Q)

NSC93-2218-E-009-043-
93 08 01 94 07 31

94 11 1



Abstract

Real-time Origin-destination (O-D) information is important in many transportation
related domains, especidly in Intelligent Transportation System (ITS). The
conventional ways to obtain O-D data is costly and rea-time information is not
achievable. To obtain rea-time O-D information in a reasonable way, state space
model with Gibbs sampler and Kalman filter is then introduced by researchers. The
Gibbs sampler method to estimate O-D requires a huge computation time, thus
computing power must be increased to match the goa of real-time information. This
paper implements parallel computation on a Linux cluster for the origin algorithm and
given a sample of rea road network. The parallel implementation introduced in this
paper lead to a satisfying result.

Keywords — dynamic origin-destination, state space model, Gibbs sampler, traffic,
PC cluster



I ntroduction

Origin-destination (O-D) data is very important in many transportation related
domains(Bernstein, 1996, 1997, 2001; Chang, 1994, 1995, 1999, 2004, 2005; Jou,
2001,2002), such as transportation planning, urban and regional planning, traffic
assignment and so on. In Intelligent Transportation Systems (ITS), rea-time O-D
information(Jou, 2003,2004) aso plays an important role in Advanced Traffic
Management System (ATMS), and Advanced Traveler Information System (ATIS) to
provide rea-time traffic management and information. With real-time information,
many high value ITS applications such as emergency vehicle routing in time
shortest-path, just-in-time delivery would be feasible. The traditional way to gather
O-D information includes license plate recognizing, automatic vehicle identification
and so on. In reality, O-D information collection is very difficult and costly. The
accuracy in comparison of license plate is low, and also the rea-time information is
not attainable with roadside survey. Due to the high cost of O-D data collection in
highway systems, researchers have been seeking estimation methods to derive
valuable O-D flow information from less expensive traffic data, mainly, link traffic
counts of surveillance systems. Jou introduce state space model into dynamic O-D
estimation, which estimate O-D matrices and transition matrix simultaneously without
any prior information of state variables, while other studies assume that the transition
matrix is known or at least approximately known, which is unrealistic for areal world
network (Jou, 2003). Gibbs sampler is introduced in the solution algorithm to
overcome the shortcoming of known transition matrix. Gibbs sampler is a particular
type of Markov Chain Monte Carlo (MCMC) agorithm, the consumption of
computation power is huge. In ITS, many applications require real-time information,
in order to achieve the goal of real-time information, parallel computing techniquesis
introduce to improve the performance of computation. The remainder of this paper is
organized as follows. The dynamic origin-destination estimation by state space model
is introduced in section 2. Section 3 addresses the paralel method to the origin
solution algorithm and its results. Finally, conclusions are outlined in section 4.

Dynamic Origin-Destination Estimation

State space model is introduced to estimate O-D flow from link traffic counts.
The standard state space model is coupled with two parts. transition equations and
observation equations. First, the state equation which assumed that the O-D flows at
time t can be related to the O-D flows at time t-1 by the following autoregressive
form,

X =Fx_,+u, t=123..n (1)

wherex, is the state vector which is unobservable, F is a random transition matrix,



u, ~ N,(0,%) is independently and identically distributed noise term, where N,

denotes the p-dimensional normal distribution, X is the corresponding covariance
matrix. X the state variable, is defined to be the path flow belonging to an O-D pair.
Next, the observation equation,
Y, = HX +v,, t=123..n (2
where y, isthe gx1 observation vector which means there are q detectors on the
road network. The number of O-D pairsisdenoted by p. Hisa gx p zero-one
meatrix, which denotes routing matrix for anetwork. v, isaso anoiseterm that

v, ~ N,(0,T). Both x and F are unobservable, thus Kalman filter is not stitable to

directly estimate and forecast the state vector. Hence, Gibbs sampler is used to tackle
the problem of simultaneous estimation of F and x, by latest available information.

There are two major el ements to be incorporated in the solution method, i.e.

filtering states by observations and sampling scheme of F and state variables. Since
the observations y, arenot used in the conditional distribution, the Kalman filter and

the Gibbs sampler must be combined. The Gibbs sampler is atechnique for generating
random variables from a distribution indirectly, without having to calculate the density.
It isa Markovian updating scheme that proceeds as follows. Given an arbitrary

starting set of values z(?,z{?,z ...,z and then draw

20 ~|7,[z9,20..20|, z, ~|z,|2,2...2 |, and so on. Each variableis
visited in the natural order and a cycle requires k random variate generations. After i
iterations we have (z",z{",z{,...,z"). Under mild conditions, Geman and

Geman showed that the following results hold(Robert, 1998).

Result 1 Convergence
(z",z29,29...,2) > [2,,2,,Z,,..,Z,] andhencefor eachs, 20 —[Z]

as | — . Infact adlightly stronger result is proven. Rather than requiring that each
variable be visited in repetitions of the natural order, convergence still follows any
visiting scheme, provided that each variable is visited infinitely often.

Result 2 Rate
Using the sup norm, rather thanthe L, norm, the joint density of

(z",z9,z0,...,z0) convergesto the true density at a geometric ratein i, under



visiting in the natural order.
Result 3 Ergodic theorem
For any measurable function Tof Z,,7,,Z,,...,Z, whose expectation exits,
|im_—12T(zl<",z§'>,z§'>,...,z§'>) - E(T(2,,2,,2,,..2,))
I—>w| =1

As Gibbs sampling through m replications of the aforementioned i iterations produces

k tuples (Zl‘}),ZSj’,Zs‘ij),...,Zlﬁj")(j =1,23,....,m), which the proposed density estimate

Zr(”,r;ts].

for [Z,] having form [ZAS]:%ZT_JZS

The above Gibbs sampling scheme on a random transition matrix and state
variable forms the center part of the agorithm. In the process of generate state
variables, Kalman filtering mechanism is added. The solution agorithm is shown as
follows,

® Sep 1l (Initialization)
1. Useprior information to generate F ©
2. Given ¥ and T
3. Given X, ~ N(u,,V,)

(9) _
® Sep2(Generate X+ 1=012...ny

1. Generate x{¥ from N(u,,V,)

2. Generate x from xl‘xég’, F - N(F(g)X(()g),Z)

3. Usethe Kalman filter to filter x9
4. Repeat2,3fort=2,3,...,n
® Sep 3 (Generate F'¥)

1 Caculae A®© ={a,-(,-g)} . a® :(Xr(g) _x;@,fif(g))(xrr]g?)) _X;(?,fjf(g))

n(i)
d B/ _(X(g)xwg))-lX(g)x'(g)
an i - n-17*n-1 n-17%n(i)

2. Cdculae XX/
3. Generate W~V\/ishart(Xr(2X,’]§j),n— p)

iid

4. Generate Z:(z{,z;,zg,...,z;),zk~Np(O,A(9))
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5. Generate F'(9 = (sz Z

® Sep4 (Iteration)
Repeat Sep 2, Iep 3 mtimes, then we have {x<1>,...,x<m>}.
® Sep5(EstimateXand F')
Repeat Sep 1 to Sep 4 k times, then we have {X(m)(l),...,x(m)(k)}. Finally,
1 1

estimate Xand F' by X:EZ:Z:X(m)(n) and IE,ZE TR

The Implementation of Parallel Computation and its Results
To achieve read-time information requirement, computing power is critical. In
order to achieve this goal, parallel computing is then introduced. The solution
algorithm can be divided into severa independent computation parts by dividing it at
step 5. Given n computation nodes and k times of iterations, each node will take care
of % iterations. Each process store itsown X ™, and F'™,, when the number
of iterations is reached, all of them is then gathered together to estimate X and F'. In
this situation, communication between computing nodes is minimum, and computing
power can be easily increased without communication bandwidth limitation. Figure 1
describes the parallel architecture. In the pre-processor section, parameters used in our
algorithm are initialized, so does the necessary input data. When assign jobs, these
input data are sent to computing nodes in the cluster through TCP/IP base intranet
with Message Passing Interface (MPI) Library. The computational procedure for the
parallel process consists of:
Stepl. Load input data and parameters. Initialize MPI environment.
Step 2. Count the computing nodes exits in the cluster environment. Decide
the count of samples should be generated by each computing nodes.
Send data to each computing nodes.
Step 3. Each computing nodes generate its own X™ and F'(™ by given
input data for given times. And then send the result to server.
Step 4. After al the data been sent to server, the server estimate X and F’
by X™andF'™ samplesfrom each computing nodes.
Step 5. Stop MPI environment. Output data.
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Figure 1. The flow chart of parallel algorithm
The result shown below is a rea network in Hsinchu Science Park in Taiwan
with 8 observation sites and 48 links. The observation of traffic count updates every
minute, 30 time intervals of observation data is used to estimate the O-D flow. The
number of Gibbs sampler iteration mis fixed to 500, and the number of samples to
estimate X and F' isfloating. The result is presented in Table 1, the unit of timeis
second.

Parallel Computation Time (seconds)
Samples

Number of processors k =100 k =50 k=25
2 1137.86 573.49 312.34
4 576.43 287.54 157.526
8 289.76 152.09 81.762
16 152.7383 84.516 44.454
32 92.26 49.26 20.35

Table 1. Parallel Computation Time comparison

The paralel environment of this research consists of 16 computing nodes; each
contains 2 Intel XEON 3.2GHz processors and 1 GB memory. Nodes are connected



with a 1Gbits 3Com gigabits Ethernet switch for MPI protocol and a 100 Mbits PCI
fast Ethernet switch for Network File System (NFS) and Network Information System
(NIS). Figure 2 shows the speedups and efficiencies, where the speedups is the ratio
of the code execution time on a single processor to that on multiple processors and
efficiency is defined as the speedup divided by the number of processors(Gropp, 1999;
El-Rewini, 1998), of the paralel computing for 100 samples on the 32 CPU
Linux-cluster with MPI library. As shown in Figure 2, a quite good value of the
speedup and efficiency of the parallel scheme is achieved. That means we can
decrease the computation time easily to achieve the goal of real-time information.
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Figure 2. Speedups and efficiencies for the parallel computing of k = 100

Conclusions

This paper provides a paralel implementation on a PC-based Linux cluster with
MPI library to estimating origin-destination matrices for general road network by
using the state space model with Gibbs sampler and Kaman filter. With the
experiment of real network data, the parallel implementation presented in this paper is
efficient and can increase the computing power easily to match the goal of real-time
information.
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