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INTRODUCTION

Protein dynamics is dictated by protein structure. The dynamic

properties of proteins result from a network of complex interactions

like covalent bonding and nonbonded electrostatic or van der Waals

interactions. To compute the dynamical properties of proteins, one

usually resorts to molecular dynamics simulation,1–5 which consists

of integrating long time trajectories of protein structure using

empirical force field. Though molecular dynamics is a powerful

method, it is computationally expensive. Because of the recent pro-

gress of structural biology research, the number of protein struc-

tures deposited in Protein Data Bank has nearly quadrupled since

2000. Hence, there is increasing interest in developing efficient

methods to compute protein dynamic properties from protein

structures in a high-throughput fashion. The elastic network model

(ENM) or Gaussian network model (GNM)6–8 provides an alterna-

tive for molecular dynamics in computing average dynamical prop-

erties. In the GNM, each Ca atom is connected through a single-

parameter harmonic potential to its neighboring atoms that are

within a certain cut-off distance, usually in the range of 7–10 Å.

The GNM then builds a connectivity matrix (also called the Kirchh-

off matrix), from which cross-correlations and auto-correlations of

fluctuations of residues can be obtained through matrix diagonal-

ization. Micheletti et al.9 have developed a model based on a mean

field theory to study the dynamics of a protein. The shape of the

protein is specified by the locations of the Ca atoms with two types

of interactions: simple harmonic potential functions describing

bonded interactions and Go-like functions describing nonbonded

interactions. This model was applied to protein–protein interac-

tions.10 Zhou and coworkers11 later extended this Ca-based model

protein to a model based on all heavy atoms and they were able to

make a more accurate prediction of protein flexibility, i.e., the B-

factors, using this extended model.

A recent study12 showed that the atomic mean-square displace-

ment (or B-factor) is closely related to the number of noncovalent
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ABSTRACT

It has recently been shown that in proteins the

atomic mean-square displacement (or B-factor)

can be related to the number of the neighboring

atoms (or protein contact number), and that this

relationship allows one to compute the B-factor

profiles directly from protein contact number. This

method, referred to as the protein contact model, is

appealing, since it requires neither trajectory inte-

gration nor matrix diagonalization. As a result,

the protein contact model can be applied to very

large proteins and can be implemented as a high-

throughput computational tool to compute atomic

fluctuations in proteins. Here, we show that this

relationship can be further refined to that between

the atomic mean-square displacement and the

weighted protein contact-number, the weight being

the square of the reciprocal distance between the

contacting pair. In addition, we show that this

relationship can be utilized to compute the cross-

correlation of atomic motion (the B-factor is essen-

tially the auto-correlation of atomic motion). For a

nonhomologous dataset comprising 972 high-reso-

lution X-ray protein structures (resolution <2.0 Å

and sequence identity <25%), the mean correlation

coefficient between the X-ray and computed B-fac-

tors based on the weighted protein contact-number

model is 0.61, which is better than those of the

original contact-number model (0.51) and other

methods. We also show that the computed correla-

tion maps based on the weighted contact-number

model are globally similar to those computed

through normal model analysis for some selected

cases. Our results underscore the relationship

between protein dynamics and protein packing. We

believe that our method will be useful in the study

of the protein structure-dynamics relationship.
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neighboring atoms. For convenience, we will refer to this

method as the protein contact number (CN) model. The

CN model is appealing, since it predicts the B-factor pro-

files directly form protein structures without either tra-

jectory integration or matrix diagonalization. However,

despite its simplicity, the CN model has been shown to

be superior to the GNM for a small set of 38 structure.12

Here, we show that the CN model, which relates the B-

factors to protein CN, can be further improved if the

protein CN is scaled down by the square of the distance

between the contacting pair. In addition, we show that

cross-correlation between residues can also be computed

in the framework of the weighted CN model.

METHODS

Protein contact number

The CN vi of the ith residue is defined as the number

of the neighboring residues whose Ca atoms are within a

cut-off radius r0 of that of the ith residue.

vi ¼
XN
j 6¼i

Hðr0 � rijÞ ð1Þ

where rij is the distance between Ca atoms of residue i

and j, and H(x) 5 1 if x � 0 and H(x) 5 0 if x < 0.

Equation (1) defines an integral CN and gives an equal

unitary weight to every contacting atom regardless of its

distance to the central atom. The distance-dependent CN

v 0i of the ith residue is defined as v 0i 5
P

N
j 6¼iH(r0 2 rij)/

r2ij, which defines a real-valued CN, i.e., the integral CN

weighted by the square of the reciprocal distance between

the contact pair. Because of the fast decay of the factor

1/r2ij at large separation rij, the real-valued CN can be

simplified to

v0i ¼
XN
j 6¼i

1

r2ij
ð2Þ

We will refer to v as the contact number (or CN),

while v0 [Eq. (2)] as the weighted contact number (or

WCN). The CN (or WCN) profile of a protein of N resi-

dues is defined as:

w ¼ ðx1;x2; . . .xN Þ ð3Þ

where xi is defined as the reciprocal CN, i.e., xi 5 1/vi
or xi 5 1/v 0i . The X-ray B-factor profile is denoted as

b 5 (b1, b2,. . . bN), where bi is the B-factor of the Ca
atom of the ith residue taken from the PDB file. For easy

comparison, we will normalize both the CN (or WCN)

and the B-factor profiles to the corresponding z-scores:

zxi 5 (xi 2 �x)/rx, where �x and rx are the mean and

standard deviation of x. Here x designates b or x. The
normalized CN (or WCN) and the B-factor profiles are

denoted by the vectors zx and zb, respectively. In the CN

model, the cut-off distance is set to 7.35 Å, which corre-

sponds to the second minimum of the average contact-

pair distribution of protein structures.12 For the predic-

tion assessment, we use the Pearson’s linear correlation

coefficient between the profiles, c 5 zb � zx. If c 5 1, two

profiles are perfectly correlated; if c 5 0, they are com-

pletely independent of each other; if c 5 21, they are

perfectly anticorrelated. Two indices of prediction assess-

ment are used to compare the global performances of

different methods for a data set: �c, the average correla-

Figure 1
The distribution of (A) protein size and (B) structural resolution of the data set comprising 972 protein structures with resolution �2.0 Å and R-factors �0.2 selected

from PDB-REPRDB.
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tion coefficient, and p0.5, the fraction of number of struc-

tures with c � 0.5.

Cross-correlation between residues

The normalized correlation between fluctuations of

atom i and j is defined as

Cij ¼ hdri � drjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihdri � driihdrj � drji
p ð4Þ

where dri and drj are the fluctuations of the atom i and

j, respectively, around their equilibrium positions. In the

framework of the WCN model, we formulate the correla-

tion term Wij between residue i and residue j as

Wij ¼
XN
k 6¼j;k

1

rikrjk

 !�1

x̂i � x̂j ð5Þ

where x̂i and x̂j are the unit vectors in the direction ofP
N
k ri 2 rk and

P
N
k rj 2 rk, respectively. Note that x̂i and

x̂j can be cast into another forms:
�
ri � �r

����ri � �r
�� and�

rj � �r
����rj � �r

��, respectively, where �r is the protein cent-

roid given by
PN

k rk=N. It is not hard to check that

when i 5 j, Wii reduces to xi.

Dataset

We selected from PDB-REPRDB13 972 protein chains of

length �60. Their structures are solved by X-ray crystallo-

graphy with resolution �2.0 Å and R-factors �0.2. All

chains are of pair-wise sequence identity �25%. The chains

of the data set are listed in Table S1 in the supplementary

material. In the data set, the protein size ranges from 60 to

1520 with an average protein size around 300 residues. The

resolution of the X-ray structures ranges from 0.73 to 2.0 Å

with an average structural resolution 1.78 Å. The distribu-

tion of protein size (i.e., the number of residues) and struc-

tural resolution of the data set are shown in Figure 1.

RESULTS

The computed B-factor profiles using
different methods

Figure 2 shows the histogram of the correlation coeffi-

cients between the X-ray B-factors and those computed by

Figure 2
Comparison of the correlation coefficients between experimental and the

computed B-factor profiles bases on the CN model (white), the GNM (grey),

and the WCN model (black) for the nonhomologous data set.

Figure 3
The correlation of model predictions (A) between the WCN model and the GNM and (B) between the WCN model and the CN model for the 972-structure data set.
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the WCN model, the CN model and the GNM model. In

the WCN model, the average correlation coefficient is �c 5
0.61 and the fraction of structures with a correlation coeffi-

cient �0.5 is p0.5 5 79%. The CN model yields poorer

results: �c 5 0.51 and p0.55 54%. The effect of the term 1/r2ij,

which is missing in the CN model, on the results is signifi-

cant. The GNM yields �c 5 0.56 and p0.5 5 69%. This is in

contrast with the previous study12 that the CN model per-

forms better than the GNM. It should be noted that, how-

ever, the previous study was conducted on a much smaller

data set of 38 structures. Though the correlation–coefficient

distributions of these models seems to look quite different,

we perform additional Student t-test to check these distri-

butions using the statistical package R.14 The P-values of

the WCN-GNM, GNM-CN and WCN-CN are all smaller

than 2.203 10216, indicating that the distributions are sig-

nificantly different from each other. On the other hand, we

notice that a better correlation between the WCN model

and the GNM (0.86) than that between the WCN and the

CN model (0.67). These results are shown in Figure 3.

Thought both the CN model and the GNM consider the

contributions from any atoms to be identical as long as they

are within the cut-off distance, the CN model completely

ignores those atoms that are out of the cut-off range, while

the GNM takes them into account implicitly through the

network. The WCN model considers the contributions

from any atoms with a weighting factor 1/r2ij. In Figure 4, we

compare the B-factor profiles of flavocytochrome c3

(1Y0P:A) computed by three methods with each compared

with the X-ray B-factor profile. The WCN and the GNM B-

factor profiles agree relatively well with the X-ray B-factors,

but the CN B-factor profile appears to be much more

rugged, probably due to the artificial cut-off effect.

The GNM program15 uses only Ca atoms in the cal-

culation of the B-factors, and therefore, for the sake of

comparison, the previously calculated results are based on

the Ca atoms in both the WCN and CN models. If the

average B-factors for the entire residue are used, the

WCN model yields �c 5 0.60 and p0.5 5 79%, and the CN

model yields �c 5 0.50 and p0.5 5 54%. These results are

not much different from those based on the Ca atoms.

Comparison of models based on
Ca and all atoms

To study the effects of the atoms other than the Ca
atom on the computed B-factors, we calculate the WCN

and CN B-factor profiles using all nonhydrogen atoms

(i.e., C, N, O, and S atoms) of proteins. We do not cal-

culate the GNM all-atom B-factor profiles, since, as men-

tioned before, the currently available GNM program15

uses only Ca atoms for proteins. In the WCN model, if

all heavy atoms are included in calculation, the results

are �c 5 0.62 and p0.5 5 85%, while the all-atom CN

model yields �c 5 0.56 and p0.5 5 77%. Both results are

better than those based on only Ca atoms.

The breakdown analysis for the accuracy of
different models

Classified in terms of the SCOP classes, the structures

in the dataset has 111 all-a proteins, 181 all-b proteins,

245 a/b proteins, 193 a 1 b proteins, 15 multi-domain

proteins, 11 membrane and cell surface proteins and pep-

tides, 22 small proteins, five coiled coil proteins, one

designed protein and 188 undefined in SCOP. In Table I,

we compare the statistics of the performances of different

models for the four major SCOP classes: all-a proteins,

all-b proteins, a/b proteins and a 1 b proteins, since

the other classes have much smaller sample size (1–22).

All three models perform best for the all-b proteins. In

general, the trends of the performance of these methods

appear to be similar. We compare in Figure 5 the per-

formance of all three methods as a function of protein

Figure 4
The X-ray B-factor profile (dotted line) of flavocytochrome c3 (1Y0P:A)

compared with the computed B-factor profile (solid line) by (A) the WCN

model (c 5 0.85), (B) the GNM (c 5 0.69), and (C) the CN model

(c 5 0.51).
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size, X-ray resolution and R-factor. We remove the pro-

teins in the marginal regions (for example, protein size

600–1550) due to their smaller number in those regions.

One notices that, while the average performance of the

CN model shows slightly downward trend for proteins of

larger size or lower resolution, the average performances

of the WCN model and the GNM appear to be relatively

unchanged in the range of protein properties studied.

Applications to large proteins and
protein complexes

The WCN model can be readily applied to large pro-

teins, since its memory requirement is of the order O(N),

where N is the size of protein. An example is the 50S

ribosomal subunit (1YJW) comprising 3774 residues. Fig-

ure 6 shows its computed B-factor profile using the WCN

model. On the other hand, the oGNM,15 the web version

of the GNM, is unable to return the B-factor profile of

1YJW. Some proteins in our data set are in fact part of

larger biological units, which are the assumed functional

form of the macromolecule. In the PDB, the biological

units are built from the crystallographic space group

using symmetry operation. Currently, the coordinates of

biological units can be obtained from either PDB or

PQS.16 The PDB and PQS biological units agree on 82%

of entries.17 In this work, we use the PDB biological units

for computation. We computed the WCN B-factor pro-

files of the same proteins of the data set with other parts

of the whole biological units (if any) taken into consider-

ation. The Ca WCN model yields �c 5 0.65 and p0.5 5
86%, which are better than the previous results.

The cross-correlation of fluctuations
between residues

The knowledge of correlated motion between residues

is useful in understanding long-range communica-

tion18,19 and large domain movements relevant to pro-

tein function.20,21 The correlation matrix can be com-

Table I
The Performance Breakdown of the WCN Model, the CN Model and the GNM

for the Structures Classified According to the SCOP Classes

SCOP classes

WCN CN GNM

�c p0.5 �c p0.5 �c p0.5

All-a proteins 0.59 0.73 0.47 0.43 0.54 0.68
All-b proteins 0.64 0.82 0.51 0.58 0.58 0.73
a/b proteins 0.62 0.82 0.49 0.51 0.57 0.75
a 1 b proteins 0.60 0.77 0.49 0.51 0.54 0.65

Figure 5
The correlation coefficient between the computed and the X-ray B-factors for the

WCN model (dotted line), the CN model (solid line), and the GNM (grey line)

as a function of the protein size in terms of (A) the residue number, (B) the

X-ray structure resolution in Å, and (C) the R-factor.

Figure 6
The X-ray B-factor profile (dotted line) of the 50S ribosomal subunit (1YJW)

compared with the computed B-factor profile (solid line). The correlation

coefficient between the X-ray and the computed B-factors is 0.60.
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puted through the normal mode analysis (NMA).22–24

In this method, the protein structure is first optimized

through energy minimized. The second derivative matrix

of the total potential function (also called the Hessian

matrix) is computed from the optimized structure. The

correlation between fluctuations is computed from the

eigenvalues and the eigenvectors of the Hessian matrix

using
�
dri � drj

� �Pk UikUjk=kk , where kk is the eigen-

values of the kth mode and Uik is the ith component of

the eigenvector of the kth mode. Instead of going

through procedures of energy minimization and matrix

diagonalization as in the case of NMA, we can compute

the correlation map directly from protein structure using

Eq. (5). Figure 7 shows the computed correlation maps

of 1RWH:A and 2BIB:A, and compares them with those

of NMA. Currently, there is no ‘‘experimental’’ correla-

tion map (except for the diagonal terms, which corre-

spond to the X-ray B-factors) as a reference standard.

However, the similarity of both types of computed corre-

lation maps indicates that the WCN model provides a

quick alternative to NMA to compute the correlation of

motions in proteins. The correlation of 1RWHA is 0.924

and that of 2BIBA is 0.817. It should be noted that Eq.

(5) is essentially an empirical one verified by results

instead of by derivation; further study is needed to

understand the physics behind it.

Figure 7
The cross-correlation maps for (A) chondroitin AC lyase (1RWH:A) and (B) complete modular teichioic acid phosphorylcholine esterase PCE (2BIB:A). For each protein,

the map on the left is computed by Eq. (5) and the map on the right by the NMA. The colors of the map ramp from red (positive correlation) to blue (negative

correlation). NMA was performed using the simplified force field of ENZYMIX.25,26
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DISCUSSION

The close relationship between the thermal fluctuations

of proteins and the distance-dependent protein CN

allows one to compute dynamic properties of proteins.

This method, i.e., the WCN model, does not presuppose

a mechanical model6–8 as well as the potential functions

associated with that model as other methods: molecular

dynamics is based on sophisticated molecular force

field,1–3 while the GNM assumes a harmonic oscillator

model for proteins with their structures described in

terms of a collection of masses connected to each other

through a spring of a uniform force constant. We showed

that the WCN model can produce more accurate B-factor

profiles than other methods. In addition, we show for

the first time that cross-correlation between residues can

be computed directly from protein contact number. We

have recently showed that27 the atoms in proteins lying

on the same spherical shell centered at the fixed point

tend to have similar thermal fluctuations. We will refer

to this model as the protein fixed-point (PFP) model.

The PFP model assumes that the protein centroid in the

simple single-domain protein is the position of the small-

est fluctuations, i.e., the fixed point. The PFP model, like

the WCN model, provides a simple way to compute both

auto-correlation and cross-correlation between residues

in reasonable accuracy. It is not hard to show that the

WCN model can reduce to the PFP model; the diagonal

term of Eq. (5) can be simplified as

Wii ¼
XN
k

1

rikrik

 !�1

x̂i � x̂i ¼
XN
k

1

r2ik

 !�1

ð6Þ

Using the approximation,

X
k 6¼i

1

r2ik

 !�1

� R2
i

where Ri is the distance of the ith Ca atom from the

protein centroid. We obtain from Eq. (6) Wii 5 R2
i ,

which is the PFP B-factor.27
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