functions of the single-electron
Hamiltonian with the nonparabolic EMA.
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(3)

The cubic eigenvalue problems resulting from the calculations of single-

electron basis states are solved by using JD method described as above.

As shown in Fig. 11.1, the long-range character of the Coulomb interaction
has a profound influence on the ground state energy. Thus, the finite differ-
ence approximations of the Schrodinger equations and the Poisson equations

are performed on a rather large domain with nonuniform mesh.

From Fig. 11.2, it is evident that a good convergence can be achieved by

means of a few single-electron basis states.
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Appendix

In this appendix, a derivation of the resulting cubic eigenvalue problem (3.20)
(or(8.7)) from the finite difference discretization is briefly sketched. For simplicity,

we only consider the case in which nonlinear terms are neglected, that is

Ho (cj2) =&d(r, 2) , (A.1)

where the Hamiltonian is defined by

H = Ts+Tp+ Vet + VB, (A.2)
h2 0”2 10 1B 0

T = ———F\|la5t+t-—5 -5+ 355 A3
5(r2) 2m(r, z,€) (87“2 ror 12 8z2> ’ (A-3)

e?B%r? heBl
T = A4
5 (r2) 8m(r, z, &) * 2m(r, z,€)’ (A4)

07 in ﬁInAs
‘/;mt (Ta Z) = ’ (A5)
Vb; in ﬁGaA.s:-
1

VB (T’ Z) = 059(T7 Z,E‘:)/JBB. (A6)

For convenience, we define some notations as follows
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M, = Ey(r,z2)—Veu(r, 2), (A.7)

M;

Ey(r,2)=Veat(r, 2) + A(r, 2). (A.8)

Then, the effective mass and the Landé factor can be rewritten as

1 _ PP 3e+ M+ 2M
m(r,z,e) h? [(5 + M) X (e + Mg)] ’ (A.9)
[P x (g4 My) x (e + My)] — (mop? A(r, 2))
g(r, z,6) = 2{ 72 x (e M (= 1 M) } : (A.10)

By using the standard central-finite difference method and substituting the ex-

pressions of the effective mass-and the Landé factor into (A.1), we have

0 = —

p* (3e + My +2Ms) [ @11 — 2055 + dij n 1 diji1 — dij
2(e+ M) x (e + M) (Ar)? T; 2Ar
Giy1j — 20+ Qi1
(Az)?
e’ B*rip® (3e + My + 2M,)  heBlp? (3 + M, + 2Ms)
8h2 <€+M1) X (€+M2) 2h?2 (€+M1) X <€+M2)

l2
—T—?@,j +

+ ‘/emt(rja Zz)

h2 X (e + M) x (e + My) — (mop? A(7},2))
h? X (e + M) x (e + Ma) ] B 5} $ij- (A1)

+UMBB [

where Ar and Az are mesh lengths in 7 and 2 directions, respectively, and ¢; ; is an
approximated value of function ¢ at the grid point (r;, z;) fori =1,...,n, and j =
1,...,n. Here, the index n denotes the grid point number. In Part I, all numerical
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results are obtained on the uniform grids, i.e., Ar = Az. But in Part II, due to
the long-range tail of the Coulomb interaction, the large computational domain is
required to achieve acceptable accuracy in calculating the ground state energy so
that we must use the nonuniform grids. Furthermore, different formulations are
instead of the finite difference representations of one- and two-order derivatives.
In this appendix, we just give an example of the uniform finite difference scheme.

Finally, by multiplying the common denominator (¢ 4+ M;) x (¢ + Ms) to

(A.11), we obtain

1 diji1 —dij

0 - _p2 (3e + My +2M3) | ¢sj1 — 2055 + Dij1 N
2 (Ar)? T; 2Ar
12 Git1,j —20; jFPil1j
~post B
N e’ B*rip? (3¢ £ My +2M5) - heBlp? (3¢ + M, + 2M>)
8h2 2h?

+Veut (15, 2i) % (e + My ) % (€5 M>)

oupB [hz X (e 4 M) % (e +h—72\42) — (mop® A(r,2;))

—e X (e + M) x (e + My)} ¢ ;. (A.12)

Note that same manipulation treatments are used in the discretizations of the
interface and the boundary conditions. Thus, the finite difference approach of
(A.1) will result in a cubic eigenvalue problem (3.20) (or(8.7)) .

In order to make the problem clear, we classify the matrix coefficients as

follows:
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Table Al. coefficients of matrix As

Gi-1; 0
¢ij—1 0
Gij -1
®ij+1 0
Giy1; 0

Table A2. coefficients ofiamatrix Ay

Gi-1; 0
Gij-1 0
Gij opupB + Vegi(rj, 2i) — (My + M)
Gijr1 0

Giv1; O
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Table A3. coefficients of matrix A;

3
¢z‘—1,j _Q(Apz)z
¢ivj*1 Q(AT)Z + 47‘3A7"
2,2 2

+Veat (15, 2i) (My + My)—My M,

2 2

bi i __ 3 __ 3p
1,j+1 2(Ar)2 4r; Ar
Girtg  —aks
i41,5 2(Az)?

Table A4. coefficients of 'matrix Ay

Gi—1;  (My+2Ma) x _—Q(Z—Z)z}

r 2 2
¢ivj*1 (Ml + 2M2) X | 2(Ar)2 + 4rjAr}

2 2 e2B2(r.)2p2 2
big  (Mi+2My) x [l + o + o + T+ S

+M1M2 X [O’/LBB + ‘/;wt(rj, ZZ)] — mop A(%z’zi)aﬂBB
2 2
G (My+20Ms) x [~ — 325

2
Giv1y  (Mi+2My) x [—2&—2)2}
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