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Abstract—To model a scene for background subtraction,
Gaussian mixture modeling (GMM) is a popular choice for its
capability of adaptation to background variations. However,
GMM often suffers from a tradeoff between robustness to back-
ground changes and sensitivity to foreground abnormalities and
is inefficient in managing the tradeoff for various surveillance
scenarios. By reviewing the formulations of GMM, we identify
that such a tradeoff can be easily controlled by adaptive adjust-
ments of the GMM’s learning rates for image pixels at different
locations and of distinct properties. A new rate control scheme
based on high-level feedback is then developed to provide better
regularization of background adaptation for GMM and to help
resolving the tradeoff. Additionally, to handle lighting variations
that change too fast to be caught by GMM, a heuristic rooting in
frame difference is proposed to assist the proposed rate control
scheme for reducing false foreground alarms. Experiments show
the proposed learning rate control scheme, together with the
heuristic for adaptation of over-quick lighting change, gives better
performance than conventional GMM approaches.

Index Terms—Background subtraction, Gaussian mixture mod-
eling, learning rate control, surveillance.

I. INTRODUCTION

F OR video surveillance using static cameras, background
subtraction is often regarded as an effective and efficient

method for differentiating foreground objects from a back-
ground scene. The performance of background subtraction
highly depends on how a background scene is modeled. Ide-
ally, a perfect design of background modeling should be able
to tolerate various background variations without losing the
sensitivity in detecting abnormal foreground objects. However,
the tradeoff between model robustness and model sensitivity
is commonly encountered in practice and is hard to balance
within a single background modeling framework.
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Among various background modeling approaches, e.g., [1],
[3]–[5], [7], [8], [12], [15], [16], [18]–[23], [25], [26], [28], [29],
the Gaussian mixture modeling (GMM) [5], [7], [23] is known
to be effective in sustaining background variations, e.g., waving
trees, due to its use of multiple buffers to memorize scene states.
It is hence widely adopted as a base framework in many later
developments [9]–[11], [13], [17], [24], [30]. However, GMM
often suffers from the tradeoff between model robustness to
background changes and model sensitivity to foreground abnor-
malities, abbreviated as R-S tradeoff in later discussions. For in-
stance, a Gaussian mixture model being tuned to tolerate quick
changes in background may also adapt itself to stationary ob-
jects, e.g., unattended bags left by passengers, too quickly to
issue reliable alarms. The lack of a simple and flexible way to
manage the R-S tradeoff for various scenarios motivated this re-
search to reexamine the formulations of the GMM.

In the original formulations of GMM, every image pixel,
regardless of its intensity being changed or not, is given the
same setting of learning rates in background model estimation,
which is inefficient in managing the R-S tradeoff. Considering
a pixel of background that was just uncovered from occlusion
of a moving object, the corresponding Gaussian mixture model
for this pixel should be updated in a slower pace than that for a
stable background pixel, to prevent false inclusion of moving
shadows or motion blurs into background. Nonetheless, in the
original GMM formulations, an identical learning rate setting
is applied to all image pixels, leaving no space for tuning
the background adaptation speeds for this case. We therefore
highlight the importance of adaptive learning rates control in
space and in time and develop a new rate control scheme based
on the high-level feedback of pixel properties for the GMM.

There are several features of the proposed scheme of learning
rate control for the GMM. First, two types of learning needs are
identified for a Gaussian mixture model (for an image pixel),
one for controlling the model estimation accuracy and the other
for regularizing the R-S tradeoff. Different from previous works,
e.g., [9] and [23], that use a single learning rate setting for both
learning needs, the proposed rate control scheme distinguishes
two different types of learning rates and manipulates them in-
dependently. Second, the background adaptation rates for image
pixels are set individually in space. Image pixels at different lo-
cations may thus exhibit distinct behaviors in background adap-
tation for accommodating local scene changes. Third, for every
image pixel, its learning rate for regularizing the R-S tradeoff
is computed based on the high-level feedback of its latest pixel
type, i.e., as background, stationary foreground, or moving fore-
ground. Under this feedback control, the learning rate setting
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for an image pixel can be dynamically adjusted in time, ac-
cording to its type, and with respect to different application sce-
narios.1 The more pixel types are allowed, the higher flexibility
in background adaptation can be attained. Fourth, a heuristic for
adaptation of over-quick lighting change is suggested to assist
the learning rate control to adapt very rapid lighting changes
in background. This heuristic enhances the model robustness
to speedy lighting variations without sacrificing the sensitivity
in detection of significant foreground motions. To sum up, we
maintain that, via a careful design of learning rate control for the
GMM, the R-S tradeoff can be effectively and efficiently regu-
larized in fulfilling various needs in video surveillance.

A. Related Work

Balancing the R-S tradeoff has long been an important task
in background modeling. In [25], Toyama et al. explore sev-
eral scenarios that are hard to be handled by background mod-
eling and propose a hybrid approach to maintain background
models at different spatial scales. In [1], Boult et al. apply dif-
ferent learning rates to foreground and background pixels to
increase the model sensitivity for single Gaussian formulation
and develop cleaning algorithms to reduce false alarms. In [6],
Gao et al. use statistical analysis to tune parameters in back-
ground modeling, including the number of Gaussian compo-
nents and the learning rate, for controlling the tradeoff. In [14],
Li et al. utilize spatio-temporal features to model complex back-
grounds and develop a criterion to select the learning rate for
the adaptation of once-off background change. In [9], Harville
discusses some tradeoffs frequently encountered by GMM and
adopts high-level feedback as a remedy. Also based on GMM,
Tian et al. propose a weight exchange scheme based on ob-
ject-level feedback to prevent foreground fragmentation in the
detection of static object [24]. In [30], Zivkovic analyzes the ap-
propriate number of mixture components for GMM and dynam-
ically removes some mixture components for computational ef-
ficiency. In [13], Lee proposes a new rate control formulation for
the learning of Gaussian parameters to enhance the accuracy and
convergence speed of background model estimation. Model ro-
bustness to background changes is improved by Lee’s learning
rate control without obvious side-effects on model sensitivity.
In [27], a two-layer GMM is proposed by Yang et al. to learn
foreground and background models at different learning rates
and to achieve better foreground segmentation results. Beyond
Gaussian-based formulations, Elgammal et al. adopt kernel den-
sity estimation to compute background models, and combine
short-term and long-term models to balance the R-S tradeoff [4].
Despite the effectiveness in background modeling for all the ap-
proaches mentioned above, no comprehensive investigation into
the relationship between model learning rates and the tradeoff
control for different surveillance scenarios within a single back-
ground modeling framework has been conducted.

Note also that the idea of adopting high-level feedbacks, e.g.,
using foreground pixel type, in background modeling is not new
[1], [9], [24], [27]. However, the proposed feedback control over

1For example, while pixels of stationary objects may need to be quickly
adapted into the background for the application of moving object detection,
they should be stably identified as foreground for the application of unattended
object detection.

learning rates has several novel features. First, to the best of our
knowledge, the proposed work is the first to apply independent
controls over two types of learning rates for simultaneously en-
hancing the model estimation accuracy and regularizing the R-S
tradeoff. High-level feedbacks are applied only to the learning
rate control related to the R-S tradeoff. Based on our study, this
independent control of two-type learning rates is a key to de-
rive a robust background modeling system. Second, a new rate
control framework capable of managing multiple pixel types as
feedbacks is demonstrated to be practical and feasible. Third,
the need of dynamically adjusting the learning rates for pixels
of background type is firstly identified in this study. This par-
ticular learning rate control for background pixels can increase
model sensitivity to hovering objects with little side effects to
model robustness.

B. Model Accuracy, Robustness, and Sensitivity

To estimate a density distribution from a sequence of intensi-
ties 2 for a pixel at a position via GMM, three is-
sues regarding model accuracy, robustness, and sensitivity need
to be addressed. Specifically, a mixture model consisting of
Gaussian distributions at time instance can be denoted by

where symbolizes a Gaussian probability density function

and and are the Gaussian parameters of the
th model, and is the respective mixture weight. For

maintaining this mixture model, the parameters and
need to be updated based on a new observation . In the

GMM, the update rule for , for the case that matches the
th Gaussian model, is

where is a learning rate3 that controls how fast
the estimate converges to new observations. Likewise, similar
update rules can be applied to renewing and , given corre-
sponding learning rates.

In updating the Gaussian parameters and , their values
should reflect the up-to-date statistics of a scene as accurately
as possible. It is thus preferable to set their learning rates to
large values to quickly derive Gaussian distributions that fit new
observations. Also, as noted in [13], setting higher learning rates
for and improves model convergency and accuracy and
brings few side effects in model stability.

While the model estimation accuracy depends on the learning
rates for and , one can see that the R-S tradeoff is affected
by the learning rate for the mixture weight . In the original
GMM for background model estimation, the classification of

2Here, � � denotes the 1-D pixel intensity only. However, all of our for-
mulations can be easily extended to multidimensional color image processing,
e.g., � � .

3The definition of learning rate is inherited from [23].
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Fig. 1. Algorithm 1.

Gaussian models into foreground and background is done by
evaluating their mixture weights through thresholding. The
Gaussian models that appear more often will receive larger
weights in the model updating process and will possibly
be labeled as background [23]. However, the frequency of
model occurrence should not be the only factor that guides
the changes of mixture weights. For example, one may prefer
to give large weights to the Gaussian models of tree shadows
(for background adaptation) while to keep small weights to
those of parked cars (for foreground detection), despite the
similar frequencies of occurrence of these two objects. By
incorporating the high-level information of pixel types, e.g.,
of shadow or car, into the weight updating process, flexible
background modeling can then be carried out. As more pixel
types are designated by a surveillance system, more appropriate
controls on weight changes can be advised accordingly, which
will help resolving the R-S tradeoff in background modeling.
Based on this observation, we propose a feedback scheme for
the learning rate control of the GMM.

The remainder of this paper is organized as follows. In
Section II, the formulations of the proposed learning rate con-
trol based on high-level feedback are detailed. The adopted
heuristic for adaptation of over-quick lighting change is
introduced as well. In Section III, experimental comparisons
of foreground detection results among [13] and [23] and
our approach are presented. Finally, brief discussions of the
proposed rate control scheme and future work are given in
Section IV.

II. LEARNING RATE CONTROL VIA HIGH-LEVEL FEEDBACK

Our presentations of the learning rate control scheme are di-
vided into three parts. First, an algorithm of background model
maintenance using the GMM is proposed, wherein two types of
learning rates are formally defined. We highlight the importance
of the learning rate control for mixture weights and elaborate its
relationship to foreground pixel labeling. Second, a feedback
scheme that controls the learning rates for mixture weights is
detailed. Under this feedback control, different learning rates
can be applied to different image locations and scene types,
which makes dynamic background adaptation possible. Third,
a heuristic based on frame difference is introduced to assist the
learning rate control for the adaptation of over-quick lighting
changes. False alarms caused by, e.g., sudden sunshine changes
in the background can hence be suppressed by this heuristic
while significant object motions can still be captured.

A. Background Model Maintenance

Given a new observation of pixel intensity , the task of
background model maintenance is to match this new observa-
tion to existing Gaussian distributions, if possible, and to renew
all the parameters of the Gaussian mixture model for this pixel.
The detailed steps of the proposed background model mainte-
nance using the GMM is shown in Algorithm 1 (see Fig. 1).

For the model matching in Algorithm 1, is utilized to
index the best matched Gaussian model of , if existing. Oth-
erwise, will be set to indicate is a brand new



LIN et al.: REGULARIZED BACKGROUND ADAPTATION: NOVEL LEARNING RATE CONTROL SCHEME FOR GAUSSIAN MIXTURE MODELING 825

observation and should be modeled by a new Gaussian distri-
bution. The matching results of can be recorded by model
matching indicators, i.e.,

if
otherwise

for

and will be used in the later model update. Unlike [23], which
adopts a more complex formulation in model matching, i.e.,

(1)

a simple rule that selects the model of higher weight as the
best match is used in Algorithm 1. The proposed weight-based
matching rule prefers matching a pixel observation to the
Gaussian model of background (with higher weight) other than
those of foreground, if this observation falls in the scopes of
multiple models. Using this rule not only saves computational
costs but also fits the proposed rate control scheme better, as
will be discussed in more detail later.

After model matching, we check if is equal to 0,
which implies no model matched. If so, a model replacement is
performed to incorporate into the GMM; otherwise, a model
update is executed. In the replacement phase, the least weighted
Gaussian model is replaced by the current intensity observation.
In the update phase, the following three rules are applied:

(2)

(3)

(4)

where denotes the learning rate for the
Gaussian parameters and , and is a new
learning rate introduced in this research for controlling the
updating speed of the mixture weight . Here, the two scalars

and can be viewed as hyper-parameters over and for
tuning their values. In [23], the learning rate is defined as

(5)

while in [13] it is given by

(6)

where and .4 Al-
though (6) may result in quicker convergence in Gaussian pa-
rameter learning [13], we still choose (5) in our implementation
for experimental comparisons and put our emphasis on the con-
trol of the learning rate for the mixture weight. In later experi-
ments we will show that better performance can be achieved by
controlling the learning rate than by tuning the rate . Also, as
noted in [13], typical values of are in for both (5)

4Interested readers can find the details of (6) in [13].

and (6), yielding a wide range of convergence rates in Gaussian
parameter estimation. Here we set as a default value
for quick model learning.

In previous background modeling researches, e.g., [9], [13],
[23], a naive setting for mixture weight update, i.e.,

(7)

is adopted. The rule (7) can be viewed as a special case of the
proposed weight update of (4) with . In (7), all image
pixels are confined to having an identical rate setting in mixture
weight learning that scene changes can not be properly handled
with respect to space and time. Instead, with our generaliza-
tion that assigns individual learning rates for mixture weights to
image pixels and adapts them over time, higher flexibility in reg-
ularizing background adaptation can be obtained. Note that the
index is not attached to because the changing rates for the
weights s, , are designed to be consistent among the
Gaussian models of the same image pixel. Regarding the com-
putation of , we link it to the high-level feedback of pixel
types and describe the feedback control in Section II-B.

In the GMM, all of the scene changes, regardless of being
foreground or background, are modeled by Gaussian distribu-
tions. To further distinguish these two classes, a foreground in-
dicator for each Gaussian model is defined using the cor-
responding mixture weight as

if
otherwise

(8)

where is a preset parameter.5 A binary foreground map
can then be defined as a set . In the orig-
inal GMM formulations applying (7), more frequently matched
Gaussian models will have larger weights and will be labeled as
background. Nevertheless, stationary objects, e.g., abandoned
packages or standing persons, that appear constantly within a re-
stricted area should not always be absorbed into background for
some applications. Rather, these objects may need to be stably
highlighted as foreground and alarms should be triggered if nec-
essary. By adaptively adjusting in (4) based on object types,
as will be discussed next, such demands may be fulfilled without
resorting to complex versions of (8) for foreground and back-
ground separation.

B. Feedback Control

A flowchart of a general-purpose surveillance system is illus-
trated in Fig. 2, where five processing modules are presented
in a sequential manner. In order to address the above issue as-
sociated with object types, the final results derived from the
last module of object type classification is fed back to the first
one of background model maintenance for further control of
the learning rates. Rather than digging into the details of each
module wherein different implementations can be accommo-
dated by the proposed feedback scheme, we place the focus on
the learning rate control for mixture weights in the following
discussions.

5The procedure of model sorting by the values of ���, as suggested in [23],
is not applied here since it is more complex and may cause complications in
foreground pixel labeling.



826 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 3, MARCH 2011

Fig. 2. Flowchart of a general-purpose surveillance system. The first module of
background model maintenance corresponds to the Algorithm 1. The second one
of foreground pixel identification is implemented by using the mixture weight
thresholding discussed in Section II-A. The third module can be realized by
using an shadow detection algorithm described in [2]. For object extraction, we
mark small (��� � pixels), isolated foreground regions as noises via morpho-
logical processing and group the rest foreground pixels into objects by con-
nected component analysis. Regarding the object type classification and the
feedback control on learning rates, they are presented in Section II-B.

In the proposed approach, we adopt different learning rate
settings for four object types of background, shadow, still fore-
ground and moving foreground, respectively. Based on the pro-
cessing flow of Fig. 2, the object types of background, shadow,
and foreground can be easily discriminated. To further clas-
sify the foreground type into still and moving ones, the object
tracking algorithm presented in [2] is adopted to find the tem-
poral associations among objects of time instances and .
Then, the position displacements of tracked objects are thresh-
olded for discrimination of still and moving types. Thus, an ob-
ject type indicator for every pixel at time instance can be de-
fined as

if Background
if and Type Shadow
if and Type Still foreground
Otherwise Moving foreground

and an object map can be denoted by . Sub-
sequently, the object map is sent to the background main-
tenance module for the learning rate control for the next time
instance. Obviously this is a delayed feedback control since the
current learning rates are actually calculated from the previous
classification results of pixel types. Yet, this kind of one-frame
delay is acceptable in practice. In addition, for the feedback con-
trol being applied to the learning rate , but not to the mixture
weights directly, dramatic changes in mixture weights as
pixel type varies can be avoided. Stable foreground and back-
ground separation (via weight thresholding) can therefore be
obtained.

Fig. 3. Simulated changes of the learning rate � for a pixel being persistent
background, given � � ���� (solid line) and � � ��� (dotted line), respec-
tively. The initial learning rate � is set to ������ and � is set to 0.025.

With the above notations, the learning rate can now be
specified by

if

if
if
if

(9)

where is a preset constant, the hyper-parameter
is extended to a vector for regularizing

the learning rate with respect to different pixel types, and
the index of the most probable background model, , is
defined by

For a pixel of moving foreground , one may set
to suppress the adaptation of all moving objects into

background, resulting in a very sensitive system to motions. In
contrast, by setting to a large value, which results in a quick
increase of the weight of a Gaussian model for, say, a waving
tree, a system will be more capable of tolerating background
variations. On the other hand, for the type of still foreground, the
larger the is set, the quicker a stationary object will be merged
into background. For the application of abandoned and missing
object detection, a small is preferred. Regarding the case of
shadow type, we favor faster adaptation of fainter shadows into
background, so is used to estimate the similarity between
the shadow intensity and the Gaussian model of the most prob-
able background (indexed by ). The corresponding learning
rate is then set to the similarity measure multiplied by a regular-
ization scalar .

For a pixel of background type, i.e., , its learning
rate is designed to be gradually increased at a rate regularized
by , as formulated in (9). The learning rate for an image pixel
being persistently identified as background will asymptotically
approach , as shown in Fig. 3. However, once this pixel posi-
tion being occluded by shadows or moving objects, the respec-
tive learning rate will be reset to other value, e.g., , that is
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Fig. 4. Example of motion blur. The foreground and background boundaries
of a moving hand may not be clearly distinguished, even by human visual
inspection.

much smaller than it was used to be. This design helps pre-
venting false inclusion of afterimages left by moving objects
into background. When taking pictures of moving objects, their
boundaries are often in blur. See Fig. 4 for an example. Some
motion-blurred regions near object boundaries may be misclas-
sified as background, resulting in afterimages. For an object
hovering over a region, its afterimages appear frequently and
will be quickly included into a background model. To alleviate
such a problem, instead of setting the learning rate to a constant,
i.e.,

if (10)

it is increased gradually for a pixel of background in the pro-
posed approach. In Section III-A, benefits of adopting this back-
ground-type rate control will be demonstrated. Note that, in all
our experiments, we set

and .
As discussed in [1] and [4], a major problem with feedback

control for background modeling is that misclassifications of
pixel type in the current frame will propagate to subsequent
frames as the learning rates are determined by classification re-
sults. For instance, if a background pixel is misclassified as fore-
ground, a false positive will persist at this pixel location for a
long time due to the low learning rate setting for foreground
pixel. Fortunately, this problem can be treated, if not cured, by
the proposed framework of learning rate control.

Based on our observations, the problem with feedback control
for background modeling can be effectively treated if the fol-
lowing two criteria fulfilled: 1) accurate estimation of a back-
ground model and 2) prevention of background adaptation to
pixels of misclassified types. In the proposed approach, giving
separate controls to the learning rates and meets the crite-
rion 1). Up-to-date model estimations can hence be delivered
by setting a large , regardless of foreground classification re-
sults controlled by . Even for the pixels of misclassified types,
their Gaussian models can still be accurately estimated. Our ex-
periments in Section III-E show that the accurate estimation of
background models will help reducing persistent false positives
of misclassified pixels.

Regarding the criterion 2), the background-type rate control
in (9) is designed for it. With this control, false background
adaptation to foreground motion blurs (a.k.a. afterimages) can

be largely reduced, as will be shown in Section III-A. In addi-
tion, the weight-based matching rule is utilized in our approach
to eliminate false positives even more. Although the matching
rule seems to prefer the most-weighted Gaussian models of
background for new pixel observations, its matching results are
still trustworthy owing to our capability of deriving accurate
Gaussian models. Advantages of adopting this weight-based
matching rule will be further demonstrated in Section III-E.

C. Heuristic for Adaptation of Over-Quick Lighting Change

Surveillance systems often encounter challenges from
lighting changes, especially for systems used in outdoor envi-
ronments. While gradual and quick lighting variations can often
be adapted by the GMM, some over-quick changes can not be
caught via background model learning at reasonable learning
rates. For instance, two examples of quick and over-quick
lighting changes are given in Fig. 5. The image sequence
shown in Fig. 5(a)–(c) records a laboratory with a monitor
displaying rolling interferences. In this indoor sequence, it
takes about 3 seconds to increase the average intensity by 20%.
This quick variation in image brightness can still be learned by
the GMM, as will be demonstrated in Section III-A. In con-
trast, for a over-quick lighting change shown in Fig. 5(d)–(f),
similar increases of image intensity are observed in less than
one second for an outdoor environment. As will be shown in
Section III-C, many false alarms in foreground detection are
issued under such condition. Consequently, a heuristic based
on frame difference is also developed to assist the GMM to
cope with over-quick lighting changes.

The idea behind the heuristic is simple yet effective. While
image intensity variation of over-quick lighting change may
seem to be large among temporally distant image frames, it
may be small between two consecutive frames if the frame rate
of recording is high enough. The small and smooth change of
image brightness between consecutive image frames provides
a cue for eliminating false alarms in foreground detection for
over-quick, but not abrupt,6 lighting changes. For example,
by thresholding the differences between corresponding pair of
pixels, each from two consecutive frames, at a proper level,
such false alarms can often be reduced.

Accordingly, the proposed heuristic consists the following
formulations. First, the thresholding of intensity difference for
every pixel pair is performed by

otherwise

where is a given threshold. Thus, a frame difference
map can be derived. By combining both the
frame difference map and the foreground map via

(11)

a new foreground map being less affected by lighting
changes can now be obtained. Note that the operation in (11)
is utilized for temporal accumulation of foreground regions,
which is useful for detecting objects in slow motion. The map

is then used to replace as a new output of the second
module in Fig. 1. Regarding the lighting change areas where

6Abrupt changes in background are regarded as salient deviations between
two consecutive image frames, due to, e.g., light on/off.
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Fig. 5. Examples of (i) quick and (ii) over-quick lighting changes. (a)–(c) Two images in Seq.� (recorded at 20 fps) and their difference for (i). (d)–(f) Two images
in Seq.� (recorded at 15 fps) and their difference for (ii). (a) � , (b) � �� � ����, (c) �� � � � � �, (d) � , (e) � �� � �	��, (f) �� � � � � �.

, they are relabelled as background and will be
quickly learned by the GMM via (9). False alarms caused by
over-quick lighting changes will hence be reduced. Based on
our experiments shown in Section III-C, the system robustness
to lighting changes will be increased without losing the sensi-
tivity in detecting significant foreground motions.

Because this heuristic is developed to improve the tolerance
of our model to speedy lighting changes without altering the
background estimation results much, the threshold value is
usually limited by . Image differences larger
than 20 between two consecutive image frames, which might
be perceived by sensitive human eyes, are considered as abrupt
changes. Owing to the accumulating formulation in (11), large
lighting changes between two distant image frames can still be
handled using small for most cases.

III. EXPERIMENTAL RESULTS

Several real videos are used to test the effectiveness of the
proposed rate control scheme. In Section III-A, comparisons
among different learning rate controls proposed by the original
GMM [23], its variant [13] and this research are presented7

using two image sequences with lighting changes, missing
objects and waving hands. While the first scenario of lighting
changes should be quickly adapted into background, the other
two should not. All these scenarios can be properly handled
by the proposed approach but not by those of [23] and [13].
In Section III-B, the effects of tuning the parameter are dis-
cussed. Next in Section III-C, by using a third image sequence
as a benchmark, the superiority of the proposed heuristic for
adaptation of over-quick lighting change is demonstrated. In
Section III-D, quantitative evaluations of selected approaches

7For experimental evaluations, we apply the conventional matching rule (1)
to [13] and [23], and use the same labeling rule (8) with � � 
��	 to all the
methods to segment foreground regions.

with respect to different values are presented. In Section III-E,
an example of fountain spurt is used to demonstrate our treat-
ments of the problem with feedback control for background
modeling. Finally, additional experimental results are given to
show the effectiveness of the proposed approach for the scenes
of waving water and crowded entrance.

A. Regularized Background Adaptation

In the first experiment for the adaptation of quick lighting
changes, we use Seq. previously illustrated in Fig. 5
as a benchmark. The foreground detection results and the
learned background models, up to the image frame , ob-
tained from different approaches are shown in Fig. 6 for
two different learning rates. For visual comparisons of the
learned background models, a definition of background map

is adopted, and the derived background
maps are drawn in the middle row of Fig. 6. In Fig. 6(a) and (b),
false positives of foreground detection are observed by using

for the approaches of [23] and [13]. As shown in
Fig. 6(d) and (e), all of the false positives can be eliminated by
giving a higher learning rate with while only the
rolling interferences on a monitor are marked as foreground.
On the other hand, correct foreground detection results are
obtained in Fig. 6(c) and (f) by the proposed approach (with the
heuristic of (11) applied) for both rate settings.

In the previous experiment, can be regarded as a
proper setting for adaptation of quick lighting change. However,
if the same setting is used for Seq. , defects of foreground de-
tection will appear for approaches of [23] and [13]. (Because
the foreground detection results of [23] and [13] in this experi-
ment are almost the same, only those of [13] are shown in Fig. 7
for brevity.) As shown in Fig. 7(a), a cellular phone on a desk
is taken away. Usually, a missing personal property should be
marked as foreground and trigger an alarm. However, such an
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Fig. 6. Comparisons of background adaptation to quick lighting changes using Seq. �. Top row: foreground detection results for � . Middle row: computed
background maps � s. Bottom row: derived foreground maps. In the foreground maps, the regions in blue denote shadows and noises. (a), (b), (c) The results of
[23], [13], and our approach, respectively, with � � �����. (d), (e), (f) The results of [23], [13], and our approach, respectively, with � � �����. (a) Results of
[23] �� � ������. (b) Results of [13] �� � ������. (c) Our results �� � ������, (d) Results of [23] �� � ������. (e) Results of [13] �� � ������. (f) Our
results �� � ������.

abnormal event can not be stably detected with . The
quick adaption of the uncovered region into background hap-
pens in about one second, as shown in Fig. 7(b), leaving no ev-
idence of the missing cellular phone. Similarly, hand waving in
front of the camera is soon adapted into background as well, as
shown in Fig. 7(c), causing the hand regions only partially de-
tected. In contrast, the above two scenarios can be properly han-
dled by the proposed approach with the same parameter setting

, as shown in Fig. 7(d)–(f). Thank to the regular-
ization of the learning rate , quick lighting changes, missing
objects and periodic motions can all be modeled decently in an
unified framework.

Advantages of the proposed background-type rate control are
also demonstrated, using Seq. , in Fig. 8 wherein background
modeling results are obtained with and without the background-
type rate control. By replacing the gradual increase of back-
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Fig. 7. Comparisons of background modeling for missing object and waving hand using Seq. �. Top row: foreground detection results. Middle row: computed
background maps. Bottom row: derived foreground maps. (a), (b), (c) The results for � � � , and � , respectively, using [13] with � � �����. (d), (e), (f) The
results for � � � , and � , respectively, using our approach with � � �����. In (f), the cellular phone taken away is identified as a missing object and
highlighted by a yellow box. (a) Results of [13] for � . (b) Results of [13] for � . (c) Results of [13] for � . (d) Our results for � . (e) Our results for � .
(f) Our results for � .

ground learning rate in (9) with a constant setting of (10), as
can be seen in Fig. 8(a), the afterimages induced by the waving
hand are included into the background model (the second row)
and the resulted segmentation of foreground regions is incom-
plete (the third row). In Fig. 8(b), as the hand moving out of
the scene, the incorrect background model continues to gives
false positives in foreground detection for a period of time. On
the other hand, such defects can be effectively reduced by using

the proposed rate control for background pixels, as shown in
Fig. 8(c) and (d).

B. Parameter Tuning of

As tuning the hyper-parameter , the
effect is more on time span of background adaptation than on
the accuracy of background modeling. Specifically, varying
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Fig. 8. Comparisons of background modeling results obtained without and with using the background-type rate control (BTRC). Top row: foreground detection
results. Middle row: computed background maps. Bottom row: derived foreground maps. (a), (b) The results derived by replacing the first equation of (9) with
(10). (c), (d) The results derived by (9). (a) Without BTRC for � . (b) Without BTRC for � . (c) With BTRC for � . (d) With BTRC for � .

changes the time span for a still object to be merged into a back-
ground model, if no interrupt occurs. The number of required
image frames to adapt a pixel of still type into background can
be estimated by

For example, given and as an ini-
tial value, at least image frames are required to com-
plete the background adaptation of a still-type pixel. For Seq.

shown in Fig. 8, it takes about 288 frames to replace regions
of the missing cellular phone with newly revealed scenes in the
background model, just a little longer than predicted. Regarding
the default setting of , at least image
frames are needed for a pixel being continuously occupied by
the same hovering object to be adapted into background. This
number of image frames roughly matches the testing example
shown in Section III-E where all the regions of a fountain spurt
are adapted into background in about 2000 image frames.

Similarly, tuning alters the time span of avoiding afterim-
ages to be incorporated into a background model. Taking Seq.

as an benchmark, the numbers of image frames having no
afterimage in background models under different ’s are sum-
marized in Table I. Here, setting to 0.05 or less gives no ob-
vious defects in the estimated background models throughout
the sequence. On the other hand, increasing and may be
needed for scenarios with large periodic motions, e.g., shaking
tree branches and moving tides.

Regarding , it is tuned to slightly defer the adapta-
tion of shadows that are usually casted by foreground
objects into a background model. Thus, the product

should be kept below
. In addition, if the product is less than it will be reset to

TABLE I
THE # OF IMAGE FRAMES RESISTING BACKGROUND ADAPTATION TO

AFTERIMAGES W.R.T. � ’S

in our implementation instead, to adapt static and frequently
seen shadows into background. To sum up, via proper tuning
of , the required time spans for adapting pixel of different
types into background can be easily and accurately controlled
for various applications.

C. Adaptation of Over-Quick Lighting Change

Fig. 9 shows a scene experiencing very quick sunshine
changes. The resultant over-quick changes in background can
not be adapted in time by the GMM framework, even by setting
high learning rates, as shown in Fig. 9. By utilizing the pro-
posed heuristic, with set to 10, for adaptation of over-quick
lighting change, almost all the false positives resulted from
sunshine changes are eliminated in the entire testing sequence.
Nevertheless, a few sides-effects are also observed. Fig. 9(d)
gives an example that a small motorcycle whose colors are
similar to the background scene is misidentified as noises
(marked in blue), for some parts of this object are deleted by
frame difference. Through examination of these results, one
can easily see that, overall, adopting such a heuristic actually
brings in more benefits than drawbacks. Further quantitative
evaluations, as will be presented later, also support this ob-
servation. Many false positives in foreground detection can
thus be reduced while only limited false negatives are induced.
Besides, large, significant motions will not be ignored by using
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Fig. 9. Comparisons of background adaption to over-quick lighting change using Seq. �. The foreground detection results for � are illustrated. (a), (b) The
results of [23] and [13], respectively, with � � �����. (c), (d) The results of [23] and [13], respectively, with � � �����. (e) The results of the proposed
approach without using the heuristic for adaptation of over-quick lighting change. (f) The results of the proposed approach. The yellow arrows mark the undetected
foreground regions of a small motorcycle. (a) Results of [23] �� � ������. (b) Results of [13] �� � ������. (c) Results of [23] �� � ������. (d) Results of [13]
�� � ������. (e) Our results w/o the heuristic �� � ������. (f) Our results �� � ������.

this heuristic due to its design of foreground map accumulation
via the operation in (11).

D. Quantitative Evaluations

In the quantitative comparisons among [13], [23], and our ap-
proach without/with the heuristic of (11), Seq. is used as a
benchmark for it is a real and challenging sequence. To con-
struct the ground-truth data, we write a program to segment pos-
sible foreground regions of Seq. with high sensitivity. Subse-
quently, 32 representative image frames are selected by visual

inspection, and with their segmentation results refined manu-
ally. Note that all the vehicles in the scene, no matter in motion
or resting, are marked as foreground in this evaluation. Snap-
shots of the ground-truth images are given in Fig. 10.

The statistical plots in Fig. 11 are generated by applying dif-
ferent values to all the compared methods. Also, two set-
tings for our approach are included in the comparison. Results
in Fig. 11 show that, with , the proposed approach con-
stantly achieves low false positive rates % while keeping
high detection accuracy % for all s. If the heuristic is
not used, then can be chosen for our approach to both
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Fig. 10. Snapshots of the ground-truth images for Seq. �. (a) � . (b) � . (c) � . (d) � .

Fig. 11. Quantitative comparisons of [13] (DSLee), [23] (GMM), our approach without the heuristic, and our approach with � � �� and � � �� under
different � settings using the 32 ground-truth images of Seq.�. Here, the values of 0.0010, 0.0025, 0.0050, 0.0075, 0.0100, 0.0250, 0.0500, 0.0750, 0.1000, and
0.2000 are set to � to generate the curves. (a) Comparisons of foreground detection rates. The detection level of 99% is marked for reference. (b) Comparisons of
false positives rates in foreground detection. The false positive level of 1% is marked for reference.

catch the over-quick lighting changes and maintain high detec-
tion accuracy. As for the methods of [13] and [23], finding a
reasonably good parameter setting seems not possible for this
case.

Although our approaches (with and without the heuristic) do
not give the highest detection rate, they both have a feature of de-
livering stable detection results under various settings, mainly
owing to our independent controls of the two types of learning
rates. Moreover, through examining the false positive rates with
respect to different s, we choose to bring the heuristic into
our approach as a default practice since doing so will almost al-
ways give low false alarms. Note that, based on the evaluations,

and can be suggested as default values for
the heuristic because these values give slightly better detection
accuracy.

To verify our argument that adjusting does not affect the
background modeling performance much, a quantitative evalu-
ation is conducted by varying to 0.001, 0.005, 0.010, 0.050,

0.100, and 0.500, with the other parameters fixed to the de-
fault values. While the detection and false positive rates for

(the default setting) are 99.3347% and 0.5420%,
respectively, similar performance indexes for the other s are
all within % and %, re-
spectively, which supports our argument.

E. Adaptation of Scene Change

In Section II-B, the problem with feedback control and
possible solutions are discussed. An example illustrating such a
problem is given in Fig. 12, where a fountain suddenly spurting
high causes a bunch of false positives in foreground detection.
The first column of Fig. 12 shows such dramatic changes of
background scene may be adapted too quickly (in about 100
image frames) by [13] if a high learning rate
is used. On the contrary, as shown in the second column,
these false positives last for a very long time ( image
frames) if a naive feedback control by setting
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Fig. 12. Comparisons of scene change adaptation among [13] (the first column), feedback control with ���� � ������ (the second column), our approach with (1)
(the third column) and our approach with the weight-based model matching rule (the 4th column). (a) � , (b) � , (c) � , and (d) � .
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Fig. 13. Foreground detection results for the scenes of (a) waving water [28]
and (b) crowded entrance. The yellow box in (b) marks an abandoned bag.

is used. The identical modeling of and , together with
the feedback controls, makes a system behave as what the
problem describes. However, as depicted in the third column
of Fig. 12(c) and (d), quicker adaptation of false positives into
background can be achieved by separating the control of
from that of with the conventional model matching rule of
(1). Finally, as shown in the forth column, the false positives
resulted from scene changes can be completely eliminated in
about 2000 image frames (equivalent to about 1.11 min for a
30-fps video) by combining the proposed rate control scheme
with the weight-based model matching rule.

F. Other Results

Additional experiments for the scenes of waving water8 and
crowded entrance are demonstrated in Fig. 13. In Fig. 13(a), a
floating bottle on the waving water can be successfully detected
by the proposed approach. In the crowded entrance sequence
shown in Fig. 13(b), a black bag left by a passenger is stably
detected as a foreign object in a busy scene. These experiments
show the effectiveness of the proposed scheme of learning rate
control for the surveillance applications associated with com-
plex scenes.

IV. CONCLUSION

In background model learning, maintaining a balance be-
tween robustness to background variations and sensitivity to
foreground changes has long been regarded as a hard problem.
In this work, via the clarification of the different roles of dif-
ferent learning rates for the GMM and by adopting the proposed
rate control scheme, the tradeoff between model robustness
and sensitivity can be effectively regularized. Experimental
results show that, with careful tuning of the learning rates for
mixture weights, robustness to quick variations in background
as well as sensitivity to abnormal changes in foreground can
be achieved simultaneously for several surveillance scenarios.

8The image sequence of waving water is from [28].

In addition, a heuristic for adaptation of over-quick lighting
change is proposed and verified in this work. With the help of
this heuristic, large lighting changes occurring in very short
time intervals, e.g., within one second, can be absorbed into
background.

Our design of the learning rate control roots in the high-level
feedback of pixel types identified by a surveillance system. Al-
though, in our current setting, only a limited amount of pixel
types are computed for rate control, noticeable improvements in
foreground detection over conventional GMM approaches are
already observable. Owing to the simplicity and scalability of
the proposed scheme, more complex scenarios may be handled
with more high-level information incorporated. For example,
region-level classification results of skin/nonskin, face/nonface
and human/nonhuman can be fed back to the pixel-level rate
control of in background modeling to increase model sensi-
tivity to these objects. Also, proper learning rate settings of
and for pixels of high spatio-temporal gradients may be worth
an investigation. Another interesting direction is to apply bio-
logical cues, e.g., discriminant saliency [15] between center and
surround, to increase the adaptation rates for background pixels
of highly dynamic background scenes that are often misclassi-
fied as foreground one.
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