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The fuzzy logic constant controller (FLCC) is introduced in this paper. Unlike traditional method, a sim-
plest controller is proposed via fuzzy logic design and Lyapunov direct method. Controllers in traditional
method by Lyapunov direct method are always complicated or the functions of errors. We propose a new
idea to design constant numbers as controllers, while the constant numbers are decided by the upper
bound and the lower bound of the error derivatives. Via fuzzy logic rules, the strength of controllers in
our new approach can be adjusted according to the error derivatives. Consequently, the slave system
becomes exactly and efficiently synchronized to the trajectory of master system through FLCC. Two
examples, Lorenz system and four order Chen–Lee system, are presented to illustrate the effectiveness
of the new controllers in chaos generalized synchronization.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since Pecora and Carroll (1990) proposed the concept of chaotic
synchronization, chaos synchronization has become a hot subject
in the field of nonlinear science due to its wide-scope potential
application in various disciplines. The past two decades has wit-
nessed significant progress on chaotic synchronization in secure
communication, life science and information engineering. Typical
application of synchronization techniques are in the remote con-
trol of nuclear systems and control of distributed power systems.
Chaotic synchronization has been investigated extensively. Many
kinds of synchronization phenomena and methods have been
found in variety of chaotic systems, such as generalized synchroni-
zation (Chen, 2009; Chen, Chang, Yan, & Liao, 2008), phase syn-
chronization (Erjaee & Momani, 2008; Li, Chen, & Huang, 2008),
lag synchronization (Chen, Chen, & Gu, 2007; Ge & Lin, 2007),
inverse synchronization (Chang, Li, & Lin, 2009; Li, 2009), partially
synchronization (Chen & Chen, 2009; Wu & Chen, 2009), projective
synchronization (Chen, 2005; Hu, Yang, Xu, & Guo, 2008), Q–S
synchronization (Hu & Xu, 2008; Wang & Chen, 2006), etc.

In recent years, some chaos synchronizations based on fuzzy
systems have been proposed since the fuzzy set theory was initi-
ated by Zadeh (1988), such as fuzzy sliding mode controlling tech-
nique (Bagheri & Moghaddam, 2009; Chen, Chen, & Chiang, 2009;
ll rights reserved.
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Hung & Chung, 2007; Hung, Lin, & Chung, 2007), LMI-based syn-
chronization (Wang, Guan, & Wang, 2003) and extended backstep-
ping sliding mode controlling technique (Li & Khajepour, 2005).
The fuzzy logic control (FLC) scheme have been widely developed
for almost 40 years and have been successfully applied to many
applications (Li, Kuo, & Guo, 2007). Recently, Yau and Shieh
(2008) proposed an amazing new idea in designing fuzzy logic
controllers – constructing fuzzy rules subject to a common Lyapu-
nov function such that the master–slave chaos systems satisfy
stability in the Lyapunov sense. In Yau and Shieh (2008), there
are two main controllers in their slave system. One is used in elim-
ination of nonlinear terms and the other is built by fuzzy rules sub-
ject to a common Lyapunov function. Therefore, the resulting
controllers are nonlinear form. In Yau and Shieh (2008), the regular
form is necessary. In order to carry out the new method, the
original system must to be transformed into their regular form.

In this paper, we propose a new strategy which is also con-
structing fuzzy rules subject to a Lyapunov direct method. Error
derivatives are used to be upper bound and lower bound. Through
this new approach, a simplest controller, i.e. constant controller,
can be obtained and the difficulty in realization of complicated
controllers in chaos synchronization by Lyapunov direct method
can be also coped. Unlike conventional approaches, the resulting
control law has less maximum magnitude of the instantaneous
control command and it can reduce the actuator saturation
phenomenon in real physic system.

The layout of the rest of the paper is as follows. In Section 2,
generalized synchronization by fuzzy logic constant controller
(FLCC) scheme is presented. In Section 3, simulation results are
shown. In Section 4 conclusions are given.
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Fig. 1. The configuration of fuzzy logic controller.

Table 1
Rule-table of FLCC.

Rule Antecedent Consequent part 1 Consequent part 2

em ėm umi

1 Positive (P) Negative (N) um1

2 Negative (N) Positive (P) um2

3 Zero (Z) Zero (Z) um3
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2. Generalized synchronization by FLCC scheme

2.1. Generalized synchronization scheme

There are two nonlinear dynamical systems, while the
master system controls the slave system. The master system is
given by

_x ¼ Axþ f ðxÞ ð2-1Þ

where x = [x1,x2, . . . ,xn]T 2 Rn denotes a state vector, A is an n � n
constant coefficient matrix and f is a nonlinear vector function.

The slave system is given by

_y ¼ Byþ gðyÞ þ u ð2-2Þ

where y = [y1,y2, . . . ,yn]T 2 Rn denotes a state vector, B is an n � n
constant coefficient matrix, g is a nonlinear vector function, and
u = [u1,u2, . . . ,un]T 2 Rn is a constant control input vector.

Our goal is to design appropriate fuzzy rules and corresponding
constant controllers u so that the state vector of the chaotic system
(2-1) asymptotically approaches the state vector of the master
system (2-2).

The generalized chaos synchronization can be accomplished in
the sense that the limit of the error vector e(t) = [e1,e2, . . . ,en]T ap-
proaches zero:

lim
t!1

e ¼ 0 ð2-3Þ

where

e ¼ HðxÞ � y ð2-4Þ

where H(x) is a given vector function of x. From Eq. (2-4) we have

_e ¼ @HðxÞ
@x

_x� _y ð2-5Þ

_e ¼ @HðxÞ
@x
½Axþ f ðxÞ� � Ay� f ðyÞ � u ð2-6Þ

A Lyapnuov function V(e) is chosen as a positive definite function

VðeÞ ¼ 1
2

eT e ð2-7Þ

Its derivative along any solution of the differential equation system
consisting of Eq. (2-6) is

_VðeÞ ¼ eT � @HðxÞ
@x

� ½Axþ f ðxÞ� � Ay� f ðyÞ � u
� �

ð2-8Þ

If fuzzy constant controllers u can be appropriately chosen so that
_V ¼ CeT e, C is a diagonal negative definite matrix, and _V is a nega-
tive definite function of e. By Lyapunov theorem of asymptotical
stability:

lim
t!1

e ¼ 0 ð2-9Þ

The generalized synchronization is obtained. The design process of
FLCC is introduced in the following section.

2.2. Fuzzy logic constant controller design process

The basic configuration of the fuzzy logic system is shown in
Fig. 1. It is composed of five function blocks (Shieh, 2003):

1. A rule base contains a number of fuzzy if-then rules.
2. A database defines the membership functions of the fuzzy sets

used in fuzzy rules.
3. A decision-making unit performs the inference operations on

the rules.
4. A fuzzification interface transforms the crisp inputs into
degrees of match with linguistic value.

5. A defuzzification interface transforms the fuzzy results of the
inference into a crisp output.

The fuzzy rules base consists of collection of fuzzy if-then rules
expressed as the form if a is A then b is B, where a and b denote lin-
guistic variables, A and B represent linguistic values which are
characterized by membership functions. All of the fuzzy rules can
be used to construct the fuzzy associated memory.

We use two signals, e(t) = [e1,e2, . . . ,em, . . . ,en]T in Eq. (2-4) and
e(t) = [ė1, ė2, . . . , ėm, . . . , ėn]T Eq. (2-5), as the antecedent part of the
proposed FLCC to design the control input u in Eq. (2-8) that will
be used in the consequent part of the proposed FLCC as follows:

u ¼ ½u1;u2; . . . um; . . . un�T ð2-10Þ

where u is a constant column vector and the FLCC accomplishes the
objective to stabilize the error dynamics (2-6). In this paper, we are
not going to use the original fuzzy rule base, but using it in each er-
ror dynamics separately. In order to obtain the simplest controllers,
the ith if-then rule of the fuzzy rule base of the FLCC is of the follow-
ing form:

Rule i : if em is Xi then _em is Yi and umi ¼ constant ð2-11Þ

where Xi is the input fuzzy sets of em, m = 1 � n, Yi is the output fuz-
zy sets of ėm and umi is the i-rd output of ėm which is a constant con-
troller. For given input sign of the process variables em, then the
output sign of ėm would be decided and its degree of membership
lXi

; i ¼ 1 � 3 called rule-antecedent weights are calculated. The
centriod defuzzifier evaluates the output of all rules as follows:

um ¼
P3

i¼1lxi
� umiP3

i¼1lxi

ð2-12Þ

The fuzzy rule base is listed in Table 1, in which the input variables
in the antecedent part of the rules are em and the output variable, in
the consequent part are ėm andumi.

The membership function is obtained via the method shown in
Fig. 2. After designing appropriate fuzzy logic constant controllers,



Fig. 2. Membership function.
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a negative definite of _V in Eq. (2-9) can be obtained and the asymp-
totically stability of Lyapunov theorem can be achieved.

3. Simulation results

3.1. Example 1: synchronization of master and slave Lorenz system

The master Lorenz system (Lorenz, 1963) is:

dx1ðtÞ
dt ¼ aðx2ðtÞ � x1ðtÞÞ

dx2ðtÞ
dt ¼ cx1ðtÞ � x1ðtÞx3ðtÞ � x2ðtÞ

dx3ðtÞ
dt ¼ x1ðtÞx2ðtÞ � bx3ðtÞ

8>><
>>:

ð3-1-1Þ

When initial condition (x10,x20,x30) = (�0.1,0.2,0.3) and parameters
a = 10, b = 8/3 and c = 28, chaos of the Lorenz system appears. The
chaotic behavior of Eq. (3-1-1) is shown in Fig. 3.

The slave Lorenz system is:

dy1ðtÞ
dt ¼ aðy2ðtÞ � y1ðtÞÞ þ u1

dy2ðtÞ
dt ¼ cy1ðtÞ � y1ðtÞy3ðtÞ � y2ðtÞ þ u2

dy3ðtÞ
dt ¼ y1ðtÞy2ðtÞ � by3ðtÞ þ u3

8>><
>>:

ð3-1-2Þ
Fig. 3. Projections of phase portrait of chaotic Lo
When initial condition (y10,y20,y30) = (0.5,0.7,1.5) and parameters
are the same as that of Eq. (3-1-1), chaos of the slave Lorenz system
appears as well. u1, u2 and u3 are FLCC to synchronize the slave Lor-
enz system to master one, i.e.,

lim
t!1

e ¼ 0 ð3-1-3Þ

where the error vector

½e� ¼
e1ðtÞ
e2ðtÞ
e3ðtÞ

2
64

3
75 ¼

x1ðtÞ � y1ðtÞ
x2ðtÞ � y2ðtÞ
x3ðtÞ � y3ðtÞ

2
64

3
75 ð3-1-4Þ

From Eq. (3-1-4), we have the following error dynamics:

_e1 ¼ aðx2 � x1Þ � ðaðy2 � y1Þ þ u1Þ
_e2 ¼ cx1 � x1x3 � x2 � ððcy1 � y1y3 � y2Þ þ u2Þ
_e3 ¼ x1x2 � bx3 � ððy1y2 � by3Þ þ u3Þ

8><
>: ð3-1-5Þ

Choosing Lyapunov function as:

V ¼ 1
2
ðe2

1 þ e2
2 þ e2

3Þ ð3-1-6Þ

Its time derivative is:

_V ¼ e1 _e1 þ e2 _e2 þ e3 _e3

¼ e1ðaðx2 � x1Þ � ðaðy2 � y1Þ þ u1ÞÞ
þ e2ðcx1 � x1x3 � x2 � ððcy1 � y1y3 � y2Þ þ u2ÞÞ
þ e3ðx1x2 � bx3 � ððy1y2 � by3Þ þ u3ÞÞ ð3-1-7Þ

In order to design FLCC, we divide Eq. (3-1-7) into three parts as fol-
lows: Assume V ¼ 1

2 e2
1 þ e2

2 þ e2
3

� �
¼ V1 þ V2 þ V3, then _V ¼ e1 _e1þ

e2 _e2 þ e3 _e3 ¼ _V1 þ _V2 þ _V3, where V1 ¼ 1
2 e2

1; V2 ¼ 1
2 e2

2 and V3 ¼ 1
2 e2

3.

Part 1 : _V1 ¼ e1 _e1 ¼ e1ðaðx2 � x1Þ � ðaðy2 � y1Þ þ u1ÞÞ
Part 2 : _V2 ¼ e2 _e2 ¼ e2ðcx1 � x1x3 � x2 � ððcy1 � y1y3 � y2Þ þ u2Þ
Part 3 : _V3 ¼ e3 _e3 ¼ e3ðx1x2 � bx3 � ððy1y2 � by3Þ þ u3ÞÞ
Part 1: FLCC in Part 1 can be obtained via the fuzzy rules in Table
1 as follows and the maxima value and minima value of ė1

(without any controller) can be observed in time history of error
renz system with a = 10, b = 8/3 and c = 28.



Fig. 4. Time histories of error derivatives for master and slave Lorenz chaotic systems without controllers.
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derivatives drawn in Fig. 4. We choose f1 to be the upper bound
value and g1 to be the lower bound value of ė1(without any con-
troller), they are satisfied with f1 < ė1 (without any control-
ler) < g1 and f1, g1 are all constants.

Rule 1: if e1 is P, then ė1 is N and we take u11 = f1

Rule 2: if e1 is N, then ė1 is P and we take u12 = g1

Rule 3: if e1 is Z, then ė1 is Z and we take u13 = 0 = e1

where f1 = �g1 = constant = 400 and we choose u13 = 0 = e1 when
e1 approaches to zero. We take Rule 1 � 3 in Part 1, _V1 ¼ e1 _e1,
for explaining:

Rule 1 : if e1 is P; then _e1 is N and we take u11 ¼ f1:

_V1 ¼ e1 _e1 ¼ e1ðaðx2 � x1Þ � aðy2 � y1Þ � f1Þ

where e1 > 0 and (a(x2 � x1) � a(y2 � y1) � f1) = (ė1(without control-
ler) � f1) < 0. Therefore, _V1 ¼ e1 _e1 ¼ e1ðaðx2 � x1Þ � aðy2 � y1Þ�
f1Þ < 0 and is going to approach asymptotically stable.
Rule 2 : if e1 is N; then _e1 is P and we take u12 ¼ g1

_V1 ¼ e1 _e1 ¼ e1ðaðx2 � x1Þ � aðy2 � y1Þ � g1Þ
where e1 < 0 and (a(x2 � x1) � a(y2 � y1) � g1) = (ė1(without control-
ler) � g1) > 0. Therefore, _V1 ¼ e1 _e1 ¼ e1ðaðx2 � x1Þ � aðy2 � y1Þ�
g1Þ < 0 and is going to approach asymptotically stable.
Rule 3 : if e1 is Z; then _e1 is Z and we take u13 ¼ 0 ¼ e1

_V1 ¼ e1 _e1 ¼ e1ðaðx2 � x1Þ � aðy2 � y1Þ � e1Þ
where e1 = 0 and we donot need any controller now. Therefore,
_V1 ¼ e1 _e1 ¼ 0 and achieve asymptotically stable. As a results, FLCC
in Part 1 can be obtained from Rule 1, 2 and 3:
u1 ¼
lP � u11 þ lN � u12 þ lZ � u13

lP þ lN þ lZ
ð3-1-8Þ

Part 2: FLCC in Part 2 can be obtained via the fuzzy rules
in Table 1 as follows and the maxima value and minima value
of ė2 (without any controller) can be observed in time history
of error derivatives drawn in Fig. 4. We choose f2 to be the upper
bound value and g2 to be the lower bound value of ė2 (without
any controller), they are satisfied with f2 < ė2 (without any con-
troller) < g2 and f2, g2 are all constants.

Rule 1: if e1 is P, then ė1 is N and we take u11 = f
Rule 1: if e2 is P, then ė2 is N and u21 = f2

Rule 2: if e2 is N, then ė2 is P and u22 = g2

Rule 3: if e2 is Z, then ė2 is Z and u23 = 0 = e
where f2 = �g2 = constant = 500 and we choose u23 = 0 = e2 when
e2 approaches to zero. The process of FLCC designing is the same
as Part 1, as a results, FLCC in Part 2 can be obtained from Rule 1,
2 and 3 and are going to take _V2 ¼ e2 _e2 < 0:

u2 ¼
lP � u21 þ lN � u22 þ lZ � u23

lP þ lN þ lZ
ð3-1-9Þ

Part 3: FLCC in Part 3 can be obtained via the fuzzy rules in Table
1 as follows and the maxima value and minima value of ė3

(without any controller) can be observed in time history of error
derivatives drawn in Fig. 4. We choose f3 to be the upper bound
value and g3 to be the lower bound value of ė3 (without any
controller), they are satisfied with f3 < ė3 (without any control-
ler) < g3 and f3, g3 are all constants.

Rule 1: if e3 is P, then ė3 is N and u31 = f3

Rule 2: if e3 is N, then ė3 is P and u32 = g3

Rule 3: if e3 is Z, then ė3 is Z and u33 = 0 = e3

where f3 = �g3 = constant = 500 and we choose u33 = 0 = e3 when
e3 approaches to zero. The process of FLCC designing is the
same as Part 1, as a results, FLCC in Part 3 can be obtained from
Rule 1, 2 and 3 and are going to take _V3 ¼ e3 _e3 < 0:

u3 ¼
lP � u31 þ lN � u32 þ lZ � u33

lP þ lN þ lZ
ð3-1-10Þ

FLCC are proposed in Part 1, 2 and 3 and are going to take
_V1 ¼ e1 _e1 < 0; _V2 ¼ e2 _e2 < 0 and _V3 ¼ e3 _e3 < 0. Hence, we have
_V ¼ _V1 þ _V2 þ _V3 < 0. It is clear that all of the rules in our FLC
can lead the Lyapunov function to approach asymptotically stable
and the simulation results are shown in Figs. 5 and 6.



Fig. 5. Time histories of errors for Example 1- the FLCC is coming into after 30s.

Fig. 6. Time histories of states for Example 1- the FLCC is coming into after 30s.
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3.2. Example 2: generalized synchronization of different order chaotic
system- Lorenz and New Chen–Lee system

Chen & Lee (2004) gave a new chaotic system, which is now
called the Chen–Lee system (Tam & Tou, 2008). The system is de-
scribed by the following nonlinear differential equations and is de-
noted as system (1):

dz1ðtÞ
dt ¼ �z2ðtÞz3ðtÞ þ a1z1ðtÞ

dz2ðtÞ
dt ¼ z1ðtÞz3ðtÞ þ b1z2ðtÞ

dz3ðtÞ
dt ¼ 1

3 z1ðtÞz2ðtÞ þ cz3ðtÞ

8>><
>>:

ð3-2-1Þ
where z1, z2 and z3 are state variables, and a1, b1 and c1 are three
system parameters. When (a1,b1,c1) = (5,�10,�3.8), system (3-2-
1) is a chaotic attractor. The positive Lyapunov exponent of this
attractor is k1 = 0.88, while the other ones are k2 = 0 and
k3 = �13.57, respectively. It is clear that the Chen–Lee system is a
regular chaotic system. For more-detailed dynamics of the Chen–
Lee system, see Chen & Lee (2004).

It is known that in order to obtain hyper-chaos, there are two
important requisites: (1) the minimal dimension of the phase
space that embeds a hyper-chaotic attractor should be at least four,
which requires a minimum of four couple first-order autonomous
ordinary differential equations; and (2) the number of terms in
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the couple equations giving rise to instability should be at least
two, of which at least one should be a nonlinear function. In (Chen
et al., 2009), Chen and Lee introduce a nonlinear feedback control-
ler to the third equation of system (3-2-1), the following dynamic
system can be obtained:
dz1ðtÞ
dt ¼ �z2ðtÞz3ðtÞ þ a1z1ðtÞ

dz2ðtÞ
dt ¼ z1ðtÞz3ðtÞ þ b1z2ðtÞ

dz3ðtÞ
dt ¼ 1

3 z1ðtÞz2ðtÞ þ c1z3ðtÞ þ 1
5 z4ðtÞ

dz4ðtÞ
dt ¼ d1z1ðtÞ þ 1

2 z2ðtÞz3ðtÞ þ 1
20 z4ðtÞ

8>>>>>>><
>>>>>>>:

ð3-2-2Þ
where d is a constant, determining the dynamic behaviors
of the system (3-2-2) and a1, b1, and c1 are three system
parameters. Thus, controller z4 causes chaotic system (3-2-1) to
become a four-dimensional system, which has four Lyapunov
exponents. This may lead to a hyper-chaotic system. When
(a1,b1,c1) = (5,�10,�3.8) and we choose d = 1.3, system (3-2-2)
is a hyper-chaotic attractor. The projection of phase portraits
of system (3-2-2) with hyper-chaotic behaviors is shown in
Fig. 7.

Eq. (3-1-2) is chosen as slave system to be synchronized with
the master system (3-2-2). Our goal is [e] = [e1(t),e2(t),e3(t)] =
[z1(t)�y1(t),z3(t)�y2(t),z4(t)�y3(t)]. As a result, we get the follow-
ing error dynamics:
_e1 ¼ �z2z3 þ a1z1 � ðaðy2 � y1Þ þ u1Þ
_e2 ¼ 1

3 z1z2 þ c1z3 � ððcy1 � y1y3 � y2Þ þ u2Þ
_e3 ¼ d1z1 þ 1

2 z2z3 þ 1
20 z4 � ððy1y2 � by3Þ þ u3Þ

8>><
>>:

ð3-2-3Þ
Choosing Lyapunov function as:

V ¼ 1
2
ðe2

1 þ e2
2 þ e2

3Þ ð3-2-4Þ
Fig. 7. Projections of phase portrai
Its time derivative is:

_V ¼ e1 _e1 þ e2 _e2 þ e3 _e3

¼ e1ð�z2z3 þ a1z1 � ðaðy2 � y1Þ þ u1ÞÞ

þ e2
1
3

z1z2 þ c1z3 � ððcy1 � y1y3 � y2Þ þ u2Þ
� �

þ e3 d1z1 þ
1
2

z2z3 þ
1

20
z4 � ððy1y2 � by3Þ þ u3Þ

� �
ð3-2-5Þ

We divide Eq. (3-2-5) into three parts as follows:
Assume V ¼ 1

2 ðe2
1 þ e2

2 þ e2
3Þ ¼ V1 þ V2 þ V3, then _V ¼ e1 _e1þ

e2 _e2 þ e3 _e3 ¼ _V1 þ _V2 þ _V3, where V1 ¼ 1
2 e2

1; V2 ¼ 1
2 e2

2 and V3 ¼ 1
2 e2

3.

Part 1 : _V1 ¼ e1 _e1 ¼ e1ð�z2z3 þ a1z1 � ðaðy2 � y1Þ þ u1ÞÞ
Part 2 : _V2 ¼ e2 _e2 ¼ e2

1
3 z1z2 þ c1z3 � ððcy1 � y1y3 � y2Þ þ u2Þ
� �

Part 3 : _V3 ¼ e3 _e3 ¼ e3 d1z1 þ 1
2 z2z3 þ 1

20 z4 � ððy1y2 � by3Þ þ u3Þ
� �
Part 1: FLCC in Part 1 can be obtained via the fuzzy rules in Table
1 as follows and the maxima value and minima value of ė1

(without any controller) can be observed in time history of error
derivatives drawn in Fig. 8. We choose f4 to be the upper bound
value and g4 to be the lower bound value of ė1 (without any
controller), they are satisfied with f4 < ė1 (without any control-
ler) < g4 and f4, g4 are all constants.
Rule 1: if e1 is P, then ė1 is N and we take u11 = f4

Rule 2: if e1 is N, then ė1 is P and we take u12 = g4

Rule 3: if e1 is Z, then ė1 is Z and we take u13 = 0 = e1

where f4 = �g4 = constant = 2000 and we choose u13 = 0 = e1

when e1 approaches to zero. We take Rule 1 � 3 in Part 1,
_V1 ¼ e1 _e1, for explaining:

Rule 1 : if e1 is P; then _e1 is N and we take u11 ¼ f4:

_V1 ¼ e1 _e1 ¼ e1ð�x2x3 þ a1x1 � aðy2 � y1Þ � f4Þ

where e1 > 0 and (�z2z3 + a1z1 � a(y2 � y1) � f4) = (ė1(without con-
troller) � f4) < 0. Therefore, _V1 ¼ e1 _e1 ¼ e1ð�z2z3 þ a1z1 � aðy2�
y1Þ � f4Þ < 0 and is going to approach asymptotically stable.
t of chaotic Chen–Lee system.



Fig. 8. Time histories of error derivatives for master and slave chaotic systems without controllers.
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Rule 2 : if e1 is N; then _e1 is P and we take u12 ¼ g4

_V1 ¼ e1 _e1 ¼ e1ð�x2x3 þ a1x1 � aðy2 � y1Þ � g4Þ
where e1 < 0and (�x2x3 + a1x1 � a(y2 � y1) � g4) = (ė1(without con-
troller) � g4) > 0. Therefore, _V1 ¼ e1 _e1 ¼ e1ð�x2x3 þ a1x1 � aðy2�
y1Þ � g4Þ < 0 and is going to approach asymptotically stable.
Rule 3 : if e1is Z; then _e1 is Z and we take u13 ¼ 0 ¼ e1

_V1 ¼ e1 _e1 ¼ e1ð�x2x3 þ a1x1 � aðy2 � y1Þ � e1Þ
where e1 = 0 and we donot need any controller now. Therefore,
_V1 ¼ e1 _e1 ¼ 0 and achieve asymptotically stable. As a results, FLCC
in Part 1 can be obtained from Rule 1, 2 and 3:
Fig. 9. Time histories of errors for Example 2-
u1 ¼
lP � u11 þ lN � u12 þ lZ � u13

lP þ lN þ lZ
ð3-2-6Þ

Part 2: FLCC in Part 2 can be obtained via the fuzzy rules in Table
1 as follows and the maxima value and minima value of ė2

(without any controller) can be observed in time history of error
derivatives drawn in Fig. 8. We choose f5 to be the upper bound
value and g5 to be the lower bound value of ė2(without any con-
troller), they are satisfied with f5 < ė2 (without any control-
ler) < g5 and f5, g5 are all constants.

Rule 1: if e2 is P, then ė2 is N and u21 = f5

Rule 2: if e2 is N, then ė2 is P and u22 = g5

Rule 3: if e2 is Z, then ė2 is Z and u23 = 0 = e2
the FLCC is coming into after 30 s.



Fig. 10. Time histories of states for Example 2-the FLCC is coming into after 30 s.
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where f5 = �g5 = constant = 1000 and we choose u23 = 0 = e2

when e2 approaches to zero. The process of FLCC designing is
the same as Part 1, as a results, FLCC in Part 2 can be obtained
from Rule 1, 2 and 3 and are going to take _V2 ¼ e2 _e2 < 0:

u2 ¼
lP � u21 þ lN � u22 þ lZ � u23

lP þ lN þ lZ
ð3-2-7Þ

Part 3: FLCC in Part 3 can be obtained via the fuzzy rules in Table
1 as follows and the maxima value and minima value of ė3

(without any controller) can be observed in time history of error
derivatives drawn in Fig. 8. We choose f6 to be the upper bound
value and g6 to be the lower bound value of ė3(without any con-
troller), they are satisfied with f6 < ė3 (without any control-
ler) < g6 and f6, g6 are all constants.

Rule 1: if e3 is P, then ė3 is N and u31 = f6

Rule 2: if e3 is N, then ė3 is P and u32 = g6

Rule 3: if e3 is Z, then ė3 is Z and u33 = 0 = e3

where f3 = �g3 = constant = 2000 and we choose u33 = 0 = e3

when e3 approaches to zero. The process of FLCC designing is
the same as Part 1, as a results, FLCC in Part 3 can be obtained
from Rule 1, 2 and 3 and are going to take _V3 ¼ e3 _e3 < 0:

u3 ¼
lP � u31 þ lN � u32 þ lZ � u33

lP þ lN þ lZ
ð3-2-8Þ

FLCC are proposed in Eq. (3-2-6), (3-2-7) and (3-2-8) and are going
to take _V1 ¼ e1 _e1 < 0; _V2 ¼ e2 _e2 < 0 and _V3 ¼ e3 _e3 < 0 separately.
Hence, we have _V ¼ _V1 þ _V2 þ _V3 < 0. It is clear that all of the rules
in our FLC can lead the Lyapunov function to approach asymptot-
ically stable and the simulation results are shown in Figs. 9 and 10.

4. Conclusions

In this paper, a simplest controller - fuzzy logic constant con-
troller (FLCC) is introduced. Based on Lyapunov direct method
and the upper bound and lower bound of the error derivatives,
we construct the fuzzy rules and the simplest corresponding con-
stant controllers. Complicated and nonlinear controllers would
no longer appear and are replaced with simple and constant con-
trollers through our new strategy. Simulation results in synchroni-
zation show that FLCC is effective enough and give very
satisfactory results. Through this new approach, not only all cases
in chaos synchronization or control can be achieved, but also the
implement or experimental application of chaos synchronization
could be attained much more easily.
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