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Abstract

The goal of this project is to develop a computation method of MPEG-7 texture
browsing descriptor and apply it to texture browsing and texture retrieval. The
MPEG-7 texture browsing descriptor primarily consists of three major components: (1)
the regularity of the texture, (2) the directionality of the texture, (3) the scales
corresponding to the two dominant directions of the texture. To successfully compute
these three components, we have developed corresponding computation methods in
two years. In the first year, we have provided a coarse classification method for
textures to provide the algorithms needed to determine the regularity of textures. It
has also been shown that the intermediate results of the proposed method can be used
to derive a weighting scheme for texture retrieval.

We have developed an efficient computation method for the texture browsing
descriptor of MPEG-7. Based on the above-mentioned coarse classification method
for classifying periodic and random textures, a regularity measure is developed. For
regular textures, the two dominant directions of textures are extracted by performing
Hough transform on the Fourier spectrum. A scale computation method is then
provided to determine the scales corresponding to the two dominant directions. In



addition, the principal component analysis is used to detect textures with only one
dominant direction. The proposed methods can be used for texture browsing, texture
retrieval and digital library.

Keywords: Texture Browsing  Texture Classification  Texture Retrieval
MPEG-7
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1. w335/

Texture almost presents everywhere in natural and real world images. Texture,
therefore, has long been an important research topic in image processing. Successful
applications of texture analysis methods have been widely found in industrial,
biomedical and remote sensing areas. Thus, appropriate descriptors for textures could
provide powerful means in applications of texture browsing, coarse texture
classification, similarity matching and retrieval. Three texture descriptors have been
specified in MEPG-7 [1]. The Homogeneous Texture Descriptor (HTD) provides
quantitative characterization of texture patterns and is useful for images with
homogeneous textural properties. HTD can be wused for similarity based
image-to-image matching. To provide descriptions for non-homogeneous textures,
Edge Histogram Descriptor (EHD) is provided. The spatial distribution of edges is
extracted and is useful for image-to-image matching when the underlying texture is
not homogeneous. Texture Browsing Descriptor also named Texture Browsing
Component (TBC) relates the perceptual characterization of texture, in terms of
regularity, directionality and coarseness. The coarseness is related to image scale or
resolution. This descriptor is useful for browsing type applications and coarse
classification of textures.

Approaches for estimating the dominant directions of textures in spatial domain
[13] or in frequency domain [14] have been proposed. Liu and Picard [15] proposed a
texture model addressing the perceptual characteristics of textures mentioned above.
The texture model proposed emphasizes the perceptually most salient periodic
information. To determine the prominence of periodic structures in a texture, the
energy distribution of image autocovariance function is examined. The image
autocovariance is computed as the inverse DFT of the image power spectrum. In
addition, a computation method of TBC has been recommended in [2, 12]. In this
method, an image is filtered using a bank of scale and orientation selective band-pass



filters called Gabor wavelet [3]. To compute the dominant directions, directional
histograms are constructed from the filtered images at different scales and then the
two histogram peaks with the highest contrasts are considered as the two dominant
directions. To compute the scale and regularity, the filtered images are projected along
the two dominant directions to form two sets of projections. For each set of
projections, the autocorrelation function is evaluated. The scale and regularity are then
determined based on the peaks and valleys of the autocorrelation function. In addition,
consistency checks based on the neighboring relationship of the projections are
provided to make the method more robust. As it involves the computation of applying
Gabor wavelet filters and autocorrelation function, the method is relatively
time-consuming.

In this report, an efficient computation method of TBC will be provided. The
method is based on the fact that for a directional texture image, the magnitudes of its
Fourier spectrum will concentrate on a certain direction; for regular, on several
directions; for irregular, not on any direction [4,5]. To compute the regularity of
textures, Fourier transform is first performed. The Fourier spectrum is then smoothed
to reduce noises. The smoothed Fourier spectrum is treated as an image and the
Fourier transform is performed again to produce an enhanced Fourier spectrum. A
regularity measure based on the variance of the radial wedge distribution is then
calculated to determine the regularity of textures. For regular textures, the texture
primitives are assumed to be parallelograms, the two dominant directions and their
associated scales of the primitives are determined by Hough transform [6]. In addition,
Principal component analysis is provided to detect textures with only one dominant
direction. Experiments of texture browsing and texture retrieval are performed to test
the texture images of Brodatz album [7] and Corel Gallery image database to
demonstrate the effectiveness of the proposed method.



2. By ik

TBC characterizes perceptual attributes in terms of regularity, directionality and
coarseness. We will base on the following properties of Fourier spectrum to measure
these three perceptual textural attributes: (1) for regular textures, the Fourier spectrum
consists of significant peaks scattering out regularly on some directions of the
frequency plane, (2) for textures with strong directionality, the directionality will be
preserved in the Fourier spectrum, and the high spectral values of Fourier spectrum
will also tend to lie in a direction which is perpendicular to the direction of texture
patterns, (3) for irregular textures, spectral values are not concentrated on any
direction. One example demonstrating these properties is shown in Fig. 1. In the
following sections, we will first give a brief introduction to the semantics of texture
browsing descriptor. Then, the details of the proposed computation method for
regularity, directionality and coarseness will be explained.

(a) Aregular texture (b) A directional texture (c) An irregular texture
(D1). (D106). (D54).

(d) The Fourier spectrum  (e) The Fourier spectrum (f) The Fourier spectrum

of (a). of (b). of ().
Fig. 1. Some examples of the Fourier spectra of regular, directional and irregular
textures.

2.1 A Brief Introduction to the Semantics of Texture Browsing Component
Texture browsing component is a 12-bits descriptor: 2 bits for representing
regularity, 6 bits (3bitsx2) for directionality and 4 bits (2 bitsx2) for coarseness. The



descriptor allows a maximum of two directions and coarseness values. The regularity
is graded on a scale of 0 to 3, with 3 indicating textures with highly structured
periodic patterns, while 0 indicating irregular or random textures. The directionality is
quantized into six values, ranging from 0° to 150° in the step size of 30°. Three bits
are used to represent directions, with up to two directions can be specified. A
coarseness component is associated with each direction. Coarseness is related to
image scale or resolution, and is quantized into four values, with 3 indicating a very
coarse texture and O indicating a fine grain texture. In addition, a separate bit called
ComponentNumberFlag is used to specify the number of components in the
descriptor. If it is equal to O then only one direction and its scale is present, otherwise
two directions will be present in TBC.

In this project, we use v, to denote the regularity, v, and v, the two
dominant directions, and v, and v. the two scales associated with the two
dominant directions. In the following, we will present an efficient computation
method for the above-mentioned descriptor components.

2.2 Computation of Regularity (v,)

It is mentioned in [5] that texture with a well-defined directionality even in the
absence of a perceivable micro-pattern is considered more regular than a pattern that
lacks directionality and periodicity, even if the individual micro-patterns can be
clearly identified. One pictorial example of the four scales of regularity is shown in
Fig. 2. From this figure, we can see that Fig. 2(b) is considered more regular than Fig.
2(c), even there are clear circular patterns in Fig. 2(c). This shows that periodicity and
directionality should be more influential than other factors when determining
regularity. Highly regular (regularity=3) and regular (regularity=2) textures are called
as “high regularity textures”, and slightly regular (regularity=1) and irregular
(regularity=0) textures as “low regularity textures”

() Highly regular.  (b) Regular.
Fig. 2. An example of regularity classification.

For high regularity textures, their Fourier spectra consist of significant peaks
scattering out regularly on some directions; for low regularity textures, spectral values
are not concentrated on certain directions. These properties can be further enhanced



by performing Fourier transform on the Fourier spectrum. The obtained Fourier
spectrum is called an enhanced Fourier spectrum. The textural features of an enhanced
Fourier spectrum are more prominent than those of the original Fourier spectrum [12].
Two examples are shown in Fig. 3. Fig. 3(a) shows a regular texture from D1 of
Brodatz album. Fig. 3(b) shows the Fourier spectrum of Fig. 3(a), the spectral peaks,
each of which comes from the contribution of those pixels with the same period in the
original image, spread out regularly along certain directions. This property is
enhanced in the enhanced Fourier spectrum, the reason is that those peaks in the
Fourier spectrum are periodic, through applying Fourier transform again, peaks with
the same period will contribute to the same frequency, making the peaks in the
enhanced Fourier spectrum more prominent. On the other hand, for those remaining
pixels (not peaks) in the Fourier spectrum, since they are not periodic, by applying the
Fourier transform again, they do not contribute to the same frequency. This
phenomenon also enhances those peaks relatively. Fig. 3(c) shows the enhanced
Fourier spectrum of Fig. 3(a). Fig. 3(d) is the image obtained by adding 30% of
Gaussian noise on Fig. 3(a). Fig. 3(e) is the smoothed Fourier spectrum of Fig. 3(d),
the frequencies to which the periodic patterns contribute, are mixed with noises in the
Fourier spectrum. This is due to that too many non-periodic noises exist. Thus, it is
difficult to extract textural features from the Fourier spectrum. By applying Fourier
transform to Fig. 3(e), the spectral peaks appear more prominent on the enhanced
Fourier spectrum shown in Fig. 3(f). Fig. 3(g) shows a random texture. Its Fourier
spectrum is shown in Fig. 3(h). The spectral responses in the Fourier spectrum are not
periodic and do not concentrate on certain frequencies but scatter around the
frequency plane. This is due to that pixels of a random texture are not of certain
periods, thus they will not contribute to certain frequencies and form periodic spectral
peaks. This also makes the spectral responses in the enhanced Fourier spectrum (see
Fig. 3(i)) spread over all directions. According to the above-mentioned properties, the
enhanced Fourier spectrum is adopted to discriminate periodic from random textures.



(a) A periodic texture (b) The smoothed Fourier (c) The enhanced Fourier
(D1). spectrum of (a). spectrum of (a).

(d) The image after adding (e) The smoothed Fourier (F) The enhanced Fourier
30% of noise on (a). spectrum of (d). spectrum of (d).

(9) A random texture (h) The smoothed Fourier (i) The enhanced Fourier
(D54). spectrum of (g). spectrum of (Q).
Fig. 3. Two examples of the enhanced Fourier spectra for periodic and random
textures.

A regularity measure RWDV (Radial Wedge Distribution Variance) proposed by
Lee and Chen [8] can be extracted from enhanced Fourier spectrum and used to
compute texture regularity. In the following, we will explain RWDV briefly.

Given an enhanced Fourier spectrum, E(u,v), the radial wedge distribution is
first calculated. Fig. 4 shows the radial wedges used. Let the radial wedges be denoted
as RW,,i=1..,m,m=360/A8, where A@ is the size of each wedge. For each
E(u,v), we accumulate itto RW, if it satisfies:



0, <tan™ (%) <6,.,.
The energy of each wedge is then normalized by the total energy of all wedges. Let
ERW, ,i=1...,m denote the normalized energy of radial wedges RW,, then the
RWDV is defined as:

RWDV = -3 (ERW, — ERW)?, )
mi=t

where ERW =+ 3% (ERW, ).
mi=t

Fig. 4. The radial wedges used in the proposed method.

For high regularity textures, as the spectral peaks spread out regularly along
certain directions while the spectral values of low regularity textures spread over all
directions, the variance of all radial wedge energies of a high regularity texture will be
larger than that of a low regularity texture. Therefore, RWDV can be used to measure
textural regularity. In our experiment, A@ is set as 1°. Based on the measure RWDV,
the regularity of textures can be obtained.

According to the four scales of regularity mentioned above, the following

quantization method is deigned to assign regularity:
v, =0 if RWDV <5

v, =1 if 5<RWDV <17
v, =2 if 17 <RWDV <30
v, =3 if 30<RWDV.

@)

The thresholds used in Eq. (2) are empirical values determined from the training set of
Brodatz album.

2.3 Computation of Dominant Directions (v,,v,)



High regularity textures can be defined by texture primitives occurring
repeatedly by some placement rules. Based on the definition of Conner and Harlow
[9], the texture primitive forming a texture image is assumed to be a parallelgram that
can be described by two displacement vectors. The directions of these two
displacement vectors correspond to the two dominant directions of high regularity
textures. On the other hand, for some directional texture, there is only one dominant
direction in the texture pattern. For low regularity textures, there are no dominant
directions present in the texture image, thus it is impractical to extract the direction
component. In the following, we will describe the method for detecting the single
dominant direction for directional textures and the method for detecting the two
dominant directions for high regularity textures.

2.3.1 Computation of the Dominant Directions (v, ) for Directional Textures

For directional textures, the spectral peaks of the Fourier spectrum form a
line-like shape. Based on this fact, a method to measure the directionality of textures
is proposed. First, Fourier transform is applied to the image to obtain its Fourier
spectrum, and then the Fourier spectrum is smoothed to reduce noises. Let the
smoothed Fourier spectrum be denoted as F (u,v),u=1..N,v=1...,N.

A thresholding method [8] is then used to extract the high spectral pixels from
the Fourier spectrum. Let the set of high spectral pixels be denoted by H. We then
calculate the principal components of H. To emphasize the importance of pixels with
higher spectral value in the calculation of principal component, we use the spectral
values of pixels as weights when calculating the principal components [8]. The
co-variance matrix C of H is then evaluated by

C C
C:{uu vu:|’ (3)

Cuv va
where ¢, = 1 ZF (u,v)(u - u) :i F (u,v)(v - v)
W uv)eH W @
o= SFEUMU-DE-Y), ¢, =c,,
W @ (
and W= YF (u,v), t]:i (u v)u, v=1t > F (u,v)v.
(uv)eH W W (uv)eH

The two eigenvalues of C are evaluated, and let them be 4, and A, with 4, > 4,,
respectively. For directional textures, as the larger eigenvalue (A4,) will be much
greater than the smaller eigenvalue( 4, ), thus the eigenvalue ratio, EV =4, /4, can be
used to measure the directionality of the texture image. By investigating EV, we can



determine whether a texture is a directional one or not. For a directional texture, the
angle of the principle component plus 90 degree is used to represent the dominant
direction of the texture pattern. In addition, the ComponentNumberFlag is set to 0 to
indicate that there is only one dominant direction in the texture. For high regularity
textures, the two dominant directions are extracted by a provided method presented in
the following section.

2.3.2 Computation of Dominant Directions (v,,Vv,) for High Regularity Textures

As mentioned previously, if a texture contains patterns oriented in some
directions, then the high spectral values of Fourier spectrum will also tend to lie in
some directions each of which is perpendicular to one direction of texture patterns.
We will base on this property to detect the two dominant directions for regular
textures.

Fourier transform is first performed on a high regularity texture image. The
thresholding method mentioned in Section 2.3.1 is then performed on the Fourier
spectrum to locate high spectral pixels. Hough transform is then used to extract the
angles of the two dominant directions. The following equation is used to represent a
line:

XCc0s@ +ysing = p. 4)
Through the Hough transform, the angles ¢, and 6, associated with the top two
accumulating values are extracted and 6, +7/2 and &, + /2 are considered as
the angles of the two dominant directions of the texture. 6, +7/2 and 6, + /2
are then quantized in step of 30 to obtain the values of direction component. That

is,v, = (6, +712)130], v, =|(6, +7z12)/30]

2.4 Computation of Scale (v,,V;)

To compute the scale component corresponding to each dominant direction, the

Fourier spectrum F(u,v)is first transformed to G(r,#) by setting
G(r,0)=F(u,v), (5)

where u=|N/2xrcos®], v=|N/2xrsin8|, 0<r<i1, —n<O<mn, N is the
dimension of spectrum.

As mentioned in Section 2.3.2, through the Hough transform, the two dominant
angles &, and 6, inthe Fourier spectrum can be extracted. Then, for each dominant
direction, 8,,i =12, the radial array G(r,8,)is logarithmically divided into four

frequency bins {Cs' |s= 0,1,2,3}. That is

C;={G(r6,)IreB}, B,=2"27°].  (6)

9



For a fine texture, most of its energy will present in the high frequency portion of the

spectrum, thus C;  will have larger energy than otherC!. On the contrary, for a very

coarse texture, most of its energy will concentrate in the low frequency portion of the

spectrum, therefore C. will have larger energy than otherC!. Thus, the scale
corresponding to &, can be determined by finding the scale index s, with maximum

energy in CS‘O , and the scale index s, is considered as the scale component value.

10



3. RHEBRE[E

Texture images of Brodatz album and Corel Gallery image databases are used to
test the proposed method. To build up the Brodatz aloum database, eight patches of
the 112 textures in Brodatz album are scanned and 896 texture images are obtained
for experiments. 4 out of the eight patches of each texture are used as training set to
obtain the empirical values for thresholds used, while the remaining images are used
as testing set. To build up the Corel Gallery database, 1896 natural color texture
images from Corel Gallery image database are selected and used as testing set,
including abstract textures, bark textures, creative textures, food textures, light
textures, and other textures etc. Some examples of Corel Gallery database are shown
in Fig. 5.

Three types of experiments are designed to illustrate the effectiveness and
efficiency of the proposed method: (1) texture browsing, (2) coarse classification of
textures, (3) similarity-based image-to-image matching. Firstly, in the experiment of
texture browsing, several query conditions are used to retrieve images. The query
conditions are designed to include all elements of the TBC descriptor, they are: (1)
retrieving highly regular or regular textures which are not very coarse and oriented at
around 30 degree, (2) retrieving irregular textures, (3) retrieving directional textures.
Secondly, in the experiment of coarse classification of textures, the proposed texture
browsing descriptor and the proposed method of MPEG-7 TBC are used to classify
the texture images of Brodatz aloum into directional, high regularity (regularity=2 or
3) or low regularity (regularity=0 or 1) respectively, and the comparison of the
efficiency of the proposed method and MPEG-7 TBC is illustrated. Finally, in the
experiment of similarity-based image-to-image matching, the textures are retrieved by
query-by-example. To demonstrate the effectiveness of the proposed method as a
prescreening step of a texture retrieval system, retrieved result using the proposed
method for prescreening is compared with that without using the proposed method for
prescreening. To demonstrate this advantage, three experiments are conducted and
similar images are retrieved given the following three types of query images: (1) a
directional texture, (2) a regular texture, (3) an irregular texture.

11



(a) An abstract texture.

(9) A cloud texture. (h) A candy texture. (i) A brick texture.

Fig. 5. Some textures of Corel Gallery image database used in the experiments.

Texture Browsing

The experimental results of texture browsing are shown in Fig. 6. Fig. 6(a)
shows some retrieved texture images satisfying condition 1. The retrieved images
meet the regularity, scale and directional criteria set in condition 1. Fig. 6(b) shows
the result of condition 2, all retrieved textures are irregular textures. Finally, Fig. 6(c)
shows the result of condition 3, it verifies that the principle component analysis
method proposed can locate directional textures correctly. The results shown in Fig. 6
demonstrate the effectiveness of the proposed methods for computing the regularity,
directionality, scale components as well as ComponentNumberFlag.

12



(a) Some not very coarse textures with high regularity and are orientation around 30
degree retrieved under condition 1.

A
i

(c) Some directional textures retrieved under condition 3.
Fig. 6. Some examples of texture browsing.

Coarse Classification of Textures

In this section, the proposed texture browsing descriptor and the proposed
method of MPEG-7 TBC are used to classify the texture images of Brodatz album
into directional, high regularity or low regularity respectively. Four patches for each
of the 112 textures in Brodatz album are scanned and 448 texture images are obtained
as the testing set. The classification rate is computed as the total number of correctly
classified images divided by the total number of images in the testing set. The
classification result and the average computation time required of the proposed
method and the proposed method of MPEG-7 TBC are shown in Table 1. The
experiment is conducted on an Intel PC with a CPU of 1.2 GHz and 120M of RAM.

13



Table 1: Performance comparison of the proposed method and the proposed of

MPEG-7.
Method
Indicator The Proposed Method MPEG-7 TBC
Classification Rate 95.5% 96.3%
Average Computation Time 1.2 seconds 8.9 seconds

As shown in Table 1, the classification rate is roughly comparable for both the
proposed method and the proposed method of MPEG-7. However, the proposed
method is more efficient than the proposed method of MPEG-7 in terms of
computation time. It takes averagely 1.2 seconds to produce a texture browsing
descriptor while the proposed method of MPEG-7 takes 8.9 seconds.

Similarity-based Image-to-image Matching

In this section, three examples of similarity-based image-to-image matching by
combining texture browsing descriptor and MPEG-7 HTD are presented to illustrate
the benefits of using the proposed method as a prescreening step of a texture retrieval
system. The retrieval is achieved by query-by-example. Given a query image, the
retrieval system first select textures in the database whose values of
ComponentNumberFlag are the same as the query image as candidates for later
comparison. If the query image is not a directional texture (ComponentNumberFlag =
1), then its regularity is determined and those images with the same regularity as the
query image are extracted as candidates. On the other hand, if the query image is a
directional texture, then the above-mentioned candidate filtering by regularity is not
performed. The MPEG-7 HTD [5] of the query image are then extracted and
compared with the HTD of candidate images. The candidate images are then sorted by
the descending order of similarity and displayed to users.

The MPEG-7 HTD characterizes the texture using the mean energy and the
energy deviation from a set of frequency channels. The 2-D frequency plane is
partitioned into 30 channels. The frequency plane partitioning is uniform along the
angular direction with step size of 30 degrees while the division along the radial
direction is on an octave scale. The individual channels are modeled using Gabor

functions [7]. The HTD can be represented by a 62-dimentional vector as
HTD =[foc, fop1€1,€5 00 €50,01, 05,0 dge ], (7)

where f,. and fy, arethe mean and standard deviation of the image, respectively,

14




and e, and d, are the mean energy and energy deviation of the corresponding ith
channel respectively. To measure the similarity between the query image and

candidate images, the distance measure between the feature vector HTD, of the
query image g and HTD, of a candidate image c is defined to be

HTD, (k) - HTD, (k
S T

where a(k) is the standard deviation of the set of the kth feature over the entire
database and are used to normalize the individual feature component.

Fig. 7 shows an example of combining texture browsing descriptor and HTD
feature in a texture retrieval application. The upper-left image of the displayed result
is a directional texture used as a query image. Fig. 7(a) shows the result without using
the proposed texture descriptor for prescreening. Most of the top 16 retrieved images
are irregular textures and some are quite different from the query image. Fig. 7(b)
shows the result with prescreening. Most of the top 16 retrieved images are directional
textures and some look similar to the query image. This illustrates the effectiveness of
the proposed method as a prescreening step of a texture retrieval system.

(a) Retrieved result without prescreening.
1 o ITIHE T T

o |

(b) Retrieved result with prescreening.
Fig. 7. An example of texture retrieval given a directional texture as query image
using MPEG-7 HTD.

Fig. 8 shows another texture retrieval example. The query image shown in the
upper-left position is a regular one with horizontally and vertically repeated primitives.

15



Fig. 8(a) shows the retrieved result without prescreening. Although the query image is
a regular texture, some irregular textures are mistakenly retrieved in the top 16 ones.
Fig. 8(b) shows the retrieved result with prescreening. All retrieved textures are
regular textures and most of them have horizontally and vertically repeated primitives.

(b) Retrieved result with prescreening.
Fig. 8. Atexture retrieval example given a regular texture as query image.

Fig. 9 shows another example of texture retrieval given an irregular query image.
As shown in Fig. 9(a) and Fig. 9(b), the retrieved images with prescreening and
without prescreening are basically the same. The performance of using the proposed
method to prescreen candidates and that of using MPEG-7 HTD alone is comparable
in this case.

16
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(b) Retrieved result with prescreening.
Fig. 9. Atexture retrieval example given an irregular query image.

2L
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$

In this project, an efficient computation method for computing the texture
browsing descriptor specified in MPEG-7 is provided. The eigenvalue ratio obtained
by performing principal component analysis on the Fourier spectrum of the texture
image is used to detect directional textures. To compute the regularity, Fourier
transform is applied to the Fourier spectrum image to produce an enhanced Fourier
spectrum. A spectral measure based on the variance of the radial wedge distribution is
then calculated from the enhanced Fourier spectrum and applied to compute the
regularity. To compute the directionality components, Hough transform is applied on
the Fourier spectrum to detect two dominant directions. A scale computation method
is then provided to compute the scales corresponding to the two dominant directions.
The texture browsing descriptor can be used in applications of texture browsing. In
addition, a texture retrieval system can use the descriptor to find a set of candidates
with similar perceptual properties and then use other similarity-based image-to-image
matching descriptor such as MPEG-7 HTD to get a precise similar match among the
candidate images. Experiments designed for texture browsing, coarse classification of
textures and texture retrieval show the efficiency and effectiveness of the proposed
method.
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