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Abstract 
Magnetic field features of a rectangular combined function bending magnet are different from the sector magnet. A strong 

edge focusing factor (i.e., thin lens effect) intrinsically exists at the two magnet edges for the rectangular bending magnet. 

Therefore, in this study, we develop two kinds of Hall probe mapping trajectory with four analysis methods to measure and 
analyze the bending magnet’s field behavior. A sufficient correlation among the four methods is an important feature. Those 

methods are individually used to derive the pole face tilt and bent, the effective magnetic length and to check the 

specification establish by the beam dynamics group. As for the two mapping methods, one is called “Radial Mapping” 
whose mapping trajectories in the longitudinal direction (s-axis) follow the different arc lengths of radius pkr and the 

transverse trajectories follow the radial displacement kr perpendicular to the arc trajectory. The other one is called 
“Lamination Mapping” whose mapping trajectories in the longitudinal direction follow the constant arc length of circle 

radius p and the transverse trajectories follow the transverse axis displacement 5.x parallel to the lamination direction. 

This study also discusses the differences between those two mapping methods. Results obtained from the harmonic field 

distribution along the longitudinal direction (including the fringing field) and the main components of the integral strength 
are compared. The subsequent error of the four analysis methods is 0.01% for the dipole strength and 0.3% for the 

quadrupole strength individually. According to the specifications, those analysis errors are acceptable. Meanwhile, the 
accuracies of different methods for the higher multipole strengths are all within tolerances. The peculiar sextupole held 

behavior at the two magnet edges from the different mapping methods is owing to the effective magnet pole face that will be 
discussed. 

1. Introduction 

The combined function bending magnet with rectangular 

hard-edges is normally operated at 1.3 GeV. The dipole 
magnet [ 1,2] with curvature radius p = 3.495 m, bending 

angle 20 = 20” and magnetic length 1.22 m, produces an 
integral magnetic field of 1.5137 T m and a 1.957 T 

integral gradient strength. The Hall probe mapping system 
[3-5J was used to measure the magnetic field distribution. 

Simultaneously, the mapping methods and alignment pro- 
cedure were developed to perform this task [6]. 

Mapping along the same coordinates is an appropriate 
measure since beam dynamics uses the curvilinear coordi- 
nate x-y-s system in the bending magnet. For a sector 
bending magnet with a tilt angle of (Y = 0” [7], the 

* Corresponding author. 

mapping trajectories in the longitudinal direction follow 

the different arc lengths of radius pkr; in addition, the 

transverse trajectories follow the radial displacement -+r 

perpendicular to the arc trajectory. This mapping method is 

defined as “Radial Mapping”. However the SRRC bend- 
ing magnet is a rectangular one with parallel lamination 
and a gradient along the direction of the laminations. The 

usual edge focusing effect of angle bending 0 can be 
modified if the effective pole faces are tilted and bent due 

to magnet saturation in the comers, finite pole width, 
unsymmetric magnet circuit (c-type magnet) and coils bent 
at the magnet edge. For those reasons, mapping the magnet 
along the lamination direction is an interesting task. This is 
also as double check of the accuracy of the magnet 
assembly. This mapping method is called “Lamination 
Mapping”. The “Lamination Mapping” refers to a situa- 
tion in which the transverse mapping trajectories follow 
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the transverse axis displacement +x and the longitudinal 
direction follow the constant arc of bending radius p. 

Properly treating the measurement data allows a cross 

check with the first method that is useful to estimate the 

analysis accuracy. 

sponding to a constant curvature radius p and perpen- 
dicular to the straight line trajectories (s-axis) or follows 

the parallel straight lines’ trajectories which are tangential 

to the arc at the locations 0 = -C 10”. 

The analysis methods [8], according to these two 

mapping trajectories, are (A) From the “Radial Mapping” 
the magnetic field is expanded with respect to the radial 

coordinate r and then the field is integrated along the 

s-axis for each harmonic. (B) From the “Radial Mapping” 
the field is integrated first along s-axis and then expanded 

with respect to 1. (C) From the “Lamination Mapping”, 

the magnetic field is expanded with respect to the horizon- 

tal coordinate x and then the field is integrated for each 

harmonic. (D) From the “Lamination Mapping”, the 

magnetic field is first integrated and then expanded with 
respect to horizontal transverse coordinate x. 

2.1.1. Inner magnet region (/@/510”) 

Mapping along the radial direction 

If @ is the angle corresponding to the ith position on the 

s-axis (nominal trajectory j = 0), the coordinates of the jth 
position (in the radial direction) at the same ith position 

are with: 

The differences in the field integral strength among the 

four analysis methods have been found to be within 0.3% 

for the quadrupole integral strength and within 0.01% for 

the dipole integral strength. The higher multipole strengths 

beyond the sextupole field from the two mapping methods 
are also very close. The different behaviors of each 

harmonic at the magnet edge from the two mapping 
methods are also discussed. The sufficient correlation 

between the different analysis approaches demonstrates the 

effectiveness of the two mapping methods. 

x, = x,0 +CA+ (1) 
I 

;, = z,, +cAz,,. (2) 
I 

with: 

Ax,, = r cos@, (3) 

AZ, = r sin@. (4) 

where r is the elementary step between two consecutive 

mapping points in the radial direction. The mapping points 

on the nominal trajectory correspond to j = 0, where x~,, 

and z,, are the initial positions of this radial direction 

mapping trajectory. 

2. The mapping trajectory 
Mapping along the arcs 

Although the rectangular combined function magnet 

differs from a sector one, a curvilinear coordinate system 

x-y-s can be used. Since the measuring probe’s position 

stage follows a rectangular coordinate system x-y-z, the 
relationship between these two systems must be defined. 

For the two mapping methods, the “Radial Mapping” (see 
Fig. la) and the “Lamination Mapping” (see Fig. lb), the 

longitudinal s-axis trajectory is performed along a series of 

arcs inside the magnet of bending angle l@ls 10” and 
along straight lines outside the magnet (0 > 10” and @ < 
-10”). The magnet center (O,O,O) is on the nominal 

trajectory (j = 0) of the TBA dipole magnet. The trajec- 
tories for each mapping method are described in the 

following: 

If .S,, is the elementary arc length between two consecu- 
tive mapping points on the nominal trajectory, and can be 
adjusted to a optimum length which is termed as the 

trapezoidal rule to get a high accuracy. The 6, is the 

corresponding step angle which converts from length S,, 
can be expressed as: 

s, = S,Jl ~jWp)l, (5) 

I?? = S,,lp, (6) 

2.1. Radial mapping method 

with p = 3.495 m for the SRRC magnet. Mapping from 
10” to - 10” are gotten as: 

@= IO”-x0,. (7) 

Coordinates of the ith mapping position (in the s-axis) at 

the same jth position are 

(8) 
Fig. la shows the “Radial mapping” trajectories. For 

the central magnet region (101 I lo”), the Hall probe either 
follows a displacement ?~r in the radial direction perpen- 
dicular to the arc of radius p?r or follows the arc 

trajectory with radius pkr. The outside magnet regions 
(0 > 10” and 0 < - 10”) denote that 0 is constant at the 
upstream 0 = 10” and downstream 0 = - 10”. The Hall 
probe. either follows a radial displacement +-r corre- 

with: 

z, = z,,, +cAz,,, (9) 

(10) 

(11) 

h,, = (p? jr) (CosO - COSlO”), 

AZ,; = (pkjr) (sin@ - sinlO”). 
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Fig. I. (a) The mapping trajectories on the radial mapping method of TBA dipole magnet. (b) The mapping trajectories on the lamination 
mapping method of TBA dipole magnet. 

where x,,, and 2,” are related to the initial position on the 

arc mapping trajectory. 

2.1.2. Outside magnet region on the x-s plane 
In this region, 0 is maintained constant (in the upstream 

0 = 10” and downstream 0 = - IO”). The Hall probe 

either follows the straight line trajectories which are 
tangential to the arc at the location of 0 = + IO” or a radial 
displacement tr corresponding to a constant curvature 
radius p and perpendicular to the straight line trajectory 
s-axis. 

Mapping along the radial direction 
In the radial direction mapping, 0 is maintained con- 

stant IO” or - 10”. Hence, the coordinates of the jth 

mapping position (in the radial direction) at the same ith 
position are similar to Eq. (1) and Eq. (2) with 

hx,, = r sin IO”, (12) 

A;,, = r cosl0”. (13) 

Mapping along the slope straight line trajectory 
In the straight line mapping trajectory, the curvature 

radius p is maintained constant and 0 = +- 10”. S, is the 
elementary straight length between two consecutive map- 
ping points on the nominal trajectory, the straight length S, 
depend on the variation of field strength distribution to set 
the value.- Consequently, the coordinates of the ith map- 
ping position on the jth straight line are similar to those as 
in Eq. (8) and Eq. (9) with 
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Ax,, = S, sin IO”, (14) 

AZ,, = S, cosl0”. (15) 

2.2. Lamination mapping method 

Fig. lb shows the corresponding mapping trajectories. 

For the central magnet region, the Hall probe either 

follows a displacement 2-x in the lamination direction 
parallel to the coordinate x-axis or follows the arc trajec- 

tory s-axis with a constant curvature radial p. In the 

outside magnet region, the Hall probe either follows the 

same lamination displacement CX corresponding to a 

constant curvature p or follows the parallel straight lines’ 
trajectories which are tangential to the arc at the locations 
o= 210”. 

2.2.1. Inner magnet region 

Mapping along the lamination direction 
Since the lamination direction is parallel to the x-axis, 

the lamination direction trajectory is independent of the 

angle 0 and the curvature radius p always remains 

constant. Therefore, the coordinates of the jth mapping 
position in the lamination direction are similar to those as 

in Eq. (1) and Eq. (2) with Ax,,=r and Az,,=O. 

Mapping along the arcs 
That parallel arcs lengths are the same with a constant 

curvature radius p inside the magnet region. Therefore, the 

coordinates of the ith mapping position at the same jth 

position are similar to those in Eq. (8) and Eq. (9) with 

h,, = p(cos0 - c0s10”), (16) 

AZ,, = p(sinO - sinlo”). (17) 

2.2.2. Outside the magnet region 

Mapping along the lamination direction 
In this mapping trajectory, the trajectory is also parallel 

to x-axis. Therefore, the coordinates of the jth mapping 
point in the lamination direction are similar to those in Eq. 

(1) and Eq. (2) with Ax, = r and AZ,, = 0. 

Mapping along the straight line 
Those parallel straight line trajectories are tangential to 

the arc at 0 = 2 10”. Where S, is the elementary straight 
length between two consecutive mapping points on the 
nominal trajectory, the straight length Si depends on the 
variation of field strength distribution to set the value. 
Then the coordinates of the ith mapping position at the 
same jth position are similar to those in Eq. (8) and Eq. 
(9) with Eq. (14) and Eq. (15). 

3. Analytical methods 

3.1. From the radial direction mapping 

Examining the particles trajectories in a static field 

normally requires representing the field in a curvilinear 

coordinate system that refers to the nominal trajectory. 
This system is referred to as the radial system. In a magnet 

having a horizontal symmetry plane (midplane), only the 

vertical field component B,(r,s) in this plane must be 
known. The nonlinear content of the field can be directly 

obtained from the “radial mapping” by expanding the field 

in radial direction r 

B,(r,s) = B_(s) + GJs)r + S,,(s)r’ + O,,(s)r’ 

+ D,,(s)r4 + . . f (18) 

and then performing the integral of each component along 

the nominal path so that 

B&J) dr = I BJs) do + [ G,,(s)dsl r 

+ [ S=,(s) ds] r2 + [ O,,(s) ds]r’ + . . . 

(19) 

The gradient integral JG,,(s) ds includes the thin lens 
focusing effect { - (Bp)tan@/p} due to the pole face tilts, 

with respect to a pure sector magnet, at both ends of the 

magnet. This is because beam dynamics codes already 
used thin lens approximation. Hence, the gradient field 
j’G ds of the beam dynamics codes is then given by 

I I 
G ds = G,,(s) ds - [-2tan@lp][Bp]. (20) 

and the fundamental and other multipole strength in Eq. 

(19) does not need to be modified and is equal to the beam 
dynamics use. 

Another method to analyze the nonlinear content of the 
field consists of determining the magnet effective length as 
a function of r. In that case, the B,(r,s) field is measured 

and integrated along different parallel arcs on the longi- 
tudinal direction will give us the different magnetic length 

which would be similar to the effective length of sector 
magnet. Hence, the vertical field B,,(r,s) on the midplane 
can be integrated and corresponding straight lines on both 

sides of the magnet as: 

I 
B,(r,s) dl = I B.Jr,s)[(p + r) d@l 

= 
I 

B,(r,s) ds + ( BJr,s) ds/p)r = E ds 

+ I [G + (B/p)] ds r + I 
[S + (G/p)] ds r2 + . 

. . (21) 
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where dl = (plr)dt?. The field integral is then expanded 

into 

Identification between Eq. (21) and Eq. (22) leads to 

B,,ds, 

I I Gds = [G,, - B,Jp]ds - I-2 tanOlpl[Blpl, 

II I I 
Sds = S,,ds -- [ G,,ds]lp + [ B,,dsllp’. (23) 

Again, the gradient integral $G,, ds includes the edge 

thin lens effects. Hence, the gradient field _fG ds to be used 

in the beam dynamics is obtained by twice subtracting the 
previous quantity to the total gradient field strength. 

3.2. From the lamination direction mapping 

Since the magnet assembly is made of parallel lamina- 

tions displayed along the nominal path, so having parallel 

pole face (rectangular magnet), it is also of interest to 
expand the B,(x,s) field along the direction x-axis of the 

lamination to check the field quality. This is obtained 
directly from the “lamination mapping” by expanding the 

field in the lamination direction x: 

B&s) = B,,(s) + GJs)x + S&)x2 + O&)x3 + De,(s)x4 

+ . . . (24) 

and then performing the integral of each component along 
the nominal path so that 

I 
BJx,s) ds = B,, ds + [G&) dslx + 

II I 
[S,,(s) d.s]x2 

+ 
I 

[O,,(s) 61x’ + * L . , (25) 

where G,,(s) here represents the physical gradient related 
to the shaping of the lamination. Since a mapping point 
(B,r) has for its coordinate in the lamination system: 

x = rlcostl. (26) 

I$. (26) was put into Eq. (25) and by the multipole 
expansion definition one will obtain the Eq. (27) 

B,(x,s)ds=IB(s)ds+lG(s)cosHdsx 

+ 
I 

S(s)cos% ds x2 + 0(s)cos30 ds x’ + . 

. (27) 

By considering the magnet gradient J-G(s) ds which is of 

interest in beam dynamics studies, it can be deduced from 

the lamination gradient which by construction should 

remain approximately constant within the magnetic length: 

I I ” d8 
G(s) ds = pG,,(O) oz ~_ (28) 

where G,,(O) is considered to remain constant within the 

effective length of the magnet: 

L CC11 = GJs) ds/GC,(0). 
I 

(29) 

With radius p =3.495 m, the magnet effective length 

L C,lf = 1.222 m and the bending angle 0 = IO”. one 

obtains 

I 

P G(s),, ds 

Gds=2 
I 

L 
(lnlsec 0 + tan 01) 

CClf 

= 1.003 Go, ds. 
I 

(30) 

In checking the magnet properties, the field integral can 
be measured at different values of x to obtain the magnet 

length as a function of x for comparison with the ideal 

hard-edge magnet. Expanding the field integral of the 
lamination direction mapping with respect to x will give 

the nonlinear components as 

I 
B,.(x,s) ds = B,,(s) ds + [G,,(s) drlx + [S,,(s) dslx’ 

I I I 

+ [O,,(s) ds]x3 + . . . 
I (31) 

Eq. (31) must be equal to Eq. (25). Therefore, the final 

result of IG ds is also equal to be l.O03fG,,(s) ds. The 
corresponding nonlinear components, however, require a 

special treatment before they can be used in beam dy- 
namics calculations. 

4. Measurement and analysis results 

The magnet was measured by the home made Hall probe 
measurement system [3-51. The harmonic content along 

the s-axis between the two mapping methods has a quite 

different behavior except the dipole field strength. Fig. 2 
shows that the dipole field distribution on the longitudinal 

axis is almost the same between the two mapping methods. 
However. for a higher multipoles strength, the difference is 
quite important for the beam dynamics behavior. Fig. 3 
shows the quadrupole field distribution along the s-axis 

and Table 1 shows the integral field strength of each 
harmonic according to Eq. (19), Eq. (22), Eq. (2.5) and Eq. 
(31). Fig. 2 reveals that the dipole field strength at the 
magnet edge becomes negative and then goes to zero far 
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Fig. 2. Dipole field distribution along the longitudinal direction of 

the two mapping methods. 

smooth; it then becomes positive and finally goes to zero 

far away from magnet. This positive quadrupole field 
behavior also originates from the fringing of the coil 
similar to the dipole field behavior. 

The integrated gradient and higher multipole strengths 

must be unified to obtain the useful value for beam 
dynamics use. Therefore, the integrated gradient strength 

_fG ds of the Eq. (19). Eq. (22), Eq. (25) and Eq. (31) has 
been calculated according to Eq. (20), Eq. (23) and Eq. 

(30). The unify integrated harmonic strength is the field 
strength modification only within the effective magnetic 

length region (101 5 10”) and plus the non-modification 
field strength outside the effective magnetic length region 

(0 > 10” and 0 < - 10”). Therefore, Table 2 presents the 

final value _fG ds and the higher multipole integral strength 
will be used in beam dynamics. 

The maximum error on these integral JG ds between the 

different methods is about 0.006 T. This error normalized 
to the nominal quadrupole integrated strength is about 

0.3%. The largest error derives from the lamination 
mapping methods. The error is primarily owing to the 

assumption made in the analysis process (Eq. (28)). This is 

because the “radial mapping” is a direct method in which 
the Hall probe is assumed to follow the ideal electron 

trajectory. There is a criterion for the choice of the step 

size S,, for the integral strength accuracy,but it does not 
influence the precision of the results when one translate 
them from “radial” to “lamination” mapping. 

-4 
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 

s-axis (m) 

Fig. 3. Quadrupole field distribution along the longitudinal 

direction of the two mapping methods. 

away from the magnet. The negative field strength is due 
to the fringe field of the coil. Fig. 3 shows a strong 

negative quadrupole field at the two edges with the 

“Radial Mapping” method, corresponding to the thin lens 
effect from the pole face rotation. With the “Lamination 

Mapping” method, the negative quadrupole field is 

The sextupole field behavior (Fig. 4) at the magnet edge 

is very different [9,10] between the measurements per- 
formed with the “Radial” and the “Lamination” Mapping 
methods. This behavior originates from the coil which 

produces a pole face bent. When entering the end field 

region and then moving away from the magnet. the field on 
the nominal trajectory initially decreases rapidly, then goes 

to smaller negative values and then tends asymptotically to 
zero (Fig. 2). Therefore, if the field is mapped along the 
lamination direction x-axis, the effective magnet pole face 

is bent symmetrically (Fig. 5a). Therefore, the measured 
field behavior is also symmetric [2]. Owing to this reason, 
the sextupole component d2Bl& along the longitudinal 

direction as shown in Fig. 4 for the lamination mapping, 

will have a constant negative sign in the edge region. 
However, if the field is mapped along the radial 

Table 1 

The interrrated harmonic field strength obtained from the different measurement and analysis methods 

Hammic field Eq. (19) Eq.(22) Eq.(25) 

@S-IO" IO"e@~-lo BElO" @S-IO" IO"S@Z-IO" @Zlo" e-10" lo"Z@~-lo" 8~10" 

jfIds [T B] 0 0277 1.4648 0.0268 0.0277 1.4648 0.0268 0.0277 1.4647 0.0269 

IGds IT1 -0.081 -2.255 -0.081 -0.081 -1.836 -0.081 0.009 -1998 0.009 

jSds [T/m] -0.32 -0.51 -0.29 -0.30 -1.13 -0.30 -0.48 -0.75 -0.46 

J0d.s IT/m21 3.9 18.4 I.1 1.5 18.0 1.7 1.5 12.7 0.7 

jDds [T/m’] -47 -78 -103 -63 -114 -61 -24 -100 -85 

Eq.(31) 

@S-lo" IO"?@-IO" @>I0 

0.0277 1.4647 0.0269 

0.009 -1.999 0.009 

-0.49 -0.73 -0.47 

1.0 13.5 0.6 

-37 -115 -39 
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Table 2 

The integrated harmonic field strength after the analysis treatments 

Harmonic field Eq. (20) Eq. (23) Eq. (30) Eq. (30) 

,fBdv [T B] 1.5193 1.5193 1.5193 1.5193 

_fCds PI -1.979 (-2.417) - 1.980 (- 1.998) - 1.985 (- 1.979) - 1.986 (- 1.980) 

JSds [T/m] -1.12 -1.16 (-1.73) - 1.69 -1.69 

l0ds [T/m’] 23.4 21.3 14.9 IS.1 

_fDdJ [T/m’] -228 -199 -209 -191 

L, [ml 1.2219 I.2319 I.222 1.222 

( ) without modification 

direction r-axis, the effective magnet pole face is bent but 
not symmetric (Fig. 5b). Hence. the measured field is not 

symmetric with respect to the radial direction. Therefore, 
the sextupole component d’Bldr” changes sign in the edge 
region is shown in Fig. 4 [ 10.1 I]. Table 2 indicates that the 

sextupole strength measured by the radial mapping trajec- 

tory with the different analysis method can be adjusted by 

means of Eq. (23) and the corresponding result for JS ds. 

As revealed in this table, the results between the two 

analysis methods on the same radial mapping are con- 
sistent. The sextupole strength from Eq. (25) and Eq. (31) 

on the lamination mapping are the same, and slightly larger 
than the results from Eq. (19) and Eq. (23) on the radial 
mapping. This slight difference originates from the differ- 

ent mapping trajectories which allow the Hall probe to take 

the different fringing field behavior at the edge of coil. For 
higher multipoles beyond the sextupole, the modification 
factor entering in the analysis of the lamination mapping is 
so small that it can be neglected. 

For beam optics studies, the field expansion along the 
radial direction given in Table 2 is the one of interest. The 
sextupole strength is very strong at the magnet edges but 

rather weak in the center region (Fig. 4). Therefore, the 
edge effect can be treated separately as a thin lens located 

on both sides of the dipole magnet [I 11. One can also use 
end shims to compensate this strong negative sextupole 

field [2]. Notably the edge sextupole fields have a net 

X 

2.5 

Q 
E 
c 0.0 

5 
2 
g -2.5 

2 
S 

EL 
z1 -5.0 
k 

d 

-7.5 

- 10.0 
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 

s-axis (m) 

Fig. 4. Sextupole field distribution along the longitudinal direction 

of the two mapplng methods. 

(b) ’ / 

Fig. 5. (a) The relation between the effective magnet pole face and 

mapping trajectories under the lamination mapping method. (b) 

The relation between the effective magnet pole face and mapping 

trajectories under the radial mapping method. 
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positive effect on the chromaticities [ 111. However, if the 

shims were added at the magnet edges, a wider good held 
region would be obtained. 

5. Conclusions 

Since the combined function bending magnet with 

rectangular hard-edge has a gradient field, a good align- 

ment must be achieved between the magnet and the Hall 

probe bench to ensure that the mapping will pass through 
the exact magnet center and follow the nominal trajectory. 

The measurement results indicate that the dipole field 

strength does not depend on the different analysis methods. 

Those results conform not only that the measurement 
system is of high precision, but also that the analysis 

methods are reliable. However, the field measurement with 

the different methods reveals that the multipole strength at 
the two edges is quite different, particularly for the 

sextupole field. But using a proper analysis method 

transforms the measurement results into the final solution, 
the final analysis results are all consistent between the 

different methods discussed in Section 3.1 and Section 3.2. 

However, a small difference exists between the “Radial” 
and “Lamination” Mapping methods. The multipoles 

higher than the sextupole is independent of the different 
mapping method. This is because that end field difference 

between these two mapping methods of the multipoles 

higher than the sextupole is less sensitive to the sextupole. 
The difference in the gradient field integral between 

“Radial” and “Lamination” Mapping is about 0.3%. The 

sextupole end field depends strongly on the mapping 
method, but it is qualitatively well understood. After a 

proper analysis treatment of the measurements, the four 

methods give consistent results. Therefore the difference in 
the integrated sextupole strengths remains in the order of 

0.54 T/m between the two mapping methods. However, 

since the radial mappings in the most natural are con- 
cerning beam dynamic’s calculation, the corresponding 
results are to be used. This is true for the higher multipole 

content. 
However, according to the magnet construction, the 

lamination mapping is deemed in this study to be of great 

interest and to more thoroughly understand the entire 
magnet performance. Moreover, using a proper corre- 

sponding analysis method of the data has determined the 
quality and reliability of the measurement bench. 
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