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Abstract

In the coarse-grained fold assignment of major protein classes, such as all-α , all-β , 
α + β , α /β  proteins, one can easily achieve high prediction accuracy from primary 
amino acid sequences. However, the fine-grained assignment of folds, such as those 
defined in the Structural Classification of Protein (SCOP) database, presents a 
challenge due to the larger amount of folds available. Recent study yielded reasonable 
prediction accuracy 56.0 % on an independent set of 27 most populated folds. In this 
report, we apply the support vector machine method (SVM), using a combination of 
protein descriptors based on the properties derived from the composition of n
-peptide and jury voting, to the fine-grained fold prediction, and are able to achieve an 
overall prediction accuracy 69.6% on an same independent set, significantly higher 
than the previous results. On ten-fold cross validation, we obtained prediction 
accuracy 65.3%. Our results show that primary sequences contain SVM coupled with 
suitable global sequence coding schemes can significantly improve the fine-grained 
fold prediction and our approach should prove useful in structure prediction and 
modeling. 
Keywords: support vector machines; fine-grained  fold prediction; global sequence 
coding scheme; n-peptide



Introduction

Due to progress in experimental genomics, tremendous amounts of sequence data 
come out, and the increase in the number of putative protein sequences greatly 
exceeds that of three-dimensional structures of proteins. Hence, to extract 
three-dimensional structures from sequences becomes even more important nowadays. 
Roughly speaking, there are in general two kinds of approaches to structure prediction 
1. One is the ab initio method that predicts structures directly from the sequences 
based on the general physico-chemical principles2-7. The other one is the empirical 
method that relies on the empirical knowledge of proteins structures or sequences to 
assign the query sequences to the proper folds by either homology modeling, 
threading techniques or taxonometric approach8-13. Homology modeling identifies the 
possible template structures of the query sequences by aligning them with the 
sequences of known three-dimensional structures, based on the criteria that sequence 
identity higher than 25% usually have similar structures. Threading techniques find 
the possible folds by the sequence-structure alignment, without relying on the 
sequence homology between the query and target sequences. The taxonometric 
method, based on the assumption that the number of folds is limited, tries to predict 
protein structures in terms of the assignment of query sequences to the particular 
classification of protein folds. Proteins are said to have a common folding structure if 
their major secondary structures have similar arrangement and topological 
connections. The latter approach becomes increasingly important due to the fast 
growth of protein structures. Previous studies11, 14-16 showed that, in the coarse-grain 
structural classification such as all-α , all-β , α + β , α /β  and irregular folds 17 one 
can easily achieved 70% or better prediction accuracy from the amino acid 
composition. However, in order to obtain predict a high-resolution three-dimensional 
structure, one needs to be able to assign fine-grained folds for the query structures. 
The fine-grained assignment of folds, such as defined in the Structural Classification 
of Protein (SCOP) database, presents a challenge for structure prediction due to the 
larger number of folds. Recently, Ding and Dubchak (2001) applied the support vector 
machines (SVM) to the problem of fold assignment. They used six coding schemes11, 

12 to extract structural or physico-chemical properties from the primary sequences.
They compressed 20 amino acids into three groups for the following attributes: the 
percent composition of amino acids, predicted secondary structure, normalized van 
der Waals volumes, hydrophobicity, polarity and polarizability. They then calculated 
three descriptors, i.e.,  "composition", "transition" and "distribution" for each 
attribute of these three groups of amino acids. Their approach yielded around 56.0% 
prediction accuracy for an independent set.  Despite its seemingly lower prediction 



accuracy than before, the prediction was made in the context of 27 fine-grained SCOP 
folds, about an order higher than the number of protein classes used in the earlier 
work. They achieved this by multi-class fold prediction system based on the jury 
votes from several parameter sets of structural or physico-chemical properties of the 
sequences described by three groups of amino acids. In this work, we use SVM 
coupled with more comprehensive protein descriptors based on n-peptide coding 
schemes and jury voting procedures, we can obtain a prediction accuracy significsntly 
higher than the previous study.

Methods

The SVM is a powerful classification method18 that becomes popular in 
computational biology13, 19, 20 21 and other areas. The original idea of SVM is to use a 
linear separating hyperplane to separate training data in two classes: Given training 
vectors xi, i =1,...,l  and a vector y defined as: yi =1if xi  is in one class, and 
yi = −1 if xi  is in the other class. The support vector technique tries to find the 
separating hyperplane wT xi + b = 0 with the largest distance between two classes, 
measured along a line perpendicular to this hyperplane. This requirement is equivalent 
to the minimization of 1

2 wT w with respect to w and b  under the constraint that 

yi wT xi + b( )≥1. However, in practice, these data to be classified may not be linearly 

separable. To overcome this difficulty, SVM non-linearly transforms the original input 
space into a higher dimensional feature space by φ(x) = (φ1(x),φ2(x),...)and tries to 

minimize 1
2 wT w+ C ξ ii=1

l∑  with respect to w, b  and ξ , under the constraint that 

yi wTφ(xi) + b[ ]≥1−ξ i  where ξi ≥ 0. This procedure has the advantage of allowing

training errors. It should be noted that only some of xi 's  are used to construct w
and b  and these data called support vectors.

Data sets and input coding schemes

We used the same data set as that of Ding and Dubchak (2001), which consist of 386
proteins of the most populated 27 SCOP folds in which the protein pairs have 
sequence identity below 35% for the aligned subsequences longer than 80 residues. 
These 27 proteins folds cover most major structural classes such as α , β , α /β  and 
α + β 22, and have at least seven or more proteins in their classes. To successfully 
apply the machine learning techniques to the biological problems, one need to extract 
relevant input vectors from the biological data, i.e., in this case, the primary sequences. 



In this work, our global sequence coding schemes cover the distribution of n-peptides 
for protein attributes. When n is one, it encodes the composition of amino acids, 
which has been useful discriminating the coarse-grained fold classes14-16, 23.  When n
is two, the input vector encodes the dipeptide composition, which has been 
successfully applied to predict in vivo stability of proteins24. We can extend n to three 
or more, but, in practice, it becomes impractical even in the case of n = 3 (the size of 
the input vector becomes 8000). This can be overcome if we reduce the size of the 
input vectors by regrouping the amino acids into smaller number of classes according 
to their physico-chemical properties. In this work, we denote the coding schemes by 
X  if all 20 amino acids are used, ′ X  when the amino acids are classified as 4 
groups: charged, polar, aromatic and nonpolar, and ′ ′ X , if predicted secondary 
structures are used. We assign the symbol X  the values of D, T, Q and P, denoting 
the distributions of dipeptides, 3-peptides and 4-peptides, respectively. Similar ideas 
making use of n-gram models have been successfully applied to protein family 
identification25. Since these parameters are built independently, one can apply 
machine learning techniques based on a single set of input vector or a combination of 
several sets. All the SVM calculations are performed using LIBSVM26, a general 
library for support vector classification and regression. We use PREDATOR 27 to 
predict the secondary structure of the protein sequences.

Training and testing procedures

For SVM classifiers to perform a multi-class prediction, we followed two commonly 
used approaches13. The first approach is the “one-against-all” method where k SVM 
classifiers are constructed and the   ith  SVM is trained with proteins in the   ith  fold 
as positive, and all other proteins as negative. Each protein in the test set is tested 
against other proteins, and if tested positive, it will get a vote for the class. However, 
if tested negative, this protein will not get any vote for the class. The “one-against-all”
method will give rise to the possibility of giving some proteins too few or even no 
votes for any fold. However, we can complement this method by the 
"one-against-one" method.  Given F  classes of proteins, we can construct
F F −1( ) /2 SVM classifiers and train with proteins from two different folds. Thus, in 
the current work, we constructed for 27 folds a total of 27 27 −1( ) /2 = 351 classifiers. 

In the "one-against-one" method, each protein in the test set will always get a vote for 
either one of the two folds. In the end, we used the jury voting to determine the final 
assignment of folds to each protein in the test set. Figure 1 shows the architecture of 
our SVM classifier. We use the standard Qi percentage accuracy 13, 28, 29 for assessing 
the accuracy of protein fold identification Qi = ci /n i ×100, where ni is the number 
of test data in the i th  class and c i  the number correctly predicted. The overall Q  is 



given by Q = wiQii

F∑ , where w = ni /N .

We used two evaluation methods for the performance of the prediction system. First, 
we test the system against the independent set, which comprises 385 proteins of 27 
folds from PDB-40D set 30 that have sequence identity below 40% within the testing 
set and below 35% compared with those of the training set. Secondly, we evaluate the 
classifiers by cross validation, which measure the prediction accuracy of them 
systematically by first excluding a few proteins during the training process and then 
testing the classifiers against these excluded proteins. In the ten-fold cross validation 
evaluation, each testing set comprises around 10% of the proteins. In addition to our 
parameter sets, we also used the following parameter sets of Ding & Dubchak 11, 12 -
the attributes of amino acids (C), predicted secondary structure (S) and 
hydrophobicity (H).  

Results

We compare the prediction accuracy of n −peptide coding schemes for the 
independent test set. Figure 2 gives the general trend of one-against-all prediction 
accuracies of isolate parameters sets: X , ′ X  and ′ ′ X . The parameter set M, The 
composition of 20 amino acids M, a useful coarse-grained fold discriminator, also 
gives the highest average prediction accuracy 59% for the 27 folds. The parameter D, 
the composition of dipeptides, gives much lower prediction accuracy. For the ′ X  set, 
the composition of 4 classes of amino acids, the prediction accuracy displays the same 
monotonous decay when the length of the peptide fragments grows longer. It is 
interesting to note that M' gives much lower prediction accuracy than M, indicating 
the composition of 20 amino acids contains more useful information in discriminating 
protein folds than the compressed classes of amino acids. For the ′ ′ X  set, the 
composition of predicted secondary structure, the prediction accuracy peaks at D' and 
then slowly flattens out. To obtain the best over-all prediction accuracy, we need a 
combination of parameters in both one-against-one and one-against-all classifiers. 
After some preliminary computations, we settled on the following parameter sets: M, 
D, T', Q', P' and T" (using one-against-all classifiers), and C+S+H+D (using 
one-against-one classifier), from which the highest combined votes will determine the 
predicted folds. Here C, S and H are the percent composition of amino acids, 
predicted secondary structure and hydrophobicity, respectively. Table  lists our 
results for the independent set. In the one-against-one method, all the parameter sets 
(M, D, T', Q', P' and T") give average prediction accuracy greater than 40%. In the 
one-against-one method, the parameter set, M, the composition of 20 amino acids, 
gives the best prediction accuracy 59% in the context of one parameter set. Our 



results are consistent with previous findings 14-16, 23 that M, the composition of amino 
acid, is a very good discriminator in the classification of the coarse-grained folds. 
However, we also find that M, as an isolate parameter set, is also very helpful in 
identifying the 27 fine-grained classes of fold. The parameter sets T', Q' and P' encode 
the distribution of tripeptide, 4-peptide and 5-peptide sequences defined by amino 
acids that are classified into four groups. T' performs best, Q' and P' give lower 
prediction accuracy. Amongst various combinations of parameter sets for the 
one-against-one method, we found that the C+S+H+D set gave the best prediction 
accuracy 63.1%, which is higher than the one-against-all method using M set by 
around 4%. The jury column in Table  gives the final prediction accuracy 69.6% for 
each fold by the votes from the parameter sets, a 6.5% improvement on the 
one-against-one method, showing the effectiveness of the jury voting procedures13. In 
the break-down analysis, our approach gives excellent prediction accuracy  (>80%) 
for  the folds: α1 (globin-like α -proteins), α2  (cytochrome c folds), α5

(4-helical cytokines), β1  (the immunoglobulin-like β -sandwich fold), β7  (the 
trefoil fold), α /β( )1  (the TIM-barrel) and α + β( )3  (small proteins like inhibitors, 

toxins and lectins). On the other end of the prediction spectrum, our method gives 
poor results (accuracy < 50%) for folds like β2  (cupredoxins), β6  (OB-fold), 
α /β( )3  (flavodoxin-like), α /β( )9  (periplasmic binding protein-like) and α + β( )1

(β -grasp or ubiquitin-like). These poor results reflect the consistent failures of 
recognizing the correct folds by almost all the parameter sets. Figure 3 compares the 
prediction accuracy for each fold (in white) of our approach with that of Ding and 
Dubchak 2001 (in black). Our final prediction accuracy 69.6% is a significant 
improvement on their result 56.0% by 12.5%. Our method gives better prediction for 
24 folds, most noticeably the following folds: α3 , β3 , β4 , β7 , β8  and α + β( )1, 

where improvements are more than 50%. Both approaches give poor results for β2

and α /β( )9 . Figure 4 shows the 10-fold cross validation of the PDB-40D set, which 

was done by randomly picking 10% of the protein as the test set during the training 
process and then tested the classifiers against the test sets.  The cross validation 
gives quite consistent results as that of the independent set. The final overall average 
prediction accuracy for the cross validation is 65.3%, which also significantly 
improve the previous result 45.4%.

Discussion

The previous works showed that in the coarse-grained fold assignment of major 
protein classes, such as all-α , all-β , α + β , α /β  proteins, one could easily achieve 
high prediction accuracy (70%~80%) from amino acid composition. Ding and 
Dubchak (2001) showed that, in the fine-grained fold prediction, SVM combined with 



jury voting from multiple parameter sets yielded prediction accuracy significantly 
higher than that of any single parameter set – they obtained 56% prediction accuracy 
on an independent test set and 45.4% on cross validation. We showed in this study 
that the amino acid composition M alone yield 59% prediction accuracy, which, 
though better than the current result, is still not yet practical in realistic applications. 
Using protein descriptors based on the properties derived from the composition of n
-peptide and jury voting from a combination of parameter sets, we are able to achieve 
a prediction accuracy 69.6% on an independent set, an order of magnitude higher than 
the current results, and 65.3% on 10-fold cross-validation. The prediction accuracy is 
approaching to that for the coarse-grained fold classes. Our results show that SVM, 
novel global sequence coding schemes and proper combinations of input parameter 
sets should become an increasingly practical tool in structure modeling. 
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Table I Prediction accuracy Qi  (in %)for protein fold for the independent test set

   One-against-all One-against-one Jury

Folds1 M D T' Q'  T" C+S+H+D Final

α1 83.3 83.3 66.7 100.0 66.7 83.3 83.3

α2 88.8 22.2 55.5 22.2 44.4 100.0 100.0

α3 55.0 30.0 55.0 40.0 40.0 40.0 70.0

α4 62.5 37.5 37.5 37.5 62.5 62.5 75.0

α5 100.0 66.7 55.5 44.4 66.7 100.0 100.0

α6 55.6 44.4 33.3 33.3 11.1 44.4 55.6

β1 63.6 43.2 50.0 47.7 75.0 84.1 90.9

β2 50.0 16.7 16.7 25.0 16.7 16.7 16.7

β3 61.5 46.2 61.5 61.5 53.8 61.5 76.9

β4 33.3 33.3 66.7 66.7 50.0 50.0 66.7

β5 75.0 25.0 37.5 37.5 37.5 50.0 50.0

β6 31.6 26.3 31.6 21.1 47.4 31.6 47.7

β7 75.0 50.0 50.0 50.0 75.0 75.0 100.0

β8 50.0 50.0 50.0 50.0 25.0 25.0 50.0

β9 71.4 28.6 71.4 42.9 28.6 57.1 57.1

α /β( )1 83.3 66.7 60.4 62.5 45.8 87.5 93.8

α /β( )2 50.0 33.3 25.0 33.3 33.3 50.0 66.7

α /β( )3 30.8 7.7 15.4 30.8 15.4 53.8 38.5

α /β( )4 40.7 37.0 33.3 37.0 25.9 55.5 55.6

α /β( )5 50.0 33.3 41.7 33.3 33.3 50.0 50.0

α /β( )6 37.5 37.5 50.0 37.5 50.0 37.5 50.0

α /β( )7 42.9 42.9 42.9 42.9 42.9 57.1 57.1

α /β( )8 71.4 71.4 57.1 71.4 28.6 71.4 71.4

α /β( )9 25.0 25.0 50.0 50.0 25.0 25.0 25.0

α + β( )1 37.5 25.0 25.0 25.0 37.5 37.5 37.5

α + β( )2 22.2 22.2 25.9 18.5 25.9 48.1 51.9

α + β( )3 100.0 88.9 85.2 81.5 74.1 96.3 100.0



Avg 59.0 43.1 47.0 44.9 44.9 63.1 69.6
1The fold notations are: α1~6  are all-α  proteins including globin-like, cytochrome C, 
DNA-binding 3-helical bundle, 4-helical up-and-down-bundle and 4-helical cytokines, 
EF-hand, respectively. β1~9  are all-β  beta proteins including immunoglobulin-like 
β −sandwich, cupredoxins, viral coat and capsid proteins, ConA-like 
lectins/glucanases, SH3-like barrel, OB-fold, β −trefoil, trypsin-like serine proteases 
and lipocalins. α /β( )1~9  are α /β  proteins : Tim-barrel, FAD/NAD-binding motif, 

flavodoxin-like, NAD(P)-binding Rossmann-fold, P-loop containing nucleotide, 
thioredoxin-like, Ribonuclease H-like motif, hydrolases and periplasmic binding 
protein-like. α + β( )1~ 3  are α + β  proteins including β −Grasp, ferredoxin-like and 

small inhibitors, toxins or lectins. 



Figure captions

Figure 1 The architecture of our SVM classifiers to predict the folds. The symbols X, 

Y, Z, …  designate the parameter sets used in the one-against-all” classifiers, and the 

symbols x, y, z, …  the parameter sets used in the one-against-all” classifiers. Each 

classifier casts one jury vote and the fold that gets the most votes is the predicted fold 

for the query sequence.

Figure 2 Comparison of the one-gainst-all prediction accuracies of X , ′ X  and ′ ′ X 

parameter sets. The symbol M, D, T, Q and F represent n-peptide fragments with 

n =1 ~ 5, respectively.

Figure 3  Comparison of the prediction accuracy Qi %( )  of this work (in white) 

with that of Ding and Dubchak 2001(in black) for the 27 folds in the independent test. 

Figure 4  Comparison of the prediction accuracy Qi %( )  of this work (in white) 

with that of Ding and Dubchak 2001(in black) for the 27 folds in the 10-fold cross 

validation.
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Figure 3
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