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Abstract 

This paper presents a dynamic customer group-based logistics resource allocation 

methodology for the use of demand-responsive city logistics distribution operations.  The 

proposed methodology is developed based on the following five developmental procedures, 

including: (1) specification of demand attributes, (2) customer grouping, (3) customer group 

ranking, (4) container assignment, and (5) vehicle assignment.  The numerical results show 

that the model permits managing both the time-varying customer order data and logistics 

resources dynamically with the goal of optimal logistics resource allocation.  Particularly, 

both the aggregate operational costs and average lead time are reduced by 27.4% and 8.7%, 

respectively, in a case study.     

 
Key Words: Fuzzy clustering, Fuzzy ranking, Optimal assignment, Dynamic programming,  

Resource allocation, City logistics distribution operations 
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1. Introduction 

Dynamic logistics resource allocation, referring to the mechanism of allocating logistics 

resources, e.g., containers and vehicles, in quick response to the variety of customer order 

demands changing in short-term time intervals, is of vital importance to efficient 

demand-responsive city logistics distribution operations.  In fact, recent advances in 

information and communication technologies have significantly altered the consuming 

behavior of end-customers, and aroused their desire for quick response from the vendor 

enterprises.  Facing such induced issues as distribution channel restructuring and quick 

response to the diversity of customer order demands, the specialized city logistics companies 

have been urgently requested with the capability of allocating limited resources, efficiently 

and effectively, in the process of city logistics distribution operations.  One striking example 

is found in our study case, where a specialized city logistics enterprise has encountered a 

serious resource allocation problem resulting from the request of a contracted tele-shopping 

company to not only manage the corresponding inventories but also provide quick-responsive 

door-to-door logistics services to the corresponding end-customers.  Accordingly, dynamic 

allocation of logistics resources defines the feasibility of an efficient demand-responsive city 

logistics distribution system by enhancing the resource utility as well as by shortening the 

pre-route work process time in quick response to changes in customer demands. 

Despite the importance of dynamic logistics resource allocation in demand-responsive 

city logistics distribution operations, studies in terms of incorporating such a mechanism into 

the comprehensive scheme of demand-responsive city logistics distribution operations are 

rather limited in previous literature.  In contrast, most previous research appears to focus 

mainly on the en-route freight transportation problems, e.g., vehicle routing problems (VRP), 

and the corresponding fleet management problems (Altinkemer et al., 1990; Bramel et al., 

1995; Gendreau et al., 1996; Powell, 1987; Powell et al., 1997, 2002; Mahmassani et al., 2000; 
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Secomandi, 2000).  Among these, two typical VRP-induced problems, including the 

inventory routing problems (IRP) and multi-commodity fleet management problems are 

illustrated below for discussion.   

Essentially, IRP, which is also termed as the vendor-managed distribution system in 

recent literature (Beltrami et al., 1974; Burns et al., 1985; Federgruen et al., 1986; Blumenfeld 

et al., 1987; Dror et al., 1987; Larson, 1988; Webb et al., 1995; Herer et al., 1997; Larsen, 

2001; Ghiani et al., 2003), can be regarded as an enrichment of vehicle routing problems 

(VRP) to consider customers’ inventory factors, such as storage capacity, consumption 

characteristics and the consequences of stockouts in determining logistics distribution 

strategies.  Such an idea of incorporating both supply-oriented routing and demand-oriented 

inventory considerations in a logistics distribution system was first proposed by Beltrami et al. 

(1974), followed by some literature which aimed to minimize either the fleet size required for 

goods delivery in the strategic domain (Larson, 1988; Webb et al., 1995) or the corresponding 

distribution costs in the operational domain (Burns et al., 1985; Federgruen et al., 1986; 

Blumenfeld et al., 1987; Dror et al., 1987; Herer et al., 1997).  As noted in Dror et al. (1987), 

one distinctive feature of IRP models is the ability to ensure that none of the customers run 

out of the commodity at any time in the planning horizon of logistics distribution, and 

accordingly, it seems that IRP may be more practical for the operations of demand-responsive 

logistics distribution, relative to classical VRP approaches.        

Although the aforementioned demand-driven operational factors are considered in the 

existing IRP models, the issues of multiple logistics resource allocation in the supply domain 

still remain in the corresponding model formulation process.  It is noteworthy that most 

classical IRP models aim to define the corresponding inventory costs, e.g., holding costs and 

shortage costs, incurred in the demand side rather than the supply side.  And thus, it may 

contribute to the inadequacy of the existing IRP models in characterizing the dynamics of 
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logistics resources as well as their capability in allocating the corresponding resources for 

quick response to short-term changes in customer demand patterns.      

In contrast to prior IRP approaches, which attempt to incorporate customers’ 

replenishment requirements into routing problems, studies of multi-commodity fleet 

management concentrate particularly on the supply side regarding the utilization of vehicular 

fleets and the corresponding resource assignment so as to match the given customer demands 

characterized with either deterministic or stochastic features (Shan, 1985; Chih, 1986; Powell, 

1986, 1987; Crainic et al., 1993; Gendron et al., 1995; Cheung et al., 1996; Powell et al., 1997, 

2002; Hall, 1999; Chan et al., 2001; Godfrey et al., 2002a, b; Leung et al., 2002; List et al., 

2003).  For instance, the issue of empty container reallocation under demand uncertainty was 

tackled in Crainic et al. (1993), and followed by Gendron et al. (1995), which considered both 

the loaded container delivery and empty container reutilization issues for heterogeneous 

container fleet management of maritime shipping companies.  The distinctive feature of 

these two models is the ability to integrate the allocation of empty containers into classical 

loaded container delivery problems, and then solve it with relatively efficient algorithms for 

managing system-wide heterogeneous resource allocation.  Similar concepts are applied in 

Hall et al. (1999) to deal with empty truck problems in a less-than-truckload (LTL) trucking 

network, where the effects of empty truck movements are referred to as imbalance costs in 

fleet management.  A more general model of resource allocation can also be found in 

McGinnis (1997), which regards sizing vehicle fleets as a specific example of sizing 

system-wide reusable resources.   

In addition, there is a growing attempt in recent literature to investigate the issues of 

assigning pre-determined multiple commodities to multiple types of vehicles and 

corresponding resources (Powell et al., 1997, 2002; Mahmassani et al., 2000; Godfrey et al., 

2002a, b; Smilowitz et al., 2003).  Among those studies, fleet management is tackled 
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specifically with network-wide commodity-based flow problems, involving both intra-node 

and inter-node physical distribution activities, such as vehicle loading and routing, 

respectively.  Furthermore, the deferred item and routing problem (DIVRP) addressed in 

Smilowitz et al. (2003) can be regarded as a special case of the aforementioned 

multi-commodity flow problems since it deals specifically with delivering deferred items by 

different types of transportation modes to improve the utility of transportation modes in a 

distribution network.  Nevertheless, in-depth investigation in the nature of 

delivery-commodity attributes and their dynamic effects on allocating logistics resources 

before the phase of vehicle dispatching appear limited in the previous literature.  

Furthermore, the computational efficiency under large-scale network flow conditions also 

remains to be a difficult challenge. 

Based on the literature review, several generalizations are summarized in the following 

to clarify the significance of this study. 

(1) In the field of traditional freight transportation, there is an extensive amount of 

literature in relation to VRP and container/truck assignment for multi-commodity 

multi-modal transshipment problems.  However, techniques of clustering customer 

orders dynamically and integration with multi-resource assignment for logistics 

distribution operations are scarce.  In most early literature, the customer demands 

were assumed to be known with either deterministic or stochastic properties, and 

then input directly into a global optimization model for multi-resource assignment. 

(2) Some early literature of logistics management may shed light on proposing either the 

principles of customer grouping or the utilization of classical clustering techniques 

for route segmentation and fleet management (Fisher et al., 1981; Altinkemer et al., 

1990; Bramel et al., 1995, 1999; Ballou, 2002).  Nevertheless, their treatments may 

not be applicable for dynamical logistics resource allocation in response to a variety 
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of customer order demands in the operational level, as addressed in this study. 

(3) Development of multi-objective programming models to deal with the general 

resource allocation problems can be readily found in the literature (Mine et al., 1979; 

Chankong et al., 1983; Hussein et al., 1995; Lai et al., 1999; Ross, 2000).  However, 

as maintained previously, the integration with the specific phase of data clustering is 

rare in the resource allocation literature. 

Accordingly, in this study, we propose a comprehensive operational framework together 

with specific operational models for dynamic logistics resource allocation.  Compared to 

previous literature, the proposed methodology exhibits two distinctive features.  First, 

considering the dynamics of customer demand attributes and their effects on city logistics 

distribution operations, five sequential phases, including (1) order entry processing, (2) 

customer grouping, (3) customer group ranking, (4) container assignment, and (5) vehicle 

assignment, are incorporated into the proposed framework to dynamically allocate multi-type 

logistics resources prior to vehicle dispatching1.  Second, using the phases of customer 

grouping and ranking, customer order data are dynamically updated and clustered to facilitate 

inventory assignment and the corresponding resource allocation.  Here, employing advanced 

clustering techniques, e.g., fuzzy clustering approaches, customer orders are efficiently 

classified into several groups associated with specific service priority to optimize the 

availability of logistics resources.   

 The remainder of this paper is organized as follows.  The primary procedures for 

methodology development and the fundamentals of the proposed method are presented in 

                                                 
1 In the previous literature, it is found that some multi-resource allocation problems are formulated with globally 
optimized models.  Nevertheless, some assumptions in terms of the problem definition either in the demand 
side or supply side are needed, and thus may lead these global optimization models too simplified to be true.  In 
addition, the corresponding model formulation with global optimization programming approaches may have 
some difficulties in searching optimal solutions under conditions of large-scale distribution networks and 
tremendous customer demand data.  Furthermore, these globally optimized models may not have the features of 
updating and grouping customer orders dynamically in quick response to the diversity of customer orders 
changing in short-term time intervals.  That’s why we formulate such a dynamic logistics resource allocation 
model with an architecture embedding sequential mechanisms rather than a global optimization model. 
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Section 2.  A numerical study and the corresponding results generated via the proposed 

method are summarized in Section 3 to demonstrate the feasibility of the proposed method.  

Section 4 summarizes the concluding remarks. 

2. Methodology development 

The architecture of the proposed dynamic logistics resource allocation system is 

composed mainly of five sequential operational phases: (1) order processing, (2) customer 

grouping, (3) customer group ranking, (4) container assignment, and (5) vehicle assignment.  

Here phases (1), (2), and (3) refer to the dynamic demand-oriented data processing conducted 

for the purpose of grouping customer orders with respective service priority.  The resulting 

output is then input to the remaining phases for dynamic optimization in allocating the 

time-varying logistics resources available.  The aforementioned five sequential mechanisms 

are carried out each time when the database of customer entries is input to trigger a new 

logistics distribution mission.  The corresponding models and algorithms embedded in these 

operational phases are detailed in the following subsections.   

2.1 Order processing 

The phase of order processing aims to determine the target customer orders which are 

processed and served in a given time horizon T.  To facilitate model formulation, it is 

assumed that the cycle time of customer order processing of the proposed logistics system is 

fixed, and is equal to T.  In addition, each given time horizon T is assumed to embed several 

time steps referring to the headways of vehicle dispatching to serve group-based logistics 

distribution in the given time horizon T.    Correspondingly, the proposed logistics system 

examines the order entry database at the beginning of each given time horizon T for grouping 

the customers, and then for multi-step resource allocation and management in that horizon.  



 8

Note that the length of T may depend on the operational conditions of the individual company. 

To accomplish the aforementioned operational purpose, the current order entry database 

is examined at the beginning of a given time horizon T (T ) with the following collection 

conditions. 

LtTL i ≤−≤                                                           (1) 

itT ≤                                                                  (2) 

where L  and L  represent the allowable maximum and minimum lead times that the 

proposed logistics system commits to customers; it  and it  represent the time of order entry 

and the corresponding delivery deadline associated with a given customer i, respectively; T  

and T represent the onset and end of the given time horizon T.  Equation (1) denotes the 

upper bound of the lead time associated with a given customer i, and Eq. (2) is involved to 

ensure that the corresponding delivery deadline constraint is not violated.  The resulting 

decision rule of order selection is illustrated in Fig. 1.  Using the above collection conditions, 

the order entry database is examined at T , and those order entries, which satisfy the above 

collection conditions, are considered for further grouping in the next operational phase.  

Meanwhile, the remaining order entry database is updated with new order entries for the order 

processing in the next time horizon. 

Fig. 1. Illustration of decision rules for time-varying order selection 

2.2 Customer grouping  

The purpose of this phase is to cluster commodities based on the data of customer order 

entries identified in the previous phase.  Considering the complexity of multi-attribute 

customer orders, a two-stage customer grouping algorithm is proposed to expedite the 

corresponding clustering mechanism.  The proposed two-stage customer-grouping algorithm 
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scheme is presented in Fig. 2.  The major difference between these two stages is rooted in 

the nature of criteria used for customer grouping.  The first stage clusters the commodities of 

customer orders using hard criteria, e.g., the temperature level required for reservation and the 

service zone, and is followed by the second stage, which clusters these commodities in 

sequence employing fuzzy clustering techniques based on linguistic measures of the 

evaluation criteria.  Details of the corresponding procedures and models are presented below.        

Fig. 2. The proposed two-stage customer-grouping algorithm scheme 

In the first cluster stage, two hard criteria, i.e., the required reservation temperature level 

and service zone, are utilized.  The utilization of these two hard criteria is motivated mainly 

by two factors: container requirements and delivery efficiency, which are considered in 

practical logistics operations.  In general, considering the operational temperature 

requirement, commodities can be classified into three categories: normal, low-temperature, 

and frozen goods, where the second and third ones need specific temperature requirements for 

the reservation in the process of logistics distribution operations.  In addition, typical 

logistics service companies may adopt zone-based delivery service strategies to facilitate 

vehicle routing and scheduling (Ballou, 2002).  Correspondingly, customers are clustered 

into several groups bounded by specific service zones, based mainly on their locations so as to 

assign common logistics resources, including containers, vehicles, and drivers, to serve 

customers in the same groups.  Accordingly, both the aforementioned hard criteria are 

proposed for customer clustering in the first stage.   

 After the hard clustering in the previous stage, the commodities of customer orders in 

each hard-clustered group are further clustered using fuzzy clustering techniques, which have 

extensively been used in diverse areas for either data compression or data categorization 

(Bezdek, 1973; Cannon et al., 1986; Dave et al., 1992; Frigui et al., 1996; Sheu, 2002; Tao, 
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2002).  Conveniently, the analytical results from our previous research (Hu et al., 2003) have 

been employed to determine four customer attributes for the use of fuzzy clustering in this 

stage.  They are defined as follows. 

(1) )(1 kx hi
represents the time difference between the deadline to customer hi  in a given 

hard-clustered group h and the current vehicle-dispatching time step k.  In real-world 

operations, it is permissible to deliver products to those customers associated with close 

distribution deadlines, and thus, these customers can be categorized into a group that is served 

by the same vehicular fleet. 

(2) )(2 kx hi
corresponds to the value of the product distributed to customer hi  in a given 

hard-clustered group h at a given vehicle dispatching time step k, and to a certain extent it 

may depend on the market price of the product.  In real-world distribution operations, 

high-value products may be segmented from other products, and handled with specific 

security measures for safe delivery. 

(3) )(3 kx hi
represents the external compatibility in terms of the products ordered by customer 

hi  in a given hard-clustered group h, relative to the products that are scheduled to be 

distributed to customers in a given customer group at time step k.  This variable is 

specified to efficiently provide bulk delivery service to customers in the same group.  

The higher the external compatibility of products in a given group, the more efficient will 

be the bulk delivery service in distribution operations. 

(4) )(4 kx hi
represents the internal compatibility in terms of the products associated with a given 

customer hi  in a given hard-clustered group h at a given vehicle-dispatching time step k.  

In contrast with )(3 kx hi
, )(4 kx hi

 can be used to determine if multiple delivery services are 

needed for any given customer. 

Using the attributes specified above, each customer order can then be represented by a 
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specific multi-attribute datum used for further fuzzy clustering analysis.   

The proposed fuzzy clustering stage is executed through three major procedures, 

including: (1) binary transformation, (2) generation of fuzzy correlation matrix, and (3) 

customer grouping.  The primary steps executed in the aforementioned procedures are 

detailed in the following. 

Binary transformation 

The mechanism of binary transformation aims to transform the customer order attributes 

collected from the processed order entry data into binary data.  Three sequential steps are 

involved in this mechanism.  First, we specified five linguistic terms, including “very high”, 

“high”, “medium”, “low”, and “very low”, which represent five levels of qualitative criteria to 

characterize customers’ order attributes.  Second, using the order entry data clustered in the 

previous stage, the attributes associated with each customer order datum were measured using 

the aforementioned five linguistic terms.  Third, based on the mapping relationships 

presented in Table 1, the linguistic terms associated with the attributes of customers’ orders 

were transformed into binary codes.  As can be seen in Table 1, each linguistic item is 

represented by a specific set of four bits such as “0000” for the linguistic item “very low”, and 

“1111” for “very high.”  Thereby, each given order attribute p measured from customer 

hi ))(( kx p
ih can then be transformed into binary codes with four bits ))((

,
kp

jihσ , which can be 

expressed as: 

)](),(),(),([)( 4,3,2,1, kkkkkx p
i

p
i

p
i

p
i

p
i hhhhh σσσσ=                                     (3) 

Table 1 Binary transformation of the specified five linguistic terms 

 
To facilitate processing the heterogeneity of customers’ order attributes, the procedure of 

standardization with respect to ))((
,

kp
jihσ  is conducted, and herein, the standardized value of 
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where hM  represents the number of customers in a given hard-clustered group, served at the 

current time step.  Therefore, we have the standardized form ( )(~ kx p
ih ) associated with each 

customer’s order attribute, given by 

)](~),(~),(~),(~[)(~
4,3,2,1, kkkkkx p

i
p

i
p

i
p

i
p

i hhhh σσσσ=                                   (7) 

Generation of fuzzy correlation matrix 

At this stage, for each hard-clustered group h, a time-varying hh MM ×  fuzzy correlation 

matrix ( )(khW ) is constructed in which each element ( )(, kw hh sr ) represents the correlation 

between a given pair of customers hr  and hs .  Herein, )(khW  and )(, kw hh sr  are given, 
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respectively, by 
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where 1λ  is a parameter which needs to be calibrated to ensure that )(, kw hh sr  is bounded 

with the corresponding upper and lower bounds, i.e., 1 and 0, respectively. 

 
Customer grouping 

This procedure executes the mechanism of clustering the customers in each given 

hard-clustered group into several sub-groups with the objective that the customers assigned to 

the same sub-group are characterized by relatively higher similarity in terms of their attributes, 

compared to the members in any other sub-groups.  Figure 3 presents the proposed customer 

grouping logic, and the major computational steps are summarized as follows. 

Step 0: Initialize the computational iteration for a given hard-clustered group; input the 

estimated fuzzy correlation matrix (i.e., Eq. (8)); select a given hard-clustered group h to start 

the iteration from the first column of the fuzzy correlation matrix ( )(khW ), i.e., letting 

1=hs . 

Step 1: Given a target customer hs , remove the row of )(khW  associated with customer 
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hs  (i.e., T)(khs
w ).  Note that the column of the fuzzy correlation matrix associated with the 

given customer hs  ( )(khs
w ) is targeted for the use of clustering other possible customers 

into the same sub-group.  In contrast, the elements of T)(khsw  are redundant in the 

following clustering process, and thus they are removed in this step. 

Step 2: Find the largest element in )(khs
w , denoted by )(kw hhsr

& , and then conduct the 

following cluster procedures in sequence: 

 If the condition 2)( λ>kw hhsr
&  holds2, then assign customer hr  to the same sub-group 

as customer hs , and remove the row of )(khW  associated with customer hr .   

 Go back to Step 2 to continue checking the other elements of )(khs
w  until there is no 

element that meets the aforementioned clustering condition. 

 Remove )(khs
w  from )(khW . 

 If there are any customers who have not been assigned at this stage, let any given 

un-assigned customer be the target customer, and then go back to Step 1 to continue the 

fuzzy clustering process until all the customers are assigned. 

Step 3: Conduct the following termination rules to stop the mechanism of customer grouping: 

 If all the hard-clustered groups are processed, then stop the fuzzy clustering algorithm; 

 Otherwise, select a given un-processed hard-clustered group, and then go back to Step 0 

to initialize the fuzzy clustering process for the target hard-clustered group. 

                                                 
2 Here, λ2 represents a threshold for identifying the relative similarity between a given pair of customers, and is 
tentatively set to be 0.7 using trial-and-error tests in this study.  In practice, λ2 determines the number of 
iteration steps and the number of clusters, both of which exhibit a trade-off relationship in the clustering 
procedure.  For instance, a lower value of λ2 may speed up the clustering procedure as indicated by the reduced 
iteration steps; and meanwhile, it may cause a reduced number of customer groups, which loosens the 
requirement for identifying the mutual similarity of intra-group customers.  Accordingly, to avoid any 
unrealistic clustering results, e.g., an unusually large number of clustered customer groups in queue waiting for 
delivery services due to inadequate resources, and vice versa, the specification of λ2 should also take into 
account the numbers and capacities of available logistics resources for practical applications. 
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Fig. 3. Proposed fuzzy clustering logic for customer grouping 

2.3 Customer group ranking 

After clustering the customer order entries, the next step is to rank the clustered customer 

groups for their priority of logistics resource allocation.  To simplify the computational 

procedure, the customers’ order attributes in terms of the time difference between vehicle 

dispatching and delivery deadline and commodity prices (i.e., )(1 kx hi
 and )(2 kx hi

), together 

with the hard-clustering criterion in terms of the reservation temperature level specified in the 

previous customer grouping stage remain to be the determinants at this stage.   

The group ranking estimation procedure contains two main steps.  First, each level of 

reservation temperature ( t ) is associated with a specific weight ( tω ) which is predetermined 

by logistics operators.  In general, the corresponding weight associated with the 

frozen-temperature level is suggested to be the highest value, followed by the weight 

associated with the low-temperature level, and then the weight associated with the 

normal-temperature level, considering the life cycle of goods and specific logistics 

distribution requirements.  Second, the clustered customer groups (g) are ranked by 

comparing the corresponding group-ranking indexes ( )(kgδ ) given by 

g

gi p

p
it

g M

kxk
k

g
gg∑ ∑

∈∀ =

×
=

2

1
)(~)(

)(
ω

δ                                              (10)       

where gt
ω  represents the corresponding weight associated with a given customer group 

which needs a specific reservation temperature requirement gt ; gM  represents the number 

of customers assigned in a given customer group g; )(~ kx p
i g  represents the quantity of the 

linguistic measurement associated with the attribute (p) of a given customer gi , and the 
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integers ranging from 0 to 4 are specified to conveniently quantify the pre-specified five 

linguistic terms from “very low” to “very high”, respectively.  Here the customer order data 

which are employed to group customer orders are used again to rank the customer groups. 

2.4 Container assignment 

After ranking the customer groups, this phase triggers the mechanism of assigning 

appropriate containers to package customer orders with the goals of maximizing the aggregate 

container loading rate and minimizing the aggregate packaging costs, as presented in Eqs. (11) 

and (12), respectively.  Note that the containers assigned at this stage refer to small-sized 

containers, e.g., boxes and cases, suitable for city logistics distribution operations.  The 

large-sized containers used for line-haul transportation may be associated with the given 

freight vehicles, and their corresponding assignment problems are quite similar to vehicle 

assignment problems, thus are not considered in this phase.        

∑∑∑
∈∀ ∀ ∀

=
Tk g j

j
g

g kRMax )(CCR                                            (11) 

∑∑∑
∈∀ ∀ ∀

=
Tk g j

j
g

g kPCMin )(PC                                            (12) 

where )(kCR gj
 and )(kPC gj

 represent the disaggregate container loading rate and the 

corresponding packaging costs associated with a given container gj , which is suitable for the 

use in a given customer group g.  Herein, )(kCR gj
 and )(kPC gj

 are given, respectively, 

by 

∑
∀

×
=

g g

gggg

g

i j

jiji
j V

kYv
kCR ~

)(
)(                                               (13) 
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∑
∀

×=
g

gggg

i
jijj

kYckPC )()(                                                (14) 

where gj
c  represents the corresponding packaging costs when a given container gj  is 

utilized to serve a given customer group g; gg ji
v  is the volume of commodity ordered by a 

given customer gi  and served by a given container gj ; gj
V~  represents the capacity of a 

given container gj ; )(kY gg ji
 is specified as a 0-1 integer decision variable, which is equal to 

1 if the commodity of customer gi  is served by container gj  at a given time step k; 

otherwise it is 0.  

Considering the diverse potential effects of the above two goals (i.e., maximizing the 

aggregate container loading rate and minimizing the aggregate packaging costs) on the 

corresponding container assignment problem, two positive weights (i.e., CRϖ  and PCϖ ) are 

introduced.  In addition, the difference in measurement scales associated with fill rates and 

costs may also influence the determination of optimal solutions.  Accordingly, the 

aforementioned container assignment problem is re-formulated as a composite multi-objective 

optimization problem (U) given by 

PCCRU PCCRMax ϖϖ −=                                              (15) 

where CRϖ  and PCϖ  are positive, and the sum of these two weights is 1; CR  and PC  

represent the normalized forms of the corresponding aggregate container loading rate and 

packaging costs, respectively, and are given by 

minmax

min

CRCR
CR
−
−

=
CRCR                                                    (16) 
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minmax

min

PCPC
PC
−

−
=

PCPC                                                    (17) 

In Eqs. (16) and (17), maxCR  and maxPC  represent the estimates of aggregate container 

loading rate and the corresponding packaging costs measured in the case in which only the 

loading-rate maximization problem is considered (i.e., CRϖ  is set to be 1); and in contrast, 

minCR  and minPC  represent the corresponding estimates measured in the case involving the 

objective function of cost-minimization (i.e., PCϖ  is set to be 1).  

In addition, considering the logistics requirements limited by the corresponding 

operating capacities, seven respective sets of constraints, shown as follows, are involved in 

the proposed model.   
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where gi
θ  represents the commodity density associated with the goods ordered by a given 

customer gi ; gjΘ~  represents the loading weight limit associated with a given container gj ; 
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gi
v  represents the total amount of goods ordered by a given customer gi ; T

j gQ~  represents 

the total number of a given container gj  available in a given time horizon T; and in contrast, 

T
gQ  represents the total number of containers available for the use of a given customer group 

g in a given time horizon T.  Herein, Eqs. (18) and (19) refer to the disaggregate container 

loading limits in terms of volume and weight, respectively; Eq. (20) is specified to ensure that 

any given container is assigned to merely serve a single customer, and correspondingly, the 

case of mixed-order packaging is not permitted in this phase; Eq. (21) implies that the case of 

multiple containers assigned to a given customer is allowed considering the customers’ 

large-order cases; Eqs. (22) and (23) represent the corresponding limitations of disaggregate 

and aggregate container availability in a given time horizon T, respectively; and Eq. (24) 

denotes the characteristics of decision variables )(kY gg ji
. 

2.5 Vehicle assignment 

This phase aims to assign containers resulting from the previous phase to appropriate 

vehicles under the three goals, i.e., maximizing the aggregate vehicle loading rate ( VR ), and 

minimizing both the corresponding aggregate operational costs (OC ) and delivery time ( DT ).  

In addition, one distinctive feature of the proposed model is that in addition to vehicles 

standing by in the depot, the time-varying proportion of en-route vehicles returning to the 

depot during a given time horizon T is also considered for the use of vehicle assignment in 

this phase.  Conveniently, the multi-objective optimization based approach is used in this 

phase, and the corresponding composite objective function (Φ ) is given by 

DTOCVRΦ DTOCVRMax ϖϖϖ −−=                                      (25) 

where VRϖ , OCϖ  and DTϖ  are positive, and the sum of these three weights should be equal 
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to 1; VR , OC  and DT  represent the normalized forms of the corresponding aggregate 

operations vehicle loading rate, operational costs and delivery time, respectively, and are 

given by 

minmax

min

VRVR
VR
−
−

=
VRVR                                                     (26) 

minmax

min

OCOC
OC
−
−

=
OCOC                                                    (27) 

minmax

min

DTDT
DT
−
−

=
DTDT                                                     (28) 

In Eqs. (26) to (28), maxVR  represents the estimate of the aggregate vehicle loading rate 

measured in the case in which the loading rate-maximization problem is considered (i.e., VRϖ  

is set to be 1); and similar treatments are applied to estimate minOC  and minDT , respectively.  

In contrast, the other parameters, including minVR , maxOC , and maxDT , are measured under 

the corresponding worst cases.  Here, VR , OC  and DT  presented in Eqs. (26) to (28) 

can be further expressed as 
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where gl
d  represents the unit operational costs associated with a given vehicle l , which is 

scheduled to serve a given customer group g; g ′  represents any given customer group, 

which has a relatively higher group-ranking index g′δ  than gδ ; kG  represents the 

customer sets scheduled to be served at a given time step k; gM ′  and gM  represent the 

number of customer groups g ′  and g, respectively; gst ′  and gst  represent the expected 

delivery times associated with customer groups g ′  and g, respectively; )(kZ gl  is specified 

as a 0-1 integer decision variable, which is equal to 1 if a given customer group g is served by 

vehicle l  at a given time step k; otherwise it is 0.   

In addition, considering the limitations in terms of vehicle availability and the 

corresponding capacity associated with each type of vehicle, several sets of constraints, 

shown as follows, are involved in the proposed model.  
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klgorkZ gl ,,,10)( ∀=                                              (35) 

where lU~  represents the capacity of a given vehicle l; gj
θ  represents the density of a given 

container gj ; lΘ~  represents the loading weight limit associated with a given vehicle l; 

)(kNl  represents the time-varying number of vehicles available at a given time step k.  In 
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the proposed model, )(kNl  is dynamic, and determined at each given time step k by the 

number of available vehicles remaining at the previous time step k-1 ( )1( −kNl ) coupled with 

the expected number of en-route vehicles which may return to the depot before the end of the 

current time step k.  Accordingly, we have )(kNl  given by       

( )[ ] ( ){ } kkkNNEkNkN lll ∀−××−−+−= εσ 1)()1(~)1()( int                  (36) 

where N~  represents the total number of available vehicles; )(kσ  is the time-varying 

possibility with which any given en-route vehicle may return to the depot at a given time step 

k; and ε  represents the maximum allowable error percentage associated with the estimation 

of )(kσ .  Note that under the intelligent transportation systems (ITS) operational 

environment, the positions of en-route vehicles can be readily monitored through related 

information technology, e.g., global positioning systems (GPS) and two-way communication 

systems, thus leading to the availability of the aforementioned en-route vehicle information.   

 In the aforementioned constraints, Eqs. (32) and (33) represent the aggregate and 

disaggregate loading capacity limits of vehicles, respectively; in contrast, Eq. (34) denotes the 

disaggregate loading weight limit associated with each given vehicle, and Eq. (35) specifies 

the mathematical characteristics of decision variables )(kZ gl  mentioned previously. 

 Note that once the aforementioned logistics resources allocation mechanisms are 

executed, the corresponding output results can be readily integrated with any existing vehicle 

routing model to solve the corresponding vehicle routing problem for each customer group 

without any extra burden and incompatible problem.  This is the reason for proposing the 

incorporation of such a sophisticated logistics resource allocation method into a 

comprehensive logistics distribution framework in spite of remarkable advances that have 

been made in previous literature to improve vehicle routing problems.          
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3 Numerical results 

The main purpose of this numerical study is to demonstrate the potential advantages of 

the proposed dynamic logistics resource allocation methodology used in a practical logistics 

distribution case, relative to the existing strategies.  The case study examines a specialized 

city logistics enterprise, which contracts with a tele-marketing company to manage the 

corresponding inventories and provides door-to-door logistics services to the corresponding 

end-customers.  One of the logistics enterprise’s warehouses is located in the northeast of 

Taipei in Taiwan to mainly serve the customers of the contracted tele-marketing enterprise, 

and conveniently, it is selected as the study site.  To facilitate conducting this numerical 

study, including data collection, we contacted the company to obtain a part of the customer 

order entry data for the generation of input data, and the parameters required by the proposed 

method.  Herein, samples of customers were drawn from a 1-day order-processing database.  

Accordingly, the relative performance of the proposed method was evaluated by comparing 

with the existing logistics resource allocation strategy, given the same customer demand data 

and logistics requirements, e.g., the number of drivers and the availability of vehicles. 

The original logistics resource allocation strategies, including container and vehicle 

loading strategies, of the targeted logistics enterprise were mainly based on personal judgment 

of the manager of the corresponding logistics-related sector, subject to the deadlines of 

customer orders.  The available fleet size of this study case was 14 vehicles, including 2 

vehicles specifically for frozen-food delivery (coded FM-1 and FM-2), 2 specifically for 

low-temperature food delivery (coded LM-1 and LM-2), and the rest 10 normal trucks for 

normal-product delivery.  Among these ten normal-product freight vehicles, four were 

large-sized (coded L-1 to L-4) with the corresponding loading capacity of 180187350 ××  

cm3; another four were medium-sized (coded M-1 to M-4) with the corresponding loading 

capacity of 165163285 ××  cm3; and the others were small-sized (coded S-1 and S-2) with 
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the loading capacity of 4065125 ××  cm3.  For convenience in the vehicular loading, three 

types of boxes used for loading products were utilized with volumes of 16080150 ××  cm3 

(large-size), 354362 ××  cm3 (medium-size), and 254043 ××  cm3 (small-size).  The 

potential combinations of the aforementioned vehicular loading capacities and package 

volumes are summarized in Table 2.  The original frequency of daily vehicle dispatch of the 

targeted logistics company was three times a day, departing from the corresponding 

warehouse at 9:00, 13:00, and 17:00, respectively.  The dispatched fleet size in each delivery 

mission depended primarily on the volume of the ordered goods, but was subject to the 

maximum fleet size available.  Herein, vehicular en-routing paths depended primarily on the 

experiences of the corresponding drivers and their responses to the present road traffic 

conditions.  

Table 2. Summary of potential vehicle loading combinations 

In order to generate a database used to illustrate the applicability of the proposed method, 

a total of 136 order entries scheduled to be served in a given 1-day testing period were 

selected as the input database following the order-processing criteria mentioned previously in 

the first phase of the proposed approach (see Eqs. (1) and (2)).  The corresponding 

geographical relationships of these customers are depicted in Fig. 4, which graphically bounds 

these customers by two service zones (i.e., the eastern and western delivery service zones), 

consistent with the existing delivery service zones adopted by the targeted logistics company. 

Fig. 4. Geographic distribution of customers 

Following the second and third phases of the proposed logistics resource allocation 

system (i.e., customer grouping and ranking), the collected order entries have been 

reprocessed and then classified the customers into specific groups through the proposed 
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algorithms.  The numerical results of customer grouping are summarized in Table 3, which 

also shows the clustered customer group numbers and service priority.    

Table 3. Results of customer grouping 

After the aforementioned customer grouping and ranking determination phases, the 

corresponding resource assignment mechanisms including container and vehicle assignments 

were conducted by following the procedures of phases 4 and 5 (i.e., container and vehicle 

assignment) of the proposed method.  Here, the weights associated with the corresponding 

objective function of the container assignment phase (i.e., CRϖ  and PCϖ  shown in Eq. (15)) 

are tentatively set to be 0.5; and similarly, the weights introduced for the vehicle assignment 

(i.e., VRϖ , OCϖ  and DTϖ  shown in Eq. (25)) are tentatively set to be 1/3 in this test 

scenario.  Nevertheless, the setting of these weights will be examined later in the following 

sensitivity analysis scenario to investigate their effects on system performance.  The 

corresponding resource assignment results obtained in this scenario are summarized in Tables 

4 and 5.  Note that to simplify the structure of the real logistical distribution network, only 

major streets in the real network were considered in estimating the time-varying vehicular 

return possibility ( )(kσ ) mentioned in Eq. (36) to determine the fleet size of available 

vehicles at each given time step k. 

Table 4. Results of container assignment 

Table 5. Results of vehicle assignment 

Obtained from the above numerical results, two generalizations can be made.  First, 

among the three categories of normal-product freight vehicles, only large-sized and 

medium-sized vehicles are assigned under the condition that the delivered customer orders are 
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grouped using the proposed vehicle assignment model.  In contrast, small-sized vehicles are 

used for short-distance and miscellaneous goods delivery services in the present delivery 

strategy.  Second, through the procedures of dynamic customer order grouping and logistics 

resource assignment, different customer groups (e.g., customer groups 1 and 3 shown in Table 

5) can be consolidated, and then served with the same vehicle without the need of efforts for 

extra vehicle loading and dispatching.  Under such operational conditions, the groups of 

customer orders loaded in a given vehicle can be readily served in sequence in a given vehicle 

routing mission following the estimated group service priority.       

To quantitatively assess the relative performance of the proposed method with respect 

to the improvements in logistics resource utilization, we compared the operational results 

obtained from the proposed distribution strategy and the original strategy, using two major 

criteria defined in the following. 

(1) TC , which represents the aggregate logistics resource operational costs spent in the given 

test period; and  

(2) AT , which represents the average lead time associated with each given customer. 

Here TC  aims to sum up the corresponding internal logistics resource operational costs, 

including the packaging and loading costs associated with the corresponding resources as well 

as vehicle routing costs; and AT , in contrast, is measured by averaging the time difference 

between when an order is received and when the loading of the corresponding goods is 

completed for all the sampled customers.  Note that to facilitate the aforementioned model 

evaluation, only the static link costs are considered in estimating the corresponding vehicle 

routing costs of TC .  The comparison results according to the aforementioned criteria are 

summarized in Table 6.   

Table 6. Comparison of system performance 
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Overall, the results shown in Table 6 reveal that there is a certain improvement in the 

performance of logistical resource utilization using the proposed dynamic resource allocation 

methodology.  Two supportive generalizations made according to the corresponding 

numerical results are summarized below.   

First, as can be seen in Table 6, the relative improvement of the logistics system 

performance results mainly from the reduction in the aggregate logistics resource operational 

costs.  Based on this numerical study, such a group-based vehicle dispatching coupled with 

appropriate resource assignment strategies can be beneficial in enhancing the efficiency of 

en-route goods delivery, thus contributing to a significant improvement in the corresponding 

operational costs as high as 27.4%.   

Second, through appropriate pre-route customer classification and group-based 

logistics resource allocation strategies, grouped customers can be served more efficiently.  

The results presented in Tables 5 and 6 show that the resulting customer order grouping and 

vehicle assignment may contribute to greater vehicle dispatching frequency without extra 

time and costs in resource allocation.  Accordingly, the corresponding group-based customer 

delivery services can be completed with shorter lead times, relative to the original delivery 

schedule, thus contributing to a relative improvement of 8.7% in terms of average lead time 

( AT ).  To a certain extent, this implies that higher customer service quality can be achieved 

using the proposed logistics resource allocation methodology.   

In addition, several findings are summarized below for further discussion.  

(1) Although the proposed logistics resource allocation method appears to satisfy customer 

demands for shorter lead time to a certain extent, timeliness may remain as a significant 

issue in time-based logistics control, requiring further investigation.  For instance, to 

implement just-in-time (JIT) inventory control strategies, the major request from 

customers may no longer be shorter lead time, but the more exact goods delivery time.  
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Sometimes earlier goods delivery service may not be a benefit to those customers who 

implement JIT strategies due to the induced inventory costs in this case, and vice versa.     

(2) Despite the measurements of TC  and AT , both indicating certain improvements in 

logistics resource operational costs and service time, respectively, it is likely that the 

performance of logistical distribution operations can also be improved by integrating 

either advanced vehicle routing technologies or advanced ITS-related technologies, 

including global positioning systems (GPS) and two-way communication devices.   

(3) The measurements shown in Table 6 may also be beneficial in diagnosing the existing 

logistics resource management performance of the targeted logistics company.  

Definitely, the comparison results imply that there is a potential to improve the current 

logistics resource allocation and vehicle dispatching strategies undertaken by the targeted 

logistics company.  Such improvements can then enhance the customer service quality 

not only to the downstream end-customers but also to its upstream contracted 

manufacturer who also plays the role of a customer to the targeted logistics company. 

Furthermore, it is worth mentioning that the computational efficiency could be another 

potential advantage of the proposed method.  It has been observed that in the corresponding 

data processing and computational procedures, such a group-based logistics resource 

allocation methodology enables great time savings in algorithmic execution.  For instance, as 

can be seen in Table 3, the maximum number of customers to be served in a given group is 8, 

which does not appear to be a burden in searching the optimal solutions for either logistics 

multi-resource allocation or the induced vehicle routing problems.  

In the following test scenario, simple sensitivity analyses are conducted to demonstrate 

the generality of the numerical results.  This test scenario mainly aims at two groups of 

parameters.  The first group involves the weights presented in the proposed composite 

objective functions for container and vehicle assignment.  The second group involves four 
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selected operational parameters, including the cluster threshold 2λ , the unit costs of 

packaging and vehicle operations (i.e., gj
c  and gl

d , respectively), and the expected delivery 

times associated with customer groups ( gst ).  Here, 2λ  is regarded as a clustering-oriented 

parameter which may influence the customer group number in the study; and the others are 

supply-oriented parameters that may have the effects on the operational performance of 

allocating containers and vehicles.  The corresponding numerical results associated with 

these two groups of parameters are summarized in Tables 7 and 8, respectively, where all the 

results presented in these two Tables are relative improvements compared to the existing 

operational performance of the targeted logistics company.  Conveniently, the 

aforementioned evaluation measures, i.e., TC  and AT , remain used in this test scenario.  

Here, all the preset parameters of the proposed method remain the same, except the targeted 

parameters. 

Table 7. Results of sensitivity analyses with respect to weights 

Based on the numerical results of Table 7, four major generalizations are summarized 

below. 

(1) Compared to the weights associated with the container-assignment objective functions 

(i.e., CRϖ  and PCϖ ), the weights associated with the vehicle-assignment objective 

functions (i.e., VRϖ , OCϖ , and DTϖ ) appear to have relatively significant effects on the 

improvement with respect either to the aggregate operational costs ( TC ) or to the 

average lead time ( AT ).  This implies that dynamic vehicle assignment coupled with 

proper vehicle dispatching strategies play a key role in logistics resource allocation, and 

determine the performance of city logistics distribution operations. 
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(2) Relative to CRϖ , PCϖ  seems to have a greater effect on the improvement of TC , as 

the value of PCϖ  increases.  In contrast, the increase of CRϖ  merely has a slight 

effect on the improvement of AT , and meanwhile may not help to improve TC .          

(3) Among these targeted weights, OCϖ  and DTϖ  may have more significant effects on 

the improvement of TC  and AT , respectively.  As can be seen in Table 7, under the 

corresponding extreme cases (i.e, 1=OCϖ  and 1=DTϖ ), the evaluation measures TC  

and AT  can be improved up to 32.7% and 15.2%, respectively, relative to the existing 

operational performance.  

(4) Following the above generalizations, it is induced that saving the operational costs by 

about US$144 may be equivalent to saving the lead time as high as 0.4 day (about 9.6 

hour), compared to the aforementioned two extreme cases (i.e, the cases of 1=OCϖ  and 

1=DTϖ ).  Correspondingly, the logistics company manager may need to sustain the 

extra costs of about US$15 to save 1 hour in terms of the average lead time for higher 

customer service quality.  Accordingly, the logistics company manager can choose one 

of these two alternative strategies depending on the corresponding business operational 

goal.        

Table 8. Results of sensitivity analyses with respect to operational parameters 

 The numerical results shown in Table 8 may reveal the following three generalizations.   

(1) An appropriate setting for the range of the clustering-oriented parameter 2λ  is needed 

since it determines the number of customer order groups, which may further influence 

the performance of dynamic resource allocation with respect to both the aggregate 

operational costs and average lead time to customers.  As can be seen in Table 8, when 

the value of 2λ  increases by 40%, i.e., 98.02 =λ , the induced greater number of 
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customer order groups does not lead to relatively better performance, compared to the 

original setting (i.e., 7.02 =λ ).  Similarly, the decrease of 2λ  by 40% may contribute 

to a fewer number of customer order groups; however it does not correspond to a 

positive effect on saving the aggregate operational costs.  Overall, the value of 2λ  set 

within the range between 0.5 and 0.7 may lead to a better performance in the study case. 

(2) Both the increments of the unit packaging and vehicle operational costs appear to merely 

have the effects on the aggregate operational costs, and relatively, the induced effect 

associated with the unit vehicle operational cost appears to be greater than that of the unit 

packaging cost.    

(3) The increments in the expected delivery times appear to have relatively greater effects on 

the average lead time than that on the aggregate operational costs.  As can be seen in 

Table 8, the average lead time can be improved up to 13% when the expected delivery 

time associated with each given customer group is decreased by 40%.  In contrast, the 

corresponding effects on the aggregate operational costs appear to be less significant in 

this study case.         

In addition, from the above numerical results, three managerial implications are provided 

below.         

First, the conduction of appropriate customer order grouping and resource assignment 

prior to vehicle dispatching do improve the performance of city logistics systems in reducing 

the operational costs and average lead time.  Motivated by the above concept as well as the 

numerical results, logistics managers can integrate such sequential procedures proposed in 

this study with any existing logistics information systems to enhance the entire 

competitiveness of business operations in time-based logistics control. 

Second, as revealed in the corresponding sensitivity analysis, the reduction of the 

expected delivery time associated with each customer group appears to have a significant 
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effect on stimulating the customer satisfaction with the improved average lead time.  To 

achieve the above operational goal, the incorporation of novel route guidance technology with 

the proposed dynamic resource allocation method is needed.    

Third, considering the diversity of customer demands exhibited in differing logistics 

distribution channels and the resulting complicated operational environments, the 

functionality of a dynamic logistics resource allocation system should be flexible enough to 

be adjusted.  For instance, aiming at specific distribution channels and operational 

environments, respective customer attributes together with operational parameters can be 

specified, and then embedded in the proposed method for further practical uses without any 

extra effort in system reformulation.   

Concluding remarks 

This paper has presented a comprehensive system framework, including order processing, 

customer order grouping and ranking, container assignment and vehicle assignment, for 

dynamic logistics multi-resource allocation.  Through analyzing customers’ order attributes, 

the proposed method executes the proposed hybrid hard-and-fuzzy clustering algorithms 

together with customer-group ranking logic rules to group customer orders by their delivery 

service priority, followed by operating the functions of container and vehicle assignment in 

response to the variety of grouped customer demands.  In addition, the time-varying 

possibility of en-route vehicle returning is considered in formulating the proposed vehicle 

assignment model.   

In order to demonstrate the potential advantages of the proposed method, numerical 

studies on the existing logistics resource allocation strategies of a targeted logistics company 

were conducted.  By comparing the performance of the proposed logistics resource 

allocation method with that of the original strategies executed by the targeted logistics 
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company, the numerical results revealed that the overall logistics system performance could 

be improved by up to 27.4% and 8.7% in terms of the aggregate resource operational costs 

and average lead time, respectively.  Furthermore, it is found that such improvement may 

mainly result from the proposed vehicle assignment model coupled with the appropriate 

customer grouping strategies in quick response to grouped customer orders.  In addition, 

sensitivity analyses with respect to the corresponding weights of the objective functions and 

several key operational parameters were conducted and discussed. 

 Nevertheless, there may still be a great potential for either improving or expanding the 

proposed method by integrating more elaborate vehicle routing algorithms for 

quick-responsive logistics distribution operations.  Such an integrated customer group-based 

logistics distribution operation appears important to provide efficient goods delivery service 

in a large-scale logistics network under time-varying traffic network conditions.   

Furthermore, the case of crossover distribution based on product temperature may not be 

considered in the present study scope considering the differing lifecycles of products as well 

as packaging requirements.  Nevertheless, we would also like to leave the door open for 

future research to deal specifically with the aforementioned crossover distribution case if the 

induced effects are allowable in practical applications.  In that case, the corresponding 

clustering criterion, the required reservation temperature level, may no longer be needed, and 

the resulting improvements in system performance, particularly in terms of cost saving, as 

well as the induced effects may warrant more evaluation.     

It is expected that the proposed dynamic logistics multi-resource allocation method can 

make benefits available not only for developing advanced logistics distribution strategies, but 

also for clarifying the importance of pre-route customer grouping in the operations of 

time-based logistics control and management.  On the basis of the present results, our future 

research will aim at incorporating advanced vehicle routing and ITS-related technologies into 
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the architecture of the proposed method to improve the performance of time-based 

demand-responsive logistics distribution operations.  Moreover, the applicability of the 

proposed method for logistics operations in more real e-business operational cases is also of 

interest to us, and warrants further research. 
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Fig. 1. Illustration of decision rules for time-varying order selection 
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Fig. 2. The proposed two-stage customer-grouping algorithm scheme 
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Fig. 3. Proposed fuzzy clustering logic for customer grouping 
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Fig. 4. Geographic distribution of customers 
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Table 1. Binary transformation of the specified five linguistic terms 
Binary code 

Linguistic measure 
)(1, kp

iσ  )(2, kp
iσ )(3, kp

iσ  )(4, kp
iσ  

very high 1 1 1 1 
high  1 1 1 0 
medium  1 1 0 0 
low  1 0 0 0 
very low  0 0 0 0 
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Table 2.  Summary of vehicle loading combinations 

Vehicular loading capacity 
(cm3) 

Box volume 
(cm3) 

Maximum number of boxes 
loaded by a vehicle 

16080150 ××  4 
354362 ××  100 

 
180187350 ××  

254043 ××  224 
16080150 ××  2 
354362 ××  48 

 
165163285 ××  

254043 ××  144 
16080150 ××  0 
354362 ××  2 

 
4065125 ××  

254043 ××  2 
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Table 3. Results of customer grouping 
Group number Group components 

(customers) 
Reservation 
temperature 

level 

Service zone Service 
priority 

Group-1 1,3,8,10,11  normal west 1 
Group-2 6,25,30 frozen west 2 
Group-3 2,7,9,36 normal west 3 
Group-4 18,20,21,22,33 normal east 4 
Group-5 5,29,60,80 low west 5 
Group-6 37,38,41,43,44,46 normal east 6 
Group-7 48,50,53,54,55 low east 7 
Group-8 12,13,14,16,35 normal west 8 
Group-9 17,19,23,40,42 frozen east 9 
Group-10 45,49,51,52,104,105 normal east 10 
Group-11 4,15,24,26,27,28,31,65 normal west 11 
Group-12 56,57,58,59,61,81,82 normal west 12 
Group-13 32,34,39,47 frozen east 13 
Group-14 66,68,69,70,92,94,127,128 normal east 14 
Group-15 85,86,88,93 low east 15 
Group-16 74,75,76,78,79 normal west 16 
Group-17 62,63,64,83,84,116 normal west 17 
Group-18 71,72,73,98,99,102,103 normal east 18 
Group-19 87,89,95,96 normal east 19 
Group-20 91,97,129,130,131 normal east 20 
Group-21 67,121,123,125,126 low west 21 
Group-22 119,120,122,124 normal west 22 
Group-23 113,114,115,117,118 normal west 23 
Group-24 90,100,101,110,106 normal east 24 
Group-25 107,108,109,132,133,134 normal east 25 
Group-26 111,112,135,136 normal east 26 
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Table 4. Results of container assignment 
Group number Reservation 

temperature 
level 

Service zone type and number of containers assigned 
 
large       medium       small 

Group-1 normal west 1 3 1 
Group-2 frozen west   3 
Group-3 normal west 1 2 1 
Group-4 normal east 2 2 1 
Group-5 low west  2 2 
Group-6 normal east  2 4 
Group-7 low east  2 3 
Group-8 normal west 2 3  
Group-9 frozen east   5 
Group-10 normal east 3 3  
Group-11 normal west 4 4  
Group-12 normal west 2 4 1 
Group-13 frozen east  1 3 
Group-14 normal east  5 3 
Group-15 low east  2 2 
Group-16 normal west 2 1 2 
Group-17 normal west 1 2 3 
Group-18 normal east 3 4  
Group-19 normal east  3 1 
Group-20 normal east 2 3  
Group-21 low west  2 3 
Group-22 normal west  2 2 
Group-23 normal west 2 2 1 
Group-24 normal east  2 3 
Group-25 normal east 4 2  
Group-26 normal east 1 3  
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Table 5. Results of vehicle assignment 
Group number Reservation 

temperature 
level 

Service zone type and code of vehicles assigned for 
delivery service 

large       medium       small 
    (L)          (M)          (S) 

Group-1 normal west L-1   
Group-2 frozen west  FM-1  
Group-3 normal west L-1   
Group-4 normal east L-2   
Group-5 low west  LM-1  
Group-6 normal east  M-2  
Group-7 low east  LM-2  
Group-8 normal west L-3   
Group-9 frozen east  FM-2  
Group-10 normal east L-2   
Group-11 normal west L-1   
Group-12 normal west L-3   
Group-13 frozen east  FM-2  
Group-14 normal east  M-2  
Group-15 low east  LM-2  
Group-16 normal west L-1   
Group-17 normal west  M-1  
Group-18 normal east L-2   
Group-19 normal east  L-2  
Group-20 normal east L-4   
Group-21 low west  LM-1  
Group-22 normal west  M-3  
Group-23 normal west L-1   
Group-24 normal east  M-4  
Group-25 normal east L-2   
Group-26 normal east  M-4  
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Table 6. Comparison of system performance 
criteria

strategy 

aggregate resource 
operational costs 

TC (US$) 

average lead time  
 

AT (day) 
proposed 1,374 4.2 
existing 1,892 4.6 

relative improvement (%) 27.4 8.7 
aggregate relative improvement (%) 18.1 
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Table 7. Results of sensitivity analyses with respect to weights 
Targeted parameters System performance 

Weights 
 (container assignment) 

CRϖ         PCϖ  

aggregate operational costs 
TC (relative improvement, %)

average lead time 
AT (relative 

improvement, %) 

1.00 0 1,390 (26.5%) 4.3 (6.5%) 
0.75 0.25 1,385 (26.8%) 4.2 (8.7%) 
0.50 0.50 1,374 (27.4%) 4.2 (8.7%) 
0.25 0.75 1,356 (28.3%) 4.2 (8.7%) 

0 1.00 1,332 (29.6%) 4.2 (8.7%) 
Weights 

 (vehicle assignment) 
VRϖ       OCϖ      DTϖ  

 
 

1 0 0 1,326 (29.9%) 4.5 (2.1%) 
2/3 1/6 1/6 1,359 (28.2%) 4.3 (6.5%) 
1/3 1/3 1/3 1,374 (27.4%) 4.2 (8.7%) 
0 1 0 1,273 (32.7%) 4.3 (6.5%) 

1/6 2/3 1/6 1,321 (30.2%) 4.2 (8.7%) 
0 0 1 1,417 (25.1%) 3.9 (15.2%) 

1/6 1/6 2/3 1,383 (26.9%) 4.0 (13.0%) 
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Table 8. Results of sensitivity analyses with respect to operational parameters 
Targeted parameters System performance 

increment percentage of 
the cluster threshold 2λ  

(%) 

aggregate operational costs 
TC (relative improvement, %)

average lead time 
AT (relative improvement, %)

40 1,574 (16.8%) 4.4 (4.3%) 
20 1,374 (27.4%) 4.2 (8.7%) 
0 1,374 (27.4%) 4.2 (8.7%) 

-20 1,429 (24.5%) 4.1 (10.9%) 
-40 1,429 (24.5%) 4.1 (10.9%) 

increment percentage of 
the unit packaging cost 

gj
c  (%) 

 
 

40 1,383 (26.9%) 4.2 (8.7%) 
20 1,379 (27.1%) 4.2 (8.7%) 
0 1,374 (27.4%) 4.2 (8.7%) 

-20 1,362 (28.0%) 4.2 (8.7%) 
-40 1,351 (28.6%) 4.2 (8.7%) 

increment percentage of 
the unit vehicle 

operational cost gl
d  

(%) 

 

 

40 1,563 (17.4%) 4.2 (8.7%) 
20 1,479 (21.8%) 4.2 (8.7%) 
0 1,374 (27.4%) 4.2 (8.7%) 

-20 1,288 (31.9%) 4.2 (8.7%) 
-40 1,167 (38.3%) 4.2 (8.7%) 

increment percentage of 
the expected delivery 
times associated with 

customer groups gst (%) 

 

 

50 1,395 (26.3%) 4.6 (0%) 
25 1,389 (26.6%) 4.4 (4.3%) 
0 1,374 (27.4%) 4.2 (8.7%) 

-25 1,369 (27.6%) 4.1 (10.9) 
-50 1,364 (27.9%) 4.0 (13.0%) 

 


