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Abstract

Keywords: EM, LS, ACM, Interpolator, Equalizer

The purpose of this report is to report and discuss the progress of the project. This project aims
to uncover relations between algorithms of least squares (LS) family and the algorithm of expectation
maximization (EM) and develop new applications of these algorithms for the design of interpolator of the
synchronizer and equalizer in communication systems. This project has been executed for one year. One
result of ths result is that we have successfully applied the EM and LS related algorithm to develop a
new approach for designing an interpolator and decision feedback equalizer. The design approach and
derivation constitutes the main content of this report. Along with the research to investigate the LS and
EM related algorithms, we observe an algorithm called alternating coordinates minimization (ACM). This
algorithm, similar to the EM algorithm, also divides a problem into two small problems and solve them
iteratively. The ACM algorithm, similar to the LS algorithms, deals with the deterministic data and can
be used to identify model parameters in the sense of user-defined error criterion. It is known that the EM
algorithm, defined in statistical sense, is an iterative algorithm of the expectation and maximization for
solving the problem of maximum likelihood (ML) estimation. Similarly, the ACM algorithm, defined in
the deterministic sense, is also an iterative algorithm of minimization of different coordinates for solving
the problem to minimize a user-defined error criterion. Therefore, it is as useful as the EM algorithm.
We have applied this algorithm for identifying model parameters of a nonlinear magnetic read head and
written a paper to attend the international conference. The paper also has been accepted by the IEEE
Trans. Magnetics. This result is appended in the report.
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ø: Ñµqñ: bP¦mÍ$2°¥Âí�^ÂD�“Â, Optimal Joint Design of
Interpolation Filters and Decision Feedback Equalizers

abstract

This paper presents an algorithm to design jointly optimal interpolation filters and decision feedback
equalizers in the sense of minimum mean-square error such that the joint capacity which is neglected in
conventional design is explored to improve the receiver performance. The algorithm comprises an iteration
of two alternating simple quadratic minimizing operations and ensures convergence. A simulation example
for the raised-cosine channel demonstrates that via this approach an improvement over the conventional
design can be achieved.

1.1 Introduction

In a digital baseband communication receiver, a timing recovery system is used to compensate for the timing
offset between the transmitted data and the received sample while an equalizer serves to balance the channel
effect for reducing the intersymbol interference (ISI). The timing recovery system is commonly realized by
a timing offset estimator combined with either a voltage control oscillator (VCO) or an interpolation filter
[1] and the commonly used equalizer is the decision-feedback equalizer (DFE) [2]. It is known that in the
receiver, the timing recovery and the equalizer do not work independently of each other and the interaction
has been studied [3, 4, 5]. The single-sideband AM digital communication system is studied in [3, 4] to
jointly design an analog timing loop for carrier recovery and an FIR equalizer in the receiver. In [5], a
single adaptive fractionally-spaced FIR filter is used to realize the functions of both the timing recovery
and the equalizer. In the present paper, we consider the digital baseband communication systems with a
receiver containing a timing recovery system as well as a DFE and concentrate on the joint design of the
interpolation filter and the DFE.

In convention, the interpolation filter and equalizer are designed separately: the interpolation filter is
designed assuming the channel is known and fixed [6, 7] and the DFE is designed assuming the timing offset
has been completely compensated [2]. The reason for designing each independently is mainly the simplicity
because the joint design of both requires to solve a nonlinear optimization problem. The price, however,
is that the joint capability is sacrificed. Investigating closely this problem, we observe that the complexity
for solution of joint design does not seem so formidable. While the design of interpolation filter and
DFE independently requires only solving a quadratic minimization problem each, an algorithm for optimal
joint design, presented in this paper, requires only an iteration of two quadratic minimizing operations.
Therefore, the capacities of the interpolation filter and DFE can be further employed for improving the
receiver performance. Specifically, we formulate together the interpolation filter and the DFE to minimize a
mean-square error (MSE) and present an algorithm for solution. The algorithm comprises only an iteration
of two simple quadratic minimizations and thus is simple to realize; it also ensures convergence and the
convergence solution, by choosing a proper initial estimate, guarantees better than those obtained from
conventional designs. A simulation example for the raised-cosine channel is performed to illustrate the
design and the performance improvement.

1.2 Problem Formulation

The received signal of a digital baseband communication system can be expressed as

x(t) =
∞∑

k=−∞
dkh(t− kT ) + n(t) (1.1)
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where dk is the transmitted data symbol with period T , h(t) is the cascaded impulse response of the
transmission filter, the channel, and the receiver filter, and n(t) is an additive noise which may be white or
colored depending on applications. Assume baud-rate sampling with a normalized sampling timing offset
represented by µ, the received sample is given by

xk(µ) =
∞∑

i=−∞
dk−ih((i− µ)T ) + nk (1.2)

=
∞∑

i=−∞
dk−ihi(µ) + nk (1.3)

where xk(µ) = x((k − µ)T ), hi(µ) = h((i − µ)T ), and nk is the noise sample. We also assume that the
timing offset µ is uniformly distributed within the range [−0.5, 0.5], as is commonly done. Note that the
baud-rate sampling is assumed here for simplicity; the interpolation filter with a higher sampling rate can
be similarly formulated but requires further mechanism for down-sampling processing.

Fig. 1.1 depicts an equivalent discrete-time model of a digital baseband communication receiver; the
receiver consists of a timing recovery system, a decision-feedback equalizer (DFE), and a detector. The
timing recovery system includes a timing offset estimator and an interpolation filter. Like conventional
designs, the timing offset estimator is assumed to obtain correctly the timing offset µ and the detector
obtains correct decision, i.e., d̂k = dk. The purpose of this paper is to design the interpolation filter and DFE
such that the mean square of the error between the transmitted data and the DFE output is minimized.

detector

interpolation
filter

feedforward
filter

feedback filter

kd
)(µkh )(µkc kb

ka

kd̂

composite
channel kn

timing offset
estimator

µ

)(µkx )(µkz)(µky

Figure 1.1: An equivalent discrete-time model of a digital baseband communication system

1.2.1 MSE criterion

As usual, an FIR interpolation filter with coefficients ck(µ) is used to compensate for the timing offset [8],
yielding its output sample yk(µ),

yk(µ) =
L2∑

i=−L1

ci(µ)xk−i(µ) (1.4)

where integers L1 and L2 indicate the lengths of non-causal and causal parts of the interpolation filter.
Each coefficient is usually characterized by a polynomial of degree M in µ,

ck(µ) =
M∑

m=0

fk,mµm (1.5)

Farrow [9] have proposed an efficient structure to realize such an interpolation filter and thus fk,m’s are
also called the Farrow coefficients [7]. The DFE including a feedforward filter of order K1 and a decision
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feedback filter of order K2 is then used to combat the ISI, yielding the output zk(µ),

zk(µ) =
K1∑

i=0

biyk−i(µ) +
K2∑

i=1

aidk−i (1.6)

The MSE criterion J , therefore, is given by

J = E[dk − zk(µ)]2 (1.7)

where the expectation operation E[·] is taken with respect to the randomness of the input data, the noise
sample and the timing offset µ.

It is more convenient to express the MSE in the frequency domain. Let H(ω, µ), C(ω, µ), B(ω),
and A(ω) denote, respectively, the frequency responses of the composite channel, the interpolation filter,
the feedforward filter, and the decision feedback filter; that is H(ω, µ) =

∑∞
n=−∞ hn(µ)e−jnω, C(ω, µ) =∑L2

n=−L1
cn(µ)e−jnω, B(ω) =

∑K1
n=0 bne−jnω, and A(ω) =

∑K2
n=1 ane−jnω. Then, via the Parseval’s theorem

[2], the MSE in frequency domain can be derived,

J =
1
2π

∫ 0.5

−0.5

∫ π

−π

[
D(ω)|1−H(ω, µ)C(ω, µ)B(ω)−A(ω)|2 + N(ω)|C(ω, µ)B(ω)|2

]
dωdµ (1.8)

=
∫ 0.5

−0.5
Jµdµ (1.9)

where D(ω) is the power spectrum density (PSD) of dk and N(ω) is the PSD of nk. Note that Jµ in (1.9)
is the MSE of a given fixed µ, which will be used later to illustrate performance difference between various
designs.

The frequency response of the interpolation filter can be represented in a more compact form using
(1.5) [10],

C(ω, µ) = fT (µ⊗ ωc) (1.10)

where f = [f−L1,0, . . . , fL2,0, . . . , f−L1,M , . . . , fL2,M ]T , µ = [1, µ, . . . , µM ]T , ωc = [ejωL1 , . . . , 1, . . . ,
e−jωL2 ]T , the superscript T denotes the transpose operation and the notation ⊗ represents the right
Kronecker product [11]. Similarly, the frequency responses of the feedforward and decision feedback filters
can be represented in a vector form,

B(ω) = bT ωb (1.11)
A(ω) = aT ωa (1.12)

where b = [b0, b1, . . . , bK1 ]
T , a = [a1, a2, . . . , aK2 ]

T , ωb = [1, e−jω, . . . , e−jωK1 ]T , and ωa = [e−jω, e−jω2

. . . , e−jωK2 ]T .
Substituting (1.10), (1.11), and (1.12) into (1.8), we obtain the MSE J as a nonlinear function of

the interpolation filter coefficients f and the DFE parameters θ = [bT ,aT ]T . The nonlinear optimization
approaches [12] can be used for solution but are complicated. In this paper, the alternating coordinates
minimization (ACM) [13] algorithm is applied for solution such that simple realization is obtained. Before
discussing the detail of the algorithm, note that since the interpolation filter and the feedforward filter are
cascaded, a constant factor redundancy thus exists between f and b. Hence an extra constraint f0,0 = 1 is
imposed to remove this redundancy. The optimization problem, therefore, is given by

Minf ,θ J subject to f0,0 = 1 (1.13)
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1.3 ACM Algorithm for Optimal Joint Design

The ACM algorithm for solving this optimization problem involves iterations of two alternating optimizing
operations; in the p-th iteration, the first operation solves θ(p) of (1.13) given f = f (p−1), and then the
second operation solves f (p) of (1.13) given θ = θ(p) which is obtained from the first operation. The
iteration continues until the convergence of f (p) and θ(p). Each optimizing operation, shown below, only
requires solving a simple quadratic optimization and thus its solution is unique. Also the two operations
solve the coefficients θ(p), f (p) alternatingly, the obtained MSE J is therefore guaranteed non-increasing
in every iteration. Since the MSE J is non-negative and thus bounded from below, the ACM algorithm
always converges. The derivations of two optimizing operations are described in the following subsections.

1.3.1 First optimizing operation: solve θ(p) of (1.13) given f = f (p−1).

Since f is given and fixed, the constraint is naturally satisfied and C(ω, µ), for a given ω and µ, is a fixed
scalar; the MSE, after substituting (1.12) and (1.11) into (1.8), turns into a quadratic function of θ,

J =
1
2π

∫ 0.5

−0.5

∫ π

−π

[
D(ω)|1−H(ω, µ)C(ω, µ)bT ωb − aT ωa|2 + N(ω)|C(ω, µ)bT ωb|2

]
dωdµ (1.14)

=
1
2π

∫ 0.5

−0.5

∫ π

−π

[
D(ω)|1− θT Rωθ|2 + N(ω)|θT Qωθ|2

]
dωdµ (1.15)

where ωθ = [ωT
b , ωT

a ]T ,

R =

[
H(ω, µ)C(ω, µ)IK1+1 0(K1+1)×K2

0K2×(K1+1) IK2

]
, Q =

[
C(ω, µ)IK1+1 0(K1+1)×K2

0K2×(K1+1) 0K2×K2

]

with Im representing the identity matrix of dimension m and 0m×n the m× n zero matrix. The solution
θ(p) can be obtained by setting the gradient vector of J in (1.15) with respect to θ to zero and rearranging,
yielding

θ(p) = Ω−1
f vf (1.16)

where

Ωf =
1
2π

∫ 0.5

−0.5

∫ π

−π
Re[D(ω)Rwθw

H
θ RH + N(ω)Qwθw

H
θ QH ]dωdµ (1.17)

and

vf =
1
2π

∫ 0.5

−0.5

∫ π

−π
D(ω)Re[Rωθ]dωdµ (1.18)

with Re[·] representing the real part of a variable. The subscript f in Ωf , vf indicates that they are
evaluated given a fixed interpolation filter f . Note that the matrix Ωf is symmetric and some of its
submatrices have a Toeplitz form; these properties can be used to simplify the matrix evaluation and are
not elaborated further for brevity.

1.3.2 Second optimizing operation: solve f (p) of (1.13) given θ = θ(p).

Note that the given θ(p) is obtained from the previous optimizing operation. Since θ is known, A(ω)
and B(ω) can be evaluated and hence the optimization problem (1.13) is turned into a simple constraint
quadratic optimization problem,

Minf J subject to f0,0 = 1 (1.19)

where

J =
1
2π

∫ 0.5

−0.5

∫ π

−π
[D(ω)|1−H(ω, µ)B(ω)fT (µ⊗ ωc)−A(ω)|2 + N(ω)|B(ω)fT (µ⊗ ωc)|2]dωdµ (1.20)
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Express the constraint as fT ic = f0,0 = 1 where ic is a vector whose (L1 + 1)th component is unity and
whose other components are zero. Then, the solution f (p) can be derived using the Lagrange multiplier
technique [12], yielding

f (p) = Ω−1
θ

(
vθ +

1− iT
c Ω−1

θ vθ

iT
c Ω−1

θ ic

ic

)
(1.21)

where

Ωθ =
1
2π

∫ 0.5

−0.5

∫ π

−π
|B(ω)|2[D(ω)|H(ω, µ)|2 + N(ω)]Re[(µ⊗ ωc)(µ⊗ ωc)H ]dωdµ (1.22)

=
1
2π

∫ 0.5

−0.5

∫ π

−π
|B(ω)|2[D(ω)|H(ω, µ)|2 + N(ω)][(µµH)⊗ Re(ωcω

H
c )]dωdµ (1.23)

and

vθ =
1
2π

∫ 0.5

−0.5

∫ π

−π
D(ω)Re [H(ω, µ)B(ω)(1−A∗(ω))(µ⊗ ωc)] dωdµ (1.24)

with the superscript * standing for the complex conjugate operation.
The algorithm starts with an initial guess f (0) and iteratively performs the above two optimizations

until convergence. Numerically, the algorithm terminates when the ratio of MSE improvement over MSE
in previous iteration, |J (l) − J (l−1)|/J (l−1), is less than a predetermined small value ε.

Note that even the ACM algorithm ensures convergence, like most nonlinear optimization algorithms, it
may converge to a local minimum. Therefore, a sensible initial estimate may be required. One good initial
estimate is to take the f obtained from the conventional approach and normalizes it to obtain f0,0 = 1.
The convergence solution using this initial estimate, because of the non-increasing MSE of the algorithm,
is ensured to result in a lower MSE than that by the conventional design. Another good initial estimate is
f (0) = ic, i.e., f

(0)
00 = 1 and all other components are zero. The interpolation filter corresponding to this

initial estimate is just a pure unity gain filter, hence the first operation will obtain a DFE without the
intervention of interpolation filter.

0 20 40 60 80 100 120
−18

−17.5

−17

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

iteration number

10
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g1
0(

J)
 (d

B)

Figure 1.2: The obtained MSEs J at each iteration for SNR of 20 dB

5



1.4 Demonstration Example

One design example for standard raised-cosine channel is given to illustrate the advantage gained through
the joint design approach. The channel impulse response with the symbol rate normalized as T = 1 is
known to be

h(t) =
sin(πt) cos(βπt)
πt(1− 4β2t2)

(1.25)

where β ∈ [0, 1] is the roll-off factor. Since the channel has been ideally equalized, no equalizer is needed.
For illustration, however, we assume that a first-order DFE (K1 = 0,K2 = 1) is used. As discussed in [1],
the interpolation FIR filters for timing offset compensation are normally short and the degree of polynomial
to characterize the coefficients is also low. Hence, we choose six taps (L1 = 2, L2 = 3) interpolation FIR
filter with each coefficient characterized by a polynomial of degree 3 (M = 3). Assume the input data are
white such that its PSD D(ω) = 1 for all ω. Generally, the noise is colored because of the receiving filter,
but for simplicity, it is also assumed white. The raised-cosine channels of β = 0.2 with the output SNRs set
to 15 dB, 20 dB, 25 dB, and 30 dB, respectively, are used in simulations. The conventional approach first
designs the DFE for minimizing the MSE assuming exact sampling time and then designs the interpolation
filter for minimizing J in (1.8). The joint approach normalizes the interpolation filter obtained via the
conventional approach and uses it as the initial data, then the iteration terminates when the ratio of MSE
improvement is less than ε = 10−5.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−28

−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

µ

10
 lo

g1
0(

J µ) (
dB

)

+ : SNR= 15 dB  
o : SNR= 20 dB  
x : SNR= 25 dB  
*  : SNR= 30 dB 

− − : conventional method
−−  : joint method       

Figure 1.3: Jµ versus the timing offset µ for the joint method and conventional method in different output
SNRs

For example, for the output SNR of 20 dB, the DFE via the conventional approach yields b0 =
0.9906, a1 = 0, the interpolation filter is then designed, yielding the minimum J of -13.51 dB. The joint
design, in this case, obtains the MSEs at each iteration which is shown in Fig. 1.2; the algorithm takes
120 iterations to converge and the convergence MSE equals -17.63 dB. Therefore, the performance gain
of 4.12 dB is achieved. Note that the obtained MSEs with respect to iteration, as expected, are non-
increasing. To further illustrate the difference between the conventional approach and the joint method,
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Table 1.1: The MSEs of conventional and joint methods for raised-cosine channel for various output SNRs
SNR(dB) 15 20 25 30

conventional method, MSE(dB) -12.23 -13.98 -14.74 -15.02

joint method, MSE(dB) -13.51 -17.63 -21.88 -25.72

improvement (dB) 1.28 3.65 7.14 10.7

Fig. 1.3 depicts the Jµ defined in (1.9) of both methods for µ increasing from −0.5 to 0.5 with the step size
of 0.1 for various SNRs. The conventional approach obtains good performance only when the timing offset
is small; the joint design, however, achieves lower and more uniform Jµ, resulting in a smaller MSE J. The
MSEs (J) obtained from conventional and joint design methods under different output SNRs are listed
in Table 1.1. Note that the improvement, as shown from the table, increases as the SNR is increasing.
When the SNR equals 30 dB, the improvement in MSE attains 10.7 dB; the improvement, however, is only
about 1.28 dB for SNR of 15 dB. These results explain that because the compensation of the timing offset
does not reduce the effect of noise, the joint design has less room for improvement when the noise power
is larger. Hence, the joint design obtains better improvement for higher SNR of the received signal. This
simulation, therefore, demonstrates that the joint design may significantly improve the MSE performance
over the conventional approach.

1.5 Summary

In this paper, we present an algorithm to design both the interpolation filter and the DEF such that
the joint capability is explored to improve the performance of a communication receiver. The algorithm is
simple to realize and ensures convergence; the convergence solution, for a proper initial estimate, guarantees
better than that obtained from the conventional design. This approach exploits the joint capacity which
is neglected in the conventional design and achieves the performance improvement without increasing the
complexity of either the interpolation filter or the DFE.
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