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Abstract

In real-time system and heterogeneous
multiprocessor architecture, since processor
may fail unexpectedly, fault-tolerant dynamic
task scheduling techniques are necessary and
important. Unfortunately, most of existed
related techniques are only designed for
homogeneous multiprocessor architecture. In
this project, we extend existed techniques
and propose some fault-tolerant dynamic task
scheduling algorithms for real-time system
and heterogeneous multiprocessor. Addition-
ally, we implement corresponding simulation
environments to evaluate our algorithms.
According to simulation results, all proposed
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algorithms are quite effective and efficient,
which is suitable for dynamic scheduling in
real-time system.
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Figure 3. Effect of task load (R=3, P=28).
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Figure 6. Effect of FaultP with various A (R=3, P=28).
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Figure 7. Effect of FaultP with various R (A= 0.7, P =8). Figure 8. Effect of FaultP with various P (1=0.7, R=3).



