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Direct Sums of Irreducible Operators

Jun Shen Fang * Chun-Lan Jiang | Pei Yuan Wu *

Abstract

It is known that every operator on a (separable) Hilbert space is the direct
integral of irreducible operators, but not every one is the direct sum of irre-
ducible ones. We show that an operator can have either finitely or uncountably
many reducing subspaces, and the former holds if and only if the operator is
the direct sum of finitely many irreducible operators no two of which are uni-
tarily equivalent. We also characterize operators T which are direct sums of
irreducible operators in terms of the C*-structure of the commutant of the von

Neumann algebra generated by 7.

Keywords: Irreducible operator, reducing subspace, von Neumann algebra.

AMS Subject Classification: 47A15, 47C15.

"Department of Mathematics, Hebei University of Technology, Tianjin, China.
'Department of Mathematics, Hebei University of Technology, Tianjin, China. E-mail:

cljiang@nsl1.hebut.edu.cn
!Department of Appied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan.

E-mail: pywu@cc.nctu.edu.tw



_ i s A A

1. INTRODUCTION

A bounded linear operator on a complex separable Hilbert space H is irreducible
if it has no reducing subspace other than {0} and H; otherwise, it is reductble. In
this paper, we are concerned with the problem of characterizing operators which are
expressible as the direct sum of irreducible operators. Examples of such operators
include any finite-dimensional operator, compact operator, completely nonnormal es-
sentially normal operator, completely nonnormal hyponormal operator with finite
multiplicity (cf. [7, Section 2.1]) and any Cowen-Douglas operator (cf. [3, Prop.
1.18]). On the other hand, not every operator can be expressed as such a direct sum.
This is the case even for normal operators since it can be easily seen that a normal
operator is irreducible if and only if it acts on a one-dimensional space, and thus it is
the direct sum of irreducible operators if and only if it is diagonalizable. In particular,
the bilateral shift { the operator of multiplication by the independent variable on the

L?-space of the unit circle) cannot be the direct sum of irreducible operators.

In Section 2 below, we first show in Theorem 2.1 that no operator can have count-
ably infinitely many reducing subspaces, that is, the number of reducing subspaces
of any operator is either finite or X, the cardinal number of real numbers. Moreover.

an operator has finitely many reducing subspaces if and only if it is the direct sum



of finitely many irreducible operators no two of which are unitarily equivalent. These

are proved by making use of the structure theorem of two projections (Lemma 2.2).

An equivalent condition for irreducibility can be formulated in terms of the von
Neumann algebra generated by the operator. Indeed, if W*(T') denotes the von Neu-
mann algebra generated by an operator T on H and W*(7T')' denotes its commutant,
then using the von Neumann double commutant theorem we can easily show the
equivalence of the following three conditions: (1) 7 is irreducible, (2) dim W*(T)'=1,
and (3) W*(T') equals B(H), the algebra of all operators on H. In Section 3, we will
generalize this to the situation for direct sums of irreducible operators. We show in
Theorem 3.1 that T is such a direct sum if and only if W*(T') is *-isomorphic to
the direct sum of full matrix algebras M,,(C) with various sizes n;, 1 < n; < oc.
Here M, (C), 1 < n; < oc, denotes the algebra of all n;-by-n; complex matrices,
and My (C) is understood to be B(I?). As a corollary (Corollary 3.2), we have the
equivalence of 7" being the direct sum of finitely many irreducible operators and dim

W*(T) < oc.

If all the n;’s are finite in the above representation for W*(T')', that is, if W*(T)’

is *-isomorphic to the direct sum of full finite matrix algebras, then W*(T)', as an



approximately finite algebra, can be characterized in terms of its (scaled ordered)
Ko-group. ( For results on the K-theory of C*-algebras, the reader can consult [13].)
However, in our present situation, the full infinite matrix algebra 4/, (C) may appear,
which renders the Ky-group characterization as inappropriate. In our final section, we
show that for this case the characterization can be obtained in terms of the semigroup

V(W*(TY).

We conclude this section with two further remarks. Firstly, it is known that on
an infinite-dimensional separable Hilbert space H, there are plenty of irreducible op-
erators in the sense that such operators are dense in B(H) in the norm topology (cf.
[4]). In [4], it was asked whether reducible operators are also dense. This is answered
positively by Voiculescu [12]. In fact, an even stronger result is true, namely, for any
operator T' and any € > 0, there is a compact operator K with ||K|| < ¢ such that
T + K is the direct sum of infinitely many irreducible operators (cf. also [6, Prop.

4.21 (iv) and (v)]).

Secondly, although not every operator is the direct sum of irreducible operators,
every one can be decomposed as the direct integral of irreducible ones. This is what

the next proposition says.



Proposition 1.1. Every operator is the direct integral of irreducible operators.

Proof. This is an easy consequence of [1, Theorem 3.6] on the direct integral
decomposition of operator algebras. Indeed, since for any operator 7', the weakly
closed algebra Alg T generated by T and I can be expressed as [ Axdu()) , where
A is a separable metric space, p is (the completion of) a o-finite regular Borel mea-
sure on A, and A, is a weakly closed irreducible operator algebra for almost all A in
A (an operator algebra is irreducible if it has no nontrivial reducing subspace), we
have T = [ Thdu()), where T} is in A, for almost all \. Hence Alg T C f? Alg
Tadu(A) C [ Axdu()) = Alg T, which implies that Alg Ty, = A, for almost all \.

The irreducibility of A, then implies that of 7). Thus T = ff Tydu(X) is the asserted

decomposition of T'. O

For any C*-algebra A and natural number n, let M,(.A) denote the C*-algebra of

n-by-n matrices with entries from A.

2. NUMBER OF REDUCING SUBSPACES

The main result of this section is the following theorem.

5



Theorem 2.1. The number of reducing subspaces of any operator is either finite or
uncountably infinite. It is the former case if and only if the operator is the direct sum
of finitely many irreducible operators 3", ®T; with T; and T; non-unitarily-equivalent

for any i # j. In this case, the number of reducing subspaces is 2".

The preceding result has an analogue in a different context: the number of in-
variant subspaces of any operator on a finite-dimensional space is either finite or

uncountably infinite, and it is the former case if and only if the operator is cyclic (cf.

[9)-

To prove Theorem 2.1, we need three lemmas. The first one is a structure theorem
for.arbitra‘ry two (orthogonal) projections. This result has appeared repeatedly in the

literature before; the version we adopt below is from [5].

Lemma 2.2. Let P and @ be arbitrary two projections on a Hilbert space. Then

there is a unitary operator U such that

I

0
U*PU = 0LeLe080
0 0



and
A

ohetel,a0
B I1-A

UrQu = (
on the space Hy © H, ® H, ® Hy ® Hy & Hs, where 4 is a positive contraction on H,

and B is the positive square root of A(I; — A). We may require that 0 < A < %]1 ,

in which case A is unique up to unitary equivalence.
The preceding lemma is used to prove
Lemma 2.3. If T has countably many reducing subspaces, then W*(T')' is abelian.

Proof. Let P and @ be two projections in W*(T')' represented as in Lemma 2.2
with0 < A < %II. Since P and @ both commute with 7', a simple computation shows
that T is of the form T, T} EBZf‘:z &T; on H & H, 592?:2 @©H; with T1A = AT,. For
each complex scalar A, let M), be the subspace {A\Bz®z@0606060: 2 € H,}. Itis
easily seen that the M,’s are all reducing subspaces of T and are distinct if H; # {0}.
Since T" has only countably many reducing subspaces, this forces H; = {0}. Hence
P=LoL;6000and A =1,®06 [, ®0 commute. Since the von Neumann algebra

W*(T)' is generated by the projections it contains, we infer that W*(T')’ is abelian.O



We need one more lemma.
Lemma 2.4. Let A and B be irreducible operators on H and K, respectively. Then A

and B are unitarily equivalent if and only if there is a nonzero operator X such that

XA=BX and XA* = B*X.

Proof. Assume that XA = BX and XA* = B*X for some X # 0. It is easily
seen that ker X and ran X are reducing subspaces of A and B, respectively. If ker
X # {0}, then by the irreducibility of A we have ker X = H or X = 0, which con-
tradicts our assumption. Hence ker X={0} or X is one-to-one. In a similar fashion,
we infer that ran X = K or X has dense range. Therefore, the polar decomposition
of X yields X = UP, where U is unitary and P = (X*X)"? > 0. Since X* X4 =
X*BYX = AX*X, we have PA = AP. Hence UAP = UPA = X4 = BX = BUP.
Note that P also has dense range. From above, we conclude that UA = BU, which

shows the unitary equivalence of A and B as asserted. a

We are now ready for the
Proof of Theorem 2.1. Assume that operator T has a countably infinite number of
reducing subspaces. This implies, by Lemma 2.3, that W*(T')’ is abelian. Hence

it is generated by some Hermitian operator A (cf. (10, Theorem 7.12|). Note that



o(A), the specturm of A, cannot be a finite set for otherwise A would be of the form

i=1 ©A:L; and W*(A) would consist of operators of the form ", ®a,I; with scalars
a; , which implies that W*(A) = W*(T)' consists of only finitely many projections
contradicting our assumption. Thus we can decompose o(A) into countably infinitely
many mutually disjoint Borel subsets with each having strictly positive spectral mea-
sure. The spectral projections corresponding to various unions of such subsets are
all in W*(A) = W*(T)'. Since there are uncountably many of them, this again con-
tradicts our assumption. Thus the number of reducing subspaces of T cannot be

countably infinite.

Assume next that T has finitely many reducing subspaces. By Lemma 2.3. the
von Neumann algebra W*(T')’ is generated by, say, the mutually commuting projec-
tions Py, -+, P,. Thus, in particular, W*(T)’ consists of linear combinations of the
products P;,...,P,, where 0 < k <nand1 <4 < ... < it < n. This shows
that m = dim W*(T') < 2® < oo and thus W*(T)’ consists of operators of the form

w1 ©a;l; on Y, ©H; with scalars «;. The von Neumann double commutant the-
orem then implies that W*(T) = W*(T)" = {¥, @4, : 4; € B(H;) foralli}. In
particular, we have T = Y™ &7,. If P is a projection commuting with 7;. then

06...©086 Po0&...60is in W*(T) and hence is of the form Y ©a . Tt
ith



follows that P is either O or /;. This shows that T; is irreducible. Next we prove that

no two of the 7}’s are unitarily equivalent. For this, assume otherwise that there is a

unitary operator U such that UT; = T;U, where 1 < i < j < m. For any scalar A, let

My={08..®0z &0®.. 806\Nza.. €0:z€ H;}. Then the M)’s are distinct
ith jth

reducing subspaces of T Since there are infinitely many of them, this contradicts our

assumption on 7.

Conversely, assume that T = Y%, &7; on H = Y;-, ©H;, where the T;’s are all

n
1,y=1

irreducible and no two of them are unitarily equivalent. Let P = [F;] be a pro-
jection commuting with 7. Then P;;T; = T;F;; for all 7 and j. From this we obtain
PyTr = PiT; = (T5Py)* = (PRTh)" =17 P;; = T} Py;. Since T; and Tj are irreducible
and are not unitarily equivalent for ¢ # j, Lemma 2.4 implies that F;; = 0 and hence
also P; = 0. Thus P; is a projection commuting with 7;. The irreducibility of 7,
implies that P; = 0 or I;. This shows that P is one of the 2" projections obtained
by taking the direct sum of some of the I;’s with the 0’s. Equivalently, this says that

the reducing subspaces of 7" are the 2" subspaces obtained by taking the direct sum

of some of the H;’s with the {0}’s , completing the proof. a

10



3. FULL MATRIX ALGEBRAS

In this section, we will characterize the direct sum of irreducible operators in terms

of the C*-algebra structure of the commutant of its generated von Neumann algebra.

For any operator T on H and any integer n, 1 < n < oo, let T( denote the direct
sum of n copiesof Ton HMW = H@ ... ® H.
n
Theorem 3.1. An operator T on H is the direct sum of irreducible operators,
say, Y1, EBT}"” on 3, er"i), where 1 < n < 00,1 < n; < oo for all i and the
T;’s are pairwise non-unitarily-equivalent, if and only if W*(T)' is x-isomorphic to
1 ®M, (C). Moreover, the T;’s are unique up to permutation and unitary equiv-
alence. More precisely, if T = 3 7%, @S,(cm") s another direct sum representation of
irreducible operators for T with pairwise-non-unitarily-equivalent S;’s, then n = m

and there is a permutation 7 of {1,...,n} and a unitary operator U in W*(T) such

that n; = myy and UT; = SpyU for all 5.

Since every finite-dimensional (unital) C*-algebra is *-isomorphic to the direct
sum of finitely many full (finite) matrix algebras (cf. [11, Theorem 11.2]), an easy

consequence of the preceding theorem is

11



Corollary 3.2. T is the direct sum of finitely many irreducible operators if and

only if dim W*(T)' < o0

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.3. If T is irreducible on H and X is such that XT =TX and AT =

1" X, then X is a scalar operator.

Proof. Since X*X commutes with 7', the same is true for any spectral projection
P of X*X. The irreducibility of 7" then implies that P = 0 or /. Thus the spectrum
of X*X must be a singleton {a} and hence X*X = al. On the other hand. from
the assumptions XT = TX and XT* = T*X we also have that ker X is a reducing
subspace of T. Thus ker X = {0} or H. This says that either X is one-to-one or
X = 0. Similarly, by considering ran X, we deduce that either X has dense range or
X = 0. Thus for our purpose we may assume that X is one-to-one with dense range.
Hence X = U(X*X)!/? = \/aU, where U is unitary, by the polar decomposition. We
may assume that a # 0. Then UT = TU and UT* = T*U. Arguing as above, we

obtain U = SI. Thus X=\/af! is a scalar operator. @]

12



Lemma 3.4. Let P be a projection in W*(T)'. Then T | (ran P) is irreducible if

and only if P is a minimal projection in VW*(T')'.

Recall that a projection p in a C*-algebra is minimal if there is no projection g,

other than 0 and p, such that pg = q.

Lemma 3.4 is an easy consequence of the definitions of irreducibility and minimal

projection.

Proof of Theorem 3.1. Assume that T =}, eT™ on H = Y @Hz("‘). where

the T;’s are pairwise-non-unitarily-equivalent irreducible operators. If X is an oper-
ator in W*(T')', then X = Y, @X; with X; in W*(T™)) by Lemma 2.4. Letting
X, = [YJ’,C]:‘,C:I, we obtain that Y} belongs to W*(T;)". Therefore Y} is a scalar
operator by Lemma 3.3. Say, Y, = AL, where I; is the identity operator on H;.

Then X = Y1) SN 1] _,- Obviously, the mapping X —— ¥, @ }k]:kzl defines

n;
j)k

a *-isomorphism from W*(T')’ onto 71—, @My, (C).

Conversely, let ® be a *-isomorphism from W*(T)" onto A = Y2 |, @M, (C), and

13



let E;; denote the element 0 & ... ®e; © ... ® 0 in A, where e;; is the n;-by-n;
matrix whose (j,j)-entry equals 1 and all others equal 0. Then the ®~!(£j;)’s are
mutually orthogonal minimal projections in W*(T")" with sum equal to /. Obviously,
®-1(E;;)H is a reducing subspace of T with T;; = T | ®~'(E;;)H irreducible (by
Lemma 3.4), and T'= ¥;; ®T;;. Since for any pair j and k the matrices E;; and £y
are unitarily equivalent (via a unitary operator, say, U in .A), we infer that 7;; and T
are unitarily equivalent (via the unitary ®~1(U) | ®7!(E;;)H). Thus T is the direct

sum of irreducible operators Y-, @Ti(ln") as asserted.

To prove the uniqueness, let T = ¥, @5, on H = 7, @L,™ be another
direct sum of irreducible operators for T with pairwise non-unitarily-equivalens S;’s,
where l <m<ocand 1 <my <ocforallk. If Py, 1 <k<mand 1l <1< my,.

(™) then the mutually

denotes the projection from H onto the {th component in L
orthogonal projections Fy; = ®(Fy) in A are such that 3", Fiy = I. Moreover. since
each F}; is minimal by Lemma 3.4, it can only "live” in some M, (C) and can only
have rank one. Also note that for any fixed k, the different Fj,’s are all in the same
My, (C) with ¥, Fiy = I,,, the identity matrix of size n;. This is because for a fixed

k, the different P,’s are unitarily equivalent via a unitary operator in W*(T)’, and

thus the different F%,’s are unitarily equivalent via a unitary operator in A. This

14



latter unitary operator, begin a direct sum of operators from the M, (C)’s, can in-
tertwine only operators in the same M, (C). Since ¥, Fy; = I, and the mutually
orthogonal F,'s each has rank one, we infer that m; = n; and the Fj,’s (for differ-
ent ['s) are simultaneously unitarily equivalent to the E;;’s (for different j’s). From
Ykt F =1 = %, ; Ei; and the above, we conclude that m = n and, after a permu-
tation of the indices, the F’s (for different k’s and I’s) are simultaneously unitarily
equivalent to the Ej;’s (for different ¢’s and j’s). Our assertion of the uniqueness of
the irreducible summands for T then follows from applying ®~! to the Fi;’s and the

intertwining unitary operator in A. O

We next consider the problem when two operators have isomorphic reducing sub-
space lattices. When the operators are normal, this has been solved by Conway and
Gillespie [2]. Using their result, we may settle the problem when the two operators
are both direct sums of irreducible ones. This covers in particular the cases for oper-

ators on finite-dimensional spaces and compact operators.

For any operator T', let Red T denote the lattice of its reducing subspaces.

Proposition 3.5. Let A = ;‘zleA,-("f) and B = EZ':l@Bk(m") be direct sums



of irreducible operators with pairwise non-unitarily-equivalent A;’s and By’s, where
1<nm<ocandl < nymg < oo forall jand k, and the n;’s and my s are decreas-

ing. Then Red A 1isisomorphicto Red B if and only if n =m andn; = m; for all j.

To prove this, we need the following
Lemma 3.6. If T is irreducible, then, for any 1 < n < oo, Red T™ is isomorphic

to Red I,, where I, denotes the identity operator on an n-dimensional space.

Proof. If P = [Pij]zjz1 is any projection commuting with 7" then for any ¢ and
J we deduce using Lemma 3.3 that B; = A;;1, where )\;; is some scalar. The mapping

P [/\ij]zjzl then induces a lattice isomorphism from Red T™ onto Red I,. a

Proof of Proposition 3.5. Using Lemma 2.4, we may infer that Red 4 and 2 e
Red Ag»”j) are isomorphic. This latter lattice is isomorphic to 32; ®Red (1/7)1,, (by
Lemma 3.6) or Red 3-; ©(1/j)I,,. Hence Red A is isomorphic to Red 29 (1/j) .
A similar assertion holds for B. Hence if Red A and Red B are isomorphic, then the
same is true for Red 3°; ©(1/j)In, and Red ¥, &(1/k)Im,. For normal operators,
this implies that n = m and n; = m; for all j (cf. [2, Theorem 3.2]). A reversal of

the above implications yields the converse. This completes the proof. O

16



T e ———————— T

The next result will be useful in Section 4.

Proposition 3.7. If T™® is a direct sum of irreducible operators, where k is a nat-

ural number, then so s T.

Proof. Assume that T is unitarily equivalent to the direct sum S = ¥, @7,
where 1 < n < o0,1 < n; < oo for all ¢ and the T;'s are pairwise-non-unitarily-
equivalent irreducible operators. Then there are mutually orthogonal projections
P;,j =1,...,k, commuting with S and satisfying 3_; P; = I such that S | (ran F}),j =
1,..., k%, are mutually unitarily equivalent. Using Lemma 2.4, we deduce that P; is
of the form 3, ©Q);;, where the @;;'s are mutually orthogonal projections commuting
with Ti("‘) and satisfying 3°; Q;; = I, such that Ti("") | (ran @y5),7 = 1,...,k, are
mutually unitarily equivalent. Thus we are reduced to proving the following: if A
is unitarily equivalent to B™ 1 < n < 0o, where B is irreducible, then A is a direct
sum of irreducible operators. We may further assume that n = oc for otherwise
W*(A®Y = Mg(W*(A)') is finite-dimensional by Corollary 3.2, which implies the
same for W*(A)’ and thus our assertion for A follows by Corollary 3.2 again. Under

the assumption n = oo, A® is unitarily equivalent to C®, where C = B(®). The

17



unitary equivalence of A and C then follows from an analogous argument in proving

the first test problem in [8]. This completes the proof. ]

4. K-THEORETIC CHARACTERIZATION

In the preceding section, direct sums of irreducible operators are characterized in

terms of the structure of certain C*-algebras. We now proceed to describe the latter

in terms of somg%'{om the K-theory.

If Ais the C*-algebra Y1, @M, (C) with 1 < n < oc and 1 < n; < oo for all
1, then A is an approximately finite algebra and hence can be characterized by its
(scaled ordered) Ko-group (cf. [13, Theorem 12.1.3)). However, if we allow some n;’s
to be co, then the Ky-group can no longer distinguish one from the other. This is
because the Ko-group of M (C) is the trivial one (cf. [13, Examples 6.2.3]). However,
for any C*-algebra A its Ko-group is defined through an abelian semigroup V'(A4),
and it turns out that the latter is strong enough to distinguish M, (C) between the

finite and infinite values of n. Indeed, it is known that

N, if 1 <n<oc,
V(M,(C)) =
N, U {0} if n = oo,

where N. = {0,1,2,...} (cf. [13, Examples 6.1.4]), and hence V (2™, @M, (C)) =
NS{Cl)@(N+U{OO})(k2), where ky (resp. k) is the number of finite (resp. infinite) n;’s,

18



and for a semigroup V, V¥ denotes the direct sum of & copies of V. Our purpose in

this. section is to prove the following

Theorem 4.1. An operator T on H is the direct sum of irreducible operators if and
only if V(W*(TY') is isomorphic to N @ (N1 U {o0})*2) for some integers k| and

kz; OS kl)kz S Q.

Here we briefly recall the definition of V'(A). Two projections p and q in M ®(A).
the collection of all finite matrices with entries from A, are said to be equivalent
if there is a v in M*(A) such that v*v = p and vv* = q. The equivalence class
containing p is denoted by [p] and the set of all these classes is V(A). V(A) is an

abelian semigroup with the addition defined by

[p] + [q] = [diag (p, 9)],

0
where diag (p, ¢) is the matrix ( P ) (cf. [13, Section 6.1]).
0 ¢

Theorem 4.1 will be proved after the following series of lemmas.

Lemma 4.2. Let P and Q be two projections in W*(T)' which are orthogonal to

each other. If P is unitarily equivalent to Q) via a unitary operator in W+(T), then

19



T | (ran P)is unitarily equivalent to T | (ran Q).

Proof. Let U be a unitary operator in W*(T) such that UP = QU, and let
W =U | (ran P). Then W is a unitary operator from ran P onto ran @ and satisfies

W(T | (ran P)) = (T | (ran Q))W. a

Lemma 4.3. let T be an operator on H with V(W*(T)) = (N,)*) g (N, U
{co})*2) where 0 < ky, ky < co. Let | = k) + kg, {e;}._, be the | free generators of
V(W*(T)'), and P # 0 be a projection in W*(T)'. Then T | (ran P) is irreducible if

and only if [P] = e; for some 1.

Proof. Assume that T'| (ran P) is irreducible and let [P] = ¥!_, @aye; , where the
a;’s are integers, 0 < o; < 00. Assume that more than one of the o;’s is nonzero, say,
ai,a # 0. Then f = oqe; and g = Y2, Base; are nonzero elements in V(W(T)).
Hence a natural number m exists for which there are mutually orthogonal projections
Q and R in M, (W*(T)) = W*(Tt™) such that [Q] = f and [R] =g. If S = Q + R,
then [S] = [Q]+ [R] = f+ g = Yt Baye; = [P]. Hence S and P & 0™~V are
unitarily equivalent via a unitary operator in W*(T(™) where 0 denotes the zero

operator on H{. Lemma 4.2 then implies that 7(™ | (ran S) is unitarily equivalent to

20



T | (ran (P @ 00™~1)). But the former equals (T™ | (ran Q)) & (T | (ran R))
while the latter coincides with the irreducible 7' | {ran P). This is a contradiction.
Hence we can have only one of the e!s to be nonzero, which proves that [P] = e; for

some t.

Conversely, assume that {P] = e; and T | (ran P) is reducible. Then there are
nonzero projections  and R in W;‘(T)’ such that QR = 0 and P = Q + . Let
Q] = T, ©ase; and [R] = L, ®Bei, where 0 < oy, fB; < oo for all ¢. From
ey = [P} = [Q]+[R] = X, ®(cy + Bi)es, we deduce that o)+ f; =1 and a; +.3; = 0
for all i > 2. Hence a; =0 or $, =0 and o; = G = 0 for all 2 > 2. This shows that

[Q] = 0 or [R] = 0, which is a contradiction. Thus T | (ran F) is irreducible. O

Lemma 4.4. Assume that A on H is a direct sum of wrreducible operators and B
on K has no reducing subspace on which it is irreducible. If X is such that XA = BX

and XA* = B*X, then X = 0.

Proof. Let A = 2, ©A, on H = Y32, @H,, where A, is irreducible for all
n. (A similar argument applies if A is the direct sum of finitely many irreducible

operators.) Let X* be represented as [X; X> ) from K to ¥,®H,. We now
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show that X; = 0. Indeed, from XA = BX and XA* = B*X a simple computa-
tion yields X3B = 4, X, and X;B* = 47X,. Hence (X;X])A = A(X1X}) and
(X1 X1) A7 = A7(X 1 XT). Since A, is irreducible, Lemma 3.3 implies that X, X7} is a
scalar operator, say, X; X[ = Aly,. Assuming that X; # 0, we want to derive a con-
tradiciton. Indeed, in this case, we have A # 0. If U = A~Y2X,, then UU* = Iy, and
@ = U*U is a projection on K satisfying QB = BQ. Let p= Iy, ®0and ¢ =08 Q
be operators on Hi ©@ K and let  =p@0and ¢ =¢&©0on (H,® K)® (H, 9 K).
Letting C = A, @ B, we claim that p’ and ¢’ are unitarily equivalent via a unitary
operator in W*(C). To prove this, let v = g g ) on H & K. Then v is a
partial isometry in W*(C)’ with vv* = p and v*v = ¢. Our assertion then follows from
(13, Prop. 5.2.12]. By Lemma 4.2, we infer that C® | (ran p') is unitarily equivalent
to C@ | (ran ¢'). But the former coincides with the irreducible A; and the latter
B | (ran Q). Thus B | (ran Q) is irreducible, which contradicts our assumption. This

proves that X; = 0. Similarly, we have X, = 0 for all » > 2 and hence X = 0 as

asserted. a

We are now ready for
Proof of Theorem 4.1. The necessity follows from the paragraph before the state-

ment of the theorem. For the sufficiency, we assume that V(W*(T)") is isomorphic
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to N¥) g (N, U {o0})*2) where 0 < kj, k2 < co. Let P be a projection in some
M (WH(T)) = W*(T™) (k is a natural number) such that [P] is one of the free
generators of V(W*(T)). By Lemma 4.3, T® | (ran P) is irreducible (here we
embed W*(T)" into M,(W*(T)") under the canonical embedding A — ( ;1 g ) :
which results in the identification of V/(W*(T)') and V(M (W™*(T)")): cf. {13, Lemma
6.2.10]). Using Zorn’s lemma, we can find a maximal family of mutually orthogonal
projections {P;}7_;, 1 < n < oo, in W*(T®)) such that T | (ran P;) is irreducible
for all j. Letting Q = 3, P;, we will show that Q = I®), the identity operator on
H®_ Assume this is not the case. Since @ is a projection in W*(T™*))’  the oper-
ators T, = T® | (ran Q) and T, = T® | (ran (I®) — Q)) are acting on nontrivial
spaces. Moreover, T is the direct sum of irreducible operators and 75, has no reducing
subspace on which it is irreducible. Hence we may apply Lemma 4.4 to infer that
WH(T®y = W*(T,)'@W*(Ty)'. Therefore, V(W*(T®)) = V(W*(T)) )&V (W*(Ty))
(cf. [13, Prop. 6.2.1]). Since both V(W*(T®))) = V(W*(T)") and V(W*(T})') are
torsion-free semigroups, the same is true for V(WW™*(T,)’). Let R be a projection in
W"(Tz(m)) (m is a natural number) for which [R] is one of the free generators of
V(W*(T3)'). From Lemma 4.3, we know that 7™ | (ran R) is irreducible. Arguing
as above, we can find a nonzero projection @, in W*(Tém))' such that T3 = sz) |

(ran @) is the direct sum of irreducible operators and T, = Tz(m) | (ran (I — @,))
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has no reducing subspace on which it is irreducible. Applying Lemma 4.4, we obtain
that W*(T{™) = W*(Ts)' ® W*(Ty)'. Thus Q; commutes with every operator in
VV‘(Tém))’, that is, @ is in W'*(Tz('"))” or 1V‘(T§m)) by the von Neumann double
commutant theorem. Therefore, Q; is of the form S(™ where S is a nonzero pro-
jection in W*(T3), and hence T3 = Tz(m) | (ran Q) = (T3 | (ran S))™. Since Tj is
the direct sum of irreducible operators, the same is true for 73 | (ran S) by Propo-
sition 3.7. This contradicts the fact that 7, has no reducing subspace on which it is
irreducible. Hence we must have @ = I®*). Thus T® is a direct sum of irreducible

operators. By Proposition 3.7, the same is true for 7. This completes the proof. O

We end this paper by noting that Theorem 4.1 cannot be generalized to ar-
bitrary C*-algebras, that is , a (unital) C*-algebra A with V(A) isomorphic to
N& o (N U {oo})®2), 0 < ki, k2 < oo, may not be *-isomorphic to ¥, &M, (C).
where 1 < n; < co. One example of such C*-algebra is A = {M + K : )\ €
C, K compact operator on H}, where H is an infinite-dimensional separable Hilbert
space. It can be verified that V/(A) is isomorphic to N. U {oo} (cf. [13, Examples
6.1.4]), but A is not *-isomorphic to B(H) since their Ko-groups are different (cf. [13,
Examples 6.2.3]). Whether there is an example of such von Neumann algebras seems

to be unknown.
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