
行政院國家科學委員會專題研究計畫 期中進度報告

子計畫二：多媒體通訊數位基頻 SoC 加速架構及嵌入式作業

系統界面的研究(2/3)

計畫類別：整合型計畫

計畫編號： NSC93-2220-E-009-008-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：國立交通大學資訊工程學系(所)

計畫主持人：蔡淳仁

計畫參與人員：王岳宜、游雅惠、邱正男、王志鵬、楊植峻

報告類型：完整報告

處理方式：本計畫可公開查詢

中 華 民 國 94 年 10 月 31 日

1

行政院國家科學委員會專題研究計畫成果報告

MPEG-4/21 SOC 設計及新世代行動通訊之研究-
子計畫二：多媒體通訊數位基頻 SoC 加速架構及嵌入式作業系統界

面的研究(2/3)

計畫編號：NSC 93–2220–E–009–008
執行期限：自民國 93 年 08 月 01 日起至 94 年 07 月 31 日止
主持人：蔡淳仁 教授 國立交通大學資訊工程系所
共同主持人：
計畫參與人員：王岳宜、游雅惠、邱正男、王志鵬、楊植峻

國立交通大學資訊工程系所

一、中文摘要

關鍵詞：多媒體壓縮、多媒體通訊、
嵌入式作業系統、單晶片系
統、數位基頻晶片

今年度本計畫延續上一年度的計畫，
除了針對去年發展的 H.264 視訊壓縮移動
量偵測模組進行改進外，並增加了
CABAC 模組的設計。同樣是架構在去年
所發展的多媒體視訊加速器平台之上。在
H.264 視訊壓縮移動量偵測模組改進方
面，最主要是引進了一個全新的觀念：在
進行移動量偵測（ ME ）時所用到的
sub-pixel interpolator 不一定要使用標準制
定的 interpolator，這樣的設計有許多好
處：首先，我們可以在 ME 時用一個較簡
單的 interpolator 以節省記憶量。另外，我
們 可 以 設 計 一 個 on-the-fly 的
interpolator，如此可以大量節省 on-chip
memory 的大小。只要在最後找出最佳移動
量時再用符合標準的 interpolator 計算
error residual，產生的 bitstream 就可以完
全符合標準。這部份的研究已發表在 IEEE
ISCAS’05 [1]。在 CABAC 的部份，目前
已經完成 C-Model 的設計和硬體架構的
大體設計，RTL coding 則還在進行中。

另外，今年新增的一個研究重點是嵌
入式作業系統的設計。隨著無線網路與手
機的快速發展，未來的頻寬與使用著的需

求越來越高，多媒體手機的應用往往需要
大量的運算，因此單一處理器的系統無法
有效支援這些需求。

通常這類平台的處理核心都是非同質
性（heterogeneous）的，在單一晶片上整合
了一個一般目的處理核心（General-Purpose
Processors），如 ARM、MIPS 等，及一或
數顆專門用來處理多媒體任務龐大運算的
處理核心，如數位訊號處理器（DSP）、可
程式化的硬體加速器（FPGA）、或者是特
定對象的硬體加速器（如 H.264 video
accelerator）。我們特別針對異質性雙核心
平台設計了一個程序排程器，可以動態根
據 RISC core 和 DSP core 的負荷，來決定
要叫用那一個版本的執行碼（RISC 或
DSP）來完成工作。

另外，在 tightly-coupled 的應用上，
我們延續去年的計畫，繼續開發 dual-core
video encoder，今年的重點則是 H.264。

最後，我們也針對 MPEG-21 的
Scalable Video Coding (SVC) rate-control
mechanism 進行研究，不過由於過去一年
來，在 MPEG 組織中所進行的 SVC 的發
展有需多變化，目前 MPEG 已經把這方面
的標準制定移到 MPEG-4 Part 10，採用的
技術也不是當初預期的 Wavelet-based
approach．不過，我們仍舊把我們所設計適
合 multiple-adaptation 的 wavelet-based
rate-control mechanism 發 表 在 IEEE
ISCAS’2005 [2]。

2

Abstract

Keywords：multimedia compression,
multimedia communication,
embedded OS, System-on-Chip,
digital baseband processor

This report summarizes the progress of
the second year project on the accelerator
architecture for a multimedia media
communication digital baseband processor.
Two major tasks are covered during the
second year of the subproject. First of all, the
design of H.264 sub-pixel motion estimator
and CABAC hardware logic are executed.
Secondly, the implementation of a
tightly-coupled AMP scheduling kernel
plug-in for embedded Linux OS for the TI
OMAP 5912 platform. In addition, we also
studied the rate control mechanism for a
wavelet-based video codec and proposed a
new algorithm for multiple-adaptation
applications.

二、緣由與目的
For our first year project, we have

implemented an SoC platform for video
codec accelerators. We have also designed an
H.264 in-loop filter logic and an integer pixel
motion estimator. This year, we continue
with the improvement of the SoC platform.
In addition to revise the motion estimator so
that sub-pixel accuracy can be handled, we
also begin with the design of a H.264
CABAC hardware logic since this is typically
regarded as one of the most complex module
for H.264 main profile.

The most innovator part of our sub-pixel
motion estimator design is that the
interpolator used for sub-pixel motion
estimation is different from the interpolator
for error-residual coding. By doing so, we
can significantly save both memory and
computation complexity with very little
performance degradations. Another major
work done in the second year project is to
design a OS kernel scheduler which realized
a tightly-coupled programming model for
heterogeneous multi-core architecture.

Traditionally, for heterogeneous multi-core
platforms, the application are developed
using a loosely-coupled approach. That is,
the programmer statically partitions the
application into RISC code and DSP code.
As soon as the partition is done, it cannot be
repartitioned at runtime. Although this is
optimal for a single task, the approach losses
it optimality when there are many
independently partitioned tasks executing
simultaneously at runtime. We have proposed
a new tightly-coupled programming model
that enables runtime dynamic task
partitioning. We have also developed a OS
kernel scheduler based on embedded Linux
to support this model.

Finally, we have studied a rate control
algorithm for wavelet-based video codec to
efficiently achieve rate-distortion (RD)
optimality for multiple-adaptations. The RD
side information is summarized using a cubic
model in order to reduce bitstream size and,
at the same time, speed up the optimal
bitstream truncation point search process.
Although, in the past year, MPEG has
decided to use DCT-based FGS coding for its
new scalable video coding standard, the
proposed wavelet rate control algorithm is
based on the general RD theory and can be
adapted to other frameworks.

三、結果與討論、計畫成果自評
The second year project continues with

the work from the first year project on H.264
codec accelerator architecture for multimedia
handsets and OS support for heterogeneous
multi-core architecture. In this intermediate
report, we highlight our research in these two
directions.

3.1 H.264 Dual-Interpolator ME
Block matching motion estimation (ME)

has been widely adopted by many video
codecs such as MPEG-1/2/4, H.264 and
WMV9 to eliminate the temporal redundancy
among motion pictures[1][4]. Due to its high
complexity nature, fast ME scheme has
always been the focus of efficient encoder
implementation. With the advances of new
video codecs, highly sophisticated
motion-compensation (MC) model has been

3

adopted. For example, in H.264, quarter-pel
MC can improve the coding efficiency by
30% at the expense of large amount of
memory and/or computational complexity on
the encoder side[8][9].

A typical fast ME implementation
computes interpolated images (requires large
amount of memory) before ME. During the
ME loop, it only searches the best candidate
among integer-pixel search positions and
then refines the motion vector to sub-pixel
accuracy around the best integer-pixel
candidate. Obviously, this technique limits
the efficiency of sub-pixel MC. In addition to
large memory storage size, it may also
requires more arithmetic operations than
necessary since only a small portion of the
complete interpolated images will be
searched for sub-pixel motion vectors. In
short, computation of the complete
interpolated image may not be the best policy
for sub-pixel ME.

Another complexity/quality dilemma of
a high quality codec is the computation of
ME measure. It is suggested that using a
transformed Sum-of-Absolute-Differences
(SAD), instead of SAD, as the measure for
ME gives better coding efficiency since
transformed SAD is a better approximation
of the entropy of the residual block [1] than
SAD. Hadamard transform is adopted in
H.264 for this purpose (as a simple
approximation to DCT) [5][7]. However,
the extra computational complexity increases
the difficulty for real-time video coding
systems.

In order to save the memory space used
to store the interpolated images and the
overhead to compute them, it makes sense to
perform on-the-fly sub-pixel interpolation.
However, the long-tap filters commonly used
in advanced codecs may make this approach
too computationally expensive for ME. A key
observation in the proposed scheme is that
the sub-pixel interpolator used in the
ME-loop does not have to be the same as the
interpolator used for coding. The later must
be standard-compliant while the former can
be designed arbitrarily. This paper proposes
an efficient method of on-the-fly sub-pixel
ME with a joint architecture for Hadamard

transformed-SAD computation. The design
can be easily mapped to VLSI architecture.

3.1.1 Proposed Dual-interpolator ME
In this section, the proposed on-the-fly

sub-pixel ME with a joint architecture for
Hadamard transformed-SAD computation is
presented.

A. Application of two different interpolators
for ME and coding

Sophisticated sub-pixel interpolation is
adopted by modern video coding standards to
reduce error residuals of predictive coder.
Take H.264 as an example. 6-tap and bilinear
filters are applied to the video data to
generate video samples at half-pixel and
quarter-pixel positions, respectively. In our
proposed method, different interpolation
filters are used for ME and for coding.
During the ME process, an on-the-fly bilinear
filter is used to generate the sub-pixel
samples (including half-pel and quarter-pel
samples). The filter can be activated at every
candidate (integer-pixel) search positions.
Therefore, this proposed scheme has less
chance of missing a sub-pixel target than the
conventional approach (namely, search for
sub-pixel target only at the best integer-pixel
position). After the best motion vector is
determined for certain macroblock, an
on-the-fly standard compliant interpolation
filter is used for MC coding. Even though
this filter is more expensive, we only
compute it once for each motion vector.
Therefore, the overall interpolation
computations should be less than the
convention method of pre-computation of the
entire interpolated image. Furthermore, it
does not require extra storage space for
interpolated images.

4

Figure 1. Bilinear interpolation of 1/2-pel
reference

Figure 1 shows the bilinear interpolation
by one-dimension linear weighted
interpolation among the reference pixels.
Notation cn’s are the integer current pixels
while rn’s are the upper row of reference
pixels and sn’s are the next row of reference
pixels. The horizontal, vertical, diagonal
half-pel pixels are notated as rhn’s, rvn’s, and
rhvn’s respectively. Eq. (1) and Eq. (2) are
the linear weighted interpolation equations.
The notation, ωand ω2 are the weightings
(distance ratio) between the two integer-pel
and half-pel points. As well, the quarter-pel
can also be computed by two integer pixels
with different weighting value,ωandω2.
 ．． 

 ≦≦≦≦ 

Eq. (3) calculates the difference between
a current pixel and the reference
bilinear-interpolated half-pixel. With this
method, either half-pel or quarter-pel samples
can be computed from integer sample points.
  

B. SATD RSME
Hadamard transform performs simple

bit estimation generated after transform.
SATD-ME is to use the SAD of the
Hadamard transform (HT) coefficients as a
matching measurement. It’s found that
DCT and HT were almost identical in energy
compaction although the HT with no
multiplication has a much lower
computational complexity. Therefore, HT
can be used to estimate the bits for coding.
On the other hand, the access and
computational complexity are largely
required than using SAD as ME cost function.
In Fig. 2, the circled (boxed) expressions can
be computed by dedicated data paths of VLSI
implementation.

C. Combining operations of sub-pel ME
and SATD-ME

The operations of sub-pixel ME and
SATD-ME can be combined and reorganized.
The formulas shown in Figure 2 are the
derivation of half-pel bilinear interpolation

and Hadamard transforms in horizontal
direction for one 4x4 sub-block. On the other
hand, three half-pel bilinear candidates, H, V,
and HV at half-pel positions accompanied
with each integer-pel candidate are generated
to calculate the residual SATD and compared
with each other during the motion search. By
observing the formula, the arithmetic
operations with blocks are identical. Thus,
they can be easily mapped to h/w design.

Figure 2. Formulas of three subpixel, H, V,
and HV’s Hadamard Transform matrice.

3.1.2 The Proposed VLSI Architecture
Due to the increased complexity and

variations of multimedia systems and
standards, many platform designs today adopt
a hardware/software co-design approach. In
this framework, instead of hard-wiring the
complete system, integrated hardware
accelerators (or IPs in an SoC) are used to
assist coding tasks. Since ME occupies major
portion of computation load among coding
tools, a h/w design is presented in this section
for the proposed method of
dual-interpolator/sub-pixel ME to implement
H.264 video coding.

A. Overall architecture
Figure 3 shows the overall architecture

for the proposed bilinear-interpolated SATD
ME. In the figure, BINTSATD AGU block
generates the corresponding address to access
current MB and reference data. There are two

2
)(2 211 rrc 

2
)(2 322 rrc 

2
)(2 433 rrc 

2
)(2 544 rrc 



2
)(][51

4324321
rr

rrrcccc




2
)()]([15

244321
rr

rrcccc




2
)]()[(51

34321
rr

rcccc




2
)]()[(51

4321
rr

cccc




[HT4x4]x



2
)()(

2
)()(

)]()[(43124312
3421

ssssrrrr
cccc







2
)()(

2
)()(

)]()[(43124312
3421

ssssrrrr
cccc







2
)(2 111 src 

2
)(2 222 src 

2
)(2 333 src 

2
)(2 444 src 

22

4

1

4

1
4

1


 

kk

k

sr

c

2
)()(

2
)()(

)]()[(21432143
4321

ssssrrrr
cccc







[HT4x4] x

4
)()(4 21211 ssrrc 

4
)()(4 32322 ssrrc 

4
)()(4 43433 ssrrc 

4
)()(4 54544 ssrrc 



)
42

()
42

(5143251432
4

1

sssssrrrrr
ck













]
4

)(
2

)(
[]

4
)(

2
)(

[)]()[(15241524
4321

ssssrrrr
cccc













]
42

[]
42

[)]()[(513513
3421

sssrrr
cccc







44
)]()[(1515

3421
ssrr

cccc







[HT4x4]x

5

register arrays for saving 44 current MB and
nn search window reference data. HTCtl
controls the flow of HT computation and the
input/output of two buffers. Before storing
corresponding reference pixels into its buffer,
the Aligner aligns the pixels from search
window memory. The bilinear-interpolated
sub-pixels are calculated by subpel_gen
block while the accurate standard-complaint
interpolated sub-pixels are generated by
codingsubpelgen block. Both of the two
blocks generate the pixels in Half-H, Half-V,
and Half-HV positions respectively. The
2-D HT block calculates the Hadamard
transformed 4x4 data from the result of
differences between current and updated
reference pixels. After the transformed data
is calculated by MBSATD, SATDcomp
block compares the best SATD result among
integer-pel and sub-pels and also stores the
result of SATD to acquire the final
summation SATD value of the mn-block.
Based on the final SATD result, not only the
MV for the block can be determined but also
the address generator will determine the next
address of sample points. Please note that
this architecture is a general design for the
idea. Additional hardware logic such as
adding search window space, and other main
blocks paralleled might be needed while
timing requirement can not be met on
implementing real-time video coding system.

Figure 3. Formulas of three subpixel, H, V,
and HV’s Hadamard Transform matrice.

B. Interpolators Design
The major idea of our proposed method

is to adopt two different interpolators for
motion search and coding, respectively. Fig.
4 describes one unit of processing element
(PE) in the bilinear interpolator on reference
pixels. Each PE can generate different Half-H,
Half-V, and Half-HV pixels which the output,
subpel_out, is controlled (MUXed) by config
from HTCtrl block. The second interpolator,
the 6-tap plus bilinear filters used in H.264,
can be done either in software or hardware.
Because this complex interpolator is only
used after the motion vector has been
determined, it is actually an exact duplication
of the code (logic) used in a decoder where
on-the-fly computation is often used without
large memory buffers for the complete
interpolated images.

Figure 4. Bilinear-interpolated PE design

3.1.3 Experimental Results
Software simulation of the performance of
the proposed algorithm is presented in this
section. In this paper, we use H.264 to
evaluate the performance. There are many
fast ME algorithms. Here we adopt a
complexity-reduced ME, RSME [12]. The
encoder is based on H.264 reference software
JM 7.3 with RD optimization turned on,
three reference frames, IPPP… coding
pattern, and CAVLC. The standard test
sequences FOREMAN, STEFAN, and
MOBILE are used to show the quality
performance of the proposed algorithms. All

(a) sub-pel PE

(b) Logic design of one PE

6

sequences are in CIF resolution, 30 fps.
Motion search range is ±32, and all sub-block
types are used. In the ME, a step size of 8 is
used for the TWSS step. Only the best
candidate selected by the TWSS module is
selected for the next level TSS refinement.
The step sizes for TSS are 3, 2, and 1
respectively for the 1st, 2nd, and 3rd steps.
Fig. 5, Fig. 6, and Fig. 7 show the quality
performance on the proposed ME vs. FSME.
From the results, we can see there is little
degradation on quality while less than 4% on
average for bit rate increase comparing the
proposed method with FSME depicted in
Table I. However, the timing required by the
proposed method can be largely reduced than
FSME.

Figure 5. PSNR Plot of FOREMAN

Figure 6. PSNR Plot of STEFAN

Performance Analysis
Average Bit Rate (Kbps)

(%)
Average Quality (PSNR)

(%)
Video

Sequence
FSME Proposed

ME FSME Proposed ME

Foreman 342.98
(100%)

359.39
(104.7%)

36.92 (100%) 36.86 (99.8%)

Stefan 1016.0
(100%)

1054.3
(103.7%)

35.55 (100%) 35.51 (99.9%)

Mobile 1455.28
(100%)

1506.55
(103.5%)

34.07 (100%) 34.02 (99.9%)

Table I. Average RD Table

3.2. Unified AMP OS Kernel Design

The complexity of embedded system
grows rapidly due to new mobile multimedia
applications. Uni-processor platforms are not
suitable for these applications since they
require high core frequency in order to
handle massive multimedia data processing
tasks. However, higher core frequency
consumes more power and produces more
heat, which is inapt for small form factor
embedded systems. Therefore, a common
practice for mobile devices is to adopt
multiprocessor solutions to increase system
performance.

In particular, asymmetric multiprocessor
architecture has been widely used for
embedded systems development (for example,
for cell phones). In this architecture, a
general purpose RISC processor (GPP) core
and a digital signal processor (DSP) core are
integrated into a system-on-chip (SoC),
which can handle embedded system tasks
efficiently, especially for multimedia
applications. However, existing real-time
operating systems for such architecture
typically adopt a loosely-coupled approach.
Task partitions between the two cores are
typically done offline and two separate
schedulers are employed to perform task
scheduling for the two cores independently.
This paradigm works properly for traditional
mobile applications where the GPP core are
typically slow and functionally limited and
the application tasks can be put into a simple
foreground/background working model.

New generations of multimedia
applications and devices make this kind of
loosely-coupled system design obsolete.
There are at leas three reasons that call for a
new approach for real-time scheduler designs.
First of all, new GPPs today are much more
powerful than old ones. Many of them even
include special instructions for DSP tasks.
Secondly, multimedia applications has
become so complicated and dynamic that
run-time load balance between the GPP core
and the DSP core are crucial for system
performance and power consumption

0 50 100 150
36.2

36.4

36.6

36.8

37

37.2

37.4

37.6

37.8

38
FSME VS. Proposed Method Using Foreman Sequence

Frame No

P
S

N
R

FSME
Proposed Method

0 50 100 150
34.5

35

35.5

36

36.5

37

37.5
FSME VS. Proposed Method Using Stefan Sequence

Frame No

P
S

N
R

FSME
Proposed Method

7

reduction. Thirdly, many multimedia
applications are more memory-centric than
computation-centric. In addition, many
embedded systems use distributed memory
banks to increase memory bandwidth.
Therefore, when inter-processor
communication overhead is taken into
account, optimal task assignment can only be
done at run-time, instead of offline.

3.2.1 Previous Work
There are many researches on schedulers

for symmetric multiprocessor (SMP)
architecture in last twenty years. A symmetric
multiprocessor system can provide better
overall system performance than a
uniprocessor system [18]. With the gaining
popularity of multimedia devices in recent
years, the focus has been shifted to
asymmetric multiprocessor (AMP) systems.
The main reason why AMP systems are used
for embedded devices is because that they
provide the best performance/clock ratio for
the execution of a wide variety of tasks.

Wendorf et al. [16] proposed a number of
scheduling policies, ranging from asymmetric
master/slave scheduling to symmetric
scheduling, for multiprocessor platforms.
According to their experiments, “OS
Preempt” policy provides the best
performance in almost all situations for AMP
systems. Moreover, an AMP system using
the OS Preempt scheduling policy can
perform as good as a fully symmetric system.
Their results also indicate that the overhead
of context switching and shared resource
contention in asymmetric systems are
relatively minor factors in overall system
performance.

A simple model of master/slave
architecture is presented by Greenberg and
Wright in [13] along with two scheduling
algorithms. In this proposal, a subset of the
system calls, which are referred to as the
kernel calls, can only be executed on the
master. The remaining system calls are
referred to as the user calls. When a slave
process makes a kernel call, the slave
processor returns the process to the master,
rather than services the call by itself. The
kernel calls are serialized and may not be

independent since these calls may update
data that influence the whole system. In the
proposed design, jobs not running on any
processors are waiting in one of the two
queues, the master queue or the slave queue.
Jobs in the master queue are all in kernel
mode and jobs in the slave queue are all in
user mode. A slave processor can take jobs
from the slave queue only and the master
processor can take jobs from either queue.
Two scheduling algorithms are proposed to
balance between queue-switching overhead
reduction and scheduling flexibility. They
also proposed a way to find P*, the optimal
number of slave processors in a single-master
processor environment.

In [14], Avritzer et al. developed an
analytical performance modeling approach
for load sharing policies in highly
asymmetric systems that schedule jobs based
on global system state. In the system
described in [14], hosts have many different
speeds which are subject to heterogeneous
workloads. They also introduced a threshold
type load-sharing algorithm for distributed
asymmetric systems, the algorithm varies the
thresholds dynamically, adjusting them to the
load in order to keep an optimal number of
tasks in each hosts. In this paper, they
modeled the job routing algorithms by
building a global state Markov chain and
computing upper and lower bounds on the
total system average delay. They concluded
that carefully tuned algorithms for load
sharing in the asymmetric environment
provide a significant improvement in
performance over simpler algorithms.

For cooperation between resources,
Saewong and Rajkumar [22] proposed the
use of a Cooperative Scheduling Server
(CSS), which is a dedicated server that
manages one specific controlled resource
while using a controlling resource, to control
multiple resources access from a single CSS.
A CSS is created on a controlling resource
(such as a CPU) to handle all local requests
for a controlled resource (such as disk access).
The CSS reserves a sufficient amount of
capacity for controlling resources as needed
to fulfill the obligations it has for accessing
controlled resources. Because there are

8

scheduling policies for both controlling and
controlled resources, co-scheduling design
must be employed. Some important
considerations of the co-scheduling design in
[22] are as follows: 1) scheduling mismatch
due to heterogeneity of resource scheduling
policies, 2) conjunctive admission control, 3)
resource synchronization, and 4) efficient
resource utilization.

For embedded multimedia applications,
such as 3G mobile phones, both control
operations and massive data processing
operations are very important. There are
some architecture proposals ([17][20])
efficiently integrate these two different types
of computing units into one AMP SoC.
However, most of these systems are designed
in a loosely-coupled manner. For example,
in [21], they discussed the problem of
multiprocessors scheduling for asymmetric
architectures composed by a general purpose
processor (GPP) and a digital signal
processor (DSP). Two task queues are used
in their design, one for regular tasks (for GPP)
and the other for DSP tasks. When the DSP
is idle, the scheduler always selects the task
with higher priority between the tasks at the
head of the two queues. When the DSP is
active, the scheduler only selects the highest
priority task from the regular queue.

3.2.2 The Proposed AMP Scheduler
The key concept of the proposed AMP

scheduler is to facilitate a tightly-coupled
working model. Without loss of generality,
assume that there is a\one GPP core and one
DSP core in the target system. In the
tightly-coupled model, a task can be assigned
to either the GPP or DSP at runtime. When
a new task arrives, the unified scheduler will
oversee the runtime status of both processor
cores and decide which core is more suitable
of executing the new task. In our design, the
scheduler computes a cost function based on
power consumption, computation complexity,
deadline fulfillness, and loading balance in
order to make a decision for task dispatching.

Since different processor cores execute
different binaries, to enable the proposed
tightly-couple model, a new programming
practice must be adopted. The new

programming model is somewhat similar to
single thread vs. multi-thread programming.
In the OS, new system service calls are
provided for the application to register
dual-core versions of executable images into
the kernel at runtime. Note that registration
of a dual-core executable image does not
create a task and enter it into the task queues.
Another API must be called explicitly to start
a (dual-core) task, which will enter the single
universal task queue. This is similar to
explicitly calling a system service to start a
new thread of a process. The unified
scheduler will then dispatch the task either to
the GPP or the DSP based on a cost function.

Figure 7 is the proposed AMP scheduler.
It is composed of a cost function evaluator,
an AMP scheduler, a version registrar, a
resource monitor, and the task interface.

The AMP scheduler dispatches a task
based on the cost function value and manages
running tasks, the version registrar records
available executable images (refer to as
services in this paper) in the GPP version
table and the DSP version table, and the
resource monitor watches GPP-side and
DSP-side status and provides information for
the cost function evaluator.

The task interface is an interface between
the proposed AMP scheduler and the
processing cores. In the proposed design,
there are three types of task nodes, the GPP
task node, the DSP task node, and the system
task node. The GPP task node provides APIs
for managing tasks running on the GPP, the
DSP task node provides APIs for managing
tasks running on the DSP, and the system
task node provides APIs for retrieving and
monitoring system status.

Eq. (4) is the cost function used by the
proposed scheduler to choose the target
processor for a task.
 C = CpowerCcompCdeadlineCload

9

Figure 7. AMP Scheduler Architecture
In Eq. (4), Cpower is the power

consumption cost of computation and data
accessing on the GPP or the DSP, Ccomp is
the task execution time on the GPP or the
DSP, Cdeadline is deadline fulfillness based
on the task execution time and the deadline,
and Cload is the load balance factor based on
the task queue lengths on the GPP-side and
the DSP-side.

By selecting different values of ’s in Eq.
(4), the cost function can adapt to different
system requirements. For example, if the
remaining power capacity is low, we can
increase in order to save more power at the
cost of slower response time and poor
deadline fulfillness.

3.2.3 Implementation of the Scheduler
The proposed scheduler is implanted on

an OMAP 5912 platform running Linux. In
this section, we will first give an introduction
to the OMAP 5912 development board used
for the implementation, followed by an
introduction to the DSP gateway package
used for communication between the GPP
core and the DSP core. Note that the
overhead of the DSP gateway package is
quite high and are not suitable for a
tightly-coupled system for practical
applications. The reason it is used in the
implementation is merely for fast prototyping
of the proposed system.

OMAP 5912 is a single-chip dual-core
processor developed by Texas Instruments.
The architecture integrates a TMS320C55x
DSP core and an ARM926EJ-S RISC core.
The C55x DSP core provides high

performance and low power consumption for
digital signal processing tasks and the ARM9
RISC core is very popular for embedded
systems. For task dispatching from the ARM
core to the DSP core under Linux, DSP
Gateway is used. DSP Gateway ([26]) is an
open source project for inter-processor
communication mechanism on Linux for
OMAP family. The DSP Gateway consists of
a Linux device driver on the ARM side and a
DSP-side kernel library. The Linux device
driver provides a convenient interface so that
an application on GPP-side can communicate
with DSP through normal device system calls.
The DSP-side kernel library provides
multi-task environment and APIs for user
tasks.

Figure 8. DSP Gateway Driver Block

Figure 8 shows GPP-side functionalities
provided by DSP Gateway Linux device
driver. The Linux device driver
communicates with DSP through two
Mailboxes, one for GPP to DSP and another
for DSP to GPP.

Figure 9. DSP Software Block Chart

Figure 9 shows the DSP Software Block
Chart. When a Linux user application
accesses the DSP task device, the Linux
device driver generates a Mailbox command
to DSP. On the DSP side, the system kernel

Version
Registrar

Cost Function &
AMP Scheduler

Resource
Monitor

Task Interface Task 1
Node

Task 2
Node

Task 3
Node

Task 1
Node

Task 3
Node

GPP

Executable Image
Registration InterfaceScheduler Interface Task Name

Deadline
Task Name

Version

User Application Boot Init

DSP

RM
Node

RM
Node

DSP Gateway

GPP Version
Table

DSP Version
Table

Application
Interface

Asymmetric
Scheduler

Task
Table
Task 1
Task 2
Task 3

ARM

DSP

Interrupt Handler

tokliBIOS

M
ailbox

User task User task User task

DSP

ARM

Mailbox
Interrupt Handler

DSP MMU
Interrupt Handler

DSP task
device I/Fs

DSP control
device I/Fs

DSP task
watch device I/Fs

DSP error
Detection device I/F

DSP memory
device I/F

M
ailbox

10

receives the Mailbox command and registers
it into the corresponding queue of the
DSP/BIOS TSK.

The implementation of the proposed
system is based on Linux 2.6.11 kernel
patched by [23] and [25]. We use [24] in
DSP Gateway package to load DSP
applications to the DSP core from an
application (or system service) running under
Linux.

Figure 10 shows how DSP dynamic
loader daemon (dsp_dld) works.

Figure 10. DSP Dynamic Loading
Mechanism

We embedded our proposed design into
dsp_dld as show in Figure 11.

Figure 11. Dsp_dld with AMP Scheduler

When an access event passed to dsp_dld,
it will wake up our proposed asymmetric
scheduler first. The cost function in the
asymmetric scheduler will calculate
processing cost according to factors
described in section 3.2.2 and then the
proposed asymmetric scheduler will dispatch
the task to the processing core which has
lower cost.

3.2.3 Experiments and Analysis

In this section, the computation
components from an MPEG-4 Simple Profile
encoder application are used to test the
concept of a tightly-coupled AMP system.
Table 2 shows computing time for different
computing units, including motion estimation
(ME), interpolation, and discrete cosine
transform (DCT), under ARM/DSP/Dual
mode. The test sequence used is the QCIF
version of the STEFAN sequence and its
length is 150 frames. These tests were
conducted on a TI OMAP 1510 platform (the
PSI Innovator).

Under ARM mode, the computing units
in Table II are processed on ARM core and
didn’t use any DSP hardware extension.
Under DSP mode, the computing units are
processed on DSP core using C55x hardware
extension. Under dual mode, the computing
units are processed on both cores. Table III
shows time per computing unit ratio under all
modes.

276

227

349

Dual

342

282

357

DSP

764

441

3883

ARM

DCT

Interpolation

ME

276

227

349

Dual

342

282

357

DSP

764

441

3883

ARM

DCT

Interpolation

ME

Unit: us

Table II. Time per Computing Unit

1

1

1

Dual

1.24

1.24

1.02

DSP

2.77

1.94

11.12

ARM

DCT

Interpolation

ME

1

1

1

Dual

1.24

1.24

1.02

DSP

2.77

1.94

11.12

ARM

DCT

Interpolation

ME

Table III. Time per Computing Unit Ratio

The next experiment tests the data
transfer time between two cores. Table IV
shows the data size and iterations of transfer
of our experiment. In group 1, for example, a
Linux application transfers 12672 bytes of
data three times to the DSP core through
SDRAM/SARAM/DARAM. All groups in
our experiment transferred same amount of
data (38016 bytes) at different number of
iterations.

DSP Gateway

application

tsk dev

dsp_dld

dynamic link

Dsp task
module

load module
&

TSKADD

Asymmetric
Scheduler

dynamic link

wake up

load to DSP

load to GPP

TASKADD

dsp_dld

11

Table IV. Data Transfer Tests Setting

Due to the limitation of SARAM and
DARAM capacity, there are no group 1 result
for SARAM and group 1, 2, and 3 results for
DARAM experiments. Figure 12 and Figure
13 show transfer rates from GPP to DSP and
from GPP to DSP to GPP.

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

Group

T
ra

ns
fe

r
R

at
e

(K
B

/s
)

GPP to DSP Transfer Rate

SDRAM
SARAM
DARAM

Figure 12. GPP to DSP Transfer Rate

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

Group

T
ra

ns
fe

r
R

at
e

(K
B

/s
)

GPP to DSP to GPP Transfer Rate

SDRAM
SARAM
DARAM

Figure 13. Round-Trip Transfer Rate

GPP writes data to SDRAM through
EMIFF Interface in Memory Interface Traffic
Controller (TC), and to SARAM and
DARAM through MPU Interface (MPUI). It
is obvious that transfers data through
SDRAM is faster than through SARAM and
DARAM. Besides Linux kernel system calls
overhead, every GPP to DSP and GPP to
DSP to GPP transfer bring 2 and 5 mailbox
interrupts. This mechanism results in
considerable impact on transfer rate and
overall system performance.

3.3 計畫成果自評
For the second year of the projects, we have
improved our SoC platform for video codec
accelerator. We are expected to complete

the RTL design and verification of an
sub-pixel motion estimator for H.264 on the
ARM Integrator platform. The architecture
design of a H.264 CABAC module is done
and the RTL coding will be completed.
However, the verification of this module will
probably be executed in the third year of the
project. About the tightly-coupled dual-core
embedded kernel scheduler, an
implementation based on embedded Linux is
done. We are currently working on
debugging, testing, and application porting
for the scheduler. We have also designed a
rate-control mechanism for wavelet-based
codec that fulfills rate-distortion optimality
for multiple adaptation applications.

In summary, the direction of the project
closely matches the original proposals. And
the execution of the majority of the project
has been going well except that the RTL
coding of the CABAC module is a little bit
behind schedule.

五、參考文獻

[1] Yueh-Yi Wang and Chun-Jen Tsai, “An
Efficient Dual-Interpolator Architecture
for Sub-pixel Motion Estimation,”Proc.
IEEE Int. Symp. Circuit And System,
Kobe, May 2005.

[2] Ya-Hui Yu and Chun-Jen Tsai, “A
Model-based Rate Allocation Mechanism
for Wavelet-based Embedded Image and
Video Coding,”Proc. IEEE Int. Symp.
Circuit And System, Kobe, May 2005.

[3] ISO/IEC 14496-10:2003, "Coding of
Audiovisual Objects-Part 10: Advanced
Video Coding," 2003, also ITU-T
Recommendation H.264 "Advanced
video coding for generic audiovisual
services."

[4] SMPTE Technology Committee C24 on
Video Compression Technology,
"Proposed SMPTE Standard for
Television: VC-9 Compressed Video
Bitstream Format and Decoding Process,"
7 Oct, 2003.

[5] Gary Sullivan, Thomas Wiegand, and
Keng-Pang Lim, Joint Model Reference

12

Encoding Methods and Decoding
Concealment Methods, JVT-I049, JVT
meeting document, San Diego, Sep.
2003.

[6] X. Qiu, W. Zhang, H. Chen, and R.
Zhou, “Low entropy block matching
algorithm for motion estimation,” ASIC,
2001 Proceedings. 4th International
Conference on, Oct. 2001, pp.405-408.

[7] T-C Wang, Y-W Huang, H-C Fang, and
L-G Chen, “Performance analysis of
hardware oriented algorithm modification
in H.264,” ICME’03, Vol. 3, 6-9 July,
2003, pp.III-601-4.

[8] M. Horowitz, A. Joch, F. Kossentini, A.
Hallapuro, “H.264/AVC baseline profile
decoder complexity analysis,” CSVT,
IEEE Trans. on, Vol. 13, Issue 7, July
2003, pp. 704-716.

[9] Detlev Marpe, et al.,“Video Coding with
H.264/AVC: Tools, Performance, and
Complexity,”IEEE Circuits and Systems
Magazine, First Quarter, 2004, pp. 7-28.

[10] Jianning Zhang, Yuwen He, Shiqiang
Yang, and Yuzhuo Zhong, “Performance
and complexity joint optimization for
H.264 video coding,” ISCAS’03, Vol. 2,
25-28 May 2003, pp. II-888-II-891.

[11] S-Y Choi and S-I Chae, “Hierarchical
motion estimation in Hadamard
Transform domain,”Electronics Letters,
Vol. 35, Issue: 25, 9 Dec, 1999, pp.
2187-2188.

[12] Y-Y Wang, Y-T Peng, and C-J Tsai,
“VLSI architecture design of motion
estimator and in-loop filter for MPE-4
AVC/H.264 encoders,”ISCAS‘04, Vol.
2, 23-26 May 2004, pp. 149-152.

[13] Albert G. Greenberg and Paul E. Wright.
Design and Analysis of Master/Slave
Multiprocessors. IEEE Transactions on
Computers, VOL.40, NO.8, August 1991.

[14] Alberto Avritzer, Mario Gerla, Berthier A.
N. Ribeiro, Jack W. Carlyle and Walter J.
Karplus. The Advantage of Dynamic
Tuning in Distributed Asymmetric
Systems. In Proceedings of INFOCOM,
1990.

[15] Donald Gross and Carl M. Harris.
Fundamentals of Queueing Theory 3rd

Edition. February 6, 1998.
[16] James W. Wendorf, Roli G. Wendorf and

Hideyuki Tokuda. Scheduling Operating
System Processing on Small-Scale
Multiprocessors. In Proceedings of the
Twenty-Second Annual Hawaii
International Conference, 1989.

[17] K. K. P. Research. Increasing
functionality in set-top boxes. In
Proceedings of IIC-Korea, Seoul, 2001.

[18] Maurice J. Bach and S. J. Buroff.
Multiprocessors UNIX Operating
Systems. AT&T Bell Laboratories
Technical Journal, 63(8):1733-1749,
October 1984.

[19] Momtchil Momtchev and Philippe
Marquet. An Asymmetric Real-Time
Scheduling for Linux. In Proceedings of
the International Parallel and
Distributed Processing Symposium, 2002.

[20] OMAP5912 Applications Processor Data
Manual. Texas Instruments. Dallas,
Texas.

[21] Paolo Gai, Luca Abeni and Giorgio
Buttazzo. Multiprocessor DSP
Scheduling in System-on-a-chip
Architectures. In Proceedings of the 14th

Euromicro Conference on Real-Time
Systems, 2002.

[22] Saowanee Saewong and Ragunathan
Rajkumar. Cooperative Scheduling of
Multiple Resources. In Proceedings of
20th IEEE Real-Time Systems Symposium,
1999.

[23] The OMAP Linux Kernel Team. Linux
2.6.11 omap1 patch file.
http://www.muru.com/linux/omap/.

[24] Toshihiro Kobayashi. DSP Gateway
Dynamic Loader Daemon (dsp_dld)
Specification. May 7, 2005.

[25] T. Kobayashi. DSP Gateway Linux 2.6.11
omap1 patch file.
http://dspgateway.sourceforge.net.

[26] T. Kobayashi. Linux DSP Gateway
Specification Rev 3.2. May 4, 2005.

