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Abstract

A linear k-forest is a forest whose components are paths of length at most k. The linear k-arboricity of a graph G, denoted by
lak(G), is the least number of linear k-forests needed to decompose G. In this paper, we completely determine lak(G) when G is a
balanced complete bipartite graph Kn,n or a complete graph Kn, and k = 3.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple edges. We refer
to [15] for terminology in Graph Theory. A decomposition of a graph is a list of subgraphs such that each edge
appears in exactly one subgraph in the list. If a graph G has a decomposition G1, G2, . . . , Gd , then we say that
G1, G2, . . . , Gd decompose G, or G can be decomposed into G1, G2, . . . , Gd . Furthermore, a linear k-forest is a
forest whose components are paths of length at most k. The linear k-arboricity of a graph G, denoted by lak(G), is the
least number of linear k-forests needed to decompose G.

The linear k-arboricity of a graph was first introduced by Habib and Peroche [10]. It is a natural generalization
of edge coloring. Clearly, a linear 1-forest is induced by a matching, and la1(G) is the edge chromatic number, or
chromatic index, �′(G) of a graph G. Moreover, the linear k-arboricity lak(G) is also a refinement of the ordinary linear
arboricity la(G) (or la∞(G)) of a graph G, which is the case when every component of each forest is a path with no
length constraint.

In 1982, Habib and Peroche [9] proposed the following conjecture for an upper bound on lak(G).
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Conjecture 1.1. If G is a graph with maximum degree �(G) and k�2, then

lak(G)�
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⌋
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when �(G) = |V (G)| − 1 and

⎡
⎢⎢⎢⎢⎢

(�(G) · |V (G)|) + 1

2
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k · |V (G)|
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⌋
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⎥⎥⎥⎥⎥

when �(G) < |V (G)| − 1.

So far, quite a few results on the verification of Conjecture 1.1 have been obtained in the literature, especially for
graphs with particular structures, such as trees [4,5,10], cubic graphs [3,12,14], regular graphs [1,2], planar graphs
[13], balanced complete bipartite graphs [7,8] and complete graphs [3,6,7,16]. As for a lower bound on lak(G), since
any vertex in a linear k-forest has degree at most 2 and a linear k-forest in a graph G has at most � k·|V (G)|

k+1 � edges, we
can obtain the following result.

Proposition 1.2.

lak(G)� max
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.

In this paper, we completely determine lak(G) when G is a balanced complete bipartite graph Kn,n or a complete
graph Kn, and k = 3. The results are coherent with the corresponding cases of Conjecture 1.1.

2. Linear 3-arboricity of Kn,n

Let G(X, Y ) be a bipartite graph with partite sets X = {x0, x1, . . . , xr−1} and Y = {y0, y1, . . . , ys−1}. Suppose that
|Y | = s�r = |X|. We define the bipartite difference of an edge xpyq in G(X, Y ) as the value q − p (mod s). It is not
difficult to see that a set consists of those edges in G(X, Y ) with the same bipartite difference must be a matching. In
particular, such a set is a perfect matching if G(X, Y ) is a Kn,n. Furthermore, we can partition the edge set of Kn,n into
n pairwise disjoint perfect matchings M0, M1, . . . , Mn−1 such that Mi is exactly the set of edges of bipartite difference
i in Kn,n, i = 0, 1, . . . , n − 1.

Lemma 2.1. If n�4 is even and � belongs to {0, 1, . . . , n − 3}, then the edges of bipartite differences �, � + 1 and
� + 2 in Kn,n can form two edge-disjoint linear 3-forests.

Proof. Consider Kn,n with partite sets X={x0, x1, . . . , xn−1} and Y ={y0, y1, . . . , yn−1}. Let M�={xiyi+� (mod n) | i=
0, 1, . . . , n−1}, M�+1 ={xiyi+(�+1) (mod n) | i=0, 1, . . . , n−1} and M�+2 ={xiyi+(�+2) (mod n) | i=0, 1, . . . , n−1} be
the sets of edges of bipartite differences �, �+1 and �+2 in Kn,n, respectively. Each of M�, M�+1 and M�+2 is a perfect
matching in Kn,n. Then, by partitioning M�+1 into two disjoint matchings W1={xiyi+(�+1) (mod n) | i=0, 2, 4, . . . , n−2}
and W2 = {xiyi+(�+1) (mod n) | i = 1, 3, 5, . . . , n − 1}, the edges in M� ∪ W1 can form one linear 3-forest in Kn,n and
the edges in M�+2 ∪ W2 can form another one. Thus the assertion holds. �

Lemma 2.2. If n�3 is odd, � belongs to {0, 1, . . . , n − 3} and e is an edge of bipartite difference � + 1 in Kn,n, then
the edges other than e of bipartite differences �, � + 1 and � + 2 in Kn,n can form two edge-disjoint linear 3-forests.

Proof. It is analogous to the proof of Lemma 2.1. Suppose that e=xryr+(�+1) (mod n) for some r ∈ {0, 1, . . . , n−1}. If r is
even, then we partition M�+1 into three pairwise disjoint matchings {e}, W1={xiyi+(�+1) (mod n) | i=0, 2, . . . , r−2, r+
1, r+3, . . . , n−2} and W2={xiyi+(�+1) (mod n) | i=1, 3, . . . , r−1, r+2, r+4, . . . , n−1}. If r is odd, then we partition
M�+1 into three pairwise disjoint matchings {e}, W1 ={xiyi+(�+1) (mod n) | i = 1, 3, . . . , r − 2, r + 1, r + 3, . . . , n− 1}
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and W2 = {xiyi+(�+1) (mod n) | i = 0, 2, . . . , r − 1, r + 2, r + 4, . . . , n − 2}. Then the edges in M� ∪ W1 can form one
linear 3-forest in Kn,n and the edges in M�+2 ∪ W2 can form another one. Thus the assertion holds. �

Now, we are ready to show our main results in this section.

Proposition 2.3. la3(Kn,n)�	 2n
3 
 when n ≡ 0 (mod 6).

Proof. Since n ≡ 0 (mod 6), by Lemma 2.1, the edges of bipartite differences 0, 1, . . . , n − 1 in Kn,n can form
( n

3 ) · 2 = 2n
3 = 	 2n

3 
 pairwise edge-disjoint linear 3-forests. Thus la3(Kn,n)�	 2n
3 
 when n ≡ 0 (mod 6). �

Proposition 2.4. la3(Kn,n)�	 2n
3 
 when n ≡ 4 (mod 6).

Proof. Since n ≡ 4 (mod 6), by Lemma 2.1, the edges of bipartite differences 0, 1, . . . , n − 2 in Kn,n can form
( n−1

3 ) · 2 = 2(n−1)
3 pairwise edge-disjoint linear 3-forests. Also, the edges of bipartite difference n− 1 in Kn,n can form

one linear 3-forest. Thus la3(Kn,n)� 2(n−1)
3 + 1 = 2n+1

3 = 	 2n
3 
 when n ≡ 4 (mod 6). �

Proposition 2.5. la3(Kn,n)�	 2n
3 
 when n ≡ 2 (mod 6).

Proof. Since n ≡ 2 (mod 6), by Lemma 2.1, the edges of bipartite differences 0, 1, . . . , n − 3 in Kn,n can form
( n−2

3 ) · 2 = 2(n−2)
3 pairwise edge-disjoint linear 3-forests. Also, the edges of bipartite difference n− 2 in Kn,n can form

one linear 3-forest, and the edges of bipartite difference n−1 in Kn,n can form another one. Thus la3(Kn,n)� 2(n−2)
3 +

2 = 2n+2
3 = 	 2n

3 
 when n ≡ 2 (mod 6). �

Proposition 2.6. la3(Kn,n)�	 2n
3 
 when n ≡ 5 (mod 6).

Proof. If H is a subgraph of a graph G, then lak(H)� lak(G). Thus, la3(Kn,n)� la3(Kn+1,n+1)�	 2(n+1)
3 
=	 2n+2

3 
=
	 2n

3 
 by Proposition 2.3 and n ≡ 5 (mod 6). �

Proposition 2.7. la3(Kn,n)�	 2n+2
3 
 when n ≡ 3 (mod 6).

Proof. Since Kn,n is a subgraph of Kn+1,n+1, la3(Kn,n)� la3(Kn+1,n+1)�	 2(n+1)
3 
 = 	 2n+2

3 
 by Proposition 2.4 and
n ≡ 3 (mod 6). �

Proposition 2.8. la3(Kn,n)�	 2n
3 
 when n ≡ 1 (mod 6).

Proof. Consider Kn,n with partite sets X = {x0, x1, . . . , xn−1} and Y = {y0, y1, . . . , yn−1}. First, let et = xn−t

yn−t+3(t−1)+1 (mod n) be an edge of bipartite difference 3(t − 1) + 1 in Kn,n, t = 1, 2, . . . , n−1
3 . Then, by Lemma

2.2, the edges other than et of bipartite differences 3(t − 1), 3(t − 1) + 1 and 3(t − 1) + 2 in Kn,n can form two
edge-disjoint linear 3-forests, for all t ∈ {1, 2, . . . , n−1

3 }. Hence, the edges other than e1, e2, . . . , e(n−1)/3 of bipartite

differences 0, 1, . . . , n − 2 in Kn,n can form ( n−1
3 ) · 2 = 2(n−1)

3 pairwise edge-disjoint linear 3-forests.
Next, let E = {e1, e2, . . . , e(n−1)/3}, and also let H be the subgraph of Kn,n induced by E ∪ Mn−1, where Mn−1 =

{xiyi+(n−1) (mod n) | i=0, 1, . . . , n−1} is the set of edges of bipartite difference n−1 in Kn,n. Since E is a matching and
Mn−1 is a perfect matching in Kn,n, each component of H is a path or an even cycle. Now, without loss of generality,
assume that P = u − w1 − w2 − v is a path of length 3 in H with w1 ∈ X and w2 ∈ Y . Then the edge w1w2 in P must
belong to E. Otherwise, if w1w2 ∈ Mn−1, then w1u ∈ E and vw2 ∈ E, i.e., w1 ∈ X′ = {xn−1, xn−2, . . . , xn−(n−1)/3}
and w2 ∈ Y ′ = {y0, y2, . . . , yn−(n−1)/3−3}. But, any edge ab formed by a ∈ X′ and b ∈ Y ′ cannot belong to Mn−1, it
is a contradiction. Therefore, it implies that each component of H is a path of length at most 3, and hence H is a linear
3-forest in Kn,n.

Accordingly, la3(Kn,n)� 2(n−1)
3 + 1 = 2n+1

3 = 	 2n
3 
 when n ≡ 1 (mod 6). �

Finally, we conclude the work of this section by the following theorem.
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Theorem 2.9.

la3(Kn,n) =

⎧⎪⎪⎨
⎪⎪⎩

⌈
2n

3

⌉
when n ≡ 0, 1, 2, 4, 5 (mod 6) and

⌈
2n + 2

3

⌉
when n ≡ 3 (mod 6).

Proof. la3(Kn,n)�	 2n
3 
 or la3(Kn,n)�	 2n+2

3 
, following the value of n (mod 6), via Propositions 2.3–2.8, while
la3(Kn,n)�	 2n

3 
 or la3(Kn,n)�	 2n+2
3 
, following the value of n (mod 6), by Proposition 1.2. This concludes the

proof. �

3. Linear 3-arboricity of Kn

In [3], Bermond et al. mentioned briefly the result that la3(K12t+4) = 8t + 2 for any t �0 can be obtained by using
techniques of resolvable design in the theory of combinatorial design. In this section, we will determine la3(Kn) for
any n ∈ N by specifying how the linear 3-forests decompose Kn are to be found.

Assume that G and H are graphs. A spanning subgraph F of G is called an H-factor if each component of F is
isomorphic to H. If G is expressible as an edge-disjoint union of H-factors, then this union is called an H-factorization
of G. Furthermore, we say that a 1-factor of a graph G is a spanning 1-regular subgraph of G. A decomposition of a
regular graph G into 1-factors is a 1-factorization of G. A graph with a 1-factorization is 1-factorable. For a complete
graph Kn, the following result is well-known.

Theorem 3.1 (Harary [11]). If n is even, then Kn can be decomposed into n− 1 pairwise edge-disjoint 1-factors, and
thus it is 1-factorable.

Proof. We can obtain simply the n − 1 pairwise edge-disjoint 1-factors f0, f1, . . . , fn−2 of Kn from a circle and n
2

chords in it. Let the n − 1 vertices be placed equally spaced round a circle, and label them v0, v1, . . . , vn−2; also label
the center vn−1. Then, for each j ∈ {0, 1, . . . , n − 2}, the 1-factor fj is induced by an edge joining vertices vj and
vn−1, and by parallel edges joining the other vertices in pairs. �

We need to specify the proof because such a method can ensure that each 1-factor fj other than fn/2−1 contains an
edge vkvk+1 for some k ∈ {0, 1, . . . , n− 3}; it cannot be ensured if we label the n− 1 outside vertices v1, v2, . . . , vn−1
and the center v0.

Consider Kn with vertices v0, v1, . . . , vn−1. We define the difference d of an edge vivj ∈ E(Kn) as the value
min{|i − j |, n − |i − j |}. Then the edge set E(Kn) can be expressed as {vivi+d (mod n) | i = 0, 1, . . . , n − 1 and d =
1, 2, . . . , n

2 − 1} ∪ {vivi+d (mod n) | i = 0, 1, . . . , n
2 − 1 and d = n

2 } when n is even, or {vivi+d (mod n) | i = 0, 1, . . . , n −
1 and d = 1, 2, . . . , n−1

2 } when n is odd. Furthermore, if Vr and Vs are any two disjoint subsets of the vertex set of a
graph G, then we denote the induced bipartite subgraph with partite sets Vr and Vs in G by a pair (Vr , Vs) (=(Vs, Vr)).

Now, we are ready to show our main results.

Proposition 3.2. la3(Kn)�	 2n−2
3 
 when n ≡ 0, 4, 8 (mod 12).

Proof. Let m= n
2 . First, we partition the vertex set of Kn into m pairwise disjoint subsets Vi={xi, yi}, i=0, 1, . . . , m−1.

Then Kn can be expressed as a union of the 1-factor induced by the perfect matching M0={xiyi | i=0, 1, . . . , m−1} and
the spanning subgraph Kn−M0, denoted by H, which is an edge-disjoint union of pairs (Vr , Vs) for all 0�r �= s�m−1.

Next, for each Vi of H, we identify xi with yi and denote such a vertex by vi . Then we obtain a complete graph
H̃ with vertex set V (H̃ ) = {v0, v1, . . . , vm−1} and edge set E(H̃ ) = {vivi+d (mod m) | i = 0, 1, . . . , m − 1 and d =
1, 2, . . . , m

2 − 1} ∪ {vivi+d (mod m) | i = 0, 1, . . . , m
2 − 1 and d = m

2 }. Each edge vivi+d (mod m) of H̃ corresponds to a
pair (Vi, Vi+d (mod m)) of H which is isomorphic to K2,2, and vice versa.

By |V (H̃ )|=m, m is even and Theorem 3.1, H̃ can be decomposed into m−1 pairwise edge-disjoint 1-factors. Since
each 1-factor of H̃ corresponds to a K2,2-factor of H, we also have that H can be decomposed into m−1 pairwise edge-
disjoint K2,2-factors. Hence, if we take away an edge xiyi+d (mod m) from each pair (Vi, Vi+d (mod m)) of H, then each
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K2,2-factor of H produces a linear 3-forest in H (or Kn). Therefore, we can obtain m − 1 pairwise edge-disjoint linear
3-forests in H (or Kn) from the m − 1 pairwise edge-disjoint K2,2-factors of H. Moreover, those edges we took away
from H can be partitioned into m

2 − 1 pairwise disjoint perfect matchings Md = {xiyi+d (mod m) | i = 0, 1, . . . , m − 1},
d = 1, 2, . . . , m

2 − 1, and one matching Mm/2 = {xiyi+m/2 (mod m) | i = 0, 1, . . . , m
2 − 1}.

Now, let G(X, Y ) be a complete bipartite graph with partite sets X = {xi | i = 0, 1, . . . , m − 1} and Y = {yi | i =
0, 1, . . . , m−1}. Then M0, M1, M2, . . . , Mm/2−1 are exactly the sets of edges of bipartite differences 0, 1, 2, . . . , m

2 −1
in G(X, Y ), respectively, and Mm/2 consists of a half of the edges of bipartite difference m

2 in G(X, Y ). Hence, by
|X| = |Y | = m, m is even and Lemma 2.1, the edges of M1, M2, . . . , Mm/2−1 can form⌈(

m/2 − 1

3

)
· 2

⌉
=

⌈
m − 2

3

⌉

pairwise edge-disjoint linear 3-forests in G(X, Y ) (or Kn). Besides, the edges of M0 and Mm/2 also can form one linear
3-forest in G(X, Y ) (or Kn).

Accordingly, la3(Kn)�(m − 1) + 	m−2
3 
 + 1 = 	 2n−2

3 
 by m = n
2 and n ≡ 0, 4, 8 (mod 12). �

Proposition 3.3. la3(Kn)�	 2n
3 
 when n ≡ 2, 6, 10 (mod 12).

Proof. Let m = n−2
2 . First, we partition the vertex set of Kn into m + 2 pairwise disjoint subsets Vi = {xi, yi},

i = 0, 1, . . . , m − 1, Vm = {vm} and Vm+1 = {vm+1}. Then Kn can be expressed as a union of the subgraph induced
by the matching M0 = {xiyi | i = 0, 1, . . . , m − 1} and the spanning subgraph Kn − M0, denoted by H, which is an
edge-disjoint union of pairs (Vr , Vs) for all 0�r �= s�m + 1.

Next, for each Vi other than Vm and Vm+1 of H, we identify xi with yi and denote such a vertex by vi . Then we obtain a
complete graph H̃ with vertex set V (H̃ )={v0, v1, . . . , vm+1} and edge set E(H̃ )={vivi+d (mod m+2) | i=0, 1, . . . , m+1
and d = 1, 2, . . . , m+2

2 − 1} ∪ {vivi+d (mod m+2) | i = 0, 1, . . . , m+2
2 − 1 and d = m+2

2 }. Each edge vivi+d (mod m+2) of
H̃ corresponds to a pair (Vi, Vi+d (mod m+2)) of H which is isomorphic to K2,2, K1,2 or K1,1, and vice versa.

By |V (H̃ )| = m + 2, m + 2 is even and Theorem 3.1, H̃ can be decomposed into m + 1 pairwise edge-disjoint
1-factors. Since each 1-factor of H̃ corresponds to a spanning subgraph of H which satisfies that every component is
isomorphic to K2,2, K1,2 or K1,1, we also have that H can be decomposed into m + 1 pairwise edge-disjoint spanning
subgraphs H0, H1, . . . , Hm such that in each of which every component is isomorphic to K2,2, K1,2 or K1,1. Hence,
if we take away an edge xiyi+d (mod m+2) from each pair (Vi, Vi+d (mod m+2)) of H which is isomorphic to K2,2, then
each of H0, H1, . . . , Hm produces a linear 3-forest in H (or Kn). Therefore, we can obtain m + 1 pairwise edge-
disjoint linear 3-forests in H (or Kn) from H0, H1, . . . , Hm. Moreover, those edges we took away from H can be
partitioned into m

2 pairwise disjoint matchings Md = {xiyi+d (mod m) | i = 0, 1, . . . , m − 1}, d = 1, 2, . . . , m
2 − 1, and

Mm/2 = {xiyi+m/2 (mod m) | i = 0, 1, . . . , m
2 − 1}.

Now, let G(X, Y ) be a complete bipartite graph with partite sets X = {xi | i = 0, 1, . . . , m − 1} and Y = {yi | i =
0, 1, . . . , m−1}. Then M0, M1, M2, . . . , Mm/2−1 are exactly the sets of edges of bipartite differences 0, 1, 2, . . . , m

2 −1
in G(X, Y ), respectively, and Mm/2 consists of a half of the edges of bipartite difference m

2 in G(X, Y ). Hence, by
|X| = |Y | = m, m is even and Lemma 2.1, the edges of M1, M2, . . . , Mm/2−1 can form⌈(

m/2 − 1

3

)
· 2

⌉
=

⌈
m − 2

3

⌉

pairwise edge-disjoint linear 3-forests in G(X, Y ) (or Kn). Besides, the edges of M0 and Mm/2 also can form one linear
3-forest in G(X, Y ) (or Kn).

Accordingly, la3(Kn)�(m + 1) + 	m−2
3 
 + 1 = 	 2n

3 
 by m = n−2
2 and n ≡ 2, 6, 10 (mod 12). �

Proposition 3.4. la3(Kn)�	 2n
3 
 when n ≡ 1, 9 (mod 12).

Proof. Let m = n−1
2 . First, we partition the vertex set of Kn into m pairwise disjoint subsets Vi = {xi, yi}, i =

0, 1, . . . , m − 1, and one subset {u}. Then Kn can be expressed as a union of the star induced by the edge subset
U = {uxi, uyi | i = 0, 1, . . . , m − 1}, the subgraph induced by the matching M0 = {xiyi | i = 0, 1, . . . , m − 1} and the
subgraph (Kn − u) − M0, denoted by H, which is an edge-disjoint union of pairs (Vr , Vs) for all 0�r �= s�m − 1.
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Next, for each Vi of H, we identify xi with yi and denote such a vertex by vi . Then we obtain a complete graph
H̃ with vertex set V (H̃ ) = {v0, v1, . . . , vm−1} and edge set E(H̃ ) = {vivi+d (mod m) | i = 0, 1, . . . , m − 1 and d =
1, 2, . . . , m

2 − 1} ∪ {vivi+d (mod m) | i = 0, 1, . . . , m
2 − 1 and d = m

2 }. Each edge vivi+d (mod m) of H̃ corresponds to a
pair (Vi, Vi+d (mod m)) of H which is isomorphic to K2,2, and vice versa.

By |V (H̃ )| = m, m is even and the proof of Theorem 3.1, H̃ can be decomposed into m − 1 pairwise edge-
disjoint 1-factors f0, f1, . . . , fm−2 such that each 1-factor fj other than fm/2−1 contains an edge vkvk+1 for some
k ∈ {0, 1, . . . , m − 3}. Since each 1-factor of H̃ corresponds to a K2,2-factor of H, we also have that H can be
decomposed into m − 1 pairwise edge-disjoint K2,2-factors H0, H1, . . . , Hm−2 such that each K2,2-factor Hj other
than Hm/2−1 contains a pair (Vk, Vk+1) for some k ∈ {0, 1, . . . , m − 3}.

Hence, if we take away an edge xiyi+d (mod m) from each pair (Vi, Vi+d (mod m)) of H, then each K2,2-factor of H
produces a linear 3-forest in H (or Kn). Therefore, from H0, H1, . . . , Hm−2, we can obtain m−1 pairwise edge-disjoint
linear 3-forests L0, L1, . . . , Lm−2 in H (or Kn) such that each linear 3-forest Lj other than Lm/2−1 contains a 3-path
xk −xk+1 −yk −yk+1 for some k ∈ {0, 1, . . . , m− 3}. Moreover, those edges we took away from H can be partitioned
into m

2 − 1 pairwise disjoint perfect matchings Md = {xiyi+d (mod m) | i = 0, 1, . . . , m − 1}, d = 1, 2, . . . , m
2 − 1, and

one matching Mm/2 = {xiyi+m/2 (mod m) | i = 0, 1, . . . , m
2 − 1}.

Now, for each Lj other than Lm/2−1, we replace the 3-path xk − xk+1 − yk − yk+1 inside Lj by another 3-path
yk −u−xk −yk+1 induced by {uxk, uyk, xkyk+1} ⊆ U ∪M1. Then, let those replaced 3-paths xk −xk+1 −yk −yk+1 for
all k ∈ {0, 2, . . . , m− 4} and the 3-path ym−2 −u− xm−2 − ym−1 induced by {uxm−2, uym−2, xm−2ym−1} ⊆ U ∪M1
form one linear 3-forest T1 in Kn; also let those replaced 3-paths xk − xk+1 − yk − yk+1 for all k ∈ {1, 3, . . . , m − 3}
and the 3-path ym−1 − u − xm−1 − y0 induced by {uxm−1, uym−1, xm−1y0} ⊆ U ∪ M1 form another linear 3-
forest T2 in Kn. It is worthy of noting that all edges of U and M1 are being used to form linear 3-forests T1 and T2
in Kn.

Furthermore, let G(X, Y ) be a complete bipartite graph with partite sets X={xi | i=0, 1, . . . , m−1} and Y ={yi | i=
0, 1, . . . , m−1}. Then M0, M2, M3, . . . , Mm/2−1 are exactly the sets of edges of bipartite differences 0, 2, 3, . . . , m

2 −1
in G(X, Y ), respectively, and Mm/2 consists of a half of the edges of bipartite difference m

2 in G(X, Y ). Hence, by
|X| = |Y | = m, m is even and Lemma 2.1, the edges of M2, M3, . . . , Mm/2−1 can form

⌈(
m/2 − 2

3

)
· 2

⌉
=

⌈
m − 4

3

⌉

pairwise edge-disjoint linear 3-forests in G(X, Y ) (or Kn). Besides, the edges of M0 and Mm/2 also can form one linear
3-forest in G(X, Y ) (or Kn).

Accordingly, la3(Kn)�(m − 1) + 2 + 	m−4
3 
 + 1 = 	 2n

3 
 by m = n−1
2 and n ≡ 1, 9 (mod 12). �

Proposition 3.5. la3(Kn)�	 2n
3 
 when n ≡ 3, 7 (mod 12).

Proof. Since Kn is a subgraph of Kn+1, la3(Kn)� la3(Kn+1)�	 2(n+1)−2
3 
 = 	 2n

3 
 by Proposition 3.2 and n ≡
3, 7 (mod 12). �

Proposition 3.6. la3(Kn)�	 2n
3 
 when n ≡ 5 (mod 12).

Proof. Since Kn is a subgraph of Kn+1, la3(Kn)� la3(Kn+1)�	 2(n+1)
3 
 = 	 2n+2

3 
 = 	 2n
3 
 by Proposition 3.3 and

n ≡ 5 (mod 12). �

Proposition 3.7. la3(Kn)�	 2n−2
3 
 when n ≡ 11 (mod 12).

Proof. Let m = n−1
2 . First, we partition the vertex set of Kn into m + 1 pairwise disjoint subsets Vi = {xi, yi},

i = 0, 1, . . . , m − 1, and Vm = {vm}. Then Kn can be expressed as a union of the subgraph induced by the matching
M0 = {xiyi | i = 0, 1, . . . , m − 1} and the spanning subgraph Kn − M0, denoted by H, which is an edge-disjoint union
of pairs (Vr , Vs) for all 0�r �= s�m.
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Next, for each Vi other than Vm of H, we identify xi with yi and denote such a vertex by vi . Then we obtain a
complete graph H̃ with vertex set V (H̃ ) = {v0, v1, . . . , vm} and edge set E(H̃ ) = {vivi+d (mod m+1) | i = 0, 1, . . . , m

and d = 1, 2, . . . , m+1
2 − 1} ∪ {vivi+d (mod m+1) | i = 0, 1, . . . , m+1

2 − 1 and d = m+1
2 }. Each edge vivi+d (mod m+1) of

H̃ corresponds to a pair (Vi, Vi+d (mod m+1)) of H which is isomorphic to K2,2 or K1,2, and vice versa.
By |V (H̃ )|=m+1, m+1 is even and the proof of Theorem 3.1, H̃ can be decomposed into m pairwise edge-disjoint

1-factors f0, f1, . . . , fm−1 such that each 1-factor fj contains the edge vjvm. Since each 1-factor of H̃ corresponds to
a spanning subgraph of H which satisfies that every component is isomorphic to K2,2 or K1,2, we also have that H can
be decomposed into m pairwise edge-disjoint spanning subgraphs H0, H1, . . . , Hm−1 such that in each of which every
component is isomorphic to K2,2 or K1,2, and each spanning subgraph Hj contains the pair (Vj , Vm).

Hence, if we take away an edge xiyi+d (mod m+1) from each pair (Vi, Vi+d (mod m+1)) of H which is isomorphic to
K2,2, then each of H0, H1, . . . , Hm−1 produces a linear 3-forest in H (or Kn). Therefore, from H0, H1, . . . , Hm−1, we
can obtain m pairwise edge-disjoint linear 3-forests L0, L1, . . . , Lm−1 in H (or Kn) such that each linear 3-forest Lj

contains the 2-path xj − vm − yj . Moreover, those edges we took away from H can be partitioned into m−1
2 pairwise

disjoint matchings Md = {xiyi+d (mod m) | i = 0, 1, . . . , m − 1}, d = 1, 2, . . . , m−1
2 .

Now, let G(X, Y ) be a complete bipartite graph with partite sets X = {xi | i = 0, 1, . . . , m − 1} and Y = {yi | i =
0, 1, . . . , m − 1}. Then M0, M1, . . . , M(m−1)/2 are exactly the sets of edges of bipartite differences 0, 1, . . . , m−1

2 in
G(X, Y ), respectively. Moreover, let a1 = m − 1 and at = (m − 2) − 2(t − 2) for all t ∈ {2, 3, . . . , m+1

6 }; also let
bt=at+3(t−1)+1 (mod m), t=1, 2, . . . , m+1

6 , then et=xat ybt ∈ M3(t−1)+1 is an edge of bipartite difference 3(t−1)+1
in G(X, Y ). Hence, by |X| = |Y | = m, m is odd and Lemma 2.2, the edges other than et of M3(t−1), M3(t−1)+1 and
M3(t−1)+2 can form two edge-disjoint linear 3-forests �2t−1 and �2t in G(X, Y ) (or Kn), for each t ∈ {1, 2, . . . , m+1

6 }.
Therefore, the edges other than e1, e2, . . . , e(m+1)/6 of M0, M1, . . . , M(m−1)/2 can form (m+1

6 ) · 2 = m+1
3 pairwise

edge-disjoint linear 3-forests �1, �2, . . . , �(m+1)/3−1, �(m+1)/3 in G(X, Y ) (or Kn).
In the following, for each t ∈ {1, 2, . . . , m+1

6 }, we will replace two edges e′
t and e′′

t of �1 by et , then the replaced edges
e′
t and e′′

t will be moved into linear 3-forests L′
t and L′′

t , respectively; moreover, we will also move edges w′
t and w′′

t

of L′
t and L′′

t into another linear 3-forests �′
t and �′′

t , respectively. The above processes of replacing and moving edges
from some linear 3-forests will finally let Kn be decomposed into m + m+1

3 pairwise edge-disjoint linear 3-forests.
Note that �1 is consisting of 3-paths yi − xi − yi+1 − xi+1, i = 0, 2, . . . , m − 3, and one edge xm−1ym−1.

If t = 1, then we first replace two edges xa1ya1 and xb1+1yb1+1 of �1 by e1 = xa1yb1 such that the 3-path yb1 − xb1 −
yb1+1 − xb1+1 in �1 is replaced by another 3-path xa1 − yb1 − xb1 − yb1+1. Next, we move the replaced edge xa1ya1

into La1 and move the edge vmya1 of La1 into �1 such that the 2-path xa1 − vm − ya1 in La1 is replaced by another
2-path vm − xa1 − ya1 , and �1 contains the isolated edge vmya1 . Also, we move the replaced edge xb1+1yb1+1 into
Lb1+1 and move the edge vmyb1+1 of Lb1+1 into �2 such that the 2-path xb1+1 − vm − yb1+1 in Lb1+1 is replaced by
another 2-path vm − xb1+1 − yb1+1, and �2 contains the 2-path xa1 − yb1+1 − vm. It is not difficult to see that, after
we replaced and moved some edges, all modified linear 3-forests still satisfy that each component is a path of length
at most 3.

Similarly, if t �2 and t is even, then we first replace two edges xat yat and xbt+1ybt+1 of �1 by et = xat ybt . Next, we
move xat yat into Lat and move the edge vmxat of Lat into �2t−1; also move xbt+1ybt+1 into Lbt+1 and move the edge
vmybt+1 of Lbt+1 into �2t . Otherwise, if t �2 and t is odd, then we first replace two edges xbt−1ybt−1 and xat yat of �1
by et = xat ybt . Next, we move xbt−1ybt−1 into Lbt−1 and move the edge vmybt−1 of Lbt−1 into �2t−1; also move xat yat

into Lat and move the edge vmxat of Lat into �2t .
Accordingly, la3(Kn)�m + m+1

3 = 	 2n−1
3 
 = 	 2n−2

3 
 by m = n−1
2 and n ≡ 11 (mod 12). �

From the propositions obtained above, we conclude this paper by the following theorem.

Theorem 3.8.

la3(Kn) =

⎧⎪⎪⎨
⎪⎪⎩

⌈
2n − 2

3

⌉
when n ≡ 0, 4, 8, 11 (mod 12) and

⌈
2n

3

⌉
when n ≡ 1, 2, 3, 5, 6, 7, 9, 10 (mod 12).
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Proof. la3(Kn)�	 2n−2
3 
 or la3(Kn)�	 2n

3 
, following the value of n (mod 12), via Propositions 3.2–3.7, while
la3(Kn)�	 2n−2

3 
 or la3(Kn)�	 2n
3 
, following the value of n (mod 12), by Proposition 1.2. This concludes the

proof. �
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