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Abstract

In this report, we will find a level set
formulation of the Willmore flow for
compact surfaces in the 3-dimensiona
Euclidean space R® According to this
formulation, we define the weak solution in
the sense of viscosity. On the other hand,
we find a possible interpretation for the
generalized Willmore flow which decreases
the Willmore energy in more natural way.
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1. Introduction

Let M be a compact immersed surface in
the 3-dimensional Euclidean space R®. Let

h, be the components of the second

fundamental form of M, by H=>h the

mean curvature. Let , -, -H 5 be the
ﬂj ij 2 ij

trace free tensor and o =" (g )? the square

length of @ . Then the Willmore functional
of X isgiven by

wW(x)=[ o,

where the integration is with respect to the
area measure of M. This functiona is
preserved if we move M via conformal
transformations of R°.

The first variation formula of the Willmore
functional is given by

(|, ®h =] @H+DH)X, &,

It follows that the L2-gradient flow is
X, =—(AH+®H)e,, so caled the Willmore

flow.

When we follow from the work of Droske
and Rumpf [DR], they defined the viscosity
solution for the mean curvature flow, the
level set formulation for the Willmore flow is
given by

u

iU uy,
[y

u =2 (J; - "2)(5kI —W)uijkI +lower order terms.



In this case, we can not define the viscosity
solution because there has no maximum
principle. The first work in this report is to
find a way of defining the viscosity solution.
In section 2, we find a level set formulation
of the Willmore flow by introduced the
weighted mean curvature, and define such a
weak solution. In section 3, we observe two
explicit the
Willmore energy in a natural way, but they
only satisfy the generalized Willmore flow.
We try to give a possible geometric

examples which decrease

interpretation for these examples. There is a
corresponding level set formulation, similar

to section 2, if we can show that this

interpretation works.
2. Definition of Weak solution

In this section we present briefly the
procedure for defining a weak solution to the
Willmore flow. We start with a forma
derivation of a level set formulation for the
Willmore flow X, =-(AH+®H)e, . The
first three steps of this derivation follows
essentialy from the work of Droske and
Rumpf [DR], but we use different notations.

Step 1. Suppose that ¢ =¢(x,t) isasmooth
function defined in Q OR® whose gradient
does not vanish, and each level set of ¢

smoothly evolves according to the Willmore
flow. Then @ = —\M(A H +®H), where
O isthe gradient operator of R®. Let 6 be

a smooth function with compact support
in Q. Then

jae_ [@aH+oH)e

Q

Step 2. Substituting the following equations

M =GH- O B

\D‘/HD# " \D#
Oh,” = ‘(4

‘ 4 (§0A§0AB)
into the last equation of step 1 and applying
the divergence formulawe have

B I 4,6’ J (M&B@H>B+M®H)Z@§A,

where
1<i,j,k<2,1<AB,C<3

_ 5 O O
AB AB ‘Dd ‘Dd
Step3. Let W=‘Dg4H be the weighted

mean curvatureand ) asmooth function

with compact support in Q. Then the level
set formulation of Willmore flow in integral
form is given by

Given ¢, in Q, find (¢(x,t), w(x,t)) with

qa(O) = ¢, such that

1
= |( s Wg +—— W<0A)9
w (g™

((PA s (PAB

ii_qﬂ - i(ﬁi#iqoﬂﬁw)
foralg, ¢ JC(Q), t>0.

Step 4. To find the level set formulation of
WiIImorerow in differential form, we need

(@;4)5 —‘ l# Ac¢cs ]
(Pag)c :_@ (PAD(;DC §B +PD§ZDC ¢A§4

(—-l)A:—-i (WA _&BATT)'

Og” |04 Od [Be
It follows from the divergence formulathat
w= _PAB&;AB7

@ = PAEiwAB-|'2 (PAD%B+PBD¢DA WJAB)‘ #‘D#
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Since the second term of this equation can
not compare by the maximum principle, we
need modify it when define weak solution.
From now on, for simplification, all

derivatives are in the sense of R® and
1<i, j,k<3. For given functions

@,WwOC(R®%[0,0)) n L”(R® x[0,)),
@,@W,WOC" (R x[0,)),
If at(X,,t,) OR®x[0,0),

@- phasalocal maximum, g(X,,to) = &Xq, to ),

@ z2-(9; —¢¢;)w, _a’.jﬂiﬂj _&ufigj (& *+n)?
_W(fk +’7k)2 +¢|j (EI +’7i)(£j +,7j)
+@EE NS WL,

+c? (@ &€, +%\fv) for some n0OR®,cOR

if [Dg(%y,to) = 0.

We can define weak subsolution in the same
way, and a weak solution is both weak
supersolution and a weak subsolution. This
formulation of weak solution is based on the
idea of the mean curvature flow defined by

@—- @ hasaloca minimum, @(X,,t,) = @(X,,telEvans and Spruck [ES]. The main difficult
w—Whasalocal maximum, W(x,, t,) = —P. @ ( rpk)tamthe existence of weak solution will
’ ] ij Mj b

if |D(4¢ 0; W(X,,t,) = —(9; _<(i<(j)¢_?j (%o o)
for some& OR®,[¢] =Lif [0¢ (%,,t,) =0,
w—W hasalocal minimum , w(x,,t,) = -

if [0gd# 0, W(xy. t,) = (0 —&&,)8 (% to)
for some & OR® | =1if [O¢ (%,.t,) =0,

Here we use notations
Q(Xo’to):zm(xmto)=Q(X0ato),

060 t6) = [0, t6) =[00(%. o),
W, (Xo,t0) =W (Xo, o) =W, (Xo, to)-

Since

@-@,w—-W hasalocal maximum at (X,,t,),
@- @, w—-W hasaloca minimumat (x,,t,),
the above notations make sense.

Now we define our weak supersolution in
terms of pointwise behavior asfollows:

(¢, w) isaweak supersolutioniif at (x,,t,)

pw - MW~ b i Wi \2
azAm %\mmw A Gand o B

|+\Ni ¢71+WJ

%(m m)(@ W)

_W(

od o
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)(J )IfD( t0)¢0
o A3 T

ti¥4t there are two distinct functions in this
formulation..

3. Generalized Willmore Flow
P, @ (%o to),

There are explicit examples which show that
for decreasing the Willmore energy, there are
more natural way, called the generalized
Willmore flow

X, == p?(AH +®H) e, +tangential component.

The first exampleisthe torus
X =((1+r cosb) cosg¢, (1+r cosf)singl+rsing).

where r=r(t), 0<r,=r(0)<1. We find that
X satisfied the generalized Willmore flow

X, == p?(AH +®H) e, +tangential component.,
where p? =r3L+rcosd)® . In fact, r(t)=ro if

.
o = () = (A+y2r)e™™ +42r -1

V2 V2 (@++2r,)e?® —\or, +1
r ¢\lf' We note that X converges to the
2

Clifford torus as t tends to infinity.

The second exampleisthe elipsoid
X =(acosfcosg¢,acosfsing,bsing),

where a=a(t), b=bt). We find that X
satisfied the generalized Willmore flow
=-p?(AH +®H) e, +tangential component,
- A(c) cos* 8- B(c) cos® —-C(c)
a’(1+(c* -1 cos’ 6)* ’
c=b/a, A, B and C are functions of c. In fact,
a(t) =b(t) =a(0) =b(0)if a(0) = b(0);

where p? =




_ pe”
0= pe® +1

converges to the round sphere as t tends to
infinity.

We want to find a possible interpretation for

these explicit examples. For a solution of the

Willmore flowx:M - R® and a family of
conformal transformations depending on t,
T:R®*%[0,0) - R®, there are two distinct
induced metrics on R®. Let ds? be the usual
metric of R* and ds® = (T ™) ds? =e *ds?
for fixed t, where u is a smooth function
defined on R®x[0,). Since the Willmore

energy W(X) is invariant under conformal
transformations of R®,

(|, o=, o
= [ (AH +OH)X, (& wAw,

= [ (AH +PH)X, B e ™ @A,
M

where X =T 0X. Inthissense, the
equation of  Willmore flow will be

X, =-e (AH +PH) e, + tangential component.
It is expected that the tangential component
comes from diffeomorphisms of M, and the
scaling factor comes from the conformal
transformation T. For finding the origin
solution X of the Willmore flow, let
X =T oX. Therefore we need to solve the
solution in a natural way, that is, finding the
solution of a generalized Willmore flow,
finding the associated diffeomorphisms and
conformal transformations. According to the
classical Liouville's theorem, a conformal
transformation of R® is the composition of a
motion a homothety and an inverse, we need
finding conformal transformations in the
conformal group. On the other hand,
isometric diffeomorphisms depends on M.
Following from the procedure of section 2,
we can obtain the corresponding equation for
the generalized Willmore flow in the level set
form.
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