: {an

NSC93-2219-E-009-022-
93 08 01 94 07 31

94 10 17

FRRATFELE AR E 582
5 BRI € B2 2 3 (ID)
Research in Multipoint Videoconferencing Technologies

33 %% © NSC 93-2219-E-009-022
L9328 1 p194ET? 31p
LR L AT A | o

PEFEORC AE& - FET AL FEE IR
LEAFTF AT AL
i &
ME R L AR G RPN ART Y ET T RGP m - an i BT
i fAER T - A hig ey ﬁ*iPﬂ%%mmééﬁm He g

N
W FEAAIE 0 e FIF AL c AR EY ks B AR B g Ry
EF M- BARPEREHT B TR A B BB g LR A
oo G0t & - zhap 2 ii&-ﬂ\%ﬁ%%#ﬁf‘%écu&\iﬂ » Bedi s g—*zﬁéfg»ﬁ VLM EE 0 RS
CRE < BUERTE] UEEE S 1 A kS i A A S AR £ R
AR 2y R A MPEGA e d L > Y BALT RS FRT 5 o AP 2 p
AT A A R R AT R ORAURSE © A
ANz ERFFEEFAY - AL BEHEF - 27y 0 BY FEARNL P B
b RPN S 2 Br RS BARR AR G 0 AR - B
E oo Al AR LS G oo AP RS © F IR A 272 Seif (8 MPEG-4 4R
2 kB #2558 ~ — B MPEG-4 %20 %5 #4855 ~ 12 2 — & RTP .&ﬁ%@ﬁﬁﬁi;' B AR R
FAeEEL > A5 T - B BE ke o AR A AE L G > APRIE- B
RTP e @ g 425 ~ - i MPEG-4 AR f245425° ~ 11 % — i MPEG-4 #5n fa g 42.5°
ERATRFAELE S TR -BIARNGESI R P E AT - BT

=k Sengra) o

FL,

M43 : MPEG-4 AR %A% ~ AR A B ~ AR & = ~ § BEARIL € 3R ~ AR § 3Rk & Sl

L
v

Abstract

Desktop videoconferencing is becoming more practical and accessible in recent years.
But typical systems today still lack the look and feel of a nearly face-to-face conference.
The purpose of this project is to research into technologies for distributed desktop
multipoint videoconferencing, wherein we especially emphasize the processing of video
signals but also consider system integration. Our envisioned system is such that the
computer screen of each conference terminal will show a virtual conference room scene
synthesized from the images of the conferees at all other terminals. For this, each terminal
will first need to segment the local input video to extract the image of the local conferee,
encode it, and transmit it to the other terminals along with audio. Each terminal will also
need to decode all the received videos and audios and form a composition. The research is
conducted based on the MPEG-4 specifications, utilizing personal computers (PCs) as the
realization platform. Subjects in this research can be divided into four major groups:
conferencing system, network transport, transmitter video processing, and receiver video
processing. The originally intended period of research is three years. This report is
concerned with research done in year two, in which we have emphasized techniques for
video segmentation, transmitter system integration, and receiver system integration. In
video segmentation, we proposed several algorithms. In transmitter system integration, we
implemented a rudimentary transmitter-end system by integrating a previously realized
video segmentation method, an accelerated MPEG-4 video encoding program, an MPEG-4
audio encoding program, and an RTP network transport program on a PC. And in receiver
system integration, we integrated an RTP network transport program, an MPEG-4 video
decoding program, and an MPEG-4 audio decoding algorithm on a PC. Further, we
designed a method to compose multiple videos, and put the above together into a

rudimentary receiver-end system.

Keywords: MPEG-4 Video Coding, Video Segmentation, Video Composition, Multipoint

Videoconferencing, Videoconferencing System Integration

II

P 4% Table of Contents

It

I=q

il

VIR E IR BT B Sttt enas 1
CAREUA BIFE 2 2B BT T BT K s 3
AL TIFOAUCTION ..ttt ettt et st sb et be e 3
B. EXiSting MeEthOdS ...c...eoiiiiiiiiiie ettt 3
C. Our Proposed Method 1........cc.coiiiiiiiiiiniiiinicece e 4
D. Our Proposed Method 2cc.coiiiiiiiiiiiiiiiecceeee et 7
SIS LT L B2 FT T BT K s 8
AL TNIFOAUCTION ..ttt ettt sttt be e e 8
B. Video Signal ProCeSSINGcccueeiiriiiiiiriiiieieeiesie ettt sttt 8
C. Integration of the Transmitter SYStEeMc.cceoeriiriiririienieniecetee e 10
D. Some Experimental RESUILS.........ccccoiiriiiiiniiiiiiiieeeeeceee e 11
E. CONCIUSION ...ttt sttt ettt e sbe e 12
S ERTER GBI B BT T T BT K s 13
AL TITOAUCTION ..ttt sttt s nbe e 13
B. Video Decoding and COmMPOSITION.......cc.evtiruierierieniiieeiieneeste sttt 13
C. Receiver System INte@ration...........coeevueeiiriiniriinieieeesieeseee et 15
D. Some Experimental RESUILS.........ccccoiiriiiiiiiiiiieiiicceceeeceee e 17
E. CONCIUSION ...ttt sttt e sae e 17
NI S [’% .. 18
N 2 B e B B ettt et e et e e eeaeaas 21
B R 2B 3 B AL R s 22

III

- S FRG RP D

2 AR G R Y AR LI R E R BT DR R A kit
7o &k EFRABRGHENEEEFUTRDFEE > SEB A ?’?é%—%f’ 3}’?"5 P K
BIESEN R AT LT PR R 5 E AKX RDF R o 3F S s
© A TS FARA I iy o ARl ehT BV AR 3 0 E‘*#ﬁlfﬁ-a i i"]
(desktop)ARL3U i 2 o B w0 — fxen g b Al 5 EMFL?IL ¢ & (multipoint videoconferencing)
Boo M AF/EIT0ONE G B E LR v Wi Bt By FE R ehib s
BG4 R ETLTE G B g mj@:@? BT F - BT 0 h[1[5]% 0 T A
A ¢ R EMend 6 F R PR AR ERT LT ABT N 6 B g ik
HET - FFAT T RH%D B §RBIATRII TR E > - BAF §RE DI
B oA bEEL BTG R LU §RAR AR LR OB K o B P
e virtual reality 4338 >+ 5 — L ARM THT Y > R £ BEA L G $a)50 h’ﬂﬁ% €3k o
Fp AL ﬂ&% #EF&?’ /Fﬂ’“[6] [9] » fe Fif jﬁ\mﬁ U FLIFESMFET

AR A g BT KA BRAR € SR 2 AP M X g - 'ﬁ?.%lia,k‘i‘bo *
PEEEY AWM ER A TEER -1 P2 o BY 22 R B4 T e(PO)E
¥ F(display) © 2 F - ERBTR Y ZRA o FFH - B AL § K 3 (virtual
conference room) > H ¢ 2 AR Z H7F H s §RBATH K2 B¢ A FRNA- B ES
(composition) ° € R EHF R & & £ ﬁ’!i“%i_? T ed - T*E?giﬁ - X P FEFY G
= BARE 0 Tl 5 (control panel) £ & 3 AR 2 F ¥ (local preview) ©

Local

Preview ik*EI
Window
Virtual PC To ?ther)
Conf. | [Contr conferancing
Room Panel| = @ points
Display

Bl 1-1: % BRARGL § 3k 6 SL2F HE7 X)

BAVE AT ¢ o AP I MPEG-4 R hE P REEARE & AT 290G o
blde T HALR AR GRS RS E S R TR £ X0 A - B
18 % 7 > 1 BIFS (Binary Format for Scenes) » ¥ % 3% ?Ei % (authoring) s> i » #| =
7 XMT (eXtensible MPEG Texual)#§ 2 4 54[10], [11] 5 2 8 @ﬁir?.l“fi A % 3% 7 DMIF
(Delivery Multimedia Integration Framework)[10]% - ptﬂ\"‘l‘% 3R = DA
MPEG-4 2 .4 fe ffs kaF= ¢ # > 50 8 5o DMIF #8048 35 £ < 43k 8 5%
G RALER LR A NPT BT DMIF $cdl» 5 50 3 > o gt oh o SV ey B
{# e BIFS #2 XMT 4p B 50k » 2 35 & 4§ 12+ rﬂ”’%ﬂ s rw CBERBRS R A P
BfgE#* RTP(MWTRLRE-HAF) @ FF & CPIE_p FRFH IR
B R e

AP F 2T FIHET AL BEE T ER L _?zp.ﬁ}i)"_s,@ﬁﬁ] S BEAR RJE R B
JORMASE » RE I e AT - AL GEHF - E2 2 1Y #
Bhi h Y R A B FT o M E R - P eniBaE ey K SUE S HE Ty ik
BLHMF AR AR 3 5 o APHRDN T - BRI o AR AL G o AP
B3 F BRI A B]E S 4eif 5 W MPEG-4 AL %45 #4255 ~ — B MPEG-4 #31 %,
mieN 1% - B RTP ‘gpéﬁ;é@@?]ﬁ;u C AT S B L AL - B
Bonfd] o hdRfes R E S G 0 AP Rl#- RTP # @ #5425 « - # MPEG-4
AR fEEAES ~ 122 — 5 MPEG-4 B30 2254550 > B A TR e W EEE > T
- BEARMB LA E B e s AT - BRI ST o

" f]fuzo\ O AR A B s B AAE L S R B AR L Z 2 g g e
{ Fmeiddh L [12]-[14] (B3~ &) ~ [15]-[16] (B ¥ =5 % 5L &)~ 2 [17]-[18] (44

HRRE L)

A~

=
55
)

- B =2 - . 2 PRSI 1
S RAABFERZE-HFLEES

A. Introduction

Extraction of semantic video objects from natural video is a prerequisite for various
content-based video applications. Here two key issues are the accurate identification of
object boundaries and the required processing time. A common design of current object
extraction algorithms is to first obtain, roughly, the location and the shape of the objects of
interest via spatial and/or temporal analysis and then try to obtain a refined estimate of the
object boundaries. In the spatial/temporal analysis, the algorithms may partition the video
into regions showing homogeneity in certain features (such as intensity, color, and/or
motion), or they may identify image areas showing heterogeneity (such as edges and/or
changed areas) that may characterize object boundaries. In the refinement of object
boundaries, some common approaches are contour evolution [19], [20], watershed analysis
[21], [22], and edge linking [23]-[26]. We consider the edge-linking approach and propose
several ways for efficient and accurate extraction of the object boundary.

In the edge-linking approach (as well as many other approaches), object boundaries are
assumed to be situated at locations showing high intensity or color gradients. A popular
method to find such locations is the Canny edge detector [27]. The need for edge linking
arises because typical edge detectors often yield unconnected contours. Two problems that
must be solved in edge linking are thus: 1) among all the edges that can be found in an
image, which ones should be considered candidates for linking, and 2) among all the ways
the candidate edges can be linked, what is the most proper way of linking (perhaps with
slight modification of the edge locations if appropriate).

B. Existing Methods

Given a set of edges in a region, one common way to obtain a rough outline of the
object is by orthogonal scans. In one technique [24], each row that contains edge pixels is
considered. The space between the leftmost and the rightmost such pixels is filled in.
Likewise, for each column that contains edge pixels, the space between the topmost and the
bottommost such pixels is filled in. Then a rough object mask is obtained by ANDing the
two pixel maps. In another technique [23], a row scan is performed as above. Then the
result is subjected to a column scan, whose result is subjected to a second row scan. For
convenience, we refer to these techniques as minimal scan and maximal scan, respectively.

Ideally, one would desire that the obtained mask boundary be close to the actual object
boundary. However, whether this can be the case depends the object geometry. Some

illustrative examples are given in [12].

! This section is excerpted from Y.-H. Jan and D. W. Lin, “Edge-based morphological processing for efficient
and accurate video object extraction,” IEICE Trans. Inf. & Syst., vol. 88-D, no. 2, pp. 335-340, Feb. 2005, and
Y.-H. Jan and D. W. Lin, “Automatic video segmentation with novel motion analysis and edge processing for
accurate identification of object boundaries,” Int. J. Elec. Eng., vol. 12, no. 3, pp. 297-304, Aug. 2005.

3

After the orthogonal scans, several ways may be used to refine the object mask. Some
employ morphological operations, and some employ a shortest-path algorithm to find and
connect the boundary edges. The first way may yield an enlarged object contour beyond the
actual object boundary (in addition to that due to orthogonal scans). The second way
follows the edges better, and a favorite shortest-path algorithm is Dijkstra's algorithm [28].
However, if the orthogonal scans result in a greatly expanded object mask, then the
shortest-path algorithm will need to sift out many pixels, which presents a complexity
concern. Worse yet, if strong edges exist in the overgrown area of the mask and they are not
identified and excluded for edge linking through some means, then these edges may be

mistaken to be part of the object boundary.
C. Our Proposed Method 1

The proposal is mainly built on two relatively simple ideas: 1) to make more effective
use of the object's known approximate location and shape to narrow the search area, and 2)
to make more effective use of the detected edges interior to the search area.

To facilitate algorithm development and the following discussion, we assume use of
change detection to roughly delineate the moving objects, but other techniques can also be
employed. Change detection detects image areas that exhibit significant changes from one
video frame to another. Normally, the result (termed “change detection mask™ or CDM in
short) will consist of pixels from both the moving objects and the background. Concerning
edge detection, we employ the Canny edge detector.

Our edge linking method consists of two stages: mask sketch and mask refinement. In
the former we define the outer perimeter of the area that contains an object of interest, and
in the latter we refine the estimated object boundary. They are discussed in separate

subsections below. The overall procedure is illustrated in Fig. 2-1.

! |
: CDM Boundary | | Shlgrt%st—

— = . . at —
| Round-Out Tightening 3 Search
e |

Mask Sketch Re%}/rllisrﬁent

Fig. 2-1: The first proposed method of video segmentation.

1. Mask Sketch

We illustrate the procedure using the arbitrary CDM example shown in Fig. 2-2(a),
where pixels in the CDM are marked in gray.

To start, we round out the CDM to obtain a solid region. In addition to defining the
maximum support of the object, this step also serves two functions. First, by this we make

the edges interior to the CDM, but not part of it, also available for subsequent edge-based

4

processing. And secondly, we stop one- and two-pixel wide “cracks” in the CDM. More
than one way exists to obtain the same result. One of them is described in [21]. To conserve
space, we omit the details here. For the arbitrary CDM example of Fig. 2-2(a), we obtain
Fig. 2-2(b) as the result.

(d) (e) ()
Fig. 2-2: Arbitrary example illustrating the proposed algorithm. (a) CDM. (b) Result of

CDM round-out. (¢) Result of CDM round-out with edge pixels therein marked in black. (d)
Result of segmental row scans. (¢) Result of segmental column scans. (f) Result of

boundary tightening with edge pixels in the mask marked in black and other pixels in gray.

Next, we tighten the boundary of the rounded CDM by working with the edge pixels
therein. Note that each row of pixels in the rounded CDM may consist of more than one
connected segment, and likewise each column. We do “segmental orthogonal scans” as
follows. First, for each connected horizontal segment that contains two or more edge pixels,
we connect the furthest two of them. Then we regard the boundary pixels in the result as
virtual edge pixels and, for each connected segment in each column of the rounded CDM,
we connect the two furthest edge pixels. This completes the boundary tightening step. For
the above example, let the edge pixels in the rounded CDM be as shown in black in Fig.
2-2(c). Then the resulting pixel maps after segmental horizontal and vertical scans are as
illustrated in Figs. 2-2(d) and (e), respectively. To further appreciate the effects of these
scans, Fig. 2-2(f) shows the result again, with the edge pixels marked in black while the
others in gray. Comparing it with Fig. 2-2(c), we see that the mask is indeed tightened to
match the edge contours better. While the technique of orthogonal scans may look much

like that in maximal scan, the segmental nature leads to a very different result.
2. Mask Refinement

Now that we have bounded the outer perimeter of the object, we proceed to refine the
estimated object boundary. For this we employ Dijkstra's shortest-path algorithm to find and
to link up the outermost edges in the boundary-tightened mask.

Figure 2-3 illustrates how our algorithm works using a section of the resulting mask
shown in Fig. 2-2(f) from mask sketch. Consider edge linking between points A and B
shown in Fig. 2-3(a), for example. The algorithm considers all edge pixels on the boundary

5

of the mask as belonging to the object boundary. First, all non-edge boundary pixels in the
mask are identified. In Fig. 2-3(a), the non-edge boundary pixels between points A and B
are marked by cross hatching. Next, we stop all edge gaps around the mask boundary that
are only one pixel wide. This is done by examining each non-edge boundary pixel. If two of
its orthogonal four-connected neighbors are edge pixels, it is declared to be an edge pixel.
Fig. 2-3(b) shows the result for the example, where all pixels on the mask boundary
(between A and B) that are now considered belonging to the object boundary are marked
black. The others remain cross-hatched. For clarity, in this figure we omit the black marking
of the edge pixels that are not on the mask boundary. Note that the above gap-stopping
method is in effect a shortest-path algorithm over one-pixel gaps, but with lower complexity
than normal Dijkstra algorithm. Regarding the example, we are now left with two edge

discontinuities between A and B, defined by the pixel pairs (a,b) and (c,B), respectively.

TTTTTTTTTTT
-
+ I

RERRREEREE éllmmml F T

(a) (b) (c) (d)

Fig. 2-3: Illustration of the mask refinement method. (a) Zoomed-in section of the mask

sketch result for illustration use. (b) After stopping of one-pixel gaps. (c) Respective search
areas of shortest-path algorithm for edge discontinuities (a,b) and (¢,B). (d) Final result of
edge linking between A and B.

The algorithm continues by considering separately each remaining edge discontinuity
along the mask boundary. For each discontinuity, we search in the mask for the shortest path
that bridges it, where each edge pixel in the mask is given a smaller equivalent length and
each non-edge pixel a larger equivalent length. To control the computational complexity, we
may limit the search area to a band around the mask's boundary. Let Dy, be the bandwidth in
number of pixels. For example, Fig. 2-3(c) illustrates the two search areas for the edge
discontinuities (a,b) and (c,B), respectively, with D, = 5. After executing Dijkstra's
shortest-path algorithm over the two search areas separately, we obtain the final result

shown in Fig. 2-3(d) for edge linking between A and B.
3. On Algorithm Complexity

The complexity of the above algorithm depends on the detailed organization of the
operations involved. Nevertheless, we can see that a “mask sketch” as described above
involves several passes over the CDM and its interior, each pass involving some simple

logical operations on each pixel. Therefore, the complexity of mask sketch is on the order of

6

the size of the extracted object. The complexity of mask refinement depends on the total
length of the edge discontinuities. A typical implementation of the Dijkstra algorithm has
O(n?) complexity, where n is the number of pixels in the search area. Thus the complexity

of mask refinement is at most O(L’Dy?) where L is the perimeter of the extracted object.
4. Some Experimental Results

Experiments show that the proposed method is efficient and performs well. Figure 2-4
shows some results from using two different values of Dy, in mask refinement. For more

discussion on the efficiency and the performance of the method, see [12].

(b)

Fig. 2-4: Result of mask refinement at different search bandwidths for a frame in the
Mother-and-Daughter sequence. (a) Dy = 2. (b) Dy, = 5.

D. Our Proposed Method 2

The second method that we propose will take some length to describe, hence we omit
the details. The interested reader may refer to [13], which also presents some subjective and
objective results. The method also takes the edge-linking approach, but in performing edge
linking, it employs a heuristic scheme rather then Dijstra’s algorithm. This has the potential
of a reduced computation time. It employs motion-compensated tracking of moving objects,
where the motion estimation technique is novel and of low complexity. The overall

algorithm structure is as shown in Fig. 2-5.

FRAMEn_ | EDGE
["~| DETECTION i
VIDEO CHANGE FORWARD | _| BACKWARD | _| VIDEO OBJECT
INPUT DETECTION || TRACKING | |VALIDATION| | EXTRACTION
FRAMEn-p| | FRAME -1
FRAME
MEMORY

Fig. 2-5: The second proposed method of video segmentation.

Experiments using a personal computer with 1.8-GHz Penttum CPU and an
un-optimized program show that it only takes about 30-40 ms to segment a CIF frame.
Hence the method is suitable for real-time desktop or portable videoconferencing

applications.

I BERARELHL T B S

A. Introduction

As mentioned above, we consider constructing a different kind of videoconference
system in which the decoded conferee images are composed into one virtual scene. For this,
a natural approach is to segment the source videos at their respective transmitter sites before
encoding and let each receiver do the composition after decoding the received object videos.
This section considers the design and implementation of a videoconference transmitter
supporting the above application.

The architecture of our videoconference transmitter is illustrated in Fig. 3-1. It includes
the following functionalities: video capture, video segmentation, MPEG-4 object-based
video encoding, audio capture, audio encoding, and a network interface based on the
Real-time Transport Protocol (RTP). In what follows, we first describe the two key video
signal processing components, namely, video segmentation and video encoding. We then
describe how all the system components are integrated. Finally, we present some

experimental results before a short conclusion.

Fourwr gromnd SFEG- it fik
| Widien Cigriare |—’—| Segrenlalion |—‘— Vidas i e

Frandes
Inlezisz
ETF ey
MPFEG4

e fif saz file
|;...:...r.q.:_.= H Aulia
Erndr

Fig. 3-1: Videoconference transmitter system.

B. Video Signal Processing

1. Video Segmentation

The purpose of video segmentation is to obtain the moving foreground (the conferees'
image in videoconferencing) for encoding and transmission. Our segmentation method is
modified and simplified from [29]. (The methods described in the last section may be
employed in future revisions of the system.) It employs a “background subtraction”
approach suitable for videos with largely stationary background. In essence, it tries to build
a background image by analyzing some number of input video frames. Then it compares
any subsequent input frame with the background image and declares the areas where the

two differ significantly as the foreground.

% This section is excerpted from C.-Y. Tsai, C.-K. Chien, and D. W. Lin, “A videoconference transmitter
supporting object-based video encoding with real-time video segmentation,” to appear in Proc. Workshop
Consumer Electronics Signal Processing, Nov. 2005.

8

Fig. 3-2 shows a flowchart of the final algorithm. Briefly, it works as follows: Based on
the estimated camera noise level, some thresholds are set so that interframe differences
exceeding a certain level indicate, potentially, pixels belonging to moving objects. The
“fill-in” and the “short-term background estimation” blocks are, respectively, functions to
obtain tentative estimates of foreground and background image regions. They are then

weighted to obtain the final background image as indicated.

Frame i
Frame
Buffer
[[
| |
Fr Camera Short-term
Crame Moise Background
Difference - =
Estimation Estimation
Fill-in
Weightmg
Stationary
- Background
Background Subtaction |
Buffer -
Object mask

Fig. 3-2: Flowchart of our video segmentation algorithm.

For system integration, the speed is a major concern. In our work, one item that comes
as a surprise is the time taken to display the segmentation results in desktop windows of the
PC. Fig. 3-3 shows the original graphical user interface (GUI) [29]. Besides a message
window, it shows the input video, the object mask, and the stationary background buffer in
separate windows. Display of the object mask and the stationary background buffer makes
many calls to the SetPixel function provided by the Windows system, which is found to
consume very much computing resource. Hence we allow the user not to show the object
mask and the stationary background buffer to attain higher speed.

Fig. 3-4 shows the processing speed in debug mode with the modified GUI, employing a
laptop PC with Intel Centrino Pentium M 1.5 GHz CPU, 512 MB DDR RAM, and running
Microsoft Windows XP Professional Version 2002. Note that the processing speed increases
significantly by eliminating one or two windows, which was quite unexpected. A more

efficient way to display the segmentation results is being sought.

Iopr bar

IP
Tr sl b By =

CbEct

Capimred

image sk
AEmrmary
ol g rovand Semaagy
b feer wipdew

Fig. 3-3: The original GUI of the video segmentation system (from [29]).

-~ @

?la'l

o
§
{

—— Original model
= Cancel 1 windows
-—- Cancel 2 windows

-~

(]

sectional rate of processing (fps)

_ L]

o

=0 100 150 200 250 300
video section

Fig. 3-4: Processing speed in debug mode with modified user interface.

2. MPEG-4 Object Video Encoding

The object video encoder used in our system is based on the accelerated version of the
public Microsoft MPEG-4 Video Reference Software as reported in [30]. The acceleration is
achieved by algorithm modification (such as using less complex motion estimation methods)
and by employing the MMX (multimedia extensions) co-processor that comes with the Intel
CPU for repetitive and computation-intensive operations. The MMX co-processor uses the
single instruction, multiple data (SIMD) technique. Different versions of it support parallel
operations on 64- or 128-bit entities considered as multiple bytes, words, or longer data
types.

Analysis of the accelerated software shows that the encoder complexity is now rather
evenly spread over many functions. Hence no further acceleration of the encoder software is

done in this work except to integrate it into the overall system.
C. Integration of the Transmitter System
The overall transmitter system has been illustrated in Fig. 3-1. We now describe how we

10

integrate the components together.

For video capture, we make use of a free application software called AVICap from [31].
AVICap, by default, routes video and audio stream data from a capture window to a file
named CAPTURE.AVI in the root directory of the current drive. We did some changes to
sidestep file writing and reading [32]. The modification can result in significant gain in
capturing speed. For example, experiments with one particular web camera show that the
speed rises from about 11 fps to about 30 fps, which seems to be the limit of this particular
web camera, whatever the model of the PC.

For video segmentation, after the simplification described previously, the segmentation
algorithm itself does not constitute a bottleneck of the overall system. Nevertheless, we still
make some effort in speeding up the most time-consuming operation using the MMX
co-processor, which can speed up the algorithm by roughly 8%.

For the video encoder, we need to change its input from files to the segmented video,
and its output also from a file to the RTP program input. The encoding mode used is the
“Binary Shape Object Coding” mode, where a binary shape mask is used to define the
location of the foreground video object.

For audio encoding, we use MCI (Media Control Interface) to capture the input audio in
real-time, and use the FAAC software for audio encoding [33].

For network transport, we use RTP as mentioned before. RTP provides end-to-end
network transport functions applicable to real-time data transmission, such as interactive
audio and video, and hence is suitable for our application. It is typically run on top of UDP
to make use of the latter's multiplexing and checksum services. RTP also supports
multicasting, but this functionality is not used in our work. In fact, the RTP is composed of
two parts: In addition to the “RTP” part that carries data with real-time characteristics, there
is the RTP control protocol (RTCP) that monitors the quality of service and conveys
information about the participants in a session. The latter aspect of RTCP is useful for
“loosely controlled” sessions where there is no explicit membership control. We use the
JRTPLIib software, a public source written in C++, to implement the RTP transport interface
[34]. The software is such that the user only needs to provide the payload data to be sent,

and the software will give the user access to incoming RTP and RTCP data.

D. Some Experimental Results

Fig. 3-5(a) shows the processing speed of the overall transmitter system including all the
elements shown in Fig. 3-1, using the PC described earlier. The average processing speed is
approximately 10.7 CIF (352 x 288) fps. Fig. 3-6 shows a breakdown of the complexity by
functions as obtained by Intel's VTune performance analyzer.

The complexity analysis shows that the system component limiting the overall speed is
the MPEG-4 video encoder. Video capture, audio capture, audio encoding, RTP, and even
the video segmentation all contribute to a relatively minor amount only. This can be seen
more clearly from Fig. 3-5(b), which shows the processing speed without the video encoder.

11

The average speed is close to 29 fps, which is only somewhat lower than the 30 fps with
video capture alone. But from Fig. 3-6, there are no clearly identifiable bottleneck functions
in the MPEG-4 video encoder. Hence further speedup of the system may entail very close

look at and fine-tuning of many video encoder functions.

[Video Conference without MPEG-4 Encoder Inside
=~ Video Conference System

B8 e

&

9.5

8

sectional rate of processing (fps)
o

sectional rate of processing (fps)

,,.
@
5

]

& 50 100 5 200 250 300] 50 100 150 200 260 300
video section video section
(a) (b)

Fig. 3-5: Processing speed. (a) Overall system. (b) System without MPEG-4 video

encoding.

DelRegion
&%

apply

9%
videohanlder
9%

Others
A% blknateHFarShaps

%

quantizelnterDCTcoeMPE
=]
ahs 4%
4%

memset
3

bilnterpolatey
3%
Imagehdask °

blockmatchs / 2,
0,
% memepy Fil plmatcniswithShaps
3% 3% 394

Fig. 3-6: Complexity breakdown of the overall system.

E. Conclusion

We developed a PC-based videoconference transmitter that supports object-based video
encoding with real-time video segmentation. Experiments employing a PC with Intel
Centrino Pentium M 1.5 GHz CPU, 512 MB of DDR RAM, and running Microsoft
Windows XP Professional Version 2002 showed that the not yet fully optimized program
could deliver a rate of 10.7 CIF fps. Further enhancement of the system in speed and

robustness is planned.

12

PR AREL LT A]

A. Introduction

To reiterate, we consider constructing a different kind of system in which the decoded
videos are composed into a virtual conference room scene. For this, a natural and simplest
approach is to segment and encode the source videos separately at their respective
transmitter sites, and let each receiver decode all received videos and compose and display
the result. The MPEG-4 standards, with their provision for object-based video coding,
appear naturally fitting for this use.

In this section, we discuss the design and implementation of the receiver on a personal
computer (PC), in software. There are four major components in the receiver: the network
interface, the video decoder, the audio decoder, and the composition unit, as illustrated in
Fig. 4-1. As explained previously, we employ the Real-time Transport Protocol (RTP) for
the network interface and develop our own composition method, leaving the video and the

audio encoded and decoded according to MPEG-4 specifications.

Fig. 4-1: Structure of the proposed videoconference receiver.

In what follows, we first discuss how we decode and compose multiple videos into one
scene. Then we describe the integration of the receiver system. Finally, we present some

experimental results before a brief conclusion.

B. Video Decoding and Composition

As said previously, we develop a simple video composition method in this work. This
involves not only composition of multiple videos into one scene, but also synchronization

among the multiple decoders. For simplicity, we assume that all videos have the same frame

3 This section is excerpted from C.-K. Chien, C.-Y. Tsai, and D. W. Lin, “A multipoint videoconference
receiver based on MPEG-4 object video,” to appear in Proc. Int. Symp. Commun., Nov. 2005.
13

rate and relegate the situation with disparate frame rates to potential future research. Note,
however, that in the latter situation, we may consider skipping some frames in the videos
with higher frame rates, which should not cause much problem in videoconferencing when
the frame rates are high enough. In this case, only minor modifications are needed in the
present program.

We first consider the situation with two videos and two decoders. The two decoders are
placed in two threads on the PC. To synchronize the decoded videos, for each frame we let
the first decoder wait until the second decoder completes. Then it starts working on the next
frame. Composition and display of the videos are done in the second thread. Figure 4-2

shows the temporal relation between the two decoders.

Decoder Number

Create Display the 1st
he ” e frames of Deevode the 2nd frime of (he 2od
ang | Pecode the st frame of the 2nd decoder the two Hecodes

decoders

Display the 2nd
I

Create . o Wait ¥ 4 Wait
e e | Decode the Lst frame of the 1st the Znd Decode the 2nd frame of the 1st the Tnd [T
theed decoder scode decoder

decoder thread

Time

Fig. 4-2: Relation between the two decoders in time domain.

To compose the two images decoded by the two decoders, note that there are several
possible spatial relations between them, as illustrated in Fig.4-3. Case 0 is where there is no
overlap between the two images. If there is some overlap between the two images, we let
the first image occlude the second in the overlapped area. In the integrated receiver system,
we let the user determine and specify where each decoded video is to be placed in the

display window.

Image of the Znd Image of the 2nd
decoder =t -refar
Image of the-Jst-
Irage of the Ist devoder
decoder
Tmage of the Zod
(a) (© o
Tmage of the Ist
decoder
Image of the Ist Image of the Ist
(€
Dl

Tmage of the 2nd Insage of 1

hoder

decoder

(b) (@
Fig. 4-3: Different spatial relations between two images. (a) Case 0, no overlap. (b)-(e)

Cases 1-4, respectively, with overlaps.

Now consider the situation with four (or three) videos. Figure 4-4 explains our method

of composition. The outputs of the decoders are composed together in a binary tree fashion.

14

The “padding” referred in the figure is to pad the image into the form of a box for display
purpose. For more videos, we simply extend the “composition tree.” In any case, it is

always the highest-indexed video that controls the composition and display operation.

| Composir

“omposing & Pad lln I (C “omposing & Padding

Fig. 4-4: Composition of four (or three) videos.

C. Receiver System Integration

1. Overall System Structure

Figure 4-5 shows how the integrated receiver program works. The GUI block creates a
window and the user can input the ports and the positions of the different videos. Since
there may be multiple video and audio streams to be handled, we put the decoders in

multiple threads, which lets the operating system handle their scheduling.

‘ Create Multithreads

pro=e=
: |

| Composition : Composition
: |

Fig. 4-5: Flow diagram of the 1ntegrated receiver.

I

Display Video

15

So, after the user has specified the ports and the positions of the videos, the system
creates the decoder threads. It also obtains information on which decoders are active at
present, so as to determine the highest-indexed video decoder and pass the control
responsibility (including video composition and display) to it. Now the video and the audio
decoders can begin their work in decoding the data received through the RTP network

interface. The composed video is displayed in a window and the composed audio is played.
2. The RTP Network Interface

As in the transmitter, we employ the JRTPLIB 3.1.0 software for the network interface.
Two important parameters that need to be set for each session are the timestamp and the
portbase. The timestamp parameter is set to 1 section per second for a video stream and to 1
section per 4 seconds for an audio stream. (These parameter values are somewhat
inappropriate for real-time applications, but are chosen based on experience for smooth
running of the program. Further work is needed to determine the underlying problem and
potential solution.) For the portbase, since each transmitter sends two streams (video and
audio), the video stream uses a user-specified port number and the audio stream uses that
number plus 100.

In our system, after the setting of these parameters, we put the receiving of the RTP
packets in a main loop. For some reason yet unclear, the software would lose the first two

packets and receive the third and later packets successfully.
3. Video Decoding and Display

Our video decoder is from the public Microsoft MPEG-4 Video Reference Software. To
integrate the video decoder into the overall system, we modify the original decoder program
into a function called MPEG4VDecoder and give it two parameters: handle (of the display
window) and thread index. The handle can give the decoder some information to control the
window and display the video stream.

To display the video, we convert the decoder output from the original 4:2:0 format to the
4:4:4 format. Then we calculate the RGB values of each pixel from the luminance and the
chrominance values. And then we use the SetPixelV function provided by the Windows
SDK library to display the RGB values pixel by pixel. Experience shows that the SetPixelV
function is very slow and can significantly slow down the overall speed of the receiver
system. Hence, to reduce its use, instead of using it on all pixels in the display window, we

only use it to update the pixels in the object areas of two successive frames.
3. Audio Decoding and Composition

For audio decoding, we use the Freeware Audio Decoder (FAAD?2) [33]. We only make
use of the MAIN profile. After decoding the audio stream, the result is saved as a temporal
audio file in the WAV format. The Media Control Interface (MCI), a high level open

interface, is used to play the audio. Since each audio section is four seconds, the decoder

16

would wait for that long as the decoder output is played by the MCI.

For audio composition, two intuitive methods are (1) to sum all audio streams and (2) to
play only one stream. The first method suffers an overflow problem which can be solved by
proper scaling. This is left to potential future work. For simplicity in the final system we

only play the audio from the first transmitter site.

D. Some Experimental Results

For convenience, for the video part we use the CIF test sequence Bream with its
associated binary shape information. Multiple instances of the sequence are considered
separate video transmissions. Figure 4-6 shows some typical composed scenes with two
videos. We noted previously that the SetPixelV (and SetPixel) function was slow. Time
analysis shows that image display alone can take over 70% of the overall processing time.
Hence, unless we can find more efficient ways to set the display pixels, we should minimize

the use of the time-consuming SetPixelV and SetPixel functions.

Case 4

Fig. 4-6: Some typical composed scenes with two videos.

Experiments with the fully integrated receiver system show that the processing speed is
approximately 11.2 fps with one video, 5.2 fps with two videos, and 3.6 fps with three

videos (all Bream). Hence it is approximately reciprocal to the number of videos.

E. Conclusion

We considered the design and implementation of a novel type of software-based
multipoint videoconference receiver on a PC, where some distinguishing features were the
use of MPEG-4 object-based coding and the composition of decoded videos into one scene.

Further enhancement of the system in speed and robustness is considered.

17

-
€

[1]

[6]

EEAL &

M. E. Lukacs and D. G. Boyer, “A universal broadband multipoint teleconferencing
service for the 21 century,” IEEE Commun. Mag., vol. 33, no. 11, pp. 36-43, Nov.
1995.

D. G Boyer, M. E. Lukacs, and M. Mills, “The personal presence system experimental
research prototype,” in IEEE Int. Conf. Commun. Conf. Rec., pp. 1112-1116, 1996.

O. Schreer, M. Karl, and P. Kauff, “A Trimedia based multi-processor system using
PCI technology for immersive videoconference terminals,” in Int. Conf. Digital Signal
Processing, pp. 289-293, 2002.

MoMuSys, “MoMuSys final report,” Mar. 2001. Available from
http://www.tnt.uni-hannover.de/project/eu/momusys.

O. Schreer, H. Fuchs, W. 1Jsselsteijn, and H. Yasuda, eds., Special Issue on Immersive
Telecommunications, IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 3, Mar.
2004.

Y.-J. Chang, C.-C. Chen, J.-C. Chou, and Y.-C. Chen, “Implementation of a virtual chat
room for multimedia communications,” in IEEE Workshop Multimedia Signal
Processing, pp. 599-604, 1999.

Y.-J. Chang, C.-C. Chen, J.-C. Chou, and Y.-C. Chen, “Virual Talk: a model-based
virtual phone using layered audio-visual integration,” in IEEE Int. Conf. Multimedia
Expo, pp. 415-418, 2000.

C.-W. Lin, W.-H. Wang, M.-T. Sun, and J.-N. Hwang, “Implementation of H.323
multipoint video conference systems with personal presence control,” in IEEE Int.
Conf. Consumer Electron. Digest of Tech. Papers, pp. 108-109, 2000.

C.-W. Lin, Y.-J. Chang, Y.-C. Chen, and M.-T. Sun, “Implementation of a realtime
object-based virtual meeting system,” in IEEE Int. Conf. Multimedia Expo, pp.
565-568, 2001.

[10] S. Battista, F. Casalino, and C. Lande, “MPEG-4: a multimedia standard for the third

millenniem,” in two parts, IEEE Multimedia, vol. 6, no. 4, pp. 74-83, Oct.-Dec. 1999,
and vol. 7, no. 1, pp. 76-84, Jan.-Mar. 2000.

[11] M. Bourges-Sevenier and E. S. Jang, “An introduction to the MPEG-4 Animation

Framework eXtension,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 7, pp.
928-936, July 2004.

[12] Y.-H. Jan and D. W. Lin, “Edge-based morphological processing for efficient and

accurate video object extraction,” IEICE Trans. Inf. & Syst., vol. 88-D, no. 2, pp.
335-340, Feb. 2005.

[13] Y.-H. Jan and D. W. Lin, “Automatic video segmentation with novel motion analysis

and edge processing for accurate identification of object boundaries,” Int. J. Elec. Eng.,
vol. 12, no. 3, pp. 297-304, Aug. 2005.

18

[14] Y.-H. Jan, “Research in video segmentation techniques for object-oriented
applications,” Ph.D. dissertation, Dept. Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., May 2005.

[15] C.-Y. Tsai, C.-K. Chien, and D. W. Lin, “A videoconference transmitter supporting
object-based video encoding with real-time video segmentation,” to appear in Proc.
Workshop Consumer Electronics Signal Processing, Nov. 2005.

[16] C.-Y. Tsai, “Integration of videoconference transmitter with MPEG-4 object-based
video encoding,” M.S. thesis, Dept. Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., June 2005.

[17] C.-K. Chien, C.-Y. Tsai, and D. W. Lin, “A multipoint videoconference receiver based
on MPEG-4 object video,” to appear in Proc. Int. Symp. Commun., Nov. 2005.

[18] C.-K. Chien, “A multipoint videoconference receiver for MPEG-4 object-based video,”
M.S. thesis, Dept. Electronics Engineering, National Chiao Tung University, Hsinchu,
Taiwan, R.O.C., June 2005.

[19] S. Sun, D. R. Haynor, and Y. Kin, “Semiautomatic video object segmentation using
VSnakes,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 1, pp. 75-82, Jan.
2003.

[20] A.-R. Mansouri and J. Konrad, “Multiple motion segmentation with level sets,” IEEE
Trans. Image Processing, vol. 12, no. 2, pp. 201-220, Feb. 2003.

[21] D. Wang, “Unsupervised video segmentation based on watersheds and temporal
tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 5, pp. 539-546, Sep.
1998.

[22] S.-Y. Chien, Y.-W. Huang, and L.-G. Chen, “Predictive watershed: a fast watershed
algorithm for video segmentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13,
no. 5, pp. 453-461, May 2003.

[23] T. Meier and K. N. Ngan, “Video segmentation for content-based coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1190-1203, Dec. 1999.

[24] C. Kim and J. N. Hwang, “Fast and automatic video object segmentation and tracking
for content-based applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no.
2, pp- 122-129, Feb. 2002.

[25] L. Atzori, D. D. Giusto, and C. Perra, “A novel block-based video segmentation
algorithm,” in IEEE Int. Conf. Multimedia Expo, pp. 653-656, 2001.

[26] H. Luo and A. Eleftheriadis, “Rubberband: an improved graph search algorithm for
interactive object segmentation,” in Proc. IEEE Int. Conf. Image Processing, vol. 1, pp.
101-104, 2002.

[27] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 8, no. 6, pp. 679-698, Nov. 1986.

[28] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math., vol.
1, pp. 269-271, 1959.

19

[29] Y.-H. Lin, “Real-time video segmentation based on background modeling for
videoconferencing,” M.S. thesis, Dept. of Electronics Engineering, National Chaio
Tung University, Hsinchu, Taiwan, R.O.C., June 2004.

[30] M.-Y. Liu, “Real-time implementation of MPEG-4 video encoder using
SIMD-enhanced Intel processor,” M.S. thesis, Degree Program of Electrical
Engineering and Computer Science, National Chaio Tung University, Hsinchu, Taiwan,
R.O.C., July 2004.

[31] “VidCap: Full-featured video capture application,”
http://msdn.microsoft.com/library/devprods/vs6/visualc/vesample/vesmpvidcap.htm.

[32] “Capture without using disk storage,”
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/multimed/htm/ win32
_capture_without using_disk storage.asp.

[33] “AudioCoding.com,” http://www.audiocoding.com/.

[34] “JRTPLIB 3.1.0,” http://research.edm.luc.ac.be/jori/jrtplib/jrtplib.html.

20

¥

7N

HEAEAE
=k
ZiE- %

ZEE E N R
)

p
%,
%
£

REERFEAAPER P EFIAN E A2 KA K AR A BB
=57

Biw e j\—"r;¢§3§é~‘1ﬁ;§w;;¥ v g A P2
w* °
* 3
"H'VJ/‘(
=g 2

R
5% o0t 5
= EL 2
W g ‘—:I—[‘:, . j\ \a'L
L4 o

e

2

R £ 2 3 T S R R feeh § KK S 2 i
Fm LAY
2

Ty

1 %
zgﬁﬂ

v

-

T~ PR B2 3
FIRMALE GG 2ZEFF R FLLIDPINGL o FEARN
A REEZ AT AE BFELANEP R TV M E
EE A R T &

NP FARMAT L R o
-BEEy B e Rt [Eens %o T A4 RBRT 23T 2k

21

FORdER 2 g s R TR A

O 7 ¥ 364l

[IS P#94ETH 3 p

bl Rk

FEPA S BARR ¢ R A (D)
PRI HA R

++% %% 0 NSC93-2219-E-009-022 £ F4gs © ¢ 2R 7Al7 4

B/ Bl 1 2 4f

>
i

YL gl b A A2 AT 5 BR AR EOAR I € SR BT A

FWA/AIEA

B S A i

$oY G @AM N 2 AR A U A B Bodi B ¢ X o #-
% Ht B w0 MPEG-4 4 #4302 B30 088 % 4o 1L %075 » 15 18 RTP
o AR iE RTP 413 Jcd & & § BB kehFa
PAL 2 B 225 ARSI A A - B G BT 0 A B R
Hoe oz - (2% 2H4p 4)$E0c -

I’ ‘_‘;J‘ ’; 3 . . .

AT #® ~ [At the transmitter, segment the input video and extract the
conferee image. Encode it and the audio using MPEG-4 object-based
video coding and audio coding, respectively. Transmit the result by
RTP. At the receiver, employ RTP to receive the information from all
other conference terminals and perform video and audio decoding.
Then compose the videos into one scene for display, and play one
chosen audio (or the sum of all audios).

- ‘f']”* ié‘_%,— AR A 2 AT ﬁ‘éﬁé o VR AR A F2FAG o
1
TRELAR
FEE AR A &) ~ MPEG-4 F# 2 43 % f3 75 ~ MPEG-4 B30 % f3 75 -
2 RTP & % Bjis » A5 373 e 5 BRAR B ARG € SR LI o
PR

A2 EF D E

TR OTARGE A 2 TR e

I Vel SO R

Po- PRERRFLEHEANE > - i

e

SRR E e (ofispEgd o)o
MO AAEF I REF A RGBT Pl AR NG
MO AERFAERY FhERERY o

22

