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Nonparametric Discrimination Using Proximities 
for Vehicle Detection 

Abstract 
Real time traffic information is crucial in traffic management. A Radio Frequency System-on-Chip 

(RF SoC) using the theory of Frequency Modulated Continuous Waves (FMCW) is practically 

employed in the experiment for this study. Data recorded via such detector is considered functional 

data. This study adopts nonparametric discrimination using three types of semi-metric, namely, 

Principal Component Analysis- (PCA-), Partial Least Square- (PLS-), and Derivative-type, for 

road-side microwave radar detection of vehicles. Two purposes are involved. The first is the 

recognition of vehicle types and the second is the recognition of the lane in which vehicles travel. This 

study shows that the PLS-type semi-metric performed the best among all for the first purpose, and the 

PCA- and Derivative-type of semi-metrics both yielded satisfactory results for the second purpose. 

Keywords: Frequency Modulated Continuous Wave (FMCW); Functional data analysis; k-Nearest 

Neighbor (kNN); Partial Least Square (PLS); Radar recognition. 

 

1. Introduction 

Detecting objects such as vehicles via various devices, say microwave Radars, has been of vital 

importance in the field of the Intelligent Transportation System (ITS) for decades. Traditionally, target 

information gathered via radars is in image form. Techniques such as Inverse Synthetic Aperture Radar 

(ISAR) which generates two-dimensional high resolution images for target recognition have been 

widely utilized in maritime surveillance for the classification of ships and other objects, in addition to 

numerous other fields. Herman [7, 8] attempted target recognition directly based on raw data regardless 

of images. Traditionally, algorithms such as principal component analysis (PCA), Probabilistic neural 

network (PNN), and generic algorithm (GA) have been used directly to classify objects in wide range 

of research fields, see among others, Ramanan et al. [13], Sun et al [15], and Perez-Jimenez and 

Perez-Cortes[12]. Data from longitudinal studies or real time information captured from processes was 

termed functional data by Ramsay and Silverman [12]. Analysis of functional data is called functional 

data analysis (FDA), and provides us with a different perspective to traditional statistical data analysis 

and has been widely applied in numerous fields. This study classifies vehicles information obtained by 

microwave radar using FDA combining the appropriate measures of similarity. 

In traffic management, a Radio Frequency System-on-Chip (RF SoC) using the theory of Frequency 

Modulated Continuous Waves (FMCW) can be used to collect traffic information and for future 

management or sustainable planning. This study thus adopts such a device for vehicle detection, and 

data collected via microwave radar detector is considered functional data. Jou et al. [11] also discussed 

the vehicle detection problem. In that experiment, all test vehicles traveled at the same speed, and the 

vehicle types were also limited. Moreover, both the parametric approach, namely, the multivariate 

analysis of variance (MANOVA) and the semi-parametric approach, namely, a linear mixed effects 



model, did not yield satisfactory results under such a design experiment. Therefore, this study aims to 

find a robust nonparametric methodology that can correctly classify objects into appropriate classes. 

The basic idea for subsequent data analysis is mainly derived from the work of Herman [7,8], with the 

additional adoption of nonparametric discrimination. In this study, two goals are set to achieve. The 

first is to recognize vehicle type, and the second is to recognize the lane in which vehicles is traveling. 

The remainder of this paper is organized as follows: Section 2 contains the nonparametric 

discrimination of functional data using three types of proximity, namely PCA-, PLS- and 

Derivatives-type semi-metrics. The PLS regression method is also mentioned simultaneously. Section 3 

presents an empirical example of vehicle recognition using microwave radar detector. Finally, 

conclusions and discussions are presented in the Section 4. 

2. Model specification and methodology 

Functional data sets appear in numerous scientific fields. Although each data point may be treated as 

a large finite-dimensional vector it is preferable to think of them as functional data. In this section, 

some notations of functional data and a brief introduction of nonparametric discrimination using three 

types of proximity are introduced. 

2.1. Preliminaries 

We first introduce some common notations and the terminology that generally used in mathematics. 

Definition 1. A random variable X is called functional random variable (f.r.v.) if it takes values in an 

infinite dimentional space. An observation x of X is called a functional data. The X denotes a random 

curve, such that . { ( ); T}X X t t= ∈

Definition 2. || . || is a semi-norm on some space F as long as: 

1.  F,  || || 0x x∀ ∈ ≥

2.  ( , ) F,  || || | ||| ||a x ax a x∀ ∈ℜ× =

3. ( , ) F F,  || + || || || || ||x y x y x∀ ∈ × ≤ + y  
Definiton 3. d is a semi-metric on some space F as long as: 

1. . 0),( ,F =∈∀ xxdx
2. . 0),( ,FF),( ≥×∈∀ yxdyx
3. ),(),(),( ,FFF),,( yzdzxdyxdzyx +≤××∈∀ . 

Notice that a semi-norm || . || does not have the property that the fact || x || = 0 implies x = 0. Similarly, 

a semi-metric does not have the property that the fact d(x, y) = 0 implies x = y. 

2.2. Three types of semi-metrics 

2.2.1. Semi-metrics based on functional PCA 

Functional Principal Components Analysis (FPCA) is a tool for computing proximities between 
curves in a reduced dimensional space. As long as 2[ ( ) ]E X t dt∫  is finite, the FPCA of the f.r.v. X has 

the following expansion [2]: 
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where  denotes the orthogonal eigenvectors of the covariance operator ,  iv i ( , ) ( ( ) ( ))X s t E X s X tΓ =  

associated with the eigenvalues 
1 2 ...λ λ≥ ≥ . And the truncated version of the above expansion of X is 
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The main goal is to find truncated version such that 2( ( ( ) ( ))qE X t p X t dt−∫ is minimized over all 

projections pq of X into q-dimensional spaces. According to the classical L2-norm, we can define a 

parametric class of semi-norms and semi-metrics as follows: 

     ( ) 2 2
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( ( )) ( ( ) ( ) )qPCA q
kq k

x x t dt x t v t dt
=

= = ∑∫ ∫% , (3) 

and 

     2
1

( , ) ( [ ( ) ( )] ( ) )qPCA
q i i kk

d X x X t x t v t dt
=

= −∑ ∫ . (4) 

In general, ΓX is unknown and so is the vk’s. However, the covariance operator can be well 

approximated by its empirical version 

     
1

1( , ) ( ) ( )nn
X i is

i
t X s

n =∑ X tΓ = . (5) 

The eigenvectors of n
XΓ  are consistent estimators of eigenvectors of XΓ . In practice, we never 

observe { { ( );  T},  1,..., }i ix x t t i n= ∈ =  but a discrete version 
1{ { ( ),..., ( );  T},  1,..., }i i i jx x t x t t i n= ∈

j

= . 

So we can approximate the integral as follows: 

     
1
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i k j i j i j k jX t x t v t dt w X t x t v t

=
− ≈ −∑∫ , (6) 

where w1,…,wj are the weights which define the approximate integration. A standard choice is wj = tj – 
tj-1. Similarly, the semi-metric  an be approximated by its empirical version: 

'( , )PCA
q i id x x

     2
'1 1

( , ') ( ( ( ) ( )) ( ))q JPCA
q j i j i j k jk j

i xi w x t x t v t
= =

= −∑ ∑d x , (7) 

where v1, v2,…,vq are the W-orthonormal eigenvectors of the covariance matrix 
'1

1 nn
i ii

x xn =
Γ = ∑W W  

associated with the eigenvelues 
1, 2, , q n...n nλ≥ ≥ ≥ λ , and W = diag(w1,…,wj). λ

2.2.2. The Partial Least Squares (PLS) 

The Partial Least Squares (PLS), first introduced by Herman Wold [5], is a widespread method for 

modeling relationship between a set of dependent variables and a large set of predictors. PLS 

generalizes and combines features from principal component analysis and multiple regression. PLS was 



first presented as an algorithm analogous to the power method and was subsequently suitably 

interpreted in a statistical framework [4,6,9,12]. 

Let X be the zero-mean (n x N) matrix and Y be the zero-mean (n x M) matrix, where n denotes the 

number of data sample. PLS decomposes X and Y into the form 

      , (8) 
X = TP' + E
Y = UQ' + F

where the T, U are (n x p) matrix of the p extracted components, the (N x p) matrix P and the (M x p) 

matrix Q represent loading matrices and the (n x N) matrix E and the (n x M) matrix F are the residual 

matrices. PLS is based on the NonLinear Iterative Partial Least Squares (NIPALS) algorithm and finds 

weight vectors w, c such that 
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where the term cov(t, u) = t’u / n denotes the sample covariance between the components t and u. The 

NIPALS algorithm starts with the random initial value of the component u and repeats sequentially till 

the convergence is achieved. 

step 1. w = X’u / (u’u) (estimate X weights) 

step 2. ||w|| → 1 

step 3. t = Xw (estimate X component) 

step 4. c = Y’t / (t’t) (estimate Y weights) 

step 5. ||c|| → 1 

step 6. u = Yc (estimate Y component) 

Notice that if M = 1 we have the fact that u = y, and Y, denoted by y, is a one-dimensional vector. In 

this case the NIPALS procedure converges in a single iteration. Furthermore, it can be shown that the 

weight vector w also corresponds to the first eigenvector of the following series of equations: 

      ∝ ∝ ∝ ∝w X'u X'Yc X'YY't X'YY'Xw

This shows that the weight vector w is the right singular vector of the matrix X’Y. Similarly, the weight 

vectors c is the left singular vector of X’Y. The eigenvectors t and u are given as t = Xw and u = Yc, 

where the weight vector c is define in step 4 and 5 of NIPALS. 

2.2.2.1. Forms of PLS 

PLS is an iterative process. After the extraction of eigenvectors t and u, the matrices X and Y are 

derived from subtracting their rank-one approximations based on t and u. Different extractions yield 

several variants of PLS’s. By equation (1) the eigenvectors p and q are computed as coefficients of 

regressing X on t and Y on u, respectively. Then, the eigenvectors can be solved by p = X’t / (t’t) and 

q = Y’u / (u’u). 



1. PLS Mode A 

The PLS Mode A is based on rank-one deflation of individual matrix using the corresponding 

loading and eigenvectors. In this case, the X and Y matrices are extracted by X = X - tp’ and Y = 

Y – uq’. This method was originally proposed by Wold [13] to model the relationships between the 

different sets of data. 

2. PLS1 and PLS2 

PLS1 (either dependent variable or independent variable consists of a single variable) and PLS2 

(both dependent and independent variables are multidimensional) are used as PLS regression 

method. The main feature of the approach is that the relation between of X and Y is asymmetric. 

The main assumptions of the form of PLS are as follows: 

I. The eigenvectors {ti, i = 1…p} are good predictors of Y where p denotes the number of 

extracted eigenvectors. 

II. A linear inner relation between the eigenvectors t and u exists, that is, U = TD + H. 

where D is the (p x p) diagonal matrix and H is the residual matrix. The asymmetric assumption of 

the relationship between the independent and the dependent variables is then transformed into a 

deflation scheme. The eigenvectors {ti, i = 1…p} are good predictors of Y. Then the eigenvectors 

are used to deflate Y, that is, a component of the regression of Y on t is removed from Y at each 

iteration of PLS. X = X - tp’ and Y = Y – tt’Y / (t’t), where the weight vector c is defined in step 4 

of NIPALS. This way of deflation ensures that the extracted eigenvectors {ti, i = 1…p} are 

mutually orthogonal. 

3. SIMPLS 

Jong [10] introduced another form of PLS, denoted by SIMPLS. The SIMPLS approach directly 
finds the weight vectors { , 1... }iw i p=)  which are applied to the original matrix X. The criterion of 

the mutually orthogonal eigenvectors { , 1... }it i p=
)  still remains. 

2.2.2.2. Semi-metrics based on functional PLS 

Let 
1 ,...,q q

pv v  be the vectors of Jℜ  performed by multivariate partial least squares regression 

(MPLSR) where q denotes the number of the factors and p the number of scalar responses. The 

semi-metric based on the MPLSR is defined as: 

     2
' '1 1

( , ) ( ( ( ) ( )) ( ))p JPLS q
q i i j i j i j k jj j

d x x w x t x t v t
= =

= −∑ ∑ , (10)  

where w1,…,wj are weights which define the approximate integration. A standard choice is wj = tj – tj-1. 

When we consider only one scale response (p = 1), the proximity between two discrete curves is due to 

only one direction, which seems inadequate with regard to the complexity of functional data. However, 

as soon as we consider multivariate response, such a family of semi-metrics yields very good results, 

which is the case in the curves discrimination context. 
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2.2.3. Semi-Metrics Based on Derivatives 

The semi-metric based on derivatives of two observed curves xi and xi’ can be defined as: 

     ( ) ( ) 2
'( , ') ( ( ) ( ))deriv q q

q i id xi xi x t x t d= −∫ t , (11) 

where x(q) denotes the q-th derivative of x. Note that 0 ( ,0)derivd x  is the classical L2-norm of x. The 

computation of successive derivatives is very sensitive numerically. In order to overcome the numerical 

stability problem, we can use a B-spline [1] approximation for the curves. Once we have obtained an 

analytical B-spline expansion for each curve, the successive derivatives are directly computed by 

differentiating several times their analytic form. Let {BB1,…, BBB} be a B-spline basis, then the discrete 

approximate form of the curve xi = (xi(t1),…, xi(tj)) is as follows: 

     B
1 B

J B 2
1 B b b( ,..., ) 1 b 1

ˆ ˆ ˆ( ,..., ) arg inf ( ( ) B ( ))i i i i j jj
x t t

α α
β β β α

∈ = =
= = −∑ ∑ℜ

. (12) 

This produces a good approximation of the solution of the minimization problem 

     B
1 B

B 2
b b( ,..., ) b 1

arg inf ( ( ) B ( ))i jx t
α α

α
∈ =

−∑∫ℜ

b 1

t dt . (13) 

Therefore, the approximate form of the curve xi = (xi(t1),…, xi(tJ))’ is B
b b

ˆˆ (.) B (.)i ix β
=

=∑ . Because the 

analytic expression of the Bb’s is well-known, the successive derivatives can be exactly computed and 

we can differentiate easily the approximated curves: 

     . (14) 
B( ) ( )

b bb 1
ˆˆ (.) B (.)q q

i ix β
=

=∑
Then semi-metric based on derivatives of two observed curves xi and xi’, can be computed by 

     ( ) ( ) 2
' 'ˆ ˆ( , ) ( ( ) ( ))deriv q q

q i i i id x x x t x t d= −∫ t . (15) 

2.3. Nonparametric classification of functional data 

Classification or discrimination of functional data is employed when we observe a f.r.v.  and a 

categorical response Y which gives the group of each functional observation. The main purpose is to 

classify new observations into appropriate groups. In this study, we hope to find a robust method for 

assigning each functional observation to some homogeneous group. We first review the nonparametric 

discrimination method [3]. 

2.3.1. A brief review 

Let (Xi, Yi) i = 1,…,n be a sample of n independent pairs, identically distributed as (X, Y) and valued in 
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×F G , where G = {1,…,G} and (F, d) is a semi-metric vector space (X is a f.r.v. and d a semi-metric). 

The notation (xi, yi) denotes the observation of (Xi, Yi). 

1. General classification rule (Bayes rule). Given a functional observation x, the purpose is to 
estimate the posterior probability ( ) ( | ),  gp x p Y y X x g= = = ∈G . Once the G probabilities are 

estimated by 
1ˆ ˆ( ( ),..., ( ))gp x p x , the classification rule consists of assigning an incoming functional 

observation x to the group with highest estimated posterior probability . 

This classification rule is called Bayes rule. To use a suitable kernel estimator make precise 

discrimination of functional data. 

ˆ ˆ( ) arg max ( )g gy x p x∈= G

2. Kernel estimator of posterior probabilities. Before defining the kernel-type estimator of the 
posterior probabilities, we remark that 

[ ]( ) (I | )g Y gp x E X x== = , with I[Y=g] equal to 1 if Y = g and 

0 otherwise. Therefore we can use kernel-type estimator introduced for the prediction via 

conditional expectation: 

     
1

[Y ]1
, 1

1

I ( ( , ))iˆ ˆ( ) ( )
( ( , ))

i

n
gi

g g h n
ii

k h d x X
p x p x

k h d x X

−
==

−
=

= = ∑
∑

,
i

, (16) 

where k is the kernel and h is the bandwidth (a strictly positive smoothing parameter). The kernel 

posterior probability estimate can be rewritten as 

     , (17) , { :Y }
ˆ ( ) ( )g h i hi g
p x w x

=
= ∑

with 

     
∑=

−

−

= n

i i

i
hi

Xxdhk
Xxdhkxw

1
1

1

,
)),((

)),(()( , (18) 

In order to compute the quantity , we use only the X)(ˆ , xp hg i’s belonging to both the group g and 

the ball centered at x and of radius h, 

     , (19) ∑∈
=

Ii hihg xwxp )()(ˆ ,,

where 

     }),(:{}Y:{ hXxdigiI ii <∩== , (20) 

The closure Xi is to x the larger the quantity k(h-1d(x, Xi)). Hence, the closer Xi is to x the larger is 

the weight wi,h(x). So, among the Xi’s lying to the g-th group, the closer Xi is to x and the larger is 

its effect on the g-th estimated posterior probability. As long as k is nonnegative, the kernel 

estimator has the following interesting properties:  

1. , 1)(ˆ0 ≤≤ xp ,hg

2. , ∑ ∈
=

Gg hg xp 1)(ˆ ,
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which ensure that the estimated probabilities are forming a discrete distribution. 

3. Choosing the bandwidth. According to the shape of the kernel estimator, we have to choose the 

smoothing parameter h. As usual, h is constructed from minimizing a loss function Loss as 
 where the function Loss can be built from  and y)(minarg hLossh hLoss = sxp ihg )'(ˆ , i’s. The 

misclassification rate is a nature choice among different types of Loss functions. Therefore, the 

functional classification can be performed as follows: 

. Ⅰ Training step 

  for  H∈h

   for i =1, 2,…, n 

    for g = 1, 2,…, G 

                      
∑
∑

=
−

=
−

← n

i ii

gyi ii
ihg

xxdhk

xxdhk
xp i

1' '
1

}:'{ '
1

,
)),((

)),((
)(ˆ '  

endfor 

endfor 

endfor 

     . )(minarg hLossh hLoss H∈=

 . Predicting stepⅡ  

     Let x be a new functional observation and  be its estimated group: )(ˆ xy

           )}(ˆ{minarg)(ˆ , xpgxy
Losshg←

where  is a set of suitable values for h and k is a known kernel. ℜ⊂ H

2.3.2. k-Nearest Neighbors (kNN) estimator 

The choices of the bandwidth h and the semi-metric d have great influence on the behavior of the 

kernel estimator. It is inefficient to choose bandwidth h among the positive real number subset from a 

computational perspective. So, let us consider a general way which is the kNN version of kernel 

estimator. We can thus replace a choice of real parameter among an infinite number of values with an 

integer parameter k (among a finite subset). The main idea of the kNN estimator is to replace the 

parameter h with hk which is the bandwidth allowing us to take into account k terms in the weighted 

average. The pg at x is estimated by 

     
∑
∑

=
−

=
−

= n

i ik

n

gyi ik
kg

xxdhk

xxdhk
xp i

1
1

}:{
1

,
)),((

)),((
)(ˆ , (21) 

where hk is the bandwidth such that the number of {i: d(x, xi) < hk} is k. The minimization problem on h 

over a subset of ℜ  is replaced with a minimization on k over a finite subset {1, 2,…, K}: 

     
'

   and)(minarg }K,...,2,1{ LosskLosskLoss hhkLossk ←← ∈     

where the loss function Loss is built based on  and ysxp ihg )'(ˆ , i’s. 
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Choosing the tuning parameter k, we must introduce a loss function Loss which allows us to build a 

local version of the kNN estimator. The main goal is to compute the quantity: 

     

∑

∑

=

=

=
n

i
iLCV

i

n

gyi
iLCV

i
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g
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)(

),((
)(

0

0 , (22) 

where  and  is the bandwidth corresponding to the optimal number 

of neighbors at 

),(minarg ,...,2,10 ini xxdi == )(
0iLCV xh

0i
x  obtained by the following cross-validation procedure: 

     , (23) ),(minarg)( 00
ikLossxk LCVkiLCV =

where 

     , (24) ∑ =
−

= −=
G

g i
i
kggyLCV xpikLoss

i1
2)(

,][0 ))(I(),(
0

0

0

and  

     

∑

∑

≠=

≠=
− =

n

iii
ik

ii

n

iigyi
ik

ii

i
i
kg

xh
xxd

k

xh
xxd

k
xp

i

0
0

0
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(

)
)(
),(

(
)( . (25) 

As long as we set up the appropriate semi-metric and kernel function k(.), the prediction procedure is 

finished. The misclassification rate for the training sample (xi, yi)i=1,2,…,n will be used to assess the 

performance of the predicted results. The procedure is described as follows: 

for i = 1, 2, …, n 

     )(maxarg },...,2,1{ i
LCV
gGg

LCV
i xpy ∈←

endfor 

∑= ≠
←

n

i yy LCV
iin 1 ][I1Misclas . 

3. Practical experiment and data analysis 

In order to classify the received signals into the appropriate groups, a practical experiment was 

performed using a newly developed detector mounted beside a four-lane road in Jhubei city, HsinChu, 

Taiwan. Compared to traditional installment of radar detectors, the microwave radar detector was set, at 

the height of 4.2 meters, perpendicular to the road, thus avoiding so-called Doppler Effect. Figure 1 

illustrates of installment of the radar detector in the experiment. Owing to the bandwidth limitation, the 

radar detection range included 512 points, each located approximately 0.78 meter from the next. 

Adjustments to the number of points within the radar detection range determine the resolution of 

images displayed on the monitor. 
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Fig 1. Illustration of installment of Radar detector and the range of Radar detection. 

Due to the symmetry of the radar signal, travelling whether from the transmitter to the target or from 

the target to the receiver, the experiment only requires half of the 512 points within the radar detection 

range. Subsequent analysis thus focuses on the data set for this group of 256 points. Furthermore, in 

accordance with the radar equation, the intensity of the radar signal is in inverse square proportion to 

the distance between the transmitter and the target or the distance from the target to the receiver 

resulting in the fact that the intensity of the received signal is in inverse proportion to the distance with 

the power of 4. The weakest signals thus are those received from the fourth lane, while the strongest are 

those on the first lane. Combining this information on the distance and the size of a specific car 

contained in the received signal, this study aims at classifying vehicles into groups defined by the size 

and the lane on which vehicles are traveling using the measure of proximity described in the previous 

section. 

3.1. Data description and data analysis 

Vehicle data received via the microwave radar detector is presented in the form of intensities in the 

unit of voltage, and is considered functional data in this study. Notably, all the data are negative 

numbers. In this study, the absolute values of the data were used. Vehicles were divided into small and 

large vehicles, and a total 162 vehicles were sampled. Trucks and trailers are considered large vehicles 

while sedans are considered small vehicles. Due to the geographical condition of the place where the 

experiment was performed, large vehicles traveled only in the second and the third lanes while small 

vehicles traveled in all four lanes. Therefore, the data collected from Lanes 2 and 3 will be used for the 

recognition of vehicle types. Lane 2 contained 28 and 7 small and large vehicle, respectively. 

Meanwhile, Lane 3 contained 35 and 10 small and large vehicles, respectively. To achieve the second 

goal of this study, the data of small vehicles recorded in all lanes were used for the analysis. Lanes 1 to 

4 were observed to contain 34, 28, 35, and 26 vehicles, respectively. All these data excluded equivocal 

data resulting from technical problems. 

The number of files of each vehicle depends on the time spent within the radar detection range, 

which results from various factors including vehicle body length, speed and some technical problems 
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experienced during recording. For instance, in absence of technical problems, small vehicles with short 

body length travelling at low speed would yield more files than large ones with long body length 

travelling at high speed. To reduce factor biases and retain complete graph, the individual vehicle data 

are adjusted to a fixed number, namely, 30, of files, as shown in Fig. 2. The reason to adjust these data 

to a fixed number of files is that with 30 files, an approximately complete wave is clearly formed, and 

therefore, such a handling procedure is convinced to be acceptable for subsequent analysis. This study 

assumes that there are ki files and m vehicles, where i = 1, 2,…, m and employs the following 

procedure: 

Step 1: Identify i maximum intensities of signals from ki files. 

Step 2: Repeat step 1 to obtain imax, the maximum intensity of signal. 

Step 3: Take 14 from the right, and 15 from the left of imax to produce a total of 30 

time-indexed data points. 
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Fig 2. Illustration of the adjusted data. Small vehicles in Lanes 2 and 3 are shown in (a) and (b), 

respectively. Large vehicles in Lanes 2 and 3 are shown in (c) and (d), respectively 

Based on the idea proposed by Herman [7,8], as mentioned in the previous section, this study 

directly analyze the adjusted data. The nonparametric discrimination using three types of proximity is 

used for the analysis. The forms of the three proximity measures are as follows: 

1. PLS-type semi-metrics with 2, 3, 4, 5, 6, 7, 8 and 9 factors. 

2. PCA-type semi-metrics with 2, 3, 4, 5, 6, 7 and 8 factors. 

3. Derivative-type semi-metrics zero derivatives (classical L2-norm). 

Furthermore, to assess the capability of the nonparametric approach, two samples, one for training and 

the other for authenticating, were therefore randomly assigned, and their misclassification rate was 

calculated. Notice that approximately two third of the whole data were assigned as training data, and 

the others were for authentication. The analysis procedure was repeated 5000 times yielding 5000 

misclassification rates, and the average misclassification rate was considered the criterion for the 

assessment. 
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For vehicle type recognition, four classes were built since there are two lanes and two vehicle types 

in this study. The results revealed that the average misclassification rates for all types of semi-metric 

are within the range of 17.5% ~ 27.3%. PLS-type was shown to be the best approach among all. 

Nevertheless, both the PCA- and Derivative-type semi-metrics still yielded satisfactory results. 

Regarding the recognition of lanes in which vehicles travel, the average misclassification rates were 

about 33%. Higher misclassification rate may result from more complicated analysis compared to the 

first purpose. The main reason for such a result could be the fact that the target information implicitly 

contains different sources of objects, such as background signals, noises from the environment, the 

interference among vehicles, and even the weather condition. Table 1 presents the average 

misclassification rates for each of the three semi-metrics. 

Table 1. 

Average misclassification rates for three types of semi-metric for purpose 1 and 2. 

  PCA-type PLS-type Derivative-type 
Vehicle type 27.20% 17.56% 27.30% 

Lanes 32.54% 33.47% 32.70% 

4. Conclusions 

This study adopts three types of semi-metric for nonparametric discrimination for vehicle 

recognition using road-side microwave radar detector. For the first purpose, namely, the recognition of 

the vehicle type, all types of semi-metrics yield satisfactory results for such practical experiments and 

are recommended to be employed practically. Recognition of vehicle types is considered a relatively 

simple problem since the data for large vehicles is obviously different from that of small ones. 

Regarding the second purpose, namely, the recognition of lanes in which vehicles travel, lower 

classification rate was anticipated. The main reason for this result may be that the data contains other 

contents, such as background signals and noises from other objects. Consequently, more techniques in 

dealing with digital signal processing which is not within the discussion of this study are recommended 

to be used prior to any statistical analysis. 
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