
行政院國家科學委員會補助專題研究計畫成果報告
比例式視訊編碼技術及視訊通訊終端機技術之研究(3/3)

Research in Scalable Video Coding Techniques and Visual Communication Terminal
Technologies

計畫編號：NSC 91-2219-E-009-045
執行期限：91年 8月 1日至 92年 7月 31日
主持人：林大衛 交通大學電子工程學系 教授

計畫參與人員：詹益鎬、郭沛昀、陳彥福、林岳賢 交通大學電子工程學系 研究生

摘要

本計畫從事兩方面之研究：其一是比例式視訊編碼法，主要為物件域之比例式編碼

相關技術；其二是視訊通訊終端機技術，主要為國際標準視訊編解碼器之實現與相關

網際網路視訊通訊終端系統之實作。在物件域之比例式編碼方面，我們主要研究視訊

內容分割法，迄今已提出數項技術。模擬結果顯示：萃取得之物件符合人類常態知覺。

現亦在繼續研究改進視訊分割技術。在視訊通訊終端機方面，我們過去已發展了一個

以個人電腦及數位信號處理器為平台的點對點視訊編碼與傳輸系統，其中的視訊編碼

採用 H.263標準。在本計畫中，我們繼續改進此系統之功能，並採用相似的平台進行
MPEG-4 simple profile及 fine-granularity scalable即時編解碼之實作。

關鍵詞：視訊分割、H.263、MPEG-4視訊編碼、軟體即時編碼、網際網路視訊通訊終
端機

 I

Abstract
This project conducts research in two subject areas. The first is scalable video coding,

primarily on technology related to object-oriented scalable coding; and the second is visual
communication terminal technologies, primarily the implementation of international
standard video codecs and the implementation of an internet visual communication terminal
system. In object-scalable coding, we mainly research into methods for video content
segmentation. Thus far we have proposed several segmentation techniques. Simulation
results show that the extracted objects are in accord with common sense of human
perception. We are continuing the research and improvement of video segmentation
techniques. Concerning visual communication terminal technologies, we have previously
developed a point-to-point video coding and transmission system employing personal
computers and digital signal processors as the platform. The video codec in the system
employs the H.263 standard. In this project, we have continued to improve the
functionalities of the system, and we have conducted real-time implementation of MPEG-4
simple profile and fine-granularity scalable encoders employing a similar platform.

Keywords: Video Segmentation, H.263, MPEG-4 Video Coding, Real-time Software
Coding, Internet Visual Communication Terminal

 II

目錄 Table of Contents

一、計畫緣由與目的 1
二、結果與討論 3

A. 視訊分割 3
B. 視訊通訊終端系統實作之研究 4
三、參考文獻 6
四、圖表 7
五、計畫成果自評 10
六、附錄 11

 III

一、計畫緣由與目的

視訊通訊領域在近數年來有兩個重要的發展方向，一是視訊壓縮與傳輸之理論與技

術上的創新與進步，二是即時及儲存式視訊通訊系統的實用化。前者除可自近數年來

相關學術期刊及會議中的論文窺其梗概，亦可由MPEG-4標準制定過程中所考慮的各
種壓縮與傳輸技術中見其一斑。後者在儲存式系統方面，由 VCD、DVD、及數位動
靜態攝影機等數位視訊產品的出現與風行，可得例證；在即時系統方面，則於近數年

來，已有不少桌上型視訊會議產品出現。這兩方向的發展，都與數位信號處理硬軟體

技術在近年來的迅速發展有關，使得研發人員一方面可做複雜理論與技術的演算與模

擬，另方面可將其最終之設計做有效之實現。本計畫即考慮以上兩個方向，一面研究

MPEG-4相關視訊編碼技術，另一面從事視訊通訊終端系統實作之研究。
在 MPEG-4 相關視訊編碼技術方面，我們知道 MPEG-4 的一項重要創新，是採用
物件導向型式(object-oriented)的視訊編碼，以求能對畫面作更有彈性的編碼或組合
(composition)等處理，也就是所謂的物件比例能力(object scalability)。因此，一個很重
要的課題就是視訊區域的分割(video segmentation)，而此分割結果應該在人類常態視覺
的角度看來是有意義的(semantically meaningful)。視訊區域的分割，要考慮到物件的
運動，這是與傳統靜態影像分割的一個主要不同。因為物件的運動，一個物件在不同

的畫面中可能會改變形狀，也可能會是不完整的出現(例如：畫面的背景，在所有的圖
框中均可能被其他物件所部分遮掩)；這些情形就會影響視訊分割方法的設計與其分割
品質。視訊區域的分割，在近年來雖有不少研究，但其技術仍未臻理想，而有相當大

的改進空間。視訊分割的方法可分兩大基本途徑。其一是將視訊視為一馬可夫隨機過

程(或馬可夫隨機場，Markov random field)，以貝氏估測(Bayesian estimation)等最佳化
估計方法來做分割。此途徑一個代表性的參考文獻為[1]，其他文獻還有不少，茲不一
一列舉。其二是對畫面做直覺的運動與紋理(texture)分析，參考文獻亦多。以其可獲得
的結果而言，兩途徑之間難謂孰優孰劣，但前者一般使用疊代(iterative)計算，以直覺
分析的結果作為其初始狀況(initial condition)，並需要很高的計算量。此外，亦有將兩
途徑做某種結合者，如[2], [3]。我們過去曾對上述兩個基本途徑分別進行研究，但第
一途徑的成效未如理想(其部分結果可見[4])，第二途徑則有較佳之結果。本年之計畫
專注後者。
在視訊通訊終端系統實作之研究方面，我們研究國際標準視訊編碼法的即時軟體實

現及網路視訊通訊系統的實現，其中我們以個人電腦及裝置於其上的數位信號處理器

(DSP)插板為實現平台。好的視訊編碼法(壓縮比高而視訊品質好)的運算複雜度是很高
的。以 H.263而論，過去數年間發表的學術論文顯示，一些較快的 DSP及微處理器(µP)
每秒鐘約可處理十幾張至數十張 QCIF 大小的畫面之編解碼。MPEG-4 simple profile
視訊之編解碼速率亦相當。之前我們曾使用個人電腦及 Texas Instruments 的
TMS320C6201定點數位訊號處理器(裝置在Blue Wave Systems的 PCI/C6600電腦插板
上)為平台，實現一個簡單的 H.263視訊編解碼與網際網路視訊傳輸系統[5], [6]。其後
我們亦在持續改進其功能。在本年之計畫中，我們除繼續此一努力外，另採用相同之

數位訊號處理器(但改用 Innovative Integration公司的電腦插板，因 Blue Wave Systems

 1

已轉移事業方向)，從事MPEG-4 simple profile及 fine-granularity scalable (FGS)兩種視
訊編碼法的即時實現研究。

 2

二、結果與討論

茲分二小節分別討論視訊分割與視訊通訊終端系統實作兩方面之研究。

A. 視訊分割

要達成物件比例式視訊編碼(object-scalable video coding)，一個很重要的課題就是
視訊分割，這對自然景像視訊(natural scenes)的編碼而言，尤其為然。由於 MPEG-4
標準中對於物件的定義及視訊分割的方式均無明確的規範，因此就留給研究者極大的

餘裕。如前述，我們在此專注於採用直覺的運動與紋理分析來做視訊分割。此類分割

方法，通常包括四個基本功能方塊，即紋理分析、運動分析(運動估計)、初始分割、
及區域追蹤。我們近幾年來提出了幾個分割方法，其細節頗有不同，但基本架構如是

[7]-[10]。圖一呈示我們最近提出的一個方法，其中 Edge Analysis及 Change Detection
屬紋理分析，Forward Tracking及 Backward Validation用到運動分析，Mask Refinement
則完成初始分割與區域追蹤。在視訊分割的研究中，兩大議題是物件邊界的精確認定

及運算量的降低。此方法在這兩方面都有特別的設計。以下我們就概略介紹此方法。

其詳細討論可參附錄 A，該附錄為一欲發表之論文之初稿。
此方法中的 Edge Detection目的在於較精確的找到物件的邊界位置。這是因為一般
而言，物件的邊界有較大的亮度或色彩變化。我們所用的 Edge Detection方法為 Canny
edge detector。Change Detection 常被用來獲得移動物件的大致位置。我們所使用的
Change Detection 方法與近來若干學術論文所用的方法相似，就是透過 interframe
difference的分析來估計視訊畫面中的攝影機雜訊大小，然後設定一個門檻值，以檢驗
interframe difference。大於此門檻值的畫面位置就算是 changed，所有算是 changed之
像素就形成移動物件位置的一個粗估。

Forward Tracking, Backward Validation, 及Mask Refinement是此方法主要創新之所
在，其中又尤以Mask Refinement為然。Forward Tracking是用以估計已分割出來的物
件的運動並做粗略的追蹤。由於後續的 Backward Validation及Mask Refinement會更
精確的確認物件邊界的位置，所以 Forward Tracking中的運動估計不必非常精確，也
因此可以降低其運算量。我們為此設計了一個特別的運動估計法。Forward Tracking
在跟據所估計得的運動作過初步的物件追蹤後，將其結果與 Change Detection的結果
相結合，作為 Forward Tracking方塊的輸出。Backward Validation是將 Forward Tracking
的輸出中，屬於 Change Detection的結果而不屬於初步物件運動追蹤結果的像素，做
反向運動估計，並檢測其是否屬於或鄰接於前張畫面中所分割出來的運動物件。若是，

則保留，否則刪去。Mask Refinement的主要精神，是假設 Backward Validation的結果
中，最外緣的 edge 像素，大多應是物件的邊界所在。透過一些 morphological 處理步
驟，我們確認這些邊界像素的位置、針對其斷裂不連續的部分做內插以連接之、並填

滿物件的內部。
實驗顯示此方法可得相當符合主觀視覺的分割結果。圖二及圖三分別呈示對

Mother and Daughter及 Salesman兩個影像序列進行分割的部分結果。

 3

B. 視訊通訊終端系統實作之研究

本部分研究主要係使用個人電腦及其上裝置之數位訊號處理器插板來進行軟體視

訊編解碼器及視訊壓縮與網路傳輸終端系統之實作。本項研究分兩子題，一是既有

H.263 編解碼與傳輸系統的改進，二是 MPEG-4 軟體視訊編解碼器的實作。以下分別
討論之，但重點在第二項，因其為本部分研究之主要項目。
如前述，我們之前已經完成一個簡單的 H.263視訊編解碼與網路傳輸系統[5], [6]。
該系統結構如圖四所示。傳輸端的個人電腦是 server，接收端的則為 client。接收端不
須數位訊號處理器，由個人電腦逕行做視聲訊的解碼與播放。傳輸端的個人電腦，其

視訊輸入經個人電腦轉交數位訊號處理器插板做編碼。本年的工作主要為系統功能的

改進。為免大幅更動系統架構導致意想不到的問題，我們沿用之前使用的數位訊號處

理器插板，即 Blue Wave Systems 的 PCI/C6600，其上裝置 Texas Instruments 的
TMS320C6201 定點數位訊號處理器二顆，工作速率為 200 MHz。但我們的視訊編碼
器僅用其中一顆。編碼方法為 H.263，但沒有配置所有的功能，使其簡化以利即時實
現。聲訊以外之系統功能，大體上可參[6]。聲訊部分，未做壓縮，僅由個人電腦將之
與壓縮後的視訊組成封包，交由網路卡透過 UDP 規約傳出。原始之實現係針對
subQCIF (128x96)之畫面，上年度已改為可處理 QCIF (176x144)畫面，本年則改進為
可處理 CIF (352x288)畫面，但編碼速率則成比例下降：subQCIF每秒約可編 20張畫
面，CIF 則僅 2-3 張。經分析程式，發現其資料輸出入部分可做一些改進，但對程式
加速的幫助極有限。其他改進則尚須做更多分析，才能確定其效用。不過以上經驗將

有助於新年度(下年度)之MPEG-4研究。
在MPEG-4軟體視訊編解碼器部分，我們考慮了其 simple profile及 FGS編碼器二
者，並分別使用一個數位訊號處理器平台(含個人電腦及數位訊號處理器插板)來實
現。所用的數位訊號處理器仍是 TMS320C6201，但插板則為 Innovative Integration公
司的 Quatro62。該插板共裝置四顆 TMS320C6201，但我們的二種編碼器實現則各使用
二顆。以下分別討論之。

B.1. MPEG-4 Simple Profile視訊編碼器
MPEG-4 simple profile視訊編碼器的實現，係以MoMuSys C語言軟體為本，加以
修改以適數位訊號處理平台之用。主要工作內容可分程式縮小與程式加速兩方面，簡

述於下。詳可參附錄 B (會議論文稿)。
在程式縮小方面，由於一顆 TMS320C6201的內建程式記憶體僅 64 KB，故若無法
縮至此大小，則會影響程式設計與執行速率。我們所用的方法有以下幾項：

1. 去除流率控制：MoMuSys在此使用浮點運算。除去流率控制後可大幅縮小程
式並加快執行速率。

2. 使用 macros來取代簡單的 functions。
3. 用#include來設定控制參數，而非使用 file reading。
4. 使用 conditional compilation (即#if與#else等指令)，使 compiler依據控制參數
之設定來進行程式編譯，以免去無須的程式段落。

5. 去除多物件(objects)及多 layers 之功能：MPEG-4 simple profile 僅一個 object

 4

及一個 layer。
6. 其他如 functions 之合併、無用之函式呼叫之去除、及使用直接運算以取代對
函式庫內功能簡單之函式的呼叫。

以上除流率控制之去除外，基本上對 simple profile功能之完整性並無影響。共減少程
式大小約 85%。最後的程式約 108 KB，可放在二顆數位訊號處理器內。
在程式加速方面，我們做了以下幾項更動：
1. DCT與 IDCT：MoMuSys使用浮點運算。我們改為定點運算。
2. 改用較快速的 16x16整數位移運動估計法。
3. 改用較快速的 8x8整數位移運動估計法。
4. 改用較快速的半點位移運動估計法。
5. 改進為半點位移運動估計而做的像素內插計算程序。
6. 改進運動估計中須做的絕對差和(SAD)計算程序。
整個運算速率的提昇可達 4倍以上。
圖五顯示個人電腦(host)與兩顆數位訊號處理器(CPU 0及 CPU 3)如何共同運作。實
驗顯示編碼速率約為每秒 6-8張 QCIF畫面，其 PSNR值與原始程式相差不遠。

B.2. MPEG-4 FGS視訊編碼器
MPEG-4 FGS視訊編碼器的基本架構如圖六所示。我們採用一個既有的 H.263+編
碼器[11]為 base layer，而 enhancement layer則使用MoMuSys軟體修改而得。其中 base
layer佔一顆數位訊號處理器，而 enhancement layer則使用另一顆；整個系統架構如圖
七所示。
我們發現，在 FGS 軟體編碼中，兩種最耗時間的運算是編好之碼的輸出與可變長
度編碼(VLC coding)。故除了系統整合外，FGS軟體實現的主要議題在於程式加速。
其方法簡述於下，詳可參附錄 C (會議論文稿)：

1. 選擇適當的 compiler選項。
2. 改寫程式段落，減少迴圈與指令數目。
3. 促成 software pipelining。
4. 使用 intrinsics (C語言可呼叫之特殊函式，可有效使用數位訊號處理器資源)。
5. 將短的數據集輯(pack)在一起，使一個 load或 store動作可以處理數個數據。
6. 儘量將數據放在數位訊號處理器之內建記憶體，並在使用外部記憶體中之數據
之前，使用 DMA將之先行移入內建記憶體。

7. 使用“restrict” keyword 來告知 compiler 若干變數之間的相關性，以幫助
compiler將程式平行化而有效使用數位訊號處理器的資源。

8. 使用 macros來取代一些簡單的 functions。
9. 儘量使用 short型式之數據來做乘法。
實現的結果，在沒有省略任何 bitplanes 之情形下，視比較基礎之不同，約可加速
為原程式的 2.4-2.7倍，或 6.4-7.6倍。編碼速率約每秒 11.5-13.5張 QCIF畫面。若省
略最後二個 bitplanes，則速率可達每秒 17-19張畫面。

 5

三、參考文獻

[1] A. M. Tekalp, Digital Video Processing, Prentice Hall, 1995, ch. 8.
[2] I. Patras, E. A. Hendriks, and R. L. Lagendijk, “Video segmentation by MAP labeling

of watershed segments,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 3, pp.
326-332, Mar. 2001.

[3] Y. Ysaig and A. Averbuch, “Automatic segmentation of moving objects in video
sequences: a region labeling approach,” IEEE Trans. Circuits Syst. Video Technol., vol.
12, no. 7, pp. 597-612, July 2002.

[4] Y. Chou, “Video segmentation via iteratively enhanced spatial-temporal analysis,” M.S.
thesis, Dept. Electronics Engineering, National Chiao Tung University, June 2002.

[5] S.-W. Chen and D. W. Lin, “H.263 video codec implementation on a TMS320C62xx
digital signal processor,” in Proc. Workshop on Consumer Electronics, pp. 1-4, Taipei,
Oct. 1999.

[6] J.-R. Wu and D. W. Lin, “DSP-based realtime video encoding and transportation for
videoconferencing system,” in Proc. Workshop on Consumer Electronics, pp. 181-184,
Taipei, Oct. 2000.

[7] Y.-H. Jan and D. W. Lin, “A method for video segmentation based on object tracking,”
in Proc. Int. Symp. Commun., paper 10.4, Tainan, Nov. 2001.

[8] Y.-H. Jan and D. W. Lin, “Image sequence segmentation via heuristic texture analysis
and region tracking,” in SPIE vol. 4671, Visual Commun. Image Processing, pt. 2, pp.
543-551, Jan. 2002.

[9] Y.-H. Jan and D. W. Lin, “Extraction of video objects by combined motion and edge
analysis,” in Proc. IEEE Int. Symp. Circuits Syst., pp. V-677—V-680, May 2002.

[10] Y.-H. Jan and D. W. Lin, “Automatic video objects segmentation and tracking
employing tiered spatio-temporal analysis,” to appear in Proc. Int. Symp. Commun.,
Taoyuan, Dec. 2003.

[11] M.-L. Woo, “Real-time implementation of H.263+ using TI TMS320C62x,” M.S.
thesis, Dept. Electronics Engineering, National Chiao Tung University, June 2000.

 6

四、圖表

MASK
REFINEMENT

FRAME
MEMORY

DETECTION
CHANGE

ANALYSIS
EDGEFRAME n

TRACKING
BACKWARD
VALIDATIONINPUT

VIDEO FORWARD

FRAME n−1FRAME n−p

圖一：直覺分析視訊分割法之一

50 95 120

圖二：對Mother and Daughter影像序列做分割的部分結果。頂排為原始畫面，中排為
分割出之移動前景物件，底排為畫面序號

10 20 30

圖三：對 Salesman影像序列做分割的部分結果。頂排為原始畫面，中排為分割出之移
動前景物件，底排為畫面序號

 7

Receiver

Adapter Adapter

Video Input

Audio Input

PCInternet
Network Network

Transmitter

DSP

PC

圖四：H.263視訊編解碼與網路傳輸系統架構

Start

Read Image

HOST CPU 0

P

MotionEstimation texture coding

VOP Padding

Read bitstreams

End ?
NO

Yes

End

reconstructed image

VOP Padding

Data Initization

I or P
I−frame

Curr image

MV

bitstreams

CPU 3

Read Image
from Camera

圖五：MPEG-4 simple profile軟體視訊編碼器之架構

 8

圖六：MPEG-4 FGS視訊編碼器之基本架構

圖七：MPEG-4 FGS軟體視訊編碼器之架構

 9

五、計畫成果自評

研究內容與原計畫相符程度：達成計畫名稱所揭示之研究標的，即比例式視訊編碼

技術(特別是物件比例式視訊編碼所需之視訊分割技術)及視訊通訊終端機技術(特別是
建構於數位訊號處理器上、基於主要國際視訊標準之軟體編碼器)之研究。
達成預期目標情況：本子計畫達成之貢獻形式，含技術上之創新、實驗系統之建立、

人才培育。
成果之學術與應用價值等：視訊分割方面之若干成果已發表為會議論文，並在進行

期刊與其他會議論文之撰稿與投稿。視訊終端系統實作方面之若干成果也已發表為國

內會議論文，或在投稿中；其經驗也將成為我們後續相關研究的參考。以上成果亦皆

可供相關業界參考，惟其性質可能不適合做專利申請或技術移轉之用。
綜合評估：本計畫獲得一些具有學術與應用價值的成果，並達人才培育之效。成效

良好。

 10

六、附錄

本附錄共含三篇論文稿，如下列：
A. Y.-H. Jan and D. W. Lin, “Automatic video segmentation with novel motion analysis

and edge processing for accurate identification of object boundaries” (7 pages).
B. P.-Y. Kuo and D. W. Lin, “Real-time implementation of MPEG-4 video encoder on

digital signal processors,” to appear in Proc. Int. Symp. Commun., Taoyuan, Dec. 2003
(6 pages).

C. Y.-F. Chen and D. W. Lin, “Real-time implementation of MPEG-4
fine-granularity-scalable video encoder on digital signal processors” (6 pages).

 11

Automatic Video Segmentation with Novel Motion Analysis and
Edge Processing for Accurate Identification of Object Boundaries

Yih-Haw Jan and David W. Lin, Senior Member, IEEE

Abstract — We consider automatic segmentation of
natural video for content-based video applications. A critical
problem in this area is accurate identification of object
boundaries. We present an algorithm designed to achieve this
goal at reasonable complexity. The algorithm employs change
detection and motion estimation to identify and approximately
track deformable moving objects. The primary novelty of the
algorithm consists in a function block termed mask refinement,
which does morphological edge-oriented processing to
delineate the object boundaries with accuracy, using the
edges found from a suitable edge detector. The motion
estimation is object-based. For robustness in object tracking,
both forward and backward motion estimation are conducted,
but the method has relatively low complexity. We present
experimental results to illustrate the subjective segmentation
performance of the algorithm. The required computational
time for the algorithm is seen to be appropriate for real-time
desktop or portable multimedia applications 1.

Index Terms — MPEG-4, object tracking, video
segmentation.

I. INTRODUCTION

THE past ten years have witnessed phenomenal growth in
the generation and consumption of digital video in

consumer applications, either over the internet or by
employing local devices such as digital still cameras, digital
video cameras, and DVD players. The recently enacted
MPEG-4 standard (which is still evolving) promises to bring
additional convenience and functionalities to such digital
video, and its impact is only starting to be felt.

Compared to previous video coding standards, a major
novelty in the MPEG-4 standard is the introduction of object-
based video representation and coding which facilitate
differential treatment in coding of different video objects and
object-based manipulation of video contents. Many
conceivable consumer applications of these capabilities would
involve natural video, for example, object-based editing of
home video, scene composition for interactive video games,
and desktop virtual conference room—videoconferencing
system that shows a composited conference room scene of
participants’ images. To be able to support object-based
representation and coding of natural video, one must be able

to segment the video into semantic video objects. We consider
automatic video segmentation in this work. While there has
been much research on this subject in the last few years, the
technology is yet to be improved in performance and in
complexity for expected user satisfaction.

1 This work was supported by the National Science Council of R.O.C.

under Grant No. NSC 91-2219-E-009-045 and by Lee and MTI Center for
Networking Research at National Chiao Tung University.

The authors are with Department of Electronics Engineering and Center for
Telecommunications Research, National Chiao Tung University, Hsinchu,
Taiwan 30010, R.O.C. (e-mails: yhjan.ee86g@ nctu.edu.tw,
dwlin@mail.nctu.edu.tw).

Techniques for video segmentation can be divided into two
basic approaches: probabilistic and heuristic. The probabilistic
methods model the video as a random process and attempt to
maximize a certain goodness measure in the segmentation
process. An example is [1, ch. 8]. The optimization usually
requires an iterative procedure and is thus computation-
intensive. In contrast, the heuristic methods employ heuristic
motion and texture analysis and can be designed to have lower
complexity. Some probabilistic methods do probabilistic
optimization only for a subset of the parameters characterizing
the segmentation, leaving the others obtained through
heuristic means. This way, they can have a lower complexity
than fully probabilistic methods. Some examples are [2] and
[3]. We consider the purely heuristic approach.

The heuristic video segmentation methods can be further
divided into two main categories: those starting with an initial
spatial segmentation and those starting with an initial motion-
based analysis or segmentation. Either way, both spatial and
temporal (motion) analyses are needed for subsequent object
tracking. The proposed algorithm of this paper falls in the
latter category, as our experience indicates that this approach
can yield relatively good results at reasonable complexity.
Before presenting the proposed algorithm, we briefly review
some reported research concerning this category of methods.

Chen and Shirai [4] and Neri et al. [5] are two examples of
motion-based segmentation. However, accurate identification
of object boundaries is not considered and the segmented
region boundaries can be quite far from actual object
boundaries. Since object boundaries in an image are often
characterized by high intensity variation, edges (high-gradient
image sections) provide important cues to object contours. A
few algorithms try to identify object boundaries by analyzing
the edges found in the image regions that show significant
motion [6]-[8]. Still, accurate identification of object
boundaries remains an issue to be fully resolved in video
segmentation. This is the case especially when the object
boundaries are grossly nonconvex.

The key technological aim of this work is, therefore, novel
segmentation techniques that can identify object boundaries
accurately at acceptable computational complexity. This paper
is organized as follows. Section II describes the proposed
segmentation algorithm with its novelties. Section III presents
some experimental results. And Section IV draws the

附錄 A

conclusion.

II. THE PROPOSED ALGORITHM
Figure 1 shows the overall structure of the proposed

algorithm. Roughly speaking, semantic objects are detected
initially with “change detection,” tracked in time with motion-
compensated “forward tracking” and “backward validation”
that allow object shape changes, and their boundaries
delineated more accurately with “mask refinement.” The block
“edge analysis” provides useful information for the last
function. The primary novelties of the algorithm consist in the
mask refinement function, as well as the motion-based
forward tracking and backward validation.

In video signal analysis and segmentation, motion
information is helpful for tracking of moving objects.
However, conventional motion estimation methods are usually
very computation-intensive and need not yield reliable motion
information. As a result, one often would like to minimize its
use or its complexity. By simply detecting the changed areas,
change detection is a favored low-complexity mechanism to
roughly identify image regions that contain moving objects [7],
[8]. However, if an originally moving object comes to a
standstill, change detection will lose track of the object unless
a long-term memory is provided, such as in [9]. In this work,
we choose to develop a low-complexity, object-based motion
estimation technique for convenience of object tracking.
Nevertheless, change detection is also employed to identify
new moving objects and to help capture fully the possible
object shape changes with time.

The edge analysis block in the algorithm employs the well-
known Canny detector [10]. Below we describe the remaining
functional blocks in greater detail, namely, change detection,
forward tracking, backward validation, and mask refinement.

A. Change Detection
Change detection is a frequently employed technique to

roughly locate the moving regions in consecutive video
frames [5], [11]-[13]. It requires statistical modeling of the
background noise (due at least in part to camera noise), and it
typically determines whether a pixel is changed (e.g., moving)
or unchanged by comparing the frame difference with a
threshold calculated from the statistical model.

Let the video have stationary background. Similar to others’
work, we assume the background part of the frame difference
follows a zero-mean Gaussian distribution

Fig. 1. Structure of the proposed algorithm.

22 2),(

2
0

2

1)|),((σδ

πσ
δ yx

n neHyxp −= , (1)

where denotes the null hypothesis that the pixel at location

 is unchanged, n is time index,
0H

),(yx),(yxnδ is the
difference at pixel (between frames I and , and

 is equal to twice the camera noise variance. In slow-
motion video (such as conference video), we may let p>1 to
capture the moving objects more easily.

), yx n nI − p

2σ

For robustness, instead of making the changed-unchanged
decision based on the single-pixel frame difference),(yxnδ ,
we base our decision on its mean-square value in a window as
in [11]. For independent Gaussian random variable, their
mean-square value obeys a distribution. The decision
threshold is parametrized on a significance level

2χ

αTH α
evaluated from

 }|),({ 0HTHyxVp αα >= (2)

where V is the mean-square frame difference in the test
window, normalized by dividing it by the variance of the
background noise. The background noise variance is
evaluated using the method in [14]. Experimentally, we find
that an observation window of size 5 or

),(yx

5× 77× and a

significance level α between and lead to good
results. For convenience, the set of changed pixels is denoted

.

210− 310−

nCD
By itself, change detection does not fully delineate a

moving object. Normally, some background pixels will be
declared as changed. On the other hand, a moving object with
smooth interior may have many of its pixels declared as
unchanged. In our algorithm, change detection is used, in
association with motion estimation, for deformable object
tracking. It is also used for initial detection of new moving
objects, especially in the first two frames. The tasks of
accurate boundary delineation and filling-in of object interior
are relegated to the mask refinement function.

B. Forward Tracking
A main purpose of the forward tracking function in the

proposed algorithm is to find the footprint of each object of
the previous frame (say I) in the current frame (say I).
Some inaccuracy is tolerated, because the subsequent
backward validation and mask refinement will localize the
object boundary more precisely. By integrating the footprint
with change detection’s output, we can accommodate new
appearance of moving objects and enhance the ability to deal
with object shape changes.

1−n n

Key to the forward tracking function is a low-complexity
motion estimation method, which is illustrated in Fig. 2. Fig.

(a)

Treated
Block

Macroblock

Object Under
Consideration

Current
Frame

(b)

Fig. 2. Object-based motion estimation. (a) An object under
consideration (shaded region) in the previous frame has moved to a
different position in the current frame (dashed contour). Each small
square is BW in size. (b) Illustrating the idea that motion
estimation is carried out on the 3 macroblock centered at the

BW×

3×
treated block.

2(a) shows that an object under consideration in frame I
has moved to a different position in . The object is divided
into square blocks of size BW pixels. (We have used
BW = 4 in this work.) To save computation, we first consider
all blocks on the object boundary. For each such block, we
perform block-matching motion estimation for a
“macroblock” of 3× 3 blocks centered at it, as illustrated in
Fig. 2(b). For simplicity, we only consider translational
motion. However, the motion vectors may point out of the
frame as in the unrestricted motion vector (UMV) mode of the
ITU-T H.263 standard. The required out-of-frame pixels are
obtained by repeating the pixel values at frame boundaries.
The obtained motion vector is assigned to the pixels of the
treated block. We then proceed inwards from the boundary
blocks until all the interior blocks are treated. In each step, we
treat one “layer” of blocks that are immediately inside the
blocks that were treated in the previous step. For each of these
blocks, we perform macroblock-based motion estimation
similar to the case of boundary blocks, but the candidate
motion vectors are highly limited: only the motion vectors of
its treated neighbors and the zero vector are tested, and the
best is taken.

1−n

nI
BW×

To continue, the

 is projected forwardly onto using the motion vectors

obtained above. For convenience, let O ,
1−nI nI

1, −ni Si ...,3,2,1= ,

denote the ith object in I and let denote the
corresponding projected footprints. The forward-tracked mask

 of each object is obtained by taking the union of

and CD , retaining the largest connected set of pixels, and fill
up all small isolated “holes” that may show up in the pixel
map due to slight difference in the estimated motion of nearby
blocks.

1−n n

niP ,

iP ,

F
ni,

n

PCD

C. Backward Validation
Backward validation is conducted to trim each mask

 for better accuracy, since the forward motion

estimation need not be very accurate and since CD may
contain contributions from more than one object. For this,
backward motion estimation from I to is performed

for the pixels in PCD that are not in P . The method is
similar to the forward motion estimation described above.
Only those pixels whose backward motion-compensated

projections lie inside or touch O are retained. As in

forward tracking, if any small isolated holes show up in the
trimmed , they are filled up. The resulting set of

validated pixels is denoted PCD and referred to as the
rough mask.

F
niPCD ,

n

n

1, −ni

n

1−nI

ni,
F
ni,

F
niPCD ,

B
i,

In typical videophone scenes, the pixels needing backward
validation are relatively few. Hence the required backward
motion estimation does not add exorbitant complexity.

D. Mask Refinement
Due to the nature of our change detection and motion

estimation methods, the rough mask PCD may contain
background pixels beyond the actual object boundary. Besides,
holes may still appear in the object’s interior where there are
not. The mask refinement function attempts to rectify these
problems.

B
ni,

Since, as noted previously, object boundaries are often
characterized by high intensity variation, our mask refinement
procedure does edge-based processing. For natural video,
typical edge detectors (such as the Canny detector that we use)
often do not obtain closed or connected contours at object
boundaries. Therefore, in addition to finding the correct edges
that mark object boundaries, a way to link up the edge gaps
must be devised. An equivalent problem is the exact
identification of the interior mask for the object.

We illustrate the procedure using the arbitrary rough mask
example shown in Fig. 3(a) (the gray pixels). The mask is
highly nonconvex on the outer side to signify that a
distinguishing feature of the proposed method, in comparison
to some other work, is the ability to handle highly nonconvex
object shapes well. Assume that an object is located
mask (i.e., pixel map) of each object in

completely within the rough mask. In many cases, a rough
mask may enclose a half-open area. A common example is a
person’s image in a videophone scene, which may show the
person’s upper body butted to the bottom side of the frame
and result in a rough mask that is half open in the lower side.
In such cases, the following procedure is modified slightly to
take care of the open side, much similar to [8]. The details are
omitted.

To start, we fill in the interior of the rough mask by
orthogonal scans. Specifically, a horizontal scan is performed
over each row in the rough mask to fill in the space between
the leftmost and the rightmost pixels. Corresponding vertical
scans are performed to obtain another result. The union of the
two results is taken, similar to [15]. The above closes any
inner “holes,” but the obtained union map may be larger than
the actual object. (For the example of Fig. 3(a), it is easily
seen that this will be the case.) To cut away the overgrowth,
we erode the union map from outside in, so that every outer
pixel that is not in the rough mask nor an eight-connected
neighbor of the rough mask is removed. This will also stop
any single-pixel “cracks” on the outer side of the rough mask,
but will in general cause the rough mask to grow by one pixel
around. We thus further examine the outermost “slice” of
pixels and remove all that are not in the original rough mask.
The result, denoted FG, is a solid area enclosed by the rough
mask, with single-pixel cracks filled up.

Now we consider the edge pixels in FG. (Fig. 3(b) gives an
example, where the edge pixels are shown in black.) We
assume that most edge pixels close to FG’s perimeter define
the object boundary. The problem is to identify and connect
them properly. For this, we first examine each connected
horizontal and vertical line segment in FG. For each
horizontal line segment, if the outermost edge pixels are close
to the ends of the segment (say within several pixels of an end
and sufficiently distant from the segment’s center), then the

space between them is filled. Call the result a row map. A
similar operation is carried out vertically to result in a column
map. For example, Fig. 3(c) shows the row map (black pixels)
obtained from Fig. 3(b). For ease of reference, the procedure
is termed “edge scan.”

(a) (b)

A

B

1

3
2

4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11

10

(c) (d)

Fig. 3. Illustration of the mask refinement method. (a) An arbitrary
example of the rough mask. (b) FG, with edge pixels in black. (c) Row
map from edge-scan (black pixels). (d) Zoomed-in plot of upper-left part
to illustrate some points.

The first use of the row and the column maps is to trim
away some small overshoots in the FG. For this, we do a top-
down scan of the row map and mark all areas that appear like
caps. (In Fig. 3(c), A and B are such caps.) Experience shows
that such caps often contain pixels outside the desired object
and may even contain edges in the background. Thus for each
cap, we examine the distance between the leftmost and the
rightmost edge pixels in each line segment, from top down. If
the distance is small compared to the length of the segment,
say under 35%, then the line segment is deleted from both
maps and the FG. This continues until we encounter a line
segment wherein such distance is not small. Likewise, we
conduct a bottom-up scan on the row map and process the
caps on the bottom side. Corresponding left-to-right and right-
to-left scans are also conducted on the column map and the
caps in these directions are processed similarly. The above is
termed “cap trimming” for convenience.

Next, we tighten up the footprint of FG in preparation for
interpolation between the assumed boundary edges where
gaps exist. (Accordingly, we shall refer to the process as
“footprint tightening.”) Specifically, we take the union of the
cap-trimmed row and column maps and delete from FG any
pixels that are not at least eight-connected to this union. The
retaining of eight-connected neighbors leaves some additional
leeway in placing the interpolated edge pixels. This is
illustrated in Fig. 3(d), which shows a zoomed-in plot of a part
in the upper left of Fig. 3(c). In the figure, black color denotes
a pixel in the cap-trimmed row map, gray color a pixel in the
reduced FG but not in the row map, and white color an end-
of-line pixel on whose side a valid edge is missing. The white
pixel in row 7, column 1 is one that would be deleted if we did
not retain the eight-connected neighbors as above. On the
other hand, from Fig. 3(d) it can also been seen that, by
retaining these eight-connected neighbors, for a row (resp. a
column) that contains a valid edge on one side, the edge pixel
may be up to two pixels away from the end pixel of the
reduced FG horizontally (resp. vertically) on this side. In
preparation for subsequent processing, we now delete the
extraneous pixels on the outer side of the valid edge pixels.
This can be achieved by examining each connected horizontal
and vertical line segment in the reduced FG. If a valid edge
pixel is at most two pixels inward from the end of the line,
then delete the one or two pixels on the outer side of the edge
pixel.

Now, to interpolate and fill in the “missing” edge pixels in
boundary edge gaps, we use an iterative procedure designed
on a minimum-distance principle. In each iteration, we
examine the footprint-tightened FG in the horizontal and in
the vertical directions alternately. In the horizontal direction,
we examine the left side of all the connected horizontal line

se
th
co
bo

m
le
C

exists in the same column in any of the line segments above. If
so, the distance with the closest of them is noted, where the
distance is measured in number of pixels Cx has to step
through to reach the edge pixel. However, if any pixel en
route is not in the boundary-tightened FG, then that pixel is
given a distance measure of 10 instead of 1. The column
position of the nearest edge pixel above, say Cu, is recorded.
In the same way, the nearest edge pixel below, say Cd, is
found and its column position also recorded. Then the average
column position between Cu and Cd is obtained, and the pixel
in H at that position is denoted Cm. Now we step from Cx
towards Cm and delete the pixels as we go, until we encounter
an edge pixel or we reach Cm. Let this pixel where pixel
deletion stops be denoted Ce. In some cases, there may not
exist a valid Cu or Cd. In these cases, Cm is taken to be at the
average column position between Cx and the valid Cu or Cd.
If neither a valid Cu nor a valid Cd exists, then Cm is
undefined and the iterative procedure skips to the next step.
Ce is considered equivalent to a left edge pixel for the
remaining line segments to be processed in the present
iteration. If it is indeed an edge pixel, then it is considered the
true left edge of the present line segment and treated as other
existing left edge pixels in later iterations.

The processing at the right, top, and bottom sides is similar.
The iteration continues until no more deletion of pixels is
possible. For convenience in reference, the procedure will be
termed “edge filling.”

As an example, consider row 7 in Fig. 3(d), which misses
the left edge. The left-side processing would place the filled-in
edge pixel in column 2. For rows 2, 4, 6, and 8 in Fig. 3(d), all
missing the right edge, the right-side processing would place
the filled-in edge pixels in column 9 for them all.

Lastly, we fine-tune the object boundary slightly.
Specifically, we consider the edge-filled row and column
maps. We shrink the former by one pixel on the left and on the
right, and the latter on the top and on the bottom. Their
intersection is taken. Pixels in the edge-filled FG that are not
in the footprint of the intersection or are not eight-connected
neighbors of the pixels therein are deleted. The resulting pixel
mask defines the extracted object.

III. EXPERIMENTAL RESULTS
To illustrate the working and the performance of the

proposed video segmentation algorithm, we present some
results on the common CIF test sequences Mother and

F
D

o

U

u

s
fi

(o

C

P

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

ig. 4. Illustration of algorithm steps using frame 100 of the Mother and
aughter sequence as example. (a) Original frame 100. (b) Foreground

bject segmented from frame 99. (c) Change detection result

. (d) Projected footprint P of in frame 100. (e)

nion of P and . (f) Largest connected pixel set in the

nion. (g) Final forward-tracked mask PCD . (h) Rough mask

. (i) Row map from edge scan. (j) Column map from edge

can. (k) Cap-trimmed FG. (l) Footprint-tightened result. (m) Result of
rst iteration of edge filling. (n) Result of second iteration of edge filling.

99,1O

,1

B
100,1

100D 100,1 99,1O

F
100,1

100 100CD

CD
gments in sequence and then the right side in sequence. In
e vertical direction, we examine the top side of all the
nnected vertical line segments and then the bottom side,
th also in sequence.
In left-side processing, if a horizontal line segment, say H,
isses the left edge, then we step rightwards as well as
ftwards from its left end, where the left-end pixel is denoted
x for convenience. At each step, we check if an edge pixel

Daughter, Salesman, and Akiyo. (Experience shows that the
Salesman sequence is a quite difficult sequence for video
segmentation.) We first give a walk-through of some key
algorithm steps. Then we present some segmentation results.
And finally, we provide some data regarding algorithm speed.

) Final extracted object 100,1O .

For a walk-through of the algorithm, Fig. 4(a) shows the
original frame 100 of the Mother and Daughter sequence. Fig.

4(b) shows the foreground object O segmented from

frame 99. Fig. 4(c) shows the change detection result CD

99,1

100

obtained from analyzing frames 100 and 97 (i.e., we have let p
= 3). Figs. 4(d)-(g) illustrate the process of forward tracking.
We have employed the well-known three-step motion
estimation algorithm [16, Sec. 11.3] for the boundary blocks.
Because the sequences are of the videophone type, the search

range is 7± pixels. Fig. 4(d) shows the projected footprint
 of frame 99’s foreground object in frame 100. Some

small isolated holes have shown up due to slight difference in
the estimated motion of nearby blocks, as noted before. Fig.

4(e) shows the union of and . Fig. 4(f) shows the
largest connected pixel set in the union. And Fig. 4(g) shows
the final forward-tracked mask PCD after filling up the
small isolated holes. Fig. 4(h) shows the rough mask

 after backward validation.

100,1P

BPCD ,1

100CD 100,1P

F
100,1

100

100

,1O

30 70 117

Fig. 8. Segmented foreground object of Akiyo. Top row: original
frames; middle row: segmentation results; bottom row: frame
numbers.

Fig. 5. Convergence behavior of edge filling for the first frame.

The remaining pictures in Fig. 4 illustrate the process of
mask refinement. Figs. 4(i) and (j) show the row map and the
column map, respectively, from edge scan. Fig. 4(k) shows
the cap-trimmed FG. Fig. 4(l) shows the footprint-tightened
result. Fig. 4(m) and (n) show the results after the first and the
second iterations of edge filling, respectively. And Fig. 4(o)

shows the final extracted object .

50 95 120

Fig. 6. Segmented foreground object of Mother and Daughter. Top
row: original frames; middle row: segmentation results; bottom row:
frame numbers.

To further illustrate the convergence behavior of the edge
filling procedure, we show in Fig. 5 the number of deleted
pixels in each iteration for the first processed frame of each
test sequence. Note that the procedure takes only a small
number of iterations to converge.

Figs. 6, 7, and 8 show some segmentation results for the
Mother and Daughter, the Salesman, and the Akiyo sequences.
We see that the object boundaries are quite accurately
identified.

Concerning the algorithm speed, we have used as test
platform a personal computer with 1.4-GHz Pentium IV CPU.
The program is not optimized. Excluding disk access time, the
result is 26.9, 19.7, and 22.3 ms per frame for Mother and
Daughter, Salesman, and Akiyo, respectively. A very large
portion of the time is spent on forward and backward motion
estimation, which amounts to 13.7, 10.6, and 11.6 ms,
respectively, in the above cases. With suitable optimization of
the program, it should be able to run significantly faster. Thus
the algorithm is suitable for real-time desktop or portable
multimedia and videoconferencing applications.

10 20 30

Fig. 7. Segmented foreground object of Salesman. Top row: original
frames; middle row: segmentation results; bottom row: frame
numbers.

IV. CONCLUSION

We presented an algorithm for automatic object extraction
and tracking for nature video scenes. The algorithm makes
accurate determination of boundaries of moving objects with
novel edge-based morphological processing. And it can
handle grossly nonconvex object shapes, which are
commonplace in typical natural video. A novel, low-
complexity motion estimation technique was also designed to
aid robust object tracking. Experimental results show good
subjective performance. The required computational time for
the algorithm is also seen to be appropriate for real-time
desktop or portable multimedia applications.

REFERENCES
[1] A. M. Tekalp, Digital Video Processing. Prentice Hall, 1995.
[2] I. Patras, E. A. Hendriks, and R. L. Lagendijk, “Video segmentation by

MAP labeling of watershed segments,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 23, no. 3, pp. 326-332, Mar. 2001.

[3] Y. Tsaig and A. Averbuch, “Automatic segmentation of moving objects
in video sequences: a region labeling approach,” IEEE Trans. Circuits
Syst. Video Technol., vol. 12, no. 7, pp. 597-612, July 2002.

[4] H.-J. Chen and Y. Shirai, “Segmentation based on accumulative
observation of apparent motion in long image sequences,” IEICE Trans.
Inf. & Syst. vol. E77-D, no. 6, pp. 694-704, June 1994.

[5] A. Neri, S. Colonnese, G. Russo, and P. Talone, “Automatic moving
object and background separation,” Signal Processing, vol. 66, no. 2, pp.
219-232, Apr. 1998.

[6] T. Meier and K. N. Ngan, “Segmentation and tracking of moving objects
for content-based video coding,” IEE Proc.-Vis. Image Signal Process.,
vol. 146, no. 3, pp. 144-150, June 1999.

[7] T. Meier and K. N. Ngan, “Video segmentation for content-based
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 8, pp.
1190-1203, Dec. 1999.

[8] C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation
and tracking for content-based applications,” IEEE Trans. Circuits Syst.
Video Technol., vol. 12, no. 2, pp. 122-129, Feb. 2002.

[9] S.-Y. Chien, S.-Y. Ma, and L.-G. Chen, “Efficient moving object
segmentation algorithm using background registration technique,” IEEE
Trans. Circuits Syst. Video Technol., vol. 12, no. 7, pp. 577-586, July
2002.

[10] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 8, no. 6, pp. 679-698, Nov. 1986.

[11] T Aach, A. Kaup, and R. Mester, “Statistical model-based change
detection in moving video,” Signal Processing, vol. 31, no. 2, pp. 165-
180, Mar. 1993.

[12] M. Kim, J. G. Choi, D. Kim, H. Lee, M. H. Lee, C. Ahn, and Y.-S. Ho,
“A VOP generation tool: automatic segmentation of moving objects in
image sequences based on spatio-temporal information,” IEEE Trans.
Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1216-1226, Dec. 1999.

[13] M. Kim and J. Kim, “Moving video object segmentation using statistical
hypothesis testing,” Electron. Lett., vol. 36, no. 2, pp. 128-129, Jan.
2000.

[14] Y.-H. Jan and D. W. Lin, “Extraction of video objects by combined
motion and edge analysis,” in Proc. IEEE Int. Symp. Circuits Syst., pp.
V-677—V-680, May 2002.

[15] T. Meier, and K. N. Ngan, “Automatic segmentation of moving objects
for video object plane generation,” IEEE Trans. Circuits Syst. Video
Tehcnol., vol. 8, no. 5, pp. 525-538, Sep. 1998.

[16] Y. Q. Shi and H. Sun, Image and Video Compression for Multimedia
Engineering. New York: CRC Press, 2000.

Yih-Haw Jan received the B.S. and M.S. degrees in
Electrical Engineering from Chung Hua Polytechnic
Institute, Hsinchu, Taiwan, ROC., in 1995 and 1997,
respectively. He currently is working towards the Ph.D.
degree at the Department of Electronics Engineering of
National Chiao Tung University, Hsinchu, Taiwan,
R.O.C. His fields of research include video
segmentation and digital communication systems.

David W. Lin received the B.S. from National Chiao
Tung University, Hsinchu, Taiwan, R.O.C., in 1975,
and the M.S. and Ph.D. degrees from the University of
Southern California, Los Angles, U.S.A., in 1979 and
1981, respectively, all in electrical engineering.
He was with Bell Laboratories during 1981-1983, and
with Bellcore during 1984-1990 and again during 1993-
1994. Since 1990, he has been a Professor in the

Department of Electronics Engineering and the Center for
Telecommunications Research, National Chiao Tung University. He has
conducted research in digital adaptive filtering and telephone echo
cancellation, digital subscriber line and coaxial network transmission, speech
and video coding, and wireless communication. His research interests include
various topics in communication engineering and signal processing.

Real-Time Implementation of MPEG-4 Video Encoder on Digital Signal
Processors

Pei-Yun Kuo and David W. Lin

Department of Electronics Engineering and Center for Telecommunications Research
National Chiao Tung University
Hsinchu, Taiwan 30010, R.O.C.

E-mails: peggy.ee90g@nctu.edu.tw, dwlin@mail.nctu.edu.tw

Abstract

The MPEG-4 standard specified by ISO/IEC MPEG is a
very efficient coding standard for multimedia data. In this
work, we use digital signal processors (DSPs) to implement
a real-time simple profile MPEG-4 video encoder. The plat-
form employed is Innovative Integration’s Quatro62 per-
sonal computer card, which houses four chips of Texas In-
struments’ TMS320C6201. It turns out that we need to
use two chips to obtain an efficient encoder implementa-
tion. We do some trimming of the MoMuSys code to fit
the program into the limited DSP on-chip memories. To
speed up the execution, we modify the DCT/IDCT and the
motion estimation algorithm. We also modify some pro-
gram sections to help the compiler parallelize the compiled
code for efficient utilization of the parallel functional units
of the DSP during execution. Currently, the implementa-
tion can encode about 6 QCIF frames per second, but with
uneven loads between the two DSPs. Compared to the orig-
inal code, the speed-up is about four times, the code size
is reduced by about 80%, and the loss is in PSNR (peak
signal-to-noise ratio) is less than 0.5 dB.

1. Introduction

We consider implementation of an MPEG-4 simple profile
video encoder on digital signal processors. The MPEG-
4 video standard was originally for coding with high effi-
ciency, very low bit-rate and universal access.

Figure 1 shows the detailed structure of video objects
encoder. The key elements in simple profile are motion
coder, discrete cosine transformation (DCT), quantization,
DC predition, and variable-length coding (VLC). The mo-
tion coder consists of a motion estimator, motion compen-
sator, previous/next VOPs Store and motion vector (MV)
Predictor and Coder. It is used to reduce temporal redun-
dancy. In the simple profile, the motion vectors include mo-
tion vector for

���������
macroblock and four motion vectors

for � � � blocks, and are specified to half-pixel accuracy.

This work was supported by the National Science Council of R.O.C.
under grant no. NSC 91-2219-E-009-045.

DCT Quanization
Prediction
& Scanning VLC Output

Bitstream

Input
frame

Motion

Compensation

Segmentation

frame buffer

Motion
Estimation

IDCT

Shape
Encoding

Inverse
Quanization

+
_

Fig. 1: Detailed structure of video objects encoder.

The purpose of DCT, quantization and DC predition is to
reduce spatial redundancy for both intra and inter frames.
The VLC technique reduces syntax redundancy.

The environment of DSP involves a host PC, DSP board
and DSP chips on the board. The DSP chips are Texas
Instruments (TI)’s TMS320C6201. The TMS320C62x is
fixed-point DSP with eight operation units. The DSP board
we use is Innovative Integration (II)’s Quatro6x. It is a PCI
bus compatible DSP card housing four TI TMS320C62x
processors in a symmetric multiprocessing relationship
with high bandwidth inter-processor communication links.

The implementation is based on the code from [4]. It
is a public source for MPEG-4 main profile encoding and
decoding. Table 1 shows the functionalities that the Mo-
MuSys software supports. However, to implement an
MPEG-4 encoder on the DSP chip, the main profile appears
too complicated on first attempt. Therefore, we implement
the simple profile only.

The reduced MoMuSys source from [5] is a MPEG-4
source code with simple profile functions. The code size
of the reduced source is decreased from 1.8 Mbytes to 740
Kbytes in CCS.

In order to implement the MPEG-4 video encoder on
TMS320C62x, we reduce the code size and alter some
functions to fit the limited program memory, 64 Kbytes.
The altering of some functions, such as DCT/IDCT and
motion estimation, also facilitates better parallelism after

1

附錄 B

Table 1: Functionalities of MoMuSys

Visual Tools Simple Main MoMuSys
Basic
-I-VOP
-P-VOP V V V
-AC/DC Prediction
-4-MV,Unrestricted MV
Error resilience V V V
Short Header V V V
B-VOP V V
Method 1/Method 2 Quantization V V
P-VOP based temporal scalability
-Rectangular V V
-Arbitrary Shape
Binary Shape V V
Grey Shape V V
rate control V V

compilation. Therefore, with this features, we can achieve
real-time performance.

In the section 2, we discribe the method of the code size
reduction and code acceleration. The overall system design
of the MPEG-4 encoder, which uses two DSPs working to-
gether with host PC, is described in section 3. The paper
also presents experimental results on the speed and the rate-
distortion performance of the implementation in the section
4. Finally, sention 5 contains the conclusion.

2. MPEG-4 Video Encoder Implementation
and Optimization for DSP

2.1. Code Size Reduction

For the limited program memory, we use some methods to
reduce the code size.

� Remove the rate control

The rate control defined in MoMusys is composed of
floating-point operations which is difficult to digital
signal processor. For the code size and code speed,
the rate control is removed first.

� Using macros to replace simple functions

The C code in MoMuSys has many functions with just
one or two instructions. Therefore, we can use the “de-
fine” macros to replace the simple function.

� changing method of setting control parameters

The initial method of setting the control parameters
is reading them from the file. we change the method
to specifying their value in a *.h mode and use the
instruction “#include” to include the *.h files.

� Using conditional compilation to compile needed
functions

IDCT,141.9 Mcycles

DCT,123.9 Mcycles

MotionEstimation,60.0 Mcycles

Interpolation
others

Fig. 2: Comparison of execution time in MoMuSys.

Because the compiler knows these control parameters
at the time of compilation by including the *,h file, We
can use “#if”, “#else” to separate mutually exclusive
function calls based on settings of control parameters.
Therefore, only the needed functions would be com-
piled.

� Sidestepping layers and objects

In simple profile, there is just one layer and one object,
hence muti-layers and muti-objects coding is not nec-
essary. We rewrite some functions for just single layer
and single object.

� Other methods for code size reducing

Several other useful methods for code size reduction
are function combination, removal of useless library
function calls and replacement of library function calls
by simpler operations.

Table 2 shows the summary of the code size reduction.
With the techniques described above and some simple code
reorganizatoin, the final code size becomes 108 Kbytes.

2.2. Code Acceleration

Figure 2 shows the comparsion of complexity (execution
time) in MoMuSys with QCIF Foreman. The functions
DCT, IDCT, motion estimation and interpolation occupy
most of exection time. In order accelerate the encoder, we
have to optimize those functions.

1. DCT and IDCT

The DCT/IDCT in MoMuSys is Fast DCT using
floating-point computation which is unsuitable for
fixed-point digital signal processor. In converting
the floating-point DCT/IDCT to fixed-point, all the
floating-point numbers are represented by 16-bit in-
tegers. The SNR with integer DCT/IDCT is just a

2

Table 2: Summary of Code Size Reduction

method reduction percentage
Remove the rate control 257 Kbytes 34.7%
Using Macros to Replace Simple Functions 123 Kbytes 16.6%
Changing Method of Setting Control Parameters 26 Kbytes 3.5%
Using Conditional Compilation to Compile Needed Functions 76 Kbytes 10.7%
Sidestepping Layers and Objects 56 Kbytes 7.6%
Other Methods for Code Size Reducing 96 Kbytes 12.1%

little worse than the floating-point case, but the inte-
ger DCT/IDCT yields great improvement in timing,
almost 98% timing reduction.

2. Fast
��� � ���

integer motion search

We use the diamond motion search as the fast algo-
rithm to replace the full-search. Considering code
memory and DSP character, the diamond search is a
best choice for slow-moving video. When coding fast-
moving video, we use the motion vector in the left-
hand macroblock to estimate current motion vector.
The method is as simple as the initial diamond search
but faster than the initial diamond search when coding
fast-moving video.

3. Fast � � � integer motion estimation

After searching for
��� � ���

motion vectors, additional
search made for � � � vectors. Using the

��� � ���
mo-

tion vector as the search center, the search range of
� � � motion estimation is

�
2 pixels. The same as the��� � ���

motion estimation, the algorithm of � � � mo-
tion estimation change to diamond search to replace
the full search.

4. Half-pel motion estimation

The half-pel motion estimation searches over the eight
nearest half-pel neighbors of the best full-pel vector
to find the best solution. In this part, using the algo-
rithm described in [6] can be beneficial. It separate the
eight nearest half-pel neighbors to the perpendicular
and oblique parts. Check the perpendicular part first.
If the smallest SAD is in the center, stop the functions.
If not so, check the oblique parts.

5. Fast Interpolation

In half-pixel motion estimation, the half pixel values
are computed using the bi-linear interpolation. Each
four half pixels is combination of four integer pixels.
Because each memory aceess instruction costs four cy-
cles in TI’s digital signal processor, the intepolation
with huge memory access is time-consuming.

Because the intepolated pixel is combinated by the two
or four neighboring integer pixels, the pixels in the
center of the two half pixels is loaded twice. To speed
up the functions, we can decrease the repeated loads,

0

20

40

60

80

100

120

140

160

M cycles

IDCT DCT MotionEstimation Interpolation others

functions

initial code

revised code

Fig. 3: Comparison between initial code and revised code
in time complexity.

and use the assembly instruction ’ldw’ (load word) and
’sdw’ (store word) to replace two ’ldh’ (load short) and
’sdh’ to access two neighboring short integers simula-
neously.

6. Fast SAD (sum of absolute differences)

Because SAD is the main kernel of motion estimation,
the speed of SAD directly influences the speed of mo-
tion estimation. Using the characteristics of the DSP
chip, such as software pipelining and parallel proces-
sors, the speed of SAD can be increased.

Figure 3 shows the comparsion between initial code and
revised code in timing. The clock cycle for IDCT/DCT is
reduced from 141.8 and 123.9 Mcycles to 1.9 and 2.2275
Mcycles, which is 98.6% and 98.2% reduction. The clock
cycle for motion estimation is reduced from 60.0 Mcycles
to 11.1 Mcycles, which is 81.5% reduction.

3. Video Encoder Integration on DSP Board

Because the optimized code is still too big to be placed in
one 64Kbytes program RAM, we separate the MPEG-4 en-
coder into two parts. One, called the main part, include file
IO, data initial definition and motion estimation. The other,
called the texture part, does texture coding, which primarily
consists of the function “VopCodeShapeMorTextInter.”

3

Start

Read Image

HOST CPU 0

P

MotionEstimation texture coding

VOP Padding

Read bitstreams

End ?
NO

Yes

End

reconstructed image

VOP Padding

Data Initization

I or P
I−frame

Curr image

MV

bitstreams

CPU 3

Read Image
from Camera

Fig. 4: Overall program flow on PC and DSP board.

Figure 4 shows the overall program flow on the DSP
board and the host PC.The overall system employs three
processors, namely, the host, DSP CPU0, and DSP CPU3.
The host is only used for file IO. The input image is cap-
tured by the camera and transmitted to DSP board by host
PC. The output bitstreams is writen to a file by host PC.
CPU0 executes the main part of MPEG-4, handling the ini-
tial definitions for each video object and motion estimation.
CPU3 executes texture coding for intra and inter frames.

when coding intra frames, the current image data are
transferred to CPU3. After getting the image data, CPU3
can complete DCT, quantization, de-quantization,IDCT
and run length coding and produce the reconstructed image
and the encoded bitstream. The reconstructed image is fed
to CPU0 for VOPPAdding and becomes reference frame in
coding of next frame. Also, in CPU3, another VOPPadding
reconstructed image.

When coding inter frames, motion estimation and motion
compensation are needed. In the system, motion estimation
and texture coding are executed in parallel. The Synchro-
nization of CPU0 and CPU3 is achieved using messages
over the FIFOLInk.

The final result, the bitstreams, are generated from both
CPU0 and CPU3. Because the PCI interface control regis-
ter and SRAM are only accessible from CPU0, only it can
communicate with the host.Therefore, the bitstreams data
must be transferred through CPU0 to the host.

4. Simulation Result

After optimization and parallelism,the function time is re-
duced. In the section, we show the overall performance of
MPEG-4 encoder and R-D curve between initial MoMuSys
and optimization mode.

4.1. Experimental Results

4.1.1. Texture Part

Table 3 shows a breakdown of the clock cycle for QCIF
coding intra frame coding. The function MB CodeCoeff
implements zigzag scan and run length coding, which need
many conditional branches and are difficult to reduce in op-
timization. Therefore, the speed-up of the function is less.
The clock cycles of other functions with loops are reduced
more significantly. The total clock cycles to encode one I
frame in the texture parts are approximately 19.8 Mcycles,
or 0.119sec.

When encoding a P frame, motion compensation is
added. This takes almost 40 Kcycles for each loops. There-
fore, the total cycles in encoding on P frame in the texture
part are almost 21 Mcycles, or 0.131 sec.

4.1.2. Main Part

Table 4 shows a breakdown of the clock cycle of the main
part. The primary complexity of the main part is due to mo-
tion estimation. Using the methods described preciously,
the motion estimation is speeded up by 542.96%. The over-
all speed-up of the main part is 431.43%. In the final mode,
the main part costs about 17.5 Mcycles, 0.109 sec per QCIF
frame with data transmission.

4.1.3. Overall system

Using the clock functions defined in “time.h” to estimate
the speed of system, we obtain the results shown in Table 5.

The execution time per a frame includes encoding in
the main part and texture part and data transmission. Al-
though the estimated execution time is only 0.13 seconds
per frame, the pipelining of the two requires additional
time. To sum up the performance, the resulting system can
encode approximately six QCIF frames per second.

4.2. Rate-Distortion (R-D) Performance

Figures 5 and 6 show the R-D performance for the test se-
quences, foreman qcif.yuv, trevor qcif.yuv, suzie qcif.yuv
and akiyo qcif.yuv. The original frame rate is 30 frame/sec
in each case. The intra quantization step size is 15. The in-
tra period is 4. As the figures show, because change in the
motion estimation and DCT, the performance of two pro-
grams is about 0.3 dB decrease on the same bit-rate. Be-
cause the sequence Foreman has the Because the sequence
“Foreman” has the global motion vector, using the first mo-
tion estimation can got the better performance. Therefore,

4

Table 3: Breakdown of Clock Cycles for QCIF Intra Frame Coding

seb text initial MoMuSys Code Final optimized Code number of execution

Process Initial 4,261 4,261 1
for each loop 2,819,090 151,119 11*9

CodeMB 2,740,428 66,535 11*9
DCT 208,549 3126 11*9*6
BlockQuantH263 4,409 2086 11*9*6
BlockDequantH263 4,967 2158 11*9*6
IDCT 238,815 3750 11*9*6

doDCACpred 20,671 16671 11*9
MB CodeCoeff 57,991 47,981 11*9
total 278,734,416 15,705,870
with Data transmission 282,869,570 19,841,024

Table 4: Breakdown of Clock Cycles for Main Part in Coding of QCIF Frames

main initial MoMuSys Final optimized Code number of execution

initial (main & vop process) 113,135 113,135 1
vopProcess (without) 248,336 248,336 1
read image 2,833,299 2,833,299 1
Vopcode (without motionEstimation) 2,507,009 1,194,283 1

VopPadding 2,415,721 1,128,053 1
MotionEstimation 69,539,561 12,860,402 1

init (Interpolate Image and AllocImage) 9,522,936 1,741,803 1
MBMotionEstimation 303,126 43,666 99
halfpel motion estimation 219,155 39,713 99
SAD MB 13,854 3168 � 99*5

End 18,824 18,824
total 75,508,500 17,516,615

Table 5: Overall Coding Speed

average time per QCIF frames (seconds)
QP akiyo qcif.yuv suzie qcif.yuv trevor qcif.yuv foreman qcif.yuv

28 0.131 0.137 0.137 0.142
24 0.131 0.137 0.137 0.143
20 0.132 0.137 0.138 0.143
16 0.132 0.138 0.140 0.146
12 0.142 0.143 0.145 0.153
8 0.145 0.149 0.151 0.158
4 0.150 0.155 0.158 0.164

5

100 150 200 250 300 350 400 450 500
28

30

32

34

36

38

40

42

Kbits/sec

P
S

N
R

 (
dB

)

initial SNR
Y

initial SNR
U

initial SNR
V

revised SNR
Y

revised SNR
U

revised SNR
V

Fig. 5: R-D performance in coding for foreman qcif.

50 100 150 200 250 300
32

34

36

38

40

42

44

Kbits/sec

P
S

N
R

 (
dB

)

initial SNR
Y

initial SNR
U

initial SNR
V

revised SNR
Y

revised SNR
U

revised SNR
V

Fig. 6: R-D performance in coding for suzie qcif.

we can get the better performance, with the small quantiza-
tion step.

However, the final revised code achieves approximately
400% speedup comparing with initial simplified code for
both processes.

5. Conclusion

We considered implementation of real-time MPEG-4 sim-
ple profile video codec on TI’s C62xx DSPs in II’s Qua-
tro62 environment. The work was based on modifying the
MoMuSys source code, which is a powerful but huge codec
for MPEG-4 video. Current implementation employs two
DSPs.

We did some code size reduction to fit the code to
the limited DSP on-chip program memory, where we re-
moved the rate control, used macros to replace simple func-
tions, changed the method of setting control parameters,
sidestepped layers and objects, and did some others simple

program changes. To speed up the program, we replaced
the motion estimation algorithm and the DCT/IDCT, which
resulted in only a small performance loss. We also mod-
ified and rearranged some program sections, in particular
the interpolation and the SAD functions for motion estima-
tion and compensation, to help the compiler parallelize the
compiled code for better utilization of the DSP’s parallel
functional units in encoder execution.

Currently, the implementation can encode about 6 QCIF
frames per second, but with uneven loads between the two
DSPs. This is almost four times speed-up compared to the
original code. The code size is reduced by about 80%. The
performance loss compared to MoMuSys is less than 0.5
dB.

6. References

[1] International Committee for Information Technology
Standards, web site, http://www.ncits.org/.

[2] Texas Instruments, TMS320C6000 Technical Brief, lit-
erature number: SPRU197D, Feb. 1999.

[3] Innovative Integration, Quarto6x Quatro6x Develop-
ment Package Manual, Jan. 16, 2001.

[4] Video Group, “Text of 14496-7 PDTR (Opti-
mized Visual Reference Software)” ISO/IEC
JTC1/SC29/WG11 N4057, Singapore, March 2001

[5] S. H. Wang, C. N. Wang, T. Chiang, and H. Sun
“AHG report on editorial convergence of MPEG-
4 reference software” ISO/IEC JTC1/SC29/WG11,
MPEG2002/M 8041, March 2002

[6] W. Zheng, I. Ahmad, and M. L. Liou, “Real-time soft-
ware based MPEG-4 video encoding, ” Proc. IEEE
workshop Exhibition MPEG-4, pp. 71–74, 2001,

[7] W. Zheng, I. Ahmad, and M. L. Liou, “Adaptive mo-
tion search with elastic diamond for MPEG-4 video
coding” Proc. IEEE Int. Conf. Image Processing,
vol.1, PP. 377 -380, 2001.

6

Real-Time Implementation of MPEG-4 Fine-Grainularity-Scalable Video
Encoder on Digital Signal Processors

Yen-Fu Chen and David W. Lin

Department of Electronics Engineering and Center for Telecommunications Research
National Chiao Tung University
Hsinchu, Taiwan 30010, R.O.C.

E-mail: afu.ee90g@nctu.edu.tw, dwlin@mail.nctu.edu.tw

Abstract

Fine Granularity Scalability (FGS) is a technique spec-
ified in the Amendment of MPEG-4. It is developed
to the growing need of video delivery over the In-
ternet. Compared to conventional techniques, it of-
fers a different way to optimize video quality over
a range of bitrates. In this work, we implement a
real-time MPEG-4 FGS encoder on digital signal pro-
cessors (DSPs). The digital signal processing envi-
ronment is Innovative Integration’s Quatro62 personal
computer plug-in card, which houses several Texas In-
struments’ TMS320C6201 DSPs. We use a formerly
developed ITU-T H.263+ encoder as the base-layer en-
coder, which resides on one DSP. The FGS encoder
works at the enhancement layer and resides on a sec-
ond DSP. We base our FGS encoder on modifying
the publicly available software MoMuSys. In order to
achieve real-time encoding on DSP, we replace a few
slow blocks in the original C program and further re-
fine our code by taking into account the features of the
DSP chip to produce a more efficient program. Over-
all, we speed up the MPEG-4 FGS encoder on DSP
by several-fold. The final encoding speed is about 12
QCIF frames per second with all bitplanes encoded,
and about 18 frames per second with two last bitplanes
dropped.

1. Introduction

In response to the fast growing network video applica-
tions, the Amendment of MPEG-4 has specified Fine
Granularity Scalability (FGS) coding to provide en-
hanced video deliverty capability for services such as
Internet streaming video. Compared to conventional
layered scalability techniques, FGS employs a differ-
ent strategy to optimize video quality over a range of
bitrates. Through FGS coding, the enhancement bit-
stream can be truncated to nearly any number of bits

This work was supported in part by the National Science Coun-
cil of R.O.C. under grant no. NSC 91-2219-E-009-045.

Fig. 1: Basic FGS encoder structure.

to provide partial enhancement according to the bits
delivered or decoded for each frame.

The basic FGS encoder structure is shown in Fig-
ures 1. In the encoder, the base layer bitstream is
generated from motion compensation, DCT (discrete
cosine transform), quantization, and VLC (variable-
length coding) according to the MPEG-4 standard.
The FGS enhancement encoder takes the original and
reconstructed DCT coefficients as inputs. After ob-
taining all the DCT residues of a VOP (video object
plane), the maximum absolute value of the residues
is found and the maximum number of bitplanes for
the VOP is determined. The enhancement bitstream
is then generated after each bitplane is coded through
the bitplane variable length coding. The bitstream of
the FGS enhancement layer may be truncated to nearly
any number of bits per picture after the encoding is
completed.

Our goal of this work is real-time implementation
of MPEG-4 Fine-Grainularity-Scalable video encoder
on digital signal processors (DSPs). The environment
of our DSP implementation involves a host PC, a DSP
board and the DSP chips on the board. The DSP chips
are Texas Instruments (TI)’s TMS320C6201. The
TMS320C62x is a fixed-point DSP with 5 ns instruc-
tion cycle time. It employs the VelociTI Very Long In-
struction Word (VLIW) architecture that enables sus-
tained throughput of up to eight instructions in parallel

附錄 C

Fig. 2: Architecture of the overall video encoder sys-
tem.

[1]. In addition, the C62x DSPs come with on-chip
program and data memories, which may be configured
as cache on some devices. The DSP board we use is
Innovative Integration (II)’s Quatro6x. It is a PCI bus
compatible DSP card housing four TI TMS320C62x
processors in a symmetric multiprocessing relation-
ship with high bandwidth inter-processor communica-
tion links.

For convenience, we use an H.263+ encoder as the
base-layer encoder. The encoder is a result of earlier
work [2]. In the development process, we first com-
bine these two encoders on a PC and then convert the
environment from PC to DSP. We make use of the fea-
tures of the C62x chip to enhance the FGS encoder on
the DSP. The resulting system achieves real-time cod-
ing speed for QCIF pictures.

2. Architecture of Overall Video Encoder
System

Figure 2 shows the overall encoder system architec-
ture and how it operates. Image data are captured
by the camera and transmitted to the host PC. The
host PC is in charge of the communication mecha-
nism between PCI and DSP. Of the four DSPs on the
Quatro6x card, only one, denoted CPU0, can com-
municate with the host directly. We let it implement
the base-layer encoder. After CPU0 receives the im-
age data from the host, the encoding processing be-
gins and the base-layer bitstream is generated. In
the middle of the base-layer encoding process, the
residues, that is, the difference between the origi-
nal and reconstructed DCT coefficients, are gener-
ated and transmitted to the enhancement-layer en-
coder through the FIFOLink on the Quatro6x between
CPU0 and CPU3. As mentioned, we employ a pre-
viously developed H.263+ encoder as the base-layer
encoder and employ the MPEG-4 FGS encoder as the
enhancement-layer encoder. After the whole picture
is encoded by both the base-layer encoder and the
enhancement-layer encoder, the base-layer bitstream

Fig. 3: Procedure of FGS coding.

and the enhancement-layer bitstream are packed to-
gether and transmitted to the host. The combined bit-
stream after post-processing in host is divided into two
bitstreams and stored to the disk.

3. FGS Encoder Optimization

3.1. Profile of the Original FGS Encoder on DSP

Since an existing software H.263+ encoder on DSP
is used for base-layer encoding, the main task of our
real-time implementation work, besides system inte-
gration, is to obtain an efficient DSP implementation
of the FGS encoder. This involves primarily studies to
speed up the execution of FGS encoding on DSP.

Figure 3 shows the procedure of FGS coding,
where “data preprocessing” (the third block) means
the procedure where the residues are altered by the
fgs shift matrix and the fgs rectangular shift factor
while either frequency weighting or selective enhance-
ment is enabled. By profiling the FGS encoder on DSP
without doing any optimization, the proportions of the
execution time of these procedures are obtained. And
they are shown in Figure 4. The bit-plane VLC coding
dominates the execution time of encoding. A reason
is that FGS does not do motion estimation, motion-
compensated prediction, DCT, and IDCT, which often
consume the majority of computation time in motion-
compensated DCT coding. Moreover, typical general-
purpose CPU architectures and compiler properties are
at odds with what VLC requires for efficient execution.

Further, the temporal redundancy in video is not ex-
ploited in FGS coding as in predictive coding. Conse-
quently, the size of the full FGS encoded bitstream is
very larger than that of H.263+. We use akiyo qcif.yuv
as a test sequence. The H.263+ encoder only encodes
it with I-frames. Figure 5 shows the sizes of the out-
put bitstreams under different QPI (intra quantization
parameter) for the H.263+ encoder while frequency

Fig. 4: Proportions of execution time of different pro-
cedures.

Fig. 5: FGS output bitstream sizes without frequency
weighting or selective enhancement.

weighting and selective enhancement are disabled in
the FGS encoder. And in Figure 6, we show the results
where frequency weighting and selective enhancement
are enabled.

3.2. Code Acceleration

To speed up FGS encoding, we make use of the fea-
tures of the C62x chip as well as the relevant provi-
sions of the compiler to optimize the FGS encoder.

1. Configuring of Compiler Options Setting
TI’s Code Composer Studio (CCS) is a useful
GUI tool that helps engineers develop DSP codes.
CCS compiles the C code and assembles it into
the COFF file format. Compiler options control
the operation of the compiler. Proper configura-
tion of the compiler options helps the compiler
generate efficient assembly codes.

2. Software Pipelining
Software pipelining is a technique used to sched-
ule instructions in a loop so that multiple iter-
ations of the loop execute in parallel. Its real-
ization consists of implementing parallel instruc-
tions, filling delay slots with useful instructions,
loop unrolling, and maximizing usage of func-

Fig. 6: FGS output bitstream sizes with frequency
weighting and selective enhancement.

tional units. Software pipelining is an efficient
way to improve performance.

3. Using Intrinsics
TI’s C6000 compiler provides intrinsics, which
are special functions that map directly to inlined
C62x instructions, to optimize C code. Many
efficient DSP instructions that are not easily ex-
pressed in C code are supported as intrinsics.

4. Packed Data Processing
In order to maximize data throughput, it is often
desirable to use a single load or store instruction
to access multiple data values located consecu-
tively in memory. When operating on a stream of
16-bit data, for example, we can use word (32-bit)
accesses to read two 16-bit values at a time, and
then use C62x intrinsics to operate on the data in
parallel.

5. Memory Usage Strategy
The C62x accesses to the external memory re-
quire more cycles than to the internal memory.
The external memory access time also depend on
what kind of RAM is used. The Quatro 62 board
uses SDRAM and SBRAM as external memories.
So it is good to use on-chip memory as much as
possible to decrease the number of external mem-
ory accesses. If some data have to be put in the
external memory, one should try to use DMA to
load them into the on-chip memory before pro-
cessing them.

6. Memory Model and Allocation
To maximize the code efficiency, the compiler
schedules as many instructions as possible in
parallel. To schedule instructions in parallel,
the compiler must determine the dependency be-
tween instructions, which means whether one in-
struction must be executed before another. For
example, a variable must be loaded from mem-
ory before it can be used. Because only indepen-
dent instructions can execute in parallel, depen-
dency inhibits parallelism. To help the compiler

determine memory dependencies, we can qualify
a pointer, reference, or array with the “restrict”
keyword. This practice helps the compiler opti-
mize certain sections of code because aliasing in-
formation can be more easily determined.

7. Using Macros
Since it takes some clock cycles to complete
a function call and since the compiler is such
that software-pipelined loop cannot contain func-
tion calls, we may change functions into “define”
macros under some conditions to speed up the ex-
ecution. Because macros are expanded in the re-
sulting code, the program size is usually bigger
than using funciton calls.

8. Short Format for Multiplication
The multiplication units of C62x performs 16-bit
by 16-bit multiply operations. Multiplication of
longer operands are broken into several such op-
erations. So one should use the short data type for
multiplication inputs whenever possible because
this data type provides the most efficient use of
the 16-bit multiplier in C62x. For loop coun-
ters, one should use int or unsigned int, rather
than short or unsigned short, to avoid unnecessary
sign-extension.

9. System Level Pipelining
The basic data flow of the whole system is as
shown in Figure 7. CPU 0 does the base-layer
encoding and CPU3 performs the enhancement-
layer encoding. The base-layer encoder encodes
one macroblock and feeds the residues of one
macroblock to the enhancement-layer encoder.
That means, when the residues of one entire pic-
ture are generated, the base-layer encoding is
almost done. After receiving all the residues
and rearranging the residues to bit-planes, the
enhancement-layer encoder begins the bit-plane
VLC coding. As the profile in Figure 4 shows,
the bit-plane VLC coding occupies most of the
execution time. Therefore, the scheme depicted
in Fig. 7 causes the CPU0 to idle and wait for
the enhancement-layer encoding to finish. This is
apparently not an efficient system design. Conse-
quently, we reschedule the flow of the whole sys-
tem as shown in Figure 8. After CPU0 finishes
the encoding of the whole Picture 0, the residues
are sent to CPU3 and the output bitstream of Pic-
ture 0 is buffered. Then the base-layer encoder
continues to encode Picture 1 since it does not
have to wait for the end of enhancement-layer en-
coding. In this manner, most of the CPU idle time
is removed because CPU0 and CPU3 can work in
parallel. The whole system is much more efficient
than the non-pipelined design.

Figure 9 compares the initial code and the revised
code in clock cycles. And figure 10 shows the popor-

Fig. 7: System without pipelining.

Fig. 8: System with system-level pipelining.

tions of execution time of different program sections
after acceleration.

4. Additional Performance Results

We present some additional performance data of
the implemented MPEG-4 encoder. We use the
clock functions defined in “time.h” on PC to esti-
mate the speed of our system. The test sequence
is akiyo qcif.yuv. We use different quantization step
sizes to find out the speed of our system under differ-
ent conditions.

4.1. With and Without Frequency Weighting and
Selective Enhancement

Table 1 shows the overall coding speed under different
quantization step sizes in the base layer. We consider
three kinds of FGS options: “non-optimized” is the
FGS encoder on DSP without any optimization, “soft-
ware pipelining” means the encoder that is obtained by
setting the compiler options properly and the compiler

Fig. 9: Comparsion between initial code and revised
code in clock cycles.

Fig. 10: Poportions of execution time of different pro-
gram sections after acceleration.

has the ability of doing software pipelining, and “op-
timized” means the optimized final code. Frequency
weighting and selective enhancement are both disabled
in all three cases.

Now we enable frequency weighting and selective
enhancement. The fgs shift matrix we use is as fol-
lows:

�����������
�

��

	�

�

The value of fgs rectangular shift factor is 3. The ex-
perimental result is shown in Table 2.

4.2. With and Without Encoding of the Last Two
Bitplanes

In our implementation, the FGS output bitstream is
transmitted to the base-layer encoder when all the bit-
planes are encoded. In fact the channel bandwidth may
be smaller than the bitstream. So the FGS stream may
be truncated before being transmitted to the channel.
Actually, it is the experience of some researchers that
the last few bitplanes of the bitstream may be trun-
cated without much effect on the subjective quality of
the decoded video. Table 3 shows the performance of
the FGS encoder when the last two bitplanes are not
encoded. Since the last two bitplanes only affect the
last two bits of the residues, the quality of the restruc-
tured pictures does not change significantly, while the
improvement in speed is significant.

5. Concluding Remarks

We considered real-time implementation of MPEG-4
FGS video encoder on DSPs. We have used a previ-
ously implemented H.263+ encoder as the base-layer
encoder. And the FGS enhancement-layer encoder is
based on the FGS section of the MoMuSys software.

For DSP implementation, we have focused on the
speed-up of the FGS encoder and the overall system
design, since our system requires the working together
of a host PC and two DSP chips. The use of two DSPs
was for simplicity of system integration, where one
DSP implements the H.263+ base-layer encoder and
the other implements the FGS encoder. The code size
of the FGS encoder was quite smaller than the DSP’s
internal memory size. Therefore, code size reduction
was not a major point of our work as in some other
implementation studies.

We profiled the FGS encoder and found out the bot-
tlenecks in the encoder functions. We then sought
to accelerate the code by utilizing the features of the
C62x chip, as well as the provisions of the compiler.
The bitplane VLC coding was found to take the ma-
jority of the program execution time. In particular, the
function of outputting bits to the bitstream was found
to cost an unexpected amount of complexity. Simply
by rewriting this function, we gained proportionately
the most improvement in all the work that we did.

In system integration, we scheduled the workflow
so that the H.263+ encoder and the FGS encoder could
work in parallel. Since the speed of the FGS encoder
was slower than that of the H.263+, the speed of the
overall system was dependent on the improvement of
the FGS encoder. The final encoding speed of the im-
plementation is about 12 QCIF frames per second at no
video quality loss by bitplane dropping, which is about
650% speed-up compared to the original encoder with
no optimization. With dropping of two last bitplanes,
the speed can reach about 18 frames per second.

6. References

[1] N. Seshan, “High VelociTI processing,” IEEE
Signal Processing Mag., vol. 15, no. 2, pp. 86–
101, Mar. 1998.

[2] M.-L. Woo, “Real-Time Implementation of
H.263+ Using TI TMS320C62x,” M.S. thesis,
Department of Electronics Engineering, National
Chiao Tung University, June 2000.

Table 1: Overall Coding Speed Without Frequency Weighting or Selective Enhancement

Average QCIF frames per second
Software Speed-up (non- Speed-up (proper

QPI Non-optimized pipelining Optimized optimized configuation
vs. optimized) vs. optimized)

4 2.10053 5.51755 13.50439 6.42904 2.44754
8 2.08065 5.45524 13.44447 6.46168 2.46451

12 1.98942 5.23286 12.98364 6.52636 2.48117
16 1.97656 5.23259 12.87830 6.51552 2.46117
20 1.92894 5.11169 12.70025 6.58406 2.48455
24 1.90360 5.06380 12.54863 6.59204 2.47810
28 1.88512 4.97661 12.38237 6.56847 2.48811
32 1.87403 5.01128 12.49688 6.66846 2.49375

Table 2: Overall Coding Speed with Frequency Weighting and Selective Enhancement

Average QCIF frames per second
Software Speed-up (non- Speed-up (proper

QPI Non-optimized pipelining Optimized optimized configuation
vs. optimized) vs. optimized)

4 1.69497 4.73732 12.64702 7.46149 2.66966
8 1.67628 4.66810 12.49844 7.45607 2.67741

12 1.61283 4.51610 12.07438 7.48648 2.67363
16 1.60720 4.49438 11.98179 7.45507 2.66595
20 1.57480 4.42576 11.80638 7.49705 2.66765
24 1.55453 4.35996 11.74260 7.55378 2.69328
28 1.54552 4.33614 11.72058 7.58357 2.70300
32 1.53440 4.29516 11.55268 7.52911 2.68970

Table 3: Overall Coding Speed Without Encoding of Two Last Bitplanes

Average QCIF frames per second
QPI Frequency Weighting Frequency Weighting

and Selective Enhancement Disabled and Selective Enhancement Enabled
4 19.33862 19.17178
8 19.28268 19.16076

12 19.22338 18.08318
16 18.88574 18.03101
20 18.33181 17.71793
24 18.17851 17.43983
28 18.13237 17.30104
32 17.63668 17.02128

	appAjan.pdf
	INTRODUCTION
	The Proposed Algorithm
	Change Detection
	Forward Tracking
	Backward Validation
	Mask Refinement

	Experimental Results
	Conclusion

