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Abstract

In the coarse-grained fold assignment of major protein classes, such asall-a, dl-b,
a+b, alb proteins, one can easily achieve high prediction accuracy from primary
amino acid sequences. However, the fine-grained assignment of folds, such as those
defined in the Structural Classification of Protein (SCOP) database, presents a
challenge due to the larger amount of folds available. Recent study yielded reasonable
prediction accuracy 56.0 % on an independent set of 27 most populated folds. In this
report, we apply the support vector machine method (SVM), using a combination of
protein descriptors based on the properties derived from the composition of n
-peptide and jury voting, to the fine-grained fold prediction, and are able to achieve an
overal prediction accuracy 69.6% on an same independent set, significantly higher
than the previous results. On ten-fold cross validation, we obtained prediction
accuracy 65.3%. Our results show that primary sequences contain SVM coupled with
suitable global sequence coding schemes can significantly improve the fine-grained
fold prediction and our approach should prove useful in structure prediction and
modeling.

Keywords:. support vector machines; fine-grained fold prediction; global sequence
coding scheme; n-peptide



I ntroduction

Due to progress in experimental genomics, tremendous amounts of sequence data
come out, and the increase in the number of putative protein sequences greatly
exceeds that of three-dimensional structures of proteins. Hence, to extract
three-dimensional structures from sequences becomes even more important nowadays.
Roughly speaking, there are in general two kinds of approaches to structure prediction
! Oneisthe ab initio method that predicts structures directly from the sequences
based on the general physico-chemical principles®’. The other oneis the empirical
method that relies on the empirical knowledge of proteins structures or sequences to
assign the query sequences to the proper folds by either homology modeling,
threading techniques or taxonometric approach®**. Homology modeling identifies the
possible template structures of the query sequences by aligning them with the
sequences of known three-dimensional structures, based on the criteria that sequence
identity higher than 25% usually have similar structures. Threading techniques find
the possible folds by the sequence-structure alignment, without relying on the
sequence homol ogy between the query and target sequences. The taxonometric
method, based on the assumption that the number of foldsislimited, triesto predict
protein structures in terms of the assignment of query sequences to the particular
classification of protein folds. Proteins are said to have a common folding structure if
their major secondary structures have similar arrangement and topol ogical
connections. The latter approach becomes increasingly important due to the fast
growth of protein structures. Previous studies™ ¢ showed that, in the coarse-grain
structural classification such asdl-a, all-b, a+b, al/b andirregular folds'” one
can easily achieved 70% or better prediction accuracy from the amino acid
composition. However, in order to obtain predict a high-resolution three-dimensional
structure, one needs to be able to assign fine-grained folds for the query structures.
The fine-grained assignment of folds, such as defined in the Structural Classification
of Protein (SCOP) database, presents a challenge for structure prediction due to the
larger number of folds. Recently, Ding and Dubchak (2001) applied the support vector
machines (SVM) to the problem of fold assignment. They used six coding schemes™
12 to extract structural or physico-chemical properties from the primary sequences.
They compressed 20 amino acids into three groups for the following attributes: the
percent composition of amino acids, predicted secondary structure, normalized van
der Waals volumes, hydrophobicity, polarity and polarizability. They then calcul ated
three descriptors, i.e,, "composition”, "transition” and "distribution™ for each
attribute of these three groups of amino acids. Their approach yielded around 56.0%
prediction accuracy for an independent set. Despite its seemingly lower prediction



accuracy than before, the prediction was made in the context of 27 fine-grained SCOP
folds, about an order higher than the number of protein classes used in the earlier
work. They achieved this by multi-class fold prediction system based on the jury
votes from several parameter sets of structural or physico-chemical properties of the
sequences described by three groups of amino acids. In thiswork, we use SVM
coupled with more comprehensive protein descriptors based on n-peptide coding
schemes and jury voting procedures, we can obtain a prediction accuracy significsntly
higher than the previous study.

Methods

The SVM isapowerful classification method™® that becomes popular in
computational biology™ ** % %! and other areas. The original ideaof SVM istousea
linear separating hyperplane to separate training data in two classes: Given training
vectors x, i=1...,/ andavector y definedas: y =1if x; isinoneclass, and
y;=-11if x isintheother class. The support vector techniquetries to find the
separating hyperplane W x,+ b=0 with the largest distance between two classes,
measured along aline perpendicular to this hyperplane. This requirement is equivalent
to the minimization of £ 1/ w withrespectto w and b under the congtraint that

¥, (W' x; + b)* 1. However, in practice, these data to be classified may not be linearly

separable. To overcome this difficulty, SVM non-linearly transforms the original input
space into a higher dimensional feature space by f(x) = (f,(X),f ,(X),...)and triesto

/
minimize 3w w+ Cé X; Withrespecttow, b and x, under the constraint that

y[w'f (x)+b]* 1- x, where x, 2 0. This procedure has the advantage of alowing

training errors. It should be noted that only someof x;'s are used to construct w
and b and these data called support vectors.

Data sets and input coding schemes

We used the same data set as that of Ding and Dubchak (2001), which consist of 386
proteins of the most populated 27 SCOP folds in which the protein pairs have
sequence identity below 35% for the aligned subsequences longer than 80 residues.
These 27 proteins folds cover most mgjor structural classessuchas a, b, a/b and
a+b %, and have at least seven or more proteinsin their classes. To successfully
apply the machine learning techniques to the biological problems, one need to extract
relevant input vectors from the biological data, i.e., in this case, the primary sequences.



In thiswork, our global sequence coding schemes cover the distribution of r-peptides
for protein attributes. When nis one, it encodes the composition of amino acids,
which has been useful discriminating the coarse-grained fold classes''® %, When n
istwo, the input vector encodes the dipeptide composition, which has been
successfully applied to predict in vivo stability of proteins®. We can extend nto three
or more, but, in practice, it becomes impractical eveninthecaseof n=3 (thesize of
the input vector becomes 8000). This can be overcome if we reduce the size of the
input vectors by regrouping the amino acids into smaller number of classes according
to their physico-chemical properties. In this work, we denote the coding schemes by
X if all 20 amino acids are used, X¢ when the amino acids are classified as 4
groups: charged, polar, aromatic and nonpolar, and X4, if predicted secondary
structures are used. We assign the symbol X thevauesof D, T, Q and P, denoting
the distributions of dipeptides, 3-peptides and 4-peptides, respectively. Similar ideas
making use of n-gram models have been successfully applied to protein family
identification®. Since these parameters are built independently, one can apply
machine learning techniques based on a single set of input vector or a combination of
several sets. All the SVM calculations are performed using LIBSVM?, agenera
library for support vector classification and regression. We use PREDATOR %’ to
predict the secondary structure of the protein sequences.

Training and testing procedures

For SVM classifiersto perform a multi-class prediction, we followed two commonly
used approaches™. The first approach is the “one-against-all” method where k SVM
classifiers are constructed and the th SVM istrained with proteinsinthe ith fold
as positive, and all other proteins as negative. Each protein in the test set istested
against other proteins, and if tested positive, it will get avote for the class. However,
if tested negative, this protein will not get any vote for the class. The “one-against-all”
method will give rise to the possibility of giving some proteins too few or even no
votes for any fold. However, we can complement this method by the
"one-against-one" method. Given F classes of proteins, we can construct

F(F- 1)/2 SVM classifiers and train with proteins from two different folds. Thus, in
the current work, we constructed for 27 folds atotal of 27(27- 1)/2= 351 classifiers.
In the "one-against-one" method, each protein in the test set will always get a vote for
either one of the two folds. In the end, we used the jury voting to determine the final
assignment of folds to each protein in the test set. Figure 1 shows the architecture of
our SVM classifier. We use the standard Q percentage accuracy ™ for assessing
the accuracy of protein fold identification Q =c¢/n,” 100, where n, isthe number
of test datainthe /” classand c¢; the number correctly predicted. Theoveral Q is



given by Q:é_/,FW,Q,, where w=n,/N.

We used two evaluation methods for the performance of the prediction system. First,
we test the system against the independent set, which comprises 385 proteins of 27
folds from PDB-40D set * that have sequence identity below 40% within the testing
set and below 35% compared with those of the training set. Secondly, we eva uate the
classifiers by cross validation, which measure the prediction accuracy of them
systematically by first excluding afew proteins during the training process and then
testing the classifiers against these excluded proteins. In the ten-fold cross validation
evaluation, each testing set comprises around 10% of the proteins. In addition to our
parameter sets, we also used the following parameter sets of Ding & Dubchak ***2 -
the attributes of amino acids (C), predicted secondary structure (S) and
hydrophobicity (H).

Results

We compare the prediction accuracy of n- peptide coding schemes for the
independent test set. Figure 2 gives the general trend of one-against-all prediction
accuracies of isolate parameters sets: X, X¢ and X4. The parameter set M, The
composition of 20 amino acids M, a useful coarse-grained fold discriminator, also
gives the highest average prediction accuracy 59% for the 27 folds. The parameter D,
the composition of dipeptides, gives much lower prediction accuracy. For the X set,
the composition of 4 classes of amino acids, the prediction accuracy displays the same
monotonous decay when the length of the peptide fragments grows longer. It is
interesting to note that M" gives much lower prediction accuracy than M, indicating
the composition of 20 amino acids contains more useful information in discriminating
protein folds than the compressed classes of amino acids. For the X4 set, the
composition of predicted secondary structure, the prediction accuracy peaks at D' and
then slowly flattens out. To obtain the best over-all prediction accuracy, we need a
combination of parametersin both one-against-one and one-against-all classifiers.
After some preliminary computations, we settled on the following parameter sets: M,
D, T, Q,Pand T" (using one-against-all classifiers), and C+S+H+D (using
one-against-one classifier), from which the highest combined votes will determine the
predicted folds. Here C, S and H are the percent composition of amino acids,
predicted secondary structure and hydrophobicity, respectively. Table lists our
results for the independent set. In the one-against-one method, all the parameter sets
(M,D, T, Q, P and T") give average prediction accuracy greater than 40%. In the
one-against-one method, the parameter set, M, the composition of 20 amino acids,
gives the best prediction accuracy 59% in the context of one parameter set. Our



results are consistent with previous findings *4** 2% that M, the composition of amino

acid, isavery good discriminator in the classification of the coarse-grained folds.
However, we also find that M, as an isolate parameter set, is also very helpful in
identifying the 27 fine-grained classes of fold. The parameter sets T', Q' and P' encode
the distribution of tripeptide, 4-peptide and 5-peptide sequences defined by amino
acids that are classified into four groups. T' performs best, Q' and P’ give lower
prediction accuracy. Amongst various combinations of parameter sets for the
one-against-one method, we found that the C+S+H+D set gave the best prediction
accuracy 63.1%, which is higher than the one-against-all method using M set by
around 4%. Thejury columnin Table givesthe final prediction accuracy 69.6% for
each fold by the votes from the parameter sets, a 6.5% improvement on the
one-against-one method, showing the effectiveness of the jury voting procedures™. In
the break-down analysis, our approach gives excellent prediction accuracy (>80%)
for thefolds. a, (globin-like a-proteins), a, (cytochrome cfolds), as
(4-helical cytokines), b, (theimmunoglobulin-like b-sandwichfold), b, (the
trefoil fold), (@/b), (the TIM-barrel) and (a + b), (small proteinslikeinhibitors,
toxins and lectins). On the other end of the prediction spectrum, our method gives
poor results (accuracy < 50%) for foldslike b, (cupredoxins), b, (OB-fold),
(@/b), (flavodoxin-like), (a/b), (periplasmic binding protein-like) and (a + b),
(b-grasp or ubiquitin-like). These poor results reflect the consistent failures of
recognizing the correct folds by almost all the parameter sets. Figure 3 compares the
prediction accuracy for each fold (in white) of our approach with that of Ding and
Dubchak 2001 (in black). Our final prediction accuracy 69.6% is a significant
improvement on their result 56.0% by 12.5%. Our method gives better prediction for
24 folds, most noticeably the following folds: a,, b,, b,, b,, b, and (a +b),
where improvements are more than 50%. Both approaches give poor resultsfor b,
and (a/b),. Figure 4 shows the 10-fold cross validation of the PDB-40D set, which
was done by randomly picking 10% of the protein as the test set during the training
process and then tested the classifiers against the test sets.  Thecross validation
gives quite consistent results as that of the independent set. The final overall average
prediction accuracy for the cross validation is 65.3%, which a so significantly
improve the previous result 45.4%.

Discussion

The previous works showed that in the coarse-grained fold assignment of major
protein classes, such asall-a, adl-b, a+b, a/b protens, one could easily achieve
high prediction accuracy (70%~80%) from amino acid composition. Ding and
Dubchak (2001) showed that, in the fine-grained fold prediction, SYM combined with



jury voting from multiple parameter sets yielded prediction accuracy significantly
higher than that of any single parameter set — they obtained 56% prediction accuracy
on an independent test set and 45.4% on cross validation. We showed in this study
that the amino acid composition M alone yield 59% prediction accuracy, which,
though better than the current result, is still not yet practical in realistic applications.
Using protein descriptors based on the properties derived from the composition of n
-peptide and jury voting from a combination of parameter sets, we are able to achieve
a prediction accuracy 69.6% on an independent set, an order of magnitude higher than
the current results, and 65.3% on 10-fold cross-validation. The prediction accuracy is
approaching to that for the coarse-grained fold classes. Our results show that SVM,
novel global sequence coding schemes and proper combinations of input parameter
sets should become an increasingly practical tool in structure modeling.
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Tablel Prediction accuracy Q; (in %)for protein fold for the independent test set

One- agai nst - al | One- agai nst-one Jury

Folds' M D T Q T C+S+H+D Fi nal

a, 83.3 83.366.7100.0 66.7 83.3 83.3
a, 88.8 22.255.5 22.2 44.4 100. 0 100. 0
a, 55.0 30.055.0 40.0 40.0 40. 0 70.0
a, 62.5 37.537.5 37.5 62.5 62.5 75.0
a, 100.066.755.5 44.4 66.7 100. 0 100. 0
as 55.6 44.433.333.3 11.1 44. 4 55. 6
b, 63.6 43.250.0 47.7 75.0 84.1 90.9
b, 50.0 16.716.7 25.0 16.7 16. 7 16. 7
b, 61.5 46.261.5 61.5 53.8 61.5 76.9
b, 33.3 33.366.7 66.7 50.0 50.0 66. 7
b, 75.0 25.037.5 37.5 37.5 50.0 50.0
be 31.6 26.331.6 21.1 47.4 31.6 47.7
b, 75.0 50.050.0 50.0 75.0 75.0 100. 0
b, 50.0 50.050.0 50.0 25.0 25.0 50. 0
b, 71.4 28.671.4 42.9 28.6 57.1 57.1
(@a/b), |83.3 66.760.4 62.5 45.8 87.5 93.8
(@/b), |50.0 33.325.0 33.3 33.3 50.0 66. 7
(@a/b), |30.8 7.7 15.4 30.8 15.4 53. 8 38.5
(@/b), |40.7 37.033.337.0 25.9 55.5 55. 6
(@/b), |50.0 33.341.7 33.3 33.3 50. 0 50. 0
(@/b), |37.5 37.550.0 37.5 50.0 37.5 50. 0
@/b), |42.9 42.942.9 42.9 42.9 57.1 57.1
(@/b), |71.4 71.457.1 71.4 28.6 71. 4 71. 4
(@/b), |25.0 25.050.0 50.0 25.0 25.0 25.0
(@+b), |37.5 25.025.0 25.0 37.5 37.5 37.5
@@+b),|22.2 22.225.9 18.5 25.9 48. 1 51.9
(@a+b),]100.088.985.2 81.5 74.1 96. 3 100.0




Avg 59.0 43.147.0 44.9 44.9 63.1 69. 6

The fold notations are: a, , aredl-a proteinsincluding globin-like, cytochrome C,
DNA-binding 3-helical bundle, 4-helical up-and-down-bundle and 4-helical cytokines,
EF-hand, respectively. b, , areall-b beta proteinsincluding immunoglobulin-like

b - sandwich, cupredoxins, viral coat and capsid proteins, ConA-like
lecting/glucanases, SH3-like barrel, OB-fold, b - trefoil, trypsin-like serine proteases
and lipocalins. (a/b),_, are a/b proteins: Tim-barrel, FAD/NAD-binding motif,
flavodoxin-like, NAD(P)-binding Rossmann-fold, P-loop containing nucleotide,
thioredoxin-like, Ribonuclease H-like motif, hydrolases and periplasmic binding
protein-like. (@ +b),_, are a+b proteinsincluding b - Grasp, ferredoxin-like and
small inhibitors, toxins or lectins.



Figure captions

Figure 1 The architecture of our SVM classifiers to predict the folds. The symbols X,
Y, Z ... designate the parameter sets used in the one-against-all” classifiers, and the
symbols x, y, z ... the parameter sets used in the one-against-all” classifiers. Each
classifier casts one jury vote and the fold that gets the most votes is the predicted fold

for the query sequence.

Figure 2 Comparison of the one-gainst-all prediction accuraciesof X, X¢ and X4
parameter sets. The symbol M, D, T, Q and F represent  n-peptide fragments with
n=1~5, respectively.

Figure3 Comparison of the prediction accuracy Q,.(%) of thiswork (in white)

with that of Ding and Dubchak 2001(in black) for the 27 folds in the independent test.

Figure4 Comparison of the prediction accuracy Q,.(%) of thiswork (in white)
with that of Ding and Dubchak 2001(in black) for the 27 folds in the 10-fold cross

validation.
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