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摘    要 

由於環物影片(Object Movies)在建置上相當簡單以及能產生相片品質的成像結

果，因此環物影片目前已是一種非常通用的方法來表現可互動的三維物體。雖然環物影

片已成功地被應用在不同的領域，但關於產生高品質環物影片的技術以及更具有開創性

應用的技術都有待研究開發。 

本論文提出一些方法來產生高品質的環物影片以及展示一些利用環物影片來表現

三維物體的應用。首先，我們提出一個環物影片拍攝架的挍正方法並提供一個視覺化的

界面幫助使用者根據計算結果來調整拍攝架。實驗顯示利用此校正方法，只需取得12張

校正物的影像便可以得到任一視角的精確相機參數。接著，我們提出環物影片背景去除

的方法。該方法最主要的好處是使用者的介入非常地少。更確切地說使用者只需從自動

去背景後的影像中選擇足夠好的結果，該方法便能自動地將這些正確的資訊傳遞到其它

的影像並修正去背結果。在傳遞的過程中，該方法利用選擇的影像重建該三維物體的三

維幾何形狀，再投影到其它的影像上產生物體的剪影以協助自動去背方法產生更好的去

背結果。實驗顯示，透體這剪影資訊可以明顯地降低去背結果的誤差並能有效地抵抗雜

訊的影響。另外，一個新的三維重建方法被提出來從環物影片之中重建出該物體的三維

資訊。相較之前的方法，該方法所產生的三維模型可以保留住更多的細節部份而且其剪

影會和原始輸入的剪影影像相吻合。最後，我們延續之前環場環物整合技術的研究，提

出可將立體環物整合到立體環場的方法。使用者可以透過所提供的系統可以整合立體環
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場環物建置出一個非常逼真的互動環境，並可直接瀏覽該虛擬環境以及觀看立體環物。

經由這樣的互動環境使用者可以透過立體視覺體驗到更真實的3D感受。 
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Abstract 

Object movie (OM) is a conventional approach for modeling and rendering interactive 3D 

objects because of its simplicity in production and its photorealistic presentation of objects. 

Although OMs have been successfully adopted in many applications, the techniques for 

production and application of OMs must still be enhanced if high-quality and efficient OMs are 

desired.  

This work proposes some methods for generating high quality OMs, and demonstrates 

some applications using generated OMs to present the 3D objects. First, a method for 

calibrating the motorized object rig is presented, and a visual tool is introduced to adjust the 

axes of the motorized object rig. The distances among all the three axes of the motorized object 

rig can be minimized after adjustment, and more reliable camera parameters can be obtained 

after the calibration process. Experimental results indicate that highly accurate parameters can 

be obtained from only 12 images. Second, an image segmentation method is proposed to 

remove the backgrounds of OMs. The major advantage of the proposed method is it can 

propagate the successful segmentation results from some selected images to the whole OM. The 
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new OM segmentation method extracts a 2D shape from the reconstructed 3D model and uses 

the 2D shape to remove the background from the foreground object. This work demonstrates 

that the proposed method can significantly improve OM segmentation. Third, a novel approach 

is proposed to reconstruct high quality 3D models from OMs. The silhouettes and detail 

features of reconstructed 3D model are successfully preserved. Finally, previous work on 

augmented panoramas is extended to augmented stereo panoramas. This work develops an 

interactive system that allows the user to integrate stereo OMs into a stereo panorama, and 

interactively browses the augmented stereo panorama. To generate stereo OMs, the 3D models 

reconstructed from monocular OMs are rendered. The proposed method takes less than half of 

the processing time, including acquisition and segmentation, than traditional approaches, which 

take two separate sets of OMs. The proposed interactive system provides the users with two 

approaches to determine the reference frames where the object is inserted in a stereo panorama. 

The left view and the right view are rendered separately after determining the reference frames. 

For each view, the background layer is first rendered, followed by the shadow and the object 

layers. A user can directly rotate and translate the stereo object movie of interest by browsing 

the augmented panorama. The augmented stereo panoramas provide users with more 

persuasive interaction with better depth perception. 
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Chatper 1  
Introduction 

1.1. Motivation 

Modeling and rendering photorealistic 3D objects are significant tasks in computer 

graphics. Two conventional techniques are the geometry-based and the image-based 

approaches. The geometry-based approach first constructs 3D models of real world objects then 

generates the results by rendering the 3D models with attached textures. This approach provides 

good interactivity, but the 3D models to be constructed, which is a tedious process. In contrast, 

the image-based approach uses real images for interactive displaying and browsing. It provides 

photo-realistic visual effects, and its rendering speed is independent of the complexity of the 

scenes or objects.  

Many methods have been proposed for image-based modeling and rendering. Object 

movie (OM) proposed by Apple Inc. is a conventional approach because of its simplicity in 

acquisition and its photorealistic ability to present the 3D objects. OM has recently been widely 

adopted in many applications, e.g., e-commerce, digital archive, digital museum [32], etc. An 

OM is a set of images taken from different perspectives around a 3D object. Fig. 1 and Fig. 2 

show two different motorized object rigs. The OM can be treated as an interactive video of the 

3D object after acquisition. Each image in an OM is associated with a pair of distinctive pan and 

tilt angles of the viewing direction, allowing a particular image to be chosen and shown on 

screen according to the user’s viewing direction, which is generally specified by controlling 

mouse motion. Users can thus interactively rotate the virtual artifacts arbitrarily, and freely 
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manipulate the object.  

Although OMs have been successfully used in many applications, the techniques for 

producing OMs still need to be improved if high-quality and efficient OMs are desired. This 

work investigates the methods of production and applications of high-quality OMs.  

 The motorized object rig, AutoQTVR, developed by Texnai Inc., was adopted to acquire 

the OMs. The motorized object rig is a computer-controlled 2-axis omniview shooting system, 

as shown in Fig. 1. It has two rotary axes, the pan-direction object rotator and the tilt-direction 

camera arm rotator. For convenience, these rotation axes of the rotators are called the tilt and 

the pan axes, respectively. 

 

 

Fig. 1. Motorized object rig – AutoQTVR. 

 

Fig. 2. Motorized object rig – Kaidan Magellan™ 2500. 

 

In OM acquisition, the center of an object should be placed at the crossing point of the two 
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rotation axes and the optical axis of the camera, as shown in Fig. 1. Otherwise, the acquired OM 

would have a bizarre rotation effect when it is browsed. Consequently, to acquire high quality 

OMs that rotate smoothly, the three axes should first be made to intersect at a common point, Cs. 

However, since the optical axis of the camera is invisible, aligning these three axes is inherently 

a difficult problem. This work develops a method for calibrating a motorized object rig to 

facilitate the acquisition of OMs, and for improve the accuracy of camera parameters, which 

can be used for different subsequent tasks, e.g., 3D reconstruction, background removal, and 

stereo OM generation. 

To enhance the rendering results, or to integrate OMs into a new background, the 

background must be efficiently and effectively removed from the foreground object. However, 

this is a challenging task. Additionally, another task requires OM segmentation is 3D 

reconstruction using captured OMs. However, as is well known, OM segmentation is a more 

tedious and expensive task than the acquisition of the OM as mentioned above. In our 

experience, segmenting the images manually would take more than 30 man-hours, because an 

OM generally contains hundreds of images. Additionally, the OM segmentation task can 

become very time-consuming and burdensome for stereo object movies [9]. 

Yielding two distinct foreground and background color distributions can obviously 

mitigate the difficulty of OM segmentation. Blue-screen and green-screen matting have been 

widely adopted in movie production to achieve this purpose. However, a black screen is 

preferable for acquiring the OM to prevent the object from reflecting the blue or green light, 

particularly in the domain of digital archives and digital museums. A black screen frequently 

results in ambiguously shadowed regions that can significantly increase the difficulty of OM 

segmentation, such that even a patient expert might become tired of the segmentation. 

Therefore, the usability of the designed OM segmentation method should be examined in terms 

of computational expense, accuracy of the segmentation result and amount of user intervention. 

This work devises a new image segmentation method to help the user obtain a quality OM 
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segmentation result in less than one man-hour. 

Many applications require 3D geometry model to perform 3D processing, e.g., shadow 

generation, collision detection, lighting and novel view generation, for to enhance rendering 

results and visual effects. This work investigates how to reconstruct 3D models from OMs to 

improve the applications of OMs. Given the camera parameters and silhouette images, some 

methods [28][49][62][22] have been proposed to recover the 3D model from multi-view images. 

To the best of our knowledge, the graph cuts based methods [62][22] can produce the better 

results than other methods[28][49]. However, the graph-cut-based methods do not preserve 

either concavity-convex features or silhouettes are not preserved. To improve the 3D model, a 

two phase approach is proposed to deal with these problems in this thesis.  

Since binocular vision provides the human depth perception of 3D objects, with stereo 

vision, the viewer can see where objects are in relation to them with high precision, especially 

when those objects are moving toward or away from them. To benefit from human binocular 

visions, this work extends the work on augmented panoramas [25] to augmented stereo 

panoramas. Once the 3D modes are reconstructed, stereo OMs can be generated from 

monocular OMs with the help of the 3D model. After producing high-quality OMs, this work 

develops an interactive system that allows the user to integrate stereo OMs into a stereo 

panorama, and to interactively browse the augmented stereo panorama. A user can directly 

browse the stereo OMs of interested by navigating in the augmented stereo panorama with a 

stereoscopic display. With augmented stereo panoramas, the user can enjoy more persuasive 

interaction with better depth perception. 

 

1.2. Review of Related Work 

Virtual reality systems involve two major classes of technique, i.e., geometry-based and 

image-based rendering. In geometry-based methods, a complete 3D model of the environment, 
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including all the objects within the virtual world, is constructed and rendered to simulate the 

virtual world. Conversely, image-based methods, collections of images taken from different 

viewpoints of the environment are used to generate novel views of the virtual world. Both 

approaches have their own advantages and weaknesses. However, image-based methods have 

become increasingly popular, because they can easily be applied to construct high-quality and 

photorealistic environments. Shum et al. [56] performed a thorough survey of image-based 

rendering techniques, and classified the techniques into three categories according to the 

amount of geometric information used: rendering without geometry[12][29][54], rendering 

with implicit geometry (i.e. correspondence)[11][19] and rendering with explicit geometry 

(either with approximate or accurate geometry)[7][51]. Light Field Rendering [29] and 

Lumigraphs [19] are two famous methods, but their large memory requirements make them 

impractical for real applications, especially those requiring Internet transmission. Conversely, 

OM has a smaller storage requirement than those methods. The OM approach can be classified 

into the first class, rendering without geometry, because it does not need 3D information when 

rendering OMs. OM has recently become the most popular approach to modeling and rendering 

the 3D objects, and has been adopted in many applications. This work investigate the 

techniques for producing high quality OMs including object movie rig calibration, OM 

segmentation, stereo OMs generation, and 3D reconstruction. The related work is discussed as 

follows. 

As described in Section 1.1, the aim of the rig calibration is to ensure that the pan-, the tilt- 

and the optical- axes intersect at a common point, Cs. Since a camera is mounted on the object 

movie rig, it can be used to perform the calibration, which can be considered as a pose 

estimation problem. The problem is widely studied in robotic motion and automatic industry 

[35][42]. A camera can be adopted in a robot system to determine the robot pose from the 

camera extrinsic parameters, as is well known. Camera calibration is widely discussed. 

Calibration methods fall into two categories. The first category is self-calibration, in which the 
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camera parameters are estimated without any reference object, by moving a camera in a static 

scene [21][39]. However, many parameters need to be estimated, making reliable results hard to 

obtain. The other calibration methods are estimation with a reference object. Calibration is 

performed by observing a calibration object whose geometry in 3D space is known with very 

high precision [58]. In this thesis, the motorized object rig is formulated with the kinematic 

model. Denavit and Hartenberg [16] developed a notation for assigning orthonormal coordinate 

frames to a pair of adjacent links in an open kinematic chain. However, parameter jumps occur 

when two consecutive joint axes change from parallel to almost parallel. Zhuang et al. [69] 

proposed a complete and parametrically continuous (CPC) kinematic model to avoid this 

situation.  

To our knowledge, OM segmentation is currently performed entirely by the artists. These 

experts mainly manipulate some industrial interactive tools (e.g., magic wand and intelligent 

scissors from Adobe Photoshop [1]) to remove the backgrounds of each image individually. 

The work flow does not utilize any information between images captured in neighboring 

viewing directions, and consequently is very expensive. Unfortunately, background removal in 

the OM has not been widely investigated, so OM segmentation is an obstacle to the spreading of 

image-based objects. 

Interactive background removal tools have been developed for many years because of their 

practical importance. Such tools include magic wand [1], intelligent scissors, [40][41][26] 

Bayesian matting [13], graph-cut-based image segmentation [6][47][31][17][11], and 

interactive matting based on belief propagation [64]. The color information (e.g., foreground 

and background color model) and contrast information (e.g., gradient and edge strength) are 

usually exploited to achieve the goal. The most popular of these methods is probably 

graph-cut-based image segmentation. The remaining of the image are automatically classified 

as the foreground or background immediately after a user manually provides foreground and 

background hard constraints on the image. These approaches are often quite successful for 



7 
 

single-image segmentation, but hard to apply to the OM segmentation due to the endless 

drudgery of manually specifying hard constraints on each image of the OM individually. 

OM background removal is a specific type of video object segmentation. Some automatic 

methods for video object segmentation have been proposed [44][36], but are not always able to 

extract the desired video objects. Some researchers have proposed semi-automatic methods that 

allow user interaction to improve the accuracy of results [20][36][38][67]. Although many 

approaches have been proposed to deal with video object segmentation, none of these are 

devoted to object movie segmentation. 

Generating stereo OMs from monocular ones is a novel view generation problem, which 

can be intuitively solved by image morphing [4][48]. Since it does not consider any 3D 

information, it may produce unexpected effects. View morphing [50] utilizes additional 3D 

information, such as epiploar geometry and camera parameters, to eliminate the unexpected 

effects. Moreover, image morphing and view morphing require corresponding features on the 

original images. However, obtaining good corresponding features is also an open problem. 

Another approach tries to reconstruct a geometric model of the object according to the 

consistency with the image information. A calibrated laser projector and a calibrated camera 

can be used to reconstruct 3D surface [59]. However, laser scanner devices are expensive. 

Another methods [18][61][37], photometric stereo, can recover high-quality 3D models. To 

utilize these methods, the lights must be conscientiously and carefully controlled, which is 

impractical for many applications. Passive methods have been developed for more practical 

purposes. Laurentini [28] proposed a stable method, called visual hull, to reconstruct a 3D 

surface using silhouette information. However, his method cannot recover the concavity 

features of the 3D objects. Seitz and Dyer [49] proposed an improved method that considers 

voxel colors from different views in order to carve the voxels outside of the true surface. 

However, the method has a problem in that the surface points are dispersed. Vogiatzis et al. [62] 

recently proposed a graph-cut-based method, called volumetric graph cuts, to solve this 
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problem. Because graph cuts algorithm prefers shortest cut, the volumetric graph cuts has the 

problems that concavity-convex features and silhouettes cannot be preserved. Tran and Davis 

[57] tried to solve these problems with silhouette constraints. Their method sets hard constraints 

on some verified surface voxels. It works well for some cases, but does not solve the problems 

completely.  

 

1.3. Organization of this Thesis 

This thesis investigates the techniques of producing high-quality OMs, including object 

movie rig calibration, OM segmentation, and stereoscopic OMs generation. Chapter 2 presents 

a calibration method for object movie rigs to help users to acquire high quality OMs, and to 

obtain camera parameters. Chapter 3 describes two segmentation methods for removing the 

backgrounds of OMs. The objective of the proposed segmentation method is to minimize the 

user intervention. The first method utilizes motion vectors to propagate the corrected 

information to other frames containing segmentation errors. It works well for most cases, but 

requires much user intervention for some cases due to error motions. Therefore, the second 

method is proposed to propagate the corrected information efficiently by previously learning 

shape priors. Chapter 4 presents a novel 3D reconstruction approach to obtain high-quality 3D 

models from OMs. Chapter 5 describes a novel method, called augmented stereoscopic 

panoramas, to augment stereo panoramas with stereo OMs. With augmented stereo panoramas, 

the user can enjoy more persuasive interaction with better depth perception. A conclusion is 

given in Chapter 7. 
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Chatper 2  
Object Rig Calibration 

In this chapter, we describe a method for assisting the user to acquire high-quality OMs, 

and fast obtain the camera parameters of images in OMs. The camera parameters can be used in 

many applications. In this work, we will use the parameters to perform background removal in 

Chapter 3, 3D reconstruction and novel view generation in Chapter 4. 

Fig. 3 shows the processing flowchart of the proposed calibration method. To calibrate the 

motorized object rig, we first use the camera mounted on the AutoQTVR to capture some 

feature points, whose 3D positions are known beforehand. The 2D and 3D positions of the 

feature points are used to estimate the intrinsic and extrinsic camera parameters. In our 

experiments, the calibration object, called the physical control cube (PCC) [24], is shown in Fig. 

4. With the estimated extrinsic camera parameters, we can reconstruct the kinematic model of 

the rig. Then, we apply a simple and practical model, completely and parameter continuous 

(CPC) model [1][69], to formulate the relation among the three axes. Finally, we provide a 

visual tool showing the axes for users to adjust the motorized object rig. If the intersections of 

the rays are not close enough, the user can adjust the motorized object rig according to the 

estimated result, and then the axes will be estimated again. The whole process will be repeated 

until the intersections of the rays are close enough. After calibration, reliable extrinsic 

parameters of the camera will be available with the kinematic model. 



10 
 

 

Fig. 3. Processing Flowchart of Calibration 

 

2.1. Estimation of Camera Parameters 

We adopt the method proposed by Zhang [66] to estimate the intrinsic camera parameters. 

The method performs camera calibration with at least two images of a known planar pattern 

captured at different orientations. 

On the other hand, we adopt the method presented in [9] and [24] to estimate the extrinsic 

camera parameters, by first using the method proposed by Kato et al. [27] to obtain a set of 
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initial extrinsic parameters, and then applying Iterative Closest Point (ICP) principle [3] to 

refine them.  

 

 

Fig. 4. The calibration object, called physical control cube (PCC), and the extracted 
feature points used to obtain intrinsic camera parameters.  

 

2.2. Completely and Parameter Continuous (CPC) Kinematic Model 

A CPC model stands for the completely and parameter continuous kinematic model [69]. A 

complete model means the model provides enough parameters to express any variation of the 

actual robot structure, and parameter continuity implies no model singularity by adopting a 

singularity-free line representation [46]. 

This model was motivated by the special needs of robot calibration. It is assumed that the 

robot links are rigid. A CPC kinematic model for a revolution/prismatic joint can be represented 

as follows (we refer the reader to [69] for detail descriptions):  

iii
i VQT =+1  (1) 

where iTi+1 denotes the transformation matrix between any two consecutive joint frames, i.e., 

the (i+1)-th reference frame to the i-th reference frame. Qi is the motion matrix defined as 

follows: 
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qi’ denotes joint value, which means the rotation angle for a revolution joint, or the amount 

of displacement for a prismatic joint, and Vi denotes the constant shape matrix. The shape 

matrix is a general transformation matrix given by 
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The rotation matrix Ri is used to describe the relative orientation of the two consecutive 

joint axes, details can be found in Appendix, Rotz(βi) is used to align the x- and the y-axes. 

Notice that the CPC convention requires that any two consecutive joint axes have a nonnegative 

inner product, i.e., 0, ≥zib . In general, this requirement can be achieved by changing the sign of 

one of the joint values of consecutive joints. This is because changing the sign of the joint value 

is equivalent to reversing the joint axis for both revolution and prismatic joints [53]. 

With the CPC kinematic model [69], the kinematic parameter identification problem can 

be decomposed into many kinematic parameter calibration sub-problems for ach prismatic or 

revolute joint. Suppose we have a robot with n joints. The transformation matrix from world 

reference frame, w, to end-effector reference frame, n, can be expressed as follows: 

nnwn
n

w
n VQVQTTT KK 00

0
1 == −  (6) 
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2.3. Kinematic Calibration Using the CPC Model 

In this section, we will introduce how to apply the CPC model to estimate the 

transformation matrices among the coordinate systems defined on the motorized object rig. As 

shown in Fig. 5, we define three axes of three different reference frames on the rig. Let cz
r , tz

r

 
and pz

r  detnoe the z-axes of the camera coordinate system (CCS), the tilt-axis coordinate 

system (TCS), and the pan-axis coordinate system (PCS), respectively.  

 

For convenience, let the camera be the “end-effector” of the motorized object rig. Thus, we 

can obtain the corresponding robot pose with the method described in Section 2.1. In general, 

the orientations of the x- and the y-axes of the coordinate systems need not to be specified in 

formulating the kinematics of the motorized object rig. Therefore, the redundant parameter βi in 

(3) can be set to zero, and the transformation matrix from object coordinate system (OCS) to 

camera coordinate system (CCS) can be simplified as follows:  

221100 VQVQVQTTTT ×××××=××= o
p

p
t

t
c

o
c  (7) 

where bTa denotes the transformation matrix from coordinate system a to coordinate 

system b. 

Since the motorized object rig is composed of two revolution joints, the motion matrix Q0 

is a constant matrix which can be set to identity, whereas Q1 and Q2 are the rotation matrices 

about the tz
r - and the pz

r -axes, respectively. The equations of Q0, Q1 and Q2 are given by 

ppppz

ttttz

qsign
qsign

′×==

′×==
= ×

φφ
θθ
   where),(

   where),(

2

1

440

RotQ
RotQ
IQ

 (8) 

where signt and signp are either +1 or -1, and qt’ and qp’ are the rotation angle about the tilt and 

the pan axes, respectively. Substituting (8) into (7), we have 
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(9) 

where cro and cto are the rotation matrix and the translation vector of the transformation matrix 

cTo. From (9), we have  

210 )()(),( rrrrrr ××××= pztzpto
c φθφθ  (10)

and 

( ) ( ) ( ) 221011000
c ),( lrrrrrlrrrlrt

rrrr
×××××+×××+×= pztztzpto φθθφθ  (11)

In the following subsections, we will show how to solve the parameters, r0, 0l
r

, r1, 1l
r

, r2, 2l
r

 

in (10) and (11). 

 

Fig. 5. The schematic of motorized object rig. 

 

2.3.1. Rotation Parts 

In order to simplify the calibration process, we calibrate one axis at a time. Therefore, 

when calibrating the tilt-axis, the pan-axis is held still, i.e., pφ  can be regarded as a constant, 

and thus 21 )( rrr ×× pz φ becomes a constant term denoted by x. By substituting x into (10), we 
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have 

( ) xrrr ××= jzpto
c θφθ 0),(  (12)

Equation (12) can be rewritten in the following form 

),()( 1
0 pio

c
jz φθθ rrrx −−=  (13)

By maneuver the tilt axis to two different joint values, θi and θj, from (12) and (13), we 

have 

)(),(),( 00
1

jizpjo
c

pio
c θθφθφθ −×=×× − rrrrr  (14)

Multiplying [0 0 1]t on both sides of (14), we have 
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where ε denotes the error vector induced by the observation noise, and 0b
r

 can be estimated 

by minimizing 2ε . It is well known that 0b
r

 is the unit eigenvector of ata corresponding to the 

smallest eigenvalue λ. Note that the direction of 0b
r

 has to be determined such that its 

z-component is positive. By substituting the estimated 0b
r

 into (4), we have the orientation 

matrix R0.  

The stability of the solution to 0b
r

 can be realized with the following derivation. By 

substituting (12) to the definition of  a  we have 

1
00

33

)( -
jiza

a

rrrr

Ira

θθ −=

−= ×  (16)

From (16), it is obvious that 0b
r

 is the rotation axis of ra. However, if the difference of the 

rotation angles (θi-θj) is close to zero, estimating the rotation axis of ra  becomes ill-posed and 

then the solution to 0b
r

 may not be stable. To avoid this singular configuration, one must make 

(θi-θj) as large as possible. This gives a useful guidance to selecting the joint angles for 

kinematics calibration. 

Once r0 is available, (14) can be rewritten as follows  
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The sign parameter signt can be determined by minimizing the following function  
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Our next step is to solve the rotation matrix r1 of tTp also using (10).  Now that r0 is 

calibrated, the tilt axis can be moved when calibrating r1.  For convenience, let us define 

( )( ) ),(),(~ 1
0 pto

c
tzpto

c φθθφθ rrrr ××= −  (19)

By maneuvering the pan axis to two joint angles, say iφ  and jφ , from (10) and (19), we 

have  
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Equation (20) can be rewritten as follows 
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where yields 
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Multiplying [0 0 1]t on both sides of (22), we have 
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Again, by solving an eigenvalue problem, we obtain 1b
r

 which leads to the rotation matrix r1. 

The sign parameter signp for pφ , and also be determined by minimizing an objective function 

similar to (18).  

The final orientation parameter r2 can be computed with the following objective function 

derived from (10). 

∑ ××××−
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This constrained optimization problem can be solved with a method similar to the one 

proposed in [3]. 

 

2.3.2. Translation Parts 

By substituting the estimated rotation matrices into (11), we have the following linear 

equations for the translation parameters:  
t

zyxyxyxxo
c lllllll ]00[ ,2,2,2,1,1,0,093Mt =
r

 (25)

where ])()()([ 21110110093 rrrrrrrrrM ××××××= φθθ zzzx . 

By moving the pan and the tilt joints to different positions, we have an over-determined 

system of the translation parameters which can be solved using the least square method. 

 

2.3.3. Axes Adjustment 

After solving the kinematic parameters of the motorized object rig, we can compute its 

forward kinematic model as follows: 

( ) ( ) )()()(      

),(
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lTransRRotlTransRRotlTransR
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××××=
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c

φθ

φθ
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Given the tilt angle, θt, and the pan angle, pφ , we can use (26) to determine the pose of the 

camera.  Also, the forward kinematic model can be used to find the representations of cz
r , tz

r

 
and pz

r  axes, i.e., the orientation and position of these three axes. First, the transformation 

matrix from the reference frame of the tilt axis to the CCS can be determined as 0VT =t
c .  Thus, 

the unit direction vector of the tilt axis  tz
r , denoted by tO

r
, can be derived as follows 

[ ] [ ]tt
t

c
t 01000100 0 ×=×= VTO
r

 (27)

The position of the tilt axis, denoted by tP
r

, is given by (28) 

[ ] [ ]tt
t

c
t 10001000 0 ×=×= VTP
r

 (28)

Similarly, the orientation and position of the pan axis pz
r , denoted by pO

r
  and pP

r
, can be 
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found to be 

[ ] [ ]tz
t

p
t

t
c

p 01000100 10 ×××=×= VRotVTTO
r

 (29)

and 

[ ] [ ]tz
t

p
t

t
c

p 10001000 10 ×××=×= VRotVTTP
r

, (30)

respectively. 

By using equations (27)-(30), the positions and orientations of the three axes of cz
r , tz

r

 and 

pz
r  can be evaluated and then can be illustrated as shown in Fig. 6(a). The positions of these 

three axes can be adjusted to minimize the distance among them.  According to our 

experiences, when the maximum distance among these three axes is smaller than a threshold 

value of 15 mm, the effect of the miss-alignment of these three axes is negligible. 

 

2.4. Experimental Results of Calibration 

Our method is implemented on the PC platform with CPU P4-3.0GHz and 1GB RAM and 

the motorized object rig is AutoQTVR. Fig. 6 shows the result before aligning the three axes of 

the rig where the estimates of the three axes are shown in Fig. 6(a), and the acquired OM of a 

toy shark is shown in Fig. 6 (b). The estimation and adjustment process is repeated five times to 

align the three axes of the rig and the result is shown in Fig. 7. From the frontal view of Fig. 7(d), 

we show that the tilt axis can be effectively adjusted to be perpendicular to the pan axis and 

optical axis of camera with our method. Moreover, from the top view of Fig. 7 (d), the 

intersections of the three axes are close enough. Some images of the OM of the toy shark are 

shown in Fig. 7(a). After the visual hull of the shark is constructed, shown in Fig. 7(c), the 

centralization process can be performed, and the resulted OM is shown in Fig. 7(b). 

The process time (includes capturing time and computation time) of the calibration process 

relies on the amounts of the photographs are used. To reduce the process time we have to use 

small amounts of the photographs. Therefore, we generate some synthetic data to investigate 
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how many photographs we need and what the relations between the amounts of photographs 

and the accuracy of the estimated parameters are. We use 3D Studio Max to render the PCC 

object with known camera parameters. Three sets of synthetic data with different numbers of 

images (48, 24 and 12 images, respectively) are generated. The 48-image set is obtained with 

four different tilt angles (θt= 90°, 60°, 30°,and 0°) and twelve different pan angles ( pφ  is from 0° 

to 330° with an angle interval of 30 degree). The 24-image set is taken with three different tilt 

angles (90°, 60°, 30°) and eight different pan angles, and the 12-image set are taken with three 

different tilt angles (90°, 60°, 30°) and four different pan angles. In the experiments, our method 

is applied to the three data sets to estimate the camera parameters and the estimated parameters 

are compared with the ground truth. To quantify the error of the estimated camera parameters, 

some 3D points are randomly selected to calculate their 2D positions using the ground truth and 

the estimated camera parameters, and then the Euclidean distance between the ground-truth 

position and the estimated position is calculated. The results are shown in Table 1. The process 

time includes shooting process and camera parameter estimation. The error is mean Euclidean 

distance. From our experiments, we found that only 12 images are enough to obtain a set of 

highly accurate parameters. That is, we only need to take 12 pictures at each 

adjustment-calibration process, and the processing time needed, including capturing and 

processing, is about 7 minutes. 

 

 

Table 1. Processing time and accuracy of the calibration processing 

The Number of Images Processing Time Euclidean Distance 

48 About 25 min 1.62 

24 About  8 min 1.63 

12 About 7 min 1.63 
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(a) 

 

 

(b) 

 

Fig. 6. The OM of the toy shark before calibration. (a) shows the estimated relation 
among 3 axes, and (b) shows the OM of the toy shark. The cross markers indicate the 
center of images. 
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(a) 

(b) 

 

(c) 

 

(d) 

Fig. 7. The result of the toy shark experient. (a) shows some images of the OM of the 
toy shark after calibration, while (b) shows that after centralization. (c) shows the 
Visual Hull of the shark, and (d) shows the estimated axes after calibration. 
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Chatper 3  
Background Removal 

In order to reduce the user intervention, the basic idea to develop the OM background 

removal system is follows. First, an automatic segmentation will be applied to obtain initial 

segmentation results. If some results are not satisfied, the user can correct one of them though 

the provided user interface. After modification, the corrected result can be automatically 

propagated to the other images, and used to refine the segmentation results.  

In this work, we treat the segmentation problem as a labeling problem. We assign every 

pixel a label for a given OM. These labels are F (Foreground), B (Background), and U 

(Uncertain), and the image used to record the labels is called trimap. OM notations to which we 

will refer are: is defined as follows. Let φθ ,I  denote the image taken at pan angle θ  and tilt 

angle φ . An equi-tilt set φO  is defined as a subset of the images in an OM captured at the same 

tilt angle φ , i.e., 

}20|{ = , πθφθφ ≤≤IO  (31)

Finally, an OM O is defined as 

}
22
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≤≤−≤≤=

≤≤−

I

OO
 (32)

Fig. 8 shows a portion of the two equi-tilt sets that are contained in the OM of the pottery owl. 

Based on the idea, the flowchart of our system is shown in Fig. 9. It includes three main 

stages: initial labeling, label updating, and alpha estimation. For initial labeling, we extract 

reliable foreground and background pixels based on some OM characteristics. The details are 

described in section 3.1. For label updating, U pixels are updated using spatial and temporal 

coherence based on the extracted foreground and background. After label updating, 
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intermediate segmentation may contain some misclassified pixels. To correctly classify these 

pixels, user modification can be done at this point through the provided user interface. After 

modification, the label updating stage is again used to obtain more accurate results. After user 

intervention, most pixels are classified as foreground or background except the pixels that may 

be composites of the foreground and background. For alpha estimation, the method proposed 

by Chuang et al. [13] can be applied to calculate the alpha value for each U pixel. Using the 

alpha value, we can product a smooth contour blending when we integrate OM into a new 

background. 

 

Fig. 8. Part of the two different equi-tilt sets before applying the OM segmentation 
method. Except for leftmost two images in the figure, the remainder of the images in 
this thesis are cropped in order to show more examples. 

 

In this thesis, two approaches are proposed to propagate the corrected information. The 

first method utilizes motion vectors to propagate the corrected information to other frames that 

some segmentation errors occur. The details are described in section 3.2. The method works 

well for most cases, but requires more user intervention for some cases due to error motions.  

The situation could be even worse for the first method. To compute the motion field, the 

motion estimator usually assumes that the sampling rate of the video camera is high enough to 

minimize the frame-to-frame motion. However, to keep the data size and cost reasonable, the 
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sampling rate of the OM is generally low. A popular alternative approach is to interpolate the 

dense motion field from a set of image correspondences. Because the difference between the 

images is caused fully by the changes in the 3D viewpoints, the perspective distortion makes 

the correspondence problem extremely difficult. In our experience, generating enough 

correspondences is still a problem, even with some popular tools, e.g., such as the KLT feature 

tracker [52] or the SIFT features [34]. Additionally, to filter out the potentially false 

correspondences, the class of the transformation, e.g., translational, affine, or a more complex 

-transformation, need to be considered so that the images can be aligned as accurately as 

possible, and a robust estimation can be performed. The translational motion is often the 

prominent transformation in many of the video source used to demonstrate the information 

propagation scheme. However, the nature of the transformation existed in the OM cannot be 

easily modeled without 3D object information. In practice, without some user intervention or 

knowledge of the 3D information, a usable motion field between any possible pair of the 

neighboring images in the OM is quite hard to compute. Therefore, the second approach is 

proposed for efficiently propagate the corrected information by learning shape priors. The 

details are described in section 3.3. 
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Fig. 9. The flowchart of segmentation method. 

  

 

3.1. Initial Labeling 

From our observation, OM has three basic characteristics which can help the method 

generate the trimap: 

1. When an equi-tilt set of the OM is captured, a large proportion of the background 

scene is static. 

2. Only one interesting object is presented in every image of the OM. 

3. The foreground and background color distributions are distinct in most cases. 

The trimap labeling method comprises B-labeling and F-labeling. Each equi-tilt set of the 

OM is processed individually by the trimap labeling method. Given an equi-tilt set φO , the 
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trimap of each image in φO  is initialized to U. During the B-labeling, pixels are examined to be 

labeled as B based on the color difference. During the F-labeling, all pixels that are still labeled 

as U are examined to be labeled F based on the background model. 

1.) B-labeling: By the first characteristic, if the color of a pixel varies barely throughout the 

equi-tilt set φO , then the pixel should be the background and labeled B. Since an equi-tilt 

set φO  can be treated as a short video sequence, a pixel B is labeled by examining its color 

difference compared with the corresponding pixels in both directions of the video 

sequence. Let p = [u v]T denote a pixel of a video frame tI , i.e., an image of the equi-tilt 

set φO . Let It(p) be the color of pixel p in the frame tI . Let tN  be the set of neighboring 

frames of tI . To relieve the camera noises and consider the color changes caused by the 

lighting, a measure based on the block color difference with respect to the mean is used 

such that the background pixels can be recognized reliably. Each pixel p in tI  is labeled B 

if 

BNJ
JpM

t
ω<

∈∀
),(min  (33)

Here, Bω  is the threshold ensuring that only the pixel with a small color variation is 

labeled B. The measure ),( JpM  is defined as follows 

2
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where W is a small window centered at the pixel p, || W  denotes the number of pixels in 

the window, )( pI t  is the mean color of the window W on the image tI . )( pJ  is the mean 

color of the window W on the image J, and 2|| •  denotes the L2-norm. For each pixel on a 

frame tI , the measure is examined in both directions of the video sequence, i.e., backward 

and forward. Figure 4 shows a portion of the equi-tilt set after applying the above 

procedure, where },{ 11 +−= ttt IIN . 

Most of the B pixels are exactly within the background as shown in Fig. 10, but there 

are exceptions, such as the pixels of a uniform colored patch of the object. The concept of 
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label consistency is then introduced. If the pixels at the same image position do not have 

the same label throughout the whole sequence, then they are re-labeled as U. Finally, by 

the second characteristic of the OM, mathematical morphology is applied to filter out the 

remained noises such that only one U region exists, surrounded by the B region. Notably, 

all the images in φO  until now had the same trimap consisting only the B and U labels. Fig. 

11 shows an example of such a global background mask. 

 

 

Fig. 10 The top row shows a portion of the input image sequence taken from an 
equi-tilt set of the pottery owl OM. For all the images in the middle and bottom rows, 
the black pixels correspond to the classified background regions. The foreground 
regions are colored white, and the unknown regions are colored gray. The middle row 
shows the corresponding result during the B-labeling for each image. Notably, to filter 
out the incorrectly classified pixels and obtain the global background mask used 
during F-labeling, label consistency and mathematical morphology are used as shown 
in Fig. 11. Finally, the bottom rows shows the generated trimap for each image that is 
used to activate the graph cut image segmentation. 

 

 

2.) F-labeling: By the third characteristic of the OM, each pixel whose color differs widely 

from the background model can be labeled F. To learn the background model of a given 

image, the B pixels that are reasonably close to the boundary between the B and U regions 
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are collected and clustered by using K-means. Let  i
φθμ ,  denote the mean color of the ith 

cluster for image φθ ,I . Each pixel p with the label U in the image φθ ,I  is examined and 

labeled F if 

F
i

i
pI ωμ φθφθ <−

∀ 2,, )(min  (35)

where Fω  is a strict threshold to ensure that only the pixels that differ widely from the 

background model are labeled F.  

Fig. 10 shows the result of the trimap labeling. The trimap of each image is used to activate 

the graph cut image segmentation. Notably, in this OM segmentation problem, the 

variation between the colors drawn from the background and foreground is strong. Thus, 

for a given pixel, to determine the similarity of its color to the foreground or background 

model in the graph cut image segmentation, the distance measure should consider the 

statistical variation, e.g., the Mahalanobis distance. 

 

 
Fig. 11. (a) The result including the label consistency concept is included; (b) The 
global background mask obtained by applying the mathematical morphology on (a). 

 

3.2. Label Updating with Motion Vectors  

The label updating stage consists of spatial (intra-frame) updating and temporal 

(inter-frame) updating. The spatial followed by the temporal updating process will be iterated 

until it is stable. That is, label updating will repeat until there is no label change. 
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3.2.1. Spatial updating 

We construct a graph for every frame of an OM and apply the Maximum a Posteriori 

(MAP) method to achieve an optimal labeling set of the graph. The vertex on which we perform 

MAP labeling represents either a watershed region in which all pixels have the same label or a 

single pixel. An example of graph construction is shown in Fig. 12. We first apply watershed 

segmentation [60] on every frame of an OM. If all pixels of a watershed region have the same 

label, the watershed region is represented by a vertex. Otherwise the watershed region is split 

into pixels, each of which is represented by a vertex in the graph. There is an edge between two 

nodes only if they neighbor each other in the image.  

We then define a label field { }Vertex ],..1[| ∈∈= vNllL vv on the graph. Given measurement 

{ }VertexvM v ∈= |θ , we estimate labeling field L by maximizing the a posteriori probability. 

Using the Bayes rule, the a posteriori probability density function can be expressed as 

( ) ( ) ( )LPLMPMLP ⋅∝ ||  (36)

To maximize the posteriori probability P(L|M) is to maximize the observation term )|( LMP  

and the prior term )(LP .  

 

Fig. 12. 2D spatial graph construction example. 

We model the observation probability as a Gaussian distribution. Because a 3D object may 

contain many colors, for a U vertex, we find a fixed number of its neighboring F vertices and 

perform color quantization [43] on this set of vertices. After color quantization, the set of 

vertices are separated into several clusters. 



30 
 

 Because a vertex of a graph can represent either a single pixel or a watershed region, we 

weight the contribution of the F vertices by its area and distance from the U vertex. That is, 

when evaluating a vertex’s observation term, we weight the collected neighboring vertices by 

their number of pixels and by the distance between the U vertex and the collected neighboring 

vertices. The evaluation equation of the observation term is:  
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where C is the number of clusters of foreground after color quantization, 1/KF, 1/KB, and 1/KU 

are normalizing constants, Ii is the color vector of vertex I, and distanceij is the mean distance 

between two regions corresponding to vertex i and j.  

We model the prior term as a Gibbs distribution [30]. A Gibbs distribution takes the form.  

)/)(exp(1)( TLE
Z

LP −=  (38)

where Z is a normalizing factor which is a constant for all the configurations, so there is no need 

to compute the value of Z; T is a constant called the temperature which is normally assigned to 

be 1; E(L) is the priori energy given in (49). For a U vertex i, we weight its 2-site clique 

potentials by the area of its neighboring vertices when evaluating its prior term.  
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where C2 is the collection of 2-site cliques, and ),(2 ji llV  is the clique potential function of 
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clique (i,j) and is dependent on the configuration (li,lj). Let 
ji llA  be the constant value to be 

assigned to V2(li,lj). Here we consider 
jillA to be AFF<ABB<AUU<AUF=AUB=ABU=AFU<<ABF=AFB. 

By giving AFF a smaller value than the others, the cliques with configuration (F,F) will have a 

higher occurrence probability. That is, the foreground will expand more rapidly toward the 

border than the background, because most pixels should belong to the foreground after previous 

processes. AUU have a lower energy value than AUF, AUB, ABU, and AFU, because the probability 

of having (U,U) is higher than those of having the other four configurations. (B,F) and (F,B) are 

the least preferred configurations, because it represents sharp boundary. In most cases, the 

boundary pixels are composites of foreground and background, so these pixels should remain 

undecided until the alpha estimation stage.  

3.2.2. Temporal Updating 

This process assigns a reliable label to U pixels based on temporal information 

(inter-image information). We first apply motion estimation to every U pixel by block matching 

on neighboring frames within a certain range. We then filter out unreliable motion vectors since 

the motion estimation for those vectors may be erroneous. For every U pixel, we find its 

corresponding pixel in each frame, and call this series of pixels a worm. A worm of an U pixel i 

consists of pixels that can be reached from i through estimated motion vectors. As shown in Fig. 

13 the worm w1 is a series of pixels stemming from i, and the worm wj stems from j. The two 

ends of a worm will terminate at pixels that don’t have reliable motion vectors. As shown in Fig. 

13, the length of the worm wj is two. 

After the worm of U pixel i is constructed, we will assign a label to i based on the label 

information of its worm. To assign a label to i, there are three conditions. One, if all labels of the 

worm are U, the label of the pixel i remains U. Two, if a worm contains both F and B labels 

(which is a contradiction), then the label of the pixel i remains U. Three, if worm labels are 
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either U and F or U and B, then we will change U pixel i’s label to either F or B. 

 

 

Fig. 13. The worms of the uncertain pixels i1 and i2 

 

 

3.3. Label Updating with Shape Priors 

The proposed approach aims to let every single image segmentation, rather than only those 

in neighboring viewing directions, benefit from the segmentation results of the images captured 

in all possible viewing directions. Besides the problem of computing a reliable motion field, 

one more shortcoming of the information propagation scheme is that the information can only 

be propagated from neighboring images, because of the error accumulation problem which is 

hard to avoid when computing the motion field. The proposed approach overcomes this 

limitation with the help of the reconstructed 3D model, and some preliminary results have been 

shown in [29]. A quality motion field can also be computed between any pair of the neighboring 

images after the 3D object is reconstructed. 

Fig. 14 illustrates the process flowchart of the proposed approach. Given an OM with the 

intrinsic and extrinsic parameters of the camera calibrated for all views [4], the proposed 

method starts with the automatic initial segmentation, which aims to provide some tentative 

segmentation results based entirely on the color and contrast information. To take the shape 

prior into account, the user is required to select a subset of acceptably segmented images. The 

3D shape is then generated from these selected images. The reconstructed 3D model can be 

used to infer the shape of the object in any given 3D configuration of a view. For each image of 
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the OM, a quality segmentation result can be computed by incorporating the inference of shape 

of the object into the segmentation algorithm, along with the original color and contrast 

information. The main advantage of the approach is that each time the user gives some 

intervention to a part of the OM, the influence can be propagated to the whole OM 

segmentation problem. Thus, if the user is still not satisfied with the OM segmentation result, 

then interactive background removal tools can be utilized to refine some problematic images. 

This procedure can be repeated in order to refine the OM segmentation result further. 

Notably, to apply our method, camera parameters are indeed required for 3D 

reconstruction. The reconstructed 3D model may be inaccurate due to calibration error, which 

may then introduce errors when the shape priors are extracted from the inaccurate 3D model. 

However, the final 2D image segmentation results are not very sensitive to small errors in the 

shape priors, as long as the errors are within a few pixels. In our experiments, we used the 

method described in chapter 2 to estimate the camera parameters, and the calibration errors are 

less than 3 pixels in general. Since the shape prior of the object is expressed by using a 

volumetric representation in this approach, a reliable 3D reconstruction method is desired. The 

volumetric graph cuts proposed by Vogiatzis et al. [30] are adopted in this case. 

 

3.3.1. Spatial updating 

The background removal tool proposed by Boykov and Jolly [11] on which our OM 

segmentation method is built, is described here. Graph cut image segmentation requires the user 

to interactively mark some pixels as being inside the foreground objects, and others as a part of 

the background scene. The two disjoint sets of marked pixels serve as the foreground and 

background hard constraints, respectively. All the other pixels are considered to be unknown, 

and then they can be classified into the foreground or background by Markov random field 

(MRF) optimization. Each candidate segmentation is associated with an energy that considers 
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the following properties. For each foreground pixel of the candidate segmentation, a penalty is 

given to reflect on whether its color fits into the foreground model. The model can be learned 

from the foreground pixels marked by the user. 

A penalty is similarly given to each background pixel based on the similarity of its color to 

the background model. Next, the algorithm penalizes every pair of the adjacent pixels where 

one is inside the foreground and the other is outside according to how likely a boundary is 

probable to appear between the adjacent pixels. A small penalty is generally given for the 

adjacent pixels that have a large difference in their colors. The algorithm determines the 

optimal segmentation by finding the global minimum among all segmentations that meet the 

specified hard constraints. 

 

3.3.2. Temporal Updating 

The shape prior of the object used in our method is expressed by a volumetric 3D model. 

The problem of reconstructing a volumetric 3D model from multiple calibrated images has 

been widely investigated in the last decade. Besides the camera calibration, these algorithms 

also require the silhouettes of the object in all the images. However, obtaining these silhouettes 

is exactly what we want to solve. The proposed method avoids this contradiction based on the 

observation that a subset of the OM is sufficient for the 3D reconstruction. Sufficient number of 

images that have satisfactory segmentations after the automatic initial segmentation. The user is 

then required to select a subset of acceptably segmented images to accomplish the 3D 

reconstruction. Vogiatzis et al. recently proposed a graph cut-based method, called volumetric 

graph cuts [62], to solve the reconstruction problem. This work adopts Vogiatzis et al.’s 

algorithm to learn the shape prior. 

Besides the color and contrast information, a good inference of the shape available for any 

possible view of the object can provide the favorable information on solving the OM 
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segmentation problem. Because the camera is calibrated for all images in the OM, a good shape 

prior of the object can be obtained to rectify the segmentation errors in some problematic views 

by projecting the reconstructed 3D model. Fig. 15 illustrates the idea of the segmentation 

refinement. For each image with the discontented segmentation result, the projection of the 

reconstructed 3D model under the same viewpoint is integrated to serve as the foreground hard 

constraints, together with the previously generated trimap. The graph cut image segmentation is 

then applied again to obtain the satisfied segmentation result. Significantly, the 

photo-consistent reconstruction is mandatory to obtain a good shape. The visual hull can only 

represent an approximate geometry of the object, and tends to be fatter than the real object, 

regardless of whether the object is convex or concave. This characteristic of the visual hull 

could be more obvious when the number of images available to be used is limited. 

Consequently, the projection of the visual hull might introduce unreliable foreground hard 

constraints in the segmentation refinement. Fig. 15 also illustrates the problem when 

photo-consistent reconstruction is not used. Here, directly using the projection of the base 

surface on C3 and C5 imposes incorrect foreground hard constraints, and lead to failed 

segmentation results. 

 

 

 

Fig. 14. The process flowchart of the new system. 
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Fig. 15. C1, C2, and C4 denote the views adopted to built the visual hull. Notably, the 
true surface of the object is assumed to be between the base and inner surfaces. 
Although the segmentation results of C3 and C5 are poor, they can be improved by 
incorporating the projection of the reconstructed model into the graph cut image 
segmentation algorithm. 

 

3.4. Experimental Results of Background Removal 

Each OM consists of 360 images from 10 equi-tilt sets 
18
9

18
1

18
0 ,,, πππ OOO L . Each equi-tilt set 

had 36 images captured equally from pan angle 0° to pan angle 2π with the image size 

3000x2000 pixels. In all the experiments, because the lens distortion occurred in an area far 

from the center of the image, and the object was mostly located in the center of the image, each 

image is cropped to about 1000x1000 pixels before evaluating our OM segmentation method. 

The experiments were performed on a 2.4GHz Pentium 4 desktop with 1 GB memory. The 

remainder of the experiments section is arranged as follows. First, the results of the automatic 

initial segmentation are shown. The reconstructed 3D models, from which the shape prior can 

be extracted, are then shown. Following this, we demonstrate how to rectify the segmentation 

errors existing in some problematic images using the obtained shape prior. 
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3.4.1. Initial Segmentation Results 

To reduce the response time to the user, the automatic initial segmentation can be carried 

out on the downsized OM. After obtaining the initial segmentation results, the set of segmented 

images chosen by the user was then resized to the original image size to generate the base 

surface used in the 3D reconstruction.  

To help the user select the segmented images that are successful, the segmented images 

were sorted according to their energies after the graph cut image segmentation, i.e., a low 

energy means a potentially good segmentation. When finding the optimal surface within the 

base surface, besides the selected images, all the other images in the OM can also be considered 

when computing the photo-consistency scores. Additionally, the automatic initial segmentation 

does not need to be applied on all the equi-tilt sets of the OM. Experimental results shows that 

about 3 or 4 equi-tilt sets captured in the relatively small tilt angles can yield enough 

satisfactory segmentation results for the 3D reconstruction job. 

First, the automatic initial segmentation was applied to the pottery owl OM. Fig. 17 shows 

the results of the automatic initial segmentation for the pottery owl with respect to the image 

sequence as shown in Fig 16. Because of the low contrast boundaries of the pottery owl, the 

black screen and the shadows caused by the lighting, automatic foreground extraction of the 

whole OM could be a demanding challenge when applying methods based on color and contrast 

information alone. However, since different geometries, textures, and lightings are presented in 

different viewing directions of the pottery owl, the foreground can be automatically separated 

from the background in some images. For the other problematic images, the segmentation 

errors can be rectified in the next run by incorporating the learned shape prior into the 

segmentation process. To learn the shape prior, 36 segmented images were selected for the 3D 

reconstruction of the pottery owl. Fig. 18 shows the results of the automatic initial segmentation 

for a portion of the equi-tilt set in the toy house OM. Since the tower of the house had mixed 
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together with the black screen in some viewing directions in the photo studio arranged for 

capturing the OM, the tower was difficult to separate from the background without the shape 

knowledge learnt from the other successfully segmented views. To rectify the segmentation 

errors, 48 segmented images were selected for the 3D reconstruction of the toy house. 

3.4.2. Rectification of Segmentation Errors 

This section describes the refinement of the segmentation results with the learned shape 

prior. Fig. 19 shows the rectification of the segmentation errors for each problematic image in 

Fig. 17 and Fig. 18, which are denoted by the red circles. Since the projection of the 

reconstructed model can provide a good inference of the shape for the object in each calibrated 

view, a robust segmentation result can be achieved even when the boundary of the object goes 

through the low-contrast and shadowed regions where the foreground and background color 

distributions can not be effectively separated. On each trimap that includes the projection of the 

reconstructed model, the learned shape prior provides much information about the 

segmentation problem that the original foreground hard constraints do not reveal. Fig 20 

indicates that the background removal of the pottery cat OM increases the benefit of using 

shape priors. Because the foreground and background color distributions are entirely mixed 

with each other in some difficult regions, the images are quite difficult to segment by using only 

the color and contrast information. Moreover, for such a troublesome OM, segmentation errors 

generally appear in several consecutive images at the same time. Consequently, propagating 

successful segmentation results by using the motion field becomes quite unstable due to the 

error accumulation problem when estimating the motion field. For such a difficult object, the 

automatic initial segmentation might not provide enough successful segmentation results for 

the 3D reconstruction. Here, an equi-tilt set was manually segmented by using the interactive 

background removal tool. Both the automatic and manual segmentation results were used to 

accomplish the 3D reconstruction job. The problematic segmentation results was then refined 
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be refined using shape priors obtained from the reconstructed 3D model. To measure the 

segmentation improvement, the proposed method was applied to the synthetic data composed 

of the rendering result of the 3D model and random background noises, as depicted in Fig. 21. 

Since the silhouette is known in the synthetic data set, the error between the segmentation result 

produced by our method and the silhouette can be calculated. The Hausdroff distance was 

adopted to measure the segmentation errors. In our experiment, four levels of background 

noises were composed to the synthetic data, and 10 and 20 ground truth images were randomly 

selected to learn the shape prior. The results of Fig. 22 indicate that shape information is indeed 

critical to alleviate eliminate segmentation errors, and ensures that the segmentation method is 

robust to background noises. Fig. 23 shows the comparison between ground truth and the 

segmentation results produced by the proposed method with shape prior 2. 

 

 

Fig 16 The top row shows a portion of the input image sequence taken from an 
equi-tilt set of the pottery owl OM. For all the images in the middle and bottom rows, 
the black pixels correspond to the classified background regions. The foreground 
regions are colored white, and the unknown regions are colored gray. The middle row 
shows the corresponding result during the B-labeling for each image. Finally, the 
bottom rows show the generated trimap for each image that is used to activate the 
graph cut image segmentation. 
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Fig. 17. The results of the automatic initial segmentation corresponding to the image 
sequence shown in Fig 16. The three images on the left show the segmentation results 
that should be selected for the 3D reconstruction, while the others shows results that 
should be excluded and refined in the next run. The red circles denote the noticeable 
segmentation errors in each image. 

 
 
 
 
 

 

Fig. 18. The top row shows a portion of an equi-tilt set for the toy house OM. The 
middle row shows the trimap labeling result for each image. Finally, the bottom row 
shows the results of the automatic initial segmentation. The red  circles indicate the 
noticeable segmentation errors in each image, to be rectified in the next run. 
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Fig. 19. The rectification of the segmentation errors for the pottery owl in Fig. 17 and 
the toy house in Fig. 18. Top row shows the refined trimaps. The segmentation results 
are shown bottom row for each image. 

 

Fig 20. The first row shows six consecutive images in an equi-tilt set of the pottery cat 
OM. The second row shows the result of trimap labeling. The third row shows the 
result of the automatic initial segmentation. In the fourth row, the projection of the 
reconstructed 3D model provides the information on regions that is quite difficult to 
obtain by the methods based on color and contrast alone. The last row shows the 
refinement of the segmentation result by using shape priors. 
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Fig. 21. The Armadillo that is the 3D model adopted to generate the synthetic data. 

 

 

 

 

Fig. 22 Mean segmentation errors on the synthetic data. The image size is 800 x 600. In 
the experiments, the 3D shape was reconstructed by randomly selecting ground truth 
images. The shape prior 1 was learnt by using 10 images, and the shape prior 2 was 
learnt by 20 images. 
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Fig. 23. The first row shows six consecutive images in an equi-tilt set of the Armadillo 
OM. The second row shows the result of trimap labeling. The third row shows the 
result of the automatic initial segmentation. In the fourth row, the projection of the 
reconstructed 3D model provides the information on regions that is quite difficult to 
obtain by the methods based on color and contrast alone. The fifth row shows the 
refinement of the segmentation result by using shape priors. The last row shows the 
comparison between the segmentation results produced by the proposed method and 
the ground truth. The red solid lines denote the contours of the ground truth, and the 
green dot lines denote the segmentation results produced by the proposed method 
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Chatper 4  
Object Movie-Based 3D Reconstruction 

To the best of our knowledge, graph cuts based methods for 3D reconstruction can produce 

better results than other passive methods. In the section 4.1, we will briefly describe the 

volumetric graph cuts algorithm, and the problems of the algorithm. To solve the problems, we 

propose a two-phase approach to recover 3D object surfaces with silhouette preserved and high 

photo-consistency properties from multi-view images. In the first phase, a silhouette-preserved 

volumetric graph cuts algorithm is proposed to obtain a silhouette-preserved 3D surface. In the 

second phase, the 3D surface will be refined using gradient descent optimization. The positions 

of the vertices on the surface will be adjusted along the normal directions to make sure the 

surface has high photo-consistency such that more detail features of 3D surface can be 

recovered.  

 

4.1. Volumetric Graph Cuts 

The volumetric 3D reconstruction problem can be expressed as a labeling problem, which 

involves deciding whether a given voxel within the volume is inside or outside the surface of 

the object. The idea of the volumetric graph cuts is as follows. The true surface is assumed to be 

between a given base surface Sbase and a parallel inner surface Sin. The base surface is an 

approximation of the true surface, encloses the true surface. In practice, the base surface can be 

obtained from the visual hull [28]. Each candidate surface under this assumption is then scored 

mainly according to whether the points on the surface are photo-consistent. The algorithm finds 

the optimal surface by solving the minimum cut of a corresponding weighted graph. Fig. 24 
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shows the idea of volumetric graph cuts algorithm.  

 

Specifically, for each voxel 3Rx∈ , let )(xρ  be the photo-consistency score of  x, where 

a lower value represents a better photo-consistency. For a candidate surface S, let V (S) be the 

volume between S and the base surface. Each candidate surface is associated with the energy 

function consisting of the integral of the photo-consistency score )(xρ  on the surface and the 

size of the volume V (S). The true surface S is determined by finding the global minimum of the 

energy function E(S) among all candidate surfaces S, 

 E(S) S
S

minarg=∗  (40)

where 

∫∫∫∫∫ +=
)(

)()(
SVS

dVdAxSE λρ  (41)

In (41), the first integral tends toward a photo-consistent surface, while the second, called 

the ballooning term, prefers a fatter reconstructed model. The reason for preferring a fatter 

model is that finding the global minimum can result in a trend to remove the protrusive parts of 

the object. The goal of the ballooning term is to counterbalance the protrusion flattening 

problem. Vogiatzis et al [62] describes the detailed formulation and graph construction. 

 

As is well known, solving the two terminals min-cut problem is equivalent to finding the 

maximum a posteriori (MAP) estimation of a MRF with two labels. The graph cut energy 

minimization, such as that used in the volumetric graph cuts, is widely adopted in many 

computer vision applications. Similar to most of the energy functions that can be minimized by 

the graph cut, (41) also includes the data and boundary properties. 

Let V be the set of voxels within the base surface. Let N be a neighborhood system defined 

for V, which containing the set of all pairs of neighboring voxels. Let }|{ VxlL ii ∈∀=  be a 

family of random variables defined on the set V, in which each variable takes a label li from 
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},{ ΟΙ . Given a candidate surface S, a corresponding random field L is uniquely defined such 

that for any voxel p in V 

⎩
⎨
⎧
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=
otherwise;       
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l i

i  (42)

In the discrete case, it can be easily proven that the energy function E(S) in (41) associated 

with a candidate surface S can be rewritten as E(L) which corresponds to the joint of data and 

boundary properties of a random field L 
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Here, )( ixD  is the penalty according to how well the voxel xi fits into the given label li, 

while B  can maintain the smoothness prior such that the physical property in the 

neighborhood of the space offers some coherence and does not change abruptly [30]. In the 

implementation, The edge weight, as shown in Fig. 24(b), between two neighbor voxels xi and 

xj is defined as 
2

))()((
3
4 2

,
jihw ji

ρρπ +
⋅= , where h is the voxel size. And every voxel is connected 

to SOURCE, the terminal node indicates inside object, with the weight 3hwb λ= . With the 

graph G constructed this way, the graph cut algorithm is then applied to find Smin. 
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(a)       (b) 

Fig. 24. Illustration of volumetric graph cuts algorithm. (a) Graph cuts algorithm is 
used to find the Smin surface between Sbase and Sin in volumetric graph cuts. (b) xi and xj 

are the neighbor voxels. The edge weight between these two voxels is represented as wij 

and the edge weight between voxels and source node is represented as wb. h means the 
length between two voxels. 

 

4.1.1. Problem I: Not Preserving Concavity­Convex Features   

Since the graph cut algorithm usually prefers shorter cuts, concavity-convex features may 

be lost. This problem was described in [57] in detail. As shown in Fig. 25, the dotted line is the 

true surface of object, and the solid line is the surface decided by volumetric graph cuts. 

Although the voxels on the true surface has high photo-consistency, the total energy is not 

minimized because the distance of this path is longer. 

To counterbalance this problem, a simple constant penalty λ in (44) is chosen to penalize 

all voxels that are not inside the surface. One problem with the volumetric graph cuts is that the 

parameter λ has to be chosen through trial and error in order to obtain a satisfactory result. 

Furthermore, the ballooning term could lead to a tug-of-war between the original protrusion 

flattening problem and the following concavity filling problem, where the concavities 

presented in the object are filled. For some objects, a befitting ballooning term still can not be 

found out to obtain a correctly reconstructed object even after an exhaustive search of the 

parameter λ. The phenomenon is also demonstrated in one of our experiments. 
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Fig. 25 Two cases that cause errors may occur in volumetric graph cuts. Because of the 
shorter cut property of volumetric graph cuts, Concavity-Convex feature will be 
flattened in volumetric graph cuts.  

4.1.2. Problem II: Not Preserving Silhouettes  

Because the silhouette information is not considered in [62], the inaccuracy can be 

observed on the silhouette of volumetric graph cuts result. Fig. 28 shows the reconstructed 3D 

model of potty owl using volumetric graph cuts algorithm. The ear of the reconstructed 3D is 

incomplete so that its projected silhouette may not match with the input silhouette. Fig. 26 

shows an input silhouette image and the projected silhouette image, and the comparison is 

shown in Fig. 27. The green and red pixels indicate the differences between the input silhouette 

and the projected silhouette.  

  

(a)     (b) 

Fig. 26. Silhouette images. (a) is the input silhouette image for 3D reconstruction. (b) is 
the silhouette image generated from the reconstruction model using volumetric graph 
cuts algorithm. 
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Fig. 27. The comparison between silhouette images shown in Fig. 26. The unmatched 
regions are colored in red and green. 

 

Fig. 28. The broken ears is caused by not considering the silhouette information in 
volumetric graph cuts. 

4.2. Our Approach 

In this section, we first propose a modified volumetric graph cuts algorithm by 

introducing discrete medial axis constraints into traditional volumetric graph cuts algorithm 

and develop a two-phase method, as shown in Fig. 29, to solve the problems that silhouettes 

and concavity-convex features are not preserved. In the first phase, a surface that its silhouette 

strongly matches the input images is constructed by the modified volumetric graph cuts in an 

iterative way. This algorithm starts from volumetric graph cuts algorithm and improves the 

reconstruction result by adjusting the optimization cost according to the output of volumetric 
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graph cuts in an iterative way. These iterative steps would be performed until the silhouettes of 

the obtained 3D surface match the input silhouette images. To generate silhouette images, the 

matching cube algorithm [33], a famous triangulation method, is applied to obtain the 

triangle-based 3D model, and the triangle model is rendered. At this moment, we have got a 

global solution surface. In order to make the surface fit the local solution, it is refined by 

gradient descent method in the second phase.  

Phase 1: 
Silhouettes-Preserved Volumetric Graph Cuts

Modified Volumetric Graph Cut

Set Graph Graph Cuts
Algorithm

Adjust Cost Weights

Y

N

Are 
Silhouettes 
Matched?Input Images

Silhouette-
Preserved 
Model

Phase 2 :
Gradient Descent 

Optimization        

Marching 
Cubes

Y

 

Fig. 29. The flowchart of our approach. This approach contains two phases. In the first 
phase, a silhouette-preserved model is generated by a silhouette-preserved volumetric 
graph cuts algorithm. Then, the result of phase 1 is refined by gradient descent in 
phase 2. 

4.2.1. Discrete Medial Axis Constraint 

To counterbalance the problem I described in Section 4.1.1, a simple constant penaltyλ in 

(44) is chosen to penalize all voxels that are not inside the surface. But to achieve better 

performance, the definition of D(p) should consider the likelihood that the voxel p is inside or 

outside the surface with respect to the available observations. Unfortunately, until now, it is still 

not clear on how to compute a good estimate of the likelihood based on the available 

observations. Here, we present a new definition of D(p) based on the medial axis of the object, 
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which has been proven to work well as shown in the experiments. 

The medial axis of the 3D object is defined as the centers of all maximal spheres in the 

object that touch the shell of the object at two or more points. In practice, the medial axis is 

represented by a set of discrete voxels interior to the 3D object, called discrete medial axis 

(DMA). The DMA of a volumetric model can be obtained by analyzing the 3D distance field, 

which is computed by the distance transformation method. A good overview of these methods 

has been provided by Cuisenaire [14]. The local maxima in the 3D distance field are examined 

to serve as the DMA. Because undesired branches might exist, which is considered to be 

meaningless, only the large enough connected components of the voxels in the DMA are 

retained. Compared to the original volumetric graph cuts, we first compute the DMA of the 

base surface, which is assumed to be an adequate approximation of the DMA of the true surface. 

The DMA itself is imposed as the hard constraint of the object such that the voxels in the DMA 

are enforced to be inside the object, while the voxels in the neighborhood of the DMA act as the 

soft constraint that are very probable to be inside the object. 

Specifically, let VA be the set of voxels in the DMA. Let dx be the minimum distance from 

the voxel x to its nearest voxel in VA. Computing the minimum distances for all voxels can be 

accelerated by using the distance transformation method to obtain an approximate solution. For 

each voxel within the base surface, the possibility of being inside the true surface is considered 

to be inversely proportional to the minimum distance. Thus, we define the new data property 

DA(x), into which the DMA constraint has been embedded 
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(46)

(47)

Here, (48 ) guarantees that the voxels in VA are always labeled as being inside the surface. 

Additionally, (49) encourages the voxels in the neighborhood of the DMA to be labeled as 

being inside the surface. Notably, the parameter ¸ adjusts the strength of the soft constraint, 

while ¾2 controls the influenced range. The energy function with the new data property DA(xi) is 
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globally minimized by using the graph cut technique similar to [62]. 

4.2.2. Silhouettes-Preserved Volumetric Graph Cuts 

This algorithm is based on the modified volumetric graph cuts. However it uses the output 

of volumetric graph cuts as a feedback to adjust the edge weight between voxels and SOURCE. 

These steps run in an iterative way until the silhouettes completely match the observed pictures.  

In the first step, we run the modified volumetric graph cuts and construct the mesh and to 

generate the silhouette maps in every view. Then in step 2, check if silhouette matches the input 

images. If a voxel is not projected in the silhouette maps, we will increase the edge weight 

between this voxel and SOURCE node and perform volumetric graph cuts again. These steps 

run in an iterative way until the silhouette of volumetric graph cuts result matches all the input 

images.  

Fig. 30 shows the idea of phase 1. The orange circle represents the object to be 

reconstructed. The purple grids represent the voxels labeled as inner of object after volumetric 

graph cuts. And the silhouette does not match the image captured by the left camera unless one 

of the red grids is added. So we increase the edge weight between those grids and SOURCE 

node (in object node) and run volumetric graph cuts again to get a silhouette-preserved model.  

A silhouette of output of phase 1 is shown in Fig. 32, and compared with the input 

silhouette is shown in Fig. 32. The silhouette of reconstructed 3D model almost matches the 

input silhouette except a few quantization errors caused by the marching cube. The 

improvement of phase 1 can also observed by a 3D mesh shown in Fig. 33, e.g., the broken ear 

is fixed.     
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Fig. 30. Silhouette-preserved volumetric graph cuts algorithm.  Orange circle: the 3D 
object to be reconstructed.  Purple grid: The voxels labeled “IN Object” after 
volumetric graph cuts. Red grid: The voxels have to increase edge weights to match 
the silhouettes. 

 

Fig. 31. A silhouette image projected from the reconstructed 3D model using the 
silhouette-preserved volumetric graph cuts. 

  

Fig. 32 Comparison between silhouette images shown in Fig. 31 and Fig. 26 (a). 
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Fig. 33. The reconstructed 3D model after phase 1. Notably, The broken ears are fixed. 

4.2.3. Gradient Descent Using Photo Consistency Constraint 

Before starting the phase 2 method, we define the problem that in phase 2 we try to solve 

first. The phase 2 method takes the following as input :  

   - a set of n images }...1|{ niII i == ; 

   - a set of projection matrices }...1|{ niPP i == ; 

   - an Initial shape 0S ; 

Then, our purpose is to find a 3D surface Smax that maximizes the energy function E(S), 

where E is defined as (48).  

∫= S
dSxgSE )()(  (48 )

 

Where the g is the photo-consistency function, and x is the point on the surface. In our 

implement, the equation (2) is used to approach (1). 
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where v is the vertex of 3D mesh, C(v) is the Camera set can observe vertex v, I(P,x) is the 

color that 3D point x projected by matrix P on image I, N(l,k) is the num of pair of l and k, and 

X(v) is the 3D point set that lies on the triangle which contain vertex v. 
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Fig. 34 The meaning of symbols in (50) 

 

The gradient descent is used to adjust the vertices of the 3D mesh along their normal 

directions with the following update function (51). The vertices of the 3D mesh are updated by 

turns until all vertices converge on their local maxima. 

→
−+

− −+= nvZvZvv tt ))()((1 κ  (51) 

→
+ += nvv σ  ,  

→
− −= nvv σ  (52) 

where κ and σ are tuning parameters. 

The gradient descent algorithm has the property that refined surface may converge at the 

local maximum. However, it would still do well in our work because we can get a good initial 

surface from phase one. After refined by phase two, the surface should be in a state with high 

photo consistency. 

 

4.3. Experimental Results of 3D Reconstruction 

The first experiment involved the toy house, which was also adopted to demonstrate the 

advantage of using the DMA constraint. The toy house was chosen deliberately because it 
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represents a difficult 3D reconstruction problem, due to noticeable protrusions and concavities 

in the object. Fig. 35 demonstrates the difficulty of reconstructing the toy house, indicated by 

the tug-of-war between the protrusion flattening problem and the concavity filling problem. 

Without the DMA constraint, even if the concavities all around the house are going to be filled, 

the ballooning term still cannot correctly deal with the tower even after it has been exhaustively 

searched. Fig. 36 illustrates the benefit of the DMA constraint for improving the volumetric 

graph cuts algorithm. The visualization of the photo-consistency scores is also provided. Fig. 

37 shows the successfully reconstructed model of the toy house by imposing the DMA 

constraint to alleviate this difficulty. Notably, the algorithm can properly reconstruct both the 

protrusive parts, i.e. the tower and chimney of the toy house, and the concavities all around the 

house. 

The second experiment adopted the pottery owl. Fig. 38 shows the reconstructed model. 

Although the ears of the pottery owl are thin and sharp, they were correctly reconstructed with 

the DMA constraint. Additionally, the concavities around the eyes and feet were handled 

properly. 

We test our two-phase approach with the potty owl model and two synthesis models. Fig. 

39 shows the result of real owl model. The result of phase one algorithm is shown in Fig. 39(a), 

and the result of phase two method is shown in Fig. 39(b). We can easily find the details of Fig. 

39(b) are stronger than those of Fig. 39(a). 

In order to make sure the refinement in phase two is correct, two synthesis models, the 

bunny and the buddha, are tested. Fig. 40 shows the result of phase 1 and phase 2 and ground 

truth.  

In a complicated model case, as shown in Fig. 41, the improvement of our work is totally 

shown. We compare our work with traditional volumetric graph cuts in this case. Because of the 

influence of self occlusion, the head of buddha is cut off, as shown in Fig. 41(a). However, our 

phase one method can fix this error, as shown in Fig. 41(b). Then, the enhancement of details by 
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phase two can be observed from the buddha face.  

At the end of the experiment, we extract the texture of 3D reconstruct results from input 

images. And the textured models are rendered to original view to compare with the original 

image, as shown in Fig. 42. 

 

Fig. 35. The reconstructed model of the toy house by using the volumetric graph cuts 
algorithm without imposing the DMA constraint. The ballooning term is increased 
gradually from left to right. The figure indicate that reconstructing the toy house is a 
difficult task without the DMA constraint. 

 

(a)       (b)       (c) 

Fig. 36. Visualization and comparison of the 3D reconstruction algorithm. Both (b) 
and (c) are taken from a cross-section of the visual hull for the toy house, which is 
shown in (a). The golden voxels correspond to the base surface in all three images. The 
cyan voxels denote the inner surface, which is parallel to the base surface. Additionally, 
the voxels in VA are also colored cyan in (c). The photo-consistency scores between the 
base and inner surfaces are shown, where the darker region indicates a better 
photo-consistency. Additionally, the line within the base and inner surfaces represents 
the reconstructed surface of the object. In (b), without the DMA constraint, although 
the reconstructed surface passes through the worse photo-consistency regions, the 
integral of the energy on the entire surface is lower. Consequently, the protrusive part 
(i.e., the tower of the house) is flattened incorrectly. The image in (c) shows the 
correctly reconstructed surface for the same portion of the object with the DMA 
constraint. 
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Fig. 37. Image (a) shows the visual hull generated from the available silhouettes of the 
toy house to act as the base surface in the algorithm; (b) the DMA of the visual hull 
that is considered to be an approximate DMA of the toy house. Images (c)-(h) show the 
reconstructed model from three different viewpoints of the toy house, together with 
the images captured at similar viewpoints. 

 

 

Fig. 38. (a) The visual hull of the pottery owl. (b) The DMA of the visual hull. (c) An 
example image of the pottery owl MVI. (d) The reconstructed model of the pottery owl 
by using our method. 
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(a)     (b) 

Fig. 39 The reconstructed owl models. (a) The result of phase one. (b) The result of 
phase two. 

 

 
(a)     (b)    (c)    (d) 

Fig. 40 The reconstruction results of the bunny model. (a) The result of traditional 
volumetric graph cuts algorithm (b) The result of phase one (c) The result of phase 
two (b) The ground truth.  

       
(a)      (b)       (c)        (d) 

Fig. 41 The reconstructed buddha models. (a) The result of traditional volumetric 
graph cuts. (b) The result of phase 1. (c) the result of phase 2 (d) The ground truth. 
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Fig. 42 Comparison between our result and original image. Left is the original image 
and the right is the result reconstructed by our method. 
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Chatper 5  
Augmented Stereo Panoramas 

In [25], Hung et al. proposed a method to integrate object movies into a panorama in a 

visually 3D-consistent way. With the proposed method, the user can easily author and browse 

the augmented panorama. Lo et al. [32] have successfully applied the technique to construct a 

kiosk for visual museum. In this thesis, we extend our previous work on augmented panorama 

to augmented stereo panorama. We develop an interactive system which allows the user to 

integrate stereo OMs into a stereo panorama, and interactively browse the augmented stereo 

panorama.  

 

5.1. Generation of Stereo Panoramas 

To generate stereo panoramas, Huang and Hung [23] proposed a method to automatically 

generate a stereo panorama with two cameras. One of the cameras is rotating on the axis and the 

other is off-center rotating. This method generates two sets of panorama, one for the left view 

and the other for the right view.  

The method, named Parallel Ray Interpolation for Stereo Mosaicing (PRISM) pro-posed in 

[68], is to stitch mosaics seamlessly for aerial images. The authors generated stereo panorama 

from an aerial camera. The aerial camera, which undergoes a domi-nant translational motion, is 

mounted on an aerial plane. To calibrate the aerial cam-era, they estimate the extrinsic 

parameters of the camera by an aerial instrumentation system, such as GPS, INS and laser 

profiler. After estimating camera parameters, they rectified the captured images to eliminate 

rotational components. 
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Shum and He proposed concentric mosaic [54] to capture rays in the environment. Those 

rays are all tangent to several specific circles and form several cylindrical images with different 

radius. The concentric mosaic can render scenes at any view point toward any viewing direction 

inside the circle. Shum and Szeliski [54] further use theconcentric mosaic to generate stereo. 

Because the depth of any vertical strip of cap-tured rays is not identical, they apply depth 

correction for captured rays. 

In this thesis, we adopt the method proposed in [45], because their method is easy to 

implement. Their method generates stereo panoramas by stitching vertical strips of a series 

images captured by a video camera. These image strips can approximate the desired circular 

projection on a cylindrical image surface. As shown in Fig. 43, the camera with an optical 

center O and an image plane is rotated about the rotation axis behind the camera. Strips at the 

left side of the image are seen from viewpoint Vr, and strips at right side of the image are seen 

from viewpoint Vl. The left strips are extracted for the right panorama and the right strips are for 

the left panorama. Therefore, the left panoramic image can be constructed from strips located at 

the right side of images and the right panoramic image can be constructed from strips located at 

the left side of images.  

 

Fig. 43. A diagram shows the idea to create a stereo panorama using a video camera.  
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5.2. Generation of Stereo Object Movies 

In this section, we will describe how to generate stereo OMs from acquired monocular 

OMs. For convenience, we assume that the acquired OM is for left view, named left-OM.  For 

each image LI φθ ,  in an left-OM, our goal is generate the image RI φθ ,  for right view with the help 

of 3D model. 

Once the viewing baseline is determined, the camera parameters of right view can be 

calculated. This distance between two viewpoints is usually about 5cm to 7cm, which is the 

average interval of general human eyes, while the real distance depends on where the object is 

placed in virtual environment. We first use the image LI φθ ,  as the texture of the reconstructed 

3D model in Chatper 4, and render the 3D model with the calculated camera parameters. Next, 

we render the 3D model on the right view again by using image LI 1, +φθ  to be the texture of the 3D 

model. The image LI 1, +φθ  is the right-side neighboring image of LI φθ , , and then composite the two 

rendered images. This approach is very simple, and can be accelerated by industry-standard 

graphics hardware. Hence, the final binocular OM consists of a set of these images that are 

generated in this way for each view in the original monocular OM, as demonstrated in Fig. 44. 
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Fig. 44 (a) The original OM images. (b) Our rendering results of binocular views. 

 

5.3. Augmenting Stereo Panoramas with Stereo OMs 

To integrate stereo OMs into a stereo panorama, we have to know where the objects will be 

inserted in. As mentioned in [25], to achieve the task for a monocular panorama, the user is only 

required to specify four vertices of a cuboid to define a 3D reference frame, named shadow 

reference frame (SRF), in a 2D dewarped view. This reference frame defines where the shadow 

of the object is supposed to be projected onto. Once the user has specified a SRF in the 

dewarped panoramic view, the geo-metric transformation between this SRF and the panorama 

reference frame (PRF) can be computed using this information [8]. By referring to the SRF, the 
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user can insert stereo OMs into the stereo panorama in a visually 3D-consistent way. Each 

stereo OM is associated with a reference frame, named object reference frame (ORF), so the 

user can manipulate the stereo OM according to the orientation and location where the user 

desires. In this work, we extend the method to augment a stereo panorama with stereo OMs. 

Here, two approaches are developed for the users to quickly and accurately specify shadow 

reference frames in a stereo panorama. One is a 2D approach, which the user can determine the 

SRFs in dewarped views of the stereo panorama. The other is a 3D approach, which allows the 

user to specify the SRFs in 3D space with stereoscopic display devices. Fig. 45 shows an 

example that users integrate stereo OMs into a panorama in 3D mode. The 3D approach is 

intuitive while the 2D approach does not require the stereoscopic devices.   

 When rendering, the left panorama with left-OMs and right panorama with right-OMs are 

processed separately but in the same way. When rendering, we sequentially render the 

background layer, the shadow layer and the object layer. The background layer is composed by 

the de-warped view of the panorama. After the viewing direction of viewer is specified, we can 

dewarp the view according to the specified viewing direction and render it.  

An OM with no 3D geometric model is impossible to generate a realistic shadow. To cope 

with this, we assume the shadow to be generated is produced by a set of parallel light sources. 

The lighting directions of the parallel sources can either be estimated from photographs 

containing the global illumination or manually specified by the user. We then can generate 

shadow of an OM by putting the correct shadow map at the correct position with respect to a 

user-specified SRF. As shown in Fig. 46, we generate a viewing image by composing the image 

of the OM correspond to the viewing direction nL and its shadow, on the x-z plane of the SRF, 

produced by shadow map.  

To render object layer, we first compute the viewing direction, from the center of PRF (Cp) 

to the center of the ORF, and select and render the image of the OM according to the viewing 

direction.  
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Fig. 45. The UI allows users to integrate stereo OMs into a stereo panorama in 3D 
mode. 

 

Fig. 46. Illustration of casting shadow for an object movie. 

 
 

5.4. Experimental Results of Augmented Stereo Panoramas 

Fig. 47 shows the stitched results of a stereo panorama from photos taken in our laboratory. 

Fig. 48 shows the result of integrating a stereo OM into the stereo panorama. The shadow is 

properly rendered under the inserted object and the perceived depth of the OM is consistent 

with its nearby scene objects. Fig. 49 shows the consecutive views of rotating the stereo OM in 

the stereo panorama. 
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(a) 

 

(b) 

Fig. 47: Stitching result of a stereo panorama. 

  
(a)                      (b) 

Fig. 48: Result of the augmented panorama with a stereo OM. (a) shows the rendered 
left view, and (b) shows the right view. 

  

(a)                  (b) 

   

(c)                  (d) 

Fig. 49 Rotating the OM in the augmented stereo panorama. (a) and (c) are the left 
views. (b) and (d) are the right views. 
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Chatper 6  
Conclusion and Future Work 

This work proposes methods of acquiring high quality OMs including object rig calibration, 

and background removal. Furthermore, to allow additional applications, this work also 

develops a 3D reconstruction method to obtain the 3D information of the object, and a new 

method called augmented stereo panoramas to construct interactive 3D virtual worlds. 

To calibrate a motorized object rig, this work first applies the CPC kinematic model to 

formulate the 3D configuration of the device, and then proposes a method of estimating the 

parameters of the CPC model of the device. Furthermore, a visual tool is provided to guide 

users to adjust the controllable axes of the rig according to the estimated results. The 

proposed method has two major advantages. First, only a small number of images of the 

calibration object is required. Second, the camera parameters of any views can be obtained 

with the estimated parameters after calibration.  

Since fully automatic segmentation method remains an open problem, this work 

develops interactive segmentation methods for minimizing the user intervention. First, the 

initial segmentation results are automatically obtained based on observed characteristics of 

OM. If some segmentation results do not satisfy user expectations, then the user can modify 

misclassified pixels in only a few images, and propagate the corrected result to all frames 

through spatial and temporal coherence. In contrast with other segmentation methods, the 

proposed method incorporates the shape prior to the image segmentation process. The shape 

prior introduced into each image of the OM is extracted from the 3D model reconstructed 

using the volumetric graph cuts algorithm. Experimental results demonstrate the shape 
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information is indeed critical to eliminating segmentation errors, and ensures that the 

segmentation method is robust to background noises. Moreover, the proposed OM 

segmentation process requires only a small amount of user intervention, namely selecting a 

subset of acceptable segmentations of the OM following the initial segmentation process. 

Some graph-cut-based methods have recently been proposed to reconstruct 3D models 

from multi-view images, and can yield acceptable results. However, such methods have two 

problems namely that concavity-convex features and silhouettes are not preserved. This work 

proposes a two-phase approach is proposed to solve these problems. In the first phase, a 

modified volumetric graph cuts algorithm is applied to obtain a silhouette-preserved 3D surface. 

This algorithm starts from volumetric graph cuts algorithm and enhances the reconstruction 

result by iteratively adjusting the optimization cost based on the output of volumetric graph cuts. 

These iterative steps are performed until the silhouettes of the obtained 3D surface match the 

input silhouette images. In the second phase, the 3D surface is refined using gradient descent 

optimization. The positions of the vertices of the 3D model are adjusted along the normal 

directions to ensure that he surface has high photo-consistency.  

Panoramas and OMs are conventionally adopted image-based techniques for modeling and 

rendering 3D scenes and objects. This work presents a method that allows users to generate an 

augmented stereo panorama by interactively integrating stereo OMs into a stereo panorama. A 

user can directly browse the stereo object movies of interest by navigating in the augmented 

stereo panorama with a stereoscopic display. The augmented stereo panoramas enhance the 

user’s interactive experience by elevating better depth perception. 

A major limitation of the proposed method for 3D reconstruction is that it cannot 

effectively handle specular objects, because the zero-mean normalized cross correlation 

(ZNCC), which is adopted to measure the photo-consistency score, is not robust to specular 

reflection. Future work will be to apply to the OM some diffuse-specular separation techniques 

before 3D reconstruction. Relighting also can be performed with the reconstructed 3D models 
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after separating the reflection components. Another plan is to further reduce the user 

intervention by analyzing the energy of the minimum cut after the initial segmentation, and then 

automatically identifying a subset of acceptable segmented images. 
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Appendix  

Singularity-Free Line Representation 

Let a line, called B-Line, be in 3D space, and a plane, called B-plane, be perpendicular to 
the line and passes through the origin of reference coordinate system {O, x

r , y
r , z

r }, as 
shown in Figure A. Let ( )zyx bbb ,,=b

r
 be the unit vector along B-Line and lie in the upper 

half-space of {O, x
r , y

r , z
r } coordinate system, where bx and by are the x and y 

components of the b
r

 vector defined on the {O, x
r , y

r , z
r } coordinate system. Note that 

bz, the z component of the direction unit vector b
r

 can be obtained by equation A.1, if bx 
and by are known, 

( ) 2/1221 yxz bbb −−=  (A.1)

 
Therefore the bx and by is enough to represent the orientation of B-Line. 

 
Fig. A.  Representation of a line B in 3D space. 

 Next, we define another coordinate system {O, 'x
r , 'y

r , 'z
r }, where 'x

r  and 'y
r are 2-D 

Cartesian coordinate system defined on the B-plane, passing through the same origin O of 
{O, x

r , y
r , z

r } coordinate system. Let the unit vector k
r

 denote the common normal of z
r  

and b
r

. Thus, we have 
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where  denotes the Euclidean norm. Thus the {O, 'x
r , 'y

r , 'z
r } coordinate system is 

obtained by rotating an angle α about the axis k
r

, where 

( ) ( )zb11 coscos −− =•= bz
rr

α  (A.3)
Let R be the rotation matrix Rot( k

r
,α), and it can be calculated by equation (A.4). 
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