Available online at www.sciencedirect.com

B . DISCRETE
ScienceDirect MATHEMATICS

Discrete Mathematics 308 (2008) 3816—-3823

www.elsevier.com/locate/disc

The linear 3-arboricity of K, , and K,

Hung-Lin Fu?, Kuo-Ching Huang®, Chih-Hung Yen®:*

A Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan
bDepartment of Applied Mathematics, Providence University, Shalu, Taichung 43301, Taiwan
€Department of Applied Mathematics, National Chiayi University, Chiayi 60004, Taiwan

Received 8 January 2004; received in revised form 9 July 2007; accepted 10 July 2007
Available online 28 August 2007

Abstract

A linear k-forest is a forest whose components are paths of length at most k. The linear k-arboricity of a graph G, denoted by
lag (G), is the least number of linear k-forests needed to decompose G. In this paper, we completely determine la; (G) when G is a
balanced complete bipartite graph K, , or a complete graph K, and k = 3.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple edges. We refer
to [15] for terminology in Graph Theory. A decomposition of a graph is a list of subgraphs such that each edge
appears in exactly one subgraph in the list. If a graph G has a decomposition G, G», ..., G4, then we say that
G1, Gy, ..., Gy decompose G, or G can be decomposed into G1, G», ..., G4. Furthermore, a linear k-forest is a
forest whose components are paths of length at most k. The linear k-arboricity of a graph G, denoted by la; (G), is the
least number of linear k-forests needed to decompose G.

The linear k-arboricity of a graph was first introduced by Habib and Peroche [10]. It is a natural generalization
of edge coloring. Clearly, a linear 1-forest is induced by a matching, and la; (G) is the edge chromatic number, or
chromatic index, y'(G) of a graph G. Moreover, the linear k-arboricity la; (G) is also a refinement of the ordinary linear
arboricity 1a(G) (or las(G)) of a graph G, which is the case when every component of each forest is a path with no
length constraint.

In 1982, Habib and Peroche [9] proposed the following conjecture for an upper bound on lax (G).
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Conjecture 1.1. If G is a graph with maximum degree A(G) and k > 2, then

4(G) - |[V(G)|
) k-V(G)
k+1

(4(G) - IV(G)D) + 1

) k- 1V (G|

k+1

So far, quite a few results on the verification of Conjecture 1.1 have been obtained in the literature, especially for
graphs with particular structures, such as trees [4,5,10], cubic graphs [3,12,14], regular graphs [1,2], planar graphs
[13], balanced complete bipartite graphs [7,8] and complete graphs [3,6,7,16]. As for a lower bound on la (G), since

any vertex in a linear k-forest has degree at most 2 and a linear k-forest in a graph G has at most L%J edges, we
can obtain the following result.

when A(G) =|V(G)| — 1 and

lag(G) <y -

when 4(G) <|V(G)| — 1.

Proposition 1.2.

4(G) |E(G)|
lag (G) > max ’V > —‘ VG|
e

In this paper, we completely determine lay(G) when G is a balanced complete bipartite graph K, , or a complete
graph K, and k = 3. The results are coherent with the corresponding cases of Conjecture 1.1.

2. Linear 3-arboricity of K,, ,

Let G(X, Y) be a bipartite graph with partite sets X = {x¢, x1, ..., x,—1}and Y = {yo, y1, ..., ys—1}. Suppose that
|Y| =s>r = |X|. We define the bipartite difference of an edge x,y, in G(X, Y) as the value ¢ — p (mod ). It is not
difficult to see that a set consists of those edges in G (X, Y) with the same bipartite difference must be a matching. In
particular, such a set is a perfect matching if G(X, Y) is a K, ,. Furthermore, we can partition the edge set of K, ,, into
n pairwise disjoint perfect matchings Mo, My, ..., M,_; such that M; is exactly the set of edges of bipartite difference
iinKp, i=0,1,...,n—1.

Lemma 2.1. [fn>4 is even and o belongs to {0, 1, ..., n — 3}, then the edges of bipartite differences o, oo + 1 and
o+ 2in K, , can form two edge-disjoint linear 3-forests.

Proof. Consider K, , with partite sets X ={x¢, x1, ..., x,—1} and Y ={yo, y1, ..., yn—1}. Let Moy ={X; Yito (mod n) | i =
0,1,....n—1}, Myr1={x;i Vit (at+1) mod ) | 1=0, 1, ..., n—1} and My 12 ={x; yi+(@+2) (modn) | i=0,1,...,n—1} be
the sets of edges of bipartite differences o, «+ 1 and «+2 in K, ,, respectively. Each of My, M1 and M, is a perfect
matching in K, ,. Then, by partitioning M, into two disjoint matchings W1 ={x; yi+(a+1) (mod n) | 1=0, 2, 4, ..., n—=2}
and W2 = {X; yit(a+1) modn) |1 =1,3,5, ..., n — 1}, the edges in M, U W can form one linear 3-forest in K, , and
the edges in M, U W5 can form another one. Thus the assertion holds. [J

Lemma 2.2. Ifn >3 is odd, o belongs to {0, 1, ...,n — 3} and e is an edge of bipartite difference 0.+ 1 in K, ,,, then
the edges other than e of bipartite differences o, o + 1 and o + 2 in K, , can form two edge-disjoint linear 3-forests.

Proof. Itisanalogous to the proof of Lemma 2.1. Suppose that e=X, y, 4 (o+1) (mod n) forsomer € {0, 1, ..., n—1}.Ifris
even, then we partition M, into three pairwise disjoint matchings {e}, W1 ={x; Yi+(a+1) (modn) i =0,2, ..., r =2, 7+
Lr+3,...,n=2}and Wo={X; Yit-(o+1) modm) | i=1,3, ..., r=1,r+2,r+4, ..., n—1}.If ris odd, then we partition
M, into three pairwise disjoint matchings {e}, Wi = {X; Vit @+1) modm) | i =1,3, ..., r =2, r+1,r+3,...,n—1}
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and Wo = {X; Yi+(a+1) (modm) [ 1 =0,2,...,r — 1, r +2,r +4, ..., n —2}. Then the edges in M, U W; can form one
linear 3-forest in K, , and the edges in M;> U W can form another one. Thus the assertion holds. [l

Now, we are ready to show our main results in this section.
Proposition 2.3. la3(K,,,) <[] when n = 0 (mod 6).

Proof. Since n = 0(mod6), by Lemma 2.1, the edges of bipartite differences 0,1,...,n — 1 in K, , can form
( )-2= 2—” (2”] pairwise edge-disjoint linear 3-forests. Thus laz (K}, ,) < (2T"'| whenn = 0 (mod6). [

Proposition 2.4. la3(K, ) < (%1 when n = 4 (mod 6).

Proof. Since n = 4 (mod6), by Lemma 2.1, the edges of bipartite differences 0, 1,...,n — 2 in K, , can form
(”3;1) 2= @ pairwise edge-disjoint linear 3-forests. Also, the edges of bipartite difference n — 1 in K, ,, can form
one linear 3-forest. Thus la3 (K, ,) < 2("3_1) +1= 2"“ (2”] when n = 4 (mod6). O

Proposition 2.5. la3(K,, ) <[%2] when n = 2 (mod 6).

Proof. Since n = 2(mod6), by Lemma 2.1, the edges of bipartite differences 0, 1,...,n — 3 in K}, , can form
("3;2) 2= @ pairwise edge-disjoint linear 3-forests. Also, the edges of bipartite difference n —2 in K, ,, can form
one linear 3-forest, and the edges of bipartite difference n — 1 in K, , can form another one. Thus la3 (K}, ,) < # +

2=22 = (2] when n = 2 (mod 6). O
Proposition 2.6. la3(K,,,) <[] when n = 5 (mod 6).

Proof. If H is a subgraph of a graph G, then lay (H) <lax(G). Thus, la3 (K, ) <la3(K,+1.n+1) < [2(”+1)] [2"+21 -
(2;1 by Proposition 2.3 and n = 5 (mod 6). [

Proposition 2.7. la3(K, ,) < [#52] when n = 3 (mod 6).

Proof. Since K, , is a subgraph of K, 41 41, la3(K, ) <laz(K,41.0+1) < fz(”ﬂ)] [2”3”1 by Proposition 2.4 and
n=3(mod6). 0O

Proposition 2.8. la3(K, ) <[%] when n = 1 (mod 6).

Proof. Consider K, , with partite sets X = {xo, x1,...,x,—1} and ¥ = {yo, y1, ..., yn—1}. First, let ¢, = x,,—;
Yn—t43(t—1)+1 (mod n) be an edge of bipartite difference 3(t — 1) + 1in K, ,, t =1,2,..., 5= L Then, by Lemma
2.2, the edges other than e¢; of bipartite differences 3(r — 1), 3(t — 1) + 1 and 3(r — 1) + 2 1n K, . can form two
edge-disjoint linear 3-forests, for all r € {1, 2, . o= l} Hence, the edges other than eq, ez, .. ., e(,—1)/3 of bipartite
differences 0, 1,...,n — 2 in K, , can form (%) . 2 = @ pairwise edge-disjoint linear 3-forests.

Next, let E = {e1, e2, ..., e(n—1)/3}, and also let H be the subgraph of K, , induced by £ U M), 1, where M,, 1 =
{Xi Yit(—1) modn) | 1=0, 1, ..., n—1} is the set of edges of bipartite difference n — 1 in K, ,,. Since E is a matching and
M,,_ is a perfect matching in K, ,, each component of H is a path or an even cycle. Now, without loss of generality,
assume that P =u — wj — wy — v is a path of length 3 in H with w; € X and w, € Y. Then the edge wjw, in P must
belong to E. Otherwise, if wiwy € M,,_1, then wju € E and vw;y € E, ie., w; € X' = {x,_1, xn_2, s Xn—(n=1)/3}
and wy € Y = {y0, y2, ..., Ya—(n—1)/3—3}. But, any edge ab formed by a € X" and b € Y’ cannot belong to M,,_1, it
is a contradiction. Therefore, it implies that each component of H is a path of length at most 3, and hence H is a linear
3-forestin K, 5.

Accordingly, 1a3(K,, ) <252 + 1= 225 — 1217 when n = 1 (mod6). O

Finally, we conclude the work of this section by the following theorem.
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Theorem 2.9.

2
’7;—‘ whenn =0,1,2,4,5(mod6) and
133(Kn,n) =
2n+2
3 when n = 3 (mod 6).

Proof. laz(K, ) < {%"1 or laz(Ky ») < (2"3“1, following the value of n (mod 6), via Propositions 2.3-2.8, while

laz (K, ) 2> (%1 or laz(K, ) > fz”;zl, following the value of n (mod 6), by Proposition 1.2. This concludes the
proof. [

3. Linear 3-arboricity of K,

In [3], Bermond et al. mentioned briefly the result that laz(K12,4+4) = 8¢ + 2 for any ¢ >0 can be obtained by using
techniques of resolvable design in the theory of combinatorial design. In this section, we will determine la3(K,) for
any n € N by specifying how the linear 3-forests decompose K, are to be found.

Assume that G and H are graphs. A spanning subgraph F of G is called an H-factor if each component of F is
isomorphic to H. If G is expressible as an edge-disjoint union of H-factors, then this union is called an H-factorization
of G. Furthermore, we say that a 1-factor of a graph G is a spanning 1-regular subgraph of G. A decomposition of a
regular graph G into 1-factors is a 1-factorization of G. A graph with a 1-factorization is 1-factorable. For a complete
graph K, the following result is well-known.

Theorem 3.1 (Harary [11]). Ifnis even, then K,, can be decomposed into n — 1 pairwise edge-disjoint 1-factors, and
thus it is 1-factorable.

Proof. We can obtain simply the n — 1 pairwise edge-disjoint 1-factors fo, f1, ..., fu—2 of K, from a circle and 5
chords in it. Let the n — 1 vertices be placed equally spaced round a circle, and label them vy, vy, ..., v,—2; also label
the center v,_1. Then, for each j € {0,1,...,n — 2}, the 1-factor f; is induced by an edge joining vertices v; and
vn—1, and by parallel edges joining the other vertices in pairs. [

We need to specify the proof because such a method can ensure that each 1-factor f; other than f,,/>_1 contains an
edge vivgy1 forsome k € {0, 1, ..., n — 3}; it cannot be ensured if we label the n — 1 outside vertices vy, va, ..., Up—]
and the center vy.

Consider K, with vertices v, v1, ..., v,—1. We define the difference d of an edge v;v; € E(K,) as the value
min{|i — j|,n — [i — j|}. Then the edge set E(K}) can be expressed as {v;Vi4+4 modn) i =0,1,...,n —1andd =
1,2,..., % — l}U{v,-vier(modn) [i=0,1,..., % —landd= %} whenniseven,0r{v,~vi+d(m0dn) |li=0,1,...,n—
landd=1,2,..., %} when 7 is odd. Furthermore, if V, and V; are any two disjoint subsets of the vertex set of a
graph G, then we denote the induced bipartite subgraph with partite sets V, and Vs in G by a pair (V;, Vi) (=(Vs, V})).

Now, we are ready to show our main results.

Proposition 3.2. la3(K,) <[252] when n = 0, 4, 8 (mod 12).

Proof. Letm= % First, we partition the vertex set of K, into m pairwise disjoint subsets V;={x;, y;},i=0,1, ..., m—1.
Then K, can be expressed as a union of the 1-factor induced by the perfect matching Mo={x;y; |i=0, 1,...,m—1}and
the spanning subgraph K, — M, denoted by H, which is an edge-disjoint union of pairs (V,., V) forall0<r # s <m—1.

Next, for each V; of H, we identify x; with y; and denote such a vertex by v;. Then we obtain a complete graph
H with vertex set V(I:I) = {vg, v1, ..., Vy—1} and edge set E(I:I) = {ViVitd modm) i =0,1,...,m — landd =
1,2, % = 13U {vivitd modmy |1 =0,1,..., 3 — 1 and d = %5 }. Each edge v; vi+d (mod m) of H corresponds to a
pair (V;, Vitd (mod m)) of H which is isomorphic to K> , and vice versa.

By |V (H)|=m, mis even and Theorem 3.1, H can be decomposed into m — 1 pairwise edge-disjoint 1-factors. Since
each 1-factor of H corresponds to a K7 >-factor of H, we also have that H can be decomposed into m — 1 pairwise edge-
disjoint K7 >-factors. Hence, if we take away an edge X; ;44 (mod m) from each pair (V;, Vi 4 (mod m)) of H, then each
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K »-factor of H produces a linear 3-forest in H (or K,). Therefore, we can obtain m — 1 pairwise edge-disjoint linear
3-forests in H (or K,) from the m — 1 pairwise edge-disjoint K »-factors of H. Moreover, those edges we took away
from H can be partitioned into % — 1 pairwise disjoint perfect matchings My = {X; yi a4 (modm) |1 =0, 1, ..., m — 1},
d=1,2,...,%5 — 1, and one matching My,/2 = {X; Yi+m/2 (mod m) | i =0, 1,..., 5 — 1}.

Now, let G(X, Y) be a complete bipartite graph with partite sets X = {x; [i =0,1,...,m — 1} and Y ={y; |i =
0,1,...,m—1}.Then My, My, M>, ..., My, /> are exactly the sets of edges of bipartite differences 0, 1,2, ..., % —1
in G(X, Y), respectively, and M,, /> consists of a half of the edges of bipartite difference % in G(X, Y). Hence, by
|X|=|Y|=m, mis even and Lemma 2.1, the edges of M, M>, ..., My,/>—1 can form

m/2—1 m—2
7 )= ==
3 3
pairwise edge-disjoint linear 3-forests in G(X, Y) (or K,). Besides, the edges of My and M, > also can form one linear

3-forestin G(X,Y) (or K},).
Accordingly, la3(K,) <(m — 1) + ["52] + 1= [22Tbym =2 and n = 0,4, 8 (mod 12). O

Proposition 3.3. la3(K,) < [%] when n = 2,6, 10 (mod 12).

Proof. Let m = % First, we partition the vertex set of K, into m + 2 pairwise disjoint subsets V; = {x;, yi},
i=0,1,...,m—1,V, ={vy} and V,;,11 = {vm+1}. Then K, can be expressed as a union of the subgraph induced
by the matching Mo = {x;y; |i =0, 1,...,m — 1} and the spanning subgraph K, — My, denoted by H, which is an
edge-disjoint union of pairs (V,, Vi) forall 0<r #= s<m + 1.

Next, for each V; other than V,,, and V,,+1 of H, we identify x; with y; and denote such a vertex by v;. Then we obtain a

complete graphl:lwith vertex set V(I:I)z{vo, V1, ..., Upt1}andedge setE(FI):{v,- Vitd (modm+2) [1=0,1,..., m+1
andd=1,2,..., "2 — 1} U {0iVi+d modm+2) |i =0, 1, ..., "2 — 1 and d = "2}. Each edge v; Vi (mod m+2) Of

H corresponds to a pair (V;, Vi 4 (mod m+2)) of H which is isomorphic to K3 >, K17 or K 1, and vice versa.

By |V(H)| = m + 2, m + 2 is even and Theorem 3.1, H can be decomposed into m + 1 pairwise edge-disjoint
1-factors. Since each 1-factor of H corresponds to a spanning subgraph of H which satisfies that every component is
isomorphic to K2 2, K12 or Ky 1, we also have that H can be decomposed into m + 1 pairwise edge-disjoint spanning

subgraphs Hy, Hy, ..., Hy, such that in each of which every component is isomorphic to K », K12 or K 1. Hence,
if we take away an edge X; yi {4 (mod m+2) from each pair (V;, V; {4 (mod m+2)) of H which is isomorphic to K3 >, then
each of Hy, Hy, ..., H,, produces a linear 3-forest in H (or K,). Therefore, we can obtain m + 1 pairwise edge-
disjoint linear 3-forests in H (or K,) from Hy, Hy, ..., H,. Moreover, those edges we took away from H can be
partitioned into %5 pairwise disjoint matchings My = {X; yi+d modm) |1 =0,1,...,m —1},d =1,2,..., %5 — 1, and
M2 = {Xi Yitm2 modmy | i =0,1,..., 5 — 1}

Now, let G(X, Y) be a complete bipartite graph with partite sets X = {x; |[i =0,1,...,m — 1} and Y = {y; |i =

0,1,...,m—1}.Then My, M1, M>, ..., My, /> are exactly the sets of edges of bipartite differences 0, 1,2, ..., % —1
in G(X,Y), respectively, and M,, /> consists of a half of the edges of bipartite difference % in G(X, Y). Hence, by
|X|=1Y|=m, mis even and Lemma 2.1, the edges of M, M>, ..., M;,/>—1 can form

(57) 2[5

pairwise edge-disjoint linear 3-forests in G(X, Y) (or K,). Besides, the edges of Mo and M,, > also can form one linear
3-forestin G(X, Y) (or Kp,).

Accordingly, la3(K,) < (m + 1) + ["521+ 1 = [£]1bym ="5% andn = 2,6, 10 (mod 12). O

Proposition 3.4. la3(K,) <[%] whenn = 1,9 (mod 12).

Proof. Let m = ”2;1 First, we partition the vertex set of K, into m pairwise disjoint subsets V; = {x;, yj}, i =
0,1,...,m — 1, and one subset {#}. Then K, can be expressed as a union of the star induced by the edge subset
U={ux;,uy;|i=0,1,..., m— 1}, the subgraph induced by the matching My = {x;y; |i =0, 1, ..., m — 1} and the
subgraph (K, — u) — My, denoted by H, which is an edge-disjoint union of pairs (V,, V) forall 0<r # s <m — 1.
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Next, for each V; of H, we identify x; with y; and denote such a vertex by v;. Then we obtain a complete graph
H with vertex set V(I:I) = {vo, v1, ..., vy—1} and edge set E(I:I) = {ViVitd modm) | =0,1,...,m — land d =
1,2, % = 13 U{vivitd modmy |1 =0,1,..., 3 — 1 and d = %5 }. Each edge v; Vi +d (mod m) of H corresponds to a
pair (V;, Vitd (mod m)) of H which is isomorphic to K> , and vice versa.

By |V(H)| = m, m is even and the proof of Theorem 3.1, H can be decomposed into m — 1 pairwise edge-
disjoint 1-factors fo, f1, ..., fm—2 such that each 1-factor f; other than f, > contains an edge vivi41 for some
k € {0,1,...,m — 3}. Since each 1-factor of H corresponds to a K> »-factor of H, we also have that H can be
decomposed into m — 1 pairwise edge-disjoint K5 >-factors Hy, Hi, ..., Hy_2 such that each K> >-factor H; other
than H,, > contains a pair (Vi, Vi41) for some k € {0, 1,...,m — 3}.

Hence, if we take away an edge x; yi+d (mod m) from each pair (V;, Vi 14 (mod m)) of H, then each K >-factor of H
produces a linear 3-forest in H (or K,). Therefore, from Hy, Hy, ..., H;,_2, we can obtain m — | pairwise edge-disjoint
linear 3-forests Lo, L1, ..., L;;—2 in H (or K,) such that each linear 3-forest L ; other than L,,/2| contains a 3-path
Xk — Xk+1 — Yk — Vk+1 forsome k € {0, 1, ..., m — 3}. Moreover, those edges we took away from H can be partitioned
into 7 — 1 pairwise disjoint perfect matchings My = {X; Yi+d modm) |i =0,1,....,m —1},d=1,2,..., %5 — 1, and
one matching M, 2 = {X; Yitm/2 modm) |1 =0, 1, ..., % —1}.

Now, for each L; other than L,,/>_1, we replace the 3-path x;y — xx41 — Y& — Yk+1 inside L; by another 3-path
Yk —u — Xk — Yk+1 induced by {uxg, uyy, xkyk+1} € UU M. Then, let those replaced 3-paths xj — xx41 — yk — Yk+1 for
allk € {0,2, ..., m—4} and the 3-path y,,—2 —u — x,—2 — ym—1 induced by {ux,—2, uy,,_o, Xm—2ym—1} € U U M
form one linear 3-forest 77 in K, ; also let those replaced 3-paths xx — xx4+1 — yx — yx+1 forallk € {1,3,...,m — 3}
and the 3-path y,,—1 — u — x;,—1 — Yo induced by {ux,—1,uy,_1, xm—1y0} € U U M; form another linear 3-
forest 77 in K,,. It is worthy of noting that all edges of U and M are being used to form linear 3-forests 77 and 7>
in K,,.

Furthermore, let G (X, Y') be a complete bipartite graph with partite sets X ={x; | i=0, 1,...,m—1}and Y ={y; |i=
0,1,...,m—1}.Then My, M, M3, ..., My, > are exactly the sets of edges of bipartite differences 0, 2, 3, . . ., % —1
in G(X,Y), respectively, and M,, ;> consists of a half of the edges of bipartite difference % in G(X, Y). Hence, by
|X|=1Y|=m, mis even and Lemma 2.1, the edges of M>, M3, ..., My, /> can form

m/2—2 5| m—4
3 3
pairwise edge-disjoint linear 3-forests in G(X, Y) (or K,). Besides, the edges of Mg and M,, > also can form one linear
3-forestin G(X,Y) (or K},).
Accordingly, la3(K,) <(m — 1) + 2+ ["54 1+ 1=[Z]bym =" andn = 1,9 (mod 12). O
Proposition 3.5. la3(K;,) < {27"1 whenn = 3,7 (mod 12).

Proof. Since K, is a subgraph of K41, laz(K,)<laz(K,+1) < [W] = (%”1 by Proposition 3.2 and n =
3,7 (mod 12). [

Proposition 3.6. l1a3(K,) < {27”1 when n = 5 (mod 12).

Proof. Since K,, is a subgraph of K11, la3(K,) <laz(Ky+1) < [2%™27] = 125221 = 127 by Proposition 3.3 and
n=5(modl12). O

Proposition 3.7. laz(K,) < {2”3_21 when n = 11 (mod 12).

Proof. Let m = % First, we partition the vertex set of K, into m + 1 pairwise disjoint subsets V; = {x;, y;},
i=0,1,...,m—1,and V,, = {v,}. Then K,, can be expressed as a union of the subgraph induced by the matching
Mo={x;yi|i=0,1,...,m— 1} and the spanning subgraph K,, — My, denoted by H, which is an edge-disjoint union
of pairs (V;, Vi) for all 0<r # s <m.
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Next, for each V; other than V,, of H, we identify x; with y; and denote such a vertex by v;. Then we obtain a

complete graph H with vertex set V(FI) = {vo, v1, ..., Uy} and edge set E(I:I) ={ViVitd modm+1) i =0,1,...,m
andd =1,2,..., 2 — 1} U {(v;vi4d modm+1) i =0, 1, ..., " — 1 and d = "1}, Each edge v; Vi (mod m+1) Of

H corresponds to a pair (V;, Vit4 (mod m+1)) of H which is isomorphic to K3 > or K 7, and vice versa.

By |V (H)|=m+ 1, m+1is even and the proof of Theorem 3.1, H can be decomposed into m pairwise edge-disjoint
1-factors fo, fi, ..., fu—1 such that each 1-factor f; contains the edge v;v,,. Since each 1-factor of H corresponds to
a spanning subgraph of H which satisfies that every component is isomorphic to K> 2 or K 2, we also have that H can
be decomposed into m pairwise edge-disjoint spanning subgraphs Hy, Hi, ..., H;—1 such that in each of which every
component is isomorphic to K3 » or K1 2, and each spanning subgraph H; contains the pair (V;, V,,).

Hence, if we take away an edge X; Yi+d (mod m+1) from each pair (Vi, Vi44 (mod m+1)) of H which is isomorphic to
K7 2, then each of Hy, Hi, ..., Hy—1 produces a linear 3-forest in H (or K,). Therefore, from Ho, Hi, ..., Hy—1, we
can obtain m pairwise edge-disjoint linear 3-forests Lo, L1, ..., L;,—1 in H (or K,,) such that each linear 3-forest L ;
contains the 2-path x; — v,, — y;. Moreover, those edges we took away from H can be partitioned into ’”T_l pairwise
disjoint matchings My = {X; Vit+d modm) i =0, 1,...,m — 1},d =1,2,..., "L,

Now, let G(X, Y) be a complete bipartite graph with partite sets X = {x; |[i =0,1,...,m — 1} and Y = {y; |i =

m—1

0,1,...,m — 1}. Then My, My, ..., M, _1),> are exactly the sets of edges of bipartite differences 0, 1, ..., 5 in
G(X,7Y), respectively. Moreover, letay =m — l and a; = (m — 2) — 2(t — 2) forallt € {2,3,..., ’"T“}; also let
by=a;+3(t—1)+1 (modm),t=1,2, ..., ’”TH,then er=Xq, Y, € M3(1—1)+11s anedge of bipartite difference 3(r—1)+1
in G(X,Y). Hence, by |X| = |Y| =m, m is odd and Lemma 2.2, the edges other than e; of M3(_1y, M3¢—1)+1 and

M3—1)+2 can form two edge-disjoint linear 3-forests £»;—1 and £5; in G(X, Y) (or K,,), foreacht € {1,2, ..., ’”TH}.
Therefore, the edges other than ey, ez, ..., eut1)/6 of Mo, M1, ..., M(,—1),2 can form (’”TH) -2 = mT“ pairwise
edge-disjoint linear 3-forests €1, £2, ..., €out1)/3—1, Lan+1y/3 i G(X, Y) (or Ky).

In the following, foreacht € {1, 2, ..., mTH }, we will replace two edges e, and e; of £ by e;, then the replaced edges

e; and e/ will be moved into linear 3-forests L} and L/, respectively; moreover, we will also move edges w; and w]’
of L} and L/ into another linear 3-forests ¢; and £/, respectively. The above processes of replacing and moving edges
from some linear 3-forests will finally let K, be decomposed into m + ’”TH pairwise edge-disjoint linear 3-forests.
Note that £ is consisting of 3-paths y; — x; — yi+1 — xi4+1,1 =0,2,...,m — 3, and one edge x,,,—1 Vm—1-

If t =1, then we first replace two edges x4, yq; and xp, +1Yp, 41 0f £1 by €1 = x4, yp, such that the 3-path yj,, — xp, —
Ybi+1 — Xp,+1 1n €1 is replaced by another 3-path x,, — y», — x5, — Yp,+1. Next, we move the replaced edge x4, yq,
into L,, and move the edge v, yq, of L,, into £; such that the 2-path x,;, — v, — Yq, in L, is replaced by another
2-path v, — X4, — Yq,, and £ contains the isolated edge v,, yq,. Also, we move the replaced edge xp,+1yp,+1 into
Lyp,+1 and move the edge v,, yp,+1 of Ly, 41 into €7 such that the 2-path xp, 41 — v — Yp, 41 in Ly, 41 is replaced by
another 2-path v, — xp,4+1 — Yp,+1, and £, contains the 2-path x,, — yp, 41 — vy It is not difficult to see that, after
we replaced and moved some edges, all modified linear 3-forests still satisfy that each component is a path of length
at most 3.

Similarly, if r >2 and ¢ is even, then we first replace two edges x4, 4, and xp,+1yp,+1 of £1 by e; = x4, yp,. Next, we
move Xg, Vg, into Ly, and move the edge vy, x4, of L, into £7,_1; also move xp, +1yp,+1 into Ly, 1 and move the edge
Um Yb,+1 of Lp, 41 into £€2;. Otherwise, if  >2 and ¢ is odd, then we first replace two edges xp, —1 yp,—1 and x4, y4, of £
by e; = x4, yp, - Next, we move xp, —1yp,—1 into L, —1 and move the edge vy, yp,—1 of Lp,—1 into £2;_1; also move x4, yq,
into L,, and move the edge v,,x,, of L, into £y;.

Accordingly, la3(K,) <m + "3 = 122217 = 122221 by m = 5L and n = 11 (mod 12). O

From the propositions obtained above, we conclude this paper by the following theorem.

Theorem 3.8.

2n —12
3

—‘ when n =0,4,8, 11 (mod 12) and
laz(K;) = 5

n
’7——‘ whenn=1,2,3,56,7,9, 10 (mod 12).
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Proof. la3(K,) < {2”3_21 or laz(K,) < [%1, following the value of n (mod 12), via Propositions 3.2-3.7, while

laz(K,) > {2”3_21 or laz(K,)> (2?”], following the value of n (mod 12), by Proposition 1.2. This concludes the
proof. [
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