行政院國家科學委員會專題研究計畫 成果報告

一多譜線光彈調式橢圓偏光儀

計畫類別: 個別型計畫

計畫編號: NSC91-2215-E-009-055-

執行期間: 91年08月01日至92年07月31日

執行單位: 國立交通大學光電工程研究所

計畫主持人: 趙于飛

報告類型: 精簡報告

處理方式:本計畫涉及專利或其他智慧財產權,2年後可公開查詢

中華民國92年10月2日

可供推廣之研發成果資料表

v 可申請專利 □ 可技術移轉 日期:92 年 10月1日

10月1日	
	計畫名稱:一多譜線光彈調式橢圓偏光儀
國科會補助計畫	計畫主持人:趙于飛
	計畫編號:NSC 91-2215-E-009-055
	學門領域:光電
技術/創作名稱	光彈調變橢圓儀之相位調變線上校正
發明人/創作人	趙于飛,王夢偉 蔡裴欣
	中文:
技術説明	線上校正光彈調變器之調變相位為本實驗的主要工作。藉由數據擷
	取卡證明在不同的樣品調變相位之校正需使用不同的調頻比。並奠
	定應否為不同的波長而改變調變相位。 故一即時線上光譜儀的基
	本結構已然成型。
	英文: The photoelastic modulator (PEM) can be used in polarimetric and ellipsometric
	system for real time/in situ measurements; therefore, we proposed an in situ
	calibration technique for PEM. This calibration technique is achieved by using the multiple harmonic intensity ratios (MHIR), which are obtained from the Fourier
	analysis of a data acquisition system (DAQ). One can calculate the phase
	modulation amplitude and static phase retardation of PEM by MHIR. The digitized oscilloscope waveform measured in the transmission style is used to confirm our
	measurements. In order to develop a spectroscopic- polarimeter /ellipsometer, we
	determine the phase modulation amplitude and its static retardation under varies wavelength at a fixed modulation amplitude for its centered wave (i.e.0.383\), where
	λ = 568 nm) by a multi-wavelength tunable laser.
可利用之產業	可開發為即時橢圓光譜儀及偏光儀
及	
可開發之產品	
	線上校正法可適用於任何已建好的 etching chamber or
社	deposition chamber
技術特點	
推廣及運用的價值	薄膜及液晶参數量測
7F 澳 久 七 川 即 頂 但	
1 左云卯戌 1	(里生持宜二十一公,一公陈七里却上兴幽士会,一公兴 書

1. 每項研發成果請填寫一式二份,一份隨成果報告送繳本會,一份送 責單位研發成果推廣單位(如技術移轉中心)。

- 2. 本項研發成果若尚未申請專利,請勿揭露可申請專利之主要內容。
- 3. 本表若不敷使用,請自行影印使用。