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A designated verifier signature (DVS) scheme is a special type of digital signature 

scheme without the property of non-repudiation. Such schemes only allow the designated 
verifier to validate the signer’s signature. Meanwhile, the designated verifier is not able to 
convince any third party of the signature’s actual signer, since he can also generate a com-
putationally indistinguishable one compared to the received signature. A strong designated 
verifier signature (SDVS) scheme further prohibits anyone except for the intended verifier 
from validating the signature as it requires the designated verifier’s private key to finish 
the verification process. In this paper, we propose an efficient short SDVS scheme with 
low computation costs. Unlike many SDVS schemes primarily implemented on pairing- 
based cryptosystems, we focus on the discrete logarithms (DL) based system. Compared 
with those DL based SDVS schemes, ours provides better functionalities and efficiency 
and hence benefits the practical applications. In addition, the security requirement of un-
forgeability against existential forgery on adaptive chosen-message attacks (EU-CMA) is 
proved in the random oracle model.  
 
Keywords: designated verifier, digital signature, discrete logarithms, public key system, 
cryptography 
 
 

1. INTRODUCTION 
 

A digital signature scheme [1, 2] is an important technique of public key cryptosys-
tems [2-5] to ensure the properties of integrity, authenticity [6] and non-repudiation [7]. 
Since all public keys are either maintained by the system authority (SA) or stored in the 
public key directory, one can easily obtain the corresponding public key of the other to 
verify his/her signature. The actual signer thus can not deny his/her generated signature 
later. However, in some applications such as the electronic voting [8, 9], the non-repu- 
diation property is not desirable.  

With an eye to the above requirement, in 1990, Chaum and Antwerpen [10] proposed 
an undeniable signature scheme in which the signer must assist the verifier to validate the 
resulted signature. It is obviously that any third party attempting to verify the signature has 
to reach an agreement with the signer in advance. That is to say, in an undeniable signa-
ture scheme, the signer has completely control over his generated signatures. In 1996, Ja-
kobsson et al. [11] came up with the notion of designated verifier proofs and in a sense 
proposed a designated verifier signature (DVS) scheme. In their scheme, the designated 
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verifier can be convinced of the signer’s identity regarding a given signature without the 
assistance of the actual signer. Yet, the designated verifier can not transfer the proofs to 
convince any third party, since he is also capable of generating another DVS which is 
computationally indistinguishable from the received one. In 2003, Wang [12] pointed out 
that Jakobsson et al.’s scheme is insure because a malicious signer can easily cheat the 
designated verifier. In the same year, Saeednia et al. [13] formalized the notion of DVS 
scheme and further proposed a so-called strong designated verifier signature (SDVS) 
scheme in which the designated verifier’s private key is directly involved in the validation 
equation. Consequently, anyone can not even perform the validation equation without the 
knowledge of designated verifier’s private key. In 2007, Lee and Chang [14] further com-
bine SDVS schemes with message recovery signatures. More recently, they [15] pointed 
out that signer’s ambiguity could be a vital property of secure SDVS schemes. Namely, 
even if a signer’s private key is compromised, any attacker still can not identify the actual 
signer for a given SDVS which has not been received by the designated verifier. Another 
SDVS scheme satisfying such a property is also proposed in their scheme. Nevertheless, 
they give no formal proof. In 2004, Susilo et al. [16] addressed the first identity-based 
SDVS scheme from bilinear pairings. Since then, several researchers [17-20] have devoted 
themselves to the design of pairings-based SDVS schemes. However, we find out that 
none of these schemes could fulfill the property of signer’s ambiguity addressed by Lee 
and Chang [15].  

Generally speaking, an SDVS scheme should satisfy the following security require-
ments: 

 
(1)  Unforgeability: It is computationally infeasible for any polynomial-time adversary to 

forge a valid SDVS without knowing the private key of either the signer or the des-
ignated verifier. 

(2)  Non-Transferability: Based on the transcript simulation property in an SDVS scheme, 
the designated verifier can also generate another SDVS which is computationally in-
distinguishable from the received one. Therefore, the designated verifier can not 
transfer the SDVS to any third party. 

(3)  Signer’s Ambiguity: It is difficult to determine the identity of signer from the actual 
signer and the designated verifier for a given SDVS.  

 
In this paper, we focus on the DL based systems and propose a provably secure short 

SDVS scheme with low computation costs in the random oracle model. Compared with 
related works, our scheme not only has shorter signature length, but also earns more com-
putational efficiency. 

The rest of this paper is organized as follows. Section 2 states some preliminaries. We 
introduce the proposed short SDVS scheme in section 3. The security proof and some 
comparisons are detailed in section 4. Finally, a conclusion is made in section 5. 

2. PRELIMINARIES 

In this section, we briefly review some security notions and the computational as-
sumptions. 
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Discrete Logarithm Problem; DLP [21] 
Let p and q be two large primes satisfying q | p − 1, and g a generator of order q over 

GF(p). The discrete logarithm problem is, given an instance (y, p, q, g), where y = gx mod 
p for some x ∈ Zq, to derive x.  
 
Discrete Logarithm (DL) Assumption [22] 

A probabilistic polynomial-time algorithm B is said to (t, ε)-break the DLP if given a 
DLP instance (y, p, q, g) where y = gx mod p for some x ∈ Zq, B can derive x with prob-
ability ε after running at most t steps. The probability is taken over the uniformly and in-
dependently chosen instance and over the random bits consumed by B. 
 
Definition 1  The (t, ε)-DL assumption holds if there exists no probabilistic polynomial- 
time adversary that can (t, ε)-break the DLP. 

3. THE PROPOSED SCHEME 

In this section, we first addresses involved parties and composed algorithms of our 
proposed scheme and then give a concrete construction. 
 
3.1 Involved Parties 
 

An SDVS scheme has two involved parties: a signer and a designated verifier. Each 
one is a probabilistic polynomial-time Turing machine (PPTM). The signer will generate 
an SDVS intended for the designated verifier. Consequently, the resulted SDVS can only 
be validated by the designated verifier with his private key. An SDVS scheme is correct if 
the signer can generate a valid SDVS and only the designated verifier can be convinced of 
the signer’s identity. 
 
3.2 Algorithms 
 

The proposed SDVS scheme consists of the following algorithms: 
 
Setup: Taking as input 1k where k is a security parameter, the algorithm generates the sys-
tem’s public parameters params. 
Signature-Generation (SG): The SG algorithm takes as input the system parameters 
params, a message, the public key of the target designated verifier and the private key of 
signer. It generates the resulted SDVS δ. 
Signature-Verification (SV): The SV algorithm takes as input the system parameters 
params, a message m, an SDVS δ, the private key of the designated verifier and the public 
key of signer. It outputs True if the δ is a valid SDVS for m. Otherwise, the symbol ⊥ is 
returned as a result. 
Transcript-Simulation (TS): The TS algorithm takes as input the system parameters 
params, a message m, an SDVS δ and the private key of designated verifier. It outputs 
another valid SDVS δ* for m. 
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3.3 Concrete Construction 

We demonstrate the proposed short SDVS scheme over a finite field. Details are de-
scribed below: 

Setup: Taking as input 1k, the system authority (SA) selects two large primes p and q 
where |q| = k and q | (p − 1). Let g be a generator of order q and f: Zp

* × Zp
* → Zq, F: Zq → 

Zq and H: {0, 1}* × Zq → Zq collision resistant hash functions. The system publishes the 
public parameters params = {p, q, g, f, F, H}. Each user Ui chooses his private key xi ∈ Zq 
and computes the public key as yi = gxi mod p. In addition, he also announces a universal 
parameter Ti = gci mod p where ci ∈R Zq. 

Signature-Generation (SG): Let Us and Uv be a signer and a designated verifier, respec-
tively. For signing a message m ∈R {0, 1}*, Us first chooses w ∈R Zq to compute Q = F(w) 
and 

R = f(yv
w mod p, yv

cs mod p),                                           (1) 
S = (w − xsH(m, Q, Ts)) mod q.                                        (2) 

Then Us deliveries m along with its SDVS δ = (Q, R, S) to Uv. 

Signature-Verification (SV): Upon receiving (m, δ), Uv computes 

Z1 = yv
Sys

xvH(m,Q,Ts) mod p,                                             (3) 
Z2 = Ts

xv mod p,                                                     (4) 

and then verifies the signature by checking whether 

R = f(Z1, Z2).                                                       (5) 

We show that the verification of Eq. (5) works correctly. From the right-hand side of 
Eq. (5), we have 

f(Z1, Z2) = f(yv
Sys

xvH(m,Q,Ts) mod p, Ts
xv mod p)                (by Eqs. (3) and (4)) 

= f(yv
S+xs(H(m,Q,Ts) mod p, Ts

xv mod p) 
= f(yv

S+xs(H(m,Q,Ts) mod p, yv
cs mod p) 

= f(yv
w mod p, yv

cs mod p)                               (by Eq. (2)) 
= R                                                (by Eq. (1)) 

which leads to the left-hand side of Eq. (5). 

Transcript-Simulation (TS): To generate another SDVS δ* intended for himself, Uv 
computes 

S* = S + 1 mod q,                                                   (6) 
R* = f(yvZ1 mod p, Z2).                                               (7) 

Here, δ* = (Q, R*, S*) is another valid SDVS for the message m. In fact, the probability 
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that the computed δ* = (Q, R*, S*) and the received δ = (Q, R, S) are identical is at most 
1/2k, i.e., Pr[δ* = δ] ≤ 1/2k. 

4. SECURITY PROOF AND COMPARISON 

In this section, we first define the security model of our proposed SDVS scheme and 
prove it in the random oracle model. Then some comparisons with related schemes are 
made. 
 
4.1 Security Model 
 

The crucial security requirement of the proposed SDVS scheme is unforgeability 
against existential forgery on adaptive chosen-message attacks (EU-CMA). We define the 
notion as follows, 
 
Definition 2  The proposed SDVS scheme is said to (t, qF, qH, qSG, qSV, ε)-secure against 
adaptive chosen message attacks (EU-CMA) if there exists no probabilistic polynomial- 
time adversary A running at most t steps, asking at most qF F random oracle, qH H ran-
dom oracle, qSG SG and qSV SV queries and then winning the following game with non- 
negligible advantage ε. 
 
Setup: A challenger B first runs the Setup(1k) algorithm and sends the system’s public 
parameters params to the adversary A. 
 
Phase 1: The adversary A can make several kinds of queries adaptively, i.e., each query 
might be based on the result of previous queries: 
 
− F random oracle queries: For each F random oracle query asked by A, B responses with 

a random number and maintains a table to store it. 
− H random oracle queries: For each H random oracle query asked by A, B responses with 

a random number and maintains a table to store it. 
− Signature-Generation (SG) queries: A makes an SG query for a message m with respect 

to the signer and the target designated verifier. B runs the SG algorithm on behalf of the 
signer and returns the corresponding SDVS. 

− Signature-Verification (SV) queries: A gives B a pair (m, δ). B runs the SV algorithm 
on behalf of the designated verifier and outputs True to A if δ is a valid SDVS for m. 
Otherwise, the symbol ⊥ is returned as a result. 

 
Forgery: Finally, A produces a new pair (m*, δ*) which is not outputted by the SG query. 
The adversary A wins if δ* is a valid SDVS for m*. 
 
4.2 Security Proof 
 

We prove that the proposed scheme achieves the EU-CMA security in the random 
oracle model. As our scheme is motivated by Schnorr’s signature scheme [23] which can 
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be regarded as a generic signature scheme, we can directly apply the proof techniques ad-
dressed by Pointcheval and Stern [24] to obtain the following theorem. 
 
Theorem 1 (The Forking Lemma)  In the random oracle mode, let A be a probabilistic 
polynomial-time Turing machine whose input only consists of public data. We denote re-
spectively by N1 and N2 the number of queries that A can ask to the random oracle and the 
number of queries that A can ask to the signer. Assume that, within a time bound T, A pro-
duces, with probability ε ≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h, σ2) where 
σ1 = R, h = (H(m, Q, Ts), F(w)) and σ2 = S. If the triples (σ1, h, σ2) can be simulated with-
out knowing the private key with an indistinguishable distribution probability, then there 
is another machine which has control over the machine obtained from A replacing inter-
action with the signer by simulation and produces two valid signatures (m, σ1, h, σ2) and 
(m, σ1, h′, σ2′) such that H(m, Q, Ts) ≠ H′(m, Q, Ts) in the expected time T ′ ≤ 120686T/ε. 
 

Concretely speaking, in our scheme, we can first obtain two equations 
 
Z1 = yv

Sys
xvH(m,Q,Ts) mod p, 

Z1 = yv
S′ys

xvH′(m,Q,Ts) mod p, 
 
and then compute the private key xs as  
 

xs = (S − S′)/(H′(m, Q, Ts) − H(m, Q, Ts)). 
 

Still, to show the tight relation between the security of our SDVS scheme and the 
hardness of the DLP, we have to present another more detailed security proof and advan-
tage analyses as follows. 
 
Theorem 2  The proposed SDVS scheme is (t, qF, qH, qSG, qSV, ε)-secure against existen-
tial forgery on adaptive chosen-message attacks (EU-CMA) in the random oracle model if 
there exists no probabilistic polynomial-time adversary that can (t′, ε′)-break the DLP, 
where 
 

ε′ ≥ (qF
-1)(ε − 2-k) + ((qF − 1)qF

-1)(4-1(ε − 2-k)3(qF
-1 + qH

-1)), 
t′ ≈ t + tλ(2qSG + 2qSV). 

 
Here tλ is the costs for performing a modular exponentiation over a finite field. 
 
Proof: Fig. 1 depicts the proof structure of this theorem. Suppose that a probabilistic poly-
nomial-time adversary A can (t, qF, qH, qSG, qSV, ε)-break the proposed SDVS scheme with 
non-negligible advantage ε under adaptive chosen-message attacks after running at most t 
steps and asking at most qF F random oracle, qH H random oracle, qSG SG and qSV SV que-
ries. Then we can construct another algorithm B that can (t′, ε′)-break the DLP by taking 
A as a subroutine. Let all involved parties and notations be defined the same as those in 
section 3.3, f a collision resistant hash function and (H, F) random oracles. The objective 
of B is to obtain α (= loggC) by taking (p, q, g, C = gα mod p) as inputs. In this proof, B 
simulates a challenger to A in the following game. 
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F oracle 

B 

m, δ = (Qj, Rj, Sj) 

{p, q, g, f, F, H, yv, ys, Ts} 

( log )g Cα =

SG query 

SV query 

(p, q, g, C = gα mod p)

H oracle 

m, δ* = (Qj, Rj*, Sj*)

A 

 
Fig. 1. The proof structure of Theorem 2. 

 
Setup: The challenger B runs the Setup(1k) algorithm to obtain the system’s public pa-
rameters params = {p, q, g, f, F, H} and comes up with a random tape composed of a long 
sequence of random bits. Then B chooses r, cs ∈R Zq to set yv = gr mod p, ys = C and Ts = 
gcs mod p. After that, B simulates one or two runs of SDVS scheme to the adversary A on 
input {p, q, g, f, F, H, yv, ys, Ts} and the random tape. 
 
Phase 1: A makes the following kinds of queries adaptively: 
 
− F random oracle: When A queries an F oracle of F(w), B returns O-Sim_F(w). The simu-

lated random oracle O-Sim_F operates as Fig. 2. Note that the function insert(N, b) 
will insert the value b into the array N. 

− H random oracle: When A queries an H oracle of H(m, Q, Ts), B returns O-Sim_H(m, Q, 
Ts). The simulated random oracle O-Sim_H operates as Fig. 3.  

− SG queries: When A makes an SG query for some message m, B returns (m, O-Sim_ 
SG(m)) as the result. The simulated SG oracle O-Sim_SG operates as Fig. 4.  

− SV queries: When A makes an SV query for some pair (m, δ), B returns O-Sim_SV(m, δ) 
as the result. The simulated SV oracle O-Sim_SV operates as Fig. 5.  

 
oracle O-Sim_F(w) 
1: for i = 0 to qF − 1 
2:  if (Q_F[i] = w) then   // It is an old query. 
3:   exit for; 
4:  else if (Q_F[i] = “”) then   // It is a new query.  
5:   insert(Q_F, w); A_F[i] ← l ∈R Zq; exit for; 
6:   end if 
7: next i 
8: return A_F[i]; 

Fig. 2. Algorithm of the simulated random oracle O-Sim_F. 
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oracle O-Sim_H(m, Q, Ts) 
1: for i = 0 to qH − 1 
2:  if (Q_H[i][0] = m and Q_H[i][1] = Q and Q_H[i][2] = Ts) then   // It is an old query. 
3:   exit for; 
4:  else if (Q_H[i] = “”) then   // It is a new query.  
5:   insert(Q_H, (m, Q, Ts)); A_H[i] ← h ∈R Zq; exit for; 
6:   end if 
7: next i 
8: return A_H[i]; 

Fig. 3. Algorithm of the simulated random oracle O-Sim_H. 

 
oracle O-Sim_SG(m) 
1: Choose w, S ∈R Zq; 
2: Q ← O-Sim_F(w); h ← O-Sim_H(m, Q, Ts); 
3: Z1 = yv

Sys
rh mod p; Z2 = yv

cs mod p; R = f(Z1, Z2); 
4: return δ = (Q, R, S); 

Fig. 4. Algorithm of the simulated SG oracle O-Sim_SG. 

 
oracle O-Sim_SV(m, δ)   // δ = (Q, R, S) 
1: h ← O-Sim_H(m, Q, Ts); 
2: Z1 = yv

Sys
rh mod p; Z2 = Ts

r mod p; R* = f(Z1, Z2); 
3: if (R = R*) then 
4:  return True; 
5: else 
6:   return ⊥; 
7: end if 

Fig. 5. Algorithm of the simulated SV oracle O-Sim_SV. 

 
Analysis of the game: It can be seen that the simulation is almost perfect and the adver-
sary A’s view in the above simulation is computationally indistinguishable from that in a 
real situation. Let Fv be the event that A tries to forge an SDVS for a message m and then 
finally outputs a valid SDVS δ = (Qj, Rj, Sj). By assumption, we know that A has non-neg- 
ligible probability ε to break the proposed SDVS scheme, i.e., Pr[Fv] = ε. The probability 
that A guesses a correct random oracle value without asking F(wj) or H(m, Qj, Ts) is not 
greater than 2-k. We denote such an event by NRO and Pr[NRO] ≤ 2-k. Consequently, we 
can further express the probability that A outputs a valid forgery after asking F(wj) along 
with H(m, Qj, Ts) queries as 

Pr[Fv ∧ ¬NRO] ≥ (ε − 2-k). 

If A has ever asked F(wj), wj must be kept in some entry of the Q_F array. Then B will 
have the probability of qF

-1 to solve the DLP by computing  

α = (wj − Sj)H(m, Qj, Ts)-1 mod q. 

In the other hand, with the probability of (qF − 1)qF
-1, B might have to launch the 

second simulation in case that A didn’t ask F(w). B again runs A on input {p, q, g, f, F, H, 
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yv, ys, Ts} and the same random tape. Since A is provided with the same sequence of ran-
dom bits, we know that the ith query he will ask is always the same as the one during the 
first simulation. For all the oracle queries before H(m, Qj, Ts), B returns identical results 
as those in the first time. When A asks H(m, Qj, Ts), B directly gives a new hj* ∈R Zq in-
stead of hj. Meanwhile, A is then provided with another different random tape which is 
also composed of a long sequence of random bits. By the “Forking lemma” of Theorem 1, 
if A eventually outputs another valid SDVS δ* = (Qj, Rj*, Sj*) with H(m, Qj, Ts) ≠ H*(m, 
Qj, Ts) or A has ever asked F(wj) this time, B would have a chance to solve the DLP. To 
evaluate B’s success probability, we use the “Splitting lemma” [24] as follows. 

Let X and Y be the sets of possible sequences of random bits and random function 
values supplied to A before and after the H(m, Qj, Ts) query is made by A, respectively. 
Then we know that on inputting a random value (x || y) for any x ∈ X and y ∈ Y, A outputs 
a valid forgery with the probability of ε, i.e., Prx∈X,y∈Y [Fv] = ε. According to the “Splitting 
lemma”, there exists a subset D ∈ X such that 
 
(a) Pr[x ∈ D] = |D| ⋅ |X|-1 ≥ 2-1ε. 
(b) ∀x ∈ D, Pry∈Y[Fv] ≥ 2-1ε. 
 

From the above definition, we know that if n ∈ D is the supplied sequence of random 
bits and random function values given to A before the H(m, Qj, Ts) query is made, then for 
any sequence of random bits and random function values y′ ∈ Y after the query, A outputs 
a valid forgery with the probability of at least (2-1ε)2 = 4-1ε2, i.e.,  
 

Prn∈D,y′∈Y[Fv] ≥ 4-1ε2. 
 
Since the probability that A outputs another SDVS δ* = (Qj, Rj*, Sj*) with H(m, Qj, Ts) ≠ 
H*(m, Qj, Ts) is qH

-1, we can express the probability that B solve the DLP in the second 
simulation as 
 

(ε − 2-k)(4-1(ε − 2-k)2)(qF
-1 + qH

-1) = 4-1(ε − 2-k)3(qF
-1 + qH

-1). 
 
By adding the success probability of B in the first simulation, one can observe that after the 
second simulation, B could solve the DLP with the success probability 
 

ε′ ≥ (qF
-1)(ε − 2-k) + ((qF − 1)qF

-1)(4-1(ε − 2-k)3(qF
-1 + qH

-1)). 
 
Moreover, the computational steps required for B during one simulation is  
 

t + tλ(2qSG + 2qSV)  
 
where tλ is the costs for performing a modular exponentiation over a finite field. We there-
fore can represent the total computational steps for B after the second simulation as  
 

t′ ≈ (qF
-1)(t + tλ(2qSG + 2qSV)) + ((qF − 1)qF

-1)(t + tλ(2qSG + 2qSV))  
= t + tλ(2qSG + 2qSV).                                                
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4.3 Comparisons 
 

For facilitating the following comparisons, we first define several used notations:  
 
|x|: the bit-length of an integer x 
H: a one-way hash function 
M: a modular multiplication computation 
E: a modular exponentiation computation 
I: a modular inverse computation 
 
The time for performing the modular addition and subtraction computation is ignored be-
cause it is negligible as compared to the above. We compare our scheme with previously 
proposed DL ones including Jakobsson et al.’s (JSI for short) [11], Saeednia et al.’s (SKM 
for short) [13], the Yang-Liao (YL for short) [25] and two presented by Lee and Chang 
separately in 2007 (LC-1 for short) [14] and 2009 (LC-2 for short) [15]. Detailed com-
parisons are demonstrated as Table 1. Although the Yang-Liao scheme has the lowest com-
putational costs, the signature length of their scheme is longer than that of ours. Most im-
portantly, their scheme cannot satisfy the requirement of signer’s ambiguity addressed in 
[15], which is regarded as an essential property of secure SDVS schemes. To sum up, we 
conclude that the proposed SDVS scheme not only provides better functionalities, but also 
has lower computation costs and shorter signature length. 
 

Table 1. Comparisons of the proposed and related schemes. 
Scheme 

Item JSI SKM YL LC-1 LC-2 Ours 

Basic Assumption DL DL DL DL DL DL 
Unforgeability × √ √ √ √ √ 

Non-Transferability √ √ √ √ √ √ 
Signer’s Ambiguity × × × × √ √ 
Provable Security × × √ × × √ 

Signature Length1 3|p| + 3|q| 
≈ 2016 bits 

3|q| 
≈ 480 bit

|p| + |q| 
≈ 672 bits

2|p| + 2|q|
≈ 1344 bits

|p| + |q| 
≈ 672 bits 

3|q| 
≈ 480 bits 

Computation Costs2 16E + 8M + 
3H + I 

6E + 8M 
+ 3H + 4I

3E + 6M 
+ 3H 

12E + 10M
+ 3H + 2I

7E + 3M  
+ 3H 

5E + 4M  
+ 6H 

1. Let |p| ≈ 512 bits and |q| ≈ 160 bits. 
2. The computation costs include phases of signature generation, signature verification and transcript simulation. 

5. CONCLUSIONS 

In this paper, we have proposed an efficient DL based short SDVS scheme with low 
computation. Since the private key of designated verifier is directly involved in the signa-
ture validation process, only the designated verifier can be convinced of the signer’s iden-
tity. Any third party including the signer can not check the signature validation equation 
without having the knowledge of the designated verifier’s private key. Compared with 
previous related works, our proposed short SDVS scheme has better efficiency and func-
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tionalities. Moreover, we also proved that the proposed SDVS scheme achieves the EU- 
CMA security in the random oracle model. 
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