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Selecting an E-Scrap Reverse Production System
Design Considering Multicriteria and Uncertainty

Wen-Chih Chen and I-Hsuan Hong

Abstract—A reverse logistics and production network that
deals with recycled material flows has become essential due to
the growing concern about the environmental impact of disposed
waste and the economic value of recovered materials. Reverse
logistics infrastructure design is typically based on tradeoffs
between different criteria and faces challenges posed by uncertain
system parameters such as the reusability percentage and total
supply of end-of-life products. This paper presents a novel method
for selecting alternative infrastructure designs to effectively
and systematically handle multicriteria cases without subjective
weight determination for different criteria. The proposed method,
in practice, helps decision makers evaluate and select a design
from a pool of alternatives proposed by contractors who place bids
for public tenders where the bids include infrastructure design
information and associated performance estimates under different
uncertain system parameters.

Index Terms—Alternative selection, multicriteria, reverse logis-
tics, robust, scrap electronics.

I. INTRODUCTION

REVERSE production system (RPS) includes collection,

sorting, demanufacturing, and refurbishing processes for
end-of-life products. A scrap electronics (e-scrap) RPS infra-
structure design prescribes the facility location of collection
and processing sites. This paper presents a novel method for
e-scrap RPS infrastructure design selection that involves a deci-
sion process for evaluating and selecting alternatives under mul-
ticriteria evaluation and uncertainty regarding the external envi-
ronment.

The increased urgency to maximize the efficiency of recy-
cled material flows is due to concerns associated with the en-
vironmental impact of disposed waste and the economic value
of recovered materials. An estimated 133 000 electronic devices
are discarded daily in the U.S., amounting to 3 million tons of
e-scrap (Hong et al. [10]). Another estimate of worldwide re-
verse logistics cost was in the neighborhood of US$137.2 billion
in 1996 (Hong et al. [10]). Governmental regulations also play
an important role in recycled e-scrap flows (e.g., Waste Elec-
trical and Electronic Equipment (WEEE) and Reduction of Haz-
ardous Substances Directive (RoHS) of the European Union)
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(see Europa, [6]). The WEEE directive seeks to minimize the
environmental impact of e-scrap by making producers respon-
sible for financing its collection, processing and recovery. An
RPS infrastructure design has two key concerns—tradeoffs be-
tween different criteria and uncertain external environments;
these concerns have been addressed in several studies (e.g., Oral
et al. [15], Realff et al. [16]).

In the last decade, the number of studies investigating the
design, planning and modeling of “closed-loop” supply chain
systems has increased (e.g., Fleishmann et al. [7], Guide and
Harrison [9], Hong et al. [11], Realff et al. [16], Shih, [19],
Wang and Yang [20]). Most of these studies focus on searching
an optimal solution (infrastructure design) in a well-expressed
but simplified solution space. However, such work requires
explicit expressions of considered constraints or parameters,
which may not be available in the real world. Instead, this
study presents a method for evaluating and selecting an e-scrap
infrastructure design from a pool of alternatives with associ-
ated performance estimates under different uncertain system
parameters. The primary uncertain factors include estimates of
the amount and quality of end-of-life products as well as acqui-
sition prices of refurbished products and recovered materials.
Decisions based on inaccurate data due to uncertainty may lead
to significant loss. Decision makers thus prefer measuring the
benefits and losses associated with each potential decision in
each circumstance. Solution robustness is an index for mea-
suring how a design performs in an uncertain context.

In addition to uncertainty in alternative selection problems,
another concern is the multicriteria for decision making. Evalu-
ating and selecting alternatives with multicriteria is a common
problem in numerous applications such as flexible manufac-
turing systems (Khouja [12]), supplier selection (De Boer et al.
[5], Weber et al. [21]), and research and development (R&D)
project selection (e.g., Cook and Seiford [3], Cook and Roll [4],
Oral et al. [15]). Generally, the key function is to determine the
tradeoffs among different criteria and thereby aggregate all cri-
teria into one overall index. These studies, however, do not con-
sider issues associated with both multicriteria and uncertainty
simultaneously.

This work is motivated by the need of system decision makers
(e.g., the government) to evaluate and select a proposal for RPS
infrastructure design. A potential contractor may place a bid,
a proposed alternative, including information on infrastructure
design and associated performance estimates under different un-
certainties regarding system parameters. This study presents an
alternative selection method for e-scrap infrastructure design
that handles two key challenges—multicriteria and uncertainty.

In addition to a need for RPS infrastructure design, the pro-
posed method can be adopted for the contexts of solution gener-
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Fig. 1. Two-criteria example.

ation and selection framework. Conventional optimization tech-
niques find the optimal solution in a well-defined solution space,
i.e., clear expressions of constraints that are very likely unavail-
able in reality. In complex practical cases, one can generate a
bunch of alternatives (possible solutions) and the corresponding
performance values based on different means such as simula-
tion, and then evaluate and select the “best” solution among
alternatives. The proposed method contributes to this research
stream.

The remainder of this paper is organized as follows. Section II
addresses multicriteria evaluation and the worst-case approach
for alternative selection under possible scenarios. Section III
demonstrates the effectiveness of the proposed method for an
e-scrap case study. Conclusions are given in Section IV.

II. METHODOLOGY

This section presents the method for alternative evaluation
and selection that accommodates multicriteria performance and
several key uncertain parameters. The proposed method adopts
a viewpoint different from that in conventional multicriteria al-
ternative selection studies, which typically focus on how to ag-
gregate criteria. In particular, this work focuses on a feasible
performance region and ideal performance, which is close to
other engineering disciplines.

A. Performance Limit

This work first discusses performance limits. Fig. 1 is a
simple example with two criteria. The z-axis is the value for a
minimizing oriented criterion, x, i.e., the smaller the better; the
y-axis represents the value for a maximizing oriented criterion,
y, i.e., the larger the better. Suppose the performance limit,
the ideal relationship between z and y, is f(z) = y, where
f(z) is the ideal value of criterion y given a value of criterion
x. The performance bundle (z’,4’) in the area below f(z'),
f(z'") > o, is feasible. This is because (z’,y’) can be better
off, namely, not beyond the limit, relative to ideal performance
(2, f(2")). In fact, the form of f(z) is commonly seen in
engineering disciplines. For example power = f(fuel) reveals
that power generated by fuel consumed is ideal; power gener-
ated and fuel consumed can be interpreted as two performance
criteria.

Suppose point A is claimed as a performance bundle (Fig. 1).
Point A is underperformed since point C' on limit function f(z)
consists of a lower level of the minimizing-oriented criterion x
while C' keeps the same y value as A. The difference between
A and ideal performance C can be measured as CE/AE. This
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Fig. 2. Three-criteria example (y = y°).

measure suggests that the z value can be improved from AF to
CFE when the y value remains the same; clearly, CE/AFE < 1.
Another point B is not within the feasible region, and its x
value needs to increase from BF to DF to be feasible. The dif-
ference between B and ideal performance can be measured as
DF/BF > 1. Obviously, points C' and D are associated with
the performance limit, and the difference measure relative to the
ideal performance is unity. For notation simplicity, let f~! de-
note the inverse function of f. The difference between a perfor-
mance bundle (x,y) and performance limit f(z), as illustrated
in Fig. 1, can be formalized and defined as
-1
D(z,y) = fT(U) =min{a: f(az) > y}. )

The second part of the definition in (1) states that one must
make the minimizing criterion as good (small) as possible while
maintaining maximizing criterion. Notably, performance bun-
dles C and D are both ideal, namely, the corresponding x value
is minimum given the y value. Any further better-off reduction
in z for points C' or D cannot be achieved without a worse-off
reduction in y. That is, there are tradeoffs between these two
criteria. In this sense, C' and D perform equally; one cannot de-
termine whether C or D performs better. In fact, bundles on the
limit are also referred to as Pareto efficient (McGuigan et al.
[14]).

Now, consider a case with two minimizing criteria (x =
(21, 22)) and one maximizing criterion y (Fig. 2). The z-axis
is the value for the minimizing-oriented criterion x ; the y-axis
represents the value for another minimizing-oriented criterion,
xo. Particularly, Fig. 2 represents the case of y = y°. Suppose
the performance limit, the ideal relationship between x and a
particular y°, is given as f(z1,2z2) = y° (Fig. 2). The shadow
area denoted as L(y°) is the region of x’s, such that f(x) > y°.
Any (x,y°) in the shadow area but not on y° = f(z1,x) im-
plies that 21 and/or x5 can be better off (smaller) while keeping
y = y°. Clearly, the performance represented by point P is not
the best. One way to improve the performance of P is to min-
imize both z; and z» proportionately while retaining y = y°.
Similar to the example presented in Fig. 1, the difference mea-
sure between P and ideal performance is OR/OP. A smaller
OR/OP represents the worse performance of P. Conversely,
point @ is infeasible with a difference measure of OS/0Q > 1.
Points S and R are at the performance limit of y = ¢, i.e., satis-
fyingy = f(21,22). Both S and R are Pareto efficient such that
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one cannot determine whether S or R is better; that is, tradeoffs
among minimizing-oriented criteria exist. The difference mea-
sure (1) can be rewritten as

D(x,y) = min{a : f(ax) > y}
min {a : (ax,y) € L(y)}. (2)

By applying similar arguments, difference measures can be
further generalized to multiple maximizing criteria, represented
by vector y, as

D(x,y) = min{a: (ax,y) € L(y)} 3)

where x is the performance vector of m minimizing-oriented
criteria and y is for n maximizing-oriented criteria. The case of
D(x,y) = 1 indicates that performance bundle (x,y) is fea-
sible and ideal performance is achieved. Thus, D(x,y) < 1
indicates that (x,y) can be better off, and D(x,y) > 1 indi-
cates that (x,y) is impossible. With a large deviation from 1,
the corresponding performance bundle differs significantly from
the ideal condition. For demonstration purposes, this work uses
minimizing-oriented analysis defined in (1)—(3); similarly, the
maximizing-oriented approach can be defined by keeping x the
same and scaling y.

B. Robustness and Alternative Selection

In practice, uncertainty associated with parameter values
is a challenge faced by decision makers. A complete lack of
knowledge regarding the probability distribution of uncertain
parameters likely exists. This study approaches a problem
when the joint probability distribution of uncertain parame-
ters is unknown or difficult to obtain. Robust optimization is
adopted in the proposed method to produce decisions that have
a robust objective function value under potentially possible
circumstances, i.e., to optimize the worst possible performance.
The robust concept is particularly preferred and useful for
risk-averse decision makers (Kouvelis and Yu [13]).

Several different methods exist for determining a robust de-
cision among candidates. One such method is the robust rela-
tive decision, which is the decision that exhibits the best worst
case percentage deviation from optimality. We assume that a set
of finite scenarios (S) represent different realizations of uncer-
tain parameters. By taking the scenario into account, the concept
and notion mentioned, such as (1)—(3), are rewritten with minor
modifications. For example, f<(z), L(y|s) and D(x,y|s) have
the same interpretations as f(z), L(y) and D(x,y), respec-
tively, under a particular scenario s € S. Inparticular, D(x, y|s)
represents the difference between performance bundle (x,y)
and performance limit under scenario s, which follows the same
principles in (3).

Let A be a set of alternatives and a € A denote an alter-
native to be evaluated for the scenarios in set .S. In a multicri-
teria setting, (x:,y:) denotes the performance for alternative
a € A under scenario s € S. As discussed earlier, the highest
feasible difference measurement D(-, -) equals 1. A robust alter-
native commonly adopted is to minimize maximum deviation of
the difference measurement D(x5,y%|s) from the ideal value,

J(x,x,)=y°

o x,

Fig. 3. Estimated performance limit.

1, across all the scenarios in set S. Such a criterion is suitable
for the environment in which performance of a selected alter-
native is evaluated after the uncertain situation is realized. This
process captures a notion that the decision is feasible for any
potential scenario and can protect a decision maker from per-
forming poorly in a given scenario (Kouvelis and Yu [13]). Deci-
sion makers typically search for a robust alternative «* € A that
performs well across all possible scenarios without attempting
to assign an assumed probability distribution to any uncertain
parameter via the following optimization problem:

min {max(l - D(xz,y(ﬂs))} . ()

acA seS

As a tool for alternative selection given knowledge of the
ideal scenario conditions, exaggerated performance can be con-
sidered a potential cheating behavior and should be penalized
significantly. Notably, (3) provides fraud-proof and assists in
filtering out unrealistic proposals. Alternative a is potentially
fraudulent given scenario s when D (x:,y%|s) > 1. Thus, al-
ternative a with D (x5,y|s) > 1 is removed from pool A be-
fore further data confirmation or any other action; only cases
of D (x5,y3|s) < 1 are considered. The relative deviation of
alternative a under scenario s, 1 — D (x,y:|s), can be inter-
preted as distance to the “ideal” situation, and deviation clearly
only exists when D (x3,y$[s) < 1.

C. Estimating Performance Limits

Sections II-A and II-B establish the theoretical foundations
for robust alternative evaluation and selection under a situation
in which the performance limit f;(z) and feasible region L(y|s)
for scenario s are known. This section further investigates how
to handle situations for which f,(x) and/or L(y|s) are unavail-
able, and provides a practical implementation of (3) and (4).

One can estimate the performance of a feasible region or per-
formance limit according to expertise or personal experience;
however, such estimation is typically subjective. Here the esti-
mation is based on historical data; that is, the results of knowl-
edge. Function fs(x) can be estimated by a piecewise linear
function. Fig. 3 is one example of the estimation where the
dots represent given historical records for a case with two min-
imizing criteria and one maximizing criterion. In other words,
fs(x) is estimated using the best performance bundles in a given
set of performance data.
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TABLE I
HYPOTHETICAL PERFORMANCE EXAMPLE
Record Alternative
B C D E F G Al A2
X 2 4 6 6 5 8 5 4
X, 4 8 6 7 6 11 5 8
h2] 3 4 7 8 4 7 7 3
) 2 6 6 5 3 7 6 2

To generalize this idea, given a set of observed records, de-
noted by W?, for each scenario s € S representing histor-
ical experiences, the difference index for alternative a € A,
D (x3,y3|s), is estimated by D (x5, y?$|s) as follows (Banker
et al. [1], Charnes et al. [2]):

D (25, y5|s) = min< 6 : Z XY\ < 6x3;
weWws

DY A0 weW b (5)
weWws

For demonstration purposes, implementing (5) for a simple
example is illustrated as follows. Consider hypothetical perfor-
mance data in a database with six records for a particular sce-
nario (Table 1), i.e., W* = {B,C, D, E, F,G}. Four criteria
and two alternatives, A1 and A2, are evaluated. According to

(5), the difference measure for Al is computed as

N

D (x%41,¥%1]s) = min#
5.t.2Ag +4Ac + 6Ap + 6Ag + 5AF + 8¢ < 50
AAp +8Ac +6Ap + TAp + 6Ap + 11Xg < 56
3AB+4Ac +TAp +8Ag +4Ap +TAg > 7
20+ 6Ac +6Ap +5Ag +3Ap + TAg > 6
AB > 0,Ac > 0,Ap >0, Ag > 0,AF >0, g >0

0 is free.

N

D (x%5,¥%5|$) is computed as follows:

A

D (x5, ¥/s) = minf
8.t.2\g +4X\c + 6Ap + 6Ag + 5Ap + 8Ag < 46
AAB + 8Ac + 6Ap + TAg + 6Ar + 11Ag < 80
A +4dAc+TAp+ 8 g +4Ap +TAg > 3
2AB + 6Ac + 6Ap + 5Ag + 3Ap + TAg > 2
AB2>20,Ac >20,Ap 2 0,Ag 2 0,Ap >20,Ag >0

0 is free.

Notably, the left side of the inequalities is constructed using
database records; only the right side of inequalities represents
alternative performance and differs for A1 and A2. In this ex-
ample, D (x%,,y%,]s) = 1.2 and D (x%,,y%,|s) = 0.5, in-
dicating that alternative A1 is potentially fraudulent and A2 is
underperformed.

An |A| x |S| matrix consisting of D (x3,y2|s) is constructed
by repeating the same computing procedure. Robust alternative
a* is determined by

a® = arg min {max (1 - ﬁ(mz,yﬂs))} . (6)

acA seS

m in Tennessee
in North Carolina
in South Carolina

m ~ Municipal collection sites
IE~ Non-profit recycling sites

~ Commercial processing sites
Large-scale recycler

m Prison processing site

Fig. 4. Potential 35 considered sites in the case study (adapted from Hong et
al. [11]).

TABLE II
KEY UNCERTAINTY VALUE SETTINGS FOR EIGHT SCENARIOS

Collection Utilization

Reusable Percentage

45% 75%
TV: 10%, CPU: 30%, Monitor: 25% S1 S2
TV: 5%, CPU: 30%, Monitor: 25% S3 S4
TV: 10%, CPU: 10%, Monitor: 10% S5 S6
TV: 5%, CPU: 10%, Monitor: 10% S7 S8

III. CASE STUDY

This case study is based on an e-scrap RPS infrastructure
design and demonstrates the use of the proposed robust multi-
criteria alternative selection procedure. A decision maker, such
as the government, evaluates and selects bids for e-scrap infra-
structure design using several estimates of criteria under uncer-
tainty. This work utilizes the dataset presented in Hong et al.
[11] as input parameters for this case study to demonstrate ap-
plication of the proposed method.

This study selects a robust alternative infrastructure design
to handle the accumulated end-of-life electronic products in the
state of Georgia, an area covering approximately 57 906 square
miles (149911 km?) with an estimated population of 8.4 mil-
lion. At this initial stage, the main physical inputs to the system
are considered obsolete televisions (TVs), computer monitors,
and desktop computers (CPUs). We predict that more than 5.5
million pounds of used TVs, 3.3 million pounds of computer
monitors, and 1.8 million pounds of CPUs will be scrapped.
The potential RPS infrastructure sites are municipal collection
sites, nonprofit recycling sites, commercial processing sites, a
large-scale recycler, and a prison processing site.

A potential contractor proposes an infrastructure design with
several estimates for criteria, such as associated cost, revenue,
and amount collected, under several predefined uncertain sce-
narios. However, a contractor may list an exaggerated measure
to increase the likelihood of winning the contract. A major task
in the proposed method is to identify the possible fraudulent al-
ternative in which measures claimed by a contractor may not be
achievable. Furthermore, the objective of the decision maker is
to select a robust alternative for infrastructure design among ten
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TABLE III
CRITERIA VALUES OF EACH ALTERNATIVE
Alternative
Scenario Al A2 A3 A4 A5 A6 A7 A8 A9 Al10
Cost 4,943 5,285 4,632 4,179 4,681 5,042 3,954 4,425 4,805 4,574
S1 Revenue 6,059 6,107 5,641 5,128 5,646 6,132 6,059 5,382 5,771 5,641
Collection 7,147 7,354 6,479 5,603 6,479 7,275 7,147 5,844 6,696 6,479
Cost 4,896 5,285 4,853 4,554 5,037 4,980 3,943 4,554 5,151 4,986
S2 Revenue 6,292 6,379 6,122 5,745 6,273 6,320 6,327 5,745 6,393 6,318
Collection 7,600 7,694 7,336 6,624 7,621 7,621 7,600 6,624 7,710 7,621
Cost 3,835 4,263 3,744 4,078 3,958 3,921 3,068 4,024 3,987 3,725
S3 Revenue 4,851 4,973 4,654 4,987 4,859 4912 4,851 4,934 4,882 4,707
Collection 4,913 5,027 4,711 5,044 4,955 4,955 4,913 5,044 4918 4,711
Cost 4,741 5,049 4,513 4,158 4,543 4,434 3,793 4,154 4,586 4,437
S4 Revenue 5,956 5,988 5,614 5,248 5,625 5,625 5,956 5,248 5,666 5,625
Collection 7,267 7,259 6,624 5,797 6,624 6,624 7,267 5,797 6,624 6,624
Cost 2,327 2,657 2,442 2,001 2,461 2,360 1,877 2,001 2,461 2,376
S5 Revenue 2,623 2,641 2,623 2,160 2,654 2,636 2,641 2,160 2,654 2,654
Collection 3,415 3,415 3,415 2,540 3,415 3,415 3,415 2,540 3,415 3,415
Cost 3,074 3,388 3,185 2,497 3,198 3,112 2,459 2,497 3,198 3,110
S6 Revenue 3,542 3,542 3,542 2,768 3,542 3,542 3,542 2,768 3,542 3,542
Collection 5,166 5,166 5,166 3,707 5,166 5,166 5,166 3,707 5,166 5,166
Cost 1,942 2,257 2,050 1,614 1,642 1,947 1,552 1,614 1,642 1,948
S7 Revenue 2,101 2,101 2,112 1,715 1,715 2,101 2,101 1,715 1,715 2,101
Collection 2,540 2,540 2,540 1,665 1,665 2,540 2,540 1,665 1,665 2,540
Cost 2,953 3,266 3,064 2,504 2,511 2,390 2,360 2,504 2,511 2,406
S8 Revenue 3,244 3,244 3,244 2,691 2,691 2,666 3,244 2,691 2,691 2,675
Collection 4,905 4,905 4,905 3,707 3,707 3,707 4,905 3,707 3,707 3,707

Cost and Revenue: Dollars in thousands
Collection: Pounds in thousands

potential alternatives representing different infrastructure con-
figurations. Fig. 4 shows the potential collection and processing
sites. This case study considers 12 potential municipal collec-
tion sites based on service regions defined by Georgia’s Depart-
ment of Community Affairs (DCA) and 15 potential commer-
cial processing sites (nine in Georgia, two in Tennessee, two in
North Carolina, and two in South Carolina) (DCA [8], Hong et
al. [11]). Additionally, six nonprofit processing sites, one large
commercial processing site, and one prison processing site are
included in the set of candidate sites. Each facility is an actual
refurbishing and/or demanufacturing site located in Georgia or
nearby states. The potential site locations also coincide with the
population distribution where more than half of Georgia resi-
dents live in metropolitan Atlanta.

As mentioned in Section II-B, uncertainty inevitably impacts
RPS infrastructure design. For example, system profits due
to sales of refurbished products are definitely affected by the
uncertain parameter for the estimate of the quality of end-of-life
products. The key uncertain parameters in this case study are as
follows: 1) utilization of collection infrastructure; 2) percentage
of reusable CPUs and monitors; and 3) percentage of reusable
televisions (Hong et al. [11]). Typically, decision makers can
predict the lower and upper bounds of uncertain parameters. A
practical approach for generating particular scenarios accounts
for combinations of extreme points, but not limited to, within a
prediction range of uncertain parameters. Consequently, these
three uncertain parameters, with two levels specified for each
parameter, result in 23 or eight scenarios. Table II lists the
eight scenarios in detail. Notably, a tradeoff exists between
the number of scenarios and effort when making a decision.
Additional scenarios can improve the representation of uncer-

tainties in reality; however, such an increase increases the effort
expended in data collection and computations.

A decision maker may be interested in the total amount
collected in addition to the measure of total revenue when
considering an e-scrap RPS infrastructure design problem. In
this case study, maximizing-oriented criteria are total revenue
and amount collected; the minimizing-oriented criterion is
total cost. The decision maker selects a robust and feasible
alternative from ten potential infrastructure designs proposed
by contractors. Table III lists the associated measures for cost,
revenue, and amounts collected claimed by contractors under
each scenario. In real practical cases, these data provided by
contractors indicate estimated cost and promised revenue, as
well as amounts collected that correspond to possible scenarios.

To evaluate these potential alternatives proposed by contrac-
tors, decision makers must estimate the reference performance
limit and/or feasible region based on experience. This case study
utilizes the model proposed by Hong et al. [11] to generate a
bunch of reference performance bundles with associated rev-
enues and amounts collected (maximizing criteria) and costs
(minimizing criterion). Given a specific total cost, the optimal
(feasible) solution for total revenue and amount collected can be
obtained by Hong et al. [11]. For each scenario, this case study
collects 12 performance bundles,! which are used to approxi-
mate the performance limit. Notably, a larger set of observation
points results in better approximation of the performance limit;
however, computation time and effort expended during data col-
lection increase.

The performance indices of each alternative under all sce-
narios in this case study are computed based on (5). Table IV

IThese data are available at http://nirvana.iem.nctu.edu.tw/wenchih/rpsdata.
pdf.
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TABLE IV
ROBUST PERFORMANCE OF EACH ALTERNATIVE

Scenario Al A2 A3 A4 AS A6 A7 A8 A9 A10
0.999 0955 0975 0952 0965  0.995 0940 0968  0.987
51 (0.001)  (0.045)  (0.025) (0.048)  (0.035)  (0.005) 1.249 (0.060)  (0.032)  (0.013)

© 0.948 0.889 0926 0903 0922 0935 . 0903 0915 0934
0.052)  (0.111)  (0.074)  (0.097)  (0.078)  (0.065) (0.097)  (0.085)  (0.066)

. 0.925 0852 0909 0894 0902 0914 . 0902 0893 0917
(0.075)  (0.148)  (0.091)  (0.106)  (0.098)  (0.086) (0.098)  (0.107)  (0.083)

o 0.932 0876 0903 0878 0897 0919 0879 0891 0919
0.068)  (0.124)  (0.097)  (0.122)  (0.103)  (0.081) (0.121)  (0.109)  (0.081)

s 0.961 0844 0916 0857 0912 0949 . 0857 0912 0945
(0.039)  (0.156)  (0.084) (0.143)  (0.088)  (0.051) (0.143)  (0.088)  (0.055)

s 0.971 0881 0938 0896 0934 0960 . 0896 0934 0960
0.029)  (0.119)  (0.062) (0.104)  (0.066)  (0.040) (0.104)  (0.066)  (0.040)

. 0.947 0814 0899 0847 0832 094 . 0847 0832 0944
(0.053)  (0.186) (0.101)  (0.153)  (0.168)  (0.056) (0.153)  (0.168)  (0.056)

s 0.963 0871 0928 0902 0900  0.941 s 0902 0900 0936
(0.037)  (0.129)  (0.072)  (0.098)  (0.100)  (0.059) (0.098)  (0.100)  (0.064)

max deviation  0.075 0.18  0.101  0.153  0.168  0.086 0153 0168  0.083

summarizes these performance indices. The values in brackets
are relative deviations from ideal conditions. Notably, A7 has
an index value > 1. As mentioned, this implies that A7 out-
performs the best experienced performance, and may also indi-
cate a potential error and/or fraud associated with claimed per-
formance values. Further confirmation and validation should be
performed, and, in this case study, A7 is removed from the can-
didate list. The last row in the bottom of Table IV, except that
for A7, lists the maximum relative deviation of all alternatives,
which represents the worst case under all scenarios. Notably, A1l
has the lowest maximum relative deviation (0.075), indicating
that it is the robust selection among candidates based the pro-
posed method. Thus, alternative A1l captures a notion of “risk”
that the decision maker wants to protect himself/herself from se-
lecting a very poorly performed alternative in a given scenario.

IV. CONCLUSION

Given concerns regarding the environmental impact of dis-
posed waste and the economic value associated with recovered
materials, efficient reverse logistics systems have become in-
creasingly important. How to best design an effective e-scrap
RPS infrastructure is both important and challenging as multiple
objectives must be achieved, and uncertainty regarding external
system parameters in the real world must be considered. This
study presents a novel method for e-scrap RPS design selection
that can be applied easily to other applications that face similar
challenges. The case study also demonstrates application of the
proposed method for properly selecting a RPS design among al-
ternatives.

The proposed alternative selection procedure differs from ro-
bust optimization approaches (e.g., Hong ez al. [11], Realff et al.
[16]) in the purpose and timing of deployment. The optimiza-
tion model is used to generate an optimal alternative, whereas
the proposed method is applied to evaluate and select a rela-
tively optimal alternative from a given pool of alternatives. The

alternatives in the candidate pool may be proposed by contrac-
tors using various methods including ad-hoc and conventional
optimization methods. The proposed method is used as a second
stage of RPS infrastructure design, which is generally overseen
by government, to select a robust solution from the list gener-
ated by methods unknown to those evaluating the solutions.

In public tenders, contractors may only provide a single
bundle of criteria values instead of proposing a full set of values
for all scenarios. For example, criteria values for the eight
scenarios in this case study may be aggregated into one rep-
resentative value. However, the synthesis process is unknown
and case-dependent, and is not addressed in this work. Further
investigation can analyze this challenging problem.
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