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We have theoretically studied important dynamic processes involved in zero electron kinetic en-
ergy (ZEKE) spectroscopy using the density matrix method with the inverse Born–Oppenheimer
approximation basis sets. In ZEKE spectroscopy, the ZEKE Rydberg states are populated by laser
excitation (either a one- or two-photon process), which is followed by autoionizations and l-mixing
due to a stray field. The discrimination field is then applied to ionize loosely bound electrons in
the ZEKE states. This is followed by using the extraction field to extract electrons from the ZEKE
levels which have a strength comparable to that of the extraction field. These extracted electrons
are measured for the relative intensities of the ion states under investigation. The spectral positions
are determined by the applied laser wavelength and modified by the extraction electric field. In this
paper, all of these processes are conducted within the context of the density matrix method. The
density matrix method can provide not only the dynamics of system’s population and coherence (or
phase) but also the rate constants of the processes involved in the ZEKE spectroscopy. Numerical
examples are given to demonstrate the theoretical treatments. © 2011 American Institute of Physics.
[doi:10.1063/1.3547363]

I. INTRODUCTION

Zero electron kinetic energy (ZEKE) spectroscopy was
first reported by Müller-Dethlefs and co-workers in 19841, 2 as
a high resolution photoelectron spectroscopy (PES) of parent
neutrals. Moreover, new laser spectroscopy methods, such as
mass analyzed threshold ionization spectroscopy,3 threshold
ion-pair production spectroscopy,4 and the Rydberg-tagging
time-of-flight method,5 employ detection concepts similar to
those used in the ZEKE spectroscopy. These techniques have
been widely used in different circumstances including the de-
tection of short-lived resonance states in chemical reactions.6

This has raised considerable interest in understanding of the
behavior of molecules with energies very close to their ion-
ization thresholds.

The capability of the ZEKE technique to determine ion-
ization potential (IP) of molecules and ionic rovibronic ener-
gies with high accuracy is widely recognized and has been
illustrated in many systems. However, the interpretation of
rotational-line intensities and dynamics of ZEKE states still
poses some problems.7–9 In a ZEKE experiment, the observed
spectral intensities result from a series of dynamic processes.
The laser pumping (preparation) of the high Rydberg states
is followed by intricate channel couplings, autoionization,
l-level mixing, and final field extraction (detection) pro-
cesses. Obtaining a systematic and coherent understanding of

a)Author to whom correspondence should be addressed. Electronic mail:
sdchao@iam.ntu.edu.tw.

these dynamic processes requires a methodology which can
allow transparent calculations from first principles and easy
interpretation. In a recent paper,10 we demonstrated how to
use the inverse Born–Oppenheimer approximation (IBOA)
(Fig. 1) as a basis set to study the vibrational and rotational
autoionizations using H2 as an example. The present paper
continues that study to determine the relationship between
the ZEKE line intensities and ionization cross-sections and to
examine whether zero electron kinetic energy photoelectron
spectroscopy intensities are consistent with the conventional
PES intensities, which can be predicted by the ab initio cal-
culations. Rotational and vibrational autoionizations are be-
lieved to play important roles in the measurement of ZEKE
spectra intensities. Anomalous intense peaks are often ob-
served in ZEKE spectroscopy7 and they are usually attributed
to resonance effects. How should we approach these reso-
nance phenomena? In this paper we approach these ques-
tions through ZEKE spectroscopy theory based on the use
of the IBOA (Refs. 10–12) and the density matrix method.
It should be noted that previous studies make frequent use
of the multichannel quantum defect theory (MQDT),8, 13, 14

which is combined with the photoelectron spectroscopy
model.15–20

Since the measurements of ZEKE spectra consist of a
series of processes, the density matrix method is an ideal
technique because the master equations (MEs) can be derived
for each process. These MEs can then be solved sequentially
given proper experimental conditions such as frequencies,

0021-9606/2011/134(6)/064316/13/$30.00 © 2011 American Institute of Physics134, 064316-1
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FIG. 1. (a) The Born–Oppenheimer approximation (BOA) and inverse
Born–Oppenheimer approximation (IBOA). (b) Autoionization and channel
coupling.

intensities, pulse duration of the pumping laser, and the
time-durations of l-mixing, discrimination field, and extrac-
tion fields. Solving this series of MEs obtains the intensity
of ZEKE electrons associated with the ZEKE spectra and
provides insight into the most detailed dynamics associated
with these states.

The present paper is organized as follows. Section II
briefly describes the density matrix method and the IBOA,
which are used to establish a proper basis sets for studying
the ZEKE dynamics and spectroscopy. This is followed by
theoretical treatments of rotational and vibrational autoioniza-
tion processes (Sec. III) and the l-level mixing by a stray field
(Sec. IV). In Sec. V, the optical absorption rate con-
stants for one- and two-photon absorption for ZEKE spec-
troscopy are derived. The ionization of ZEKE levels in-
duced by the discrimination and extraction fields is presented
in Sec. VI.

II. GENERAL CONSIDERATION

The observed ZEKE band-shapes should depend on op-
tical excitation (or pumping) of ZEKE levels, rotational and
vibrational autoionizations,9, 21–23 l-mixing induced by a stray
field,24 electric field-induced lowering of ionization thresh-
olds, and field-induced ionization due to the discrimination
and extraction fields.7 This paper uses the density matrix
method to study the ZEKE spectroscopy by including these
processes. It is well known that the density matrix method
can describe not only individual processes but also the entire
experiment taking all the individual processes into account.
Furthermore, the density matrix can provide information on
the dynamics of the population and coherence (or phase) of
the systems as a function of time.25, 26

The starting point of the density matrix method is the
Liouville equation,

dρ̂

dt
= − i

¯
[Ĥ , ρ̂] − �̂ρ̂, (2.1)

where Ĥ and ρ̂, respectively, represent the molecular Hamil-
tonian and the density matrix of the molecule and �̂ de-
notes the damping operator due to the interaction between
the molecule and the radiation field. The diagonal matrix el-
ements of ρ̂ represent the population of the molecule, while
the off-diagonal matrix elements of ρ̂ denote molecule’s co-
herence (or phase).

The interaction between the laser and molecule should be
included in Eq. (2.1),

dρ̂

dt
= − i

¯
[Ĥ , ρ̂] − i

¯
[V̂ (t) , ρ̂] − �̂ρ̂. (2.2)

The dipole approximation is commonly used in V̂ (t). We
can apply Eqs. (2.1) and (2.2) to the ZEKE spectroscopy. The
observed ZEKE signals start with optical excitation (or pump-
ing) by one or two lasers. This step is described by Eq. (2.2);
the laser frequency, intensity, pulse duration, etc., are involved
in V̂ (t). The detailed derivation and solution of Eq. (2.2) are
given in Sec. V, providing information on population and co-
herence at the end of optical pumping. The evolution of the
system is then described by Eq. (2.1). Given the autoioniza-
tion of the ZEKE levels and the presence of a stray field, Ĥ
should be written as Ĥ = Ĥ0 + Ĥ ′ + Ĥ ′′, where Ĥ0 denotes
the zero-order Hamiltonian of the molecule, while Ĥ ′ and
Ĥ ′′ describe the autoionization and l-mixing by a stray field
(Sec. IV). Finally, the discrimination field and extraction field
are applied to obtain the ZEKE signal; in this case, Eq. (2.1)
can also be used, where Ĥ = Ĥ0 + Ĥ ′′, except that the elec-
tric field involved in Ĥ ′′ is different from that for the stray
field (see Sec. VI).

Having chosen the IBOA as a basis set for the theoreti-
cal treatments of ZEKE experiments,10, 11 here we briefly de-
scribe the IBOA [see Fig. 1(a)]. The molecular Hamiltonian
in this case can be expressed as

Ĥ = Ĥion + T̂e, (2.3)

where Ĥion is the Hamiltonian of the ion core and T̂e de-
notes the kinetic energy operator of the ZEKE electron. Ĥion

is given by

Ĥion = − ¯
2

2me

n−1∑
i=1

∇2
i + T̂N + V, (2.4)

where i denotes the ith electron in the ion core and T̂N de-
notes the kinetic energy operator of the nuclei. Since the
ZEKE electron moves slowly and has low kinetic energy,
we can first neglect T̂e and derive the ionic Schrödinger
equation

Ĥion�cw = Ucw�cw . (2.5)

Using the expansion theorem, we can expand the total
wavefuntion � in terms of �cw , � = ∑

cw ′�cw ′�cw ′ .
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Substituting � into the full Schrödinger equation, we
have∑
cw ′

T̂e (�cw ′�cw ′ ) +
∑
cw ′

Ucw ′ (�cw ′�cw ′ ) = E
∑
cw ′

�cw ′�cw ′

(2.6)

and

T̂e (�cw ′�cw ′) = �cw ′ T̂e�cw ′ − ¯2

2me

× (
2∇e�cw ′ · ∇e�cw ′ + �cw ′∇2

e �cw ′
)

= �cw ′ T̂e�cw ′ + Ĥ ′
IBO (�cw ′�cw ′ ) , (2.7)

where “e” denotes the ZEKE electron. Since the ionic wave-
function varies indirectly with the ZEKE electron coordinate,
we can neglect the terms involving Ĥ ′

IBO in Eq. (2.7). Multi-
plying Eq. (2.6) by and �cw , integrating the ionic coordinates,
we obtain

(T̂e + Ucw )�cwm = Ecwm�cwm, (2.8)

and the total wavefuntion is denoted by

�cwm = �cwm�cw . (2.9)

This shows that the ZEKE electron is moving in the po-
tential energy surface provided by the ion core described by
(cw). Here, c and w, respectively, represent the electronic state
and the rotation–vibration state of the ion core, and m denotes
the quantum number of the ZEKE electron. The states below
the rovibronic state (cw) of the ion are discrete (cwm), while
those above (cw) are continuous(cwk). Here we refer to the
high Rydberg states near but below the ionization continuum
as “ZEKE Rydberg” states (or simply ZEKE states).

Applying the multipole expansion to the ZEKE electron-
core Coulomb interaction and keeping only the monopole
term, we can derive the unperturbed (zero-order) Hamilto-
nian and wavefunctions. Thus, Eqs. (2.5) and (2.8) can be
expressed as

Ĥ 0
ion�

0
cw ( �R) = U 0

cw�0
cw ( �R), (2.10)(

T̂e − e2

r

)
�0

m (�r ) = E0
m�0

m (�r ) , (2.11)

where �0
m(

⇀

r ) is the hydrogenic wavefunction characterized
by the quantum numbers m = (n,l,m) and �0

cw represents the
pure ionic wavefunction characterized by the vibration and
rotation quantum numbers v+ and N+. It should be noted that
c is assumed as the electronic ground state of the ion and is
neglected in the following expressions. The total zero-order
wavefunction is denoted by∣∣�0

cwm

〉 = |nl v+N+ J MJ 〉
= Rnl (r ) χv+ (R)

∑
mM+

Cl N+
mM+;J MJ

× Ylm (θ, φ) YN+ M+ (�,�) . (2.12)

In Eq. (2.12), Rnl represents the radial wavefunction of
the ZEKE electron; χv+ represents the vibrational wavefunc-
tion of the ion; Ylm and YN+ M+ are, respectively, the spheri-
cal harmonics of the electronic angular momentum l and the

rotational angular momentum N+. With the Clebsch–Gordan
coefficient Cl N+

mM+;J MJ
, we use the representation of the to-

tal angular momentum J, and its projection MJ. The higher
multipole terms neglected in Eqs. (2.11) and (2.12) will be
used to calculate the channel coupling effect in the following
discussion.10, 27

At the zero-order basis, the IBOA is the same as that in
Hund’s case (d) where the electronic orbital angular momen-
tum and the rotational angular momentum are decoupled.10

However, differences appear as one calculates transition prob-
abilities. In the IBOA form, the terms neglected in Eq. (2.7)
can be used as the perturbative interaction, which refers to the
breakdown of IBOA, Ĥ ′

IBO.10, 12 Similar to the radiationless
transitions of excited electronic states, which are attributed to
the breakdown of Born–Oppenheimer approximation (BOA)
(e.g., internal conversion and intersystem crossing),28 Ĥ ′

IBO
is responsible for the radiationless transitions of the ZEKE
states (e.g., autoionization).

Figure 1(b) schematically shows autoionization and
channel coupling based on the IBOA. In our model, channel
coupling (or “forced autoionization” in Ref. 7) is responsible
for the intensity borrowing in the ZEKE spectra, while the
autoionization, which is described in Sec. III, determines the
lifetime of the ZEKE states.

Here, we discuss how to calculate the intensity borrow-
ing in the rotationally resolved ZEKE spectrum of H2 for
X 2�+

g (v+ = 2) ← X 1�+
g (v+ = 0).21 In the following, the

rotational transition is denoted by (N+, J ′′), where N+ and
J ′′ represent the final and initial rotational quantum numbers
in the above vibronic states. In the H2 ZEKE spectrum, it was
reported that some rotational-line intensities deviate from the
simulated intensities.21 As an example, consider the rotational
transition (0, 2). As mentioned in Ref. 21, the experimental
intensity for this transition is 51 [relative to 100 for (1, 1)],
while the theoretical intensity is only 2.8. Merkt and Softley21

attributed this intensity enhancement to the channel interac-
tion between the ZEKE state of N+ = 0 and the low n Rydberg
state of N+ = 2.7, 21 Softley and Hudson further incorporated
the channel interaction and simulated the spectrum by using
the MQDT, and their simulation results were in agreement
with the experiment.29 Here, we shall study this effect using
the multipole interaction as the perturbation with the IBOA
basis set.

For H2, the matrix element of the quadrupole interaction
can be written as27, 30

〈n′l ′v+N+′ J ′ MJ
′|V ′

quad|nl v+N+ J MJ 〉
= 〈χv+ |Q (R)| χv+〉 〈Rn′l ′ |r−3|Rnl〉

×
[

4π

5

∑
mM+

∑
m ′ M ′+

∑
m̄

Cl N+
mM+;J MJ

Cl ′ N+′
m ′ M+′;J ′ M ′

J

×〈Yl ′m ′ |Y2m̄ | Ylm〉 〈
YN ′+ M ′+

∣∣Y ∗
2m̄

∣∣ YN+ M+
〉 ]

= 〈χv+ |Q (R)| χv+〉 〈Rn′l ′ |r−3|Rnl〉
×g(l ′, N+′, J ′, M ′

J ; l, N+, J, MJ ), (2.13)

where Q (R) denotes the quadrupole moment of the ion,
whose numerical data for H2

+ are given in Ref. 31 The
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bound–bound hydrogenic radial integral can be evaluated
analytically10 and, using the 3-j and 6-j symbols, the
angular matrix element g is given by24, 32

g
(
l ′, N+′, J ′, M ′

J ; l, N+, J, MJ
)

= (−1)l+l ′+J ×
{

J N+′ l ′

2 l N+

}
δJ ′,J δM ′

J ,MJ

× [(
2l ′ + 1

)
(2l + 1)

]1/2
(

l ′ 2 l
0 0 0

)

× [(
2N+′ + 1

) (
2N+ + 1

)]1/2
(

N+′ 2 N+

0 0 0

)
.

(2.14)

By taking this coupling effect as the perturbation, the ZEKE
state can be expressed as

�n,N+ = ∣∣�0
n,N+

〉 + Cn,N+;n′,N+′
∣∣�0

n′,N+′
〉

(2.15)

and

Cn′,N+′;n,N+ =
〈
�0

n′,N+′
∣∣ V ′

quad

∣∣�0
n,N+

〉
E0

n,N+ − E0
n′,N+′

. (2.16)

For convenience, we use the quantum numbers (n, N+)
and (n′, N+′) to, respectively, denote the relevant ZEKE
eigenstate and its coupling Rydberg eigenstate. The ma-
trix element in Eq. (2.16) is the coupling matrix element
in Eq. (2.13).

For example, we consider the rotational transition (0, 2)
of H2. In this case, we select n = 100 for the ZEKE state of
N+ = 0 (with respect to the reduced IP by the discrimination
field F = 3 V/cm) and n = 26 for the Rydberg state of N+

= 2. In addition, the corresponding orbital quantum numbers
l = l′ = 1. Thus, we obtain

�100,0+ = |100, 0+〉 + C26,2+;100,0+ |26, 2+〉, (2.17)

where

C26,2+;100,0+ = 〈26, 2+|V ′
quad|100, 0+〉

E100,0+ − E26,2+
= 0.052. (2.18)

Thus, the transition dipole moment from (J′′ = 2) can be
expressed as

〈�100,0+ |μ|�J ′′=2〉 = 〈100, 0+|μ |�J ′′=2〉
+ C26,2+;100,0+〈26, 2+|μ|�J ′′=2〉.

(2.19)

As reported by Xie and Zare,16 the theoretical transition
moment for the transition (0, 2) is small, while that for (2, 2)
is large. Therefore, from Eq. (2.19), we can see that the (0, 2)
transition borrows its intensity from (2, 2) through the channel
coupling effect.

III. ROTATIONAL AND VIBRATIONAL
AUTOIONIZATIONS

In ZEKE spectroscopy, autoionization is considered as
one of the main decay processes of the ZEKE states.23

Figure 1(b) illustrates the transition from a ZEKE state of the

higher IP to the ionization continuum of the lower IP. Our pre-
vious work10 showed that this process can be induced by the
breakdown of IBOA, which is defined by

Ĥ ′
IBO�cw�cwm

≡ − ¯
2

2me

(
2∇e�cw · ∇e�cwm + �cwm∇2

e �cw
)
. (3.1)

In this case, the equation of motion of ρ̂ is given by
Eq. (2.1), where Ĥ = Ĥ0 + Ĥ ′

IBO.
In the autoionization of ZEKE states (represented by m or

m′), the ZEKE states are coupled to the ionization continuum
(represented by k). Thus from Eq. (2.1), we find

dρmm

dt
= − i

¯

∑
k

(H ′
mkρkm − H ′

kmρmk)

− i

¯

∑
m ′

(
H ′

mm ′ρm ′m − H ′
m ′mρmm ′

) − γmρmm,

(3.2)

where Ĥ ′
IBO is denoted by Ĥ ′ and γm = �mm

mm represents the
radiative rate constant. Similarly, we have

dρmk

dt
= −

(
iωmk + 1

2
γm

)
ρmk

+ i

¯
H ′

mk (ρmm − ρkk) + · · · (3.3a)

and

dρmm ′

dt
= − (iωmm ′ + γmm ′) ρmm ′ . (3.3b)

By applying the Laplace transform, for example,

ρ̄mm (p) =
∫ ∞

0
e−ptρmm (t)dt, (3.4)

we obtain

pρ̄mm − ρmm (0) = − 2

¯
Im

∑
k

H ′
km ρ̄mk

− 2

¯
Im

∑
m ′

H ′
m ′m ρ̄mm ′ − γm ρ̄mm, (3.5)

pρ̄mk − ρmk (0) = −
(

iωmk + 1

2
γm

)
ρ̄mk

+ i

¯
H ′

mk (ρ̄mm − ρ̄kk) , (3.6a)

and

pρ̄mm ′ − ρmm ′ (0) = − (iωmm ′ + γmm ′ ) ρ̄mm ′ , (3.6b)

where γmm ′ = (1/2) (γm + γm′). The initial coherence can be
created by optical excitation (or pumping) from a short-pulse
laser (see Sec. V).

One can usually assume that ρmk (0) = 0; that is, no co-
herence is initially created. Eliminating ρ̄mk (p) and ρ̄mm′ (p)
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from Eq. (3.5) yields

pρ̄mm − ρmm (0) =
∑

k

Mmk (p) (ρ̄kk − ρ̄mm)

− 2

¯
Im

∑
m ′

[
H ′

m ′mρmm ′ (0)

p + iωmm ′ + γmm ′

]

− γm ρ̄mm, (3.7)

where Mmk (p) denotes the memory kernel,

Mmk (p) = Im

[
2i
¯2

∣∣H ′
km

∣∣2

p + iωmk + γm

2

]
. (3.8)

It follows that

dρmm

dt
=

∑
k

∫ t

0
dτ Mmk (τ )[ρkk (t − τ ) − ρmm (t − τ )]

− 2

¯
Im

∑
m ′

H ′
m ′mρmm ′ (0) exp[−t (iωmm ′+γmm ′)]

− γmρmm . (3.9)

Since {k} denotes the ionization continuum, the re-
versible process in Eq. (3.9) can be ignored,

dρmm

dt
= −

∫ t

0
dτ Mmm (τ ) ρmm (t − τ ) − γmρmm (t) . (3.10)

In the Markoff approximation,25, 33 Eq. (3.10) becomes *

dρmm

dt
= −Wmρmm (t) − γmρmm (t) , (3.11)

where

Wmm =
∫ ∞

0
dt

∑
k

Im

[
2i

¯2
|H ′

km |2e−t(iωmk+(1/2)γm )

]

= 2

¯2

∑
k

|H ′
km |2 D (ωmk) , (3.12)

D (ωmk) denotes the Lorentzian

D (ωmk) = 1

π

γm/2

ω2
mk + (γm/2)2 , (3.13)

and Wmm denotes the autoionization rate constant.
Equation (3.6b) indicates that, under proper conditions

(e.g., using short excitation laser pulse), the quantum beat
can be observed in the ZEKE spectroscopy, and this has in-
deed been observed experimentally.34 It should be noted that
the Schrödinger equation approach is not particularly suitable
for treating coherence dynamics. In addition, based on the
perturbation method, the Schrödinger equation approach can
only provide rate constants (e.g., optical absorption rate con-
stant, autoionization rate constant, and field ionization rate
constant), and these rate constants have to be artificially in-
serted into the rate equations to obtain information on popu-
lation or probability as a function of time. The coherence and
damping effects are, however, not included. In the density ma-
trix method, all the so-called rate equations are derived from
the Liouville equation; in addition, the coherence effect and
damping effect are automatically included. Furthermore, the
density matrix method shows that the rate equations are valid

only when the Markoff approximation is valid [see, for exam-
ple, Eqs. (3.10) and (3.11)].

Next, we show how to evaluate the rotational and
vibrational autoionizations. In Eq. (3.12), H ′

km is given
by

H ′
km = 〈�cw ′k | H ′

IBO |�cwm〉 . (3.14)

Here, the unperturbed bound wavefunction �0
cwm is de-

fined by Eq. (2.12). Similarly, for the ionization continuum
�0

cw ′k , we have∣∣�0
cwk

〉 = ∣∣kl ′ v+′N+′ J ′M ′
J

〉
= Rkl ′ (r ) χv+′ (R)

∑
m ′ M+′

Cl ′ N+′
m ′ M+′;J ′ M ′

J
Yl ′m ′ (θ, φ)

× YN+′ M+′ (�,�) . (3.15)

In these expressions, Rkl′ represents the continuum elec-
tronic radial wavefunction, and other functions are defined
similarly, as in Eq. (2.12). In Eqs. (2.12) and (3.15), the
dependence of the electronic coordinate is completely re-
moved from the ionic wavefunction (i.e., ∇e�

0
cw = 0). Thus,

to evaluate H ′
km , we shall incorporate the first-order correc-

tion to the ionic wavefunciton by the multipole interaction Vp

(for homonuclear diatomics, it is the quadrupole interaction
Vquad). Then, Eq. (3.14) is shown as

〈�cw ′k | H ′
IBO |�cwm〉

= − ¯
2

me

1

Ecw,cw ′

〈
�0

cw ′k

∣∣ 〈�0
cw ′

∣∣∇eVp

∣∣�0
cw

〉 · ∣∣∇e�
0
cwm

〉
,

(3.16)

where Ecw,cw ′ represents the energy difference between the
two ionic states and the second term in Eq (3.1) has vanished
since ∇2

e Vp = 0. For the rotational or vibrational autoion-
ization of homonuclear diatomics, using the expressions in
Eq. (3.15) the resulting matrix element can be expressed as

〈kl ′v+′
N+′

J MJ |Ĥ ′
IBO

∣∣nl v+N+ J MJ
〉

= − ¯2
me

(−e)

U 0
v+ N+ − U 0

v+′ N+′
〈χv+′ |Q (R)| χv+〉

×
[

Dl ′,l〈Rkl ′ |r−5|Rnl〉 − 3

〈
Rkl ′

∣∣r−4
∣∣ d Rnl

dr

〉]

×g(l ′, N+′, J ′, M ′
J ; l, N+, J, MJ ), (3.17)

where

Dl,l = 3 , Dl+2,l = −2l , and Dl−2,l = 2(l + 1). (3.18)

Here, U 0
v+N+ and Q (R), respectively, denote the rovibra-

tional energy and quadrupole moment of the ion core, and the
definition of the factor g is the same as Eq. (2.14). The deriva-
tion of Eq. (3.17) is given in Ref. 10.

As an example, we consider the rotational and vibra-
tional autoionizations of N2. The physical quantities of N2

+

were calculated by using the GAUSSIAN 03 package.35 At
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TABLE I. Rotational autoionization rate constant of N2 for the transi-
tion of {nl, v+ = 0, N+ = 10, J = 10MJ } → {kl, v+′ = 0, N ′+ = 8,

J = 10MJ }.

n (cm−1) � Rate (s−1)

100 60.79 2 1.653 × 108

100 60.79 3 2.221 × 107

100 60.79 4 4.736 × 106

100 60.79 5 1.342 × 106

100 60.79 6 4.569 × 105

100 60.79 7 1.764 × 105

100 60.79 8 7.424 × 104

100 60.79 9 3.316 × 104

100 60.79 10 1.539 × 104

200 68.92 2 2.066 × 107

200 68.92 3 2.777 × 106

200 68.92 4 5.921 × 105

200 68.92 5 1.677 × 105

200 68.92 6 5.714 × 104

200 68.92 7 2.206 × 104

200 68.92 8 9.288 × 103

200 68.92 9 4.150 × 103

200 68.92 10 1.928 × 103

the CCSD/aug-cc-pVDZ level, we obtained the equilibrium
bond length R0 = 2.175a.u., its quadrupole moment Q(R0)
= 1.974a.u., and Q(R). Carrying out the numerical integra-
tions of the electronic radial matrix elements, we obtained
the numerical data for Eq. (3.17). The resulting autoioniza-
tion rates are shown in Table I for rotational autoionization
and Table II for vibrational autoionization. In both the ta-
bles, we only consider the dominant l ′ = l transitions. For
both rotational and vibrational autoionizations, we can see
that the magnitude of the autoionization rate decreases sig-
nificantly with increases in l. Since the high n bound radial

TABLE II. Vibrational autoionization rate constant of N2 for the
transition of {nl, v+ = 1, N+ = 0, J = l MJ } → {kl, v+′ = 0, N ′+ = 2,

J = l MJ }.

n (cm−1) � Rate (s−1)

100 2158 2 6.725 × 106

100 2158 3 7.458 × 105

100 2158 4 1.371 × 105

100 2158 5 3.161 × 104

100 2158 6 7.995 × 103

100 2158 7 2.056 × 103

100 2158 8 5.141 × 102

100 2158 9 1.215 × 102

100 2158 10 2.672 × 101

200 2166 2 8.407 × 105

200 2166 3 9.325 × 104

200 2166 4 1.714 × 104

200 2166 5 3.956 × 103

200 2166 6 1.002 × 103

200 2166 7 2.581 × 102

200 2166 8 6.471 × 101

200 2166 9 1.536 × 101

200 2166 10 3.394 × 10

wavefunctions are approximately proportional to n−3/2, the
rates of n = 100 are about eight times larger than those of
n = 200 (the n−3 law). The propensity rule for the vibra-
tional autoionization36 indicates that the rate would decrease
as |�v| increases. Therefore, the vibrational autoionization
rates (�v = −1) are about 2 orders of magnitude smaller than
the rotational ones (�v = 0).

From Eq. (2.14), we see that the autoionization rates de-
pend also on the total rotational quantum number J. Other
things unchanged, the rate constant is proportional to g2. To
demonstrate the dependence of J, we provide the radio of the
g2 factor for different J of a given l state. For example, for the
case of N+ = 10, N′+ = 8, and l = 2, there are three possible
values of J. The ratio of g2 is, according to the formula, g2(J
= 8): g2(J = 9): g2(J = 10) = 1 : 1.87 : 1.54. Therefore, the
g2 factor is partly responsible for the J dependence.

In treating the autoionization of atoms and molecules,
another approach based on the use of Fermi’s golden rule
and the electrostatic interaction (e.g., quadrupole and dipole
interactions) is often used,37 which, to the zero-order treat-
ments, is equivalent to the above result. The equivalence of
the two formulations and its physical implication are shown in
Appendix A.

IV. l-LEVEL MIXING

In this section, we use the reduced density matrix method
to study l-level mixing in the ZEKE spectroscopy. It is known
that a stray electric field in ZEKE experiments could result in
l-mixing and longer lifetimes of high Rydberg states.38, 39 In
addition, an inhomogeneous field induced by ions could fur-
ther lengthen the lifetime and cause the m-level mixing.24, 40

In this section, we focus on how to calculate l-mixing under
the influence of a homogeneous field. We use the notations
L ≡ (lm) and L ′ ≡ (

l ′m ′). Similar to the autoionization pro-
cess, we start with

dρL L

dt
= − i

¯

∑
L ′

(H ′′
L L ′ρL ′ L − H ′′

L ′ LρL L ′)

−
∑

L ′
�L ′ L ′

L L ρL ′ L ′ (4.1)

and

dρL L ′

dt
= − (iωL L ′ + γL L ′) ρL L ′

+ i

¯
H ′′

L L ′ (ρL L − ρL ′ L ′) + · · · , (4.2)

where Ĥ ′′ denotes the Stark interaction between a stray field
�Es and the ZEKE system,

Ĥ ′′ = −�μ · �Es . (4.3)

In Eqs. (4.1) and (4.2), −�L ′ L ′
L L denotes the decay rate

constant for the transition L ′ → L; in ZEKE spectroscopy,
the decay rate includes both the autoionization and radia-
tive processes and γL L ′ represents the dephasing constant
γL L ′ = (1

/
2)(�L L

L L + �L ′ L ′
L ′ L ′ ), where �L L

L L and �L ′ L ′
L ′ L ′ are the
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total decay rate constants of L and L′, respectively. The pure
dephasing has been ignored.

Notice that

dρL L ′

dt
= − (iωL L ′ + γL L ′) ρL L ′

− i

¯

(
�μL L ′ · �Es

)
(ρL L − ρL ′ L ′) + · · · . (4.4)

Again, we use the Laplace transformation method to obtain

dρL L

dt
=

∑
L ′

WL L ′ (ρL ′ L ′ − ρL L ) −
∑

L ′
�L ′ L ′

L L ρL ′ L ′ , (4.5)

where WL L′ denotes the l-level mixing rate constant

WL L ′ = 2

¯2
| �μL L ′ · �Es |2 γL L ′

ω2
L L ′ + (γL L ′)2 . (4.6)

For convenience, Eq. (4.5) can be written as

dρlm,lm

dt
=

∑
l ′m ′

Wlm,l ′m ′(ρl ′m ′,l ′m ′ − ρlm,lm)

−
∑
l ′m ′

�
l ′m ′,l ′m ′
lm,lm ρl ′m ′,l ′m ′ , (4.7)

where

Wlm,l ′m ′ = 2

¯2
| �μlm,l ′m ′ · �Es |2 γlm,l ′m ′

ω2
lm,l ′m ′ + (γlm,l ′m ′ )2

. (4.8)

In most cases ωlm,l′m′ = 0, unless the field is so strong
that the electronic energy level is modified by �Es . In addition,
the transition dipole moment can be expressed as

− �μlm,l ′m ′ · �Es = eF〈nl ′m ′|z|nlm〉, (4.9)

where

〈nlm| z
∣∣nl ′m ′〉

= −3

2
n
√

n2 − (l + 1)2

√
(l + 1)2 − m2

(2l + 1) (2l + 3)
a0,

if l ′ = l + 1, m ′ = m,

= −3

2
n
√

n2 − l2

√
l2 − m2

(2l − 1) (2l + 1)
a0,

if l ′ = l − 1, m ′ = m, (4.10)

The selection rules in Eq. (4.10) allow coupling among l,
while the mixing of m is forbidden.

Through Eqs. (4.1), (4.2) and (4.10), we can calculate
the dynamic behavior of populations under the influence of a

FIG. 2. Dynamic behavior of n = 100 population of H-atoms with a prepared state of (l0 ,m0 ) = (0,0). The left panels show the population distributions along
l at F = 0.02 V/cm and at various times. The right panels show the similar patterns at F = 2 V/cm.
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stray field. These calculations require the decay rate constants
�L L

L L for the main dynamic processes. For example, for atoms,
the radiative decay processes (e.g., spontaneous emission)41

contribute, while, for molecular ZEKE states, the nonradiative
decay processes (e.g., autoionization and predissociation)23

dominate.
As an example, we first consider the l-mixing of H-atoms

under a stray field. The main decay process for H-atoms is
spontaneous emission, and related numerical data have been
reported in Ref. 41. The dynamic behavior of l-mixing is ex-
hibited in Fig. 2. First, we can see that as the time progresses
(i.e., from the upper panels to the lower panels), the popu-
lation propagates to higher l states. With a field value of F
= 0.02 V/cm, the population propagates to the higher l states
in 1 μs. With a larger field (F = 2 V/cm), the distribution
time is about 0.01 μs. In addition, the patterns in the right
panels are similar to those on the left; that is, the population
distribution among the l states is determined by the product of
time and the field strength. As the field strength increases, the
corresponding time for the distribution is reduced.

Figure 3(a) shows the dynamic behaviors of total pop-
ulations with different prepared states, indicating the typi-
cal exponential decay patterns. Due to the selection rule of
m, the initial state (l0, m0) cannot mix with any state of
l < m0 (since l = mmax < m). As a result, the total popula-
tion with a lower m0 would decay more rapidly, since it in-
corporates the short-lived, low-l states. For example, in the
case of (l0, m0) = (0, 0), the total decay rate is about 65 s−1,
while for (l0, m0) = (10, 10) it is only about 0.1 s−1.

FIG. 3. (a) Dynamic behavior of the total population of H-atoms at n =
100, F = 0.02 V/cm with prepared states of (l0,m0) = (50,50), (10,10), (0,0).
(b) Dynamic behavior of the total population of H2 at n = 100 with a prepared
state (l0,m0) = (1,0) at various F values.

Consider H2 as an example for the l-mixing in molecular
ZEKE states. The autoionization is the main decay process of
H2. The autoionization rate constants were numerically calcu-
lated for l ≤ 10 and found to decrease rapidly as l increases.
Using nonlinear modeling, for the state at n = 100, N+ = 2,
m = M+ = 0, and v+ = 0, we obtain the l scaling law for its
rotational autoionization rate constant

rate = 2.204 × 109l−5.6 s−1. (4.11)

For l = 1, the rate is about 2 × 109 s−1, but only 6 × 103

s−1 for l = 10. Therefore, in our calculations, the decay rate
constant of l >10 is negligible to the decay behavior of the
total population.

Figure 3(b) presents the decay behavior of the total popu-
lation with a prepared state (l0, m0) = (1, 0) at various field F
values. Here, we can see that the population decay curve of F
= 0.02 V/cm overlaps that of F = 2 V/cm, which means that
the influence of the electric field on the total decay rate is al-
most saturated at F = 0.02 V/cm. As in the case of F = 0.0002
V/cm, the Stark interaction is small. Therefore, a large por-
tion of the population decays with the initial short-lived state
l = 1. Only a small portion of the population would be dis-
tributed to the other l, which is shown as the long-tail of the
curve of F = 0.0002 V/cm in Fig. 3(b).

In previous studies on l-mixing, the effective Hamilto-
nian method with experimentally determined quantum defects
is commonly used to solve the time-dependent Schrödinger
equation.38, 39 As pointed out by Chao et al.11, this approach
is equivalent to the Liouville equation, Eq. (2.1). However, in
our formulation, we can see that the Liouville equation can be
simplified by the Markoff approximation in the form of rate
equations. Thus, with given decay rate constants, we can di-
rectly obtain the resulting population by solving Eq. (4.7). In
addition, it should be noted that instead of the quantum defect,
the decay rate constant of molecules can be calculated by the
breakdown of IBOA.

V. OPTICAL ABSORPTION (OR PUMPING)

Figure 4 depicts three types of commonly used ZEKE
spectroscopies. Type I represents the one-photon case, while
types II and III represent the two-photon case. In type II,
the first-step is resonant and in type III, the first-step is off-
resonant. To treat the excitation (or pumping) process in the
ZEKE spectroscopy, we again use the density matrix method.
In this case, the density matrix of the observed system is de-
termined by the equation of motion, Eq. (2.2), where V̂ (t)

FIG. 4. ZEKE spectroscopies.
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is the interaction between the molecule and the radiation
field �E (t).

We shall consider type I first. In the dipole approxima-
tion,

V̂ (t)′ = −�μ · �E0 cos ωt

= −�μ · [ �E0 (ω) e−i tω + �E0 (−ω) eitω], (5.1)

where ⇀
μ is the dipole operator. Notice that

dρmm

dt
= − i

¯

∑
k

(Vmkρkm − Vkmρmk) −
∑

l

�ll
mmρll (5.2)

and

dρmk

dt
= − (iωmk + γmk) ρmk

+ i

¯
Vmk (ρmm − ρkk) + · · · , (5.3)

where γmk = �mk
mk represents the dephasing constant, and

Vmk = −⇀
μmk · ⇀

E0 cos ωt. (5.4)

In the rotating wave approximation25 and Markoff ap-
proximation, we obtain

ρmk (t) = − i

4¯

⇀
μmk · ⇀

E0 (ω) e−i tω

i (ωmk − ω) + γmk
(ρmm − ρkk) + · · ·

(5.5)

and

dρmm

dt
=

∑
k

W (1)
km (ω) (ρkk − ρmm) −

∑
l

�ll
mmρll , (5.6)

where the absorption rate constant W (1)
km is given by

W (1)
km = π

2¯2
|⇀
μmk · ⇀

E0|2 D(ωmk − ω), (5.7)

and if a thermal equilibrium is involved, then

W (1) =
∑

k

∑
m

Pk W (1)
km

= π

2¯2

∑
k

∑
m

Pk |⇀
μmk · ⇀

E0|2 D(ωmk − ω), (5.8)

where Pk denotes the Boltzmann distribution. The ρmm

terms in the above master equation [i.e., Eq. (5.6)] describes
the stimulated emission and can usually be omitted. Here,
D(ωmk − ω) denotes the line-shape function (Lorentzian in
this case),

D(ωmk − ω) = 1

π

γmk

γ 2
mk + (ωmk − ω)2 . (5.9)

In the above equations, we can see that m is in IBOA,
while k is in BOA. �ll

mm describes the dynamics of the ZEKE
states; in the collision-free condition, it involves the radiative
transition and autoionization.

Section III mentions that the coherence can be created by
optical pumping and its dynamics can exhibit a quantum beat
behavior. Here, we show how this can be achieved. Notice that

dρmm ′

dt
= − (iωmm ′ + γmm ′) ρmm ′

− i

¯

∑
k

(Vmkρkm ′ − Vkm ′ρmk). (5.10)

Using Eq. (5.5), we obtain

dρmm ′

dt
= − (iωmm ′ + γmm ′) ρmm ′

+ 1

4¯

∑
k

[
(⇀
μmk · ⇀

E0 (ω))(⇀
μkm ′ · ⇀

E0 (−ω))

i (ωkm ′ − ω) + γkm ′
(ρkk − ρm ′m ′ )

−
(

⇀
μmk · ⇀

E0 (ω)
) (

⇀
μkm ′ · ⇀

E0 (−ω)
)

i (ωmk − ω) + γmk
(ρmm − ρkk)

⎤
⎥⎦,

(5.11)

which describes the dynamics of the coherence ρmm ′ , exhibit-
ing the quantum beat due to the term − (iωmm ′ + γmm ′ ) ρmm ′ .

Types II and can be treated similarly. For type II, using
the second-order perturbation method, we obtain

V̂ (t) = −⇀
μ · ⇀

E10 cos ω1t − ⇀
μ · ⇀

E20 cos ω2t, (5.12)

W (2)
km = π

2¯2

∣∣∣∣∣
∑

n

(⇀
μmn · ⇀

E20)(⇀
μnk · ⇀

E10)

2¯ (ωnk − iγnk − ω1)

∣∣∣∣∣
2

× D(ωmk − ω1 − ω2), (5.13)

W (2)=
∑

k

∑
m

Pk W (2)
km , (5.14)

and similarly for type, we have

W (2)
km = π

2¯2

∣∣∣∣∑
n

[
(⇀
μmn · ⇀

E20)(⇀
μnk · ⇀

E10)

2¯(ωnk − ω1)

+ (⇀
μmn · ⇀

E10)(⇀
μnk · ⇀

E20)

2¯(ωnk − ω2)

] ∣∣∣∣
2

× D(ωmk − ω1 − ω2).

(5.15)

VI. IONIZATION OF ZEKE STATES BY
DISCRIMINATION FIELD AND EXTRACTION FIELD

Sections III–V used the perturbation method to study op-
tical absorption, l-level mixing, and autoionization. But this
method cannot be used to treat the extraction field ionization
of ZEKE states because, due to the high n values in this case,
the field cannot be regarded as weak. The exact master equa-
tion for describing the extraction field ionization is presented
as

dρ̂

dt
= − i

¯
[Ĥ0, ρ̂] − i

¯
[Ĥ ′′, ρ̂] − �̂ρ̂ = −i L̂ρ̂, (6.1)
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where Ĥ ′′ denotes the Stark Hamiltonian, while Ĥ0 and �̂

were discussed in Secs. III–V. We introduce the projection
operator D̂ so that.

D̂ρ̂ = ρ̂1(1 − D̂)ρ̂ = ρ̂2, (6.2)

where ρ̂1 denotes the collection of diagonal matrix elements
of ρ̂ (i.e., the population of the system), while ρ̂2 represents
the collection of off-diagonal matrix elements of ρ̂ (i.e., the
coherence or phase of the system). It follows that Eq. (6.2)
can be written as (Appendix B)

ρ̂1 (t) = exp[−t(i D̂ L̂ + Ŵ )]ρ̂1 (0) . (6.3)

Here, the field ionization operator Ŵ is given by

Ŵ =
∫ ∞

0
dτ M̂ (τ ) . (6.4)

In other words, we can calculate the exact field-ionization
rate constant from Eq. (6.4); it can also be evaluated perturba-
tively. Through the perturbation method, the master equations
presented in the l-level mixing (discussed above) can be de-
rived from Eq. (6.3).

Here, we calculate the field ionization rate constant
through a frequently used semiclassical approach.42, 43 The
electronic wave function �(�r ) satisfies the Schrödinger
equation,(

− ¯
2

2me
∇2

e − Ze2

r
− eFz

)
�(�r ) = E�(�r ), (6.5)

where Z = 1 is the charge and the electric field F lies
along the z direction. The details of derivations are given in
Appendix C. The field ionization rate constant is given by

W = |m|!
(

mee2

¯
√−2me E

)|m|
|C |2 , (6.6)

where the boundary condition and flux conservation give a
value of C, which is given in Eq. (C.7).

Figure 5 shows the numerical results of the field ioniza-
tion rate constant W in Eq. (6.6), with (C.7) for each corre-
sponding field intensity region of [Fig. 5(a)] discrimination
field (0.1 < F < 3 V/cm) and [Fig. 5(b)] extraction field
(2 < F < 10 V/cm).7, 21 We first apply the discrimination field
to remove electrons above the ionization potential threshold.
We then observe the transmitted electrons by applying the ex-
traction field, which is stronger than the discrimination field.
We note that the principal quantum numbers corresponding to
the ionization potential threshold for the discrimination and
extraction fields are given by F = (¯2/16n4meea3

0)/102. The
electronic energy is given by E = −(¯2/2mea2

0n2). The range
of corresponding principal quantum numbers are 102 < n
< 238 for the discrimination field (0.1 < F < 3 V/cm) and 75
< n < 112 for the extraction field (2 < F < 10 V/cm). In Fig.
5(a) we find that near the ionization potential threshold each
curve increases rapidly and saturates at high intensity. From
this, it seems reasonable to assume that most electrons above
the ionization potential threshold have been removed. Here
we remark that for more quantitative calculation of ionization
rate constant we need to take Stark shift of potential energy
curves and laser pulse shape into account. However, for our

FIG. 5. (a) The calculated field ionization rate constants (n = 120, 150,
200) are plotted as a function of the discrimination field (0.1 < F
< 3 V/cm). The electronic energy is given by E = −(¯2a2/2men2). (b) The
calculated field ionization rate constant (n = 100) is plotted as a function of
the extraction field (2 < F < 10 V/cm). The electronic energy is given by
E = −(¯2a2/2men2). Here the atomic unit (a.u.) is used.

purpose here it is enough to specify a value of laser intensity
at which most electrons above the ionization potential thresh-
old are removed. According to our calculations, more than
half (up to 80%) per unit time have been removed for cases
n = 120, 150, and 200. Figure 5(b) shows a curve behavior
similar to that in Fig. 5(a); that is, most electrons above the
threshold can be transmitted and observed.

VII. CONCLUSION

Measurements of the ZEKE spectra involve optical ab-
sorption for the transition from the ground vibronic states
to the ZEKE states, which may undergo autoionization and
l-level mixing due to a stray field, and the ionization of the
ZEKE states by a discrimination field and an extraction field,
which yields the ZEKE electrons that determine the ZEKE
spectra. Therefore, to simulate the ZEKE spectra, we should
not only consider the absorption rate constant but also con-
sider the dynamics of the ZEKE electrons. This paper presents
the density matrix method to treat ZEKE spectroscopy and
the dynamical processes involved. The density matrix method
can provide information on the dynamics of the population
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and coherence of the system, that is, the rate constants of
all the processes involved in ZEKE spectroscopy. In other
words, the density matrix method can describe the whole ex-
periment under consideration and, by solving the equation of
motion for the density matrix (conventionally called master
equations), we can theoretically determine the ZEKE spectra.
This paper presents the theoretical results of our preliminary
attempts.
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APPENDIX A: PROOF OF EQUIVALENCE OF THE
TWO FORMULATIONS MENTIONED IN SEC. III

Unlike in previous work, which used another formulation
for the electron-core multiple interaction, we used the break-
down of IBOA (as described in Sec. III) to calculate the radi-
ationless transition (autoionization) of the ZEKE states. Our
previous paper showed that the two formulations are numer-
ically and analytically equivalent.10 Here, we use commuta-
tion relations to demonstrate this equivalence and its physical
implications. From Eq. (3.17), we have

〈�cw ′k | Ĥ ′
IBO |�cwm〉

= − ¯
2

me

1

Ecw,cw ′

〈
�0

c′w

∣∣ 〈�0
k

∣∣∇eVp · ∣∣∇e�
0
m

〉 ∣∣�0
cw

〉
.

(A.1)

As reported by Russek et al.,37 electrostatic interaction
can be used as the perturbation in Fermi’s golden rule. That
is,

W(cwm→cw ′k) = 2π

¯

∣∣〈�cw ′k | V̂ ′
p |�cwm〉∣∣2

δ
(
Ecw ′k,cwm

)
.

(A.2)

From Ref. 10, we have〈
�0

k

∣∣ Vp

∣∣T̂e�
0
m

〉 − 〈
T̂e�

0
k

∣∣ Vp

∣∣�0
m

〉 = (
E0

m − E0
k

) 〈
�0

k

∣∣ Vp

∣∣�0
m

〉
(A.3)

and

− ¯2

2me

〈∇2
e �0

k

∣∣ Vp

∣∣�0
m

〉

= − ¯
2

2me

[〈
�0

k

∣∣ Vp

∣∣∇2
e �0

m

〉 + 2
〈
�0

k

∣∣∇eVp · ∣∣∇�0
m

〉
+ 〈

�0
k

∣∣∇2
e Vp

∣∣�0
m

〉]
. (A.4)

Using the commutator expression for Eqs. (A.3) and (A.4),
the resulting relations are given by

〈
�0

k

∣∣ [T̂e, V̂p
] ∣∣�0

m

〉 = 〈
�0

k

∣∣ [Ĥ 0
e , V̂p

] ∣∣�0
m

〉
= (

E0
k − E0

m

) 〈
�0

k

∣∣ Vp

∣∣�0
m

〉
, (A.5)

〈
�0

k

∣∣ [T̂e, V̂p
] ∣∣�0

m

〉 = − ¯
2

2me

[
2
〈
�0

k

∣∣ ∇eVp · ∣∣∇�0
m

〉
+ 〈

�0
k

∣∣∇2
e Vp

∣∣�0
m

〉]
. (A.6)

Incorporating the ionic wavefunctions to the matrix ele-
ments, we obtain〈

�0
cw ′k

∣∣ [T̂e, V̂p]
∣∣�0

cwm

〉 = Ecw,cw ′
〈
�0

cw ′k

∣∣ ĤIBO

∣∣�0
cwm

〉
= Ekm

〈
�0

cw ′k

∣∣ Vp

∣∣�0
cwm

〉
.

(A.7)

Since the energy difference between the ionic states is
equal to that of the electronic states, as shown in Fig. 1(b), we
can prove that〈

�0
cw ′k

∣∣ ĤIBO

∣∣�0
cwm

〉 = 〈
�0

cw ′k

∣∣ Vp

∣∣�0
cwm

〉
. (A.8)

Therefore, from Eq. (A.7), we conclude that the radi-
ationless transition is attributed to the noncommutativity of
the kinetic energy operator and the potential energy operator.
Equation (A.2) presents it as the potential-energy representa-
tion, while Eq. (A.1) shows the kinetic-energy representation
or the breakdown of IBOA.

APPENDIX B: DERIVATION OF EQ. (6.3)

Applying the Laplace transformation to Eq. (6.1) yields

pρ̂ (p) − ρ̂ (0) = −i L̂ρ̂ (p) . (B.1)

Referring to Eq. (6.2), Eq. (B.1) can be written as

pρ̄1 (p) − ρ̂1 (0) = −i D̂ L̂ρ̄1 (p) − i D̂ L̂ρ̄2 (p) (B.2)

and

pρ̄2 (p) − ρ̂2 (0)

= −i
(
1 − D̂

)
L̂ρ̄1 (p) − i

(
1 − D̂

)
L̂ρ̄2 (p) . (B.3)

Solving ρ̄2 (p) from Eq. (B.3), we obtain

ρ̄2 (p) = 1

p + i
(
1 − D̂

)
L̂

ρ2 (0)

− 1

p + i
(
1 − D̂

)
L̂

i
(
1 − D̂

)
L̂ρ̄1 (p) . (B.4)

Similarly, we assume that ρ2 (0) = 0 (that is, the ran-
dom phase approximation). Substituting ρ̄2 (p) into Eq. (B.2)
yields

pρ̄1 (p) − ρ1 (0) = −i D̂ L̂ρ̄1 (p) − M̂ (p) ρ̄1 (p) , (B.5)

where M̂ (p) denotes that memory kernel,

M̂ (p) = D̂ L̂
1

p + i(1 − D̂)L̂
(1 − D̂)L̂. (B.6)
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It follows that

dρ̂1

dt
= −i D̂ L̂ρ̂1 −

∫ t

0
dτ M̂ (τ ) ρ̂1 (t − τ ) . (B.7)

This is the exact master equation for the field-induced
ionization of molecules and atoms. Alternatively, we have

ρ̄1 (p) = 1

p + i D̂ L̂ + M̂ (p)
ρ̂1 (0) . (B.8)

In the Markoff approximation, Eq. (B.7) becomes

dρ̂1

dt
= −i D̂ L̂ρ̂1 − Ŵ ρ̂1 (B.9)

and

ρ̄1 (p) = 1

p + i D̂ L̂ + Ŵ
ρ̂1 (0) . (B.10)

Carrying out the inverse Laplace transformation,
we obtain

ρ̂1 (t) = exp[−t(i D̂ L̂ + Ŵ )]ρ̂1 (0) . (B.11)

APPENDIX C: DERIVATION OF EQ. (6.6)

In parabolic coordinates Eq. (6.5) can be separated
as,42, 43

ξ = r + z, η = r − z, �(�r ) = ϕ(ξ )χ (η)√
ξη

exp (±imφ)√
2π

,

(C.1a)

¯2

me

∂2

∂ξ 2
ϕ +

(
E

2
+ β1

ξ
+ ¯2

4meξ 2
+ eF

4
ξ

)
ϕ = 0,

(C.1b)

¯2

me

∂2

∂η2
χ +

(
E

2
+ β2

η
+ ¯2

4meη2
− eF

4
η

)
χ = 0,

(C.1c)

where φ is the angular coordinate, m is the projection quan-
tum number to the z-axis, and β1 + β2 = Ze2. The asymptotic
form of the wave function �(�r ) for z � 1 (Ref. 42) is given
by

�(�r )ξ̃
Ze2me
¯
√−2me E

−1−|m|/2exp

(
−

√−2me E

2¯
ξ

)
η|m|/2

×exp

(
−

√−2me E

2¯
η

)
exp (±imφ)√

2π
,

(C.2)

where ξ � η. From Eqs. (C.1) and (C.2), we obtain

β1 = Ze2 − ¯

2me

√
−2me E(|m| + 1), β2

= ¯

2me

√
−2me E(|m| + 1). (C.3)

Near the z axis, the surface integral is d S
= ρdρdφ = (1

/
2)ξdηdφ, since ηρ̃2/ξ , where ρ is

the distance from z axis. The function χ behaves like
χ = η(|m|+1)/2 exp

(−(
√−2me E/2¯)η

)
, and the probability

of transition per unit time is given by

W = i¯

2me

(
ϕ

dϕ∗

dξ
− ϕ∗ dϕ

dξ

)
|m|!

(
mee2

¯
√−2me E

)|m|
.

(C.4)

The semiclassical solution for ϕ, i.e., ϕ =
(C

√
me/

√
p(ξ )) exp( i

¯

∫ ξ dξ ′ p(ξ ′)) with p(ξ ) =√
(me E/2) + (β1/ξ ) + (eF/4)ξ provides the field ion-

ization rate constant in Eq. (6.6)
For over potential barrier scattering, |C |2 is calculated as

the transmission probability for large z. Thus ϕ is written as

ϕ(ξ ) =
√

me√
p(ξ )

(
exp

(
i

¯

∫ ξ

ξF

p(ξ ′)dξ ′
)

+ r exp

(
− i

¯

∫ ξ

ξF

p(ξ ′)dξ ′
))

(ξ < ξF ) ,

ϕ(ξ ) = C
√

me√
pF

exp

(
i

¯

∫ ξ

ξF

pF dξ ′
)

(ξ > ξF ) ,

(C.5)

where r is the coefficient of a reflected wave. We assume
that for ξ > ξF , the wave function is asymptotically free and
connected at ξ = ξF . p(ξ ) has a maximum at ξ = ξc, and
ξc � ξF . Then pF is defined as pF ≡ p(ξc). The boundary
condition and flux conservation at ξ = ξF give

1 − |r |2 = |C |2 , (C.6a)

r =
i
(√

p(ξF )
pF

−
√

pF

p(ξF )

)
− p(ξF )′

2p(ξF )2

√
p(ξF )

pF

i
(√

p(ξF )
pF

+
√

pF

p(ξF )

)
+ p(ξF )′

2p(ξF )2

√
p(ξF )

pF

, (C.6b)

C = 2i

i
(√

p(ξF )
pF

+
√

pF

p(ξF )

)
+ p(ξF )′

2p(ξF )2

√
p(ξF )

pF

. (C.6c)
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