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Abstract

In order to achieve high-efficiency resource allocation and quality-of-service (QoS) 

guarantee in B3G heterogeneous multiple access networks, the collaboration of 

resource control in PHY and MAC layers will directly effect the system performance. 

In the subproject, we take advantage of intelligent technologies to design three critical 

mechanisms, which includes intelligent data access management, intelligent 

multimedia scheduling, and situation-aware dynamic cell configuration. The 

intelligent data access management adopts fuzzy Q-learning technology to monitor 

the communication situations such as inter-cell and intra-cell interference. The fuzzy 

Q-learning residual capacity estimator (FQ-RCE) and data rate scheduler (DRS) are 

proposed to efficiently estimate and control system resources. The real-time system 

information from FQ-RCE and DRS can further supports radio resource allocation 

and scheduling. Then we propose a cellular neural network utility (CNNU)-based 

scheduler, which combines the technologies of cellular neural network (CNN) and 

utility function. The CNNU-based scheduler decides the radio resource situations and 

allocations according to the system changes. With QoS guarantee, the CNNU-based 

scheduler can achieve maximum system utilization and throughput. And the system 

changes can be controlled by advanced dynamic cell configuration. In the design, we 

consider soft handoff, link power allocation, and admission control ranges to 

dynamically adjust the power of pilot in PHY by using reinforcement-learning 

technology. This will change the coverage of the controlled cell to maximize the 

performance of power allocation and load-balancing. 

Keywords: heterogeneous multiple access network, QoS, multimedia scheduling, 

dynamic cell configuration, fuzzy Q-learning, FQ-RCE, DRS, CNN, 

utility function, reinforcement-learning 

ii



Contents

Mandarin Abstract          i 

English Abstract          ii 

Contents                   iii 

List of Figures                  vi 

List of Tables                          vii 

1    Project Overview         1 

2    Situation-Aware Data Access Manager Using Fuzzy Q-learning  

      Technique for Multi-cell WCDMA Systems     4 

        I. Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 4 

        II. System Model   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    8 

        III. Design of FQ-SDMA  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 9 

                A. The Fuzzy Q-Learning (FQL)    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  10 

B. Fuzzy Q-learning-based Residual Capacity Estimator (FQ-RCE) .   .   .   .  11 

                C. The Data Rate Scheduler (DRS) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  14 

        IV. Simulation Results and Discussion .   .   .   .   .   .   .   .   .   .   .   .   .  15 

                A. Homogeneous Case   .   .    .    .    .   .   .   .   .   .   .   .   .   .   .   .   .   .  16 

                B. Non-homogeneous Case .    .    .    .   .   .   .   .   .   .   .   .   .   .   .   .   .  18 

iii



3    A Cellular Neural Network and Utility-based Scheduler for  

      Multimedia CDMA Cellular Networks                      23 

        I. Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  23 

        II. System Model   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  25 

        III. Formulation of the Utility Function    .   .   .   .   .   .   .   .   .   .   .   .  27 

                A. Radio Resource Function Ri(t)   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  27 

B. The QoS Requirement Deviation Function Ai(t)  .   .   .   .   . .   .   .   .  28 

                C. The Fairness Compensation Function Fi(t) .   .   .   .   .   .   .   .   .   .   .  28 

        IV. Design of the CNNU-Based Scheduler   .   .   .   .   .   .   .   .   .   .   .  30 

                A. Preliminaries for Cellular Neural Networks  .   .   .   .   .   .   .   .   .   .   .  31 

                B. Cost Function for CNN Processor   .   .   .   .   .   .   .   .   .   .   .   .   .   .  32 

                C. The Architecture of CNN Processor.   .   .   .   .   .   .   .   .   .   .   .   .   .  34 

                D. The Two-Layer Structure for CNN Processor   .   .   .   .   .   .   .   .   .   .  36 

        V. Simulation Results and Discussion  .   .   .   .   .   .   .   .   .   .   .   .   .  38 

4    A Novel Dynamic Cell Configuration Scheme in Next-Generation

      Situation-Aware CDMA Networks                      43 

        I. Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  43 

        II. Issues of Dynamic Cell Configuration .   .   .   .   .   .   .   .   .   .   .   . 45 

                A. Effects of Pilot Power Allocation Schemes    .   .   .   .   .   .   .   .   .   .   . 45 

B. Effects of Soft Handoff Power Allocation Schemes     .   .   .   . .   .   .   . 46 

                C. Effects of New/Handoff Call Admission Control    .   .   .   .   .   .   .   .   . 46 

        III. System Model   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 47 

                A. Signal Model    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 47 

B. Initial Cell Coverage Design   .   .   .   .   .   .   .   .   .   .   .   . .   .   .   . 48 

        IV. Proposed CDD-RL Scheme  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 49 

                A. Problem Formulation as a Markov Decision Process   .   .   .   .   .   .   .   . 49 

iv



                B. MDP Solution by Reinforcement-Learning  .   .   .   .   .   .   .   .   .   .   .  50 

                C. Dynamic Maximum Link Power Constraint Design   .   .   .   .   .   .   .   .  52 

                D. Dynamic CAC Criterion Design     .   .   .   .   .   .   .   .   .   .   .   .   .   .  52 

        V. Simulation Results and Discussions     .   .   .   .   .   .   .   .   .   .   .   .  53 

                A. Simulation Model     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 53

B. Performance Measurements and Discussions     .   .   .   .   .   . .   .   .   .  54 

5    Concluding Remarks                        64 

v



List of Figures 

Chapter 2
1. Structure of FQ-RCE  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 20 
2. Packet error probabilities: homogeneous case     .   .   .   .   .   .   .   .   .   .   . 20 
3. Aggregate throughput of non-real-time data traffic: homogeneous case   .   .   .   21 
4. Packet error probabilities: non-homogeneous case   .   .   .   .   .   .   .   .   .   . 22 
5. Aggregate throughput of non-real-time data traffic: non-homogeneous 
    case  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 22

Chapter 3
1. The block diagram of CNNU-based scheduler .   .   .   .   .   .   .   .   .   .   .   . 30 
2. The two-layer structure of CNN processor  .   .   .   .   .   .   .   .   .   .   .   .   . 37 
3. The average system throughput .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 39 
4. QoS performance measures of PD and Rm    .   .   .   .   .   .   .   .   .   .   .   .   . 40 
5. The ratio PD for RT connections and the ratio Rm for NRT interactive 

          connections    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 
41

6. The fairness variation index for NRT connections     .   .   .   .   .   .   .   .   .   . 41 
Chapter 4
      1. Power allocation in downlink CDMA systems  .   .   .   .   .   .   .   .   .   .   .   . 59
      2. System block diagram of proposed DCC-RL scheme .   .   .   .   .   .   .   .   .   . 60
      3. Average pilot power of hotspot, 1st-tier, and 2nd-tier cells for (a) LPPA
          scheme and (b) SSDT scheme under FIX and DCC-RL  .   .   .   .   .   .   .   .   . 60
      4. Comparison of blocking probability of (a) real-time and (b)  
          non-real-time services   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 61
      5. Comparison of handoff forced termination probability   .   .   .   .   .   .   .   .   . 61
      6. Comparison of average total throughput  .   .   .   .   .   .   .   .   .   .   .   .   .   . 62
      7. Comparison of frame error probability    .   .   .   .   .   .   .   .   .   .   .   .   .   . 62
      8. Comparison of size of the active set    .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 63

vi



List of Tables 

Chapter 2
1. TRAFFIC PARAMETERS IN THE MULTI-CELL WCDMA SYSTEM .   .   . 21 

Chapter 4
      1. AVERAGE COVERAGE FAILURE PROBABILITY  .   .   .   .   .   .   .   .   . 59

vii



The applications of multimedia services over wideband communication networks 

increase dramatically in recent years. In order to support a diverse of multimedia applications, 

the next-generation broadband networks have been required to satisfy the Quality of Service 

(QoS) requirements. Real-time and precise traffic control and scheduling mechanisms are 

essential to achieve the QoS guarantee and maximum utilization. Major topics about traffic 

control and resource management include link situation awareness, capacity estimation, rate 

allocation, traffic scheduling, call admission, resource monitoring, and cell configuration. 

According to the required services, users can access the network through the beyond third 

generation (B3G) mobile systems, which could be composed of heterogeneous networks. 

The radio resource management (RRM) in the heterogeneous network is essential, and the 

Project Overview

Chapter 1
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performance of RRM design affects the utilization directly. But it is always challenging to 

find the ways of achieving best system utilization while maintaining QoS of every service in 

such B3G systems. In order to maximize the utilization in B3G systems, we should focus on 

some essential elements of RRM to efficiently allocate, manage, and monitor the radio 

resources. Therefore the key technologies of RRM in B3G systems are the most critical 

points to provide comprehensive and satisfactory mobile communication experience. 

In the subproject, we propose a set of intelligent RRM schemes to reach our goals. In the 

second chapter, we propose a novel situation-aware data access manager using fuzzy Q-

learning technique (FQ-SDAM) for multi-cell WCDMA systems. The FQ-SDAM contains a 

fuzzy Q-learning-based residual capacity estimator (FQ-RCE) and a data rate scheduler 

(DRS). The FQ-RCE can accurately estimate the situation-dependent residual system 

capacity, and appropriately chooses the received interference powers from the home-cell and 

adjacent-cell as input linguistic variables, which simplifies the multi-cell environment into a 

single-cell environment by applying a perceptual coordination mechanism. The DRS can 

effectively allocate the resource for non-real-time terminals by modifying the exponential 

rule, which considers the effect of interference on adjacent cells. 

In the third chapter, a cellular neural network and utility (CNNU)-based scheduler is 

proposed for multimedia CDMA cellular networks supporting differentiated quality-of-

service (QoS). The cellular neural network is powerful for complicated optimization 

problems and has been proved that it can rapidly converge to a desired equilibrium; the 

utility-based scheduling algorithm can efficiently utilize the radio resource for system and 

provide QoS requirements and fairness for connections. A relevant utility function for each 

connection is here defined as its radio resource function further weighted by both a QoS 

requirement deviation function and a fairness compensation function. The CNNU-based 

scheduler determines a radio resource assignment vector for all connections so that the 

overall system utility is maximized and the system throughput can be achieved as high as 

possible. At the same time, the performance measures of all connections are kept closed to 

their QoS requirements in an efficient way. 

The fourth chapter presents a novel dynamic cell configuration scheme in next-generation 

situation-aware CDMA networks. To balance the time-varying traffic load between cells, 

2



caused by user mobility and diverse applications, it is crucial for next-generation CDMA 

cellular networks to configure cell coverage and capacity dynamically. In this chapter, we 

show that pilot power allocation is highly coupled to other facets of radio resource 

management. We propose a novel dynamic cell configuration scheme for multimedia CDMA 

cellular networks, based on reinforcement-learning, which takes into account pilot, soft 

handoff, and maximum link power allocations as well as call admission control mechanisms. 

Simulation results demonstrate the effectiveness of the proposed scheme in situation-aware 

CDMA networks. 
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1

Situation-Aware Data Access Manager Using Fuzzy

Q-learning Technique for Multi-cell WCDMA

Systems

Abstract

his paper proposes a novel situation-aware data access manager using fuzzy Q-learning technique (FQ-SDAM)

for multi-cell WCDMA systems. The FQ-SDAM contains a fuzzy Q-learning-based residual capacity estimator

(FQ-RCE) and a data rate scheduler (DRS). The FQ-RCE can accurately estimate the situation-dependent residual

system capacity, and appropriately chooses the received interference powers from the home-cell and adjacent-

cell as input linguistic variables, which simplifies the multi-cell environment into a single-cell environment by

applying a perceptual coordination mechanism. The DRS can effectively allocate the resource for non-real-time

terminals by modifying the exponential rule [10], which considers the effect of interference on adjacent cells.

his paper proposes a novel situation-aware data access manager using fuzzy Q-learning technique (FQ-SDAM)

for multi-cell WCDMA systems. The FQ-SDAM contains a fuzzy Q-learning-based residual capacity estimator

(FQ-RCE) and a data rate scheduler (DRS). The FQ-RCE can accurately estimate the situation-dependent residual

system capacity, and appropriately chooses the received interference powers from the home-cell and adjacent-cell

as input linguistic variables, which simplifies the multi-cell environment into a single-cell environment by applying

a perceptual coordination mechanism. The DRS can effectively allocate the resource for non-real-time terminals

by modifying the exponential rule [10], which considers the effect of interference on adjacent cells. T

I. INTRODUCTION

The WCDMA cellular system supports integrated services with mixed QoS (quality of

services) requirements: real-time services require continuous transmission and is intolerant to

time delay, while non-real-time services require bursty transmission and tolerate moderate time

delay. An adequate radio resource management (RRM) is required to maximize the system

Chapter 2

Situation-Aware Data Access Manager 
Using Fuzzy Q-learning Technique for 
Multi-cell WCDMA Systems

4



2

capacity and fulfill the complementary QoS requirements. Among many traffic engineering

techniques for the RRM, a call admission control method is applied to prevent system over-

loading, based on the long-term availability of radio resources. On the other hand, a data access

control scheme provides bursty transmission permission for non-real-time services, based on

the short-term availability of radio resources.

The main purpose of the data access control scheme in WCDMA systems supporting

integrated services is to maximize the throughput of non-real-time services while maintaining

the transmission quality of real-time services [1]-[5]. To achieve this goal, dynamic access

probability schemes [2]-[4] and a base station-controlled scheduling scheme [5] have proposed.

In these schemes, the residual system capacity for non-real-time services is first estimated

and then shared to non-real-time terminals. A single-cell environment was considered in [2]-

[4], while a multi-cell environment was studied in [5]. The multi-cell scheme [5] treats the

interference generated from other-cell terminals as if from several home-cell terminals, and

consequently the multi-cell environment is regarded as a single-cell environment. However, the

mutual-affected behavior of radio resource allocation in the multi-cell environment is still not

considered. Notably, in the multi-cell WCDMA system, the increment of data transmission

power in one cell would cause the interference level to rise in the adjacent cells. If each cell

allocates the entire residual capacity for bursty transmission without considering the interference

influence from adjacent cells, then the system become overloaded.

The over-loading phenomenon could be alleviated by an appropriate coordination method

among cells [6]. Knowing the radio resources of all cells, a centralized data access method

for the multi-cell WCDMA system can maximize the system throughput by applying a global

optimization method. Unfortunately, the coordination procedure takes a long time to transact

the resource information between cells, making practical implementation infeasible. Usually,

the data access control scheme operates in the short-term time scale, e.g. frame time, making

distributed schemes preferable. Kumar and Nanda [7] proposed a distributed scheme called

load and interference-based demand assignment (LIDA). The LIDA is a resource reservation-

based scheme which reserves some resources in each cell against the interference variation.

Additionally, LIDA uses the concept of burst admission threshold for high-rate transmission in

a cell to avoid excess interference power to adjacent cells, allowing bursty transmission only

when the strength difference between the received pilot signals from the home cell and adjacent

5



3

cells is larger than the threshold. The effectiveness of this scheme relies on the selection of

the reservation threshold, which should be dynamically chosen according to the system loading

and the received interference power level.

Additionally, a rate scheduling scheme is also embedded in the data access control scheme

to allocate the residual capacities for non-real-time terminals according to a service principle.

Ramakrishna and Holtzman adopted a maximization throughput criterion for the scheduling

scheme [8]. This criterion can maximize the system throughput, but may cause the low-

class users to suffer from starvation. Alternatively, Jalali, Padovani, and Pankai proposed a

proportional fairness criterion [9] for a down link scheduling scheme in a CDMA-HDR (high

data rate) system. Their proposed scheme defines a utility function as a ratio of the supported

and the average data rates. The supported data rate is determined by the channel condition,

while the average data rate is calculated as the window average of the transmitted throughput.

The terminal with the highest utility value transmits data in the next frame time. This algorithm

may lead to large transmission delay for some terminals. Additionally, Shakkottai and Stolyar

proposed an exponential rule criterion [10] for the another definition of the utility function

to strike a good balance between the system throughput and the transmission delay. However,

applying the exponential rule to the uplink transmission should consider the terminal’s location

factor minimize interference with adjacent cells.

This part proposes a situation-aware data access manager using fuzzy Q-learning technique

(FQ-SDAM) for multi-cell WCDMA systems. The proposed FQ-SDAM scheme consists of

two parts: fuzzy Q-learning-based residual capacity estimator (FQ-RCE) and data rate sched-

uler (DRS). The FQ-RCE, by fuzzy Q-learning, estimates the appropriate situation-dependent

residual system capacity, in terms of interference power, for non-real-time services, while the

DRS assigns transmission rates for non-real-time terminals by a modified exponential rule.

The fuzzy inference system (FIS) and the reinforcement learning technique have been

separately applied to solve network resource management problems [11]-[14]. A fuzzy resource

allocation controller was proposed in [12], where the FIS method was adopted to estimate the

resource availability. A reinforcement learning technique, Q-learning, was applied respectively

to handle dynamic channel assignment in [13] and multi-rate transmission control problems

in [14] for wireless communication systems. By learning from the system environment, the

Q-learning technique can converge to a pre-defined optimal control target. In [15], Jouffle

6



4

proposed a reinforcement learning technique for FIS, called fuzzy Q-learning (FQL). The FQL

technique combines the advantages of FIS and reinforcement learning. The FIS provides a

good function approximation for the FQL, which enables a priori knowledge to be applied to

the system design. Additionally, the reinforcement learning provides a model-free approach to

obtain a control target. By applying the FQL technique, the radio resource can be managed

under partial, uncertain information, and the optimal resource management can be reached

incrementally.

FQ-RCE uses interference measures from three sources as input linguistic variables to

estimate the situation-dependent residual capacity in the multi-cell environment: the received

interference power from real-time terminals at the home cell, the received interference power

from non-real-time terminals at the home cell and the received interference power from the

adjacent cells. Notably, the received interference power from adjacent cells is regarded as

a different variable from the received interference power from home cell to distinguish the

interference variations. Therefore, by the linguistic variable of the adjacent-cell interference

power, the FQ-RCE at the home cell can perceive the radio resource allocation by those FQ-

SDAMs in adjacent cells, or say, be aware of the loading of adjacent cells, and precisely estimate

the residual resource in a distributed fashion. Thus, the multi-cell WCDMA environment does

not require an explicit action coordination.

On the other hand, the DRS modifies the exponential rule in [10] to assign the transmission

rates for non-real-time terminals, based on the residual capacity estimated by FQ-RCE. The

modified exponential rule is a utility-function-based scheduling algorithm which considers the

transmission delay, average transmission rate, and link capacity. The modified rule differs from

the original exponential rule [10] in the link capacity definition. For the modified exponen-

tial rule, the link capacity is defined as the maximum available rate where the interference

influence on adjacent cells by the transmission power is below a guard threshold, considering

location awareness. The modified exponential rule is most suitable for applications in the uplink

transmission of multi-cell WCDMA systems, which is explained later. Simulation results show

that the proposed FQ-SDAM outperforms the LIDA scheme since it can effectively reduce the

packet error probability and improve the aggregate throughput in both homogeneous and non-

homogeneous multi-cell WCDMA environments. Additionally, the modified exponential rule

can achieve better system performance than the original exponential rule. In the homogeneous

7
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case, FQ-SDAM achieves higher aggregate throughput by 75.3% (53.3%) than LIDA with

β=10%, under high-bursty (low-bursty) real-time traffic. In the nonhomogeneous case, FQ-

SDAM achieves greater aggregate throughput by 31.53%, 35.5%, and 34.2% for the cells in

the central, first-tier, and second-tier, respectively, than LIDA with β=10%.

The rest of this chapter is organized as follows. The system model is described in Section

II. Section III briefly describes the concept of fuzzy Q-learning and proposes the design of

FQ-SDAM. Simulation results are presented in Section IV, which compares the performance

of the FQ-SDAM and a conventional LIDA scheme.

II. SYSTEM MODEL

This part considers a multi-cell WCDMA system containing N cells, where each cell has

a base station using FQ-SDAM to allocate the radio resource for real-time and non-real-time

terminals within its coverage area. An uplink supporting slotted transmission is adopted. All

terminals transmit at the same frequency band and are distinguished by their own spreading

codes. Each terminal holds two communication channels, the dedicated physical data channel

(DPDCH) and the dedicated physical control channel (DPCCH). The DPDCH carries data

generated by layer 2 protocol, while the DPCCH carries control information. A channel has

a frame-based structure, where the frame length Tf = 10 ms is divided into 15 slots with

length Tslot = 2560 chips, each slot corresponding to one power control period. Hence, the

power control frequency is 1500 Hz. The spreading factor (SF) for DPDCH can vary between

4 ∼ 256 by SF = 256/2k, k = 0, 1, · · · , 6, carrying 10×2k bits per slot, and the SF for DPCCH

is fixed at 256, carrying 10 bits per slot.

Two types of traffic are considered: real-time (type-1) traffic and non-real-time (type-2)

traffic. The system provides continuous transmission for real-time traffic and bursty transmis-

sion for non-real-time traffic. Here, the real-time terminal is the terminal supporting real-time

services, and the non-real-time terminal is the terminal supporting non-real-time services. The

real-time terminals may transmit at any possible data rate while necessary; on the other hand,

the transmission of non-real-time terminals is controlled by the data access manager at the

base station. Considering the terminal’s link gain and the received interference power from

both the home and adjacent cells, the data access manager assigns an appropriate data rate for

each non-real-time terminal. For the bursty transmission, the available data transmission rates

8



6

are 1X, 2X, 4X and 8X, and 1X transmission rate is called the basic rate. A strength-based

power control scheme is assumed such that the required transmission power of a mobile is

directly proportional to the transmission rate [18]. Additionally, the overall capacity is set by

the upper bound of the total received interference power, and the residual capacity is defined

as the allowable received interference power from the non-real-time terminals.

The link gain between terminal i to base station j, denoted by hij , is usually determined

by the long-term fading FLij and the short-term fading FSij [19], which is given by

hij = FLij × FSij. (1)

The long-term fading FLij , combining the path loss and shadowing, is modelled as

FLij = k × r−α × 10η/10, (2)

where k is constant, r is distance from mobile i to base station j, α is path loss exponent usually

lying between 2 and 5 for a mobile environment (α = 4), and η is normal-distributed random

variable with zero mean and variance σ2
L. The parameter σL is affected by the configuration of

the terrain and ranges from 5 to 12 (σ2
L=10) [19]. The short-term fading FSij is mainly caused

by multi-path reflections, and is modelled by Rayleigh distribution.

The real-time service is modelled as an ON-OFF Markov process with a transition rate

µ from ON to OFF and λ from OFF to ON. The non-real-time service is modelled as a

batch Poisson process, in which the arrival process of the data burst is in Poisson distribution

and the data length is assumed to have a geometric distribution. The measure of the packet

error probability, denoted by Pe, is regarded as the system performance index. The maximum

tolerable packet error probability, denoted by P ∗
e , is defined as the system QoS requirement.

Additionally, the measure of packet transmission delay is used as a parameter for the data rate

scheduler.

III. DESIGN OF FQ-SDAM

The FQ-SDAM contains two functional blocks of a fuzzy Q-learning-based residual capacity

estimator (FQ-RCE) and a data rate scheduler (DRS). The FQ-RCE estimates the residual

interference power budget, and then the DRS allocates the resource for the non-real-time

terminals. The following section describes the fuzzy Q-learning and the detailed design of

the two function blocks.
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A. The Fuzzy Q-Learning (FQL)

Denote S the set of state vectors for the system, S={Si, i = 1, 2, · · · , M}; each state vector

Si comprises L fuzzy linguistic variables selected to describe the system. Denote A the set of

actions possibly chosen by system states, A={Aj , j = 1, 2, · · · , N}. For an input state vector x

containing the L linguistic variables, the rule representation of FQL for state Si is in the form

by

if x is Si, then Aj with q[Si, Aj], 1 ≤ i ≤ M and 1 ≤ j ≤ N ,

where Aj is the jth action candidate that is possibly chosen by state Si, and q[Si, Aj] is the Q-

value for the state-action pair (Si, Aj). The number of state-action pairs for each state Si equals

the number of the elements in the action set; i.e., each antecedent has N possible consequences.

Every fuzzy rule needs to choose an action Ai from the action candidates set A by an action

selection policy. In the FQL, the action selection policy for each fuzzy rule may be select-max

or another exploration strategy. To defuzzify the M fuzzy rules, the inferred action a(x) for the

input vector x is expressed as

a(x) =

∑M
i=1 αi × Ai
∑M

i=1 αi

, (3)

where αi is the truth value of the rule representation of FQL for state Si. Additionally, the

Q-value for the state-action pair (x, a(x)) is given by

Q(x, a(x)) =

∑M
i=1 αi × q[Si, Ai]

∑M
i=1 αi

. (4)

For the current system state x after applying the chosen action a(x), the next-stage system

state is assumed at y, and the system reinforcement signal is given by c(x, a(x)). To update

the Q-value, the next-stage optimal Q-value, Q∗(y, a(y)), is defined as

Q∗(y, a(y)) =

∑M
i=1 αi × q[Si, a

∗
i ]∑M

i=1 αi

, (5)

where q[Si, a
∗
i ] is the Q-value of state-action pair (Si, a∗

i ) and a∗
i = argmax

Aj

{q[Si, Aj]}.

According to the Q-learning rule [17], the Q-value update in the FQL can be expressed as

q[Si, ai] = q[Si, ai] + η∆q[Si, ai], (6)

10
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where η is the learning rate, 0 ≤ η ≤ 1, and

∆q[Si, ai] = {c(x, a(x)) + γQ∗(y, a(y)) − Q(x, a(x))} × αi
∑M

k=1 αk

. (7)

c(x, a(x)) in (7) is the reinforcement signal.

B. Fuzzy Q-learning-based Residual Capacity Estimator (FQ-RCE)

The FQ-RCE selects three interference measures as input linguistic variables: the received

interference power from real-time terminals at the home cell (Ih1), the received interference

power from non-real-time terminals at the home cell (Ih2), and the received interference power

from adjacent cells (Io). Notably, the received interference power in the WCDMA system is a

good indicator of system loading because the system capacity is interference-limited; moreover,

the interference generated from the home cell can be identified by PN codes and the interference

from adjacent cells can be distinguished by long scrambling codes [21]. Accordingly, the system

state vector x containing the three linguistic variables input to FQ-RCE is defined as

x = (Ih1, Ih2, Io). (8)

Comprehensive experiments found that five terms for both Ih1 and Io, and three terms for

Ih2 were proper. Hence, their fuzzy term sets are T(Ih1)={Largely High, HiGh, MeDium, LoW,

Largely Low}={LH, HG, MD, LW, LL}, T(Ih2)={HiGh, MeDium, LoW}={HG, MD, LW}, and

T(Io)={Largely High, HiGh, MeDium, LoW, Largely Low}={LH, HG, MD, LW, LL}. From

the fuzzy set theory, the fuzzy rule base forms have dimensions |T(Ih1)|×|T(Ih2)|×T|(Io)|.
Accordingly, M=75. On the other hand, the step-wise incremental/decremental action of the

interference power budget for the non-real-time services, denoted by Pinc, is selected as the

output linguistic variable. Here, seven levels of increment actions (N=7) are given, and the

corresponding fuzzy term set is T(Pinc)={PI1, PI2, PI3, PI4, PI5, PI6, PI7}. After the

interference increment is estimated by the FQ-RCE, the residual system capacity (RC) being

allocated for the non-real-time services is defined as

RC = Ih2 + Pinc, (9)

where Ih2 is the capacity previously assigned to the non-real-time services. Additionally, the

reinforcement learning signal c(x, a(x)) is defined as

c(x, a(x)) = [
Pe(x, Pinc) − P ∗

e

P ∗
e

]2, (10)
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where Pe(x, Pinc) is the packet error probability of real-time services for the state-action pair

(x, Pinc), which is a performance measure of the system, and P ∗
e is the QoS requirement of

real-time packet error probability.

Figure 1 shows the structure of FQ-RCE as a five-layer adaptive-network-based imple-

mentation of a fuzzy inference system. In the FQ-RCE, layer 1 to layer 3 are the antecedent

components of the FIS, while layer 4 and layer 5 represent the consequent components. The

node function in each layer is described as follows.

Layer 1: Every node k, 1 ≤ k ≤ 13, in this layer is a term node which represents a fuzzy

term of an input linguistic variable, where k= 1, · · ·, 5 (6, 7, 8) (9, · · ·, 13) denotes that node k

is the kth ((k − 5)th) ((k − 8)th) term in T (Ih1) (T (Ih2)) (T (Io)). The node function is defined

as the membership function with a bell shape for the term. Thus, for an input linguistic variable

x, the output O1,k is given by

O1,k = b(x; mk, σk) = e
− (x−mk)2

σk2 , (11)

where b(·) is the bell-shaped function, and mk and σk is the mean and the variance of the node

k, respectively.

Layer 2: Every node k, 1 ≤ k ≤ 75, in this layer is a rule node which represents the truth

value of kth fuzzy rule; it is a fuzzy-AND operator. Here, the product operation is employed as

the node function. Since each fuzzy rule has three input linguistic variables, the node output O2,k

is the product sum of three fuzzy membership values corresponding to the inputs. Therefore,

O2,k is given by

O2,k =
∏{O1,l},∀l ∈ Pk, (12)

where Pk={l| all ls that are the pre-condition nodes of the k-th fuzzy rule}.

Layer 3: Every node k, 1 ≤ k ≤ 75, in this layer is a normalization node which performs

a normalization operation so that all the truth values sum to unity. After the normalization, the

output of this node O3,k is given by

O3,k =
O2,k∑75
l=1 O2,l

. (13)

Layer 4: Every node k, 1 ≤ k ≤ 75, in this layer is an action-select node which represents

the consequence part of kth fuzzy rule. Based on the action selection policy and Q-values of

the possible action candidates (PIj , j = 1, 2, · · · 7), the node needs to choose an appropriate

12
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action. Since improper initial fuzzy parameters settings would lead to a bad learning result,

the Boltzmann-distributed exploration strategy in [20] is employed to explore the set of all

the possible action candidates. In the Boltzmann-distributed exploration, the node chooses the

state-action pair (Sk, ak), ak ∈ T (Pinc), for the kth rule, with the probability ξ(Sk, ak) given

by

ξ(Sk, ak) =
eq[Sk,ak]/T

∑7
j=1 eq[Sk,P Ij ]/T

, (14)

where T is the temperature which reflects the randomness of action selection. After the action

is chosen, the node sends two outputs O4,k,1 and O4,k,2 to the action node and Q-value node

in layer 5, respectively. Outputs O4,k,1 and O4,k,2 are represented by

O4,k,1 = O3,k × ak, (15)

and

O4,k,2 = O3,k × q[Sk, ak]. (16)

Layer 5: This layer has two output nodes, action node O5,1 and Q-value node O5,2, which

represent the fuzzy defuzzification of FQ-RCE. Herein, the center of area method is applied

for defuzzification. Since layer 3 normalizes the truth value of the antecedent part of the ith

fuzzy rule, the node functions in layer 5 are summation of the inputs from layer 4. Hence, O5,1

and O5,2 are given by

O5,1 = Pinc =
M=75∑

k=1

O4,k,1, (17)

and

O5,2 = Q(x, Pinc) =
M=75∑

k=1

O4,k,2. (18)

After the action is performed, the FQ-RCE calculates the reinforcement signal c(x, a(x)) by

(10) and updates the Q-value of each state-action pair according to (6).

Notably, the convergence property of Q-learning is held for the single-agent (learner) case

and may not be held for multiple-agent cases. Additionally, the convergence of Q-learning

in multi-cell WCDMA systems would be a difficult task because decision policies of all

cells concurrently change during the learning phase. To handle this difficulty, the perceptual

coordination mechanism [16] is applied to FQ-RCE by designing the input linguistic variables,

which incorporate two parts: Ih1 and Ih2 represent the current state of the radio resource usage in

13
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home cell and Io represents the radio resource allocations performed in adjacent cells. Therefore,

by measuring the adjacent-cell interference, the FQ-RCE at home cell can implicitly perceive

the situation of radio resource allocation (action) in adjacent cells. The multi-cell learning

environment can then be simplified as a single-cell environment, and the convergence property

for the FQ-RCE can be held as a result.

C. The Data Rate Scheduler (DRS)

The DRS modifies the exponential rule scheduling algorithm in [10]. The formula of the

modified exponential rule is given by

j = argmax

i

{ri

r̄i

× e
Wi−W

1+
√

W }, (19)

where ri, r̄i, and Wi are the link capacity, the average transmission rate, and the waiting time, of

the ith data terminal, respectively, and W is the average waiting time of all the data terminals.

The main difference between the modified and the original exponential rules is in the definition

of the link capacity. The original exponential rule was proposed for downlink transmission in the

CDMA HDR system [9], where the link capacity was defined as the maximum transmission rate

under the current link condition. However, in the multi-cell WCDMA environment, the uplink

transmission power would interfere with adjacent cells. The closer the terminal’s location near

the cell boundary, the larger the interference power. Therefore, the modified exponential rule

algorithm sets a guard threshold of adjacent-cell interference for the uplink transmission power

such that its incurred adjacent-cell interference is lower than the pre-defined level. Then, the

location-dependent link capacity ri is defined as the maximum transmission rate available for

a radio link, which must satisfy the following condition:

P (ri) × ha
i ≤ Pd, (20)

where P (ri) is the transmission power of terminal i with rate ri, ha
i is the maximum link gain

between the terminal i and adjacent cells, and Pd is the guard threshold of the adjacent-cell

interference. In the strength-based power control scheme, the transmission power P (ri) is given

by

P (ri) =
ri × (Eb/N0)

∗ × Imax

PG × hi

, (21)
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where (Eb/N0)
∗ is the signal-to-noise requirement, Imax is the maximum received interference

power, PG is the processing gain, and hi is the link gain between the terminal and its home

cell. Additionally, hi and ha
i can be measured by monitoring the received pilot strength from

the home and adjacent cells. Hence, the modified exponential rule states that the terminal

with higher maximum available transmission rate, lower average transmitted rate and longer

delay obtains higher transmission priority. As the terminal moves toward the cell boundary, the

emission power to the adjacent cells increases, the transmission priority falls, and the waiting

time accumulates. However, if the terminal’s waiting time is long, the transmission priority is

high. Therefore, the modified exponential rule can strike a balance among the link gain, the

location and the waiting time of terminals.

The DRS performs the rate allocation according to the terminal’s priority. The terminal

with the highest priority is given the rate allocation first, and the other terminals are given the

allocation in priority order. The operation of the DRS stops when all the data power budget is

used out. Its procedure is described below:

[The DRS Algorithm]

Step 1 Obtain the residual system capacity (RC) for non-real-time services from FQ-

RCE.

Step 2 Choose the highest-priority terminal, j, out of data terminals that are not

allocated yet, by (19).

Step 3 Compute the remaining RC by

RC = RC − P (rj)/PG.

If the remaining RC is larger than 0, go back to Step 2. Otherwise, go to

Step 4.

Step 4 Inform terminals of the assigned data rate via the signaling channel. End

IV. SIMULATION RESULTS AND DISCUSSION

In the simulations, a concatenated 19-cell (N=19) environment was configured as the multi-

cell WCDMA system. The central cell was labelled as cell 1, the cells in the first tier were

cell 2 ∼ cell 7, and the cells in the second tier were cell 8 ∼ cell 19. Three kinds of real-time

traffic were considered: voice traffic, high-bursty real-time data traffic and low-bursty real-time

data traffic. The voice traffic assumed 2-level transmission rate traffic which is modelled by a

2-level MMDP (Markov modulated deterministic process) [22]. The real-time data traffic was
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modelled by an ON/OFF traffic stream with specific burstiness 1/ρh (1/ρl) and peak rate Rp,h

(Rp,l) for high-bursty (low-bursty) real-time traffic. The two real-time data traffic flow had the

same mean rate but different burstiness level. The non-real-time data traffic was considered to

have a Poisson arrival process with data burst length in geometric distribution. Table I shows

all the detailed traffic parameters. A basic rate in the WCDMA system is assumed to be a

physical channel with SF=256. For each connection, DPCCH is always active to maintain the

connection reliability. To reduce the overhead cost of interference produced by DPCCHs, the

transmitting power of a DPCCH was assumed to be lower than its respective DPDCH by an

amount of 3 dB. The QoS requirement of the packet error parameter, P ∗
e , is set to be 0.01.

The conventional resource reservation scheme proposed in [7], LIDA (load and interference

demand assignment), was used as a benchmark for performance comparison. The basic concept

of the LIDA scheme is two-folded: firstly, a portion of interference power budget, β, is reserved

to avoid overloading, and second, a burst-mode admission is applied for the high-rate traffic.

Additionally, the allocation of the incremental of transmission power, Pinc, to the non-real-time

data traffic in the LIDA scheme is given by

Pinc = (1 − β)Imax − Ih1 − Ih2 − Io. (22)

The performance of the LIDA scheme relies heavily on the choice of reservation threshold, β.

The simulations considered three reservation threshold, β = 0%, 5%, and 10%, and the modified

exponential rule with Pd=2dB was applied for the LIDA scheme. Moreover, a scheme which

combines the FQ-RCE with the original exponential rule, called FQ-RCE/EXP, was considered

to further evaluate the effectiveness of the modified exponential rule. Notably, all the considered

schemes were applied only to non-real-time terminals, and all the real-time terminals initiated

data transmission whenever they had packets in queues.

A. Homogeneous Case

In the homogeneous case, all cells are assumed to contain 22 voice terminals, 40 real-time

data terminals and 20 non-real-time data terminals. The 40 real-time data terminals consist of

ND,h high-bursty and ND,l low-bursty data users, where ND,h+ND,l=40.

Figure 2 shows the packet error probabilities versus the number of high-bursty real-time

data users. The packet error probability of the LIDA scheme was found to violate the QoS

requirement, and the LIDA scheme without reservation (β=0%) had the largest packet error

16



14

probability. The results demonstrate the necessity to precise residual capacity estimation to

avoid overloading in the multi-cell WCDMA environment. The packet error probabilities of the

FQ-SDAM and FQ-RCE/EXP schemes always fulfill the QoS requirement because the FQ-RCE

adopts the FQL, which inherently possesses the capability of reinforcement learning. Thus, the

FQ-RCE can precisely determine the residual system capacity by monitoring the loading status

of the home cell and the interference variation of adjacent cells. Additionally, regardless of the

value of ND,h, FQ-SDAM scheme always achieves lower packet error probabilities than the

FQ-RCE/EXP because the up-link transmission powers emitted from terminals interfere with

users at the home cell and adjacent cells in the multi-cell environment. With the awareness of

location of users, the modified exponential rule in FQ-SDAM effectively curbs the interference

influence on adjacent cells within a sustainable level and consequently reduces the packet error

probabilities.

Figure 3 shows the aggregate throughput of non-real-time data traffic versus three numbers

of high-bursty real-time users: ND,h=10, 20 and 30. The three cases of different real-time data

users were used to simulate the low-bursty, medium-bursty and high-bursty scenarios. Here, the

performance of the LIDA scheme with β=0% was not considered due to its QoS violation. FQ-

SDAM was found to achieve the highest data throughout for non-real-time services, while LIDA

with β=10% produced the lowest throughput. Compared with the LIDA scheme with β=10%,

the FQ-SDAM, FQ-RCE/EXP, and LIDA with β=5% improved the throughput by 75.3%,

73.3% and 52.9% (53.3%, 51.1% and 49.2%), respectively, in the low-bursty (medium-bursty)

case. In the high-bursty case, under QoS constraint, FQ-SDAM and FQ-RCE/EXP schemes

improved the throughput over the LIDA with β=10% by 16.8% and 10.7%, respectively,

because FQ-SDAM approaches the desired transmission target (P ∗
e =0.01) by fuzzy Q-learning.

According to the definition of reinforcement signal c(x, a(x)), FQ-SDAM would try to allocate

the maximum possible resource under the QoS requirement. By contrast, LIDA with β=10% is

a conservative scheme, which has the lowest packet error probability at the expense of capacity

waste. Additionally, in the three cases, the FQ-SDAM achieved a higher aggregate throughput

than FQ-RCE/EXP by 1.4%, 1.43% and 5.5%, respectively. As the number of high-bursty real-

time users goes up, the performance gain rises because the modified exponential rule considers

the terminal’s interference influence on adjacent cells and accordingly cuts the packet error

probability in the multi-cell WCDMA environment. With a reinforcement signal containing a
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lower packet error probability, the FQ-RCE tends to allocate more capacity in the next-turn

decision during the fuzzy Q-leaning period; consequently, the data throughput increases as more

packets are successfully transmitted.

B. Non-homogeneous Case

In the non-homogeneous case, the real-time data terminals for the first-tier cells (cell 2 to

cell 8) are: ND,h = 25 − 2 ∗ (i − 1) and ND,l = 40 − ND,h, i=2, · · ·, 8, while for the central

and second-tier cells, the real-time data terminals are: ND,h = ND,l = 20.

Figure 4 shows the packet error probabilities of the three tiers in the multi-cell WCDMA

system. As the figure reveals, only FQ-SDAM, FQ-RCE/EXP, and LIDA with β=10% meet

the QoS requirement because FQ-SDAM and FQ-RCE/EXP consider the received adjacent-cell

interference power as an input parameter for resource estimation. The resource allocation in the

adjacent-cells is perceived by observing the interference fluctuation. Consequently, the resource

allocations between cells can be conceptually coordinated implicitly. Additionally, compared to

Fig. 2 at ND,h = 20, the packet error probability in the non-homogeneous case is larger than

that in the homogeneous case because the fluctuation of received adjacent-cell interference ,in

the non-homogeneous case, differs from cell to cell when the cells compete for the residual

capacity in the multi-cell environment. Without coordination, each cell allocates myopically,

causing the system to over-loading.

Fig. 5 shows the aggregate throughputs of non-real-time data traffic in the three tiers of

the multi-cell WCDMA system. Here, the aggregate throughputs of the LIDA with β=0% and

β=5% are not considered due to their QoS violation. The aggregate throughput in the non-

homogeneous case is smaller than that in the homogeneous case due to the higher interference

fluctuation. Also, the FQ-SDAM and FQ-RCE/EXP schemes still achieves higher aggregate

throughput by an amount of 31.53% and 28.346% (35.5% and 33.63%) (34.2% and 32%) for

the cells in the central (first-tier) (second-tier) than the LIDA with β = 10% scheme does.
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Fig. 1. Structure of FQ-RCE

Fig. 2. Packet error probabilities: homogeneous case
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TABLE I

TRAFFIC PARAMETERS IN THE MULTI-CELL WCDMA SYSTEM

Traffic Type Traffic Parameters

2-level real-time voice Mean talkspurt duration: 1.00 seconds

Mean silence duration: 1.35 seconds

Peak rate (Rp,h): 4-fold of basic rate

High-bursty Mean rate: 1-fold of basic rate

real-time data traffic ρh: 0.25

Peak rate (Rp,l): 2-fold of basic rate

Low-bursty Mean rate: 1-fold of basic rate

real-time data traffic ρl: 0.5

Mean data burst size: 200 packets

Non-real-time data traffic rmin: 1-fold of basic rate

rmax: 8-fold of basic rate

Fig. 3. Aggregate throughput of non-real-time data traffic: homogeneous case
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Fig. 4. Packet error probabilities: non-homogeneous case

Fig. 5. Aggregate throughput of non-real-time data traffic: non-homogeneous case
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Abstract

In this paper, a cellular neural network and utility (CNNU)-based scheduler is proposed for multi-

media CDMA cellular networks supporting differentiated quality-of-service (QoS). The cellular neural

network is powerful for complicated optimization problems and has been proved that it can rapidly

converge to a desired equilibrium; the utility-based scheduling algorithm can efficiently utilize the radio

resource for system and provide QoS requirements and fairness for connections. A relevant utility

function for each connection is here defined as its radio resource function further weighted by both a

QoS requirement deviation function and a fairness compensation function. The CNNU-based scheduler

determines a radio resource assignment vector for all connections so that the overall system utility

is maximized and the system throughput can be achieved as high as possible. At the same time, the

performance measures of all connections are kept closed to their QoS requirements in an efficient way.

I. INTRODUCTION

In future wireless networks, heterogeneous and customized services with diverse traffic charac-

teristics and QoS requirements are expected to be provided via a number of air interfaces. Also,

multimedia applications are commonly accepted as enabling services, which are categorized into

several classes [1]. To meet various traffic characteristics and QoS requirements of these potential
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applications, a sophisticated scheduling algorithm plays an essential role so that the system

resource allocation is optimal, while retaining a pre-defined QoS requirements and fairness among

them.

Many scheduling algorithms have been widely studied for wireline networks [2]-[3]. In the

wireless communication networks, the radio channel have quite different characteristics from

those in wireline networks. The transmission error probability is by several order greater than

that in wireline links, and the available maximum transmission rate to each connection is

location-dependent and time-varying due to link loss, shadowing, and multi-path fading. The

QoS requirements and the weighted fairness among all connections should be modified.

The literature studied the resource scheduling and allocation among connections with consider-

ation of physical layer processing, power control range, and link conditions [4]-[5]. Bhargharvan,

Lu, and Nandagopal [6] proposed a framework to achieve long-term fairness in wireless network.

Varsou and Poor [7] proposed another class of scheduling algorithm from EDF concept in

wireless environment. This class of scheme considers delay bound as its QoS requirement. In

[8], a throughput-optimal scheduling algorithm for delay bounded system was proposed and

proved. Shakkottai and Stolyar [10] considered both link quality and QoS requirements as the

criteria and derived the exponential form of scheduling function via fluid Markovian techniques.

Many of these scheduling algorithms above, [4]-[5], [8]-[10], were formulated in utility-based

approaches.

The utility-based scheduling algorithm over radio channels, is usually formulated as a com-

plicated constrained optimization problem with real time requirement. To solve this optimization

problem, the class of generalized HNN has been adopted for real-time tasks with several inherent

defficiencies. A special type of Hopfield neural networks (HNN), named cellular neural network

(CNN) proposed in [11], has been proved that it can rapidly converge to desired equilibrium

on vertex along the prescribed trajectories by proper design [12]. The CNN was widely applied

in image processing field and was suitable for VLSI implementation. However, to adopt the

CNN technique for the scheduling optimization problem, modifications of its architecture are

necessary.

In the paper, we propose a CNN and utility (CNNU)-based scheduler for downlink in mul-

timedia CDMA cellular networks. The CNNU-based scheduler contains a utility function (UF)

preprocessor, a radio-resource range (RR) decision maker, and a CNN processor. Noticeably, the
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utility function for each connection, adopted in the UF preprocessor, jointly considers radio

resource efficiency, diverse QoS requirements, and fairness. It is a radio resource function

weighted by both its QoS requirement deviation function and its fairness compensation function.

The UF preprocessor generates a matrix of normalized utility functions of all connections.

On the other hand, the RR decision maker determines a matrix showing the upper limit of

radio resource assignment for each connection. The CNN processor receives the two matrix as

inputs and determines an optimal normalized radio resource assignment vector for connections

in multimedia CDMA cellular systems, by minimizing the system cost function which is in

terms of the overall system utility function under system constraints of maximum transmission

power, minimum spreading factor, and remaining queue length. The architecture of the CNN

is constructed via the energy-based approach [13]-[14]. by mapping the system cost function

to a proper energy function. It is designed in a two-layered configuration, which consists of a

decision layer and an output layer, to reduce the number of inter-connections in the CNN. It can

be shown that the stable equilibriums locate in the desired state space and the stability exists.

The performance of the proposed CNNU-based scheduler is investigated by comparing with

Exponential Rule [10] for systems using both dedicated and shared channel. Results show that

the CNNU-based scheduler is efficient and effective for multimedia CDMA cellular networks.

The rest of the paper is organized as follows. Section II presents the features and the operations

of the considered system. In section III, an relevant utility function is then proposed. In section

IV, the architecture of CNNU-based scheduler and the structure of CNN are discussed. Finally,

simulation results and concluding remarks are summarized in section ??.

II. SYSTEM MODEL

Assume that there are N real-time (RT) and non-real-time (NRT) connections (users) in

the downlink transmissions of the multimedia CDMA cellular system with chip rate W . RT

connections transmit on dedicated channels and NRT connections transmit on shared channels.

For every active connection using either dedicated or shared channels, a fixed number of code

channels with their corresponding spreading factors are given in the connection setup phase.

A minimum spreading factor SFi is therefore associated with the assigned code channels for

connection i. The system radio resource is here defined to be the transmission power. It is limited

by a maximum power budget denoted by P ∗
max and scheduled to all connections every frame
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time period Tf .

For a downlink connection i, there are four QoS requirements defined in either the packet

level, such as BER∗
i , or the call level, such as delay bound D∗

i , packet dropping ratio P ∗
D,i,

and minimum transmission rate R∗
m,i. For RT connections, hard delay bound D∗

i exists and P ∗
D,i

can be larger than zero; while for NRT connections, no explicit delay bound is imposed, but

R∗
m,i > 0 should be satisfied for interactive connections and R∗

m,i = 0 be set for best effort

connections.

For a RT connection i, a transmission suspension in a soft fashion is carried out by allocating

zero transmission power when its utility calculated by the scheduler is lower than those of

NRT connections. At that moment, its link gain ζi(t) is lower than the averaged mean link

gains of all NRT connections ζNRT by a relative margin, and this relative margin should be

considered to restrict the probability of transmission suspension below P ∗
D,i due to the delay-

sensitive nature. Denote by ζ∗
i the suspension threshold of connection i, which is obtained by

P {ζi(t) ≤ ζ∗
i } ≤ P ∗

D,i. Then the relative margin of ζi(t) is a function of ζNRT and ζ∗
i , and is

dependent on the design of scheduling algorithm. For NRT connections, their transmissions are

scheduled so that NRT connections will be allocated with proper radio resource to achieve high

system utilization and keep the fairness and the QoS requirements fulfilled as much as possible.

Assume that the link-gain ζi(t) and the interference Ii(t) for connection i at time t can be

measured at the user side and perfectly signaled to the base station. The ζi(t) consists of the mean

path loss, long-term fading, and short-term fading, and is given by ζi(t) = d−4
i · 10

ζL
i (t)

10 · ζS
i (t),

where di is the distance between the user i and its base station, ζL
i (t) is the log-normal shadowing

component, and ζS
i (t) is the Rayleigh-fading component. The adaptive QAM modulation is

adopted and the modulation order Mκi
with index κi for connection i is determined according

to the link gain quality and interference. The traffic source of connection i generates packets

and packets are queued in its individual buffer. The buffer size is infinite. The source models are

assumed to be on-off for RT connections, Perato for NRT interactive (NRT-I) connections, and

batch Poisson with truncated geometrical batch size for NRT best-effort (NRT-B) connections.

The proposed CNNU-based scheduler determines an optimal normalized radio resource as-

signment vector ⇀
c
∗
(t) = (c∗1(t), . . . , c

∗
N(t)) to N connections via maximizing an overall system

utility function. The transmission rate for connection i at t-th frame , denoted by ri(t), is then

allocated according to ci(t) of connection i.
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III. FORMULATION OF THE UTILITY FUNCTION

The utility function for connection i, Ui(t), is defined as the radio resource function of

connection i, Ri(t), weighted by its QoS requirement deviation function Ai(t) and its fairness

compensation function Fi(t). It can be expressed as

Ui (t) = Ri(t) · Ai(t) · Fi(t). (III.1)

A. Radio Resource Function Ri(t)

With the modulation order Mκi
of the adaptive QAM modulation scheme and the correspond-

ing (Eb/N0)
∗
κi

to satisfy the BER∗
i requirement for connection i, the following inequality should

hold
W

Rs,i(t)
· ci(t) · P ∗

max · ζi(t)

Ii(t)
≥

(
Eb

No

)∗

κi

, (III.2)

where Rs,i(t) is its symbol rate and ci(t) is its normalized radio resource assignment at time t.

The Ii(t) in (III.2) is given by [(1 − α)P ∗
max · ζi(t) +

∑
b P ∗

max · ζi,b(t) + N0W ], where α is the

orthogonality factor for downlink, b is the index referring to the adjacent base stations, ζi,b(t)

is the link gain from base station b to connection i, and the (Eb/N0)
∗
κi

in (III.2) is given by
−(Mκi−1)·ln{5BER∗

i }
1.5

. We denote the maximum achievable symbol rate that can fulfill the (Eb/N0)
∗
κi

at ci(t) = 1 by R∗
s,i(t). Clearly, R∗

s,i(t) = W
(Eb/N0)∗κi

· P ∗
max·ζi(t)
Ii(t)

. The R∗
s,i(t) is further limited by

W
SFi

for a given spreading factor SFi of the allocated code channel. Thus the R∗
s,i(t) can be

obtained by

R∗
s,i(t) = min

{
W

(Eb/N0)∗κi

· P ∗
max · ζi(t)

Ii(t)
,

W

SFi

}
. (III.3)

According to (III.3), the most efficient modulation order Mκi
is selected by the following

inequality,

Mκi
≤ SFi · P ∗

max · ζi(t)

Ii(t) ·
(

−ln{5BER∗
i }

1.5

) + 1 ≤ M(κi+1). (III.4)

Since the information bit of one symbol is log2Mκi
, consequently the radio resource function of

connection i, Ri(t), can be obtained by

Ri(t)
1.5W · log2Mκi

(Mκi
− 1) ·

[
ln 1

BER∗
i
− ln5

] · P ∗
max · ζi(t)

Ii(t)
. (III.5)

Note that if the assignment of radio resource for connection i, ci(t), is allocated, the transmission

rate ri(t) is therefore equal to ci(t) · Ri(t).
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B. The QoS Requirement Deviation Function Ai(t)

The QoS requirement deviation function Ai(t) is used to indicate how much extent the

connection i deviates from its call-level QoS requirements. For a RT connection i, a hard delay

bound D∗
i is imposed on each packet. Since QoS over wireless interface can be provided in a

soft fashion, the QoS guarantee of packet dropping ratio due to excess delay is expressed by

Prob {Di(t) > D∗
i } < P ∗

D,i, where Di(t) is the waiting time delay for head-of-line packet at time

t. For an NRT interactive (NRT-I) connection i, a different notion of QoS requirement is that a

minimum transmission rate must be guaranteed by E [ri(t)] ≥ R∗
m,i. As for an NRT best-effort

(NRT-B) connection i, no call level QoS requirements are guaranteed and the R∗
m,i is set to be

0.

From [18], the proposed Modified Largest Weighted Delay First (M-LWDF) algorithm suggests

that an exponential rule [10] be the form with throughput optimal for the above call level QoS

requirement constraints. Therefore, the QoS requirement deviation function Ai(t) is defined as

Ai(t) =




exp

{ −log(P∗
D,i)

D∗
i

·Di(t)−D(t)

1+[D(t)]
1/2

}
, if i ∈ {RT},

exp

{
L̂i(t)−L(t)

1+[L(t)]
1/2

}
, if i ∈ {NRT-I},

1, if i ∈ {NRT-B},

(III.6)

where D(t) = 1
N

∑
i

(−log(P ∗
D,i)

D∗
i

)
· Di(t) is the average weighted delay, L̂i(t) = L̂i(t − 1) +(

R∗
m,i−ri(t)

R∗
m,i

)
is the normalized measurement on the difference of guaranteed minimum transmis-

sion rate and the assigned rate, and L(t) = 1
N

∑
i L̂i(t). For the RT connections, if the weighted

delay is more than the average weighted delay of all connections, the Ai(t) will be exponentially

increased, and more resource will be scheduled; on the other hand, if the weighted delay is less

than the average weighted delay, the Ai(t) will dramatically decayed, and less resource will be

allocated. Similarly, for the NRT-I connections, if the accumulated difference of the guaranteed

minimum transmission rate and the assigned rate is greater than the average value, more resource

is assigned. As to the NRT-B connections, this function is simply bypassed.

C. The Fairness Compensation Function Fi(t)

The fairness compensation function is to ensure that RT connections using dedicated channels

have the relative priority over NRT connections using shared channels. It is also the way that

October 10, 2005 DRAFT
28

(6)



7

the radio resource shared by all NRT connections is assigned according to a predefined target

weighting factor. With the pre-defined target weighting factor wi for NRT connections i for

1 ≤ i ≤ N , the radio resources are here expected to be allocated to any two any connections, i

and k, so that their average assigned transmission rates, E[ri(t)] and E[rk(t)], can be achieved

by E[ri(t)]
E[rk(t)]

= wi

wk
[6]. The fairness compensation function for connection i till time t, Fi(t), is

defined by,

Fi(t) =


 βi, if i ∈ {RT},

β0 · [(wi − w̄i(t) − 1)+ + 1] , if i ∈ {NRT},
(III.7)

where βi is the priority bias for RT connections to differentiate with NRT connections, β0 is

the basic reference value set for NRT connections, (x)+ = max{x, 0}, and wi(t) is the moving-

average of ri(t). For RT connections, the weighted fairness is not considered and only priority

bias is set due to their QoS-driven nature. For NRT connections, [(wi − w̄i(t) − 1)+ + 1] =

max{(wi − w̄i(t)), 1}, where (wi − w̄i(t)) indicates the unfairness of connections i, and the

Fi(t) is limited by β0 after w̄i(t) is above wi and will make no further effects on the utility.

The more extent of the unfairness of connection i is, the larger the Fi(t) will be; then more

resource will be scheduled to connection i, and the (wi − w̄i(t)) will be smaller afterwards. In

the stationary situation, the unfairness of all NRT connections should be almost the same via

the linear feedback control.

The target weighting factor wi is defined as the target average transmission rate of NRT

connection i. It is considered to be a function of its equivalent traffic source rate s∗i , mean link

gain ζ̄i, mean interference level Īi, and its guaranteed minimum transmission rate, R∗
m,i. The wi

is given by wi = max

{
P ∗

max·ζ̄i

Ii·( Eb
N0

)∗i
· s∗iP

k s∗k
, R∗

m,i

}
,where ( Eb

N0
)∗i is the required Eb/N0 to achieve

BER∗
i of connection i using the least-order modulation scheme. Note that R∗

m,i = 0 for the

best-effort connection, and the target weighting factor of the best-effort connection is usually

less than that of the interactive connection. The priority bias βi for RT connection i is a relative

margin for ζi(t) over the link gains of NRT connections, and is a function of its transmission

suspension threshold ζ∗
i , the average of the mean link gains of all NRT connections ζNRT , and

the Eb/N0 requirements. The βi is given by βi =

(
ζNRT

ζ∗i
· (

Eb
N0

)∗i
(

Eb
N0

)∗NRT

)
· β0.

October 10, 2005 DRAFT
29

(8)



8

� � � � � 
 � � � � � � � � � � � � �

� !
" # $ & # ( * $ - - ( #

0 0
2 $ * 6 - 6 ( : < = ? $ #

A C C
" # ( * $ - - ( #

E G I J LM N O Q S T U

V X Y Z \ ^ `
a b d e g

h i k l m

n p q r s t u w

x y { | } ~ �
� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �

� ¡ ¢ £ ¤

¥ § © ª «
¬ ­ ® ­ °

± ² ³ µ ¶· ¸ ¹ » ¼ ½ ¾

Fig. 1. The block diagram of CNNU-based scheduler.

IV. DESIGN OF THE CNNU-BASED SCHEDULER

Fig. 1 shows the block diagram of the CNNU-based scheduler. It contains a utility function

(UF) preprocessor, a radio-resource range (RR) decision maker, and a CNN processor. The

proposed CNNU-based scheduler takes the link information, interference, delay, queue length,

and spreading factor of all connections as inputs, and finally outputs an optimal normalized radio

resource assignment vector ⇀
c
∗
(t) = (c∗i (t), . . . , c

∗
N(t)), where c∗i (t), 1 ≤ i ≤ N , is expressed by

K bits.

The UF preprocessor first calculates the utility function Ui(t) given in (III.1), 1 ≤ i ≤ N .

Then it normalizes Ui(t) by a compression function (1− e−σUi(t)), expresses (1− e−σUi(t)) to be

an 1 × K vector given by

(
(1 − e−σUi(t)) · 2−1, . . . , (1 − e−σUi(t)) · 2−k, . . . , (1 − e−σUi(t)) · 2−K

)
,

and finally constructs an N × K input matrix
[
Y

(1)
i,k

]
for the CNN processor, where Y

(1)
i,k =

(1 − e−σUi(t)) · 2−k. Notice that σ is a constant related to the slope and the linear region of

the compression function. The compression function (1 − e−σUi(t)) normalizes Ui(t) ∈ [0,∞)

into the unit range of [0, 1). A good compression function is the one with broad linear range

so that the individual utility function is normalized linearly within a reasonable range. The UF

preprocessor also determines a vector of modulation order [Mκi
] for all connections and outputs

to the RR decision maker. The RR decision maker determines the upper limit for the radio

resource assignment for every connection i and expresses it by an 1 × K vector which is the
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upper limit multiplied by the bit-weighted vector (2−1, . . . , 2−k, . . . , 2−K), 1 ≤ i ≤ N . Note

that, with given spreading factor SFi and queue length Qi(t) for connection i, its radio resource

assignment ci(t) is upper limited by min
{

W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

}
, which will be further discussed in

section IV-B. Then the RR decision maker constructs the second input matrix
[
Y

(2)
i,k

]
, 1 ≤ i ≤ N ,

1 ≤ k ≤ K, of which the element Y
(2)
i,k is given by

(
min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
· 2−k. The CNN

processor receives input matrices,
[
Y

(1)
i,k

]
and

[
Y

(2)
i,k

]
, and determines the optimal radio resource

assignment vector ⇀
c
∗
(t). During the computation process, denote by τ the instantaneous time

index of the CNN and by ⇀
c(t, τ) the instantaneous radio resource assignment vector at time τ

during the frame t. For each ci(t, τ), 1 ≤ i ≤ N , it is represented by K bits, Xi,k(τ), 1 ≤ k ≤ K,

and ci(t, τ) can be expressed by

ci(t, τ) ∼=
K∑

k=1

Xi,k(τ) · 2−k. (IV.8)

When the CNN processor arrives at an equilibrium, the output will converge to the optimal radio

resource assignment vector, ie., limτ→∞
⇀
c(t, τ) =

⇀
c
∗
(t) .

In the following, the design of the CNN processor for the CNNU-based scheduler is de-

scribed. Characteristics of the original CNN proposed in [11] is first briefed, and a cost function

corresponding to the system utility function with system constraints is formulated. A modified

architecture for CNN processor is then presented, based on the Lyapunov method. The stability

and convergence of the neural network is briefly discussed.

A. Preliminaries for Cellular Neural Networks

Consider a neural network with N ×K neurons arranged in a rectangular array, where neuron

(i, k) is denoted by zi,k. The output of zi,k at time τ , denoted by Xi,k(τ), can be expressed by

Xi,k(τ) = f
(
X

(s)
i,k (τ)

)
, where f(x) = 1

2
[|x| − |x − 1|] + 1

2
is an activation function of zi,k and

X
(s)
i,k (τ) is the state variable of zi,k at time τ . X

(s)
i,k (τ) consists of the recurrent inputs, external

inputs, and a bias current. For each neuron zi,k, it connects with all other neurons within its

neighborhood, denoted by Zn(i, k). The area of Zn(i, k) is determined according to the design

of the neural network. Generally, the dynamics of the CNN at time τ is represented by

dX
(s)
i,k (τ)

dτ
= −X

(s)
i,k (τ)

ν
+ Ai,k;i,k · Xi,k(τ) + Bi,k;i,k · Yi,k

+
∑

zj,m∈Zn(i,k)

Ai,k;j,m · Xj,m(τ) +
∑

zj,m∈Zn(i,k)

Bi,k;j,m · Yj,m + Vi,k, (IV.9)
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where ν is a time constant for all neurons, Ai,k;j,m is the recurrent interconnection weight from

neuron zj,m to zi,k, Bi,k;j,m is the control weight of external input from zj,m to zi,k, Yj,m is the

external input to the neuron zj,m, and Vi,k is the bias current to zi,k, which is usually a fixed value

V . It is worth mentioning that Ai,k;i,k > 1/ν is hold so that the neuron zi,k will eventually enter

into a saturation region [11]. Also, the interconnection weights are assumed to be symmetric,

that is, Ai,k;j,m = Aj,m;i,k, thus the CNN is stable [11].

An energy function at time τ which decreases along the trajectories of (IV.9) is generally

expressed by [11]

E(τ) = −1

2

N∑
i=1

K∑
k=1

Ai,k;i,kX
2
i,k(τ) − 1

2

N∑
i=1

K∑
k=1

N∑
j=1

K∑
m=1

Ai,k;j,mXj,m(τ)Xi,k(τ)

−1

2

N∑
i=1

K∑
k=1

N∑
j=1

K∑
m=1

Bi,k;j,mYj,mXi,k(τ) −
N∑

i=1

K∑
k=1

Vi,k · Xi,k(τ). (IV.10)

At the stable state, outputs of neurons will arrive at an equilibrium of that the energy function

is minimized. If the energy function is properly designed and acts as a cost function, such an

optimization problem can be solved via the Lyapunov method [12], [13]-[14]. By the Lyapunov

method, the CNN can be designed with a set of prescribed trajectories. The trajectories are

described by the gradient of the Lyapunov function E(τ) which is the energy of the CNN

network at time τ . With an appropriate energy function designed according to the cost function,

the minimization of the cost can be achieved along the designed trajectories. In the mean time, it

can be proved that the architecture of the designed CNN can be related with the energy function

by
dX

(s)
i,k (τ)

dτ
= −X

(s)
i,k (τ)

ν
− ∂E(τ)

∂Xi,k(τ)
. (IV.11)

Using (IV.11), the desired system parameters of inter-connection weights, control weights, and

bias currents can be found from the trajectories of energy function.

B. Cost Function for CNN Processor

The cost function of CNN [13] for frame t at time τ , denoted by H(t, τ), consists of a

cost function for the utility function, denoted by Hu(t, τ), in conjunction with cost functions

for system constraints Ψ1 and Ψ2, denoted by HΨ1(t, τ) and HΨ2(t, τ), respectively. The con-

straint Ψ1 = {⇀
c(t) :

∑
n

cn(t) ≤ 1} is because the system transmission power is limited by a
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maximum power budget P ∗
max. Notice that the assigned transmission rate ri(t) of connection i

for frame t is determined according to both the ci(t) and the modulation order Mκi
; the ri(t)

is further limited by the minimum spreading factor SFi and the waiting queue length Qi(t);

and too large ci(t) with excess allocated power makes no effects on ri(t). Also the constraint

Ψ2 =
{

⇀
c(t) : ci(t) ≤ min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

}
,∀i

}
, where Ri(t) is the radio resource function

indicating the maximum achievable transmission rate for connection i at time t. The constraint

Ψ2 indicates no further utility can be gained if ri(t) exceeds the supported rate which is the rate

when the power ratio ci(t) equals (
W ·log2 Mκi

SFi·Ri(t)
), or the necessary rate to transmit all remaining

packets in Qi(t), where the necessary rate is the rate when ci(t) equals (
Qi(t)/Tf

Ri(t)
). The H(t, τ)

has the form of

H(t, τ) = Hu(t, τ) + HΨ1(t, τ) + HΨ2(t, τ). (IV.12)

The Hu(t, τ) is defined to be the difference between an overall normalized utility function and

its maximum, and the overall normalized utility function is defined as
∑N

i=1 ci(t, τ)· (1−e−σUi(t)).

When
∑N

i=1 ci(t, τ) ≤ 1,
∑N

i=1 ci(t, τ) · (1−e−σUi(t)) is bounded by 1. Thus the Hu(t, τ) is given

by

Hu(t, τ) = η0

[
1 −

N∑
i=1

ci(t, τ)
(
1 − e−σUi(t)

)]
, (IV.13)

where η0 is the coefficient for the Hu(t, τ).

The HΨ1(t, τ) is defined as

HΨ1(t, τ) = η1

[
N∑

i=1

ci(t, τ) − 1

]2

, (IV.14)

where η1 = η+
1 · u

(∑N
i=1 ci(t, τ) − 1

)
+ η−

1 ·
(
1 − u

(∑N
i=1 ci(t, τ) − 1

))
, u(·) is the unit-step

function, η+
1 is the slope constant for the cost increment when the total radio resource is greater

than the maximum, and η−
1 is the slope constant for the cost increment otherwise. The ranges

of η+
1 and η−

1 are further investigated in the next section to ensure the stability and the desired

output pattern of the CNN processor.

The HΨ2(t, τ) is defined to be proportional to the difference
[
ci(t, τ) − min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

}]
if ci(t, τ) > min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

}
; otherwise, no cost will be incurred because
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the radio resource will be allocated to other connections for efficiency. It is given by

HΨ2(t, τ) = η2


 N∑

i=1

((
ci(t, τ) − min

{
W · log2 Mκi

SFi · Ri(t)
,
Qi(t)/Tf

Ri(t)

})+
)2


 , (IV.15)

where η2 is the coefficient for the HΨ2(t, τ).

Consequently, the cost function H(t, τ) is given by

H(t, τ) = η0

[
1 −

N∑
i=1

ci(t, τ)
(
1 − e−σUi(t)

)]
+ η1 ·

[
N∑

i=1

ci(t, τ) − 1

]2

+ η2


 N∑

i=1

((
ci(t, τ) − min

{
W · log2 Mκi

SFi · Ri(t)
,
Qi(t)/Tf

Ri(t)

})+
)2


 . (IV.16)

C. The Architecture of CNN Processor

According to the cost function H(t, τ) at time t, the energy function E(τ) can be designed

for the CNN processor in the CNNU-based scheduler. However, some modifications on H(t, τ)

for E(τ) should be made to ensure the correctness of the desired output and the stability of the

CNN processor. The E(τ) is given by

E(τ) = −η0

[
N∑

i=1

(
K∑

k=1

Xi,k(τ) · 2−k) · (1 − e−σ·Ui(t))

]

+η1

[(
N∑

i=1

1

2
(

K∑
k=1

Xi,k(τ) · 2−k) − 1

)
·
(

N∑
i=1

(
K∑

k=1

Xi,k(τ) · 2−k)

)]

+η2


 N∑

i=1


(

1

2
(

K∑
k=1

Xi,k(τ) · 2−k) − min

{
W · log2 Mκi

SFi · Ri(t)
,
Qi(t)/Tf

Ri(t)

})+

·

(
K∑

k=1

Xi,k(τ) · 2−k)

)]
+ η3

[
N∑

i=1

(
K∑

k=1

Xi,k(τ)
(
1 − Xi,k(τ)

) · 2−k

)]
, (IV.17)

where η3 is a constant for additional auxiliary terms. The first item differs from the corresponding

cost in (IV.16) in that the scalar 1 is ignored. The
∑N

i=1(
∑K

k=1 Xi,k(τ) · 2−k) · (1 − e−σ·Ui(t)) is

bounded above by 1 and has the same minimum as in the cost function. For the second and third

terms, the quadratic forms in (IV.16) are replaced by convex functions which merely contain

state variable Xi,k(τ) without any scalar. The local minimums would be the same; the resulting

energy at any equilibrium would be shifted by a constant value, compared to the cost in (IV.16)

and independent of the inputs and the output pattern. The last term of (IV.17) is an auxiliary
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factor which emerges to ensure the convergence because the energy function due to this auxiliary

term approaches zero only when every state variable outputs approaches either one or zero.

By (IV.11) and (IV.17), the dynamics of each neuron in the proposed CNN for the CNNU-

based scheduler can be expressed by

dX
(s)
i,k (τ)

dτ
= −X

(s)
i,k (τ)

νk

+ η0

(
1 − e−σUi(t)

) · 2−k − η1

(
N∑

i=1

K∑
k=1

Xi,k(τ) · 2−k − 1

)
· 2−k

−η2

(
K∑

m=1

Xi,m(τ) · 2−m − min

{
W · log2 Mκi

SFi · Ri(t)
,
Qi(t)/Tf

Ri(t)

})+

· 2−k

−η3 (1 − 2Xi,k(τ)) · 2−k

= −X
(s)
i,k (τ)

νk

+

[
2η3 · 2−k − η1 · 2−2k − η2 · u

(
K∑

k=1

Xi,k − min

{
W · log2 Mκi

SFi · Ri(t)
,

Qi(t)/Tf

Ri(t)

})
· 2−2k

]
· Xi,k(τ) + η0

(
1 − e−σUi(t)

) · 2−k

+η2 · u
(

K∑
m=1

Xi,m(τ) · 2−m − min

{
W · log2 Mκi

SFi · Ri(t)
,
Qi(t)/Tf

Ri(t)

})
·

min

{
W · log2 Mκi

SFi · Ri(t)
,
Qi(t)/Tf

Ri(t)

}
· 2−k −

(
N∑

j=1,j �=i

K∑
m=1

η1 · 2−(m+k) · Xj,m(τ)

)

−
(

K∑
m=1,m�=k

[
η1 − η2 · u

(
K∑

m=1

Xi,m(τ) · 2−m − min

{
W · log2 Mκi

SFi · Ri(t)
,

Qi(t)/Tf

Ri(t)

})]
· 2−(m+k) · Xi,m(τ)

)
+ η1 · 2−k − η3 · 2−k, (IV.18)

where νk is modified to 2k to retain the stability and desired output pattern of the designed CNN.

From (IV.9) and (IV.18), the recurrent interconnection weights, the external control weights,

and the bias current can be determined by


Ai,k;i;k = −η1 · 2−2k − η2 · u
(∑K

k=1 Xi,k − min
{

W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
· 2−2k + 2η3 · 2−k,

B1
i,k;i;k = +η0,

B2
i,k;i;k = +η2 · u

(∑K
k=1 Xi,k − min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
,

Ai,k;j;m = −η1 · 2−(k+m) · (1 − δk,m)δi,j − η1 · 2−(k+m) · (1 − δi,j)

−η2 · u
(∑K

k=1 Xi,k − min
{

W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
· δi,j · 2−(k+m),

Vi,k = η1 · 2−k − η3 · 2−k,

(IV.19)
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where B1
i,k;i;k and B2

i,k;i;k are the external control weights for first and second external inputs,

Y
(1)
i,k =

(
1 − e−σUi(t)

) ·2−k and Y
(2)
i,k = min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

}
·2−k, respectively, and δx,y = 1

if x = y, δx,y = 0 otherwise.

The range of coefficients η0, η1 (η+
1 , η−

1 ), η2, and η3 must be properly selected to ensure the

stability and the desired response. For a tolerant error level ε, which is the maximum difference

between stable output limτ→∞
⇀
c(t, τ) and the optimum ⇀

c
∗
(t), the range of these coefficients are

obtained as follows [?]: 0 < η0 < η3 , η+
1 > 2K , η−

1 ≥ η0·2−3

ε
, η2 ≥ 2K , η3 > 1

2
+

η−
1

2
. We

have proved in [?] that with a matrix of given utility function and a matrix of radio resource

assignment ratio upper limits, the proposed CNN architecture will converge to the neighborhood

of the optimal pattern ⇀
c
∗
(t) within the difference ε, with the range of these coefficients. If

ε ≤ 2−K , the CNN converges to ⇀
c
∗
(t) exactly [?].

However, the complexity of the interconnection is in the order of [N × K]N×K , which is

almost infeasible for practical implementation. We propose an equivalent two-layer structure for

the CNN processor in the next subsection to efficiently reduce the complexity of interconnection.

D. The Two-Layer Structure for CNN Processor

Fig. 2 shows the architecture of the two-layered CNN processor. The equivalent two-layer

structure for the CNN processor involves the first decision layer,
[
z1

i,k

]
, with state variable output

Xi,k(τ), and the second output layer,
[
z2

i,k

]
, with state variable output ci(t, τ). The decision layer

consists of N × K neurons; the output layer is with an (N + 1) × 1 array, where the output of

the first neuron is the summation of all the others. The interconnections between the neurons of

decision layer and those of output layer are defined by

• For the first decision layer to the second output layer, the connection weight between

Xi,k(τ) and cj(t, τ) is 2−k, ∀k if j = i; is zero if j �= i.

• For the second output layer feedback to the first decision layer, only the first neuron

output is connected to the Xi,k(τ) of the decision layer with the interconnection weight

η1 · 2−k for ∀i.
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Fig. 2. The two-layer structure of CNN processor.

The recurrent interconnection weights and the external control weights for the first decision

layer defined in (IV.19) are then modified to be


Ai,k;i;k = −η1 · 2−2k − η2 · u
(∑K

k=1 Xi,k − min
{

W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
· 2−2k + 2η3,

B1
i,k;i;k = η0,

B2
i,k;i;k = η2 · u

(∑K
k=1 Xi,k − min

{
W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
,

Ai,k;j;m = −η2 · u
(∑K

k=1 Xi,k − min
{

W ·log2 Mκi

SFi·Ri(t)
,

Qi(t)/Tf

Ri(t)

})
· δi,j · 2−(k+m),

Vi,k = η1 · 2−k − η3,

(IV.20)

For the second output layer, there are no external inputs, and only recurrent interconnection

weights exist. The interconnection weight between ci(t, τ) and cj(t, τ) is given by δ0,j with

i = 0.

It can be shown that the two-layer structured CNN processor has the same energy function

and the local minimum as the single-layer one defined by (IV.19). However, the complexity of
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interconnections in the two-layer one is proportional to [3N × K + N ], which is significantly

lower than [N × K]N×K in the single-layer one.

V. SIMULATION RESULTS AND DISCUSSION

In the simulations, a scenario with five types of services in three classes is assumed. Type-1

service is a real-time class of traffic with peak rate 15kbps, activity factor 0.57, P ∗
D = 0.05,

D∗ = 40ms, and BER∗ = 10−3. Type-2 (type-3) service is a non-real-time interactive class

of traffic with Pareto process [19] of which the mean rate is 8kbps (12kbps), R∗
m,i=7.2kbps

(R∗
m,i=11kbps), and BER∗ = 10−5 (BER∗ = 10−5). And type-4 (type-5) service is a non-real-

time best effort class of traffic in batch Poisson distribution with mean rate 6kbps (15kbps) and

mean batch size 1.2k bits (1.2k bits), and BER∗ = 10−5. The proportion in the number of

connections from type-1 to type-5 is kept at 1:1:1:1:1. Also, four modulation schemes, BPSK,

QPSK, 16QAM, and 64QAM, are available for transmission as long as the BER requirement

can be fulfilled and the remaining queue is enough.

We compare the proposed CNNU-based scheduler with the exponential rule (EXP) scheduling

scheme. The performance measures are such as the average system throughput, the average

packet dropping ratio of RT connections, PD, the average transmissio rate of NRT interactive

connections, Rm, the ratio of RT connections in which their packet dropping ratio requirement

is not guaranteed, φPD
, the ratio of NRT interactive connections in which their minimum

transmission rate requirement is not guaranteed, φRm , and the fairness variance index of NRT

connections, Fv. The Fv is defined for measuring the variance of fairness to share the radio

resource among all NRT connections. It is given by

Fv =
1

N
NRT

N
NRT∑
i

∣∣∣∣∣ E [ri(t)]∑N
NRT

j E [rj(t)]
− wi∑N

NRT
j wj

∣∣∣∣∣
2

,

where N
NRT

is the number of NRT connections. The fairness variance index shows the variance

of the normalized radio resource allocated and the normalized proportion of resource desired to

share.

Fig. 3 shows the average system throughput. It can be found that the CNNU-based scheduler

can always have a higher system capacity than the EXP scheduling scheme in all traffic load

conditions; it achieves the improvement of the system throughput over the EXP scheduling

scheme by more than 9% as the number of connections is greater than 200, and by higher
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Fig. 3. The average system throughput

than 15% as the number of connections increases up to 250. This is because the radio resource

funciton makes CNN processor adapt to the link variation and allocate radio resource in an

efficient way. Both RT and NRT connections with relatively worse link conditions have lower

probability to be scheduled as long as their QoS requirements can be achieved in a long term

sense. The fairness compensation function makes the NRT connections share the radio resource

according to the location dependent fairness and thus a higher radio resource efficiency can be

achieved. Also, the CNN processor can determine an optimal radio resource assignment vector in

the sense that the allocation of downlink power by CNNU-based scheduler is the most efficient

one, with given utilities and upper limits of the radio resource assignment. Additionally, beyond

the point of 250 connections, the throughput of the EXP scheme is almost saturated, while the

throughput of the CNNU-based scheduler continues to grow up but with a slightly lowering

slope. It is because the CNNU-based scheduler can achieve utilization of multiuser diversity

gain better than the EXP scheduling scheme.

Fig. 4 depicts performance measures of the average packet dropping ratio of type-1 RT con-

nections PD and the average transmission rate of type-2 and type-3 NRT interaction connections

Rm. It can be found that the PD of the CNNU-based scheduler is larger than that of the EXP

scheme and it violates the P ∗
D requirement as the number of users is at about 250; on the other

hand, all the Rm of type-2 and type-3 connections of the CNNU-based scheduler are greater than

that of the EXP scheme as the number of connections is greater than 125 but the EXP scheme

violates the R∗
m requirements as the number of users is at about 170. These indicate that the QoS
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Fig. 4. QoS performance measures of P D and Rm

guaranteed region by the CNNU-based scheduler is as the number of connections is less than

250, while that by the EXP scheme is as the number of connections is less than 175. The QoS

quaranteed region achieved by the CNNU-based scheduler is larger than that given by the EXP

scheme. This is beacause the QoS deviation function together with the priority bias designed in

the CNNU-based scheduler can balance the extent of deviation of every performance measure

from the QoS requirement. The worse the QoS performance measure is, the more the radio

resource will be scheduled. Besides, since the CNNU-based scheduler has higher throughput

performance, the more number of connections can be served in the QoS region. Moreover, if

we define the maximum throughput achievable in QoS guaranteed region to be the average

system throughput, the CNNU-based scheduler can have the average system throughput equal to

2160Mbps at 245 connections, while the EXP scheme can have the average system throughput

equal to 1600Mbps at 175 connections. The former attains the average system throughput greater

than the latter by an amount of 25%.

Fig. 5 shows the ratio of RT connections of which the packet dropping ratio requirement

is not graranteed, φPD
, and the ratio of NRT interactive connections of which the minimum

transmission rate requirement is not guaranteed, φRm . It can be seen that the total ratio of

connections with QoS requirements un-guaranteed for the CNNU-based scheduler is about

0.0435, while that for the EXP scheme is greater than 0.18 in heavy loaded situations as the

number of connections is greater than 225. The total ratio of connections with QoS requirements

un-guaranteed is here defined as 1
3
φPD

+ 2
3
φRM

, which is weighted by the number of RT and
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Fig. 5. The ratio φPD for RT connections and the ratio φRm for NRT interactive connections
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Fig. 6. The fairness variation index for NRT connections

NRT interactive connections. This indicates that CNNU-based scheduler can achieve lower total

ratio of connections in all traffic types of which the corresponding QoS requirements are not

guaranteed than the EXP scheme does. The reason is that the CNNU-based scheduler can balance

the allocation of radio resources among traffic types and avoid allocating excess radio resource

to connections with bad link condition, while the EXP scheme prefers RT connections and

overprotects them so that the QoS guaranteed region is reduced. Note that the ratios of φPD
and

φRm are greater than zero at any traffic load conditions due to the existence of connections with

very bad link quality. These results imply that the CNNU-based scheduler will not guarantee all

the QoS requirements all the time, and a properly designed call admission control is required to

reject the connections with very bad link quality in terms of the current traffic load conditions.

Fig. 6 shows the fairness variance index of NRT connections. It can be found that the fairness
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variance index of the CNNU-based scheduler retains within 1 in almost all simulation cases, and 
grows up slowly as the number of connections increases; the fairness variance index of the EXP 
scheme, on the other hand, increases with slightly higher slope compared to CNNU-based 
scheduler. This is because the fairness compensation function of the CNNU-based scheduler 
considers the location dependent information and aims to share the radio resource fairly as long 
as the minimum rate is guaranteed, while the design of the EXP scheme ignores the location 
dependent information and allocates rate fairly to all connections. The fairness compensation 
function, considering location dependent information, also facilitates the higher capacity for the 
CNNU-based scheduler shown in Fig. 3.
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A Novel Dynamic Cell Configuration Scheme in
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Abstract

o balance the time-varying traffic load between cells, caused by user mobility and diverse applications, it is

crucial for next-generation CDMA cellular networks to configure cell coverage and capacity dynamically. In this

paper, we show that pilot power allocation is highly coupled to other facets of radio resource management.

We propose a novel dynamic cell configuration scheme for multimedia CDMA cellular networks, based on

reinforcement-learning, which takes into account pilot, soft handoff, and maximum link power allocations as well

as call admission control mechanisms. Simulation results demonstrate the effectiveness of the proposed scheme

in situation-aware CDMA networks.o balance the time-varying traffic load between cells, caused by user mobility

and diverse applications, it is crucial for next-generation CDMA cellular networks to configure cell coverage and

capacity dynamically. In this paper, we show that pilot power allocation is highly coupled to other facets of radio

resource management. We propose a novel dynamic cell configuration scheme for multimedia CDMA cellular

networks, based on reinforcement-learning, which takes into account pilot, soft handoff, and maximum link power

allocations as well as call admission control mechanisms. Simulation results demonstrate the effectiveness of the

proposed scheme in situation-aware CDMA networks.T

I. INTRODUCTION

The growing popularity of multimedia Internet applications is a strong driving force for

future cellular mobile systems. Due to user mobility and wide range of applications, the

traffic pattern of each cell can vary dynamically. Thus, the current practice of engineering

cell coverage and capacity based on pre-defined traffic patterns before a code division multiple

access (CDMA) cellular network is deployed may lead to poor utilization of radio resources.

Chapter 4

A Novel Dynamic Cell Configuration 
Scheme in Next-Generation 
Situation-Aware CDMA Networks
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Due to asymmetric traffic and the interdependence of traffic capacity and coverage, this problem

could be exacerbated in next-generation CDMA cellular networks, especially over the capacity-

limited downlink [1]−[4].

To adapt to the variations of traffic load, tradeoffs between coverage and capacity in CDMA

cellular systems have been considered [3]−[7]. For example, to guarantee the coverage of a

cell, more power is used to reach mobile stations (MSs) near cell boundaries under power

control. However, in interference-limited systems, the resulting higher inter-cell interference

will reduce the system capacity significantly. Furthermore, under large traffic variations, power

control may not be effective [3]−[5]. A uniform network layout with equal-sized cells, while

optimal under uniform traffic, suffers significant capacity degradations if traffic loads are not

balanced among all the cells [6]. To accommodate traffic load variations between cells, it

is crucial for next-generation CDMA cellular networks to be aware of system situations and

configure cell coverage and capacity dynamically [1], [7].

Several schemes for dynamic cell configuration (DCC) have recently been proposed [8]−[16].

Optimization of pilot power, and downlink capacity and coverage planning were considered

in [8], [9]. In [10], a DCC scheme for circuit-switched micro-cellular CDMA systems was

proposed to enhance the uplink performance. In [11], the competitive characteristics of network

coverage and capacity were analyzed for a simple network. Only one class of service was

considered in [8]−[11], and it may be difficult to extend these schemes to multiple classes of

service. Some techniques based on heuristics have also been proposed for dynamic pilot power

allocation (DPPA) to balance downlink traffic load while assuring service coverage [12], [13].

However, these schemes may cause “coverage failure regions” between cells where pilot signals

are too weak to serve a MS [14], [15]. Moreover, a common shortcoming of the previous work

[8]−[15] is that only pilot power is adjusted dynamically in the time-varying environment,

without adjusting other parameters critical to radio resource management (RRM).

In fact, pilot power allocation and other RRM parameters are tightly coupled. In our previous

work [16], we have shown that system performance can be improved significantly by a self-

organized DCC scheme with coordinated call admission control (CAC), compared to fixed pilot

power allocation (FPPA) and DPPA without taking CAC into account. Other work has shown

that signal quality degradation can be prevented by configuring cell areas adaptively and setting

power levels appropriately [4], [17], and soft handoff has significant impacts on the system
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capacity and cell coverage [18], [19]. Therefore, an effective mechanism, link proportional

power allocation (LPPA), was proposed for downlink soft handoff in [20], [21]. It was shown

that LPPA can enhance system capacity in CDMA cellular systems with mixed-size cells,

compared to conventional site-selection diversity transmissions (SSDT) scheme [22].

In this chapter, we show that DPPA without changing other related RRM parameters

accordingly can result in performance degradations. To address this problem, we propose a novel

DCC scheme based on reinforcement-learning called DCC-RL. The novelties are as follows.

1) DPPA is linked with soft handoff power and maximum link power allocations as well as

CAC mechanisms. 2) Reinforcement-learning efficiently tackles optimization problems with

large state spaces and action sets [23] in realistic CDMA multimedia cellular networks, which

were previously deemed intractable [24]. 3) Our method does not require a priori knowledge

of the state transition probabilities associated with the cellular network, which are very difficult

to estimate in practice due to the varied propagation environment, diverse multimedia services,

and random user mobility. 4) DCC-RL can be implemented in a distributed manner in each

base station (BS), minimizing signaling overhead between BSs and radio network controllers,

and the number of system states involved in computations.

We compare DCC-RL with fixed cell configuration (FIX) employing FPPA, and DPPA

without changing other RRM parameters. Simulation results show that DCC-RL outperforms

the others by increasing the total throughput, decreasing the frame error probability, blocking

probability, and handoff forced termination probability with the price of slightly increasing the

size of the active set.

The rest of this chapter is organized as follows. DCC issues are discussed in Section II.

Section III describes the system model. Section IV formulates the DCC problem taking into

account of RRM, and presents the proposed DCC-RL scheme. Simulation results are presented

and discussed in Section V.

II. ISSUES OF DYNAMIC CELL CONFIGURATION

A. Effects of Pilot Power Allocation Schemes

Since each BS has a finite transmit power, the pilot and traffic channels have to share the

total power. Pilot power allocation can be either fixed or dynamic. In FPPA schemes, which is

used in current CDMA systems, about 10-15% of the total power is allocated to the common
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pilot channel and is not changed after the deployment of a cellular network, as shown in Fig.

1(a). When the traffic load is too high to allow allocation of sufficient power for all MSs,

the system performance can degrade severely. Some strategies have to be employed to balance

power between cells, e.g., by DPPA as illustrated in Fig. 1(b). The pilot power can be adjusted

between the maximum and minimum constraints based on various traffic situations. When traffic

is light, the pilot power can be increased to extend cell coverage to more MSs. On the other

hand, when traffic is heavy and there is insufficient power for allocation to all traffic channels,

the pilot power can be decreased to shrink cell coverage. This explains the interdependence of

coverage and capacity in CDMA cellular systems.

Moreover, in future CDMA networks, diverse multimedia traffic and random user mobility

will make preplanning of coverage and capacity difficult to manage. To achieve load balance

whenever traffic congestion occurs, DCC through DPPA will be necessary.

B. Effects of Soft Handoff Power Allocation Schemes

The soft handoff mechanism can provide seamless connections and better signal qualities

for MSs near the cell boundaries. Since the limited power available for traffic channels in each

BS is shared between non-handoff and soft handoff MSs, there are tradeoffs between coverage

and capacity. For example, a BS may shrink the cell coverage to serve less handoff MSs

near the cell boundary, leaving more power available for allocation to non-handoff MSs with

higher transmission rates. As soft handoff mechanisms have direct impacts on cell coverage

and capacity, RRM for soft handoff MSs is a challenging issue in CDMA cellular systems with

mixed-size cells formed by different levels of pilot power [20], [21].

C. Effects of New/Handoff Call Admission Control

In downlink CDMA systems, since each BS has finite power resource to be shared among

MSs, the allocated pilot power and traffic channel power are directly related to the coverage

and capacity of the cell. To achieve load balance whenever traffic congestion occurs, DCC

through DPPA is necessary. However, it is necessary to consider the pilot power allocation

and strategies of new/handoff CAC jointly in order to design an effective DCC scheme that

improves the system performance while minimizing the undesirable effects.
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For new call arrivals near cell boundaries, the pilot power determines the MSs initial access

cells. Therefore, reducing the pilot power of a congested cell causes the MS to request a traffic

channel from an adjacent cell. If the MS fails initially to detect a BS with enough signal

strength, it cannot make a call request to the system. This is referred as a coverage failure.

As a consequence, although the new call blocking probability of the congested cell could be

decreased, the coverage failure probability might be increased.

For ongoing calls near cell boundaries, decreasing or increasing the pilot power of a BS

can force some of the MSs to handoff into other cell(s) or vice versa. Therefore, the average

size of the active set and handoff rates would be increased. In addition, if a MS suffers a bad

signal quality and fails to to execute the handoff in time, a handoff forced termination occurs.

III. SYSTEM MODEL

The system block diagram of our proposed DCC-RL scheme is shown in Fig. 2. DCC-

RL can be implemented in a distributed manner in each BS, which adjusts its pilot power

periodically to adapt to the variations of system situation through the dynamic pilot power

controller. Based on the determined pilot power level, the maximum link power constraint

and CAC criterion are adjusted accordingly. Then, the traffic channel power allocator adjusts

its maximum link power constraint that is obtained from the maximum link power estimator.

After applying all updates for RRM to the entire cellular network, the reinforcement signal is

input to the dynamic pilot power controller to aid its decision for the next pilot power level.

In this section, we describe the signal model and the link budget model in CDMA systems.

An initial cell coverage design for the CDMA cellular system is provided to illustrate the

interrelation between capacity and cell coverage.

A. Signal Model

Assume the total allocated power of BS b is Pb, including pilot channel power P I
b and traffic

channel power P T
b , where Pb is smaller than or equal to the BS’s maximum transmit power

P̃b. The pilot power of BS b is given by P I
b = fb × P̃b, where fb ∈ [fmin, fmax] is the fraction

of the pilot power relative to BS b’s maximum transmit power, constrained between minimum

fraction fmin and maximum fraction fmax. For the traffic channel of MS m served by BS b, the

allocated transmit power from BS b is pb,m = φmP T
b ≤ p̃b, where φm is the fraction of traffic
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channel power allocated for transmission to MS m; p̃b is the maximum link power of BS b.

Thus,
∑

m∈Ub
φm = 1, where the Ub represents the set of all MSs served by BS b.

B. Initial Cell Coverage Design

The initial design of cell coverage can be obtained by link budget analysis. The equivalent

isotropic radiated power (EIRP) at a BS’s transmitter, EP , of each traffic channel can be

calculated by EP [dBm] = p̃b [dBm]+GB [dBi]−LC [dB], where GB and LC are the antenna gain and cable

loss of the BS, respectively. Note that the units of the parameters are given in brackets 1. On the

other hand, the EIRP, ET , measured at a MS’s receiver, taking into account the soft gain GS , the

antenna gain GM , and the body loss LD of the MS, is ET [dBm] = EP [dBm]+GM [dB]−LD [dB]+GS [dB].

Moreover, assume that the interference margin (maximum planned noise rise) is ΩI , and the

received noise power (product of thermal noise density, chip rate, and noise figure) is ηo. The

receiver sensitivity of the MS given service rate r is HR(r)[dB] = HS(r)[dB]+ΩI [dB]+ηo[dBm], where

HS(r)[dB] is the required signal-to-interference-plus-noise (SINR) value for service rate r, which

is equal to the required bit-energy-to-noise ratio (Eb/No), γ∗(r)[dB], minus the processing gain

GP (r)[dB]. From the link budget, the maximum allowable path loss for service rate r is

PL(r)[dB] = ET [dBm] − HR(r)[dB] − ΩL[dB], (1)

where ΩL is the margin for log-normal fading. When a MS is near the cell boundary, the received

chip-energy-to-interference ratio, Ec/Io, should not fall below the minimum requirement Υ(r)

for service rate r, given by Υ(r)[dB] = P I
b [dBm] − PL(r)[dB] −ΩI [dB] − ηo[dBm] ≥ Υ̃. In general, pilot

power P I
b is around 1-4 watts, which is about 5%− 20% of the maximum total transmit power

of the BS, P̃b.

Based on the allowable maximum path loss and the applied channel model, the resultant cell

radius R(r) is different with different service rate r. For r ∈ [ rmin, rmax ], since HS(rmin) <

HS(rmax), therefore PL(rmin) > PL(rmax) and R(rmin) > R(rmax). This phenomenon raises

the issue of fairness for different service rates in terms of service coverage and transmit power.

If the same transmit power is allocated to MSs with different service rates, the higher service

rate results in a smaller service coverage. Alternately, in order to support the same service

1In this chapter, a variable is linear if its unit is not specified.
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coverage for different service rates, more transmit power is needed to support MSs with higher

service rates near cell boundaries. Note that since total downlink transmit power of each BS is

limited, system capacity is directly related to transmit power management. Based on the above

concerns, in order to optimize system capacity, cell radius can be determined in terms of a

suitable reference service rate r∗, where r∗ ∈ [rmin, rmax]. The corresponding cell radius R(r∗)

is determined by the maximum allowable path loss PL(r∗). Therefore, the required Ec/Io of

the system, Υ̃, is equal to

Υ̃[dB] = P I
b [dBm] − PL(r∗)[dB] − ΩI [dB] + ηo[dBm], (2)

where Υ̃ is within the range from −16 [dB] to −20 [dB].

IV. PROPOSED DCC-RL SCHEME

We formulate the DCC problem as a Markov decision process (MDP) [26]. However, tradi-

tional model-based solutions of MDP, such as policy iteration and linear programming, require

a prior knowledge of the state transition probabilities. Due to the diverse multimedia traffic and

random user mobility, these conventional solutions suffer from the curses of dimensionality and

modeling. As described below, we propose a novel reinforcement-learning-based DCC scheme,

DCC-RL, to find an optimal policy for pilot power allocation that takes RRM into account (see

Fig. 2).

A. Problem Formulation as a Markov Decision Process

In DCC-RL, the BS pilot power is periodically adjusted to adapt to changing conditions.

These time instants are called decision epochs and the adjustments of pilot power are called

actions in the MDP formulation. The chosen action is based on the current state of the system.

Depending on the action taken by the system, the system can earn rewards. The objective

is to optimize the sequence of actions to maximize the accumulated rewards. The detailed

formulation is as follows:

[Decision epochs]: In CDMA systems, the pilot signal is broadcasted from each BS periodically

[30]. The state of the system changes accordingly. Therefore, we adjust the pilot power every

M frames, where M is a design parameter.
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[States]: Define the state vector of the system as s = (ωM , ωV ) ∈ IR2
+, where ωM denotes the

mean power of the BS and ωV denotes the variance of the power load. Assume there are N

samples from the measurements, where N is also a design parameter. Also, ωM and ωV can

be obtained from the sample mean and variance, respectively, as follows.

ωM =
1

N

N∑
n=1

P T
b (n), (3)

ωV =
1

N − 1

N∑
n=1

(P T
b (n) − ωM)2. (4)

The decision process can be implemented in each BS in a distributed manner because the

variation of the BS’s power load can implicitly reveal the load information about all cells.

[Actions]: At each decision epoch, the BS makes a decision to choose a suitable fraction of

the pilot power based on state s. The action a(s) ∈ A of BS b is defined as the fraction,

fb ∈ [f min, f max], of the pilot power relative to the maximum transmit power.

[Rewards function]: Based on the action a(s) in a state s, the system earns a reward ϕ(s, a(s)).

We choose the total throughput as the reward:

ϕ(s, a(s)) =
∑
m

rm, (5)

where rm ∈ [rmin, rmax] is the transmission rate of MS m.

B. MDP Solution by Reinforcement-Learning

The objective of the decision process is to find an optimal policy π∗ for each state s,

which minimizes the cumulative measure of the reward ϕt = ϕ(st, a(st)) that is received

over time, where the subscript represents the time instant t. The total expected discounted

reward over an infinite time horizon can be represented by the value function with policy π,

V π(s) = E {∑∞
t=0 λt · ϕ(st, π(st))|s0 = s} , with discount factor 0 ≤ λ < 1. Let P (s′|s, a(s))

be the transition probability from state s to s′. The value function can be rewritten as

V π(s) = U(s, π(s)) + λ
∑
s′∈S

Pr(s′|s, π(s))V π(s′), (6)

where U(s, π(s)) = E {ϕ(s, π(s))}. Define a Q-function of state-action pair with policy π as

Qπ(s, a(s)) = U(s, a(s)) + λ
∑

s′∈S Pr(s′|s, π(s))V π(s′). The optimal value function V π∗
with
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the optimal policy π∗ satisfies Bellman’s optimality criterion [27]

Q∗(s, a(s)) = V π∗
= max

b∈A
Qπ∗

(s, b(s)). (7)

Thus, the optimal Q-function Q∗(s, a(s)) can be obtained from finding an optimal policy of

Q-function Qπ∗
(s, a(s)). Without knowing U(s, a(s)) and Pr(s′|s, a(s)), the Q-learning process

can still find an optimal policy π∗ through updating Q(s, a(s)) to find Q∗(s, a(s)) in a recursive

manner using the information of current state st, action at, reward ϕt, and next state s′t. Watkins

[28] has shown that if the Q-value of each feasible state-action pair (s, a(s)) is visited infinitely

often, and if the learning rate is decreased to zero in a suitable way, then Pr{Q(s, a(s)) →
Q∗(s, a(s)) as t → ∞} = 1. The Q-values of the state-action pairs are usually stored in

a look-up table. However, this approach is not suitable for problems with continuous state

spaces as in multimedia CDMA systems, where the curse of dimensionality is hard to tackle.

It has been shown [29] that fuzzy Q-learning is an efficient technique for the approximation

of continuous system states by adapting Watkins’s Q-learning [28] technique such that a fuzzy

inference system (FIS) is incorporated into reinforcement-learning to generalize Q-learning by

inferring both the actions and Q-functions from fuzzy rules. Taking advantage of the Q-learning

technique, the universal approximation property of the FIS makes the representation of Q-values

with large state-action space possible, and a priori knowledge can be integrated in the learning

procedure [16].

Furthermore, in DCC-RL, a simple strategy for feature abstraction, exploitation and explo-

ration is applied to speed up the learning procedures (and shorten the convergence time) for

obtaining the optimal solution. A policy feasible action set As ⊂ A can be obtained based on

the current state s. State ωM can be adopted as an indicator to classify the feasible action sets.

For example,

As =




{fmin, · · · , fΘ} , if ωM ≥ Θ

{fΘ, · · · , fmax} , otherwise
(8)

where fΘ is the cutting value of the action set, fΘ ∈ [fmin, fmax], and Θ is the threshold of

the mean power as the quality of service (QoS) constraint. Since a greedy policy can easily

cause the system to converge to locally optimal solutions, it is necessary to visit all the sets

of possible actions for all states to find the globally optimum solution. This is the so-called

exploration/exploitation dilemma. An action a(s) of state s is selected from the feasible action
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set As using an exploitation and exploration policy. Here, a pseudo-exhaustive policy is applied,

in which the action with the best Q-value is chosen with a selection probability based on the

Boltzmann distribution. Otherwise an action that is the least visited will be chosen. The resulting

action is converted to the pilot power of the BS. The reward can be measured from the system,

and fed back to update the Q-function.

C. Dynamic Maximum Link Power Constraint Design

The main purpose of the adjustment of maximum link power constraint is to couple the

pilot power into the design. Note that pilot power adjustment affects the cell coverage, while

the maximum link power of a cell affects the service coverage for MSs with different service

rates near the cell boundary. In order to match cell coverage and service coverage, based on

the maximum path loss (1) and the receiver sensitivity in terms of referenced service rate r∗,

the total EIRP of pilot power EI
T should be

EI
T [dBm] = PL(r∗)[dB] + HI

R[dB] + ΩL[dB], (9)

where HI
R is the receiver sensitivity of the pilot signal such that HI

R[dB] = HI
S [dB] +ΩI [dB] +ηo[dBm],

where HI
S is the required SINR value of the pilot signal, which is equal to the required Eb/No

of the pilot signal, γ∗
I [dB], minus the processing gain of the pilot signal GI

P [dB]. Then, substituting

(1) into (9), we obtain EI
T [dBm] = ET [dBm] −HR(r∗)[dB] +HI

R[dB]. Hence, as soon as the pilot power

of BS b, P I
b , has been adjusted dynamically, the maximum link power of cell b should be

p̃b[dBm] ≤ P I
b [dBm] + HR(r∗)[dB] − HI

R[dB]. (10)

The maximum link power constraint is thus coupled with pilot power accordingly. Note that

the same constraint of the maximum link power for different service rates is adopted in this

chapter because the processing gain can be regarded as a priority index for different service

rates.

D. Dynamic CAC Criterion Design

In DCC-RL, as soon as the optimal pilot power P I
b has been determined by the dynamic

pilot power controller, as shown in Fig. 2, the corresponding maximum link power p̃b can be

updated by (10). The SINR threshold Λb for call admission in cell b becomes

Λb[dB] = p̃b[dBm] − PL(r∗)[dB] − ΩI [dB] − ηo[dBm]. (11)
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For CAC of new calls, MS m originating a new call measures and reports its received SINR,

ĤS . The BS accepts the new call if ĤS [dB] > Λb[dB], otherwise the new call is blocked. For

CAC of handoff calls, the soft handoff algorithm [30] is implemented, in which maximal ratio

combining is used to obtain the overall SINR of MS h, ĤS , from all serving BSs in the active

set Dh. A handoff request is issued to BS b whenever an add event occurs. The BS accepts the

handoff request if ĤS [dB] > Λb[dB], and the admitted handoff MS adds BS b into its active set

Dh. Otherwise the handoff call request is blocked. On the other hand, if the blocked handoff

call has not yet exceeded the handoff delay time, the MS can make a handoff request again as

long as the link quality does not fall below the Ec/Io requirement, Υ̃[dB] (2).

V. SIMULATION RESULTS AND DISCUSSIONS

A simulation model is set up to examine the performance of the DCC-RL scheme in a

CDMA cellular system. We first describe the simulation platform, and then the simulation

results are presented and discussed.

A. Simulation Model

1) Cell Model: We consider a hexagonal cellular system with 19 wrap-around cells, in

which the central cell is a hotspot cell with a high traffic load. As before, the load ratio ρ is

defined as the ratio between the call arrival rates in the hotspot cell and in each surrounding

cell. Geographically, the cellular deployment is homogenous, and the default cell radii can be

determined by the link budget design in subsection III-C. The link budget parameters are as

follows: P̃b = 43[dBm], GB = 2[dBi], LC = 3[dB], GM = 2[dBi], LD = 3[dB], GS = 3[dB], ΩI = 5[dB], and

ηo = −127.24[dBm].

2) Mobility Model: Assume MSs are uniformly distributed in each cell, and their initial

speeds are uniformly distributed between 0 and the maximum speed. The maximum speeds

for MSs in the hotspot cell, 1st-tier cells, and 2nd-tier cells are assumed to be 30, 60, and 60

km/hr, respectively. Whenever a MS moves into a different cell tier, a new speed is chosen

according to the above distribution. Each MS is subject to correlated shadowing effect based

on the Gudmundson model [30], in which the decorrelation length is 20 m in a vehicular

environment. The shadowing effect is updated according to the correlated shadowing model,

with coverage probability 95%. During each shadowing effect update, with probability 0.2 the

53



12

moving direction of the MS is changed and a new direction is selected at random among ±45

degrees [30].

3) Channel Model: For the channel model [30], the path loss is obtained by 40 × (1 −
0.004hb)× log10(d)− 18× log10(hb) + 21× log10(fd) + 80, , where d is the distance between

the BS and the MS; hb and fd are the antenna height of the BS and the downlink frequency,

respectively. In our simulations, the downlink frequency is 2.4 Ghz and the antenna height is

20 m.

4) Traffic Model: Poisson call arrivals are assumed. Three service classes including real-

time voice, real-time data, and non-real-time data, are considered in the system. In the sim-

ulations, the fractions of voice, real-time data, and non-real-time data traffic are 60%, 35%,

and 5%, respectively. A 2-level Markov modulated Poisson process (MMPP) is used to model

voice traffic while a 5-level MMPP is used to model real-time data traffic. The mean duration of

each state in the 5-level MMPP is 1 second. The call holding times of real-time voice and data

services are exponentially distributed with means 60 and 30 s, respectively. The transmission rate

and required Eb/No of the voice traffic are 12.2 kbps and 5 dB, respectively. The service rates

of the data traffic are 16, 32, 64, and 144 kbps and the corresponding Eb/No requirements are

5, 4, 3, and 2 dB. Note that adaptive rate transmission is applied whenever the power resources

are not enough to support the existing MSs. For the non-real-time data service, variable length

data bursts are assumed to be geometrically distributed with a mean burst size of 200 frames.

Moreover, there are 6 different service rates: 16, 32, 64, 144, 384, and 512 kbps, which require

Eb/No of 5, 4, 3, 2, 1.5, and 1 dB, respectively. The transmissions are on a burst-by-burst basis.

B. Performance Measurements and Discussions

We compare the performance of four schemes: FPPA with SSDT (FIX-SSDT), FPPA with

LPPA (FIX-LPPA), DCC-RL with SSDT (DCC-SSDT), and DCC-RL with LPPA (DCC-LPPA).

For FPPA, the default pilot power, P I
b , is set at 2.5 w (12.5% of the maximum transmit power)

for each cell. The maximum link power, p̃b, and the CAC threshold, HI , are fixed and calculated

from (10) and (11), respectively. For DCC-RL, P I
b , p̃b, and HI are adjusted dynamically as

described in Section IV. Assume the arrival rate is 1.6 calls/s, and the traffic load ratio, ρ, is

varied from 1 to 5. For the design parameters of DCC-RL, maximum and minimum fractions

of pilot power are fmin = 0.05 and fmax = 0.2, respectively; decision period N is 10 frames;
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total number of measurement samples M is 100 frames; and total simulation time is 106 frames

(105 learning times).

Figs. 3(a) and (b) show the average pilot power distribution of the hotspot, 1st-tier, and 2nd-

tier cells using DCC-LPPA and DCC-SSDT schemes, respectively. We can see that the DCC-RL

schemes adjust the pilot power in each cell according to various system situations. When the

traffic load ratio is increased, the pilot power of the hotspot cell is reduced aggressively so

as to balance traffic load with adjacent cells, but the coverage is shrunk accordingly. In this

way, the BS of the hotspot cell can save its transmit power to serve new call arrivals. Besides,

adjustments of the pilot power can make the existing MSs near the cell boundary enter soft

handoff mode so as to balance traffic load. Furthermore, for the hotspot cell, the slope of the

pilot power level versus traffic load ratio for DCC-SSDT is sharper than that for DCC-LPPA.

This is because both DCC and LPPA strategies are helpful for power-balancing, so that the

pilot power of the DCC-LPPA scheme does not have to be adjusted aggressively.

Figs. 4(a) and (b) show the new call blocking probability of real-time and non-real-time

services, respectively. We can see that the DCC-RL schemes improve the blocking probability of

both real-time and non-real-time services relative to the FIX schemes. In order to achieve power-

balance between cells, DCC-RL adjusts pilot power and coordinates other RRM mechanisms

dynamically. This is the reason why the DCC-RL schemes can save more power resource to

accommodate new call requests. Performance results of DCC-LPPA and DCC-SSDT schemes

without adapting other RRM parameters are also presented for comparison. We can see that

the DCC-RL schemes with fixed RRM parameters have worse new call blocking performance

than the FIX schemes, as explained in Section IID. Similarly impaired results in handoff forced

termination occur when a MS fails to add new BSs into its active set and suffers degraded

channel quality, as shown in Fig. 5. This is because existing MSs near the cell boundaries

often suffer bad transmission quality, and they may be dropped when power is not enough for

admitting handoff requests. On the other hand, compared to the FIX schemes, the proposed

DCC-RL schemes can improve handoff forced termination probabilities greatly.

Fig. 6 shows the total throughput of the system. In the FIX cases, FIX-LPPA outperforms

FIX-SSDT. When the traffic load ratio is higher, the throughput of FIX-SSDT degrades sharply

because of the inefficient handoff power allocation strategy. With FIX-LPPA, the average

throughput keeps fairly constant when traffic load ratio is less than 4. Compared to the FIX
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schemes, the DCC-RL schemes improve the average throughput when the traffic load ratio is

increased. This is because DCC-RL can dynamically balance traffic load between cells through

pilot power adjustments based on system situations as well as CAC criterion and the maximum

link power constraint.

Furthermore, Fig. 7 compares the average frame error rates. We observe that DCC-RL

can keep the frame error rate roughly under the requirement of 0.01 by the simple feature

abstraction design. A more sophisticated design of the feature abstraction can guarantee the

QoS requirement of the frame error rate strictly. It is noteworthy that the frame error rates of

the DCC-RL schemes are worse than those of FIX-LPPA in some cases. This is because the

DCC-RL schemes can make more efficient use of the total power resource to provide MSs

with a good enough QoS that is just within the system requirement of a 0.01 frame error

rate. Though FIX-LPPA can provide a better frame error rate than DCC-RL schemes when the

traffic load ratio is high, the corresponding system throughput is lower resulting in poor new

call blocking probability and handoff forced termination probability. The complementary results

for system performance as described above give important insights in the design of downlink

CDMA cellular systems.

In order to balance traffic loads between cells, DCC-RL can reduce or increase pilot power

aggressively. Power-balancing can be achieved by forcing MSs near the cell boundary into

handoff mode. Therefore, the average size of the active set and handoff rates can be increased,

as shown in Fig. 8. It is found that the DCC-RL schemes cause slight increases in soft handoff

events. Furthermore, Table I shows the coverage failure probability. A coverage failure occurs

when a MS starting a new call fails to detect a good enough signal from a BS. The DCC-

SSDT and DCC-LPPA schemes cause slightly higher coverage failure probabilities than the FIX

schemes. This is because even though DCC works to balance traffic load through pilot power

adjustments so as to reduce the interference of the hotspot cell, MSs near the cell boundary

may suffer bad signal strengths from all BSs in the active set. Because of the tradeoff between

capacity and coverage, we stress that coverage failure is an inevitable downside of any kind of

DCC-RL scheme. The goal is to reduce the impact of this drawback through performance gains

in system throughput, new call blocking probability, and handoff forced termination rate, etc.

Due to the maximum power constraint in each BS, the system shows a performance tradeoff

between coverage failure and call admission blocking. In a cellular system under heavy traffic

56



15

load, a new call request could fail either due to coverage failure, or due to blocking by CAC.

Since our results show that the performance gain in reduced call blocking more than offsets

the performance loss in increased coverage failure, our proposed DCC-RL can give an overall

gain in system performance, and the goal stated above is successfully achieved.
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Fig. 1. Power allocation in downlink CDMA systems.

TABLE I

AVERAGE COVERAGE FAILURE PROBABILITY

Scheme/Traffic load ratio 1.0 2.0 3.0 4.0 5.0

FIX-SSDT 0.0 0.0 0.0 0.0 0.0

FIX-LPPA 0.0 0.0 0.0 0.0 0.0

DCC-SSDT 0.0 0.0 4.2e-05 1.0e-04 4.6e-04

DCC-LPPA 0.0 0.0 0.0 3.2e-05 9.2e-05

59



18

Fig. 2. System block diagram of proposed DCC-RL scheme.

Fig. 3. Average pilot power of hotspot, 1st-tier, and 2nd-tier cells for (a) LPPA scheme and (b) SSDT scheme under FIX and DCC-RL.
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Fig. 4. Comparison of blocking probability of (a) real-time and (b) non-real-time services.

Fig. 5. Comparison of handoff forced termination probability.
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Fig. 6. Comparison of average total throughput.

Fig. 7. Comparison of frame error probability.
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Fig. 8. Comparison of size of the active set.
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In order to achieve high-efficiency resource allocation and quality-of-service (QoS) 

guarantee in B3G heterogeneous multiple access networks, we propose three critical schemes 

of resource management in this subproject. First, we present a novel situation-aware data 

access manager using fuzzy Q-learning technique (FQ-SDAM) for multi-cell WCDMA 

systems. The proposed scheme is designed with a fuzzy Q-learning-based residual capacity 

estimator (FQ-RCE) and a data rate scheduler (DRS). Through perceptual coordination, FQ-

RCE considers the received home-cell interference power and adjacent-cell interference 

power as two separate linguistic variables such that it can adaptively determine the residual 

capacity according to the current loadings in the home and adjacent cells. Simulation results 

Chapter 5

Concluding Remarks
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show that, compared to the LIDA scheme, the proposed FQ-SDAM can effectively reduce 

the packet error probability and improve the aggregate throughput of the non-real-time 

services in both the homogeneous and non-homogeneous multi-cell WCDMA environment 

because, using FQL, the FQ-RCE monitors the radio resource allocation in the adjacent cells, 

perceives the partial and uncertain information, and incrementally improves the residual 

system capacity estimation. Additionally, the DRS effectively allocates the resource for the 

non-real-time terminals with a modified exponential rule which considers the impact of the 

interference from terminals. In practical implementation, compared to LIDA, FQ-SDAM 

requires additional computation complexity, which mainly comes from the operational 

calculation of fuzzy Q-learning. However, the additional complexity can be resolved by 

using some emerging fuzzy VLSI techniques. In the previous work, a VLSI fuzzy controller 

was designed for Sugeno fuzzy inference system. The VLSI fuzzy controller considers the 

weighting sum method in the defuzzification to prevent problems of the limited accuracy and 

stability problems. Therefore, the computation of the FQ-SDAM can be finished within a 

frame time, making the realization feasible and cost-effective. 

Then, we present a cellular neural network and utility (CNNU)-based scheduler, which 

jointly considers its radio resource efficiency, diverse QoS requirements, and fairness, to 

schedule the radio resource for connections in multimedia CDMA cellular systems. The 

utility function is defined to be the radio resource function properly weighted by the QoS 

requirement deviation function and the fairness compensation function. Also, the cellular 

neural network (CNN) is adopted to solve the constrained optimization problem defined for 

the radio resource scheduling in a real time fashion. Simulation results show that the CNNU-

based scheduler can efficiently allocate the radio resource to achieve higher throughput than 

the EXP scheduling scheme. It can also effectively support differentiated QoS requirements 

for connections with variant traffic characteristics. Moreover, the CNNU-based scheduler 

can enlarge the QoS guaranteed region under the complicated QoS requirements 

environments. The CNNU-based scheduler is effective for multimedia CDMA cellular 

systems with diverse of QoS requirements when both dedicated and shared channels are 

adopted. However, call admission control to accept/reject the good/bad user to ensure the 

operation of the CNNU-based scheduler should be further considered. 
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Finally, we have studied the DCC problem in next generation CDMA networks, and 

proposed a model-free reinforcement-learning solution, DCC-RL, to solve the problem. 

DCC-RL can dynamically configure cell coverage and capacity based on the varying 

situations of the system. Simulation results show that pilot and soft handoff power 

allocations, maximum power constraint design, and the admission control criterion are highly 

coupled and should be considered jointly. Results also show that DCC-RL significantly 

increases the system throughput compared to conventional fixed pilot schemes. Furthermore, 

combining DCC-RL with LPPA gives the advantage of power-balancing for soft handoff so 

that the system capacity of the DCC-LPPA scheme outperforms conventional FIX-SSDT 

scheme significantly. The proposed DCC-RL solution gives a design framework suitable not 

only for the next-generation CDMA networks, but future cellular systems employing any 

signaling and multiple access techniques that take advantage of power control. 
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