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The non-linear motion of a symmetric gyro mounted on a vibrating base is investigated,
with particular emphasis on its long-term dynamic behaviour for a wide range of
parameters. A single modal equation is used to analyze the qualitative behavior of the
system. External disturbance appears as vertical harmonic motion of the support point and
linear damping is assumed. The complete equation of motion is a non-linear
non-autonomous one. The stability of the system has been studied by damped Mathieu
equation theory and the Liapunov direct method. As the system is subjected to external
disturbance, the Melnikov method is used to show the existence of chaotic motion. Finally,
the bifurcation of the parameter dependent system is studied numerically. The time
evolutions of the non-linear dynamical system responses are described in phase portraits
via the Poincaré map technique. The occurrence and the nature of chaotic attractors are
verified by evaluating Liapunov exponents and average power spectra. The effect of the
gyroscope’s spinning speed is also studied, and it is shown that the gyroscope’s spin velocity
vz has a significant effect on the dynamic behavior of the motion.
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1. INTRODUCTION

Research in the area of gyro dynamics dates back about one hundred years, whereas the
pioneering paper on the concept of chaotic motion in gyros was not presented until 1981
[1]. In this paper a detailed dynamic analysis was provided of a heavy symmetric gyro
mounted on a vibrating base.

The concept of chaos was first introduced by Poincaré [2] to describe orbits in space
mechanics. The chaotic behavior of fluids and gases was given by Lorenz [3]. Chaos occurs
in mechanical or electrical oscillators, in rotating heated fluids, in chemical reactions and
even in economic systems, etc. [4, 5]. Some modern techniques used in analyzing
deterministic non-linear systems are numerical time solutions: Poincaré mapping, power
spectrum analysis, the determination of the Liapunov exponents and an analytic method
called the Melnikov method.

In this paper, a symmetric gyro mounted on a vibrating base is considered. A single
modal equation of motion is used to analyze the dynamic behavior of the system. External
disturbance appears as the vertical harmonic motion of the support point and linear
damping is assumed. The complete equation of motion is a non-linear non-autonomous
one. In this work, system stability is studied using the damped Mathieu equation theory
[6] and the Liapunov direct method [7]. Since the system is subjected to external
disturbance, the Melnikov method [8] is used to show the existence of chaotic motion.
Finally, bifurcation of the parameter dependent system is studied numerically. The time

131

0022–460X/96/470131+17 $25.00/0 7 1996 Academic Press Limited



.-.   .132

via the Poincaré map technique. The occurrence and the nature of chaotic attractors are
verified by evaluating Liapunov exponents and average power spectra. The effect of
gyroscope’s spin speed is also studied, and it is shown that the spin velocity vz of the the
gyroscope has a significant effect on the dynamic behavior of the motion; e.g., a chaotic
motion will become regular as the spin velocity of the gyroscope increases.

2. FORMULATION OF PROBLEM

The geometry of the problem under consideration is depicted in Figure 1. The motion
of a symmetric gyro mounted on a vibrating base can be described by Euler’s angles u,
f and c. By the Lagrangian approach, the Lagrangian has the expression

L= 1
2I1(u2 +f2 sin2 u)+ 1

2I3(f cos u+c)2Mg(l+ l� sin vt) cos u, (1)

where I1 and I3 are the polar and equatorial moments of inertia of the symmetric gyroscope
respectively, Mg is the gravity force, l� is the amplitude of the external excitation
disturbance, and v is the frequency of the external excitation disturbance. It is not difficult
to see that the co-ordinates f and c are cyclic, as they are absent from the Lagrangian,
which provides us with two first integrals of the motion expressing the conjugate momenta.
The momentum integrals are

Pf =
1L
1f�

= I1f� sin2 u+ I3(f� cos u+c� ) cos u= bf , (2)

Pc =
1L
1c�

= I3(f� cos u+c� )= I3vz = bc , (3)

where vz is the gyroscope’s spin velocity.

Figure 1. A schematic diagram of the physical system.
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Now adopting Routh’s procedure and using the above relation, the Routhian of the
system becomes

R=L− bff� − bcc� = 1
2I1u� 2 −$(bf − bc cos u)2

2I1 sin2 u
+

b2
f

2I3
+Mg(l+ l� sin vt) cos u%, (4)

which depends on the angle u alone. For the trivial solution u=0, which will be studied
later, from equations (2) and (3), bf = bc is automatically satisfied and is assumed to hold
afterwards [9]. The dissipation function is also given by

F= 1
2Cu� 2. (5)

The only equation of motion describing the system can be obtained from

d
dt 01R

1u� 1−
1R
1u

+
1F
1u�

=0, (6)

allowing the system to be viewed as a single-degree-of-freedom system. The equation
governing the gyroscope is given by

u� +
b2

f

I2
1

(1−cos u)2

sin3 u
+

C
I1

u� −
Mgl
I1

sin u=
Mgl�
I1

sin vt sin u. (7)

In convenient first order form, the normalized equations are

ẋ1 = x2, ẋ2 =−a2 (1−cos x1)2

sin3 x1
− cx2 + b sin x1 + f sin vt sin x'1 , (8)

where

x1 = u, x2 = u� , a= bf/I1 = I3vz/I1, c=C/I1, b=Mgl/I1, f=Mgl�/I1.

(9)

3. STABILITY ANALYSIS

In this section, the local stability [10] and stability in a finite region of the solutions of
the system are studied by the damped Mathieu equation theory and the Liapunov direct
method respectively. A technique for determining local stability region for the damped
Mathieu equation developed by Gunderson et al. [6] will be used to study stability. First,
the solution u= u� =0 is studied. If the nutation angle u is sufficiently small, then sin u1 u

and (1−cos u)2/sin3 u1 u/4. Hence the equation of motion becomes

u� + cu� +(d− f sin vt)u=0, (10)

where d= a2/4− b.
The problem is to find the relationships between c, d and f such that the solutions of

this equation are asymptotically stable. However, if 2t=vt− p/2, the equation becomes
the damped Mathieu equation,

d2u

dt2 +
2c
v

du

dt
+04d

v2 −
4f
v2 cos 2t1u=0. (11)

According to the results by Gunderson et al. [6], if

fQ c2/2+ czd, (12)



.-.   .134

Figure 2. The damped Mathieu stable region.

is satisfied, the solutions are asymptotically locally stable. The stable region is the region
below the surface shown in Figure 2.

Next, the stability of the system will be investigated by means of the Liapunov direct
method briefly introduced here. This direct method requires constructing a function, V(x),
and its derivative such that they possess certain properties. When these properties of V(x)
and V� (x) are demonstrated to exist, the stability behavior of motion is known. In general,
the proper choice of V(x) depends to an extent upon the experience, the ingenuity and
often the good fortune of the analyst. The major task is to construct such a Liapunov
function and to explain the physical meaning implicit in the sufficient conditions for
stability obtained.

The equations of motion given above are deterministic, second order, non-linear and
non-autonomous. It is a highly non-linear problem. For our purpose, the non-linear terms
(1−cos x1)2/sin3 x1 and sin x1 are expanded into power series of x1:

(1−cos x1)2

sin3 x1
=

x1

4
+

x3
1

12
+O(x1)5, sin x1 = x1 −

x3
1

6
+O(x1)5. (13, 14)

Hence the governing equations of the system are given by

ẋ1 = x2, ẋ2 =−P(t)x1 − cx2 +Q(t)x3
1 +O(x1)5, (15)

where

P(t)=
a2

4
− b− f sin vt, Q(t)=

a2

12
−

b

6
−

f sin vt
6

. (16)

Following the Liapunov stability analysis [7], first the fixed points of our system are
examined. One finds that (A) x1 = x2 =0 and (B) x1 =2p, x2 =0 are fixed points for all
parameter values.

For the fixed point (A), (x1, x2)= (0, 0), this solution describes a motion in which one
of the gyroscope’s principal axes coincides with the local vertical axis. To study stability,
let the disturbance of motion be

x1 = j1, x2 = j2. (17)
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Substituting (17) into (15), one obtains the equations of disturbance as follows:

j� 1 = j2, j� 2 =−P(t)j1 − cj2 +Q(t)j3
1 +O(ji)5. (18)

In this case there is no physical intuition readily available to guide one in the choice of
V. Thus (after possibly a great deal of trial and error), one might be led to try the Liapunov
function candidate

V(t, j1, j2)= 1
2P(t)j2

1 + 1
2j

2
2 + j1j2. (19)

The Liapunov function V is positive definite provided that

P(t)q 1; (20)

i.e.,

a2/4− b− f sin vtq 1. (21)

It is evident that the above inequality implies

a2/4− b−1q f. (22)

The total derivative of −V� (x) is

−V� (t, j1, j2)=$P(t)−
fv
2

cos vt%j2
1 + cj1j2 + (c−1)j2

2 +O(ji)3. (23)

The requirements of V� in the Liapunov direct method are

P(t)q fv
2

cos vt, cq 1, 4(c−1)0P(t)−
fv
2

cos vt1q c2, (24)

i.e.,

cq 1,
a2

4
− b−

c2

4(c−1)
q fX1+

v2

4
. (25)

According to the Liapunov stability theorem [7] and the new theorem proposed by
Cveticanin [11], inequalities (25) are sufficient conditions for system stability, and
(x1, x2)= (0, 0) is asymptotically stable equilibrium.

For the fixed points (B), (x1, x2)= (2p, 0), which represents what is an inverted gyro’s
motion. To study the stability, let the distributed motion be

x1 =2p+ j1, x2 = j2. (26)

Substituting (26) into (15), one finds that

j� 1 = j2, j� 2 =−(P−3p2Q)j1 − cj2 2 3pQj2
1 +Qj3

1 +O(ji)3. (27)

Similarly, the Liapunov function V is taken as

V(t, j1, j2)= 1
2(P−3p2Q)j2

1 + 1
2j

2
2 + j1j2. (28)
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The total derivative of −V is

−dV/dt=[P−3p2Q+ 1
2(p

2/2−1)fv cos vt]j2
1 + (c−1)j2

2 + cj1j2 +O(ji)3. (29)

The requirements for both V and −V are positive definite:

cq 1,
a2

4
(1− p2)+0p2

2
−11bq6 c2

4(c−1)
+ fX0p2

2
−11

2

01+
v2

4 17. (30)

By the Liapunov theorem, inequalities (30) are the sufficient conditions for system
stability, and the fixed point (x1, x2)= (2p, 0), which are asymptotically stable
equilibriums.

It is evident that stability has been established. In general, for a given system
parameters b and c are fixed, whereas the normalized amplitude f and the frequency v

of the external harmonic excitation and the spin velocity vz [a=(I3/I1)vz ] vary. An
inspection of inequalities (25) indicates that stability can be achieved simply by increasing
the spin velocity when the gyroscope is spinning in an upright position. Similarily,
inequality (30) points out that stability can be achieved as the spin velocity is slow for an
inverted gyro.

4. DETECTING CHAOTIC DYNAMICS BY MELNIKOV METHOD

Previous studies have established the stability of a symmetric gyro mounted on a
vibrating base. These investigations induced interest in the question of whether the critical
system parameter values at which regular periodic motion changes into chaotic motion can
be estimated theoretically by simple closed form critera, not involving numerical
integration. To simplify the question, assume that b is equal to one, and that a2 1 0, the
spin velocity of the gyro being sufficiently small; the dissipation c= ec̄ is also assumed to
be small. Hence, system (7) can be expressed in the form

ẋ1 = x2, ẋ2 =−ec̄x2 + (1+F(t)) sin x1. (31)

The behavior of the above system for two cases of the specific form of F(t) will be
examined.

(a) F(t)= ef�sin vt, where v, f�q 0. This means that the disturbance amplitude is
assumed to be small. The perturbation form yields

ẋ1 = x2, ẋ2 = sin x1 + e( f�sin vt sin x1 − c̄x2). (32)

For e=0, the system can be reduced to a Hamiltonian system. The stable and unstable
manifold structure of the Hamiltonian system can be obtained using the Poincaré map
method. One notes that the homoclinic orbits divide stable regions from the unstable ones.

For e$ 0 the invariant manifolds split, and transverse intersections can occur. In the
case of no transverse intersections the stable manifolds define a stable region with a smooth
boundary. When intersections of stable and unstable manifolds occur, they give rise to
infinitely many so-called homoclinic intersection points. In such a case one can show that
in the Poincaré section the stable and unstable manifolds are stretched and folded into a
horseshoe shape. The Melnikov function is used to measure the distance between stable
and unstable manifolds when the distance is small [8]. The central idea of the Melnikov
function is to find the Melnikov function M(t0). If this function vanishes for certain
parameter values, then intersections between stable and unstable manifolds are near the



       137

saddle points. For e$ 0, equations (31) can be viewed as a Hamiltonian system with a
perturbation

ẋ= f0(x)+ eg0(x, t), (33)

where

x=(x1, x2), f0(x)= (x2, sin x1), g0(x)= (0, f�sin vt sin x1 − c̄x2). (34)

For e=0, the system has centers at (x1, x2)= (2p, 0) and a saddle point at (0, 0) (see
Appendix A). The Hamiltonian of the system is

H= 1
2x

2
2 − cos (x1 + p). (35)

Hence the unperturbed homoclinic orbits are given by

q0
+(t)= (2 tan−1(sinh t)− p), 2 sech t), q0

+(t)=−q0
−(t). (36)

By computing the Melnikov function of q0
+(t) (the computation for q0

− is identical), the
Melnikov function is given by

M(t0)=g
a

−a

x2(t− t0){ f�sin vt sin [2 tan−1(sinh (t− t0)− p]− c̄x2(t− t0)} dt

=−4 f�g
a

−a

sin vt sech2 (t− t0)tanh (t− t0) dt−4c̄ g
a

−a

sech2 (t− t0) dt

=−4 f�Ma −4c̄Mb , (37)

where

Ma =g
a

−a

sin vt sech2 (t− t0)tanh (t− t0) dt, Mb =g
a

−a

sech2 (t− t0) dt. (38)

For convenience of computation, Ma can be rearranged as

Ma =g
a

−a

sin v(t− t0)(sech2 t) tanh t dt

=g
a

−a

[sin vt cos vt0 − cos vt sin vt0](sech2 t) tanh t dt. (39)

Since the odd part of an integrand integrates to zero, Ma can be written simply as

Ma =6g
a

−a

[sin vt(sech2 t) tanh t]dt7 cos vt0. (40)

The integrals Ma and Mb can be evaluated by the residue method to yield

Ma = − f�v2 cosech (pv/2) cos vt0, Mb =2. (41)

Then, the final form for M(t0) is

M(t0)=2pf�v2 cosech(pv/2)cos vt0 −8c̄. (42)
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The terms 2pf�v2 cosech (pv/2) and 8c̄ are constant, as the parameter values ( f�, c̄, v)
are fixed. Hence, as t0 is varied, M(t0) oscillates at about a mean value of −8c̄ in an
harmonic manner and with an amplitude of 2pf�v2 cosech (pv/2). It is quite simple to
determine the behavior of stable and unstable manifolds. The two perturbed manifolds will
touch transversely when M(t0) has a simple zero, and the critical value of the amplitude
f� is given by

f�= b 4c̄
pv2 cosech (pv/2)b . (43)

This yields

f�/c̄=R(v), (44)

with

R(v)=
4

pv2 sinh0pv

2 1 . (45)

The above relationship characterizes the onset of homoclinic bifurcation with an accuracy
O(1) for sufficiently small e. For f�/c̄qR(v), there exist transverse homoclinic intersection
points between the stable and unstable manifolds of the saddle point (0, 0) for the Poincaré
map of equations (32), which means the occurrence of chaos. Regions of chaos from theory
and numerical simulation are shown in Figure 3. It is evident that good agreement between
theory and numerical simulation has been demonstrated.

(b) F(t)= g sin evt, where g, vq 0. That means that there is no restriction on the
amplitude of the excitation, but the frequency of excitation must be O(e). From equations
(31) the system can be written as

ẋ1 = x2, ẋ2 = (1+ g sin Z) sin x1 − ec̄x2, Z� = ev. (46)

Clearly, the above system cannot be analyzed by the traditional Melnikov method. A
technique similar to Melnikov’s for detecting the presence of orbits homoclinic to
hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary
differential equations was developed by Wiggins [12]. A brief explanation is now given.
Consider the system

ẋ1 = f1(x1, x2, z)+ eg1(x1, x2, z, t; m),

ẋ2 = f2(x1, x2, z)+ eg2(x1, x2, z, t; m),

ż= ev, (47)

Figure 3. Regions of chaos from (1) theory and (2) numerical simulation.
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or in vector form, q̇= f (q)+ eg(q, t; m), where 0Q eW 1, v$R, q=(x1, x2, z),
f=( f1, f2, 0) and g=(g1, g2, v) are sufficiently smooth (Cr, re 2 is adequate) and
bounded on bounded sets, f is periodic in Z with periodic T1, g is periodic in Z and t with
periods T1 and T2, respectively, and m$Rk is a parameter vector. The expression for the
Melnikov function (t0, Z) is

M(t0, Z)=g
a

−a 6f1(qz
0(t))g2(qz

0(t), t+ t0)− f2(qz
0(t))g1(qz

0(t), t+ t0)

+ tv$f1(qz
0(t))

1f2

1Z
(qz

0(t))
1f1

1Z
(qz

0(t)%7 dt (48)

where qz
0(t) is the unperturbed homoclinic orbit. Suppose that there exists a point (t�0, Z�)

at which the following two conditions hold: (1) M(t�0, Z�)=0; (2) DM(t�0, Z�) has maximal
rank (i.e., (1M/1t0)M(t�0, Z�)$ 0 and/or (1M/1Z)(t�0, Z�)$ 0). Then there exists e0 such that,
for 0Q eQ e0, the stable manifolds transversely intersect unstable manifolds at point
(t�0, Z�)+O(e).

The unperturbed system for equations (46) is given by

ẋ= x2, ẋ2 = (1+ g sin Z) sin x1, Z� =0 (49)

and is Hamiltonian, with the Hamiltonian function given by

H(x1, x2; Z)= x2
2/2− (1+ g sin Z)cos(x1 + p). (50)

The unperturbed system has centers at (x1, x2)= (2p, 0) and a saddle point at (0, 0). The
unperturbed homoclinic orbits are given by

q0(t)= (x1(t), x2(t)),

x1(t)=22 sin−1[tanh (z1+ g sin Z)t]− p,

x2(t)=22z1+ g sin Z sech(z1+ g sin Z)t. (51)

Using the form in (48), one has

M(t0, Z)=g
a

−a

[−c̄(x2(t))2 − (vtx2)g cos Z sin(x1(t))] dt

=−4(1+ g sin Z)c̄ g
a

−a

sech2 (z1+ g sin Z)t dt

−4z1+ g sin Z g
a

−a

tanh (z1+ g sin Z)t sech2 (z1+ g sin Z)t dt

−8c̄z1+ g sin Z+
4gv cos Z

z1+ g sin tZ
. (52)

Using the Melnikov theorem, and after some algebra, one obtains an equation the graph
of which in (c̄, g, v) space is a surface above which transverse homoclinic orbits occur.
This equation is (see Appendix B)

g=
2c̄/v

z1+ (2c̄/v)2
. (53)
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Figure 4. The graph in (g, ec̄, ev) space is a surface above which transverse homoclinic orbits occur.

The surface shown in Figure 4 is such that homoclinic tangencies occur on it and transverse
homoclinic orbits occur above it.

5. NUMERICAL SIMULATIONS AND DISCUSSION

In the present study, the non-linear equation of motion (7) were integrated numerically
in order to obtain the various forms of dynamic behavior of the gyroscope. A fourth
order Runge–Kutta integration algorithm has been used. Bifurcation diagrams,
phase diagrams, Poincaré map, power spectrum analysis and Liapunov exponents are all
modern techniques used in the analysis of non-linear deterministic systems. In this section,
the above techniques are adopted to examine various forms of dynamical behavior of the
present system. The dynamics may be viewed globally over a range of parameter values,
thereby allowing simultaneous comparsion of periodic and chaotic forms of behavior. The
bifurcation diagram provides a summary of the essential dynamics and is therefore a useful
method for acquiring this overview.

For this system, bifurcation can easily be detected by examining a graph of u� versus
the normalized amplitude of the external harmonic excitation for specific values of
the parameters a, b, c and v (the frequency of the external harmonic
excitation). The bifurcation will be obtained by the fourth order Runge–Kutta numerical
integration algorithm with 20 initial conditions. At each value of the normalized amplitude
f�=Mgl�/I1 of the external harmonic excitation, the first 300 points of the Poncaré map
are discarded in order to exclude the transient state of motion. After that, the system
is seen to be in the steady state and the velocities for the next 200 points are plotted
on the bifurcation diagram. Only the stable limit set is plotted. The bifurcation
diagrams for two different specific value sets ((A) a2 =0, b=1, c=0·5, v=2/3;
(B) a2 =100, b=1, c=0·5, v=2) are presented in Figures 5(a) and (b). Suppose
that system (A) is lightly disturbed (say, f=2·1). The phase trajectory converges to
the fixed point (p, 0); the corresponding Poincaré section shows a fixed point, as
shown in Figures 6(a) and (b), respectively. If the normalized amplitude is increased
to approximately 2·56, explosive bifurcation occurs (Fig. 5(a)), which indicates that
there is a discontinuous increase in the size and form of a strange attractor,
the new enlarged attractor, after bifurcation, which includes within itself the phase
space regime of the old attractor [13]. The phase trajectory and Poincaré map for
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Figure 5. Gyroscope bifurcation diagrams for two different specific values set [(A)
a2 =0, b=1, c=0·5, v=2/3; (B) a2 =100, b=1, c=0·5, v=2]; steady state angular velocity x2 (nT)
versus the normalized amplitude f of external excitation. (a) set (A); (b) set (B).

f=2·56 are shown in Figures 6(c) and (d). When f is increased further, explosive
phenomena disappear and regular motion returns. Further increases in f produce the
period doubling phenomenon. If f is increased further, the diagram becomes very complex.

Figure 6. (a) The phase trajectory for f=2·1 in case (A); (b) the Poincaré map for f=2·1 in case (A);
(c) the phase trajectory for f=2·56 in case (A); (d) the Poincaré map for f=2·56 in case (A).
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Figure 7. (a) The phase trajectory for f=33·0 in case (B); (b) the Poincaré map for f=33·0 in case (B);
(c) the phase trajectory for f=34·5 in case (B); (d) the Poincaré map for f=34·5 in case (B).

In case (B), the period doubling bifurcation phenomenon is very easy to see. In Figures 7(a)
and (b) are shown the phase trajectory and Poincaré map for f=30·0, and in Figures 7(c)
and (d) are shown the phase trajectory and Poincaré map for f=34·5. However, when
the bifurcation diagram loses continuity, this may lead to either quasi-periodic motion or
chaotic motion, and further tests are required to classify the dynamics.

A chaotic signal has a power spectrum which shows a random broadband character.
In Figure 8(a) and (b) are shown the time history and power spectrum for a2 =100, b=1,
c=0·5, v=2 and f=34·5. The power spectrum of chaotic oscillation is continuous
broadband, as expected.

6. LIAPUNOV EXPONENTS

A variety of observations over time of Poincaré maps, phase diagrams and bifurcation
diagrams have shown that the present system has a periodic and a fixed point character.
However, the above techniques sometimes cannot clearly reveal whether the system is in
quasi-periodic or chaotic motion; therefore, quantifying chaos has become an important
problem. Liapunov exponents can provide a qualitative and quantitative characteristic of
dynamic behavior. An algorithm for calculating the Liapunov exponents has been
developed [14]. Liapunov exponents are very convenient for explaining the chaotic
behavior of the system under consideration. Spectral analysis of Liapunov exponents has
proven to be the most useful dynamical diagnostic tool for examining chaotic motions.
The Liapunov exponents li , which are simple constants, are the average exponential rates
of divergence or convergence of nearby orbits corresponding to nearly identical states. In
other words, if l is negative, slightly separated trajectories converge and evolution is not
chaotic. If l is positive, nearby trajectories diverge; and evolution is sensitive to initial
conditions and therefore chaotic; i.e., the system will soon behave quite differently and
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Figure 8. The trajectory and average power spectra for a2 =100, b=1, c=0·5, v=2, f=34·5.

predictive ability will be rapidly lost. For a dissipative system, the sum of the exponents
must be negative and equal to the damping coefficient of the system. If x3 =vt is
introduced, then the non-autonomous equation (8) of motion can be transformed as
autonomous ones:

ẋ1 = x2, ẋ2 =−a2 (1−cos x1)2

sin3 x1
− cx2 + b sin x1 + f sin x3 sin x1, ẋ3 =v. (54)

For example, in the phase space (x1, x2, x3) the Liapunov exponents for the system are
found to be l1 =0·1207, l2 =−0·6207 and l3 =0 (when f=4·5, in case (A)). In this
system the sum of all three Liapunov exponents, l1 + l2 + l3 =−0·5, is equivalent to the
negative damping coefficient of the system, independently of position and time [15]. In
Tables 1 and 2 are shown the Liapunov exponents of the system using various values of
f (normalized amplitude) for two different sets of specific system values (A), a2 =0, b=1,
c=0·5, v=2/3; and (B), a2 =100, b=1, c=0·5, v=2). The Liapunov spectra for two

T 1

The Liapunov exponents for a gyroscope using various
values of f in case (A)

f l1 l2 l3 −a l

2·0 −0·1558 −0·3442 0·0 0·5
2·5 −0·0130 −0·4870 0·0 0·5
3·0 −0·1074 −0·3926 0·0 0·5
3·5 −0·2484 −0·2516 0·0 0·5
4·0 0·0350 −0·5350 0·0 0·5
4·5 0·1207 −0·6207 0·0 0·5
5·0 −0·1309 −0·3691 0·0 0·5
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T 2

The Liapunov exponents for a gyroscope using various
values of f in case (B)

f l1 l2 l3 −a l

33·0 −0·0328 −0·4672 0·0 0·5
33·5 0·1794 −0·6794 0·0 0·5
34·0 0·0275 −0·5275 0·0 0·5
34·5 0·2087 −0·7087 0·0 0·5
35·0 0·2418 −0·7418 0·0 0·5
35·5 0·2843 −0·7843 0·0 0·5
36·0 −0·2235 −0·2765 0·0 0·5

different specific system parameter value sets are shown in Figures 9(a) and (b) to confirm
the chaotic dynamics.

7. THE EFFECT OF THE GYROSCOPE’S SPIN VELOCITY

The extreme sensitivity to initial states in a system operating in chaotic mode can be
very destructive for the system because of unpredictable behavior. As a result, it is essential
to know when a non-linear system will enter a chaotic mode—so as to avoid it—and how
to recover from it. In other works, how can chaotic systems be driven to any point in phase
space and maintained at that point for long periods?

In Figure 10 are shown the Poincaré maps of a gyroscope with b=1, c=0·5 and v=2.
Here one is interested in the effect of the gyroscope’s spin velocity on the various dynamic
behaviors of the system. Therefore, the parameter f=35·5 was fixed, and the parameter
a=(I3/I1)vz (where vz is the spinning velocity) varied. In Figure 10(a) is shown a Poincaré

Figure 9. The largest Liapunov exponents as a function of f for (a) set (A) and (b) set (B).
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Figure 10. Poincaré maps (parameters b=1, c=0·5, v=2, and fixed the parameter f=35·5): (a) a2 =90;
(b) a2 =95; (c) a2 =100; (d) a2 =110.

map with a2 =90. Progressive increases in a2 resulted firstly, in the ‘‘strange attractor’’
regions being decreased, as shown in Figures 10(b) (a2 =95) and (c) (a2 =100). When a2

is increased further (say, a2 =110), the chaotic motion disappears, and regularity returns,
as shown in Figure 10(d). This shows that the spin velocity has a significant effect on the
dynamic behavior of the present system, and points to a finding that has practical
importance for gyroscope design.

8. CONCLUSIONS

The non-linear motion of a symmetric gyro mounted on a vibrating base has
been investigated. It was shown that the system exhibited both regular and chaotic
motions. The stability of the system has been studied according to the damped
Mathieu equation theory. The complete equation of motion is a highly non-linear
non-autonomous one. It is difficult to find a positive definite Liapunov function, since
the Liapunov direct method was used. However, this difficulty was overcome in Section 3.
The Liapunov direct method was also employed in a rigorous treatment of sufficient
conditons for system stability. When the system was subjected to external disturbance,
the Melnikov method was used to show the existence of chaotic motion. Finally,
the bifurcation of the parameter dependent system was studied numerically. The
time evolutions of the non-linear dynamical system response were described using
the phase portraits via the Poincaré map technique. The occurrence and nature of chaotic
attractors were verifed by evaluating Liapunov exponents and average power spectra.
The effect of the gyroscope’s spin speed was also studied. It was shown that spin
velocity vz of the gyroscope has a significant effect on the dynamic behavior of the
motion; e.g., chaotic motion tends to disappear increasingly as the spin velocity
increases. This removed the chaos from this system, allowing it to stabilize and
exhibit predictable behavior. This is obviously of significance for the design of future
gyroscopes.
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APPENDIX A

In Section 4, the unperturbed form for equation (32) is

ẋ1 = x2, ẋ2 = sin x1. (A1)

The fixed points are (A) x1 = x2 =0 and (B) x1 =2p, x2 =0. In the neighborhood of
x1 = x2 =0, equation (A1) reduces to

ẋ1 = x2, ẋ2 = x1. (A2)

The corresponding characteristic equation is

l2 −1=0. (A3)

which has the roots l1, l2 =21. Because the roots are real but opposite in sign, the fixed
point is a saddle point.

In the neighborhood of x1 = 2 p, x2 =0, equation (A1) becomes

ẋ1 = x2, ẋ2 =−x1. (A4)

The characteristic equation is simply

l2 +1=0. (A5)

which has the roots l1, l2 =2i. Because the roots are pure imaginary complex conjugates,
one can conclude that the system has centers at (x1 =2p, x2 =0). A phase portrait is
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structurally stable if its toplogy cannot be changed by an arbitrarily small perturbation
to the vector field. For instance, the phase portrait of a saddle point is structurally stable
but that of a center is not: an arbitrary small amount of damping converts the center to
a spiral.

APPENDIX B

From Section 4, for case (B) F(t)= g sin evt, while Melnikov function is

M=−8c̄z1+ g sin Z+
4gv cos Z

z1+ g sin Z
. (B1)

According to the modified Melnikov theorem, when the stable manifolds transversely
intersect the unstable manifolds, the conditions M=0 must hold. Therefore, the
following equation,

−8c̄z1+ g sin Z+
4gv cos Z

z1+ g sin Z
=0, (B2)

is satisfied. One finds that

2c̄/g=v cos Z−2c̄ sin Z=zv2 +4c̄2 cos (Z+Z1), (B3)

where Z1 = tan−1 (v/2c̄). At Z=−Z1, one has

2c̄/g=zv2 +4c̄2 , (B4)

i.e.,

g=
2c̄/v

z1+ (2c̄/v)2
. (B5)


