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一、中文摘要

車流理論可構建或修正運輸供需模式關係；
進行系統服務水準評估；檢驗運輸系統是否運作順
暢。尤其發展智慧型運輸系統，需要即時交通資訊
之預測。因此不論在交通資料之應用與預測上，車
流理論均為一不可或缺的分析工具與處理程序。本
研究擬構建以連續方程式(continuity equation)為基
礎的動態車流模式，波動方程式為 1955 年
Whitham，Lightwill，Richard 等人由流體現象引入
交通領域。由於波動方程式可描述動態車流變化以
及車隊追逐行為，期望藉此描述動態巨觀車流。然
而，以往巨觀車流模式與微觀模式之間有加總偏差
(aggregated bias)。因此，本研究承襲並擴充先前計
畫之結果，將藉由統計分配描述總體行為並配合個
體行為，構建出兩者相合的動態模式。

關鍵詞：車流理論、偏微分方程、守恆律。

Abstract

By traffic flow theory, planners can construct
models describing relationships between traffic
systems and environment, designers can evaluate
traffic systems, and operators can check if there is
something wrong in the system. So traffic flow theory
is an important research field of traffic and
transportation. Especially, in the develop trend of ITS,
the analysis of traffic flow can provide the application
of raw traffic data and real time prediction of traffic
situation. In this study, we follow and expand the
research, which we have done before, and try to
develop a general dynamic traffic flow model, which
is based on continuity equation. Whitham, Lightwill,
and Richard applied the wave equation to traffic flow
theory in 1955 first. To avoid aggregated bias of
microscopic models, we are going to develop a
dynamic macroscopic traffic model that coincident
with microscopic behavior herein. In addition, we are
going to discuss the algorithm to solve the model and
extend it to applications of real road situation.

Keywords: traffic flow theory、partial differential
equation、 conservation law

二、緣由與目的

Traffic flow theory is a new science, which has
addressed questions related to understanding traffic
processes and to optimizing these processes through
proper design and control. The former questions could
be described as basic research and the latter as applied
research, especially in the worldwide trend of
intelligent transportation system (ITS), forecasting and
controlling dynamic traffic phenomena is becoming
more important. Dynamic traffic flow and dynamic
traffic assignment are two powerful tools for ITS
applications. Essentially, link travel time, which is
provided by dynamic traffic models, is an important
part of dynamic traffic assignment models. Therefore,
formulating dynamic traffic phenomena, which
describes traffic situations to adapt the requirement of
dynamic traffic assignment models and ITS
applications is a valuable research topic. This study
proposes a macroscopic dynamic traffic flow model
which is based on the LWR model (Lighthill and
Whitham, 1955, Richards, 1956), car-following theory
and the high-order kinetic model (Michalopoulos, et.
al., 1980, Michalopoulos, and Pisharody, 1980,
Michalopoulos, et. al., 1981, Michalopoulos, et. al.,
1983). There are two main equations considered in the
model, the first one describes conservation of vehicle
numbers and the second one describes motion of
vehicles (conservation of momentum). However,
macroscopic models still can hardly analyze the
influence of vehicular behavior. To improve the
drawback, an interaction function is introduced to
describe the interaction between vehicles, so as to
construct a self-consistent model, which includes
microscopic and macroscopic behaviors. Mostly, the
LWR-like and higher-order models need some specific
speed-density relationship as state equations. As a
speed-density relationship is employed, an assumption
is made. Sometimes the assumption of speed-density
relation is not consistent with the whole model. The
model proposed herein generalizes the speed-density
relationship and makes the whole model self-consistent.
After deriving the model, discussion and analysis are
mentioned. In addition, the comparison with the LWR-
like and higher-order models are made. Numerical
experiences are left to further research.
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三、結果與討論

Mostly, microscopic traffic flow models are
based on car-following theory that is every driver who
finds himself in a single-lane traffic situation is
assumed o react mainly to a stimulus from his
immediate environment according to the relationship

(Reaction) Tt+ = λ (Stimulus) t            (1)

where λ  is a sensitivity coefficient and T a reaction
time-lag, the combined effect of the sluggishness of the
driver and his car. It is reasonable to consider as
reaction the acceleration of the car, over which the
brake and gas pedal. If one further assumes that the
sensitivity, λ , is constant, he obtains the “linear car-
following model”
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in which n denotes the position of a car in a line of cars
and nx  the position of the nth car along a highway.
Gazis, Herman and Rothery, (1961) checked the linear
car-following model and discussed nonlinear car-
following models. In studies of nonlinear car-following
model, the main difference between them is the
formulation of sensitivity. They combined Eq.(2) and
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Comparing the car-following theory and the
kinetic mechanism, the basic concepts of both are the
same. Both of them are illustrated in the
form: maF = . In physics, field is a concept to
describe uncontact force, like magnetic field, gravity
field and so on. For the safety sake, vehicles on a road
also adjust their velocity and headway so as to avoid
collision. Thus, the interaction force between vehicles
can also be treated as a traffic field.

eEF =                         (5 )
, where e is a scalar which denotes per vehicle
equivalent and E is traffic field, which is a vector.
From the discussion above, it can be found that traffic
field (E) is dependant on headway. To simplify the
complication of the problem, we assume E depends on
headway only and satisfies the inverse-square law.
Considering interaction between two vehicles, traffic
field acting on vehicle 0 can be formulated as:
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, where ε  is the interacting parameter. For the
convenience sake, we convert the space from

Ω→Ω ~
, where yMyxx ~~,~ ==  and traffic field

acting on vehicle 0 in Ω~  is denoted by
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where X~  denotes the tensor from vehicle 0 to vehicle
1. Under the assumption of superposition, in
continuous space
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                 (8)

Eq.(8) is assumed that vehicles on the road section are

the same. Since E~  is a conservative field, which
means that 0Ecurl =~ ( )0E =×∇ ~ , there exists a

potential function ϕ−∇=E~ . We have to know the
magnitude of traffic field so as to determine how the
vehicles distribute. Thus, we have

( )
ε

ϕ KkedivE +=∆−=
~

.               (9)

where div E gives the magnitude of traffic field and
K  denotes the modified road condition such as lane
width, grade and so on and gives in terms of density.
From Eq. (9), we can found that density moves from
high traffic potential to low traffic potential.

Notice that previous discussion is in Ω~ space,
the continuity equation is represented as
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where k
M
1k =

~  denotes density in Ω~ , xx q
M

q 1~ = ,

yy qq =~  denote flow density in Ω~ .

Suppose there are m spatial interval, denote as

iτ∆ , and each interval has in  particles, and each

particle has energy iε
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where N is the number of total particle, and tolε  is

total energy. Both N and tolε  are constants. From
nonlinear programming, with KKT condition and
introducing βα,  as Lagrange multipliers, we have

ieni
βε−α−= .                        (14)

From the relation of F, E and ϕ , we can find

ϕ=ε ei , and transform the vehicle numbers into
density, then Eq.(14) can represent as

( )( )ZKk φϕ −= exp~~
,               (15)

where K~  is essential density, φ  is reference

potential and Z  is the adjust coefficient. The last
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equation proposed herein is motion equation (or so
called conservation of momentum), which is illustrated
as:

( ) ( ) termscatteringEkeq
t
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uu . (16)

It is assumed that the scattering is elastic scattering.
Therefore Eq.(16) can be represented as
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We discuss velocity under steady state and
homogeneous condition and introduce mobility

*~
k

e mτ
µ =  herein, where *~k  is effective density and

mτ  is relaxation time, such that Eq.(17) becomes

E~~ µ=u                             (18)
with the fundamental diagram and diffusion term:

keke ~~~~ ∇+= νuq                     (19)
Eqs(9), (10), (15), (18) and (19) are the system

equations of model we proposed. The modeling

structure are illustrated as figure 1.
Figure 1 Modeling structure of this study

After modeling, we are going to prove the
existence and uniqueness of the solution under steady
state condition. The steady state and spatial
homogeneous model is illustrated as follows:

( ) K+−=∆− ζϕϕ exp
( )( ) 0exp =∇−∇ ζϕ                      (20)

where ( ) ( )[ ] εφζ expe=x .
Then, we are going to develop a numerical

method, which is called monotonic method. Firstly, we
introduce the definitions and notation. We use the real
scalar product, 2L  and uniform norms,
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2W  norm as
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Let S  denote the set of continuous functions in

( )Ω~)1(
2W  satisfying

( ) 0=xf , 1
~Ω∂∈x , ( ) 0=∇⋅ xn f , 2
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for ( ) Sf ∈x , where n  is the unit normal vector; then

there exists a constant 0C  such that

10 fCf ≤ for all Sf ∈             (24)

It is assumed that the normalized vehicle density
( )xK  is uniformly bounded, and that the boundary

data satisfy relations of the form
( ) ( )xx
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We define the constant 1C  by
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where r are the solution of
( ) ( )x

x
Krb
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=− ~infexp                    (27)

From Eq.(20) and (25) and a standard maximum
principle argument, it follows that any solution of (20)
satisfies

( ) ba ≤≤ xζ , Ω∂∪Ω∈ ~~x , 10
C=ϕ .     (28)

The existence of the solution of (20) is illustrated
as below. The derivation follows the concept of Mock
(1972) and the proof is omitted herein.
Theorem 1 (existence). The system (20), with
boundary conditions as described above, possesses a
solution.

Theorem 1 can be proved by the Schauder fixed
point theorem and the maximum principle. Since the
solution of system (20) exists, we are going to develop
a numerical method to solve it.

Let the function ( )xϕ define a solution to the
system (20), together with ( )xζ , and the boundary
data. We introduce the functions ( )x1θ , ( )x2θ
defined by

( ) ( ) 0exp 11 =−++∆ CaK xθ , Ω∈ ~x , 01 =−ϕθ , 
1

~Ω∂∈x ,

( ) ( ) 0exp 12 =−++∆ CaK xθ , Ω∈ ~x , 02 =−ϕθ , 
1

~Ω∂∈x ,

021 =∇⋅=∇⋅ θθ nn , 2
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The maximum principle and equations (26), (28), (29)
imply

( ) ( ) ( )xxx 21 θϕθ ≤≤ , Ω∈ ~x ,              (30)
( ) ( ) ( )xxx 21 θϕθ ≥∆≥∆ , Ω∈ ~x ,          (31)

The sequence { }mϕ  is defined inductively by the
following iteration scheme:

( ) 0exp =∇−∇ mm ηϕ , Ω∈ ~x , 0=−ζηm , 
1
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( ) ( ) ( ) ( )xxx αφϕαχ +−= 1m , Ω∂∪Ω∈ ~~x      (34)

( ) ( ) ( ) ( )[ ][ ]xxxx mm χθθϕ ,max,min 121 =+ , Ω∂∪Ω∈ ~~x   (35)
Then, we show the Eqs(32), (33), (34) and (35)
converges to unique solution.
Theorem 2 For all sufficiently small values of α ,

car-following

traffic field
(petential)

conservation of
vehicle number

equilibrium
state

velocity

density

conservation of
momemtum

flow density

flow

The Relationship of velocity,
density, flow density

self-consistent
density and
field(potential)
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( )ablog , the sequence { }mϕ  generated by successive
applications of (32), (33), (34) and (35) converges
geometrically in )1(

2W  to the unique solution of (20).
Since, the existence and uniqueness of the

solution of system (20) have been proven, we are
going to show the error estimation and the condition
for being well-posed. An immediate consequence of
the lemma is the following error estimate for the
computation scheme described above. Since

Sm ∈−φϕ , we obtain, integrating by parts and
using (20), (32), (33) and (34),
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here we have also used. Thus

( )mmmm KC ϕηϕϕϕ −++∆≤− exp01
   (37)

A consequence of (24) is the following condition for
being well posed:

THEOREM 3. Let ζϕ ,  and ζϕ ˆ,̂  be two solution
of (20) corresponding to different smooth boundary

data on 1
~Ω∂ , and suppose that, for all 1

~Ω∂∈x ,

( ) ( ) ( ) ( ) δζζϕϕ ≤−− xxxx ˆ,ˆ           (38)

then δϕϕ 51
ˆ C≤−  ,where 5C  depends on the

boundary data, but exists for all smooth data.

四、計畫成果自評

This work is based on LWR model, which is
macroscopic dynamic traffic flow model and car-
following theory and connects both of them by
equilibrium distribution (state equation). Thus, our
modeling philosophy contains both macroscopic and
microscopic behavior and also it is a flexible structure,
which can be extended to higher-order dynamic traffic
flow model for more complicate traffic behavior. In
addition, the model presented herein is more general
than the LWR model. In this study, we develop a
numerical method and its error estimation under steady
state. The result of this study can be concluded as
follows:

1. A dynamic traffic flow model with both
microscopic and macroscopic behavior is
developed herein.

2. Under steady state, the existence and
uniqueness are proved.

3.  Numerical method for steady state is derived
and the convergence (error estimation) is
proved..

All objectives mentioned in the proposal of this

project are finished in this study. After this project, are
further researches we suggest are as follows:

1. The proof of existence and uniqueness of
time-dependent solution.

2. Numerical method of time-dependent model.
3. Numerical analyses and experimental study.
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